Sample records for storm wave action

  1. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  2. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  3. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  4. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  5. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  6. Maximizing effectiveness of adaptation action in Pacific Island communities using coastal wave attenuation models

    NASA Astrophysics Data System (ADS)

    Jung, H.; Carruthers, T.; Allison, M. A.; Weathers, D.; Moss, L.; Timmermans, H.

    2017-12-01

    Pacific Island communities are highly vulnerable to the effects of climate change, specifically accelerating rates of sea level rise, changes to storm intensity and associated rainfall patterns resulting in flooding and shoreline erosion. Nature-based adaptation is being planned not only to reduce the risk from shoreline erosion, but also to support benefits of a healthy ecosystem (e.g., supporting fisheries or coral reefs). In order to assess potential effectiveness of the nature-based actions to dissipate wave energy, two-dimensional X-Beach models were developed to predict the wave attenuation effect of coastal adaptation actions at the pilot sites—the villages of Naselesele and Somosomo on Taveuni island, Fiji. Both sites are experiencing serious shoreline erosion due to sea level rise and storm wave. The water depth (single-beam bathymetry), land elevation (truck-based LiDAR), and vegetation data including stem density and height were collected in both locations in a June 2017 field experiment. Wave height and water velocity were also measured for the model setup and calibration using a series of bottom-mounted instruments deployed in the 0-15 m water depth portions of the study grid. The calibrated model will be used to evaluate a range of possible adaptation actions identified by the community members of Naselesele and Somosomo. Particularly, multiple storm scenario runs with management-relevant shoreline restoration/adaptation options will be implemented to evaluate efficiencies of each adaptation action (e.g., no action, with additional planted trees, with sand mining, with seawalls constructed with natural materials, etc.). These model results will help to better understand how proposed adaption actions may influence future shoreline change and maximize benefits to communities in island nations across the SW Pacific.

  7. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    NASA Astrophysics Data System (ADS)

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  8. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    PubMed Central

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans. PMID:26699461

  9. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    USGS Publications Warehouse

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  10. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.

    PubMed

    Leonardi, Nicoletta; Ganju, Neil K; Fagherazzi, Sergio

    2016-01-05

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  11. On the Storm Surge and Sea Level Rise Projections for Infrastructure Risk Analysis and Adaptation

    EPA Science Inventory

    Storm surge can cause coastal hydrology changes, flooding, water quality changes, and even inundation of low-lying terrain. Strong wave actions and disruptive winds can damage water infrastructure and other environmental assets (hazardous and solid waste management facilities, w...

  12. Swell and Sea in the Emerging Arctic Ocean

    DTIC Science & Technology

    2014-01-01

    exchanges of momentum, heat, and gases occur [Steele et al., 1989;Melville, 1996]. At the coasts, surface waves can force circulation and cause erosion...significant in forcing ice retreat [ Parkinson and Comiso, 2013], the waves asso- ciated with that storm were not modeled to be as large as the September storm...action at the Arctic coast, Geophys. Res. Lett., 38, L17503, doi:10.1029/2011GL048681. Parkinson , C. L., and J. C. Comiso (2013), On the 2012 record

  13. 40 CFR 230.41 - Wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... circulation patterns that flush large expanses of wetland systems, by interfering with the filtration function... buffer zone shielding upland areas from wave actions, storm damage and erosion. ...

  14. A methodology for modeling barrier island storm-impact scenarios

    USGS Publications Warehouse

    Mickey, Rangley C.; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.; Dalyander, P. Soupy

    2017-02-16

    A methodology for developing a representative set of storm scenarios based on historical wave buoy and tide gauge data for a region at the Chandeleur Islands, Louisiana, was developed by the U.S. Geological Survey. The total water level was calculated for a 10-year period and analyzed against existing topographic data to identify when storm-induced wave action would affect island morphology. These events were categorized on the basis of the threshold of total water level and duration to create a set of storm scenarios that were simulated, using a high-fidelity, process-based, morphologic evolution model, on an idealized digital elevation model of the Chandeleur Islands. The simulated morphological changes resulting from these scenarios provide a range of impacts that can help coastal managers determine resiliency of proposed or existing coastal structures and identify vulnerable areas within those structures.

  15. The Role of Porosity in the Formation of Coastal Boulder Deposits - Hurricane Versus Tsunami

    NASA Astrophysics Data System (ADS)

    Spiske, M.; Boeroecz, Z.; Bahlburg, H.

    2007-12-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Distinguishing parameters between storm, hurricane and tsunami origin are distance of a deposit from the coast, boulder weight and inferred wave height. Formulas to calculate minimum wave heights of both storm and tsunami waves depend on accurate determination of boulder dimensions and lithology from the respective deposits. At present however, boulder porosity appears to be commonly neglected, leading to significant errors in determined bulk density, especially when boulders consist of reef or coral limestone. This limits precise calculations of wave heights and hampers a clear distinction between storm, hurricane and tsunami origin. Our study uses Archimedean and optical 3D-profilometry measurements for the determination of porosities and bulk densities of reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles). Due to the high porosities (up to 68 %) of the enclosed coral species, the weights of the reef rock boulders are as low as 20 % of previously calculated values. Hence minimum calculated heights both for tsunami and hurricane waves are smaller than previously proposed. We show that hurricane action appears to be the likely depositional mechanism for boulders on the ABC Islands, since 1) our calculations result in tsunami wave heights which do not permit the overtopping of coastal platforms on the ABC Islands, 2) boulder fields lie on the windward (eastern) sides of the islands, 3) recent hurricanes transported boulders up to 35 m3 and 4) the scarcity of tsunami events affecting the coasts of the ABC Islands compared to frequent impacts of tropical storms and hurricanes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaston, C. C.; Bonnell, J. W.; Reeves, Geoffrey D.

    We show how dispersive Alfvén waves observed in the inner magnetosphere during geomagnetic storms can extract O + ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O + distributions trapped near the equator. These waves also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersivemore » Alfvén waves over several minutes may drive order of magnitude increases in O + ion pressure to make substantial contributions to magnetospheric ion energy density. These wave accelerated ions will enhance the ring current and play a role in the storm time evolution of the magnetosphere.« less

  17. On the use of wave parameterizations and a storm impact scaling model in National Weather Service Coastal Flood and decision support operations

    USGS Publications Warehouse

    Mignone, Anthony; Stockdon, H.; Willis, M.; Cannon, J.W.; Thompson, R.

    2012-01-01

    National Weather Service (NWS) Weather Forecast Offices (WFO) are responsible for issuing coastal flood watches, warnings, advisories, and local statements to alert decision makers and the general public when rising water levels may lead to coastal impacts such as inundation, erosion, and wave battery. Both extratropical and tropical cyclones can generate the prerequisite rise in water level to set the stage for a coastal impact event. Forecasters use a variety of tools including computer model guidance and local studies to help predict the potential severity of coastal flooding. However, a key missing component has been the incorporation of the effects of waves in the prediction of total water level and the associated coastal impacts. Several recent studies have demonstrated the importance of incorporating wave action into the NWS coastal flood program. To follow up on these studies, this paper looks at the potential of applying recently developed empirical parameterizations of wave setup, swash, and runup to the NWS forecast process. Additionally, the wave parameterizations are incorporated into a storm impact scaling model that compares extreme water levels to beach elevation data to determine the mode of coastal change at predetermined “hotspots” of interest. Specifically, the storm impact model compares the approximate storm-induced still water level, which includes contributions from tides, storm surge, and wave setup, to dune crest elevation to determine inundation potential. The model also compares the combined effects of tides, storm surge, and the 2 % exceedance level for vertical wave runup (including both wave setup and swash) to dune toe and crest elevations to determine if erosion and/or ocean overwash may occur. The wave parameterizations and storm impact model are applied to two cases in 2009 that led to significant coastal impacts and unique forecast challenges in North Carolina: the extratropical “Nor'Ida” event during 11-14 November and the large swell event from distant Hurricane Bill on 22 August. The coastal impacts associated with Nor'Ida were due to the combined effects of surge, tide, and wave processes and led to an estimated 5.8 million dollars in damage. While the impacts from Hurricane Bill were not as severe as Nor'Ida, they were mainly associated with wave processes. Thus, this event exemplifies the importance of incorporating waves into the total water level and coastal impact prediction process. These examples set the stage for potential future applications including adaption to the more complex topography along the New England coast.

  18. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  19. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  20. Driving ionospheric outflows and magnetospheric O + energy density with Alfvén waves

    DOE PAGES

    Chaston, C. C.; Bonnell, J. W.; Reeves, Geoffrey D.; ...

    2016-05-11

    We show how dispersive Alfvén waves observed in the inner magnetosphere during geomagnetic storms can extract O + ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O + distributions trapped near the equator. These waves also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersivemore » Alfvén waves over several minutes may drive order of magnitude increases in O + ion pressure to make substantial contributions to magnetospheric ion energy density. These wave accelerated ions will enhance the ring current and play a role in the storm time evolution of the magnetosphere.« less

  1. Visualizing Coastal Erosion, Overwash and Coastal Flooding in New England

    NASA Astrophysics Data System (ADS)

    Young Morse, R.; Shyka, T.

    2017-12-01

    Powerful East Coast storms and their associated storm tides and large, battering waves can lead to severe coastal change through erosion and re-deposition of beach sediment. The United States Geological Survey (USGS) has modeled such potential for geological response using a storm-impact scale that compares predicted elevations of hurricane-induced water levels and associated wave action to known elevations of coastal topography. The resulting storm surge and wave run-up hindcasts calculate dynamic surf zone collisions with dune structures using discrete regime categories of; "collision" (dune erosion), "overwash" and "inundation". The National Weather Service (NWS) recently began prototyping this empirical technique under the auspices of the North Atlantic Regional Team (NART). Real-time erosion and inundation forecasts were expanded to include both tropical and extra-tropical cyclones along vulnerable beaches (hotspots) on the New England coast. Preliminary results showed successful predictions of impact during hurricane Sandy and several intense Nor'easters. The forecasts were verified using observational datasets, including "ground truth" reports from Emergency Managers and storm-based, dune profile measurements organized through a Maine Sea Grant partnership. In an effort to produce real-time visualizations of this forecast output, the Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS) and the Gulf of Maine Research Institute (GMRI) partnered with NART to create graphical products of wave run-up levels for each New England "hotspot". The resulting prototype system updates the forecasts twice daily and allows users the ability to adjust atmospheric and sea state input into the calculations to account for model errors and forecast uncertainty. This talk will provide an overview of the empirical wave run-up calculations, the system used to produce forecast output and a demonstration of the new web based tool.

  2. Development of Operational Wave-Tide-Storm surges Coupling Prediction System

    NASA Astrophysics Data System (ADS)

    You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.

    2009-04-01

    The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (STORM : Storm Surges/Tide Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between uncoupling and coupling cases for each typhoon. When the typhoon Nabi hit at southern coast of Kyushu, predicted significant wave height reached over 10 m. The difference of significant wave height between wave and wave-tide-storm surges model represents large variation at the southwestern coast of Korea with about 0.5 m. Other typhoon cases also show similar results with typhoon Nabi case. For typhoon Shanshan case the difference of significant wave height reached up to 0.3 m. When the typhoon Nari was affected in the southern coast of Korea, predicted significant wave height was about 5m. The typhoon Nari case also shows the difference of significant wave height similar with other typhoon cases. Using the observation from ocean buoy operated by KMA, we compared wave information simulated by wave and wave-storm surges coupling model. The significant wave height simulated by wave-tide-storm surges model shows the tidal modulation features in the western and southern coast of Korea. And the difference of significant wave height between two models reached up to 0.5 m. The coupling effect also can be identified in the wave direction, wave period and wave length. In addition, wave spectrum is also changeable due to coupling effect of wave-tide-storm surges model. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.

  3. Dynamic interactions between coastal storms and salt marshes: A review

    NASA Astrophysics Data System (ADS)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.

  4. Dynamic interactions between coastal storms and salt marshes: A review

    USGS Publications Warehouse

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.

  5. Hurricane Katrina storm surge distribution and field observations on the Mississippi Barrier Islands

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Blount, Chris; Sokoloski, Robert; Singleton, Justin; Fuggle, Andrew; McAdoo, Brian G.; Moore, Andrew; Grass, Chad; Tate, Banks

    2007-08-01

    Hurricane Katrina (23-30 August 2005) struck low-lying coastal plains particularly vulnerable to storm surge flooding. Maximum storm surges, overland flow depths, and inundation distances were measured along the Gulf Coast of Florida, Alabama, Mississippi and Louisiana. The vehicle based survey was complemented by inspections with the reconnaissance boat along the Gulf Coast and the Mississippi Barrier Islands. The storm surge peaked to the East of Katrina's path exceeding 10 meters in several locations along the Mississippi coastline. The storm surge measurements show that the lower floors of specially designed buildings were damaged by the surge of seawater and associated wave action, while the upper floors sustained minimal wind damage. Furthermore, the storm surge measurements along New Orleans's Lake shore indicate that the 17th Street Canal levee failed prior to overtopping. The land loss on the barrier islands resulted in an increased vulnerability of the US Gulf Coast to future hurricane storm surges.

  6. Energetic Proton Spectra Measured by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.

    2017-10-01

    We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

  7. 44 CFR 59.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... an alluvial fan or similar landform which originates at the apex and is characterized by high... administer laws, ordinances and regulations for that community. Coastal high hazard area means an area of... coast and any other area subject to high velocity wave action from storms or seismic sources. Community...

  8. 44 CFR 59.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... an alluvial fan or similar landform which originates at the apex and is characterized by high... administer laws, ordinances and regulations for that community. Coastal high hazard area means an area of... coast and any other area subject to high velocity wave action from storms or seismic sources. Community...

  9. 44 CFR 59.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... an alluvial fan or similar landform which originates at the apex and is characterized by high... administer laws, ordinances and regulations for that community. Coastal high hazard area means an area of... coast and any other area subject to high velocity wave action from storms or seismic sources. Community...

  10. 44 CFR 59.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... an alluvial fan or similar landform which originates at the apex and is characterized by high... administer laws, ordinances and regulations for that community. Coastal high hazard area means an area of... coast and any other area subject to high velocity wave action from storms or seismic sources. Community...

  11. 44 CFR 59.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... an alluvial fan or similar landform which originates at the apex and is characterized by high... administer laws, ordinances and regulations for that community. Coastal high hazard area means an area of... coast and any other area subject to high velocity wave action from storms or seismic sources. Community...

  12. Fifty-Year Flood-Inundation Maps for Santa Rosa de Aguan, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the coastal municipality of Santa Rosa de Aguan that are prone to oceanic storm-surge flooding and wave action. The 50-year flood on the Rio Aguan (4,270 cubic meters per second), would inundate most of the area surveyed for this municipality and beyond. Therefore a detailed numerical hydraulic model was not developed for this municipality as it was for the others. The 50-year storm surge would likely produce higher water levels than the 50-year flood on the river during normal astronomical tides. The elevation of the 50-year storm surge was estimated to be 4.35 meters above normal sea level, based on hurricane probabilities and published storm-surge elevations associated with various hurricane categories. Flood-inundation maps, including areas of wave-action hazard and a color-shaded elevation map, were created from the available data and the estimated 50-year storm tide. Geographic Information System (GIS) coverages of the hazard areas are available on a computer in the municipality of Santa Rosa de Aguan as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Data Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the maps in much more detail than is possible using the maps in this report.

  13. Coastal Storm Hazards from Virginia to Maine

    DTIC Science & Technology

    2015-11-01

    study, storm surge, tide, waves, wind, atmospheric pressure, and currents were the dominant storm responses computed. The effect of sea level change on...coastal storm hazards and vulnerability nationally (USACE 2015). NACCS goals also included evaluating the effect of future sea level change (SLC) on...the computed high-fidelity responses included storm surge, astronomical tide, waves, wave effects on water levels, storm duration, wind, currents

  14. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    NASA Astrophysics Data System (ADS)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  15. Dynamics of severe storms through the study of thermospheric-tropospheric coupling

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1979-01-01

    Atmospheric acoustic-gravity waves associated with severe local thunderstorms, tornadoes, and hurricanes can be studied through the coupling between the thermosphere and the troposphere. Reverse group ray tracing computations of acoustic-gravity waves, observed by an ionospheric Doppler sounder array, show that the wave sources are in the neighborhood of storm systems and the waves are excited prior to the storms. It is suggested that the overshooting and ensuing collapse of convective turrets may be responsible for generating the acoustic-gravity waves observed. The results of this study also show that the study of wave-wave resonant interactions may be a potential tool for investigating the dynamical behavior of severe storm systems using ionospheric observations of atmospheric acoustic-gravity waves associated with severe storms.

  16. Coastal hazards in a changing world: projecting and communicating future coastal flood risk at the local-scale using the Coastal Storm Modeling System (CoSMoS)

    NASA Astrophysics Data System (ADS)

    O'Neill, Andrea; Barnard, Patrick; Erikson, Li; Foxgrover, Amy; Limber, Patrick; Vitousek, Sean; Fitzgibbon, Michael; Wood, Nathan

    2017-04-01

    The risk of coastal flooding will increase for many low-lying coastal regions as predominant contributions to flooding, including sea level, storm surge, wave setup, and storm-related fluvial discharge, are altered with climate change. Community leaders and local governments therefore look to science to provide insight into how climate change may affect their areas. Many studies of future coastal flooding vulnerability consider sea level and tides, but ignore other important factors that elevate flood levels during storm events, such as waves, surge, and discharge. Here we present a modelling approach that considers a broad range of relevant processes contributing to elevated storm water levels for open coast and embayment settings along the U.S. West Coast. Additionally, we present online tools for communicating community-relevant projected vulnerabilities. The Coastal Storm Modeling System (CoSMoS) is a numerical modeling system developed to predict coastal flooding due to both sea-level rise (SLR) and plausible 21st century storms for active-margin settings like the U.S. West Coast. CoSMoS applies a predominantly deterministic framework of multi-scale models encompassing large geographic scales (100s to 1000s of kilometers) to small-scale features (10s to 1000s of meters), resulting in flood extents that can be projected at a local resolution (2 meters). In the latest iteration of CoSMoS applied to Southern California, U.S., efforts were made to incorporate water level fluctuations in response to regional storm impacts, locally wind-generated waves, coastal river discharge, and decadal-scale shoreline and cliff changes. Coastal hazard projections are available in a user-friendly web-based tool (www.prbo.org/ocof), where users can view variations in flood extent, maximum flood depth, current speeds, and wave heights in response to a range of potential SLR and storm combinations, providing direct support to adaptation and management decisions. In order to capture the societal aspect of the hazard, projections are combined with socioeconomic exposure to produce clear, actionable information (https://www.usgs.gov/apps/hera/); this integrated approach to hazard displays provides an example of how to effectively translate complex climate impacts projections into simple, societally-relevant information.

  17. Preliminary Study on Coupling Wave-Tide-Storm Surges Prediction System

    NASA Astrophysics Data System (ADS)

    You, S.; Park, S.; Seo, J.; Kim, K.

    2008-12-01

    The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surge, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module on wave heights. However, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (RTSM : Regional Tide/Storm Surges Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The RTSM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and RTSM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.

  18. The effect of wave current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Xie, Lian; Liu, Huiqing; Peng, Machuan

    The effects of wave-current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave-current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.

  19. GenCade Version 1 Model Theory and User’s Guide

    DTIC Science & Technology

    2012-12-01

    summer, severe waves associated with extratropical storms frequent during winter and spring, and severe waves associated with tropical storms during...that the majority of waves are from the southeast and the more severe waves associated with extratropical storms are from the east- southeast. This...decades to centuries. However, these tools should also resolve processes that occur at the scale of individual storms and tidal cycles to calculate

  20. Global modeling of storm-time thermospheric dynamics and electrodynamics

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.; Richmond, A. D.; Maruyama, N.

    Understanding the neutral dynamic and electrodynamic response of the upper atmosphere to geomagnetic storms, and quantifying the balance between prompt penetration and disturbance dynamo effects, are two of the significant challenges facing us today. This paper reviews our understanding of the dynamical and electrodynamic response of the upper atmosphere to storms from a modeling perspective. After injection of momentum and energy at high latitude during a geomagnetic storm, the neutral winds begin to respond almost immediately. The high-latitude wind system evolves quickly by the action of ion drag and the injection of kinetic energy; however, Joule dissipation provides the bulk of the energy source to change the dynamics and electrodynamics globally. Impulsive energy injection at high latitudes drives large-scale gravity waves that propagate globally. The waves transmit pressure gradients initiating a change in the global circulation. Numerical simulations of the coupled thermosphere, ionosphere, plasmasphere, and electrodynamic response to storms indicate that although the wind and waves are dynamic, with significant apparent "sloshing" between the hemispheres, the net effect is for an increased equatorward wind. The dynamic changes during a storm provide the conduit for many of the physical processes that ensue in the upper atmosphere. For instance, the increased meridional winds at mid latitudes push plasma parallel to the magnetic field to regions of different composition. The global circulation carries molecular rich air from the lower thermosphere upward and equatorward, changing the ratio of atomic and molecular neutral species, and changing loss rates for the ionosphere. The storm wind system also drives the disturbance dynamo, which through plasma transport modifies the strength and location of the equatorial ionization anomaly peaks. On a global scale, the increased equatorward meridional winds, and the generation of zonal winds at mid latitudes via the Coriolis effects, produce a current system opposing the normal quiet-time Sq current system. At the equator, the storm-time zonal electric fields reduce or reverse the normal upward and downward plasma drift on the dayside and nightside, respectively. In the numerical simulations, on the dayside, the disturbance dynamo appears fairly uniform, whereas at night a stronger local time dependence is apparent with increased upward drift between midnight and dawn. The simulations also indicate the possibility for a rapid dynamo response at the equator, within 2 h of storm onset, before the arrival of the large-scale gravity waves. All these wind-driven processes can result in dramatic ionospheric changes during storms. The disturbance dynamo can combine and interact with the prompt penetration of magnetospheric electric fields to the equator.

  1. Defining Coastal Storm and Quantifying Storms Applying Coastal Storm Impulse Parameter

    NASA Astrophysics Data System (ADS)

    Mahmoudpour, Nader

    2014-05-01

    What defines a storm condition and what would initiate a "storm" has not been uniquely defined among scientists and engineers. Parameters that have been used to define a storm condition can be mentioned as wind speed, beach erosion and storm hydrodynamics parameters such as wave height and water levels. Some of the parameters are storm consequential such as beach erosion and some are not directly related to the storm hydrodynamics such as wind speed. For the purpose of the presentation, the different storm conditions based on wave height, water levels, wind speed and beach erosion will be discussed and assessed. However, it sounds more scientifically to have the storm definition based on the hydrodynamic parameters such as wave height, water level and storm duration. Once the storm condition is defined and storm has initiated, the severity of the storm would be a question to forecast and evaluate the hazard and analyze the risk in order to determine the appropriate responses. The correlation of storm damages to the meteorological and hydrodynamics parameters can be defined as a storm scale, storm index or storm parameter and it is needed to simplify the complexity of variation involved developing the scale for risk analysis and response management. A newly introduced Coastal Storm Impulse (COSI) parameter quantifies storms into one number for a specific location and storm event. The COSI parameter is based on the conservation of linear, horizontal momentum to combine storm surge, wave dynamics, and currents over the storm duration. The COSI parameter applies the principle of conservation of momentum to physically combine the hydrodynamic variables per unit width of shoreline. This total momentum is then integrated over the duration of the storm to determine the storm's impulse to the coast. The COSI parameter employs the mean, time-averaged nonlinear (Fourier) wave momentum flux, over the wave period added to the horizontal storm surge momentum above the Mean High Water (MHW) integrated over the storm duration. The COSI parameter methodology has been applied to a 10-year data set from 1994 to 2003 at US Army Corps of Engineers, Field Research Facility (FRF) located on the Atlantic Ocean in Duck, North Carolina. The storm duration was taken as the length of time (hours) that the spectral significant wave heights were equal or greater than 1.6 meters for at least a 12 hour, continuous period. Wave heights were measured in 8 meters water depth and water levels measured at the NOAA/NOS tide gauge at the end of the FRF pier. The 10-year data set were analyzed applying the aforementioned storm criteria and produced 148 coastal events including Hurricanes and Northeasters. The results of this analysis and application of the COSI parameter to determine "Extra Ordinary" storms in Federal Projects for the Gulf of Mexico, 2012 hurricane season will be discussed at the time of presentation.

  2. Dependence of EMIC wave parameters during quiet, geomagnetic storm, and geomagnetic storm phase times

    DOE PAGES

    Halford, Alexa J.; Fraser, Brian J; Morley, Steven Karl; ...

    2016-06-08

    As electromagnetic ion cyclotron (EMIC) waves may play an important role in radiation belt dynamics, there has been a push to better include them into global simulations. How to best include EMIC wave effects is still an open question. Recently many studies have attempted to parameterize EMIC waves and their characteristics by geomagnetic indices. However, this does not fully take into account important physics related to the phase of a geomagnetic storm. In this paper we first consider how EMIC wave occurrence varies with the phase of a geomagnetic storm and the SYM-H, AE, and Kp indices. Here we showmore » that the storm phase plays an important role in the occurrence probability of EMIC waves. The occurrence rates for a given value of a geomagnetic index change based on the geomagnetic condition. Then in this study we also describe the typical plasma and wave parameters observed in L and magnetic local time for quiet, storm, and storm phase. These results are given in a tabular format in the supporting information so that more accurate statistics of EMIC wave parameters can be incorporated into modeling efforts.« less

  3. Dependence of EMIC wave parameters during quiet, geomagnetic storm, and geomagnetic storm phase times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halford, Alexa J.; Fraser, Brian J; Morley, Steven Karl

    As electromagnetic ion cyclotron (EMIC) waves may play an important role in radiation belt dynamics, there has been a push to better include them into global simulations. How to best include EMIC wave effects is still an open question. Recently many studies have attempted to parameterize EMIC waves and their characteristics by geomagnetic indices. However, this does not fully take into account important physics related to the phase of a geomagnetic storm. In this paper we first consider how EMIC wave occurrence varies with the phase of a geomagnetic storm and the SYM-H, AE, and Kp indices. Here we showmore » that the storm phase plays an important role in the occurrence probability of EMIC waves. The occurrence rates for a given value of a geomagnetic index change based on the geomagnetic condition. Then in this study we also describe the typical plasma and wave parameters observed in L and magnetic local time for quiet, storm, and storm phase. These results are given in a tabular format in the supporting information so that more accurate statistics of EMIC wave parameters can be incorporated into modeling efforts.« less

  4. Accurately Characterizing the Importance of Wave-Particle Interactions in Radiation Belt Dynamics: The Pitfalls of Statistical Wave Representations

    NASA Technical Reports Server (NTRS)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.

    2016-01-01

    Wave-particle interactions play a crucial role in energetic particle dynamics in the Earths radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

  5. Impact of Hurricanes and Nor'easters on a Migrating Inlet System

    NASA Astrophysics Data System (ADS)

    Hopkins, J.; Elgar, S.; Raubenheimer, B.

    2016-12-01

    After breaching in 2007, Katama Inlet, connecting Katama Bay to the Atlantic Ocean on the south shore of Martha's Vineyard, MA, migrated 2 km until it closed in 2015. Bathymetric surveys before and after Hurricanes Irene (2011) and Sandy (2012) indicate the strong waves and currents associated with these storms caused 2 m of erosion and deposition around the inlet mouth. The waves, currents, and bathymetric change observed during the hurricanes were used to validate the hydrodynamic and morphodynamic components of a Delft3D numerical model of the Martha's Vineyard coastline for storm (> 3 m wave heights) conditions. When driven with observed bathymetry and offshore waves, as well as simulated (WaveWatch3) winds and barometric pressures, the model reproduces the pattern and range of bathymetric change observed around the inlet. Model simulations of realistic (i.e., Irene and Sandy) and idealized storm conditions with a range of durations and wave conditions are used to test the relative importance of short-duration, high-intensity storms (hurricanes) and longer-duration, lower-intensity storms (nor'easters) on inlet migration. The simulations suggest that longer-duration, lower-intensity storms cause a higher range and variance in bathymetric change around the inlet than shorter-duration, higher-intensity storms. However, the simulations also suggest that the storm-induced migration of the inlet depends more on the wave direction at the peak of the storm than on the duration of the storm peak. The effect of storms on inlet migration over yearly time scales will be discussed. Funded by NSF, NOAA, ONR, and ASD(R&E).

  6. 76 FR 74776 - Forum-Trends in Extreme Winds, Waves, and Extratropical Storms Along the Coasts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... Winds, Waves, and Extratropical Storms Along the Coasts AGENCY: National Environmental Satellite, Data... information, please check the forum Web site at https://sites.google.com/a/noaa.gov/extreme-winds-waves.../noaa.gov/extreme-winds-waves-extratropical-storms/home . Topics To Be Addressed This forum will address...

  7. Comprehensive Condition Survey and Storm Waves, Circulation, and Sediment Study, Dana Point Harbor, California

    DTIC Science & Technology

    2014-12-01

    waters; 3) west to northwest local sea; 4) prefrontal local sea; 5) tropical storm swell; and 6) extratropical cyclone in the southern hemisphere...14-13 58 Prefrontal local sea The coastal zone within the south Orange County area is vulnerable under extratropical winter storm conditions (a...wave characteristics for severe extratropical storms during the 39 yr time period (1970–2008) are comparable to peak storm wave heights that were

  8. Effects of wave-current interaction on storm surge in the Taiwan Strait: Insights from Typhoon Morakot

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolong; Pan, Weiran; Zheng, Xiangjing; Zhou, Shenjie; Tao, Xiaoqin

    2017-08-01

    The effects of wave-current interaction on storm surge are investigated by a two-dimensional wave-current coupling model through simulations of Typhoon Morakot in the Taiwan Strait. The results show that wind wave and slope of sea floor govern wave setup modulations within the nearshore surf zone. Wave setup during Morakot can contribute up to 24% of the total storm surge with a maximum value of 0.28 m. The large wave setup commonly coincides with enhanced radiation stress gradient, which is itself associated with transfer of wave momentum flux. Water levels are to leading order in modulating significant wave height inside the estuary. High water levels due to tidal change and storm surge stabilize the wind wave and decay wave breaking. Outside of the estuary, waves are mainly affected by the current-induced modification of wind energy input to the wave generation. By comparing the observed significant wave height and water level with the results from uncoupled and coupled simulations, the latter shows a better agreement with the observations. It suggests that wave-current interaction plays an important role in determining the extreme storm surge and wave height in the study area and should not be neglected in a typhoon forecast.

  9. 7 CFR 1945.6 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption... hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic..., earthquake, hurricane or tornado. (B) A single storm, or series of storms, accompanied by severe hail...

  10. 7 CFR 1945.6 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption... hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic..., earthquake, hurricane or tornado. (B) A single storm, or series of storms, accompanied by severe hail...

  11. 7 CFR 1945.6 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption... hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic..., earthquake, hurricane or tornado. (B) A single storm, or series of storms, accompanied by severe hail...

  12. Van Allen Probe Observations of Chorus Wave Activity, Source and Seed electrons, and the Radiation Belt Response During ICME and CIR Storms

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.

    2017-12-01

    Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.

  13. Influence of Wave Energetics on Nearshore Storms and Adjacent Shoreline Morphology

    NASA Astrophysics Data System (ADS)

    Wadman, H. M.; McNinch, J. E.; Hanson, J.

    2008-12-01

    Large-scale climatic forcings (such as NAO and ENSO) are known to induce fluctuations in regional storm frequency and intensity. Morphology-based studies have traditionally focused on individual storms and their influence on the nearshore coastal wave regime and shoreline response. Few studies have attempted to link long-term observed changes in shoreline position, beach, and nearshore morphology with large-scale climatic forcings that influence regional storm patterns. In order to predict the response of coastlines to future sea level rise and climate change, we need to understand how changes in the frequency of storms affecting nearshore regions (nearshore storms) may influence trends in shoreline position and nearshore morphology. Nearly 30 years of wave data (deep and shallow) collected off of Duck, NC are examined for trends in storm frequency and/or intensity. Changes in shoreline position and shoreface elevation, as observed from monthly beach transects over the same period, are also investigated in light of the observed trends in hydrodynamic forcings. Our preliminary analysis was unable to identify any consistent linear trends (increases or decreases) in frequency or intensity over the ~30-year time period in either the offshore wave heights or the nearshore storm record. These data might suggest that previous observations of recent increases in storm intensity and frequency, speculated to be due to climate change, might be spatially limited. Future analyses will partition the contributions from individual wind sea and swell events in order to better identify long-term trends in wave energetics from the various wave generation regions in the Atlantic. At this location, offshore wave height and the nearshore storm record are dominated by seasonal fluctuations and a strong interdecadal- to decadal periodicity. Previous research in Duck, NC has suggested that changes in shoreline position and shoreface elevations are related both to seasonal trends as well as "storm groupiness". Our analyses support these findings, but also identify interdecadal- to decadal trends in the nearshore morphology. Despite these fluctuations, the overall position of the shoreline and elevation of the shoreface shows little net change over the 30 years investigated. We hypothesize that the interdecadal- to decadal periodicity in the morphology is driven largely by the influences of large-scale climatic forcings on the nearshore wave regime as reflected in the storm record. We also explore the relationship between morphological periodicity, storm and wave height periodicity, and climatic fluctuations.

  14. Ionospheric and satellite observations for studying the dynamic behavior of typhoons and the detection of severe storms and tsunamis

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1978-01-01

    Atmospheric acoustic-gravity waves associated with severe thunderstorms, tornadoes, typhoons (hurricanes) and tsunamis can be studied through the coupling between the ionosphere and the troposphere. Reverse ray tracing computations of acoustic-gravity waves observed by an ionospheric Doppler sounder array show that wave sources are in the nearby storm systems and that the waves are excited prior to the storms. Results show that ionospheric observations, together with satellite observations, can contribute to the understanding of the dynamical behavior of typhoons, severe storms and tsunamis.

  15. Global distribution of ULF waves during magnetic storms on March 27, 2017 and April 4, 2017

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Seki, K.; Teramoto, M.; Matsuoka, A.; Higashio, N.; Fok, M. C. H.

    2017-12-01

    The relativistic electron population in the Earth's outer radiation belt is drastically variable, especially during the active condition of the magnetosphere such as magnetic storms. One of the candidate mechanisms to cause the increase or decrease of relativistic electrons is the radial diffusion of the electrons driven by ultra-low-frequency (ULF) waves in Pc5 frequency ranges. However, how much ULF Pc5 waves contribute to the evolution of the radiation belt is still an open issue. In particular, previous papers have investigated the radial distribution of ULF Pc5 waves in the inner magnetosphere, but the spatial distribution is not well understood because of the limited number of satellite. In December 2016, the Arase satellite was launched into the inner magnetosphere, and the campaign observations between Arase and ground-based observations are now operated. During the first campaign observation from the end of March to April 2017, two distinct magnetic storms were occurred. The first storm was occurred on March 27, 2017 (Storm 1), which lasted for about six days. On the other hand, the second storm on April 4, 2017 (Storm 2) lasted for about two days. The temporal variation of the dynamic pressure and density of solar wind during each storm is almost similar. However, the solar wind flow speed data shows that Storm 1 is caused by the CIR, while Storm 2 might be caused by the CME. Therefore, background field variations that excite ULF Pc5 waves in the inner magnetosphere can be different between Storm 1 and 2. In addition, the Extremely High-Energy Electron Experiment (XEP) data onboard Arase clearly show the increase of high-energy electrons (400 keV-20 MeV) during the recovery phase of Storm 1, while they did not recover to the pre-storm level during Storm 2. Remarkable difference between two storms is the substorm activities in the recovery phase. The AE index continuously increased in Storm 1, while in Storm 2, it stayed in low level. The global simulation by BATS-R-US with the CRCM show that ULF Pc5 wave power during Storm 1 is larger than that during Storm 2. In this study, based on the multiple satellite observations including Arase and the global simulation, we investigate the temporal and spatial distribution of ULF Pc5 waves and their relation to solar wind conditions and substorm injections.

  16. Characteristics of storms driving wave-induced seafloor mobility on the U.S. East Coast continental shelf

    USGS Publications Warehouse

    Dalyander, P. Soupy; Butman, Bradford

    2015-01-01

    This study investigates the relationship between spatial and temporal patterns of wave-driven sediment mobility events on the U.S. East Coast continental shelf and the characteristics of the storms responsible for them. Mobility events, defined as seafloor wave stress exceedance of the critical stress of 0.35 mm diameter sand (0.2160 Pa) for 12 or more hours, were identified from surface wave observations at National Data Buoy Center buoys in the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) over the period of 1997-2007. In water depths ranging from 36-48 m, there were 4-9 mobility events/year of 1-2 days duration. Integrated wave stress during events (IWAVES) was used as a combined metric of wave-driven mobility intensity and duration. In the MAB, over 67% of IWAVES was caused by extratropical storms, while in the SAB, greater than 66% of IWAVES was caused by tropical storms. On average, mobility events were caused by waves generated by storms located 800+ km away. Far-field hurricanes generated swell 2-4 days before the waves caused mobility on the shelf. Throughout most of the SAB, mobility events were driven by storms to the south, east, and west. In the MAB and near Cape Hatteras, winds from more northerly storms and low-pressure extratropical systems in the mid-western U.S. also drove mobility events. Waves generated by storms off the SAB generated mobility events along the entire U.S. East Coast shelf north to Cape Cod, while Cape Hatteras shielded the SAB area from swell originating to the north offshore of the MAB.

  17. Observations of storm morphodynamics using Coastal Lidar and Radar Imaging System (CLARIS): Importance of wave refraction and dissipation over complex surf-zone morphology at a shoreline erosional hotspot

    NASA Astrophysics Data System (ADS)

    Brodie, Katherine L.

    Elevated water levels and large waves during storms cause beach erosion, overwash, and coastal flooding, particularly along barrier island coastlines. While predictions of storm tracks have greatly improved over the last decade, predictions of maximum water levels and variations in the extent of damage along a coastline need improvement. In particular, physics based models still cannot explain why some regions along a relatively straight coastline may experience significant erosion and overwash during a storm, while nearby locations remain seemingly unchanged. Correct predictions of both the timing of erosion and variations in the magnitude of erosion along the coast will be useful to both emergency managers and homeowners preparing for an approaching storm. Unfortunately, research on the impact of a storm to the beach has mainly been derived from "pre" and "post" storm surveys of beach topography and nearshore bathymetry during calm conditions. This has created a lack of data during storms from which to ground-truth model predictions and test hypotheses that explain variations in erosion along a coastline. We have developed Coastal Lidar and Radar Imaging System (CLARIS), a mobile system that combines a terrestrial scanning laser and an X-band marine radar system using precise motion and location information. CLARIS can operate during storms, measuring beach topography, nearshore bathymetry (from radar-derived wave speed measurements), surf-zone wave parameters, and maximum water levels remotely. In this dissertation, we present details on the development, design, and testing of CLARIS and then use CLARIS to observe a 10 km section of coastline in Kitty Hawk and Kill Devil Hills on the Outer Banks of North Carolina every 12 hours during a Nor'Easter (peak wave height in 8 m of water depth = 3.4 m). High decadal rates of shoreline change as well as heightened erosion during storms have previously been documented to occur within the field site. In addition, complex bathymetric features that traverse the surf-zone into the nearshore are present along the southern six kilometers of the field site. In addition to the CLARIS observations, we model wave propagation over the complex nearshore bathymetry for the same storm event. Data reveal that the complex nearshore bathymetry is mirrored by kilometer scale undulations in the shoreline, and that both morphologies persist during storms, contrary to common observations of shoreline and surf-zone linearization by large storm waves. We hypothesize that wave refraction over the complex nearshore bathymetry forces flow patterns which may enhance or stabilize the shoreline and surf-zone morphology during storms. In addition, our semi-daily surveys of the beach indicate that spatial and temporal patterns of erosion are strongly correlated to the steepness of the waves. Along more than half the study site, fifty percent or more of the erosion that occurred during the first 12 hours of the storm was recovered within 24 hours of the peak of the storm as waves remained large (>2.5 m), but transitioned to long period swell. In addition, spatial variations in the amount of beach volume change during the building portion of the storm were strongly correlated with observed wave dissipation within the inner surf zone, as opposed to predicted inundation elevations or alongshore variations in wave height.

  18. Mobility of maerl-siliciclastic mixtures: Impact of waves, currents and storm events

    NASA Astrophysics Data System (ADS)

    Joshi, Siddhi; Duffy, Garret Patrick; Brown, Colin

    2017-04-01

    Maerl beds are free-living, non-geniculate coralline algae habitats which form biogenic reefs with high micro-scale complexity supporting a diversity and abundance of rare epifauna and epiflora. These habitats are highly mobile in shallow marine environments where substantial maerl beds co-exist with siliciclastic sediment, exemplified by our study site of Galway Bay. Coupled hydrodynamic-wave-sediment transport models have been used to explore the transport patterns of maerl-siliciclastic sediment during calm summer conditions and severe winter storms. The sediment distribution is strongly influenced by storm waves even in water depths greater than 100 m. Maerl is present at the periphery of wave-induced residual current gyres during storm conditions. A combined wave-current Sediment Mobility Index during storm conditions shows correlation with multibeam backscatter and surficial sediment distribution. A combined wave-current Mobilization Frequency Index during storm conditions acts as a physical surrogate for the presence of maerl-siliciclastic mixtures in Galway Bay. Both indices can provide useful integrated oceanographic and sediment information to complement coupled numerical hydrodynamic, sediment transport and erosion-deposition models.

  19. Electrical storm in idiopathic ventricular fibrillation is associated with early repolarization.

    PubMed

    Aizawa, Yoshifusa; Chinushi, Masaomi; Hasegawa, Kanae; Naiki, Nobu; Horie, Minoru; Kaneko, Yoshiaki; Kurabayashi, Masahiko; Ito, Shogo; Imaizumi, Tsutomu; Aizawa, Yoshiyasu; Takatsuki, Seiji; Joo, Kunitake; Sato, Masahito; Ebe, Katsuya; Hosaka, Yukio; Haissaguerre, Michel; Fukuda, Keiichi

    2013-09-10

    This study sought to characterize patients with idiopathic ventricular fibrillation (IVF) who develop electrical storms. Some IVF patients develop ventricular fibrillation (VF) storms, but the characteristics of these patients are poorly known. Ninety-one IVF patients (86% male) were selected after the exclusion of structural heart diseases, primary electrical diseases, and coronary spasm. Electrocardiogram features were compared between the patients with and without electrical storms. A VF storm was defined as VF occurring ≥3 times in 24 h and J waves >0.1 mV above the isoelectric line in contiguous leads. Fourteen (15.4%) patients had VF storms occurring out-of-hospital at night or in the early morning. J waves were more closely associated with VF storms compared to patients without VF storms: 92.9% versus 36.4% (p < 0.0001). VF storms were controlled by intravenous isoproterenol, which attenuated the J-wave amplitude. After the subsidence of VF storms, the J waves decreased to the nondiagnostic level during the entire follow-up period. Implantable cardioverter-defibrillator therapy was administered to all patients during follow-up. Quinidine therapy was limited, but the patients on disopyramide (n = 3), bepridil (n = 1), or isoprenaline (n = 1) were free from VF recurrence, while VF recurred in 5 of the 9 patients who were not given antiarrhythmic drugs. The VF storms in the IVF patients were highly associated with J waves that showed augmentation prior to the VF onset. Isoproterenol was effective in controlling VF and attenuated the J waves, which diminished to below the diagnostic level during follow-up. VF recurred in patients followed up without antiarrhythmic agents. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Integration of coastal inundation modeling from storm tides to individual waves

    NASA Astrophysics Data System (ADS)

    Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai

    2014-11-01

    Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.

  1. Torsional Alfvén Wave Embedded ICME Magnetic Cloud and Corresponding Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Raghav, Anil N.; Kule, Ankita; Bhaskar, Ankush; Mishra, Wageesh; Vichare, Geeta; Surve, Shobha

    2018-06-01

    Energy transfer during the interaction of large-scale solar wind structure and the Earth’s magnetosphere is a chronic issue in space-weather studies. To understand this, researchers widely studied the geomagnetic storm and substorm phenomena. The present understanding suggests that the long duration of the southward interplanetary magnetic field component is the most important parameter for the geomagnetic storm. Such a long duration strong southward magnetic field is often associated with ICMEs, torsional Alfvén fluctuations superposed corotating interacting regions (CIRs), and fast solar wind streams. Torsional Alfvén fluctuations embedded CIRs have been known of for a long time; however, magnetic clouds embedded with such fluctuations are rarely observed. The presence of Alfvén waves in the ICME/MC and the influence of these waves on the storm evolution remains an interesting topic of study. The present work confirms the torsional Alfvén waves in a magnetic cloud associated with a CME launched on 2011 February 15, which impacted the Earth’s magnetosphere on 2011 February 18. Furthermore, observations indicate that these waves inject energy into the magnetosphere during the storm and contribute to the long recovery time of geomagnetic storms. Our study suggests that the presence of torsional Alfvén waves significantly controls the storm dynamics.

  2. VLF Wave Properties During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.

  3. Measuring and building resilience after big storms: Lessons learned from Super-Storm Sandy for the Harvey, Irma, Jose, and Maria coasts

    NASA Astrophysics Data System (ADS)

    Murdoch, P. S.; Penn, K. M.; Taylor, S. M.; Subramanian, B.; Bennett, R.

    2017-12-01

    As we recover from recent large storms, we need information to support increased environmental and socio-economic resilience of the Nation's coasts. Defining baseline conditions, tracking effects of mitigation actions, and measuring the uncertainty of resilience to future disturbance are essential so that the best management practices can be determined. The US Dept. of the Interior invested over $787 million dollars in 2013 to understand and mitigate coastal storm vulnerabilities and enhance resilience of the Northeast coast following Super-Storm Sandy. Several lessons-learned from that investment have direct application to mitigation and restoration needs following Hurricanes Harvey, Irma, Jose and Maria. New models of inundation, overwash, and erosion, developed during the Sandy projects have already been applied to coastlines before and after these recent storms. Results from wetland, beach, back-bay, estuary, and built-environment projects improved models of inundation and erosion from surge and waves. Tests of nature-based infrastructure for mitigating coastal disturbance yielded new concepts for best-practices. Ecological and socio-economic measurements established for detecting disturbance and tracking recovery provide baseline data critical to early detection of vulnerabilities. The Sandy lessons and preliminary applications on the recent storms could help define best-resilience practices before more costly mitigation or restoration efforts are required.

  4. National assessment of hurricane-induced coastal erosion hazards: Southeast Atlantic Coast

    USGS Publications Warehouse

    Stockdon, Hilary F.; Doran, Kara S.; Thompson, David M.; Sopkin, Kristin L.; Plant, Nathaniel G.

    2013-01-01

    Beaches serve as a natural barrier between the ocean and inland communities, ecosystems, and natural resources. However, these dynamic environments move and change in response to winds, waves, and currents. During extreme storms, changes to beaches can be large, and the results are sometimes catastrophic. Lives may be lost, communities destroyed, and millions of dollars spent on rebuilding. During storms, large waves may erode beaches, and high storm surge shifts the erosive force of the waves higher on the beach. In some cases, the combined effects of waves and surge may cause overwash or flooding. Building and infrastructure on or near a dune can be undermined during wave attack and subsequent erosion. During Hurricane Ivan in 2004, a five-story condominium in Orange Beach, Alabama, collapsed after the sand dune supporting the foundation eroded. The September 1999 landfall of Hurricane Dennis caused erosion and undermining that destroyed roads, foundations, and septic systems. Waves overtopping a dune can transport sand inland, covering roads and blocking evacuation routes or emergency relief. If storm surge inundates barrier island dunes, currents flowing across the island can create a breach, or new inlet, completely severing evacuation routes. Waves and surge during the 2003 landfall of Hurricane Isabel left a 200-meter (m) wide breach that cut the only road to and from the village of Hatteras, N.C. Extreme coastal changes caused by hurricanes may increase the vulnerability of communities both during a storm and to future storms. For example, when sand dunes on a barrier island are eroded substantially, inland structures are exposed to storm surge and waves. Absent or low dunes also allow water to flow inland across the island, potentially increasing storm surge in the back bay, on the soundside of the barrier, and on the mainland. During Hurricane Isabel the protective sand dunes near the breach were completely eroded, increasing vulnerability to future storms.

  5. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  6. Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic

    DTIC Science & Technology

    2015-08-01

    ER D C/ CH L TR -1 5- 11 Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic...Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic Michael F. Forte Field Research Facility...standards for offshore wind farm design and to establish a 100-year (yr) extratropical wind speed, wave height, and water level climatology for the

  7. The responses of artificial embayed beaches to storm events

    NASA Astrophysics Data System (ADS)

    Ojeda, E.; Guillén, J.; Ribas, F.

    2009-09-01

    The plan-view and the profile shape of sandy beaches largely depend on the incoming wave-energy (Wright and Short, 1984). In this sense, storm events are responsible for major changes in the configuration of sandy beaches and the cumulative effect of storms and fair-weather conditions determines the morphodynamic state of a certain beach. With increasing wave energy, the beach will change from the Reflective state to the Low Tide Terrace, Transverse Bar and Rip, Rhythmic Bar and Beach, Longshore Bar and Trough and finally to the Dissipative beach state. These morphodynamic states are also observed at artificial embayed beaches, although artificial groins limit alongshore sediment transport and protect sections of the beach from waves approaching from a range of directions (Short and Masselink, 1999). This contribution focuses on the morphological changes of the shoreline and the submerged sandbars of artificial embayed (sandy) beaches due to the effect of high-wave conditions associated to storms. We characterize the morphological response of the emerged and submerged beach profile of two of the artificial embayed beaches of the Barcelona city coast (NW Mediterranean). The two embayed beaches under study are single-barred beaches subject to the same climatic conditions but with different morphological characteristics. The study comprises more than 4 years of data, from November 2001 to March 2006, obtained through an Argus video system (Holman and Stanley, 2007). The extraction of the shoreline and barline locations is accomplished using 10-minute time-exposure video images. Shorelines were extracted directly from oblique images (see Ojeda and Guillén, [2008] for a complete description) and rectified afterwards. Sandbars were inferred from the rectified time-exposure video images based on the preferential wave breaking over shallow areas, so they required a minimum significant wave height (Hs) which allowed the occurrence of a clear wave-breaking pattern. The barline extraction was accomplished through an automated alongshore tracking of the intensity maxima across each beach section (Van Enckevort and Ruessink, 2001). The mean Hs during the study period was 0.71 m and the averaged peak period was 5.7 s. The wave height time series shows a cyclic behaviour, with storm periods (October-April) separated by periods of low storm activity (May-October). The two most energetic periods affecting the beaches were from October 2001 to May 2002 and from October 2003 to April 2004 (wave data were obtained from a WANA node [virtual buoy] and direct measurements of the Barcelona-Coastal buoy). Approximately 25 storm events have been identified during the study period (following Ojeda and Guillén [2008], significant storms were defined as those with Hs higher than 2.5 m during the peak of the storm and a minimum duration of 12 h with Hs greater than 1.5 m). The morphological responses of the beach to the storm action determine the morphodynamic state. These responses were grouped into five categories: shoreline advance or retreat, beach rotation, sandbar migration, formation of megacusps, and changes in the sandbar configuration (linear or crescentic shape). The intensity and frequency of these modifications were different in both beaches. Regarding the changes in the morphodynamic state of the beaches, the bar at Bogatell switched more frequently among the four intermediate morphodynamic states during the study period than the bar at La Barceloneta. The bar at La Barceloneta only underwent the complete "reset" of the nearshore morphology (i.e., abrupt change of the plan-view shape of the beach towards a Longshore Bar and Trough state) once, associated with the high-energy wave event occurring on November 2001. At this beach, the strongest storm events produced the offshore migration of the bar and a certain decrease in the bar sinuosity, but did not generate an alongshore parallel bar. Similar storms caused different effects on the two adjacent beaches and, furthermore, the effect of storms of similar characteristics at the same beach, were also different. In the final paper, we will focus on these differential behaviours in an attempt to attain a certain predictability of the beach behaviour after a storm depending on the wave characteristics and the morphodynamic configuration of the beach prior to the storm. ACKNOWLEDGMENTS This work was funded by the Spanish Ministry of Science and Technology within the project SEDMET (CTM2006-06919). The work of E. Ojeda and F. Ribas was partially supported by the Spanish government through the FPU and Juan de la Cierva programs, correspondingly. The authors would like to thank Dr. Gerben Ruessink for providing the BLIM software and Puertos del Estado for the wave data. REFERENCES Holman, R.A., Stanley, J., 2007. The history and technical capabilities of Argus. Coast. Eng. 54, 447-491. Ojeda, E., Guillén, J., 2008. Shoreline dynamics and beach rotation of artificial embayed beaches. Mar. Geol. 253, 51-62. Short, A.D., Masselink, G., 1999 Embayed and structurally controlled beaches, in: Short, A.D. (Ed.), Handbook of beach and shoreface morphodynamics. John Wiley & Son, Chichester, pp. 230-250. Van Enckevort, I.M.J., Ruessink, B.G., 2001. Effect of hydrodynamics and bathymetry on video estimates of nearshore sandbar position. J. Geophys. Res. 106, 16969-16979. Wright, L.D., Short, A.D., 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Mar. Geol. 56, 93-118.

  8. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  9. Toward a new paradigm for boulder dislodgement during storms

    NASA Astrophysics Data System (ADS)

    Weiss, Robert; Sheremet, Alex

    2017-07-01

    Boulders are an important coastal hazard event deposit because they can only be moved by tsunamis and energetic storms effects of storms. Storms and tsunami are competing processes for coastal change along many shorelines. Therefore, distinguishing the boulders that were moved during a storm from those moved by a tsunami is important. In this contribution, we present the results of a parameter study based on the TRIADS model for wave shoaling on mildly sloping beaches, coupled with a boulder-dislodgement model that is based on Newton's Second Law of Motion. The results show how smaller slopes expose the waves longer to the nonlinear processes, thus increasing the energy in the infragravity wave band. More energy in the infragravity wave band means that there are more energy wave lengths that can dislodge larger boulders. At the same time, a steeper slope lowers the threshold for boulder dislodgement (critical angle of dislodgement), making it more likely for larger boulders to be dislodged on a steeper slope. The competition between these two processes govern boulder dislodgement during storms and is investigated inhere.

  10. National assessment of hurricane-induced coastal erosion hazards: Mid-Atlantic Coast

    USGS Publications Warehouse

    Doran, Kara S.; Stockdon, Hilary F.; Sopkin, Kristin L.; Thompson, David M.; Plant, Nathaniel G.

    2013-01-01

    Beaches serve as a natural buffer between the ocean and inland communities, ecosystems, and natural resources. However, these dynamic environments move and change in response to winds, waves, and currents. During extreme storms, changes to beaches can be large, and the results are sometimes catastrophic. Lives may be lost, communities destroyed, and millions of dollars spent on rebuilding. During storms, large waves may erode beaches, and high storm surge shifts the erosive force of the waves higher on the beach. In some cases, the combined effects of waves and surge may cause overwash (when waves and surge overtop the dune, transporting sand inland) or flooding. Building and infrastructure on or near a dune can be undermined during wave attack and subsequent erosion. During Hurricane Ivan in 2004, a five-story condominium in Orange Beach, Alabama, collapsed after the sand dune supporting the foundation eroded. Hurricane Sandy, which made landfall as an extra-tropical cyclone on October 29, 2012, caused erosion and undermining that destroyed roads, boardwalks, and foundations in Seaside Heights, New Jersey. Waves overtopping a dune can transport sand inland, covering roads and blocking evacuation routes or emergency relief. If storm surge inundates barrier island dunes, currents flowing across the island can create a breach, or a new inlet, completely severing evacuation routes. Waves and surge during Hurricane Sandy, which made landfall on October 29, 2012, left a breach that cut the road and bridge to Mantoloking, N.J. Extreme coastal changes caused by hurricanes may increase the vulnerability of communities both during a storm and to future storms. For example, when sand dunes on a barrier island are eroded substantially, inland structures are exposed to storm surge and waves. Absent or low dunes also allow water to flow inland across the island, potentially increasing storm surge in the back bay, on the soundside of the barrier, and on the mainland.

  11. ENSO-Related Variability in Wave Climate Drives Greater Erosion Potential on Central Pacific Atolls

    NASA Astrophysics Data System (ADS)

    Bramante, J. F.; Ashton, A. D.; Donnelly, J. P.

    2015-12-01

    The El Nino Southern Oscillation (ENSO) modulates atmospheric circulation across the equatorial Pacific over a periodic time scale of 2-7 years. Despite the importance of this climate mode in forcing storm generation and trade wind variability, its impact on the wave climate incident on central Pacific atolls has not been addressed. We used the NOAA Wavewatch III CFSR reanalysis hindcasts (1979-2007) to examine the influence of ENSO on sediment mobility and transport at Kwajalein Atoll (8.8°N, 167.7°E). We found that during El Nino event years, easterly trade winds incident on the atoll weakened by 4% compared to normal years and 17% relative to La Nina event years. Despite this decrease in wind strength, significant wave heights incident on the atoll were 3-4% greater during El Nino event years. Using machine learning to partition these waves revealed that the greater El Nino wave heights originated mainly from greater storm winds near the atoll. The southeastern shift in tropical cyclone genesis location during El Nino years forced these storm winds and contributed to the 7% and 16% increases in annual wave energy relative to normal and La Nina years, respectively. Using nested SWAN and XBeach models we determined that the additional wave energy during El Nino event years significantly increased potential sediment mobility at Kwajalein Atoll and led to greater net offshore transport on its most populous island. The larger storm waves likely deplete ocean-facing beaches and reef flats of sediment, but increase the supply of sediment to the atoll lagoon across open reef platforms that are not supporting islands. We discuss further explicit modelling of storms passing over the atoll to elucidate the confounding role of storm surge on the net erosional/depositional effects of these waves. Extrapolating our results to recent Wavewatch III forecasts leads us to conclude that climate change-linked increases in wave height and storm wave energy will increase erosion on central Pacific atolls.

  12. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    NASA Astrophysics Data System (ADS)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  13. Major dust storms and westward traveling waves on Mars

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun

    2017-04-01

    Westward traveling waves are observed during major dust storm periods in northern fall and winter. The close correlation in timing makes westward traveling wave one of the signature responses of the Martian atmosphere to major dust storms. Westward traveling waves are dominated by zonal wave number m = 1 in the middle atmosphere and are typically characterized by long wave period. They are associated with significant temperature perturbations near the edge of the north polar vortex. Their wind signals extend to the low latitudes and the southern hemisphere. Their eddy momentum and heat fluxes exhibit complex patterns on a global scale in the middle atmosphere.

  14. Trace fossils, sedimentary facies and parasequence architecture from the Lower Cretaceous Mulichinco Formation of Argentina: The role of fair-weather waves in shoreface deposits

    NASA Astrophysics Data System (ADS)

    Wesolowski, Lindsey J. N.; Buatois, Luis A.; Mángano, M. Gabriela; Ponce, Juan José; Carmona, Noelia B.

    2018-05-01

    Shorefaces can display strong facies variability and integration of sedimentology and ichnology provides a high-resolution model to identify variations among strongly storm-dominated (high energy), moderately storm-affected (intermediate energy), and weakly storm-affected (low energy) shoreface deposits. In addition, ichnology has proved to be of help to delineate parasequences as trace-fossil associations are excellent indicators of environmental conditions which typically change along the depositional profile. Shallow-marine deposits and associated ichnofaunas from the Mulichinco Formation (Valanginian, Lower Cretaceous) in Puerta Curaco, Neuquén Basin, western Argentina, were analyzed to evaluate stress factors on shoreface benthos and parasequence architecture. During storm-dominated conditions, the Skolithos Ichnofacies prevails within the offshore transition and lower shoreface represented by assemblages dominated by Thalassinoides isp. and Ophiomorpha irregulaire. Under weakly storm-affected conditions, the Cruziana Ichnofacies is recognized, characterized by assemblages dominated by Thalassinoides isp. and Gyrochorte comosa in the offshore transition, and by Gyrochorte comosa within the lower shoreface. Storm-influenced conditions yield wider ichnologic variability, showing elements of both ichnofacies. Storm influence on sedimentation is affected by both allogenic (e.g. tectonic subsidence, sea-level, and sediment influx) and autogenic (e.g. hydrodynamic) controls at both parasequence and intra-parasequence scales. Four distinct types of parasequences were recognized, strongly storm-dominated, moderately storm-affected, moderately storm-affected - strongly fair-weather reworked, and weakly storm-affected, categorized based on parasequence architectural variability derived from varying degrees of storm and fair-weather wave influence. The new type of shoreface described here, the moderately storm-affected - strongly fair-weather reworked shoreface, features storm deposits reworked thoroughly by fair-weather waves. During fair-weather wave reworking, elements of the Cruziana Ichnofacies are overprinted upon relict elements of the Skolithos Ichnofacies from previous storm induced deposition. This type of shoreface, commonly overlooked in past literature, expands our understanding of the sedimentary dynamics and stratigraphic architecture in a shoreface susceptible to various parasequence and intra-parasequence scale degrees of storm and fair-weather wave influence.

  15. Modeling North Atlantic Nor'easters With Modern Wave Forecast Models

    NASA Astrophysics Data System (ADS)

    Perrie, Will; Toulany, Bechara; Roland, Aron; Dutour-Sikiric, Mathieu; Chen, Changsheng; Beardsley, Robert C.; Qi, Jianhua; Hu, Yongcun; Casey, Michael P.; Shen, Hui

    2018-01-01

    Three state-of-the-art operational wave forecast model systems are implemented on fine-resolution grids for the Northwest Atlantic. These models are: (1) a composite model system consisting of SWAN implemented within WAVEWATCHIII® (the latter is hereafter, WW3) on a nested system of traditional structured grids, (2) an unstructured grid finite-volume wave model denoted "SWAVE," using SWAN physics, and (3) an unstructured grid finite element wind wave model denoted as "WWM" (for "wind wave model") which uses WW3 physics. Models are implemented on grid systems that include relatively large domains to capture the wave energy generated by the storms, as well as including fine-resolution nearshore regions of the southern Gulf of Maine with resolution on the scale of 25 m to simulate areas where inundation and coastal damage have occurred, due to the storms. Storm cases include three intense midlatitude cases: a spring Nor'easter storm in May 2005, the Patriot's Day storm in 2007, and the Boxing Day storm in 2010. Although these wave model systems have comparable overall properties in terms of their performance and skill, it is found that there are differences. Models that use more advanced physics, as presented in recent versions of WW3, tuned to regional characteristics, as in the Gulf of Maine and the Northwest Atlantic, can give enhanced results.

  16. Atmosphere-Wave-Ocean Coupling from Regional to Global Earth System Models for High-Impact Extreme Weather Prediction

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Curcic, M.

    2017-12-01

    The need for acurrate and integrated impact forecasts of extreme wind, rain, waves, and storm surge is growing as coastal population and built environment expand worldwide. A key limiting factor in forecasting impacts of extreme weather events associated with tropical cycle and winter storms is fully coupled atmosphere-wave-ocean model interface with explicit momentum and energy exchange. It is not only critical for accurate prediction of storm intensity, but also provides coherent wind, rian, ocean waves and currents forecasts for forcing for storm surge. The Unified Wave INterface (UWIN) has been developed for coupling of the atmosphere-wave-ocean models. UWIN couples the atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). It is a physically based and computationally efficient coupling sytem that is flexible to use in a multi-model system and portable for transition to the next generation global Earth system prediction mdoels. This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It has been used and extensively tested and verified in regional coupled model forecasts of tropical cycles and winter storms (Chen and Curcic 2016, Curcic et al. 2016, and Judt et al. 2016). We will present 1) an overview of UWIN and its applications in fully coupled atmosphere-wave-ocean model predictions of hurricanes and coastal winter storms, and 2) implenmentation of UWIN in the NASA GMAO GEOS-5.

  17. A Temporal Assessment of Barrier Island Vulnerability to Extreme Wave Events, Virginia Coast Reserve

    NASA Astrophysics Data System (ADS)

    Oster, D. J.; Moore, L. J.; Doran, K. J.; Stockdon, H. F.

    2010-12-01

    Barrier island vulnerability to storm-generated waves is directly related to interactions between shoreface morphology and surf-zone dynamics. During storms, the seaward-most dune often limits the landward extent of wave energy; however, if maximum wave run-up exceeds the elevation of the top of the dune, overwash or inundation may occur. The ‘Storm Impact Scale’ presented by Sallenger (2000) classifies barrier beach vulnerability to individual storm events based on the elevation of the frontal dune crest and toe relative to maximum wave run-up. Changes to the dune and beachface can occur over a range of time scales, altering local vulnerability to extreme waves from storms, even as a storm is occurring. As sea level continues to rise, barrier beaches will become increasingly vulnerable to overwash and inundation from a greater number of storms. Our objective is to assess temporal trends in barrier island vulnerability while also exploring island-chain-wide response and recovery from two notably different storm events (Nor’Ida and Hurricane Bonnie) along the undeveloped barrier islands of the Virginia Coast Reserve (VCR). We compare shoreline position and elevations of the frontal dune crest (DHIGH) and dune toe (DLOW) across four lidar data sets collected between 1998-2010. Observed significant wave height and period from the National Data Buoy Center and the Duck, NC Field Research Facility for the time period between 1985 and 2009 are classified to represent one-year, five-year, and ten-year storm events that serve as the basis for comparison of island vulnerability through time to a range of storm severity. Initial results reveal significant spatial and temporal variation in barrier island vulnerability to storms throughout the VCR. Despite the range of variability, all three beach features (i.e., shoreline position, DHIGH and DLOW), have moved landward indicating large-scale, widespread migration, or narrowing, of VCR barrier island landforms over the last 10 years. Potentially evolving long-term trends in island vulnerability appear to be difficult to detect, likely due to the short time window of analysis and the preferential capture of short-term variations as two out of the four lidar data sets were collected immediately following a storm event. Further statistical analysis of changes in frontal dune height (DHIGH) and the distance between the dune toe (DLOW) and shoreline will provide insight into short-term responses to individual storms as well as the potential for future long-term changes in barrier island vulnerability, contributing to a better understanding of barrier island response to rising seas and severe storms.

  18. Laboratory measurements of wave attenuation through model and live vegetation

    USDA-ARS?s Scientific Manuscript database

    Surge and waves generated by hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation a...

  19. Barrier-island and estuarine-wetland physical-change assessment after Hurricane Sandy

    USGS Publications Warehouse

    Plant, Nathaniel G.; Smith, Kathryn E.L.; Passeri, Davina L.; Smith, Christopher G.; Bernier, Julie C.

    2018-04-03

    IntroductionThe Nation’s eastern coast is fringed by beaches, dunes, barrier islands, wetlands, and bluffs. These natural coastal barriers provide critical benefits and services, and can mitigate the impact of storms, erosion, and sea-level rise on our coastal communities. Waves and storm surge resulting from Hurricane Sandy, which made landfall along the New Jersey coast on October 29, 2012, impacted the U.S. coastline from North Carolina to Massachusetts, including Assateague Island, Maryland and Virginia, and the Delmarva coastal system. The storm impacts included changes in topography, coastal morphology, geology, hydrology, environmental quality, and ecosystems.In the immediate aftermath of the storm, light detection and ranging (lidar) surveys from North Carolina to New York documented storm impacts to coastal barriers, providing a baseline to assess vulnerability of the reconfigured coast. The focus of much of the existing coastal change assessment is along the ocean-facing coastline; however, much of the coastline affected by Hurricane Sandy includes the estuarine-facing coastlines of barrier-island systems. Specifically, the wetland and back-barrier shorelines experienced substantial change as a result of wave action and storm surge that occurred during Hurricane Sandy (see also USGS photograph, http://coastal.er.usgs.gov/hurricanes/sandy/photo-comparisons/virginia.php). Assessing physical shoreline and wetland change (land loss as well as land gains) can help to determine the resiliency of wetland systems that protect adjacent habitat, shorelines, and communities.To address storm impacts to wetlands, a vulnerability assessment should describe both long-term (for example, several decades) and short-term (for example, Sandy’s landfall) extent and character of the interior wetlands and the back-barrier-shoreline changes. The objective of this report is to describe several new wetland vulnerability assessments based on the detailed physical changes estimated from observations. The scope includes understanding changes caused by both short- and long-term processes using both remotely sensed and in situ observations to characterize changes to the wetland in terms of accretion/expansion and erosion/contraction. Accretion may be due to net vertical and (or) horizontal deposition, including estuarine-shoreline change due to overwash. Wetland erosion may be due to elevated waves and water levels in the estuary itself. We included additional information based on wave runup and storm-surge elevations based on models and elevation data. We then developed a predictive assessment for wetland vulnerability that describes the likelihood of changes of the estuarine shoreline and the landward extent of sand overwash driven by processes occurring on the ocean-facing shoreline. This assessment is intended to be linked to the beach and dune vulnerability assessments that have been developed previously.

  20. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  1. Global Observations of Magnetospheric High-m Poloidal Waves During the 22 June 2015 Magnetic Storm

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Takahashi, K.; Singer, H. J.; Anderson, B. J.; Bromund, K.; Fischer, D.; hide

    2017-01-01

    We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m approximately 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE, suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

  2. Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm.

    PubMed

    Le, G; Chi, P J; Strangeway, R J; Russell, C T; Slavin, J A; Takahashi, K; Singer, H J; Anderson, B J; Bromund, K; Fischer, D; Kepko, E L; Magnes, W; Nakamura, R; Plaschke, F; Torbert, R B

    2017-04-28

    We report global observations of high- m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers ( m  ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L . Each discrete L shell has a steady wave frequency and spans about 1  R E , suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

  3. Ship Shoal as a prospective borrow site for barrier island restoration, coastal south-central Louisiana, Usa: Numerical wave modeling and field measurements of hydrodynamics and sediment transport

    USGS Publications Warehouse

    Stone, G.W.; Pepper, D.A.; Xu, Jie; Zhang, X.

    2004-01-01

    Ship Shoal, a transgressive sand body located at the 10 m isobath off south-central Louisiana, is deemed a potential sand source for restoration along the rapidly eroding Isles Dernieres barrier chain and possibly other sites in Louisiana. Through numerical wave modeling we evaluate the potential response of mining Ship Shoal on the wave field. During severe and strong storms, waves break seaward of the western flank of Ship Shoal. Therefore, removal of Ship Shoal (approximately 1.1 billion m3) causes a maximum increase of the significant wave height by 90%-100% and 40%-50% over the shoal and directly adjacent to the lee of the complex for two strong storm scenarios. During weak storms and fair weather conditions, waves do not break over Ship Shoal. The degree of increase in significant wave height due to shoal removal is considerably smaller, only 10%-20% on the west part of the shoal. Within the context of increasing nearshore wave energy levels, removal of the shoal is not significant enough to cause increased erosion along the Isles Dernieres. Wave approach direction exerts significant control on the wave climate leeward of Ship Shoal for stronger storms, but not weak storms or fairweather. Instrumentation deployed at the shoal allowed comparison of measured wave heights with numerically derived wave heights using STWAVE. Correlation coefficients are high in virtually all comparisons indicating the capability of the model to simulate wave behavior satisfactorily at the shoal. Directional waves, currents and sediment transport were measured during winter storms associated with frontal passages using three bottom-mounted arrays deployed on the seaward and landward sides of Ship Shoal (November, 1998-January, 1999). Episodic increases in wave height, mean and oscillatory current speed, shear velocity, and sediment transport rates, associated with recurrent cold front passages, were measured. Dissipation mechanisms included both breaking and bottom friction due to variable depths across the shoal crest and variable wave amplitudes during storms and fair-weather. Arctic surge fronts were associated with southerly storm waves, and southwesterly to westerly currents and sediment transport. Migrating cyclonic fronts generated northerly swell that transformed into southerly sea, and currents and sediment transport that were southeasterly overall. Waves were 36% higher and 9% longer on the seaward side of the shoal, whereas mean currents were 10% stronger landward, where they were directed onshore, in contrast to the offshore site, where seaward currents predominated. Sediment transport initiated by cold fronts was generally directed southeasterly to southwesterly at the offshore site, and southerly to westerly at the nearshore site. The data suggest that both cold fronts and the shoal, exert significant influences on regional hydrodynamics and sediment transport.

  4. Space Weather Research in the Equatorial Region: A Philosophical Reinforcement

    NASA Astrophysics Data System (ADS)

    Chukwuma, Victor; Odunaike, Rasaki; Laoye, John

    Investigations using radio waves reflected from the ionosphere, at high-and mid-latitudes indicate that ionospheric absorption can strongly increase following geomagnetic storms; which appears to suggest some definite relationship between ionospheric radio wave absorption and geomagnetic storms at these latitudes. However, corresponding earlier studies in the equatorial region did not appear to show any explicit relationship between ionospheric radio wave absorption and geomagnetic storm activity. This position appeared acceptable to the existing scientific paradigm, until in an act of paradigm shift, by a change of storm selection criteria, some more recent space weather investigations in the low latitudes showed that ionospheric radio wave absorption in the equatorial region clearly increases after intense storms. Given that these results in the equatorial region stood against the earlier results, this paper presently attempts to highlight their philosophical underpinning and posit that they constitute a scientific statement.

  5. Coastal wave measurements during passage of tropical storm Amy

    NASA Technical Reports Server (NTRS)

    Morris, W. D.

    1977-01-01

    Aerial photographic and laser profilometer data of waves generated by tropical storm Amy are presented. The data mission consisted primarily of two legs, one in the direction of the wind waves, and the second along the direction of swell propagation, using Jennette's Pier at Nags Head, North Carolina, as a focal point. At flight time, Amy's center was 512 nmi from shore and had maximum winds of 60 knots. The storm's history is presented, along with a satellite photograph, showing the extent of the storm on the day of the flight. Flight ground tracks are presented along with sample aerial photographs of the wave conditions showing approximate wavelength and direction. Sample wave energy spectra are presented both from the laser profilometer onboard the aircraft, and from the Corps of Engineers Research Center (CERC) shore gauge at Nags Head, North Carolina.

  6. Investigation of the relationship between hurricane waves and extreme runup

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Stockdon, H. F.

    2006-12-01

    In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.

  7. Ducting Conditions for Electromagnetic Wave Propagation in Tropical Disturbances from GPS Dropsonde Data

    DTIC Science & Technology

    2013-12-01

    depression, tropical storm , hurricane, extratropical cyclone, subtropical depression, subtropical storm , a low of no category, tropical wave, disturbance or...surface-based ducts, and elevated ducts. We further separate the duct occurrence based on the location relative to their respective storms . Based...on the number of soundings in different types of tropical disturbances, we chose to further analyze duct conditions in hurricanes and tropical storms

  8. Alongshore momentum transfer to the nearshore zone from energetic ocean waves generated by passing hurricanes

    NASA Astrophysics Data System (ADS)

    Mulligan, Ryan P.; Hanson, Jeffrey L.

    2016-06-01

    Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.

  9. Storm-time fingerprints of Pc 4-5 waves on energetic electron flux at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Georgiou, Marina; Daglis, Ioannis A.; Zesta, Eftyhia; Balasis, George; Mann, Ian R.; Tsinganos, Kanaris

    2014-05-01

    Geospace magnetic storms, associated with either coronal mass ejections (CMEs) or high speed solar streams, involve global variations of the geomagnetic field as well as acceleration of charged particles in the magnetosphere. Ultra low frequency (ULF) waves with frequencies in the range of a few mHz (Pc 4-5 waves) can be generated externally by compressive variations in the solar wind or shear flow along the magnetopause unstable to the Kelvin-Helmholtz effect. Furthermore, low frequency instabilities of ring current ions are also considered as a possible internal driver of ULF wave growth. We examine power enhancements of ULF waves during four successive magnetic storms, which occurred in July 2004 and were characterized by a decreasing minimum of the Dst index, from -76 nT down to -197 nT. During the course of the magnetic storms, ULF wave power variations have been observed nearly simultaneously at different magnetic latitudes and longitudes by the ground-based CARISMA, IMAGE, 210 MM and SAMBA magnetometer networks. Nonetheless, stronger magnetic storms were accompanied by greater ULF wave power enhancements tending to be more pronounced at magnetic stations located at lower L shells. Furthermore, the generation and penetration of ULF wave power deep into the inner magnetosphere seems to be contributing to the energization and transport of relativistic electrons. Except for the magnetic storm on 25 July 2000, the three magnetic storms on 17, 23 and 27 July 2004 were characterized by a significant increase in the flux of electrons with energies higher than 1 MeV, as measured by GOES-10 and -12 during the recovery phase of each storm. On the other hand, when looking at the magnetic storm on 17 August 2001, the initial decrease was followed by an increase six days after the commencement of the storm. The electron flux decrease was more than two orders of magnitude and remained low after the recovery of the Dst index. These observations provided us the basis for studying the dependence of energetic electron flux in outer zone radiation belt on power enhancement in the ULF frequencies during active magnetospheric conditions. We present statistical maps of Pc 4-5 waves characteristics (in terms of frequency, mean wave power, azimuthal wave number), which have been compiled over moderate and intense magnetic storms that have occurred at different phases of the previous solar cycle 23. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  10. Thermal Tides During the 2001 Martian Global-Scale Dust Storm

    NASA Technical Reports Server (NTRS)

    Guzewich, Scott D.; Wilson, R. John; McConnochie, Timothy H.; Toigo, Anthony D.; Bandfield, Donald J.; Smith, Michael D.

    2014-01-01

    The 2001 (Mars Year 25) global dust storm radically altered the dynamics of the Martian atmosphere. Using observations from the Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft and Mars WRF general circulation model simulations, we examine the changes to thermal tides and planetary waves caused by the storm. We find that the extratropical diurnal migrating tide is dramatically enhanced during the storm, particularly in the southern hemisphere, reaching amplitudes of more than 20 K. The tropical diurnal migrating tide is weakened to almost undetectable levels. The diurnal Kelvin waves are also significantly weakened, particularly during the period of global expansion at Ls=200deg-210deg. In contrast, the westward propagating diurnal wavenumber 2 tide strengthens to 4-8 K at altitudes above 30km. The wavenumber 1 stationary wave reaches amplitudes of 10-12 K at 50deg-70degN, far larger than is typically seen during this time of year. The phase of this stationary wave and the enhancement of the diurnal wavenumber 2 tide appear to be responses to the high-altitude westward propagating equatorial wavenumber 1 structure in dust mixing ratio observed during the storm in previous works. This work provides a global picture of dust storm wave dynamics that reveals the coupling between the tropics and high-latitude wave responses. We conclude that the zonal distribution of thermotidal forcing from atmospheric aerosol concentration is as important to understanding the atmospheric wave response as the total global mean aerosol optical depth.

  11. Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region?

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2016-02-01

    The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to their geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than those associated with the hurricane season.

  12. Storms or cold fronts? What is really responsible for the extreme waves regime in the Colombian Caribbean coast

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2015-05-01

    On Friday, 7 March 2009, a 200 m-long section of the tourist pier in Puerto Colombia collapsed under the impact of the waves generated by a cold front in the area. The aim of this study is to determine the contribution and importance of cold fronts and storms on extreme waves in different areas of the Colombian Caribbean to determine the degree of the threat posed by the flood processes to which these coastal populations are exposed and the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the wave's height; therefore, it is necessary to definitively know the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. Using Gumbel's extreme value methodology, the significant height values for the study area were calculated. The methodology was evaluated using data from the re-analysis of the spectral NOAA Wavewatch III (WW3) model for 15 points along the 1600 km of the Colombia Caribbean coast (continental and insular) of the last 15 years. The results demonstrated that the extreme waves caused by tropical cyclones and cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area formed by Baja Guajira, Santa Marta, Barranquilla, and Cartagena, the strong influence of cold fronts on extreme waves is evident. On the other hand, in the southern region of the Colombian Caribbean coast, from the Gulf of Morrosquillo to the Gulf of Urabá, even though extreme waves are lower than in the previous regions, extreme waves are dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to its geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than the extreme waves associated with hurricane season. These results are of great importance when evaluating the threat of extreme waves in the coastal and port infrastructure, for purposes of the design of new constructions, and in the coastal flood processes due to run-up because, according to the site of interest in the coast, the forces that shape extreme waves are not the same.

  13. Ocean Thermal Conversion (OTEC) Project Bottom Cable Protection Study: Environmental Characteristics and Hazards Analysis,

    DTIC Science & Technology

    1981-10-01

    Chesaneake Division, Naval Facilities Engineering Command, Washington, DC) 34. "Strait of Belle Isle Crossing HVDC Transmission - Submarine Cable...phenomena; such as wind storm generated wave action, bottom currents, bottom mudslides, or seismic activity; as well as human activity, such as...engaging a cable. Ship anchors are used to develop holding power on the seafloor for mooring a floating body permanently or temporary on site. The major

  14. Analysis of large boulders along the coast of south-eastern Sicily to discriminate between storm and tsunami deposits.

    NASA Astrophysics Data System (ADS)

    Pirrotta, Claudia; Serafina Barbano, Maria; Gerardi, Flavia

    2010-05-01

    We present a study to discriminate the kind of anomalous waves, storms or tsunamis, that were responsible for the large boulder accumulation in the Vendicari Reserve along the south-eastern Sicilian coast. These depositional and erosional indicators of the large wave impact have been already observed in some rocky coasts of the Mediterranean basin and associated to strong waves of tsunamigenic or meteorological origin. Distinguishing boulders deposited by tsunamis from that deposited by storms and determining the age of their deposition can help to evaluate the magnitude and frequency of tsunamis and the hazard along the coast also regarding extraordinarily violent storms. The Sicilian Ionian coast has been affected in historical time by large destructive earthquake-related tsunamis (e.g. the 1169, 1693 and 1908) and it is exposed to an intense wave motion coming from a NNE- SSE span direction . In the rocky coastal area of Vendicari Reserve, three different GPS surveys (from September 2006 until April 2009) have been performed with the aim to observe the distance of each boulders with respect to the shoreline and if storms removed boulders or deposited new ones. A morphological analysis aiming to identify boulder shapes, measuring their volumes, elongation axis azimuth, pre-transport setting and the probable transport mechanism on the platform, was also carried out. The calcarenitic boulders (specific weight about 2,3 g/cm3), reaching about 20 tons and a distance up to 60m from the shoreline, are generally carved out from the supratidal or mid-sublittoral zone, showing widespread biogenic encrustations sometimes so fresh that suggest a recent deposition. The GPS surveys allowed us to observed that, after a strong storm during January 2009, several boulders were removed while new have been deposited on the platform by the storm waves. Hydrodynamic equations jointly to statistical analysis of sea storms have been used to determine the extreme event, geological or meteorological, responsible for this singular accumulation. We computed the minimum wave height, of storm and tsunami, required to start the movement of each boulder from its initial position. Moreover, we calculated the maximum penetration of the waves for the two major storm waves estimated at Vendicari and for the 1693 and 1908 tsunami waves. Finally we compared the computed values with the boulder distribution. The results show that the strongest storms were probably responsible for the current distribution of many boulders but about the 30% of them need of stronger waves, likely tsunami waves, than the maximum assumed storms to be moved and transported in their final place. Radiocarbon dating, performed on three probably tsunami boulders, having weight of about 15 t and sited at a distance >40 m from the shoreline, suggests that two of them were probably deposited by the 1693 tsunami, and one by a tsunami occurred after 650-930 AD that could be an unknown event or one of the historical tsunamis occurred in the Ionian coast of Sicily. Absolute age dating, such as optical stimulated luminescence, should be necessary to gather a correct imprint of the paleotsunami event.

  15. Hurricane Harvey rapid response: observations of infragravity wave dynamics and morphological change during inundation of a barrier island cut

    NASA Astrophysics Data System (ADS)

    Anarde, K.; Figlus, J.; Dellapenna, T. M.; Bedient, P. B.

    2017-12-01

    Prior to landfall of Hurricane Harvey on August 25, 2017, instrumentation was deployed on the seaward and landward sides of a barrier island on the central Texas Gulf Coast to collect in-situ hydrodynamic measurements during storm impact. High-resolution devices capable of withstanding extreme conditions included inexpensive pressure transducers and tilt current meters mounted within and atop (respectively) shallow monitoring wells. In order to link measurements of storm hydrodynamics with the morphological evolution of the barrier, pre- and post-storm digital elevation models were generated using a combination of unmanned aerial imagery, LiDAR, and real-time kinematic GPS. Push-cores were collected and analyzed for grain size and sedimentary structure to relate hydrodynamic observations with the local character of storm-generated deposits. Observations show that at Hog Island, located approximately 160 miles northeast of Harvey's landfall location, storm surge inundated an inactive storm channel. Infragravity waves (0.003 - 0.05 Hz) dominated the water motion onshore of the berm crest over a 24-hour period proximate to storm landfall. Over this time, approximately 50 cm of sediment accreted vertically atop the instrument located in the backshore. Storm deposits at this location contained sub-parallel alternating laminae of quartz and heavy mineral-enriched sand. While onshore progression of infragravity waves into the back-barrier was observed over several hours prior to storm landfall, storm deposits in the back-barrier lack the characteristic laminae preserved in the backshore. These field measurements will ultimately be used to constrain and validate numerical modeling schemes that explore morphodynamic conditions of barriers in response to extreme storms (e.g., XBeach, CSHORE). This study provides a unique data set linking extreme storm hydrodynamics with geomorphic changes during a relatively low surge, but highly dissipative wave event.

  16. Azimuthal propagation of storm time Pc 5 waves observed simultaneously by geostationary satellites GOES 2 and GOES 3

    NASA Astrophysics Data System (ADS)

    Lin, C. S.; Barfield, J. N.

    1985-11-01

    Storm-time Pc 5 wave events observed simultaneously by the GOES 2 and GOES 3 satellites in the afternoon sector during the 1-year interval of March 1979 to February 1980 are surveyed to learn the wave propagation. Essentially, all storm-time Pc 5 waves (approximately 93 percent) are found to propagate westward azimuthally with a velocity of 5 to 50 km/s and a wavelength of 1000 km to 9000 km (Only two of 30 events had eastward propagation, with a velocity of about 150 km/s). It is concluded that westward propagating waves are excited by ion drift instabilities associated with the ion ring current, and that the eastward propagating waves are excited by surface waves on the magnetopause through Kelvin-Helmholtz instability.

  17. Earthward penetration of Pc 4-5 waves and radiation belt electron enhancements during geospace magnetic storms

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Georgiou, M.; Zesta, E.; Balasis, G.; Tsinganos, K.

    2013-12-01

    This paper addresses the question whether radiation belt electron enhancements are associated with ultra-low frequency (ULF) wave power penetrating to lower L-shells during intense geospace magnetic storms. We have examined the variation of relativistic electron fluxes in the inner magnetosphere during small, moderate, and intense storms and have compared them with concurrent variations of the power of Pc 4-5 waves, using multi-point wave observations from the IMAGE and CARISMA ground-based magnetometer arrays. We discuss the excitation, growth and decay characteristics of Pc 4-5 waves during the different phases of the three classes of magnetic storms, with particular emphasis on the distribution of wave power over a range of L shells. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  18. Observed ocean waves by tropical cyclones

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Oey, Leo

    2017-04-01

    Ocean waves produced by tropical cyclones (TC) modify air-sea fluxes which in turn are crucial to the storms' intensity and development, yet they are poorly understood. Here we use 24 years (1992-2015) of observed waves, winds and TC-track information to stratify storm-centered composite maps of waves and winds according to TC intensities and translation speeds (Uh). While the wind field is rightward-asymmetric independent of Uh, the wave field is rightward-symmetric in concert with the wind for slow-translating TCs (Uh ≤ 3 m s-1), but right-rear asymmetric with strongest waves in the 4th quadrant for medium to fast-translating TCs (3 < Uh ≤ 7 m s-1), especially for the very fast storms (Uh > 7 m s-1), all independent of TC-intensity. The dominance of the right-rear asymmetry for fast-translating TCs appears to be related to the development of cross swells as the storms move faster, but further research using models are needed to understand the physical mechanisms.

  19. Ocean modelling and Early-Warning System for the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    de Lima Rego, Joao; Yan, Kun; Sisomphon, Piyamarn; Thanathanphon, Watin; Twigt, Daniel; Irazoqui Apecechea, Maialen

    2017-04-01

    Storm surges associated with severe tropical cyclones are among the most hazardous and damaging natural disasters to coastal areas. The Gulf of Thailand (GoT) has been periodically affected by typhoon induced storm surges in the past (e.g. storm Harriet in 1962, storm Gay in 1989 and storm Linda in 1997). Due to increased touristic / economic development and increased population density in the coastal zone, the combined effect and risk of high water level and increased rainfall / river discharge has dramatically increased and are expected to increase in future due to climate change effects. This presentation describes the development and implementation of the first real-time operational storm surge, wave and wave setup forecasting system in the GoT, a joint applied research initiative by Deltares in The Netherlands and the Hydro and Agro Informatics Institute (HAII) in Thailand. The modelling part includes a new hydrodynamic model to simulate tides and storm surges and two wave models (regional and local). The hydrodynamic model is based on Delft3D Flexible Mesh, capable of simulating water levels and detailed flows. The regional and the recently-developed local wave model are based on the SWAN model, a third-generation wave model. The operational platform is based on Delft-FEWS software, which coordinates all the data inputs, the modelling tasks and the automatic forecast exports including overland inundation in the upper Gulf of Thailand. The main objective of the Gulf of Thailand EWS is to provide daily accurate storm surge, wave and wave setup estimates automatically with various data exports possibilities to support this task. It adds a coastal component to HAII's existing practice of providing daily reports on fluvial flood forecasts, used for decision-support in issuing flood warnings for inland water systems in Thailand. Every day, three-day coastal forecasts are now produced based on the latest regional meteorological predictions. Examples are given to illustrate the system's development and main features, with a focus on decision-support products.

  20. Results of the flowmeter-injection test in the Long Valley Exploratory Well (Phase II), Long Valley, California

    USGS Publications Warehouse

    Morin, R.H.; Sorey, M.L.; Jacobson, R.D.

    1993-01-01

    Bayboro Harbor and the Port of St. Petersburg, Florida, form a manmade basin adjacent to Tampa Bay that may supply turbid water to the bay and subsequently affect light penetration in water in the bay. To address concerns about the nature and extent of this potential problem, resuspension of bottom sediments, sedimentation, and tributary storm discharge in the basin were studied. Study results indicated that tidal currents, wind waves, and seiche motions do not resuspend bottom sediments. The maneuvering of a cruise ship in the port resuspended bottom sediments, but these sediments settled within 2 hours. Tidal currents and wave action were not large enough o prevent the resuspended sediments from settling in the basin. Analysis of bathymetric surveys of the port made in 1981, 1986, 1987, and 1989 indicates that the cruise ship has deepened the port along its route and that the displaced sediment has been deposited elsewhere within the port. The storm discharge from two tributaries and the effect of tributary storm runoff on the water quality of the harbor were studied during a storm on November 9, 1989. Booker Creek, which drains an urban watershed, was stratified with a thin layer of turbid freshwater flowing into the harbor over a layer of less turbid saltwater. Salt Creek, which primarily drains Lake Maggiore, was only partially stratified and was less turbid. The turbid water from the creeks increased the turbidity only slightly in the harbor, probably because of mixing with less turbid water and particle settling. Thus, the basin provides mixing and settling, which diminish and eliminate the potentially adverse effect on Tampa Bay from tributary storm runoff and large vessel traffic in the basin.

  1. Numerical Modeling of Medium Term Morphological Changes at Manavgat River Mouth Due to Combined Action of Waves and River Discharges

    NASA Astrophysics Data System (ADS)

    Demirci, E.; Baykal, C.; Guler, I.

    2016-12-01

    In this study, hydrodynamic conditions due to river discharge, wave action and sea level fluctuations within a seven month period and the morphological response of the Manavgat river mouth are modeled with XBeach, a two-dimensional depth-averaged (2DH) numerical model developed to compute the natural coastal response during time-varying storm and hurricane conditions (Roelvink et al., 2010). The study area shows an active behavior on its nearshore morphology, thus, two jetties were constructed at the river mouth between years 1996-2000. Recently, Demirci et al. (2016) has studied the impacts of an excess river discharge and concurrent wave action and tidal fluctuations on the Manavgat river mouth morphology for the duration of 12 days (December 4th and 15th, 1998) while the construction of jetties were carried on. It is concluded that XBeach has presumed the final morphology fairly well with the calibrated set of input parameters. Here, the river mouth modeled at a further past date before the construction of jetties with the similar set of input parameters (between August 1st, 1995-March 8th, 1996) to reveal the drastic morphologic change near the mouth due to high river discharge and severe storms happened in a longer period of time. Wave climate effect is determined with the wave hindcasting model, W61, developed by Middle East Technical University-OERC with the NCEP-CFSR wind data as well as the sea level data. River discharge, wave and sea level data are introduced as input parameters in the XBeach numerical model and the final output morphological change is compared with the final bed level measurements. References:Demirci, E., Baykal, C., Guler, I., Ergin, A., & Sogut, E. (postponed). Numerical Modelling on Hydrodynamic Flow Conditions and Morphological Changes Using XBeach Near Manavgat River Mouth. Accepted as Oral presentation at the 35thInt. Conf. on Coastal Eng., Istanbul, Turkey. Guler, I., Ergin, A., Yalçıner, A. C., (2003). Monitoring Sediment Transport Processes at Manavgat River Mouth, Antalya Turkey. COPEDEC VI, 2003, Colombo, Sri Lanka Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., Lescinski, J. and McCall, R., (2010). XBeach Model Description and Manual. Unesco-IHE Institute for Water Education, Deltares and Delft Univ. of Technology. Report June, 21, 2010 version 6.

  2. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.

  3. Global observations of magnetospheric high‐m poloidal waves during the 22 June 2015 magnetic storm

    PubMed Central

    Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Takahashi, K.; Singer, H. J.; Anderson, B. J.; Bromund, K.; Fischer, D.; Kepko, E. L.; Magnes, W.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-01-01

    Abstract We report global observations of high‐m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single‐frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step‐like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 R E, suggesting that there exist a discrete number of drift‐bounce resonance regions across L shells during storm times. PMID:28713180

  4. ULF waves and radiation belts: earthward penetration of Pc 4-5 waves and energetic electron flux enhancements during geospace magnetic storms

    NASA Astrophysics Data System (ADS)

    Georgiou, Marina; Daglis, Ioannis; Zesta, Eftyhia; Balasis, George; Tsinganos, Kanaris

    2013-04-01

    Energetic particle fluxes in the outer radiation belt can vary over orders of magnitude on time scales ranging from minutes, to days and years. Geospace magnetic storms when sufficiently strong to exceed key thresholds of the Dst index may either increase or decrease the fluxes of energetic electrons. We examine the responses of energetic electrons to nine moderate, intense and weak magnetic storms, which occurred at different phases of the solar cycle, and compare these with concurrent variations of ULF wave power. Pc 4-5 waves with frequencies in the range of a few mHz may be generated internally in the magnetosphere by low frequency instabilities of ring current ions and externally by shear instabilities at the magnetopause flanks, or compressive variations in the solar wind. Here, we present multipoint observations from ground-based magnetometer arrays collocated with electron drift orbits, which are complemented and measurements by conjugate multi-point satellites, such as CHAMP, Cluster, GOES and THEMIS. We discuss the excitation, growth and decay characteristics of Pc 4-5 waves during the different phases of the magnetic storms with particular emphasis on the distribution of Pc 4-5 wave power over a variety of L shells. We investigate whether Pc 4-5 wave power penetrates to lower L shell values during periods of relatively intense geomagnetic activity as compared to weak magnetic storms. Structural changes of the magnetosphere during intense geomagnetic storms can play an important role in the generation and penetration of Pc 4-5 waves deep into the inner magnetosphere, which in turn is of significance for the wave-particle interactions contributing to the acceleration, transport and loss of electrons in the outer radiation belt. We present preliminary statistics of Pc 4-5 waves observed during magnetic storms of varying intensity, which occurred over the course of the previous solar cycle. This work is supported by the European Community's Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  5. On the improvement of wave and storm surge hindcasts by downscaled atmospheric forcing: application to historical storms

    NASA Astrophysics Data System (ADS)

    Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence

    2018-04-01

    Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).

  6. Effects of wave-induced forcing on a circulation model of the North Sea

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-04-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.

  7. Effects of wave-induced forcing on a circulation model of the North Sea

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-01-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.

  8. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  9. Potential Hydrodynamic Loads on Coastal Bridges in the Greater New York Area due to Extreme Storm Surge and Wave

    DOT National Transportation Integrated Search

    2018-04-18

    This project makes a computer modeling study on vulnerability of coastal bridges in New York City (NYC) metropolitan region to storm surges and waves. Prediction is made for potential surges and waves in the region and consequent hydrodynamic load an...

  10. Development of wave and surge atlas for the design and protection of coastal bridges in South Louisiana : [research project capsule].

    DOT National Transportation Integrated Search

    2015-03-01

    The recently completed Louisiana Department of Transportation and Development : (DOTD) Storm Surge and Wave Atlas contains signi cant hydraulic information that will : be useful in analyzing storm surge and wave forces on existing and new coastal ...

  11. Experimental investigation of wave attenuation through model and live vegetation

    USDA-ARS?s Scientific Manuscript database

    Hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation are not fully understood. K...

  12. Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments

    NASA Astrophysics Data System (ADS)

    Castelle, Bruno; Marieu, Vincent; Bujan, Stéphane; Splinter, Kristen D.; Robinet, Arhur; Sénéchal, Nadia; Ferreira, Sophie

    2015-06-01

    The winter of 2013/2014 was characterized by a striking pattern of temporal and spatial extreme storm wave clustering in Western Europe. The 110-km long Gironde coast, SW France, was exposed to the most energetic wave conditions over the last 18 years. The period was outstanding in terms of the available energy to move sediment and cause large-scale erosion with the 2-month average significant wave height (Hs) exceeding 3.6 m, just below the 0.95 quantile, and 4 distinct 10-year return period storms with Hs > 9 m. These storm waves caused unprecedented beach and dune erosion along the Gironde coast, including severely damaged sea defences at the coastal towns. At the end of the winter, dune erosion scarp height was highly variable alongshore and often exceeded 10 m. Megacusp embayments were observed along the Gironde coast with an average alongshore spacing of 1000 m in the south progressively decreasing to 500 m in the north, with an average cross-shore amplitude of 20 m. While beach megacusps were previously observed to systematically couple to the inner bar along the Gironde coast during low- to moderate-energy wave conditions, severe storm-driven megacusp embayments cutting the dune were found to be enforced and coupled to the outer crescentic bar. A detailed inspection of the 1500 m-long bimonthly topographic surveys of Truc Vert beach shows that in early January 2014 the outstanding shore-normal incident storm swell 'Hercules', with Hs and peak wave period Tp peaking at 9.6 m and 22 s, respectively, triggered the formation of a localized megacusp embayment with the erosion scarp height exceeding 6 m in its centre where the dune retreat reached 30 m. The subsequent storms progressively smoothed the megacusp by the end of the winter, mostly through severe erosion of the megacusp horns. Because of the very long period (16 s < Tp < 23 s) storm waves with persistent shore-normal incidence, the well-developed outer crescentic bar observed prior to the winter did not straighten. Instead, the outer-bar three-dimensionality developed further, particularly during 'Hercules'. Our observations indicate that both the antecedent outer sandbar morphology and storm wave characteristics, including period and angle of incidence, govern patterns of beach and dune erosion along open multiple-barred sandy coasts during severe storms.

  13. Ocean-Wave Dynamics Analysis during Hurricane Ida and Norida Using a Fully Coupled Modeling System

    NASA Astrophysics Data System (ADS)

    Olabarrieta, M.; Warner, J. C.; Armstrong, B. N.

    2010-12-01

    Extreme storms, such as hurricanes and extratropical storms play a dominant role in shaping the beaches of the East and Gulf Coasts of the United States. Future tropical depressions will be more intense than in the present climate (Assessment Report of IPCC, 2007) and therefore coastal areas are likely to become more susceptible to their effects. The major damage caused by these extreme events is associated with the duration of the storm, storm intensity, waves, and the total water levels reached during the storm. Numerical models provide a useful approach to study the spatial and temporal distribution of these parameters. However, the correct estimation of the total water levels and wind wave heights through numerical modeling requires accurate representation of the air-sea interface dynamics. These processes are highly complex due to the variable interactions between winds, ocean waves and currents near the sea surface. In the present research we use the COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling system (Warner et al., 2010) to address the key role of the atmosphere-ocean-wave interactions during Hurricane Ida and its posterior evolution to NorIda, November 2009. This northeastern storm was one of the most costly in the past two decades and likely in the top five of the past century. One interesting aspect of the considered period is that it includes two very different atmospheric extreme conditions, a hurricane and a northeastern storm, developed in regions with very different oceanographic characteristics. By performing a suite of numerical runs we are able to isolate the effect of the interaction terms between the atmosphere (WRF model), the ocean (ROMS model) and the wave propagation and generation model (SWAN). Special attention is given to the role of the ocean surface roughness and high resolution SST fields on the atmospheric boundary layers dynamics and consequently these effects on the wind wave generation, surface currents and storm surge. The effects of ocean currents on wind wave generation and propagations are also analyzed. The model results are compared to different data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the NDBC and the National Tidal Database respectively. The results identified that the inclusion of the ocean roughness on the atmospheric module greatly improves the wind intensity estimation and therefore also the wind waves and the storm surge amplitude. For example, during the passage of Ida through the Gulf of Mexico the wind speeds are reduced due to the wave induced ocean roughness, resulting in better agreement with the measured winds. During NorIda, the effect of the surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. Three different ocean roughness closure models are analyzed, with the wave-age based closure model providing the best results. Ocean currents are also shown to affect wave spectral characteristics through the generation and propagation processes. Changes within 15% on the significant wave height are detected in areas affected by the main oceanic currents: the Gulf Stream and the Loop Current.

  14. Numerical Modeling of Coastal Inundation and Sedimentation by Storm Surge, Tides, and Waves at Norfolk, Virginia, USA

    DTIC Science & Technology

    2012-07-01

    hurricanes (tropical) with a 50-year and a 100-year return period, and one winter storm ( extratropical ) occurred in October 1982. There are a total of 15...under the 0-m and 2-m SLR scenarios, respectively. • Tropical and extratropical storms induce extensive coastal inundation around the military...1 NUMERICAL MODELING OF COASTAL INUNDATION AND SEDIMENTATION BY STORM SURGE, TIDES, AND WAVES AT NORFOLK, VIRGINIA, USA Honghai Li 1 , Lihwa Lin 1

  15. Phase I Report for SERRI Project No. 80037: Investigation of surge and wave reduction by vegetation

    USDA-ARS?s Scientific Manuscript database

    Surge and waves generated by hurricanes and other severe storms can cause devastating damage of property and loss of life in coastal areas. Vegetation in wetlands, coastal fringes and stream floodplains can reduce storm surge and waves while providing ecological benefits and complementing traditiona...

  16. Short-Term TEC Perturbations Associated With Planetary Waves Occurrence in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Shagimuratov, I. I.; Karpov, I.; Krankowski, A.

    2008-12-01

    Analysis of TEC response to storm showed short-term perturbations which were observed after initial phase of geomagnetic storms. The perturbations demonstrated very well expressed latitudinal structure and were recognized on diurnal variations as surges of TEC enhancement of TEC. Ordinary such storm-time positive effect was associated with TAD. Duration of the perturbations was about 2-4 hours and their amplitude increased toward low latitudes. Such TEC perturbations have the longitudinal dependence. It is important that time location of surges have week dependence on latitude. The observed structure appeared to arrive from high latitudes, but at middle latitudes it was represented as a standing wave. It is assumed that such TEC perturbations can be produced due to superposition of the eastward and westward propagating planetary Poincare waves. The periods of these waves are usually several hours. Poincare waves can be excited at the atmosphere in storm time. At middle latitudes their superposition is as standing wave that forms observing TEC perturbations. In the report, the possibilities of application Poincare waves to the ionosphere dynamics studies are discussed and an explanation of the observed ionospheric effects is given.

  17. XBeach-G: a tool for predicting gravel barrier response to extreme storm conditions

    NASA Astrophysics Data System (ADS)

    Masselink, Gerd; Poate, Tim; McCall, Robert; Roelvink, Dano; Russell, Paul; Davidson, Mark

    2014-05-01

    Gravel beaches protect low-lying back-barrier regions from flooding during storm events and their importance to society is widely acknowledged. Unfortunately, breaching and extensive storm damage has occurred at many gravel sites and this is likely to increase as a result of sea-level rise and enhanced storminess due to climate change. Limited scientific guidance is currently available to provide beach managers with operational management tools to predict the response of gravel beaches to storms. The New Understanding and Prediction of Storm Impacts on Gravel beaches (NUPSIG) project aims to improve our understanding of storm impacts on gravel coastal environments and to develop a predictive capability by modelling these impacts. The NUPSIG project uses a 5-pronged approach to address its aim: (1) analyse hydrodynamic data collected during a proto-type laboratory experiment on a gravel beach; (2) collect hydrodynamic field data on a gravel beach under a range of conditions, including storm waves with wave heights up to 3 m; (3) measure swash dynamics and beach response on 10 gravel beaches during extreme wave conditions with wave heights in excess of 3 m; (4) use the data collected under 1-3 to develop and validate a numerical model to model hydrodynamics and morphological response of gravel beaches under storm conditions; and (5) develop a tool for end-users, based on the model formulated under (4), for predicting storm response of gravel beaches and barriers. The aim of this presentation is to present the key results of the NUPSIG project and introduce the end-user tool for predicting storm response on gravel beaches. The model is based on the numerical model XBeach, and different forcing scenarios (wave and tides), barrier configurations (dimensions) and sediment characteristics are easily uploaded for model simulations using a Graphics User Interface (GUI). The model can be used to determine the vulnerability of gravel barriers to storm events, but can also be used to help optimise design criteria for gravel barriers to reduce their vulnerability and enhance their coastal protection ability.

  18. Storm observations by remote sensing and influences of gustiness on ocean waves and on generation of rogue waves

    NASA Astrophysics Data System (ADS)

    Pleskachevsky, Andrey L.; Lehner, Susanne; Rosenthal, Wolfgang

    2012-09-01

    The impact of the gustiness on surface waves under storm conditions is investigated with focus on the appearance of wave groups with extreme high amplitude and wavelength in the North Sea. During many storms characterized by extremely high individual waves measured near the German coast, especially in cold air outbreaks, the moving atmospheric open cells are observed by optical and radar satellites. According to measurements, the footprint of the cell produces a local increase in the wind field at sea surface, moving as a consistent system with a propagation speed near to swell wave-traveling speed. The optical and microwave satellite data are used to connect mesoscale atmospheric turbulences and the extreme waves measured. The parameters of open cells observed are used for numerical spectral wave modeling. The North Sea with horizontal resolution of 2.5 km and with focus on the German Bight was simulated. The wind field "storm in storm," including moving organized mesoscale eddies with increased wind speed, was generated. To take into account the rapid moving gust structure, the input wind field was updated each 5 min. The test cases idealized with one, two, and four open individual cells and, respectively, with groups of open cells, with and without preexisting sea state, as well the real storm conditions, are simulated. The model results confirm that an individual-moving open cell can cause the local significant wave height increase in order of meters within the cell area and especially in a narrow area of 1-2 km at the footprint center of a cell (the cell's diameter is 40-90 km). In a case of a traveling individual open cell with 15 m·s-1 over a sea surface with a preexisting wind sea of and swell, a local significant wave height increase of 3.5 m is produced. A group of cells for a real storm condition produces a local increase of significant wave height of more than 6 m during a short time window of 10-20 min (cell passing). The sea surface simulation from modeled wave spectra points out the appearance of wave groups including extreme individual waves with a period of about 25 s and a wavelength of more than 350 m under the cell's footprint. This corresponds well with measurement of a rogue wave group with length of about 400 m and a period of near 25 s. This has been registered at FiNO-1 research platform in the North Sea during Britta storm on November 1, 2006 at 04:00 UTC. The results can explain the appearance of rogue waves in the German Bight and can be used for ship safety and coastal protection. Presently, the considered mesoscale gustiness cannot be incorporated in present operational wave forecasting systems, since it needs an update of the wind field at spatial and temporal scales, which is still not available for such applications. However, the scenario simulations for cell structures with appropriate travel speed, observed by optical and radar satellites, can be done and applied for warning messages.

  19. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction.

    PubMed

    Harley, Mitchell D; Turner, Ian L; Kinsela, Michael A; Middleton, Jason H; Mumford, Peter J; Splinter, Kristen D; Phillips, Matthew S; Simmons, Joshua A; Hanslow, David J; Short, Andrew D

    2017-07-20

    Extratropical cyclones (ETCs) are the primary driver of large-scale episodic beach erosion along coastlines in temperate regions. However, key drivers of the magnitude and regional variability in rapid morphological changes caused by ETCs at the coast remain poorly understood. Here we analyze an unprecedented dataset of high-resolution regional-scale morphological response to an ETC that impacted southeast Australia, and evaluate the new observations within the context of an existing long-term coastal monitoring program. This ETC was characterized by moderate intensity (for this regional setting) deepwater wave heights, but an anomalous wave direction approximately 45 degrees more counter-clockwise than average. The magnitude of measured beach volume change was the largest in four decades at the long-term monitoring site and, at the regional scale, commensurate with that observed due to extreme North Atlantic hurricanes. Spatial variability in morphological response across the study region was predominantly controlled by alongshore gradients in storm wave energy flux and local coastline alignment relative to storm wave direction. We attribute the severity of coastal erosion observed due to this ETC primarily to its anomalous wave direction, and call for greater research on the impacts of changing storm wave directionality in addition to projected future changes in wave heights.

  20. Decadal-scale variation in dune erosion and accretion rates: An investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK

    NASA Astrophysics Data System (ADS)

    Pye, K.; Blott, S. J.

    2008-12-01

    Monitoring of frontal dune erosion and accretion on the Sefton coast in northwest England over the past 50 years has revealed significant spatial and temporal variations. Previous work has shown that the spatial variations primarily reflect longshore differences in beach and nearshore morphology, energy regime and sediment budget, but the causes of temporal variations have not previously been studied in detail. This paper presents the results of work carried out to test the hypothesis that a major cause of temporal variation is changes in the frequency and magnitude of storms, surges and resulting high tides. Dune toe erosion/accretion records dating from 1958 have been compared with tide gauge records at Liverpool and Heysham. Relatively high dune erosion rates at Formby Point 1958-1968 were associated with a relatively large number of storm tides. Slower erosion at Formby, and relatively rapid accretion in areas to the north and south, occurred during the 1970's and 1980's when there were relatively few major storm tides. After 1990 rates of dune erosion at Formby increased again, and dunes to the north and south experienced slower accretion. During this period high storm tides have been more frequent, and the annual number of hours with water levels above the critical level for dune erosion has increased significantly. An increase in the rate of mean sea-level rise at both Liverpool and Heysham is evident since 1990, but we conclude that this factor is of less importance than the occurrence of extreme high tides and wave action associated with storms. The incidence of extreme high tides shows an identifiable relationship with the lunar nodal tidal cycle, but the evidence indicates that meteorological forcing has also had a significant effect. Storms and surges in the eastern Irish Sea are associated with Atlantic depressions whose direction and rate of movement have a strong influence on wind speeds, wave energy and the height of surge tides. However, preliminary analysis has indicated only a modest relationship between dune erosion/accretion rates and the North Atlantic Oscillation index.

  1. Solar radio continuum storms and a breathing magnetic field model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.

  2. Study of the Western Black Sea Storms with a Focus on the Storms Caused by Cyclones of North African Origin

    NASA Astrophysics Data System (ADS)

    Galabov, Vasko; Chervenkov, Hristo

    2018-04-01

    We present a study of the Black Sea storms, using a long hindcast of the western Black Sea wind waves. The goal of the work is to study the trends in the storminess indicators. We identify 238 storms with significant wave height above 4 m for the period 1900-2015. We study the cyclogenetic regions of the cyclones causing these storms and focus specifically on the Black Sea storms associated with cyclones originating over the Gulf of Sidra and the adjacent areas. We also identify which of these storms are associated with the so-called explosive cyclogenesis (with deepening rate above 1 Bergeron) and find that 3 out of 5 cases of severe Black Sea storms associated with explosive cyclones are caused by cyclones originating in the Gulf of Sidra. We find no evidence of steady trends in the western Black Sea storminess.

  3. Modeling of Coastal Inundation, Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, U.S.A.

    DTIC Science & Technology

    2012-01-01

    of 2 m. ADDITIONAL INDEX WORDS: Nearshore hydrodynamic modeling, waves, synthetic tropical storms , extratropical storms , Hurricane Isabel, land...an increase in SLR and coastal storms , including hurricanes (tropical storms ) and winter storms ( extratropical storms ), will increase the risk of... storms ) corresponding to 50-year and 100-year return periods and a most probable winter storm ( extratropical ) that occurred in October 1982 (Burks-Copes

  4. Recent Naval Postgraduate School Publications.

    DTIC Science & Technology

    1985-09-30

    of the performance of a new storm tracking methodology Prepared for Naval Environmental Prediction Res. Facility Monterey, Calif., Naval Postgraduate...Aerospace Sci. Mtg., Jr’., 1983. Sarpkaya, T; Storm , M A ydrodynamic forces from combined wave and current flow on smooth and rough circular cylinders...Houston, Tx., May, 1982. IN Proc 1982 Offshore Technol. Conf., vol. 1, p.731-736, (1982). Sarpkaya, T; Storm , M A ydrodynamic forces from combined wave

  5. Measuring Bathymetry, Runup, and Beach Volume Change during Storms: New Methodology Quantifies Substantial Changes in Cross-Shore Sediment Flux

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.

    2009-12-01

    Accurate predictions of beach change during storms are contingent upon a correct understanding of wave-driven sediment exchange between the beach and nearshore during high energy conditions. Conventional storm data sets use “pre” (often weeks to months prior) and “post” (often many days after the storm in calm conditions) collections of beach topography and nearshore bathymetry to characterize the effects of the storm. These data have led to a common theory for wave-driven event response of the nearshore system, wherein bars and shorelines are smoothed and straightened by strong alongshore currents into two-dimensional, linear forms. Post-storm, the shoreline accretes, bars migrate onshore, and three-dimensional shapes begin to build as low-energy swell returns. Unfortunately, these approaches have left us with a knowledge gap of the extent and timing of erosion and accretion during storms, arguably the most important information both for scientists trying to model storm damage or inundation, and homeowners trying to manage their properties. This work presents the first spatially extensive (10 km alongshore) and temporally high-resolution (dt = 12 hours) quantitative data set of beach volume and nearshore bathymetry evolution during a Nor’easter on North Carolina’s Outer Banks. During the Nor’easter, significant wave height peaked at 3.4 m, and was greater than 2 m for 37 hours, as measured by the Duck FRF 8 m array. Data were collected using CLARIS: Coastal Lidar and Radar Imaging System, a mobile system that couples simultaneous observations of beach topography from a Riegl laser scanner and nearshore bathymetry (out to ~1 km offshore) from X-Band radar-derived celerity measurements (BASIR). The merging of foreshore lidar elevations with 6-min averages of radar-derived swash runup also enables mapping of maximum-runup elevations alongshore during the surveys. Results show that during the storm, neither the shoreline nor nearshore bathymetry returned to a linear system, as shoreline megacusps/embayments and nearshore shore-oblique bars/troughs both persisted and remained aligned throughout the storm. Analysis of beach volume change above the MHW line showed that all of the erosion occurred during the first 24 hours of the storm, as the 8-m significant wave height grew from 1 to 3.5 m at the peak of the storm and wave period increased from 6 to 14 s. In the 12 hours immediately following the storm peak, as long-period swell fell only 1 m, at least 50% of the eroded upper-beach volume returned along the entire study site, with 100% and greater returning along half the study site. This erosion and accretion would be completely unobserved using traditional pre- and post-storm data sets. Maximum runup varied by as much as 2 m alongshore, showing a weak positive correlation with foreshore slope. Maximum runup is the sum of regional tide and surge (pressure and wind-driven) water levels as well as localized wave-driven setup and swash, and thus may have complex alongshore variations where irregular nearshore bathymetry significantly influences shoreline wave-setup.

  6. Relative role of subinertial and superinertial modes in the coastal long wave response forced by the landfall of a tropical cyclone

    NASA Astrophysics Data System (ADS)

    Ke, Ziming; Yankovsky, Alexander E.

    2011-06-01

    A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (˜10 m s -1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.

  7. Magnitudes of nearshore waves generated by tropical cyclone Winston, the strongest landfalling cyclone in South Pacific records. Unprecedented or unremarkable?

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Lau, A. Y. Annie

    2018-02-01

    We delimit nearshore storm waves generated by category-5 Tropical Cyclone Winston in February 2016 on the northern Fijian island of Taveuni. Wave magnitudes (heights and flow velocities) are hindcast by inverse modelling, based on the characteristics of large carbonate boulders (maximum 33.8 m3, 60.9 metric tons) that were quarried from reef-front sources, transported and deposited on coral reef platforms during Winston and older extreme events. Results indicate that Winston's storm waves on the seaward-margin of reefs fringing the southeastern coasts of Taveuni reached over 10 m in height and generated flow velocities of 14 m s- 1, thus coinciding with the scale of the biggest ancient storms as estimated from pre-existing boulder evidence. We conclude that although Winston tracked an uncommon path and was described as the most powerful storm on record to make landfall in the Fiji Islands, its coastal wave characteristics were not unprecedented on centennial timescales. At least seven events of comparable magnitude have occurred over the last 400 years.

  8. The Gravity Wave Response Above Deep Convection in a Squall Line Simulation

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, J. R.; Durran, D. R.

    1995-01-01

    High-frequency gravity waves generated by convective storms likely play an important role in the general circulation of the middle atmosphere. Yet little is known about waves from this source. This work utilizes a fully compressible, nonlinear, numerical, two-dimensional simulation of a midlatitude squall line to study vertically propagating waves generated by deep convection. The model includes a deep stratosphere layer with high enough resolution to characterize the wave motions at these altitudes. A spectral analysis of the stratospheric waves provides an understanding of the necessary characteristics of the spectrum for future studies of their effects on the middle atmosphere in realistic mean wind scenarios. The wave spectrum also displays specific characteristics that point to the physical mechanisms within the storm responsible for their forcing. Understanding these forcing mechanisms and the properties of the storm and atmosphere that control them are crucial first steps toward developing a parameterization of waves from this source. The simulation also provides a description of some observable signatures of convectively generated waves, which may promote observational verification of these results and help tie any such observations to their convective source.

  9. Role of beach morphology in wave overtopping hazard assessment

    NASA Astrophysics Data System (ADS)

    Phillips, Benjamin; Brown, Jennifer; Bidlot, Jean-Raymond; Plater, Andrew

    2017-04-01

    Understanding the role of beach morphology in controlling wave overtopping volume will further minimise uncertainties in flood risk assessments at coastal locations defended by engineered structures worldwide. XBeach is used to model wave overtopping volume for a 1:200 yr joint probability distribution of waves and water levels with measured, pre- and post-storm beach profiles. The simulation with measured bathymetry is repeated with and without morphological evolution enabled during the modelled storm event. This research assesses the role of morphology in controlling wave overtopping volumes for hazardous events that meet the typical design level of coastal defence structures. Results show disabling storm-driven morphology under-represents modelled wave overtopping volumes by up to 39% under high Hs conditions, and has a greater impact on the wave overtopping rate than the variability applied within the boundary conditions due to the range of wave-water level combinations that meet the 1:200 yr joint probability criterion. Accounting for morphology in flood modelling is therefore critical for accurately predicting wave overtopping volumes and the resulting flood hazard and to assess economic losses.

  10. Shallow-water seismoacoustic noise generated by tropical storms Ernesto and Florence.

    PubMed

    Traer, James; Gerstoft, Peter; Bromirski, Peter D; Hodgkiss, William S; Brooks, Laura A

    2008-09-01

    Land-based seismic observations of double frequency (DF) microseisms generated during tropical storms Ernesto and Florence are dominated by signals in the 0.15-0.5 Hz band. In contrast, data from sea floor hydrophones in shallow water (70 m depth, 130 km off the New Jersey coast) show dominant signals in the ocean gravity-wave frequency band, 0.02-0.18 Hz, and low amplitudes from 0.18 to 0.3 Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Florence produced large waves over deep water while Ernesto only generated waves in coastal regions, yet both storms produced similar spectra. This suggests near-coastal shallow water as the dominant region for observed microseism generation.

  11. Ionospsheric observation of enhanced convection-initiated gravity waves during tornadic storms

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1981-01-01

    Atmospheric gravity waves associated with tornadoes, with locally severe storms occuring with tornadoes, and with hurricanes were studied through the coupling between the ionosphere and the troposphere. Reverse group ray tracing computations of gravity waves observed by an ionospheric Doppler sounder array were analyzed. The results of ray tracing computations and comparisons between the computed location of the wave sources and with conventional meteorological data indicate that the computed sources of the waves were near the touchdown of the tornadoes, near the eye of the hurricanes, and directly on the squall line of the severe thunderstorms. The signals excited occurred one hour in advance of the tornadoes and three hours in advance of the hurricanes. Satellite photographs show convective overshooting turrets occurring at the same locations and times the gravity waves were being excited. It is suggested that gravity wave observations, conventional meteorological data, and satellite photographs be combined to develop a remote sensing technique for detecting severe storms.

  12. The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J. R.; Llamedo, P.; Alexander, P.

    2015-04-01

    On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.

  13. Competition Between Radial Loss and EMIC Wave Scattering of MeV Electrons During Strong CME-shock Driven Storms

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Jaynes, A. N.; Li, Z.; Malaspina, D.; Millan, R. M.; Patel, M.; Qin, M.; Shen, X.; Wiltberger, M. J.

    2017-12-01

    The two strongest storms of Solar Cycle 24, 17 March and 22 June 2015, provide a contrast between magnetospheric response to CME-shocks at equinox and solstice. The 17 March CME-shock initiated storm produced a stronger ring current response with Dst = - 223 nT, while the 22 June CME-shock initiated storm reached a minimum Dst = - 204 nT. The Van Allen Probes ECT instrument measured a dropout in flux for both events which can be characterized by magnetopause loss at higher L values prior to strong recovery1. However, rapid loss is seen at L 3 for the June storm at high energies with maximum drop in the 5.2 MeV channel of the REPT instrument coincident with the observation of EMIC waves in the H+ band by the EMFISIS wave instrument. The rapid time scale of loss can be determined from the 65 minute delay in passage of the Probe A relative to the Probe B spacecraft. The distinct behavior of lower energy electrons at higher L values has been modeled with MHD-test particle simulations, while the rapid loss of higher energy electrons is examined in terms of the minimum resonant energy criterion for EMIC wave scattering, and compared with the timescale for loss due to EMIC wave scattering which has been modeled for other storm events.2 1Baker, D. N., et al. (2016), Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015, J. Geophys. Res. Space Physics, 121, 6647-6660, doi:10.1002/2016JA022502. 2Li, Z., et al. (2014), Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations, Geophys. Res. Lett., 41, 8722-8729, doi:10.1002/2014GL062273.

  14. Evidence of extreme storm events from coral boulder deposits on the southern coast of Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Gao, S.

    2017-12-01

    The southern coast of Hainan Island in China is one of the most frequently hit areas of tropical cyclones in the Pacific Northwest regions. Long-term storm data are important to reconstruct past extreme wave events, for understanding present-day coastal vulnerability. However, the magnitude of storm and typhoon events in the historical period over the northwestern South China Sea is still poorly understood. A primary study was carried out to investigate into the characteristics of a carbonate boulder field found at the Xiaodonghai (XDH) site on the southern coast of Hainan Island, in order to derive the maximum spatial extent, wave height, and velocity of coastal flooding and to determine the type of extreme wave events responsible for the boulder distributions. We recorded the position, shape, size, and the long axis orientation of 1247 of the boulders, with the a-axes being between 0.52 and 3.76 m. A morphometric analysis of the boulders shows that they are distributed within 160 m of the reef edge, with an exponential fining trend shoreward. Numerical models are used to estimate the minimum wave height and minimum flow velocity required to move these boulders. Flow velocities of 1.76-14.73 m/s and storm wave height of 0.47-15.87 m are needed to displace the measured boulders deposited near the mean sea level. These values are consistent with the dataset of storm boulder transport at other sites in the Asia-Pacific region and local instrumental records. Overall, the carbonate boulder deposits at the XDH site implies that the area is exposed to giant storm waves capable of displacing the very large boulders observed here. The recurrence of a similar storm event in the future will have the potential to cause severe coastal flooding damage on this densely populated part of the low-lying coastlines of Hainan Island.

  15. Storm surge along the Pacific coast of North America

    NASA Astrophysics Data System (ADS)

    Bromirski, Peter D.; Flick, Reinhard E.; Miller, Arthur J.

    2017-01-01

    Storm surge is an important factor that contributes to coastal flooding and erosion. Storm surge magnitude along eastern North Pacific coasts results primarily from low sea level pressure (SLP). Thus, coastal regions where high surge occurs identify the dominant locations where intense storms make landfall, controlled by storm track across the North Pacific. Here storm surge variability along the Pacific coast of North America is characterized by positive nontide residuals at a network of tide gauge stations from southern California to Alaska. The magnitudes of mean and extreme storm surge generally increase from south to north, with typically high amplitude surge north of Cape Mendocino and lower surge to the south. Correlation of mode 1 nontide principal component (PC1) during winter months (December-February) with anomalous SLP over the northeast Pacific indicates that the dominant storm landfall region is along the Cascadia/British Columbia coast. Although empirical orthogonal function spatial patterns show substantial interannual variability, similar correlation patterns of nontide PC1 over the 1948-1975 and 1983-2014 epochs with anomalous SLP suggest that, when considering decadal-scale time periods, storm surge and associated tracks have generally not changed appreciably since 1948. Nontide PC1 is well correlated with PC1 of both anomalous SLP and modeled wave height near the tide gauge stations, reflecting the interrelationship between storms, surge, and waves. Weaker surge south of Cape Mendocino during the 2015-2016 El Niño compared with 1982-1983 may result from changes in Hadley circulation. Importantly from a coastal impacts perspective, extreme storm surge events are often accompanied by high waves.

  16. Wave Height and Water Level Variability on Lakes Michigan and St Clair

    DTIC Science & Technology

    2012-10-01

    Observations: http://www.ssec.wisc.edu/sose/glwx_activity.html 4. NASA Atlas of Extratropical Storm Tracks: http://data.giss.nasa.gov/stormtracks...term meteorological, ice, wave, and water level measurements. 15. SUBJECT TERMS Base flood elevation Coastal flood Extratropical storms Great...Box 1027 Detroit, MI 48231-1027 ERDC/CHL TR-12-23 ii Abstract The Great Lakes are subject to coastal flooding as a result of severe storms

  17. Ensemble Sensitivity Analysis of a Severe Downslope Windstorm in Complex Terrain: Implications for Forecast Predictability Scales and Targeted Observing Networks

    DTIC Science & Technology

    2013-09-01

    wave breaking (NWB) and eight wave breaking (WB) storms are shown...studies, and it follows that the wind storm characteristics are likely more three dimensional as well. For the purposes of this study, a severe DSWS is...regularly using the HWAS network at USAFA since its installation in 2004. A careful examination of these events reveals downslope storms that are

  18. Towards improved storm surge models in the northern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Krien, Y.; Testut, L.; Islam, A. K. M. S.; Bertin, X.; Durand, F.; Mayet, C.; Tazkia, A. R.; Becker, M.; Calmant, S.; Papa, F.; Ballu, V.; Shum, C. K.; Khan, Z. H.

    2017-03-01

    The northern Bay of Bengal is home to some of the deadliest cyclones recorded during the last decades. Storm surge models developed for this region significantly improved in recent years, but they still fail to predict patterns of coastal flooding with sufficient accuracy. In the present paper, we make use of a state-of-the art numerical modeling system with improved bathymetric and topographic data to identify the strengths, weaknesses, and to suggest areas for improvement of current storm surge models in this area. The new model is found to perform relatively well in reproducing waves characteristics and maximum water levels for the two extreme cyclones studied here: Phailin (2013) and Sidr (2007). The wave setup turns out to be small compared to the wind-driven surge, although it still plays a significant role for inland flooding. Relatively large tide-surge interactions mainly due to shallow water effects are also evidenced by the model. These findings plead in favor of further efforts to improve the representation of the bathymetry, especially in the nearshore area, and the implementation of models including tides and radiation stresses explicitly. The main limit of the model is its inability to predict the detailed patterns of coastal flooding satisfactorily. The reason lies mainly in the fact that topographic data also need to be further improved. In particular, a good knowledge of embankments characteristics (crest elevation and their condition) is found to be of primary importance to represent inland flooding correctly. Public authorities should take urgent action to ensure that better data are available to the scientific community, so that state-of-the-art storm surge models reaching a sufficiently high level of confidence can be used for emergency preparedness and to implement mitigation strategies in the northern Bay of Bengal.

  19. Investigating compound flooding in an estuary using hydrodynamic modelling: a case study from the Shoalhaven River, Australia

    NASA Astrophysics Data System (ADS)

    Kumbier, Kristian; Carvalho, Rafael C.; Vafeidis, Athanasios T.; Woodroffe, Colin D.

    2018-02-01

    Many previous modelling studies have considered storm-tide and riverine flooding independently, even though joint-probability analysis highlighted significant dependence between extreme rainfall and extreme storm surges in estuarine environments. This study investigates compound flooding by quantifying horizontal and vertical differences in coastal flood risk estimates resulting from a separation of storm-tide and riverine flooding processes. We used an open-source version of the Delft3D model to simulate flood extent and inundation depth due to a storm event that occurred in June 2016 in the Shoalhaven Estuary, south-eastern Australia. Time series of observed water levels and discharge measurements are used to force model boundaries, whereas observational data such as satellite imagery, aerial photographs, tidal gauges and water level logger measurements are used to validate modelling results. The comparison of simulation results including and excluding riverine discharge demonstrated large differences in modelled flood extents and inundation depths. A flood risk assessment accounting only for storm-tide flooding would have underestimated the flood extent of the June 2016 storm event by 30 % (20.5 km2). Furthermore, inundation depths would have been underestimated on average by 0.34 m and by up to 1.5 m locally. We recommend considering storm-tide and riverine flooding processes jointly in estuaries with large catchment areas, which are known to have a quick response time to extreme rainfall. In addition, comparison of different boundary set-ups at the intermittent entrance in Shoalhaven Heads indicated that a permanent opening, in order to reduce exposure to riverine flooding, would increase tidal range and exposure to both storm-tide flooding and wave action.

  20. Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The May 2-7, 1998, Storm

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.

    2003-01-01

    Complete description of a self-consistent model for magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves, and back on waves, are considered self-consistently by solving both equations on a global magnetospheric scale under non steady-state conditions. In the paper by Khazanov et al. [2002] this self-consistent model has only been shortly outlined, and discussions of many the model related details have been omitted. For example, in present study for the first time a new algorithm for numerical finding of the resonant numbers for quasilinear wave-particle interaction is described, or it is demonstrated that in order to describe quasilinear interaction in a multi-ion thermal plasma correctly, both e and He(+) modes of electromagnetic ion cyclotron waves should be employed. The developed model is used to simulate the entire May 2-7, 1998 storm period. Trapped number fluxes of the ring current protons are calculated and presented along with their comparison with the data measured by the 3D hot plasma instrument Polar/HYDRA. Examining of the wave (MLT, L shell) distributions produced during the storm progress reveals an essential intensification of the wave emissions in about two days after main phase of storm. This result is well consistent with the earlier ground-based observations. Also the theoretical shapes and the occurrence rates for power spectral densities of electromagnetic ion cyclotron waves are studied. It is found that in about 2 days after the storm main phase on May 4, mainly non Gaussian shapes of power spectral densities are produced.

  1. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    USGS Publications Warehouse

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.

  2. Storminess trends in the Gulf and Mexican Caribbean

    NASA Astrophysics Data System (ADS)

    Mendoza, E. T.; Ojeda, E.; Appendini, C. M.

    2016-12-01

    Numerous studies have focused on whether the attributes of tropical cyclones have varied, or how they are expected to vary in a warming climate and yet, a defined conclusion has not been reached. However, an increase in storm intensity, with the inherent increase of wave height and storm surge, will be responsible of heavy economic loss on coastal areas. This contribution analyzes possible variations in the long term storminess pattern observed in 10 nearshore locations along the southern coasts of the Gulf of Mexico and the Mexican Caribbean using modeled wave data from the last 30 years (Appendini et al., 2013). Storminess is studied in terms of wave energy content focusing on extreme event conditions. Wave storm events are obtained using the Peak Over Threshold method. The wave conditions during the events are separated into those caused by tropical cyclones (TC) and extratropical storm (ETS) events because they are expected to behave differently in response to changing climate conditions. In order to characterize the waves generated by these different phenomena the data set is inspected separating individual storm events into TC and ETS using the IBtracks information. The trend and Mann-Kendall test are performed for each node to account for possible trends in the frequency, mean and maximum significant wave heights, and the mean energy content (taken as E=integral(Hs*dt) of TC and ETS. For the TC and ETS events, the results of the MK test show an absence of significant temporal trends for the majority of the nodes even at the 90% confidence interval. The significant trends in the number of ETS events show differential results (negative trend in the northernmost node and positive trends in the two Caribbean nodes and the easternmost GoM node). Regarding the TC events, the two nodes located in the Caribbean Sea present significant temporal (positive) trends in the energy content of the events. However, this trend is related to an increase in the magnitude of storms and in the probability of their occurrence.

  3. Validation Test Report for the Coupled Ocean/Atmosphere MesoscalePrediction System (COAMPS) Version 5.0: Ocean/Wave Component Validation

    DTIC Science & Technology

    2012-12-31

    RED) TC TRACKS ARE SHOWN. CIRCLES ON BOTH TRACKS REPRESENT HOURLY LOCATIONS OF THE STORM CENTERS. ..................................... 18  FIGURE...conditions such as wave boundary conditions, tides, wind, and storm surge. A quasi-stationary approach is used with stationary SWAN computations in a...Tropical Storm Ivan and continued westward south of 10oN becoming a hurricane on 5 September. After entering the southern Gulf of Mexico (GOM

  4. Quantitative Simulation of QARBM Challenge Events During Radiation Belt Enhancements

    NASA Astrophysics Data System (ADS)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Chu, X.

    2017-12-01

    Various physical processes are known to affect energetic electron dynamics in the Earth's radiation belts, but their quantitative effects at different times and locations in space need further investigation. This presentation focuses on discussing the quantitative roles of various physical processes that affect Earth's radiation belt electron dynamics during radiation belt enhancement challenge events (storm-time vs. non-storm-time) selected by the GEM Quantitative Assessment of Radiation Belt Modeling (QARBM) focus group. We construct realistic global distributions of whistler-mode chorus waves, adopt various versions of radial diffusion models (statistical and event-specific), and use the global evolution of other potentially important plasma waves including plasmaspheric hiss, magnetosonic waves, and electromagnetic ion cyclotron waves from all available multi-satellite measurements. These state-of-the-art wave properties and distributions on a global scale are used to calculate diffusion coefficients, that are then adopted as inputs to simulate the dynamical electron evolution using a 3D diffusion simulation during the storm-time and the non-storm-time acceleration events respectively. We explore the similarities and differences in the dominant physical processes that cause radiation belt electron dynamics during the storm-time and non-storm-time acceleration events. The quantitative role of each physical process is determined by comparing against the Van Allen Probes electron observations at different energies, pitch angles, and L-MLT regions. This quantitative comparison further indicates instances when quasilinear theory is sufficient to explain the observed electron dynamics or when nonlinear interaction is required to reproduce the energetic electron evolution observed by the Van Allen Probes.

  5. Hurricane Ike: Observations and Analysis of Coastal Change

    USGS Publications Warehouse

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline, beaches, dunes, and infrastructure in the region that was heavily impacted by Hurricane Ike.

  6. Optimal index related to the shoreline dynamics during a storm: the case of Jesolo beach

    NASA Astrophysics Data System (ADS)

    Archetti, Renata; Paci, Agnese; Carniel, Sandro; Bonaldo, Davide

    2016-05-01

    The paper presents an application of shoreline monitoring aimed at understanding the response of a beach to single storms and at identifying its typical behaviour, in order to be able to predict shoreline changes and to properly plan the defence of the shore zone. On the study area, in Jesolo beach (northern Adriatic Sea, Italy), a video monitoring station and an acoustic wave and current profiler were installed in spring 2013, recording, respectively, images and hydrodynamic data. The site lacks previous detailed hydrodynamic and morphodynamic data. Variations in the shoreline were quantified in combination with available near-shore wave conditions, making it possible to analyse the relationship between the shoreline displacement and the wave features. Results denote characteristic patterns of beach response to storm events, and highlight the importance of improving beach protection in this zone, notwithstanding the many interventions experimented in the last decades. A total of 31 independent storm events were selected during the period October 2013-October 2014, and for each of them synthetic indexes based on storm duration, energy and maximum wave height were developed and estimated. It was found that the net shoreline displacements during a storm are well correlated with the total wave energy associated to the considered storm by an empirical power law equation. A sub-selection of storms in the presence of an artificial dune protecting the beach (in the winter season) was examined in detail, allowing to conclude that the adoption of this coastal defence strategy in the study area can reduce shoreline retreat during a storm. This type of intervention can sometimes contribute to prolonging overall stability not only in the replenished zone but also in downdrift areas. The implemented methodology, which confirms to be economically attractive if compared to more traditional monitoring systems, proves to be a valuable system to monitor beach erosive processes and provide detailed indications on how to better plan beach-maintenance activities. The presented methodology and the proposed results can therefore be used as a basis for improving the collaboration between coastal scientists and managers to solve beach erosion problems, in locations where data are scattered and sporadic.

  7. Deposition model of a Miocene barred wave- and storm-dominated shoreface and shelf, southeastern Malay basin, offshore west Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramli, N.

    1986-01-01

    The J sandstone is an important hydrocarbon-bearing reservoir in the southeastern part of the Malay basin. The lower and upper members of the J sandstone are composed of shoreface and offshore sediments. The shoreface sequence contains depositional structures characteristic of a barred wave- and storm-dominated shoreface. Each shoreface sequence is laterally associated with a series of stacked offshore bars. Offshore bars can be subdivided into proximal and distal types. Two types of proximal offshore bars have been identified: (1) proximal bars formed largely above fair-weather wave base (inner proximal bars), and (2) proximal bars formed below fair-weather wave base (outermore » proximal bars). The inner proximal bars are closely associated with the shoreface sequence and are similar to the middle and lower shoreface. The presence of poorly sorted, polymodal, very fine to very coarse-grained sandstone beneath well-sorted crestal sandstones of inner proximal bars suggests that these offshore bars may have been deposited rapidly by storms. The crests of the inner proximal offshore bars were subsequently reworked by fair-weather processes, and the crests of the outer proximal and distal offshore bars were reworked by waning storm currents and oscillatory waves. Thick marine shales overlying offshore bars contain isolated sheet sandstones. Each sheet sandstone exhibits features that may be characteristic of distal storm shelf deposits. 15 figures, 2 tables.« less

  8. Experimental modelling of wave amplification over irregular bathymetry for investigations of boulder transport by extreme wave events.

    NASA Astrophysics Data System (ADS)

    O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn

    2017-04-01

    During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution nearshore multibeam sonar survey. Water surface elevation is recorded using twin-wire resistance type wave probes along a shore-normal bathymetry transect as the waves shoal. Variations in significant wave height and maximum elevation are presented for both regular and irregular bathymetry and for a number of typical North Atlantic sea states. These results are significant for calibration of numerical wave propagation models over irregular bathymetry and for those seeking to understand the magnitude of nearshore extreme wave events. References [1] Met Éireann, 2014, Winter 2013/2014: Monthly Weather Bulletin, December issue, p. 1-5. http://www.met.ie/climate-ireland/weather-events/winterstorms13_14.pdf. [2] Cox, R. et. al., 2016, Movement of boulders and megagravel by storm waves Vol. 18, EGU2016-10535, 2016 EGU General Assembly 2016

  9. Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model

    NASA Astrophysics Data System (ADS)

    Marsooli, Reza; Orton, Philip M.; Mellor, George

    2017-07-01

    Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.

  10. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    USGS Publications Warehouse

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.

  11. North Sea Storm Driving of Extreme Wave Heights

    NASA Astrophysics Data System (ADS)

    Bell, Ray; Gray, Suzanne; Jones, Oliver

    2017-04-01

    The relationship between storms and extreme ocean waves in the North sea is assessed using a long-period wave dataset and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to either the winds in the cold conveyor belt (northerly-wind events) or winds in the warm conveyor belt (southerly-wind events) of extratropical cyclones. The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearwards round the cyclone to the cold side of the warm front. The northerly-wind events also provide a larger fetch to the central North Sea. Southerly-wind events are associated with the warm conveyor belts of intense extratropical storms developing in the right upper-tropospheric jet exit region. There is predictability in the extreme ocean wave events up to two days before the event associated with a strengthening of a high pressure system to the west (northerly-wind events) and south-west (southerly-wind events) of the British Isles. This acts to increase the pressure gradient over the British Isles and therefore drive stronger wind speeds in the central North sea.

  12. Establishing storm thresholds for the Spanish Gulf of Cádiz coast

    NASA Astrophysics Data System (ADS)

    Del Río, Laura; Plomaritis, Theocharis A.; Benavente, Javier; Valladares, María; Ribera, Pedro

    2012-03-01

    In this study critical thresholds are defined for storm impacts along the Spanish coast of the Gulf of Cádiz. The thresholds correspond to the minimum wave and tide conditions necessary to produce significant morphological changes on beaches and dunes and/or damage on coastal infrastructure or human occupation. Threshold definition was performed by computing theoretical sea-level variations during storms and comparing them with the topography of the study area and the location of infrastructure at a local level. Specifically, the elevations of the berm, the dune foot and the entrance of existing washovers were selected as threshold parameters. The total sea-level variation generated by a storm event was estimated as the sum of the tidal level, the wind-induced setup, the barometric setup and the wave-associated sea-level variation (wave setup and runup), assuming a minimum interaction between the different processes. These components were calculated on the basis of parameterisations for significant wave height (Hs) obtained for the oceanographic and environmental conditions of the Gulf of Cadiz. For this purpose real data and reanalysis time-series (HIPOCAS project) were used. Validation of the obtained results was performed for a range of coastal settings over the study area. The obtained thresholds for beach morphological changes in spring tide conditions range between a significant wave height of 1.5 m and 3.7 m depending on beach characteristics, while for dune foot erosion are around 3.3 to 3.7 m and for damage to infrastructure around 7.2 m. In case of neap tide conditions these values are increased on average by 50% over the areas with large tidal range. Furthermore, records of real damage in coastal infrastructure caused by storms were collected at a regional level from newspapers and other bibliographic sources and compared with the hydrodynamic conditions that caused the damage. These were extracted from the hindcast database of the HIPOCAS project, including parameters such as storm duration, mean and maximum wave height and wave direction. Results show that the duration of the storm is not critical in determining the occurrence of coastal damage in the regional study area. This way, the threshold would be defined as a duration ≥30 h, with moderate average wave height (≥3.3 m) and high maximum wave height (≥4.1 m) approaching from the 3rd and 4th quadrants, during mean or spring tide situation. The calculated thresholds constitute snapshots of risk conditions within a certain time framework. Beach and nearshore zones are extremely dynamic, and also the characteristics of occupation on the coast change over time, so critical storm thresholds will change accordingly and therefore will need to be updated.

  13. Landsat Detection of the Effects of Hurricane Sandy on New Jersey Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Riter, A.; Kearney, M.; Mo, Y.

    2015-12-01

    Hurricane Sandy, an extremely large (1611 km in diameter) and destructive extratropical storm, made landfall near Brigantine, New Jersey on October 29, 2012. We used twenty Landsat Thematic Mapper data sets collected between 1984 and 2011 and four Landsat Operational Land Imager data sets collected between 2013 and 2015 to examine the effect of Sandy on the New Jersey Atlantic coastal marshes between Sandy Hook and Cape May. Landsat data was unavailable between the 2011 failure of Landsat TM and the launch of Landsat OLI in April of 2013. Preliminary results suggest that most of the New Jersey marshes were relatively stable with some interannual variation between 1984 and 2005. Between 2006 and 2015, marsh area generally declined, with the greatest decline occurring in the small discontinuous marshes north of Barnegat Light. The marshes which were closest to where Sandy made landfall seem to have sustained less damage than the marshes north of Barnegat Light. The marshes west of the lagoon bar systems between Seaside Heights and Sandy Hook, that bore the brunt of Sandy's storm surge (from 1.5 to 2.6 meters) and the greatest wave action (Blake et al, 2013), display an increase in pond area within the marshes. As stated above, recent increases in pond size and area as well as the overall decline in marsh coverage began before Hurricane Sandy. This suggests that the even the most at-risk marshes were not as affected by Sandy's storm surge and waves as the barrier islands.

  14. Predicting Impacts of tropical cyclones and sea-Level rise on beach mouse habitat

    USGS Publications Warehouse

    Chen, Qin; Wang, Hongqing; Wang, Lixia; Tawes, Robert; Rollman, Drew

    2014-01-01

    Alabama beach mouse (ABM) (Peromyscus polionotus ammobates) is an important component of the coastal dune ecosystem along the Gulf of Mexico. Due to habitat loss and degradation, ABM is federally listed as an endangered species. In this study, we examined the impacts of storm surge and wind waves, which are induced by hurricanes and sea-level rise (SLR), on the ABM habitat on Fort Morgan Peninsula, Alabama, using advanced storm surge and wind wave models and spatial analysis tools in geographic information systems (GIS). Statistical analyses of the long-term historical data enabled us to predict the extreme values of winds, wind waves, and water levels in the study area at different return periods. We developed a series of nested domains for both wave and surge modeling and validated the models using field observations of surge hydrographs and high watermarks of Hurricane Ivan (2004). We then developed wave atlases and flood maps corresponding to the extreme wind, surge and waves without SLR and with a 0.5 m of SLR by coupling the wave and surge prediction models. The flood maps were then merged with a map of ABM habitat to determine the extent and location of habitat impacted by the 100-year storm with and without SLR. Simulation results indicate that more than 82% of ABM habitat would be inundated in such an extreme storm event, especially under SLR, making ABM populations more vulnerable to future storm damage. These results have aided biologists, community planners, and other stakeholders in the identification, restoration and protection of key beach mouse habitat in Alabama. Methods outlined in this paper could also be used to assist in the conservation and recovery of imperiled coastal species elsewhere.

  15. Superstorms at the end of the Last Interglacial (MIS 5e)? Modeling paleo waves and the transport of giant boulders.

    NASA Astrophysics Data System (ADS)

    Rovere, Alessio; Harris, Daniel; Casella, Elisa; Lorscheid, Thomas; Stocchi, Paolo; Nandasena, Napayalage; Sandstrom, Michael; D'Andrea, William; Dyer, Blake; Raymo, Maureen

    2017-04-01

    We present the results of high-resolution field surveys and wave models along the cliffs of the northern part of the Island of Eleuthera, Bahamas. Previous studies have proposed that cliff top mega-boulders were emplaced at the end of the Last Interglacial (MIS 5e, 128-116 ka) by giant swells caused by super-storms that find no counterpart in the Holocene (including historical times). Our results suggest that these boulders could have instead been transported from the cliff face to the top of the cliff by a storm analogous to the 1991 'Perfect Storm', if sea level during MIS 5e sea was more than 4 meters higher than today. We remark that the data-model approach used here is essential to interpreting the geologic evidence of extreme storms during past warm periods, which in turn, is an important tool for predicting the intensity of extreme storm events in future climates. Our results indicate that even without an increase in storm intensity, cliffs and hard coastal barriers might be subject to significant increases wave-generated stresses under conditions of sea levels modestly higher than present.

  16. Modelling the 2013 Typhoon Haiyan storm surge: Effect of waves, offshore winds, tide phase, and translation speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.

    2015-12-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  17. Modelling the 2013 Typhoon Haiyan Storm Surge: Effect of Waves, Offshore Winds, Tide Phase, and Translation Speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.; Villanoy, C.; Cabrera, O.

    2016-02-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  18. Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain)

    NASA Astrophysics Data System (ADS)

    Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A.

    2006-06-01

    Mapping of coastal inundation hazard related to storms requires the combination of multiple sources of information regarding meteorological, morphological and dynamic characteristics of both the area at risk and the studied phenomena. Variables such as beach slope, storm wave height or wind speed have traditionally been used, but detailed geomorphological features of the area as well as long-term shoreline evolution trends must also be taken into account in order to achieve more realistic results. This work presents an evaluation of storm flooding hazard in Valdelagrana spit and marshes (SW Spain), considering two types of storm that are characteristic of the area: a modal storm with 1 year of recurrence interval (maximum wave height of 3.3 m), and an extreme storm with 6-10 years of recurrence interval (maximum wave height of 10.6 m), both approaching the coast perpendicularly. After calculating theoretical storm surge elevation, a digital terrain model was made by adjusting topographic data to field work and detailed geomorphological analysis. A model of flooding extent was subsequently developed for each storm type, and then corrected according to the rates of shoreline change in the last decades, which were assessed by means of aerial photographs taking the dune toe as shoreline indicator. Results show that long-term coastline trend represents an important factor in the prediction of flooding extent, since shoreline retreat causes the deterioration of natural coastal defences as dune ridges, thus increasing coastal exposure to high-energy waves. This way, it has been stated that the lack of sedimentary supply plays an important role in spatial variability of inundation extent in Valdelagrana spit. Finally, a hazard map is presented, where calculated coastal retreat rates are employed in order to predict the areas that could be affected by future inundation events.

  19. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bottin, R.R.; Acuff, H.F.

    1998-09-01

    A 1:90-scale (undistorted) three dimensional coastal hydraulic model was used to investigate the design of proposed navigation improvements at Nome Harbor, Alaska, with respect to wave, current, and shoaling conditions at the site. The model reproduced about 3,350 m (11,000 ft) of the Alaskan shoreline, the existing harbor and lower reaches of the Snake River, and sufficient offshore bathymetry in the Norton Sound to permit generation of the required experimental waves. The model was used to determine the impacts of a new entrance channel on wave-induced current patterns and magnitudes, sediment transport patterns, and wave conditions in the new channelmore » and harbor area, as well as to optimize the lengths and alignments of new breakwaters and causeway extensions. A 24.4-m-long (9O-ft-long) unidirectional, spectral wave generator, and automated data acquisition and control system, and a crushed coal tracer material were utilized in model operation. It was concluded from study results that: (a) existing conditions are characterized by rough and turbulent wave conditions in the existing entrance. Very confused wave patterns were observed in the entrance due to wave energy reflected off the vertical walls lining the entrance. Wave heights in excess of 1.5 m (5 ft) were obtained in the entrance for typical storm conditions; and wave heights of almost 3.7 m (12 ft) were obtained in the entrance for 5O-year storm wave conditions with extreme high-water level 4 m (+13 ft); (b) wave conditions along the vertical-faced causeway docks were excessive for existing conditions. Wave heights in excess of 3.7 and 2.7 m (12 and 9 ft) were obtained along the outer and inner docks, respectively, for typical storm conditions; and wave heights of almost 7 and 5.8 m (23 and 19 ft) were recorded along these docks, respectively, for 5-year storm wave conditions with extreme high-water levels.« less

  20. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea

    USGS Publications Warehouse

    Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin

    2012-01-01

    The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.

  1. Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral

    NASA Astrophysics Data System (ADS)

    Lionello, P.; Galati, M. B.; Elvini, E.

    Scenario climate projections for extreme marine storms producing storm surges and wind waves are very important for the northern flat coast of the Adriatic Sea, where the area at risk includes a unique cultural and environmental heritage, and important economic activities. This study uses a shallow water model and a spectral wave model for computing the storm surge and the wind wave field, respectively, from the sea level pressure and wind fields that have been computed by the RegCM regional climate model. Simulations cover the period 1961-1990 for the present climate (control simulations) and the period 2071-2100 for the A2 and B2 scenarios. Generalized Extreme Value analysis is used for estimating values for the 10 and 100 year return times. The adequacy of these modeling tools for a reliable estimation of the climate change signal, without needing further downscaling is shown. However, this study has mainly a methodological value, because issues such as interdecadal variability and intermodel variability cannot be addressed, since the analysis is based on single model 30-year long simulations. The control simulation looks reasonably accurate for extreme value analysis, though it overestimates/underestimates the frequency of high/low surge and wind wave events with respect to observations. Scenario simulations suggest higher frequency of intense storms for the B2 scenario, but not for the A2. Likely, these differences are not the effect of climate change, but of climate multidecadal variability. Extreme storms are stronger in future scenarios, but differences are not statistically significant. Therefore this study does not provide convincing evidence for more stormy conditions in future scenarios.

  2. Lake St. Clair: Storm Wave and Water Level Modeling

    DTIC Science & Technology

    2013-06-01

    R. A. Luettich, C. Dawson, V. J. Cardone , A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts. 2010. A high resolution coupled riverine flow...Storm Wave and Water Level Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyler J. Hesser

  3. Storminess at the Gulf of Biscay: classification and long term trends

    NASA Astrophysics Data System (ADS)

    Rasilla, D.; Garcia Codron, J. C.

    2009-04-01

    Widespread geomorphological evidences along the northern coast of the Iberian Peninsula, such as beach retreat or falling cliffs, show the remarkable activity of the Atlantic storm during the last decades. In the present communication we analyze some characteristics of those events and their temporal evolution over the area. Oceanographic information (significant wave height, wave direction and period) was retrieved from observed (buoys network from Puertos del Estado -PdE-) and hindcast (KNMI/ERA 40) databases. To explore the atmospheric mechanisms responsible, we combined local reports from coastal observatories, a regional Eulerian approach (a synoptic typing) and a larger-scale Lagrangian method, based on the analysis of storm-tracks. Surface meteorological variables (sea level pressure and wind speed and direction) were extracted from ISWHO (Integrated Surface Hourly Observations) CD Rom collection. Sea level pressure, surface 10m U and V wind components gridded data were obtained from ECMWF ERA40 Reanalysis. Storm tracks and cyclone statistics were obtained from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). In other to accomplish the objectives of this contribution, first we validated the hindcast data with actual observations from buoys. Secondly, we identified the storm episodes, considering them as a period longer than 12 hours in which the wave height was higher than 6 m, and separated by at least 48. Long winds fetch and locally strong westerly and northwesterly winds expose the northern coast of Iberia to episodes of intense storminess, mainly during the winter months. Extratropical disturbances tracking between the 50-60°N parallel are the main driving force behind those episodes, many of them as a result of a cyclogenesis processes along the eastern coast of North America. In some cases, the deep cyclonic storms are product of a secondary cyclogenesis, crossing the area southward of the 50°N parallel; significant wave heights can be as high as the northernmost cyclones, but the wave period is slightly lower. Only in the western sector (Galicia and Asturias) storms following a SW-NE path induced episodes of high waves.

  4. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less

  5. A Comparison of Martian Transient Wave Energetics in High and Low Optical Depth Environments

    NASA Astrophysics Data System (ADS)

    Battalio, J. M.; Szunyogh, I.; Lemmon, M. T.

    2016-12-01

    The local energetics of individual transient eddies from the Mars Analysis Correction Data Assimilation (MACDA) is compared between a year with a global-scale dust storm (MY 25) and two years of relatively low optical depth conditions. Eddies in each year are considered from a period of strong wave activity in the northern hemisphere before the winter solstice (Ls=170-240°). The local growth of eddies is typically triggered by geopotential flux convergence. While all waves exhibit some baroclinic growth, baroclinic energy conversion is weaker in the waves that occur during the global-scale dust storm. The weaker baroclinic energy conversion in these waves, however, is compensated by a more intense barotropic transfer of the kinetic energy from the mean flow to the waves: the contribution from barotropic energy conversion allows eddies during the global-scale dust storm to attain roughly the same maximum eddy kinetic energy as eddies during the low optical depth years. Individual eddies in the waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation in both the high- and the low-optical-depth years.

  6. Environmental Assessment of 2005 Base Realignment and Closure Actions at Homestead Air Reserve Base, Florida

    DTIC Science & Technology

    2007-02-01

    permit, there are no guidelines for storm water quality , therefore Homestead ARB established a program with the State of Florida to test and monitor... storm water quality . Heating and Cooling Systems. Because of the humid Florida climate, engineers are considering an installation-wide Utility... storm water quality , negligible effects on the storm water system would be expected as a result of the Proposed Action. Heating and Cooling

  7. Predictions and Observations of Munitions Burial Under Intense Storm Waves at Duck, NC

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Klammer, H.; Sheremet, A.

    2017-12-01

    The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and surrogate munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability strongly suggests that the munitions sank into the bed, which would suggest an extreme state of sand agitation during the storm. We explore existing analytical solutions for the dynamic interaction between waves and sediment to predict munitions burial depths. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses were then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.

  8. Boulder Dislodgment Reloaded: New insights from boulder transport and dislodgement by tsunamis and storms from three-dimensional numerical simulations with GPUSPH

    NASA Astrophysics Data System (ADS)

    Weiss, R.; Zainali, A.

    2014-12-01

    Boulders can be found on many coastlines around the globe. They are generally thought to be moved either during coastal storms or tsunamis because they are too heavy to be moved by more common marine or coastal processes. To understand storm and tsunami risk at given coastline, the event histories of both events need to be separated to produce a robust event statistics for quantitative risk analyses. Because boulders are most likely only moved by coastal storms or tsunamis, they are very suitable to produce the data basis for such event statistics. Boulder transport problem has been approached by comparing the driving with resisting forces acting on a boulder. However, we argue that this approach is not sufficient because the comparison of resisting and driving forces only constitutes boulder motion, but not for boulder dislodgment. Boulder motion means that the boulder starts to move out of its pocket. However, this motion does not guarantee that the boulder will reach the critical dislodgment position. Boulder dislodgment is a necessary condition to identify whether or not a boulder has moved. For boulder dislodgement, an equation of motion is needed, and that equation is Newtons Second Law of Motion (NSL). We perform fully coupled three-dimensional numerical simulation of boulders moved by waves where the boulders move according to NSL. Our numerical simulations are the first of their kind applied to tsunami and storm boulder motion. They show how storm and tsunami waves interact with boulders in a more realistic physical setting, and highlight the importance of submergence. Based on our simulations we perform a dimensional analysis that identifies the Froude number as important parameter, which can be considered large only in the front of tsunami waves, but small in the rest of tsunami wave and also generally small in storm waves. From a general point of view, our results indicate that the boulder transport problem is more complex than recently considered, and more variables need to be considered in inversions of the wave characteristics from moved boulders. However, numerical simulations are an incredible powerful and flexible tool with which more robust and more correct techniques to invert wave characteristics from moved boulders can be developed. Our analyses of the Froude number and submergence are positive indicators.

  9. Sediment suspension and the dynamic mechanism during storms in the Yellow River Delta.

    PubMed

    Bian, Shuhua; Hu, Zjian; Liu, Jianqiang; Zhu, Zichen

    2016-12-01

    The suspension and hydrodynamic characteristics of the Yellow River Delta during storms were analyzed based on suspended samples obtained using automatic samplers during a storm event in the Yellow River Delta. Synchronous data for winds, waves, and tides were also collected from a nearby station. The results show that under wind speeds of 5-15 m/s and wave heights of 50-150 cm, the suspended content reached 5.7-49.6 kg/m 3 , which is 10-100 times higher than that under normal weather conditions. The medium diameter of suspended particles was 1.2-2.1 μm (8.9-9.7 Φ), which was approximately 1-2 Φ finer than that under normal weather conditions. During the early stages of the measurements, the sea level had risen by 50 cm owing to the storm, which was in addition to the tidal sea level change. We suggest that during the storms, the waves strengthened and the storm-induced sea level change, which was combined with tidal currents moving in the same direction, produced high-speed currents. This overcame the cohesive forces among the fine sediment particles and suspended a large amount of sediment. As a result, the suspended content increased markedly and the suspended particle size became finer. This explains the intense siltation and erosion of the Yellow River Delta during storms.

  10. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by taking into account the RC ions in the EMIC wave dispersion relation. The dramatic wave pattern redistribution is observed in the postdusk-predawn MLT sector (night sector) for L greater than 5. We found the intense EMIC waves (about a few nT) there during the main and early recovery phases of the storm. The observed wave generation in this sector is caused by taking into account the EMIC wave dispersion change due to the RC ions. There are no waves at these locations in our model if the RC ions are taken into account in the wave growth rate only, and the wave dispersion relation is only governed by the thermal plasmaspheric model.

  11. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by taking into account the RC ions in the EMIC wave dispersion relation. The dramatic wave pattern redistribution is observed in the postdusk-predawn MLT sector (night sector) for L greater than 5. We found the intense EMIC waves (about a few nT) there during the main and early recovery phases of the storm. The observed wave generation in this sector is caused by taking into account the EMIC wave dispersion change due to the RC ions. There are no waves at these locations in our model if the RC ions are taken into account in the wave growth rate only, and the wave dispersion relation is only governed by the thermal plasmaspheric model.

  12. Equatorial Mesosphere and Lower Thermosphere/Ionosphere (MLTI) Response to Severe Cyclonic Storm `Aila' and `Ward' observed over North Indian Ocean

    NASA Astrophysics Data System (ADS)

    G J, B.

    2016-12-01

    The present work investigates the Equatorial Mesosphere Lower Thermosphere/Ionosphere (MLTI) response to severe cyclonic storm `Aila (23-26 May 2009)' and `Ward (10-16 December 2009)' which were observed over north Indian Ocean during the extended solar minimum of the year 2009. This report reveals the coupling between Tropical Cyclone and MLTI region. Tropical cyclone track and data can be obtained from Indian Meteorological Department (IMD), New Delhi. Mesospheric and Ionospheric variation can be examined with the help of ground based Mesosphere Lower Thermosphere (MLT) radar and Digisonde located at equatorial low latitude station, Tirunelveli (8.7oN, 77.8oE). The Outgoing Long wave Radiation (OLR) data is used as a proxy for identifying the convective activity, which are retrieved from NOAA Climate Data Centre. It is observed that the tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. These upward propagating gravity waves deposit their energy and momentum into the upper region of atmosphere as `Travelling Ionospheric Disturbances (TIDs). During the cyclonic storm periods, we found increased gravity wave amplitude with upward propagation in the MLT region. Ionospheric response to severe cyclonic storm is examined with the dynamical parameters, foF2, hmF2, h'F2 and Total Election Content (TEC). Significant increase of foF2 frequency is observed during `Ward' cyclonic storm. Drastic variation in foF2 and h'F2 is observed during Aila cyclonic storm than ward event. More statistical analysis has been done for finding the correlation between cyclonic storm and Ionospheric parameters. Detailed results will be presented in the meeting.

  13. Reconstruction of Atlantic historical winter coastal storms in the Spanish coasts of the Gulf of Cadiz, 1929-2005

    NASA Astrophysics Data System (ADS)

    Ribera, P.; Gallego, D.; Pena-Ortiz, C.; Del Rio, L.; Plomaritis, T. A.; Benavente, J.

    2011-06-01

    This paper presents the reconstruction of a climatological series of winter coastal storms on the northern coasts of the Gulf of Cadiz. This series has been put together using information extracted from regional and local Spanish newspapers. It includes all the storms coming from the Atlantic sector that have been detected during the winter season, from October to March, between 1929 and 2005. In order to validate this historical storm series, it has been compared with storms series identified from quasi-observational data and using different wave heights as thresholds to decide what is to be considered as a coastal storm. Nearly 2.6 reports per year about coastal storms are published in the press which correspond to waves of 3.6 m high or more and to prevailing winds from a direction ranging between SSW and WNW. A long- term positive trend has been detected for the complete storm series. If only the instrumental period is analysed, no significant trend is detected. It is suggested that this difference might be associated with the impact of the North Atlantic Oscillation over the occurrence of storms in this area.

  14. Evidence of prompt penetration electric fields during HILDCAA events

    NASA Astrophysics Data System (ADS)

    Pereira Silva, Regia; Sobral, Jose Humberto Andrade; Koga, Daiki; Rodrigues Souza, Jonas

    2017-10-01

    High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.

  15. Modeling waves and circulation in Lake Pontchartrain, Louisiana

    USGS Publications Warehouse

    Signell, Richard P.; List, Jeffrey H.

    1997-01-01

    The U.S. Geological Survey is conducting a study of storm-driven sediment resuspension and transport in Lake Pontchartrain, Louisiana. Two critical processes related to sediment transport in the lake are (1) the resuspension of sediments due to wind-generated storm waves and (2) the movement of resuspended material by lake currents during storm wind events. The potential for sediment resuspension is being studied with the wave prediction model which simulates local generation of waves by wind and shallow-water effects on waves (refraction, shoaling, bottom friction, and breaking). Long-term wind measurements are then used to determine the regional "climate" of bottom orbital velocity (showing the spatial and temporal variability of wave-induced currents at the bottom). The circulation of the lake is being studied with a three-dimensional hydrodynamic model. Results of the modeling effort indicate that remote forcing due to water levels in Mississippi Sound dominate the circulation near the passes in the eastern end of the lake, while local wind forcing dominates water movement in the western end. During typical storms with winds from the north-northeast or the south-southeast, currents along the south coast near New Orleans generally transport material westward, while material in the central region moves against the wind. When periods of sustained winds are followed by a drop in coastal sea level, a large amount of suspended sediment can be flushed from the lake.

  16. Wave-driven sediment mobilization on a storm-controlled continental shelf (Northwest Iberia)

    USGS Publications Warehouse

    Oberle, Ferdinand; Storlazzi, Curt D.; Hanebuth, Till

    2014-01-01

    Seafloor sediment mobilization on the inner Northwest Iberian continental shelf is caused largely by ocean surface waves. The temporal and spatial variability in the wave height, wave period, and wave direction has a profound effect on local sediment mobilization, leading to distinct sediment mobilization scenarios. Six grain-size specific sediment mobilization scenarios, representing seasonal average and storm conditions, were simulated with a physics-based numerical model. Model inputs included meteorological and oceanographic data in conjunction with seafloor grain-size and the shelf bathymetric data. The results show distinct seasonal variations, most importantly in wave height, leading to sediment mobilization, specifically on the inner shelf shallower than 30 m water depth where up to 49% of the shelf area is mobilized. Medium to severe storm events are modeled to mobilize up to 89% of the shelf area above 150 m water depth. The frequency of each of these seasonal and storm-related sediment mobilization scenarios is addressed using a decade of meteorological and oceanographic data. The temporal and spatial patterns of the modeled sediment mobilization scenarios are discussed in the context of existing geological and environmental processes and conditions to assist scientific, industrial and environmental efforts that are directly affected by sediment mobilization. Examples, where sediment mobilization plays a vital role, include seafloor nutrient advection, recurrent arrival of oil from oil-spill-laden seafloor sediment, and bottom trawling impacts.

  17. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  18. Role of equatorial waves in tropical cyclogenesis

    NASA Astrophysics Data System (ADS)

    Schreck, Carl J., III

    Tropical cyclones typically form within preexisting wavelike disturbances that couple with convection. Using Tropical Rainfall Measuring Mission (TRMM) multisatellite rainfall estimates, this study determines the relative number of tropical cyclones that can be attributed to various wave types, including the Madden--Julian oscillation (MJO), Kelvin waves, equatorial Rossby (ER) waves, mixed Rossby--gravity (MRG) waves, and tropical depression (TD)-type disturbances. Tropical cyclogenesis is attributed to an equatorial wave's convection when the filtered rainfall anomaly exceeds a threshold value at the genesis location. More storms are attributed to TD-type disturbances than to any other wave type in all of the Northern Hemisphere basins. In the Southern Hemisphere, however, ER waves and TD-type disturbances are equally important as precursors. Fewer storms are attributed to MRG waves, Kelvin waves, and the MJO in every basin. Although relatively few storms are attributed to the MJO, tropical cyclogenesis is 2.6 times more likely in its convective phase compared with its suppressed phase. This modulation arises in part because each equatorial wave type is amplified within MJO's convective phase. The amplification significantly increases the probability that these waves will act as tropical cyclone precursors. A case study from June 2002 illustrates the effects of a series of Kelvin waves on two tropical cyclone formations. These waves were embedded in the convective phase of the MJO. Together, the MJO and the Kelvin waves preconditioned the low-level environment for cyclogenesis. The first Kelvin wave weakened the trade easterlies, while the subsequent waves created monsoon westerlies near the equator. These westerlies provided the background cyclonic vorticity within which both storms developed. The effects of tropical cyclone-related rainfall anomalies are also investigated. In the wavenumber--frequency spectrum for rainfall, tropical cyclones can inflate the power for shorter wavelength westward propagating waves by up to 27%. This spectrum contains signals from all longitudes, but the greatest contamination occurs in regions like the Philippines where tropical cyclones are most frequent. Here, tropical cyclones contribute more than 40% of the rainfall variance in each filter band. To mitigate these effects, tropical cyclone-related anomalies were removed before filtering in this study.

  19. The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms

    USGS Publications Warehouse

    Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie

    2009-01-01

    The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with the critical information they need to respond quickly and efficiently and to increase public safety and mitigate damage associated with powerful coastal storms. For instance, high resolution local models will predict detailed wave heights, breaking patterns, and current strengths for use in warning systems for harbor-mouth navigation and densely populated coastal regions where beach safety is threatened. The offline applications are intended to equip coastal managers with the information needed to manage and allocate their resources effectively to protect sections of coast that may be most vulnerable to future severe storms.

  20. Energetic electron flux enhancements during geospace magnetic storms associated with earthward penetration of Pc 4-5 waves?

    NASA Astrophysics Data System (ADS)

    Georgiou, M.; Daglis, I.; Zesta, E.; Balasis, G., Tsinganos, K.

    2013-09-01

    ULF waves with frequencies of a few millihertz (mHz) have been associated with changes in the flux levels among relativistic electrons comprising the outer zone of the radiation belts. In particular, the fluxes of electrons with energies > 1 MeV in the outer radiation belt increase and decrease during geospace magnetic storms. For all storms studied by Reeves et al. [2003], only about half of them led to increased electron fluxes, one quarter led to decreased the fluxes, and one quarter produced little or no change in the fluxes. We focus on the increase of relativistic electrons observed during a number of magnetic storms by GOES satellites at geosynchronous orbit. To minimise the effects caused by the Earth's magnetic field asymmetries, we apply a statistical reconstruction of the fluxes to a common local time, which is chosen to be noon, a technique proposed by O’Brien et al. [2001]. Next, we look into multipoint observations from ground-based magnetometer arrays and the characteristics of Pc 4-5 waves during the different phases of the magnetic storms with particular emphasis on the distribution of Pc 4-5 wave power over the L shells that correspond to the radiation belts. With these observations as a starting point, we investigate whether Pc 4-5 wave power penetrates to lower L shells during periods of enhanced relativistic electron fluxes. We discuss, lastly, the implications to wave-particle interaction. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement n. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  1. Modeling the Radiation Belts During a Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Fok, M.; Toth, G.

    2009-05-01

    We utilize the Radiation Belt Environment (RBE) model to simulate the radiation belt electrons during a geomagnetic storm. Particularly, we focus on the relative contribution of whistler mode wave-particle interactions and radial diffusion associated with rapid changes in the magnetospheric magnetic field. In our study, the RBE model obtains a realistic magnetic field from the BATS-R-US magnetosphere model at a regular, but adjustable, cadence. We simulate the storm with and without wave particle interactions, and with different frequencies for updating the magnetic field. The impacts of the wave-particle interactions, and the rapid variations in the magnetospheric magnetic field, can then be studied. Simulation results are also extracted along various satellite trajectories for direct comparison where appropriate.

  2. Numerical simulation of pounding damage to caisson under storm surge

    NASA Astrophysics Data System (ADS)

    Yu, Chen

    2018-06-01

    In this paper, a new method for the numerical simulation of structural model is proposed, which is employed to analyze the pounding response of caissons subjected to storm surge loads. According to the new method, the simulation process is divided into two steps. Firstly, the wave propagation caused by storm surge is simulated by the wave-generating tool of Flow-3D, and recording the wave force time history on the caisson. Secondly, a refined 3D finite element model of caisson is established, and the wave force load is applied on the caisson according to the measured data in the first step for further analysis of structural pounding response using the explicit solver of LSDYNA. The whole simulation of pounding response of a caisson caused by "Sha Lijia" typhoon is carried out. The results show that the different wave direction results in the different angle caisson collisions, which will lead to different failure mode of caisson, and when the angle of 60 between wave direction and front/back wall is simulated, the numerical pounding failure mode is consistent with the situation.

  3. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society.

    PubMed

    Santo, H; Taylor, P H; Gibson, R

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  4. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    NASA Astrophysics Data System (ADS)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  5. Storms in the deep: tempestite- and beach-like deposits in pelagic sequences (Middle-Upper Jurassic, Subbetic, South of Spain)

    NASA Astrophysics Data System (ADS)

    Pomar, Luis; Molina, Jose M.; Ruiz-Ortiz, Pedro A.; Vera, Juan A.

    2017-04-01

    Fine-peloidal- to coarse oolitic-bioclastic grainstones with hummocky cross stratification (HCS) occur interbedded in Middle-Upper Jurassic pelagic lime-mudstone successions (Betic ranges, Southern Spain). These strata were deposited in pelagic troughs and swells, away from continental areas, in the Southern Iberian Continental Margin of the Western Tethys. Previously interpreted as tempestites, mainly due to the attribution of the HCS to surface storm waves, they are now reinterpreted as the product of turbulence in deeper conditions. Among many, some selected examples are here presented. All of them share: 1) Grainstone beds are interbedded with pelagic mudstones and marls 2) Grainstone components were reworked by oscillatory flows superimposed to unidirectional tractive flows (unidirectional ripple lamination and HCS). 3) Components were either derived from shallow-water environments (e.g., ooids), or produced in pelagic conditions (e.g., radiolarians, Saccocoma, peloids, etc). 4) Although surface-storm tempestite flows can be required to bring downslope components from shallow-water settings, the grainstone beds reflect sediment reworking at a depth dominated by fine pelagic sedimentation. 5) Internal waves propagating along a pycnocline and breaking against a sloping surface are the best candidate to induce the sedimentary structures and sediment organization that characterize these grainstone beds. The examples here presented (Middle-Upper Jurassic of the Subbetic) include: a) Peloid grainstones interbedded with radiolarite marls deposited on the flanks of volcanic guyots. The interbedded lime muds and marls contain 'filaments', sponge spicules and radiolarians. b) Peloid-bioclastic (radiolarians, Saccocoma, etc.) grainstone beds with HCS, interbedded with pelagic lime muds. c) Coarse oolitic grainstone unit, encased in pelagic marls, with wedge-shaped crossbed-sets with gently seaward-dipping parallel lamination, and sets of low-angle up-slope dipping parallel lamination. These oolitic grainstones hold characteristics similar to the ridge-berm-swash zone of modern beaches and are here interpreted to represent an "internal beach". d) Crossbedded peloidal-skeletal (Saccocoma) grainstones with HCS and wave ripples on top, interbedded with pelagic mudstones and wackestones with abundant bioturbation and ammonites (Ammonitico Rosso facies). All these grainstones are reinterpreted as the product of breaking internal waves. This breaking produces episodic high-turbulence events and remobilizes sediments at the depth where the pycnocline intersects the sea floor. The swash run-up produces erosion and the backwash return flow can bypass the breaker and travel downdip where the oscillatory-flow component of the IWs become dominant and form the characteristic HCS bedforms. Coarser sediments "trapped" at the breaker zone form sediment accumulations similar to the sediments caught by the "littoral fence" in the surface beach. This scenario evidences the HCS not to be necessarily linked to the surface storms but to the bathymetry of the pycnocline, solving the problem of having HCS in pelagic zones where the storm and hurricanes wave action can be considered "out-of-context". Acknowledgments: fundings from projet CGL2014-52096-P and Research Group RNM-200 (PAIDI-JA)

  6. Parallel Computation of Ocean-Atmosphere-Wave Coupled Storm Surge Model

    NASA Astrophysics Data System (ADS)

    Kim, K.; Yamashita, T.

    2003-12-01

    Ocean-atmosphere interactions are very important in the formation and development of tropical storms. These interactions are dominant in exchanging heat, momentum, and moisture fluxes. Heat flux is usually computed using a bulk equation. In this equation air-sea interface supplies heat energy to the atmosphere and to the storm. Dynamical interaction is most often one way in which it is the atmosphere that drives the ocean. The winds transfer momentum to both ocean surface waves and ocean current. The wind wave makes an important role in the exchange of the quantities of motion, heat and a substance between the atmosphere and the ocean. Storm surges can be considered as the phenomena of mean sea-level changes, which are the result of the frictional stresses of strong winds blowing toward the land and causing the set level and the low atmospheric pressure at the centre of the cyclone can additionally raise the sea level. In addition to the rise in water level itself, another wave factor must be considered. A rise of mean sea level due to white-cap wave dissipation should be considered. In bounded bodies of water, such as small seas, wind driven sea level set up is much serious than inverted barometer effects, in which the effects of wind waves on wind-driven current play an important role. It is necessary to develop the coupled system of the full spectral third-generation wind-wave model (WAM or WAVEWATCH III), the meso-scale atmosphere model (MM5) and the coastal ocean model (POM) for simulating these physical interactions. As the component of coupled system is so heavy for personal usage, the parallel computing system should be developed. In this study, first, we developed the coupling system of the atmosphere model, ocean wave model and the coastal ocean model, in the Beowulf System, for the simulation of the storm surge. It was applied to the storm surge simulation caused by Typhoon Bart (T9918) in the Yatsushiro Sea. The atmosphere model and the ocean model have been made the parallel codes by SPMD methods. The wave-current interface model was developed by defining the wave breaking stresses. And we developed the coupling program to collect and distribute the exchanging data with the parallel system. Every models and coupler are executed at same time, and they calculate own jobs and pass data with organic system. MPMD method programming was performed to couple the models. The coupler and each models united by the separated group, and they calculated by the group unit. Also they passed message when exchanging data by global unit. The data are exchanged every 60-second model time that is the least common multiple time of the atmosphere model, the wave model and the ocean model. The model was applied to the storm surge simulation in the Yatsushiro Sea, in which we could not simulated the observed maximum surge height with the numerical model that did not include the wave breaking stress. It is confirmed that the simulation which includes the wave breaking stress effects can produce the observed maximum height, 450 cm, at Matsuai.

  7. Impacts of storms on coastal circulation in Long Bay, South Carolina

    NASA Astrophysics Data System (ADS)

    Kim, H.; Warner, J. C.; Voulgaris, G.; Work, P.

    2006-12-01

    We investigate the effects of coastal storms on the regional circulation in Long Bay, South Carolina, using a coupled ROMS (Regional Ocean Modeling System)- SWAN (Simulating WAves Nearshore) model. Meteorological observations during the South Carolina Coastal Erosion Study (October 2003 April 2004) reveal three dominant types of storms in the region warm fronts, cold fronts, and tropical storms. Each storm has a characteristic progression of wind patterns: (1) Warm fronts start with southwestward winds and change to northeastward after the front passes; (2) Cold fronts begin with northeastward winds and shift to southeastward when the front moves out; and (3) Tropical storms change wind directions from the southwest to the southeast during the storm. It is observed the coastal circulation distinctly responds to such atmospheric disturbances in either a upwelling-favorable condition to the northeastward winds or a downwelling-favorable condition to the southwestward winds. The study domain encompasses 300-km of gently arcing shoreline between Cape Romain to Cape Fear, and approximately 100-km offshore to the shelf edge. The model domain is resolved by a 300×130 mesh at 1-km intervals in the horizontal and twenty terrain-following layers in the vertical. The ROMS model is driven by tides and wind stress, and it includes wave-current interactions via dynamic coupling to the surface wave model SWAN. Salinity and temperature along the open boundaries are included by nudging to climatological values. A time period of six months is simulated from October 2003 to April 2004, concurrent with the observation study. Model results are compared to an extensive set of measurements collected at eight sites in the inner part of Long Bay, and are used to identify varying circulation response to each storm type. In addition, we investigate the significance of the Capes on the development of the alongshore pressure gradients, and examine the importance of wave-current interactions in the study region.

  8. Hurricane Gustav: Observations and Analysis of Coastal Change

    USGS Publications Warehouse

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline, beaches, dunes, and infrastructure in the region that was heavily impacted by Hurricane Gustav.

  9. Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMlC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at the meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  10. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoffmore » distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.« less

  11. Storm Observations of Persistent Three-Dimensional Shoreline Morphology and Bathymetry Along a Geologically Influenced Shoreface Using X-Band Radar (BASIR)

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.

    2008-12-01

    Accurate predictions of shoreline response to storms are contingent upon coastal-morphodynamic models effectively synthesizing the complex evolving relationships between beach topography, sandbar morphology, nearshore bathymetry, underlying geology, and the nearshore wave-field during storm events. Analysis of "pre" and "post" storm data sets have led to a common theory for event response of the nearshore system: pre-storm three-dimensional bar and shoreline configurations shift to two-dimensional, linear forms post- storm. A lack of data during storms has unfortunately left a gap in our knowledge of how the system explicitly changes during the storm event. This work presents daily observations of the beach and nearshore during high-energy storm events over a spatially extensive field site (order of magnitude: 10 km) using Bar and Swash Imaging Radar (BASIR), a mobile x-band radar system. The field site contains a complexity of features including shore-oblique bars and troughs, heterogeneous sediment, and an erosional hotspot. BASIR data provide observations of the evolution of shoreline and bar morphology, as well as nearshore bathymetry, throughout the storm events. Nearshore bathymetry is calculated using a bathymetry inversion from radar- derived wave celerity measurements. Preliminary results show a relatively stable but non-linear shore-parallel bar and a non-linear shoreline with megacusp and embayment features (order of magnitude: 1 km) that are enhanced during the wave events. Both the shoreline and shore-parallel bar undulate at a similar spatial frequency to the nearshore shore- oblique bar-field. Large-scale shore-oblique bars and troughs remain relatively static in position and morphology throughout the storm events. The persistence of a three-dimensional shoreline, shore-parallel bar, and large-scale shore-oblique bars and troughs, contradicts the idea of event-driven shifts to two- dimensional morphology and suggests that beach and nearshore response to storms may be location specific. We hypothesize that the influence of underlying geology, defined by (1) the introduction of heterogeneous sediment and (2) the possible creation of shore-oblique bars and troughs in the nearshore, may be responsible for the persistence of three-dimensional forms and the associated shoreline hotspots during storm events.

  12. Model Simulations of Waves in Hurricane Juan

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Toulany, B.; Padilla-Hernandez, R.; Hu, Y.; Smith, P.; Zhang, W.; Zou, Q.; Ren, X.

    2004-05-01

    Hurricane Juan made landfall at 0300 UTC near Halifax Nova Scotia. This was a category 2 hurricane with winds of 44 m/s, the largest storm to pass over these coastal areas in several decades. Associated high ocean waves were experienced in coastal waters, from Peggy's Cove to Sheet Harbour, growing to epic proportions on the Scotian Shelf, and exceeding the 100-year return wave based on the present climatology. As part of the GoMOOS program (Gulf of Maine Ocean Observing System, www.gomoos.org), winds from the USA Navy COAMPS (Coupled Ocean Atmosphere Model Prediction System) were used to evaluate and compare three widely-used third generation numerical wave models, SWAN, WAM and WaveWatch-III (hereafter WW3) for accuracy, with in situ measurements. Model comparisons consist of a set of composite model systems, respectively nesting WAM, WW3 and SWAN in WAM and WW3. We report results from the intermediate-resolution grid for Hurricane Juan. Wave measurements were made using four operational deep-water buoys (C44258, C44142, C44137, 44005), by a conventional directional wave rider (DWR) moored offshore from Lunenburg Bay, and also by two acoustic Doppler current profiler (ADCP) located (1) near an oil rig on Sable Island Bank, in relatively shallow water, and (2) near the outer boundary of Lunenburg Bay. We discuss the reliability of DWR wave data compared to ADCP wave data. We show that all models provide reliable hindcasts for significant wave height (Hs) and for peak period (Tp) for Juan, although a clear under-estimation of Hs at the peak of the storm is evident, compared to observations. A feature in the COAMPS storm simulation is that the storm track appears to be slightly to the east of that of Quikscat scatterometer data. Comparisons between models and 2-dimensional wave spectra are presented. Preliminary results suggest that the recently released upgrade to the WW3 model shows slightly enhanced skill compared to the other models.

  13. Fetch-Trapping in Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Pearse, A. J.; Hanson, J. L.

    2005-12-01

    Hurricane Isabel made landfall near Drum Inlet on the Outer Banks of North Carolina on September 18, 2003, and caused extensive monetary and coastal damage. Storm surge and battering waves were a primary cause of damage, as in most hurricanes. Data collected at the US Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, the National Data Buoy Center (NDBC), and the Coastal Data Information Program (CDIP) suggest that the waves generated by Hurricane Isabel were larger and had longer periods than would be suggested by a traditional semi-empirical wave growth model with similar fetch and wind speed values. It is likely that this enhanced growth was due to the trapping of storm waves within the moving fetch of the hurricane. The purpose of this study was to empirically confirm the enhancement and to identify the degree of fetch-trapping that occurred. Directional wave spectra from 577 individual wave records were collected from buoys in three locations: CDIP station 078 in King's Bay, GA, the FRF Waverider in NC, and NDBC Station 44025 off Long Island, NY. A wave partitioning approach was used to isolate the individual swell components from the evolving wave field at each station. A backward raytrace along great-circle routes was employed to identify the intersection of each swell system with the official National Hurricane Center (NHC) Isabel track. This allowed matching each observed swell component with a generation time, storm translation speed, and peak wind speed. Wave period, rather than amplitude, was used in this study because amplitude is significantly affected by the bottom topography whereas period is conserved. Using the identified wind speeds and an average fetch of 200 km (approximated using NOAA wind field charts), the actual waves showed wave period enhancements up to 60% over predictions using the standard wave growth model. A variety of resonance criteria are applied to evaluate fetch trapping in Hurricane Isabel. The most enhanced wave periods were found to occur when the wave group speeds most closely matched the storm translation speeds, strongly suggesting that fetch trapping was an important mechanism for wave growth in Isabel.

  14. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes

    PubMed Central

    Lehmann, Jascha; Coumou, Dim

    2015-01-01

    Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163

  15. Modeling Wave Overtopping on the Chandeleur Islands during Hurricane Katrina using XBeach

    NASA Astrophysics Data System (ADS)

    Lindemer, C. A.; Plant, N.; Puleo, J.; Thompson, D.

    2008-12-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines of along the Gulf Coast. Much of the Gulf Coast is ringed with barrier islands that provide inland marshes and the mainland some protection from storm events. The Chandeleur Islands, are located 161 km east of New Orleans, Louisiana and are oriented from north to south, and act to dissipate some of this energy. After a series of major storm events between 2001 and 2005, Hurricane Katrina's devastation in the fall of 2005 was particularly violent, destroying two-thirds of the area associated with the island chain. We would like to evaluate the predictability of hurricane-induced barrier island erosion and accretion. We test the ability of a time-dependent hydrodynamic and morphodynamic model, XBeach, to predict the impact of Hurricane Katrina on portions of Chandeleur Islands. Pre-storm LIDAR-derived bathymetry/topography and surge and wave data were used to drive a number of XBeach simulations. Model-predicted morphology was compared to post-storm LIDAR data. The accuracy of these predictions, including model sensitivity tests with varying grid size and temporal resolutions, are presented.

  16. CCE plasma wave observations during the storm of September 4, 5, 1984. [Charge Composition Explorer

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1985-01-01

    Near 0700 on September 4, 1984 a series of interplanetary discontinuities arrived at earth when the AMPTE Charge Composition Explorer (CCE) was near apogee. During the next few hours the spacecraft passed in and out of the magnetosheath. At the magnetopause boundary, the CCE wave instrument detected strong electron plasma oscillations, weaker electromagnetic waves at the electron plasma frequency, and broadband electrostatic waves. During the subsequent perigee passes on September 4 and 5, the wave observations of upper hybrid resonance emissions, continuum radiation, electrostatic noise bands and unusual low latitude auroral kilometic radiation were used to monitor significant variations in the magnetospheric characteristics as the main storm phases developed.

  17. Multi-Decadal analysis of Global Trends in Microseism Intensity: A Proxy for Changes in Extremal Storm Activity and Oceanic Wave State

    NASA Astrophysics Data System (ADS)

    Anthony, R. E.; Aster, R. C.; Rowe, C. A.

    2016-12-01

    The Earth's seismic noise spectrum features two globally ubiquitous peaks near 8 and 16 s periods (secondary and primary bands) that arise when storm-generated ocean gravity waves are converted to seismic energy, predominantly into Rayleigh waves. Because of its regionally integrative nature, microseism intensity and other seismographic data from long running sites can provide useful proxies for wave state. Expanding an earlier study of global microseism trends (Aster et al., 2010), we analyze digitally-archived, up-to-date (through late 2016) multi-decadal seismic data from stations of global seismographic networks to characterize the spatiotemporal evolution of wave climate over the past >20 years. The IRIS Noise Tool Kit (Bahavair et al., 2013) is used to produce ground motion power spectral density (PSD) estimates in 3-hour overlapping time series segments. The result of this effort is a longer duration and more broadly geographically distributed PSD database than attained in previous studies, particularly for the primary microseism band. Integrating power within the primary and secondary microseism bands enables regional characterization of spatially-integrated trends in wave states and storm event statistics of varying thresholds. The results of these analyses are then interpreted within the context of recognized modes of atmospheric variability, including the particularly strong 2015-2016 El Niño. We note a number of statistically significant increasing trends in both raw microseism power and storm activity occurring at multiple stations in the Northwest Atlantic and Southeast Pacific consistent with generally increased wave heights and storminess in these regions. Such trends in wave activity have the potential to significantly influence coastal environments particularly under rising global sea levels.

  18. Location of EMIC Wave Events Relative to the Plasmapause: Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Tetrick, S.; Engebretson, M. J.; Posch, J. L.; Kletzing, C.; Smith, C. W.; Wygant, J. R.; Gkioulidou, M.; Reeves, G. D.; Fennell, J. F.

    2015-12-01

    Many early theoretical studies of electromagnetic ion cyclotron (EMIC) waves generated in Earth's magnetosphere predicted that the equatorial plasmapause (PP) would be a preferred location for their generation. However, several large statistical studies in the past two decades, most notably Fraser and Nguyen [2001], have provided little support for this location. In this study we present a survey of the most intense EMIC waves observed by the EMFISIS fluxgate magnetometer on the Van Allen Probes-A spacecraft (with apogee at 5.9 RE) from its launch through the end of 2014, and have compared their location with simultaneous electron density data obtained by the EFW electric field instrument and ring current ion flux data obtained by the HOPE and RBSPICE instruments. We show distributions of these waves as a function of distance inside or outside the PP as a function of local time sector, frequency band (H+, He+, or both), and timing relative to magnetic storms and substorms. Most EMIC waves in this data set occurred within 1 RE of the PP in all local time sectors, but very few were limited to ± 0.1 RE, and most of these occurred in the 06-12 MLT sector during non-storm conditions. The majority of storm main phase waves in the dusk sector occurred inside the PP. He+ band waves dominated at most local times inside the PP, and H+ band waves were never observed there. Although the presence of elevated fluxes of ring current protons was common to all events, the configuration of lower energy ion populations varied as a function of geomagnetic activity and storm phase.

  19. STORM WATER MANAGEMENT MODEL QUALITY ASSURANCE REPORT: DYNAMIC WAVE FLOW ROUTING

    EPA Science Inventory

    The Storm Water Management Model (SWMM) is a computer-based tool for simulating storm water runoff quantity and quality from primarily urban areas. In 2002 the U.S. Environmental Protection Agency’s Water Supply and Water Resources Division partnered with the consulting firm CDM ...

  20. Storm wave buoy equipped with micromechanical inertial unit: Results of development and testing

    NASA Astrophysics Data System (ADS)

    Gryazin, D. G.; Staroselcev, L. P.; Belova, O. O.; Gleb, K. A.

    2017-07-01

    The article describes the results of developing a wave buoy to measure the statistical characteristics of waves and the characteristics of directional spectra of three-dimensional waves. The device is designed for long-term measurements lasting up to a season, which can help solve problems in forecasting waves and preventing emergencies from wave impact on offshore platforms, hydraulic structures, and other marine facilities. The measuring unit involves triads of micromechanical gyroscopes, accelerometers, and a three-component magnetometer. A description of the device, results of laboratory research of its characteristics, and bench and full-scale tests are offered. It is noted that to assess the performance characteristics, comparative tests of the Storm wave buoy were conducted with a standard string wave probe installed on an offshore platform. It is shown that the characteristics and capabilities of the wave buoy make it possible to oust foreign devices from the domestic market.

  1. A probabilistic storm surge risk model for the German North Sea and Baltic Sea coast

    NASA Astrophysics Data System (ADS)

    Grabbert, Jan-Henrik; Reiner, Andreas; Deepen, Jan; Rodda, Harvey; Mai, Stephan; Pfeifer, Dietmar

    2010-05-01

    The German North Sea coast is highly exposed to storm surges. Due to its concave bay-like shape mainly orientated to the North-West, cyclones from Western, North-Western and Northern directions together with astronomical tide cause storm surges accumulating the water in the German bight. Due to the existence of widespread low-lying areas (below 5m above mean sea level) behind the defenses, large areas including large economic values are exposed to coastal flooding including cities like Hamburg or Bremen. The occurrence of extreme storm surges in the past like e.g. in 1962 taking about 300 lives and causing widespread flooding and 1976 raised the awareness and led to a redesign of the coastal defenses which provide a good level of protection for today's conditions. Never the less the risk of flooding exists. Moreover an amplification of storm surge risk can be expected under the influence of climate change. The Baltic Sea coast is also exposed to storm surges, which are caused by other meteorological patterns. The influence of the astronomical tide is quite low instead high water levels are induced by strong winds only. Since the exceptional extreme event in 1872 storm surge hazard has been more or less forgotten. Although such an event is very unlikely to happen, it is not impossible. Storm surge risk is currently (almost) non-insurable in Germany. The potential risk is difficult to quantify as there are almost no historical losses available. Also premiums are difficult to assess. Therefore a new storm surge risk model is being developed to provide a basis for a probabilistic quantification of potential losses from coastal inundation. The model is funded by the GDV (German Insurance Association) and is planned to be used within the German insurance sector. Results might be used for a discussion of insurance cover for storm surge. The model consists of a probabilistic event driven hazard and a vulnerability module, furthermore an exposure interface and a financial module to account for specific (re-) insurance conditions. This contribution will mainly concentrate on the hazard module. The hazard is covered by an event simulation engine enabling Monte Carlo simulations. The event generation is done on-the-fly. A classification of historical storm surges is used based on observed sea water levels at gauging stations and extended literature research. To characterize the origin of storm events and storm surges caused by those, also meteorological parameters like wind speed and wind direction are being used. If high water levels along the coast are mainly caused by strong wind from particular directions as observed at the North Sea, there is a clear empirical relationship between wind and surge (where surge is defined as the wind-driven component of the sea water level) which can be described by the ATWS (Average Transformed Wind speed). The parameters forming the load at the coastal defense elements are water level and wave parameters like significant wave height, wave period and wave direction. To assess the wave characteristics at the coast the numerical model SWAN (Simulating Waves Near Shore) from TU Delft has been used. To account for different probabilities of failure and inundation the coast is split into segments with similar defense characteristics like type of defense, height, width, orientation and others. The chosen approach covers the most relevant failure mechanisms for coastal dikes induced by wave overtopping and overflow. Dune failure is also considered in the model. Inundation of the hinterland after defense failure is modeled using a simple dynamical 2d-approach resulting in distributed water depths and flood outlines for each segment. Losses can be estimated depending on the input exposure data either coordinate based for single buildings or aggregated on postal code level using a set of depths-damage functions.

  2. Parameterization of synoptic weather systems in the South Atlantic Bight for modeling applications

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodong; Voulgaris, George; Kumar, Nirnimesh

    2017-10-01

    An event based, long-term, climatological analysis is presented that allows the creation of coastal ocean atmospheric forcing on the coastal ocean that preserves both frequency of occurrence and event time history. An algorithm is developed that identifies individual storm event (cold fronts, warm fronts, and tropical storms) from meteorological records. The algorithm has been applied to a location along the South Atlantic Bight, off South Carolina, an area prone to cyclogenesis occurrence and passages of atmospheric fronts. Comparison against daily weather maps confirms that the algorithm is efficient in identifying cold fronts and warm fronts, while the identification of tropical storms is less successful. The average state of the storm events and their variability are represented by the temporal evolution of atmospheric pressure, air temperature, wind velocity, and wave directional spectral energy. The use of uncorrected algorithm-detected events provides climatologies that show a little deviation from those derived using corrected events. The effectiveness of this analysis method is further verified by numerically simulating the wave conditions driven by the characteristic wind forcing and comparing the results with the wave climatology that corresponds to each storm type. A high level of consistency found in the comparison indicates that this analysis method can be used for accurately characterizing event-based oceanic processes and long-term storm-induced morphodynamic processes on wind-dominated coasts.

  3. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    PubMed Central

    Taylor, P. H.; Gibson, R.

    2016-01-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958–2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different. PMID:27713662

  4. Wave setup over a Pacific Island fringing reef

    NASA Astrophysics Data System (ADS)

    Vetter, O.; Becker, J. M.; Merrifield, M. A.; Pequignet, A.-C.; Aucan, J.; Boc, S. J.; Pollock, C. E.

    2010-12-01

    Measurements obtained across a shore-attached, fringing reef on the southeast coast of the island of Guam are examined to determine the relationship between incident waves and wave-driven setup during storm and nonstorm conditions. Wave setup on the reef flat correlates well (r > 0.95) and scales near the shore as approximately 35% of the incident root mean square wave height in 8 m water depth. Waves generated by tropical storm Man-Yi result in a 1.3 m setup during the peak of the storm. Predictions based on traditional setup theory (steady state, inviscid cross-shore momentum and depth-limited wave breaking) and an idealized model of localized wave breaking at the fore reef are in agreement with the observations. The reef flat setup is used to estimate a similarity parameter at breaking that is in agreement with observations from a steeply sloping sandy beach. A weak (˜10%) increase in setup is observed across the reef flat during wave events. The inclusion of bottom stress in the cross-shore momentum balance may account for a portion of this signal, but this assessment is inconclusive as the reef flat currents in some cases are in the wrong direction to account for the increase. An independent check of fringing reef setup dynamics is carried out for measurements at the neighboring island of Saipan with good agreement.

  5. North Atlantic storm driving of extreme wave heights in the North Sea

    NASA Astrophysics Data System (ADS)

    Bell, R. J.; Gray, S. L.; Jones, O. P.

    2017-04-01

    The relationship between storms and extreme ocean waves in the North Sea is assessed using a long-period wave data set and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to intense extratropical cyclone winds from either the cold conveyor belt (northerly-wind events) or the warm conveyor belt (southerly-wind events). The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearward round the cyclone to the cold side of the warm front. The northerly-wind events provide a larger fetch to the central North Sea to aid wave growth. Southerly-wind events are associated with the warm conveyor belts of intense extratropical cyclones that develop in the left upper tropospheric jet exit region. Ensemble sensitivity analysis can provide early warning of extreme wave events by demonstrating a relationship between wave height and high pressure to the west of the British Isles for northerly-wind events 48 h prior. Southerly-wind extreme events demonstrate sensitivity to low pressure to the west of the British Isles 36 h prior.

  6. Assessment and comparison of extreme sea levels and waves during the 2013/2014 storm season in two UK coastal regions

    NASA Astrophysics Data System (ADS)

    Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.

    2015-04-01

    The extreme sea levels and waves experienced around the UK's coast during the 2013/2014 winter caused extensive coastal flooding and damage. In such circumstances, coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. We therefore provide these levels for the winter storms, as well as discussing their application to the given data sets and case studies (two UK case study sites: Sefton, northwest England; and Suffolk, east England). We use tide gauge records and wave buoy data to compare the 2013/2014 storms with return periods from a national dataset, and also generate joint probabilities of sea level and waves, incorporating the recent events. The UK was hit at a national scale by the 2013/2014 storms, although the return periods differ with location. We also note that the 2013/2014 high water and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a very high return period at both case study sites. Our return period analysis shows that the national scale impact of this event is due to its coincidence with spring high tide at multiple locations as the tide and storm propagated across the continental shelf. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment should be recorded alongside details of defence performance and upgrade, with other variables (e.g. river levels at estuarine locations) included and appropriate offsetting for linear trends (e.g. mean sea level rise) so that the storm-driven component of coastal flood events can be determined. Local offsetting of the mean trends in sea level allows long-term comparison of storm severity and also enables an assessment of how sea level rise is influencing return levels over time, which is important when considering long-term coastal resilience in strategic management plans.

  7. Understanding Variability in Beach Slope to Improve Forecasts of Storm-induced Water Levels

    NASA Astrophysics Data System (ADS)

    Doran, K. S.; Stockdon, H. F.; Long, J.

    2014-12-01

    The National Assessment of Hurricane-Induced Coastal Erosion Hazards combines measurements of beach morphology with storm hydrodynamics to produce forecasts of coastal change during storms for the Gulf of Mexico and Atlantic coastlines of the United States. Wave-induced water levels are estimated using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon et al. (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. Seasonal and storm-induced changes in beach slope can lead to differences on the order of a meter in wave runup elevation, making accurate specification of this parameter essential to skillful forecasts of coastal change. Spatial variation in beach slope is accounted for through alongshore averaging, but temporal variability in beach slope is not included in the final computation of the likelihood of coastal change. Additionally, input morphology may be years old and potentially very different than the conditions present during forecast storm. In order to improve our forecasts of hurricane-induced coastal erosion hazards, the temporal variability of beach slope must be included in the final uncertainty of modeled wave-induced water levels. Frequently collected field measurements of lidar-based beach morphology are examined for study sites in Duck, North Carolina, Treasure Island, Florida, Assateague Island, Virginia, and Dauphin Island, Alabama, with some records extending over a period of 15 years. Understanding the variability of slopes at these sites will help provide estimates of associated water level uncertainty which can then be applied to other areas where lidar observations are infrequent, and improve the overall skill of future forecasts of storm-induced coastal change. Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger Jr, A. H. (2006). Empirical parameterization of setup,swash, and runup. Coastal engineering, 53(7), 573-588.

  8. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late Oligocene global warming (~ 24 Ma).

  9. Assessment and comparison of extreme sea levels and waves during the 2013/14 storm season in two UK coastal regions

    NASA Astrophysics Data System (ADS)

    Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.

    2015-10-01

    The extreme sea levels and waves experienced around the UK's coast during the 2013/14 winter caused extensive coastal flooding and damage. Coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. This paper provides these levels for the winter storms, and discusses their application to the given data sets for two UK case study sites: Sefton, northwest England, and Suffolk, east England. Tide gauge records and wave buoy data were used to compare the 2013/14 storms with return periods from a national data set, and also joint probabilities of sea level and wave heights were generated, incorporating the recent events. The 2013/14 high waters and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a high return period at both case study sites. The national-scale impact of this event was due to its coincidence with spring high tide at multiple locations. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment could in the future be recorded alongside defence performance and upgrade. Ideally other variables (e.g. river levels at estuarine locations) would also be included, and with appropriate offsetting for local trends (e.g. mean sea-level rise) so that the storm-driven component of coastal flood events can be determined. This could allow long-term comparison of storm severity, and an assessment of how sea-level rise influences return levels over time, which is important for consideration of coastal resilience in strategic management plans.

  10. GPS Detection of Biot's Slow Wave in the Earth's Crust Triggered by Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Holt, W. E.; Zhang, J. H.; Blewitt, G.; Yao, Z.

    2017-12-01

    Here we show, using 5-minute GPS data observed in northeast USA around the landfall of Hurricane Sandy of October 29-30, 2012, evidence of a highly-attenuated wave propagating in the Earth's crust over hundreds of km inland at 65 m/s with peak amplitudes as great as 12 cm. Such a phenomenon is consistent with Biot's slow wave being triggered by the associated 4-m storm surge, then propagating in a highly permeable crust with abundant fluid-saturated interconnected cracks. The vertical displacement field recorded on a dense network of continuous GPS stations (CORS network) shows strong attenuation with distance, and occurs at frequencies too low to be recorded by broad-band seismic sensors. To our knowledge, such a unique wave, with ultra-low frequency, slow wave speed, high amplitude, and strong attenuation, has never been measured before. The zenith tropospheric varies slowly over the 24 hours that bracket Hurricane Sandy landfall and there is no apparent relationship to the timing or duration of the downward displacement field that initiates during peak storm surge loading. Amplitudes are a factor of 10 higher than predicted by elastic models of static loading of the 4-m storm surge. Numerical simulations of a low frequency impulse (with duration of storm surge loading) on a homogenous porous medium filled with viscous fluid show an amplification of displacements 10 times larger than for a homogeneous elastic material with the same elastic properties as the poroelastic matrix. The low wave speed of 65 m/s and long period of 4 hours, requires an extremely high permeability (10-6 10-8 m2). Such a high permeability can exist in high-porosity media containing vast interconnected fractures. The high amplitude displacements generated by the dynamic influences of Hurricane Sandy, and other large magnitude storms, would generate significant time-dependent stress changes in the crust that might contribute to the observations of seismicity rate changes and slow slip phenomenon described previously for this and other major storm disturbances.

  11. A method for determining average beach slope and beach slope variability for U.S. sandy coastlines

    USGS Publications Warehouse

    Doran, Kara S.; Long, Joseph W.; Overbeck, Jacquelyn R.

    2015-01-01

    The U.S. Geological Survey (USGS) National Assessment of Hurricane-Induced Coastal Erosion Hazards compares measurements of beach morphology with storm-induced total water levels to produce forecasts of coastal change for storms impacting the Gulf of Mexico and Atlantic coastlines of the United States. The wave-induced water level component (wave setup and swash) is estimated by using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon and others (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. For instance, seasonal and storm-induced changes in beach slope can lead to differences on the order of 1 meter (m) in wave-induced water level elevation, making accurate specification of this parameter and its associated uncertainty essential to skillful forecasts of coastal change. A method for calculating spatially and temporally averaged beach slopes is presented here along with a method for determining total uncertainty for each 200-m alongshore section of coastline.

  12. Hindcast of extreme sea states in North Atlantic extratropical storms

    NASA Astrophysics Data System (ADS)

    Ponce de León, Sonia; Guedes Soares, Carlos

    2015-02-01

    This study examines the variability of freak wave parameters around the eye of northern hemisphere extratropical cyclones. The data was obtained from a hindcast performed with the WAve Model (WAM) model forced by the wind fields of the Climate Forecast System Reanalysis (CFSR). The hindcast results were validated against the wave buoys and satellite altimetry data showing a good correlation. The variability of different wave parameters was assessed by applying the empirical orthogonal functions (EOF) technique on the hindcast data. From the EOF analysis, it can be concluded that the first empirical orthogonal function (V1) accounts for greater share of variability of significant wave height (Hs), peak period (Tp), directional spreading (SPR) and Benjamin-Feir index (BFI). The share of variance in V1 varies for cyclone and variable: for the 2nd storm and Hs V1 contains 96 % of variance while for the 3rd storm and BFI V1 accounts only for 26 % of variance. The spatial patterns of V1 show that the variables are distributed around the cyclones centres mainly in a lobular fashion.

  13. Comment on “On AGU's Position Statement, ‘Human Impacts on Climate’”

    NASA Astrophysics Data System (ADS)

    Evans, Rob

    2009-08-01

    Regarding the Forum by Cyril Galvin (Eos, 89(46), 459, 2008), while I understand AGU's willingness to present both sides of the coin, as it were, I am disappointed that this Forum appeared in Eos. One major point in question is the assertion by Galvin that “nowhere on the sandy ocean shores of the world is there a beach whose erosion has been documented to be caused by sea level rise.” This point disregards the fact that coastal barrier systems have been moving landward for the last several thousand years, driven by rising sea level. Yes, the picture is complex, and yes, wave action and storms, in addition to constraints on sediment supply—many of them heavily influenced in the present day by societal actions—are also important: Some beaches will erode without rising sea level if they are starved of new sediment to replace that removed by wave-driven, alongshore currents, and it is of course the waves that move the sediment around.

  14. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    NASA Astrophysics Data System (ADS)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  15. Implications of Sea Level Rise on Coastal Flood Hazards

    NASA Astrophysics Data System (ADS)

    Roeber, V.; Li, N.; Cheung, K.; Lane, P.; Evans, R. L.; Donnelly, J. P.; Ashton, A. D.

    2012-12-01

    Recent global and local projections suggest the sea level will be on the order of 1 m or higher than the current level by the end of the century. Coastal communities and ecosystems in low-lying areas are vulnerable to impacts resulting from hurricane or large swell events in combination with sea-level rise. This study presents the implementation and results of an integrated numerical modeling package to delineate coastal inundation due to storm landfalls at future sea levels. The modeling package utilizes a suite of numerical models to capture both large-scale phenomena in the open ocean and small-scale processes in coastal areas. It contains four components to simulate (1) meteorological conditions, (2) astronomical tides and surge, (3) wave generation, propagation, and nearshore transformation, and (4) surf-zone processes and inundation onto dry land associated with a storm event. Important aspects of this package are the two-way coupling of a spectral wave model and a storm surge model as well as a detailed representation of surf and swash zone dynamics by a higher-order Boussinesq-type wave model. The package was validated with field data from Hurricane Ivan of 2005 on the US Gulf coast and applied to tropical and extratropical storm scenarios respectively at Eglin, Florida and Camp Lejeune, North Carolina. The results show a nonlinear increase of storm surge level and nearshore wave energy with a rising sea level. The exacerbated flood hazard can have major consequences for coastal communities with respect to erosion and damage to infrastructure.

  16. On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm

    NASA Astrophysics Data System (ADS)

    Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.

    2017-04-01

    Oceanic bubbles play an important role in the air-sea exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.

  17. Levee Scour Protection for Storm Waves

    NASA Astrophysics Data System (ADS)

    Johnson, E.; Sustainable; Resiliency in Levee Scour Protection

    2011-12-01

    Earnest Johnson, Firat Y. Testik *, Nadarajah Ravichandran Civil Engineering, Clemson University, Clemson, SC, USA * Contact author ftestik@clemson.edu Levee failure due to scouring has been a prominent occurrence among intense storm surges and waves, giving rise to the implementation of various scour protection measures over the years. This study is to investigate the levee scour and to compare different scour protection measures on a model-levee system in a laboratory wave tank. The protection measures that are tested and compared for their effectiveness in this study include turf reinforcement mats, woven geotextiles, and core-locs. This is an ongoing research effort and experiments are currently being conducted with model levees constructed based upon the United States Army Corps of Engineers' levee design and construction guidelines under various simulated storm conditions. Parameters such as wave elevations, deformation time history of the floodwall, and the scour depth are measured in each test. The finding of this research will be translated to provide effective scour protection measures for robust levee designs.

  18. Littoral Sediment Budget for the Mississippi Sound Barrier Islands

    DTIC Science & Technology

    2012-07-01

    Sound are driven by longshore transport processes associated with storm and normal wave and current conditions. Although beach erosion and washover...from storm impacts (Figure 1.1). Figure 1.1. High-altitude imagery of the northern Gulf of Mexico between New Orleans, LA and Pensacola, FL...increasing storm damage. A comprehensive evaluation of storm impacts requires analysis of historical shoreline and bathymetry data sets to document the

  19. Structural Changes and Convective Processes in Tropical Cyclones as Seen in Infrared and Water Vapor Satellite Data

    DTIC Science & Technology

    2013-05-10

    tropical depression; yellow, a tropical storm ; red, a typhoon; and purple, an extratropical cyclone (after http://agora.ex.nii.ac.jp/digital- typhoon... storm (JTWC 2012). Tropical Storm Jelawat continued into the Sea of Japan, where it completed extratropical transition (JTWC 2012...including strong winds, storm surge, high waves, and heavy rainfall, threaten archipelagos, densely crowded coastlines, and naval forces ashore and

  20. Aquatic ecosystems in a changing climate

    USGS Publications Warehouse

    Inamdar, Shreeram; Shanley, James B.; McDowell, William H.

    2017-01-01

    Extreme climate events (ECEs) such as tropical storms and hurricanes, thunderstorms, heat waves, droughts, ice storms, and snow storms have increased and are projected to further increase in intensity and frequency across the world. These events are expected to have significant consequences for aquatic ecosystems with the potential for large changes in ecosystem processes, responses, and functions.

  1. ON THE BRIGHTNESS AND WAITING-TIME DISTRIBUTIONS OF A TYPE III RADIO STORM OBSERVED BY STEREO/WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastwood, J. P.; Hudson, H. S.; Krucker, S.

    2010-01-10

    Type III solar radio storms, observed at frequencies below {approx}16 MHz by space-borne radio experiments, correspond to the quasi-continuous, bursty emission of electron beams onto open field lines above active regions. The mechanisms by which a storm can persist in some cases for more than a solar rotation whilst exhibiting considerable radio activity are poorly understood. To address this issue, the statistical properties of a type III storm observed by the STEREO/WAVES radio experiment are presented, examining both the brightness distribution and (for the first time) the waiting-time distribution (WTD). Single power-law behavior is observed in the number distribution asmore » a function of brightness; the power-law index is {approx}2.1 and is largely independent of frequency. The WTD is found to be consistent with a piecewise-constant Poisson process. This indicates that during the storm individual type III bursts occur independently and suggests that the storm dynamics are consistent with avalanche-type behavior in the underlying active region.« less

  2. Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Krien, Y.; Dudon, B.; Roger, J.; Zahibo, N.

    2015-01-01

    Current storm surge hazard maps in the French West Indies are essentially based on simple statistical methods using limited historical data and early low-resolution models which do not take the effect of waves into account. In this paper, we infer new 100 and 1000 year surge levels in Guadeloupe from the numerical modelling of storm surges induced by a large set of synthetic events that are in statistical agreement with features of historical hurricanes in the North Atlantic Basin between 1980 and 2011. Computations are performed using the wave-current coupled model ADCIRC-SWAN with high grid resolutions (up to 40-60 m) in the coastal and wave dissipation areas. This model is validated against observations during past events such as hurricane HUGO (1989). Results are generally found to be in reasonable agreement with past studies in areas where surge is essentially wind-driven, but to differ significantly in coastal regions where the transfer of momentum from waves to the water column constitutes a non-negligible part of the total surge. The methodology, which can be applied to other islands in the Lesser Antilles, allows to obtain storm surge level maps that can be of major interest for coastal planners and decision makers in terms of risk management.

  3. Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Krien, Y.; Dudon, B.; Roger, J.; Zahibo, N.

    2015-08-01

    Current storm surge hazard maps in the French West Indies are essentially based on simple statistical methods using limited historical data and early low-resolution models which do not take the effect of waves into account. In this paper, we infer new 100-year and 1000-year surge levels in Guadeloupe from the numerical modelling of storm surges induced by a large set of synthetic events that are in statistical agreement with features of historical hurricanes in the North Atlantic Basin between 1980 and 2011. Computations are performed using the wave-current coupled model ADCIRC-SWAN with high grid resolutions (up to 40-60 m) in the coastal and wave dissipation areas. This model is validated against observations during past events such as hurricane HUGO (1989). Results are generally found to be in reasonable agreement with past studies in areas where surge is essentially wind-driven, but found to differ significantly in coastal regions where the transfer of momentum from waves to the water column constitutes a non-negligible part of the total surge. The methodology, which can be applied to other islands in the Lesser Antilles, allows storm surge level maps to be obtained that can be of major interest for coastal planners and decision makers in terms of risk management.

  4. Catalogue of extreme wave events in Ireland: revised and updated for 14 680 BP to 2017

    NASA Astrophysics Data System (ADS)

    O'Brien, Laura; Renzi, Emiliano; Dudley, John M.; Clancy, Colm; Dias, Frédéric

    2018-03-01

    This paper aims to extend and update the survey of extreme wave events in Ireland that was previously carried out by O'Brien et al. (2013). The original catalogue highlighted the frequency of such events dating back as far as the turn of the last ice age and as recent as 2012. Ireland's marine territory extends far beyond its coastline and is one of the largest seabed territories in Europe. It is therefore not surprising that extreme waves have continued to occur regularly since 2012, particularly considering the severity of weather during the winters of 2013-2014 and 2015-2016. In addition, a large number of storm surges have been identified since the publication of the original catalogue. This paper updates the O'Brien et al. (2013) catalogue to include events up to the end of 2017. Storm surges are included as a new category and events are categorised into long waves (tsunamis and storm surges) and short waves (storm and rogue waves). New results prior to 2012 are also included and some of the events previously documented are reclassified. Important questions regarding public safety, services and the influence of climate change are also highlighted. An interactive map has been created to allow the reader to navigate through events: https://drive.google.com/open?id=19cZ59pDHfDnXKYIziYAVWV6AfoE&usp=sharing.

  5. Using IRI and GSM TIP model results as environment for HF radio wave propagation model during the geomagnetic storm occurred on September 26-29, 2011

    NASA Astrophysics Data System (ADS)

    Kotova, D. S.; Klimenko, M. V.; Klimenko, V. V.; Zakharov, V. E.; Ratovsky, K. G.; Nosikov, I. A.; Zhao, B.

    2015-11-01

    This paper analyses the geomagnetic storm on September 26-29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We used numerical results obtained from IRI-2012 and GSM TIP models as propagation environment for HF signals from an equatorial transmitter during quiet and disturbed conditions. We used the model of HF radio wave propagation developed in I. Kant Baltic Federal University (BFU) that is based on the geometrical optics approximation. We compared the obtained radio paths in quiet conditions and during the main and recovery storm phases and evaluated radio wave attenuation in different media models.

  6. Coarse cross-bedded grainstones in a mid- to outer carbonate ramp, Bartonian of the Urbasa-Andia plateau (W Pyrenees, N Spain)

    NASA Astrophysics Data System (ADS)

    Baceta, José I.; Pomar, Luis; Mateu-Vicens, Guillem

    2017-04-01

    Most marine grainstones in carbonate ramps and platforms are commonly interpreted to form in high-energy, shallow-water settings where wave energy dissipates by friction on the sea floor. The locus of energy dissipation varies with platform type. On rimmed shelves, skeletal-oolitic sands mainly accumulate near the wave-agitated shelf margin as a rim, which restricts wave action and a low-energy lagoon may form landwards. On ramps and open platforms, by contrast, grainstones commonly accumulate in the shallower zone near or attached to the shoreline, grading basinward into muddier carbonate successions. Within this conceptual scheme, most carbonate ramp subdivisions have been established according to the facies and sedimentary structures associated to the bathymetry-related hydraulic regime, in which the bases of the surface storm-waves and the fairweather waves are the boundary layers. Since seagrasses encroached the oceans by the late Cretaceous, baffling the surface wave energy, and burrowing activity increased significantly, most Cenozoic ramp successions lack the bathymetry-related sedimentary structures and the record of wave and storm activity is commonly lost. This has induced ramp subdivision to become progressively based in light penetration, as inferred from the light dependence of the carbonate producers, particularly for the Cenozoic. This new scenario has permitted to recognize grainstone units detached from shoreline and shoals and produced at depths near the limit of light penetration, or even below, in basinal settings. Here we document a 90-100-m thick Eocene example of crossbedded skeletal grainstones composed by echinoderm-, bryozoan-, red-algal fragments and orthophragminid larger benthic foraminifers. This facies belt occurs at 20-km from the paleo-coastline, downdip of Nummulites-Discocyclina facies, and passes basinward into finely comminuted skeletal debris and marls with planktonic foraminifers of the outer ramp. The skeletal composition of the cross-bedded belt indicates carbonate production to have occurred near the lower limit of the light penetration, and hydraulic turbulence to rework the coarser sediments and winnow-away de fines at the transition between middle- and outer ramp. Bedform migration indicates two main flow directions: oblique upslope traction currents (run-up) and downslope backwash return flow. This indicates turbulence to be detached from the surface storm waves and suggests internal waves breaking obliquely to the slopping ramp. This example documents the potential role of internal waves in shaping and redistributing sediments across ancient carbonate ramp systems, producing porous bodies close to basinal facies. These grainstone bodies may become good targets but acquire special relevance when prediction of good drains is needed in both exploration and production of unconventional. ACKNOWLEDGEMENTS Funding from Ministerio de Economía y Competitividad Project CGL2014-52096-P is acknowledged. This is also a contribution to the Research Group of the Basque University System IT-930-16.

  7. National assessment of hurricane-induced coastal erosion hazards--Gulf of Mexico

    USGS Publications Warehouse

    Stockdon, Hilary F.; Doran, Kara S.; Thompson, David M.; Sopkin, Kristin L.; Plant, Nathaniel G.; Sallenger, Asbury H.

    2012-01-01

    Sandy beaches provide a natural barrier between the ocean and inland communities, ecosystems, and resources. However, these dynamic environments move and change in response to winds, waves, and currents. During a hurricane, these changes can be large and sometimes catastrophic. High waves and storm surge act together to erode beaches and inundate low-lying lands, putting inland communities at risk. A decade of USGS research on storm-driven coastal change hazards has provided the data and modeling capabilities to identify areas of our coastline that are likely to experience extreme and potentially hazardous erosion during a hurricane. This report defines hurricane-induced coastal erosion hazards for sandy beaches along the U.S. Gulf of Mexico coastline. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future.

  8. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  9. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  10. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  11. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  12. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  13. Evolution of potentially eroding events along the northern coast of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; García Codrón, J. C.

    2009-09-01

    The anthropogenic global warming is expected to result in a rise in sea-level, accompanied by changes in extreme climate events, such as the frequency and intensity of storms. Such scenario would result in an acceleration of coastal erosion. The aim of the present study is to assess the temporal evolution of potentially eroding events along the northern coast of the Iberian Peninsula during the second half of the 20th century, and to investigate changes in forcing processes such as the frequency and magnitude of storm surges and high wave events. To characterize the potentially eroding events, the total elevation of the water level was selected, being calculated as the sum of the contributions of the average water level, wave run up and the storm surges. Potentially eroding events were identified and quantified following a two-step procedure. Through the first step the potential flood induced by a given storm was estimated by simulating its effects on a theoretical beach profile (intermediate) using an empirical parameterization for extreme run-up approach. The second step consisted on characterizing the maximum storm surge registered during a storm. Those parameters were calculated from hindcasted data (storm surge, wave heights and period, wind speed and direction), retrieved from the SIMAR-44 database (Puertos del Estado), and validated against actual tide gauge measurements and buoy data (RedMar and RedExt networks). Analyses of total water levels showed a long term increase since 1958, resulting from the increase of mean sea level; conversely, a reduction of the frequency and the intensity of the storm events were deduced from the analysis of meteorological records. Since the impact of the storms on macro- and meso- tidal coast closely depend on the tides, a storm impact index was computed taking into account the storm surge magnitude, the wave heights and time duration during which a predefined threshold was exceeded by the sea level. The results are consistent with the analysis of the shoreline evolution on a specific sector of Cantabria (Oyambre) through the comparison of aerial photographs taken between 1957 and 2005. From the late 50´s to late 70’s, the shoreline significantly retreated, in correspondence with the period of maximum storm activity. Conversely, shoreline retreat slowed down during the late 1980s and 1990s while storm activity considerably decreased. Thus long-term coastal erosion, due to the occurrences of high water levels embedded into a long trend term of sea level rise, has been balanced by the reduction of the frequency and intensity of the Atlantic storms. Since relative sea-level will continue rising in the future, most of the coastal morphologies will probably be more frequently reached by the sea, increasing the flooding risk in low-lying sectors and promoting landslides along the cliffs.

  14. XBeach and CSHORE Numerical Model Assessment of the Beach and Foredune Morphodynamic Response of a Barrier Island during Hurricane Storm Surge Inundation - Folletts Island Case Study

    NASA Astrophysics Data System (ADS)

    Figlus, J.

    2016-02-01

    More than 400 barrier islands line the United States coasts providing a first line of defense against surge and wave attack during extreme storm events. While some pre- and post-storm topography and bathymetry data of barrier islands inundated during a storm exist, very little information is available to help understand the complex hydrodynamic and morphodynamic processes during storm impact. These processes are crucial to understanding sediment budgets, potential threats to infrastructure and best coastal management practices for specific locations. Follett's Island (FI) is a low-lying sediment-starved barrier island located on the Upper Texas Coast, a stretch of coastline along the Gulf of Mexico experiencing on average four hurricanes and four tropical cyclones per decade. During Hurricane Ike, water levels and wave heights at FI exceeded the 100-year and 40-year return values, respectively. This caused the island to undergo a sequence of four distinct interaction regimes, including impact, overtopping, inundation, and storm surge ebb. Each regime caused unique morphology changes to the island. The physical processes governing the real-time morphodynamic response of the beach and dune system during 96 hours of hurricane impact were modeled using XBeach (2D) and CSHORE (1D). Hydrodynamic boundary conditions were obtained from ADCIRC/SWAN model runs validated with measured buoy and wave gauge data while LiDAR surveys provided pre- and post-storm measured topography. XBeach displayed a decent model skill and was very useful in qualitatively visualizing erosion and deposition patterns during each regime. CSHORE also displayed a decent model skill and was able to accurately predict the post-storm beach slope and shoreline, but was less effective at simulating the foredune morphology. Modeling results show that the complete morphodynamic response of FI to Hurricane Ike was far more complex than suggested by only before and after storm topography surveys.

  15. Observing Storm Surges from Space: A New Opportunity

    NASA Astrophysics Data System (ADS)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy

    2013-04-01

    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  16. Variations of Morphologic Changes induced by Tropical Storm Debby along Three Barrier Island, West-Central Florida, USA

    NASA Astrophysics Data System (ADS)

    Wang, P.; Roberts, T.

    2012-12-01

    Tropical Storm Debby generated sustained high waves and elevated water levels for nearly three days from June 24th to 26th, 2012, inducing substantial changes in beach and nearshore morphology. In addition, the storm winds and high waves approached the coast from a highly oblique angle from the south, driving substantial northward longshore sand transport, opposite to the regional net annual southward transport. A total of 145 beach and nearshore profiles along 3 adjacent barrier islands were surveyed 2 weeks before and one week after the storm impact. Overall, dune, beach, intertidal, and immediate subtidal areas suffered erosion, while deposition was measured over the nearshore bar. Beach recovery in the form of ridge and runnel development occurred as the storm energy subsided. Substantial longshore variations of storm-induced beach changes were measured, including both severe dune/beach/berm erosion and storm berm accretion, and both onshore and offshore migration of nearshore bar. Factors controlling these longshore variations include: 1) the oblique approaching of the storm forcing, 2) pre-storm beach morphology and chronic erosional or accretional trends, 3) sediment supply, and 4) tidal inlet and beach interactions. Wide spreading dune scarping occurred along the 30-km studied coast. Based on the pre- and post-storm survey data, a balanced sediment budget is obtained accounting for sand volume loss from dune, beach, intertidal, and subtidal zones, and sand gains over the nearshore bar and along the northern sections of the beach.

  17. Sediment movement along the U.S. east coast continental shelf-I. Estimates of bottom stress using the Grant-Madsen model and near-bottom wave and current measurements

    USGS Publications Warehouse

    Lyne, V.D.; Butman, B.; Grant, W.D.

    1990-01-01

    Bottom stress is calculated for several long-term time-series observations, made on the U.S. east coast continental shelf during winter, using the wave-current interaction and moveable bed models of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808; 1982, Journal of Geophysical Research, 87, 469-482). The wave and current measurements were obtained by means of a bottom tripod system which measured current using a Savonius rotor and vane and waves by means of a pressure sensor. The variables were burst sampled about 10% of the time. Wave energy was reasonably resolved, although aliased by wave groupiness, and wave period was accurate to 1-2 s during large storms. Errors in current speed and direction depend on the speed of the mean current relative to the wave current. In general, errors in bottom stress caused by uncertainties in measured current speed and wave characteristics were 10-20%. During storms, the bottom stress calculated using the Grant-Madsen models exceeded stress computed from conventional drag laws by a factor of about 1.5 on average and 3 or more during storm peaks. Thus, even in water as deep as 80 m, oscillatory near-bottom currents associated with surface gravity waves of period 12 s or longer will contribute substantially to bottom stress. Given that the Grant-Madsen model is correct, parameterizations of bottom stress that do not incorporate wave effects will substantially underestimate stress and sediment transport in this region of the continental shelf.

  18. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic ICWs. Initial Results: Waves and Precipitation Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from the new developed model of the interacting ring current ions and ion cyclotron waves are presented. The model described by the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another one gives wave evolution. Such system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. Calculating ion-wave relationships, on a global scale under non steady-state conditions during May 2-5, 1998 storm, we presented the data at three time cuts around initial, main, and late recovery phases of May 4, 1998 storm phase. The structure and dynamics of the ring current proton precipitating flux regions and the wave active ones are discussed in detail.

  19. NOAA B-Roll

    Science.gov Websites

    Hurricane Landfall: High winds and flooding, boats at dock in churning water, boat on pavement, sunken aircraft). 1:11:57:00 Storm Surge: Rough surf, waves crashing during storm, flooding over pavement, boats

  20. The promise of remote sensing in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Atlas, D.

    1981-01-01

    The applications and advances in remote sensing technology for weather prediction, mesoscale meteorology, severe storms, and climate studies are discussed. Doppler radar permits tracking of the three-dimensional field of motion within storms, thereby increasing the accuracy of convective storm modeling. Single Doppler units are also employed for detecting mesoscale storm vortices and tornado vortex signatures with lead times of 30 min. Clear air radar in pulsed and high resolution FM-CW forms reveals boundary layer convection, Kelvin-Helmoltz waves, shear layer turbulence, and wave motions. Lidar is successfully employed for stratospheric aerosol measurements, while Doppler lidar provides data on winds from the ground and can be based in space. Sodar is useful for determining the structure of the PBL. Details and techniques of satellite-based remote sensing are presented, and results from the GWE and FGGE experiments are discussed.

  1. Mapping Hurricane Inland-Storm Tides

    NASA Astrophysics Data System (ADS)

    Turco, M.; East, J. W.; Dorsey, M. E.; McGee, B. D.; McCallum, B. E.; Pearman, J. L.; Sallenger, A. H.; Holmes, R. R.; Berembrock, C. E.; Turnipseed, D. P.; Mason, R. R.

    2008-12-01

    Historically, hurricane-induced storm-tides were documented through analysis of structural or vegetative damage and high-water marks. However, these sources rarely provided quantitative information about the timing of the flooding, the sequencing of multiple paths by which the storm-surge waters arrived, or the magnitude of waves and wave run-up comprising floodwaters. In response to these deficiencies, the U.S. Geological Survey (USGS) developed and deployed an experimental mobile storm-surge network to provide detailed time-series data for selected hurricane landfalls. The USGS first deployed the network in September 2005 as Hurricane Rita approached the Texas and Louisiana coasts. The network for Rita consisted of 32 water-level and 14 barometric-pressure monitoring sites. Sensors were located at distances ranging from a few hundred feet to approximately 30 miles inland and sampled 4,000 square miles. Deployments have also occurred for Hurricanes Wilma, Gustav, and Ike. For Hurricane Gustav, more than 100 water level sensors were deployed. Analysis of the water-level data enable construction of maps depicting surge topography through time and space, essentially rendering elements of a 3-dimensional view of the storm-surge dome as it moves on- shore, as well as a map of maximum water-level elevations. The USGS also acquired LIDAR topographic data from coasts impacted by hurricanes. These data reveal extreme changes to the beaches and barrier islands that arise from hurricane storm surge and waves. By better understanding where extreme changes occur along our coasts, we will be able to position coastal structures away from hazards.

  2. The influence of storm wave climate and sediment availability in the evolution of the southwestern Spanish coast.

    NASA Astrophysics Data System (ADS)

    Plomaritis, T. A.; Del Río, L.; Benavente, J.; Ribera, P.; Anfuso, G.

    2009-04-01

    The character and configuration of the coastline can be understood in terms of the dynamic balance existing between the physical forcing and the resistance of the coastline. Hence variations in terrestrial, atmospheric and oceanographic extreme conditions have to be evaluated when assessing shoreline changes that can lead to coastal geo-hazards. In the present work the wave record of the last 44 years was analysed for the Spanish gulf of Cadiz (SW Iberian Peninsula) in order to identify changes in the duration, frequency, chronology and direction of approach of the Atlantic storms. Various wave parameters influencing coastal morphology were analysed including maximum wave height, total energy per storm and storm groupiness. The obtained time-series are compared with the NAO index in order to establish a correlation between large-scale atmospheric phenomena and the wave energy arriving to the Gulf of Cadiz. On the other hand, dam construction data on river basins in the area are used to estimate variations in sediment supply to the coast in the last 70 years. Furthermore, medium-term shoreline changes along the study area, for coastlines with variable river influence, are calculated by means of GIS tools on several sets of aerial photographs spanning the period 1956-2002. Finally, the results about variations in terrestrial and oceanographic parameters are compared with the obtained shoreline changes in order to assess their relative influence on coastline evolution.

  3. National assessment of hurricane-induced coastal erosion hazards: Northeast Atlantic Coast

    USGS Publications Warehouse

    Birchler, Justin J.; Stockdon, Hilary F.; Doran, Kara S.; Thompson, David M.

    2014-01-01

    Extreme coastal changes caused by hurricanes may increase the vulnerability of communities both during a storm and to future storms. For example, when sand dunes are substantially eroded, inland structures are exposed to storm surge and waves. On barrier islands, absent or low dunes allow water to flow inland across the island, potentially increasing storm surge in the back bay, on the sound-side of the barrier, and on the mainland.

  4. Prediction and observation of munitions burial in energetic storms

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Sheremet, Alexandru; Calantoni, Joseph

    2017-04-01

    The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may be transported in uncontrolled ways to create potentially dangerous situations at places like beaches or ports. Alternatively, they may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and (surrogate) munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability excludes the possibility of burial by a migrating bed form or by sediment deposition, and strongly indicates that the munitions sank into the bed. The depth of burial also suggest an extreme state of sand agitation during the storm. For predicting munitions burial depths, we explore existing analytical solutions for the dynamic interaction between waves and sediment. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses are then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.

  5. Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan.

    PubMed

    Roeber, Volker; Bricker, Jeremy D

    2015-08-06

    Storm surges cause coastal inundation due to setup of the water surface resulting from atmospheric pressure, surface winds and breaking waves. Here we show that during Typhoon Haiyan, the setup generated by breaking waves near the fringing-reef-protected town of Hernani, the Philippines, oscillated with the incidence of large and small wave groups, and steepened into a tsunami-like wave that caused extensive damage and casualties. Though fringing reefs usually protect coastal communities from moderate storms, they can exacerbate flooding during strong events with energetic waves. Typical for reef-type bathymetries, a very short wave-breaking zone over the steep reef face facilitates the freeing of infragravity-period fluctuations (surf beat) with little energy loss. Since coastal flood planning relies on phase-averaged wave modelling, infragravity surges are not being accounted for. This highlights the necessity for a policy change and the adoption of phase-resolving wave models for hazard assessment in regions with fringing reefs.

  6. Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan

    PubMed Central

    Roeber, Volker; Bricker, Jeremy D.

    2015-01-01

    Storm surges cause coastal inundation due to setup of the water surface resulting from atmospheric pressure, surface winds and breaking waves. Here we show that during Typhoon Haiyan, the setup generated by breaking waves near the fringing-reef-protected town of Hernani, the Philippines, oscillated with the incidence of large and small wave groups, and steepened into a tsunami-like wave that caused extensive damage and casualties. Though fringing reefs usually protect coastal communities from moderate storms, they can exacerbate flooding during strong events with energetic waves. Typical for reef-type bathymetries, a very short wave-breaking zone over the steep reef face facilitates the freeing of infragravity-period fluctuations (surf beat) with little energy loss. Since coastal flood planning relies on phase-averaged wave modelling, infragravity surges are not being accounted for. This highlights the necessity for a policy change and the adoption of phase-resolving wave models for hazard assessment in regions with fringing reefs. PMID:26245839

  7. Electrically-Active Convection and Tropical Cyclogenesis in the Atlantic and East Pacific

    NASA Technical Reports Server (NTRS)

    Leppert, Kenneth D., II; Petersen, Walter A.

    2011-01-01

    It has been hypothesized that deep, intense convective-scale hot towers may aid the process of tropical cyclogenesis and intensification through dynamic and thermodynamic feedbacks on the larger meso-to-synoptic scale circulation. In this study, we make use of NCEP Reanalysis data and Tropical Rainfall Measurement Mission (TRMM) lightning imaging sensor (LIS), precipitation radar (PR), and microwave imager (TMI) data to investigate the role that widespread and/or intense lightning-producing convection (i.e., electrically-hot towers) present in African easterly waves (AEWs) may play in tropical cyclogenesis over the Atlantic, Caribbean, and East Pacific regions. NCEP Reanalysis 700 hPa meridional winds for the months of June to November for the years 2001-2009 were analyzed for the domain of 5 deg. N-20 deg. N and 130 deg. W-20 deg. E in order to partition individual AEWs into northerly, southerly, trough, and ridge phases. Subsequently, information from National Hurricane Center (NHC) storm reports was used to divide the waves into developing and non-developing waves. In addition, information from the NHC reports was used to further divide the developing waves into those waves that spawned storms that only developed to tropical storm strength and those that spawned storms that reached hurricane strength. The developing waves were also divided by the region in which they developed. To assess the evolution of convection associated with the AEWs as they propagated across our analysis domain, the full 130 deg. W-20 deg. E domain was divided into five longitude bands, and waves were analyzed for each band. To help determine the gross nature of the smaller convective scale, composites were created of all developing and non-developing waves as a function of AEW wave phase over the full analysis domain and each longitude band by compositing TRMM PR, TMI, LIS, and IR brightness temperature data extracted from the NASA global-merged infrared brightness temperature dataset. Finally, similar composites were created using various NCEP variables to assess the nature of the larger scale environment and circulation. Results suggest a clear distinction between developing and non-developing waves as developing waves near their region of development in terms of the intensity of convection (indicated by lightning flash rate), coverage of cold cloudiness (indicated by the percentage of a 2.5 deg. by 2.5 deg. box covered by IR brightness temperatures less than 240 deg. K and 210 deg. K), and large-scale variables, such as midlevel moisture and upper-level upward motion. For example, waves that developed in the East Pacific longitude band (i.e., 130 deg. W 95 deg. W) were observed in that band to have a flash rate of 56.4 flashes per day, a coverage by brightness temperatures less than 240 deg. K equal to 15.9%, a coverage by brightness temperatures less than 210 deg. K equal to 2.2%, a 700-hPa specific humidity anomaly of 0.4 g per kilogram, and a 300-hPa omega value of -0.04 Pascals per second in the trough phase compared to the non-developing wave trough values of 22.1 flashes per day, a coverage by brightness temperatures less than 240 deg. K equal to 8.1%, a coverage by brightness temperatures less than 210 deg. K equal to 0.9%, a 700-hPa specific humidity anomaly of -0.3 g per kilogram, and a 300-hPa omega value of -0.01 Pascals per second. Further analysis is being conducted to determine if the aforementioned behavior is observed for developing waves farther from their region of development and to determine any significant differences between waves that spawned storms that reached tropical storm strength and those that spawned storms that reached hurricane strength.

  8. Effects of Breakwater Construction of Tedious Creek Small Craft Harbor and Estuary, Maryland

    DTIC Science & Technology

    2006-09-01

    an area that provides excellent access to many productive fishing grounds in Chesapeake Bay. Tedious Creek Harbor provides anchorage to over 100...vessels involved in commercial and/or recreational fishing . The orientation of Tedious Creek allows the transmission of storm waves that, at times...entering the estuary. Due to the orientation of Tedious Creek to Fishing Bay, storm waves from the northeast, east, and southeast entered the

  9. Surf Zone Properties and On/Offshore Sediment Transport.

    DTIC Science & Technology

    1982-06-01

    and Random Waves," Proceedings, 14th Coastal Engineering Conference, 1974, pp.558-574. Levi - Civita , T., "Determination Rigoreuse des Ondes...on Beach 2-6 Classification of Normal and Storm Beach 23 Profiles by Dean 2-7 Classification of Normal and Storm Beach 24 Profiles by Author 2-8 Two ...the surface and near bottom, return flow near mid-depth before wave breaking. There were considerable laboratory evidences supporting the two -dimen

  10. Radial transport of radiation belt electrons in kinetic field-line resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.

    A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less

  11. Radial transport of radiation belt electrons in kinetic field-line resonances

    DOE PAGES

    Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.; ...

    2017-07-25

    A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less

  12. 75 FR 30004 - Notice of Intent To Prepare an Environmental Impact Statement for the Elliott Bay Seawall Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... (seawall) provides protection to Seattle's downtown waterfront from storm waves and the erosive tidal... associated with coastal storms, shoreline erosion and earthquake damage that could lead to failure of the... evaluate the seawall from a coastal storm and earthquake damage reduction perspective; the seawall is the...

  13. Martian extratropical cyclones

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.; James, P. B.

    1979-01-01

    Physical properties of summer-season baroclinic waves on Mars are discussed on the basis of vidicon images and infrared thermal mapping generated by Viking Orbiter 1. The two northern-hemisphere storm systems examined here appear to be similar to terrestrial mid-latitude cyclonic storms. The Martian storm clouds are probably composed of water ice, rather than dust or CO2 ice particles.

  14. Observation of acoustic-gravity waves in the upper atmosphere during severe storm activity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1975-01-01

    A nine-element continuum wave spectrum, high-frequency, Doppler sounder array has been used to detect upper atmospheric wave-like disturbances during periods with severe weather activity, particularly severe thunderstorms and tornadoes. Five events of severe weather activity, including extreme tornado outbreak of April 3, 1974, were chosen for the present study. The analysis of Doppler records shows that both infrasonic waves and gravity waves were excited when severe storms appeared in the north Alabama area. Primarily, in the case of tornado activity, S-shaped Doppler fluctuations or Doppler fold-backs are observed, while quasi-sinusoidal fluctuations are more common in the case of thunderstorm activity. A criterion for the production of Doppler fold-backs is derived and compared with possible tornado conditions.

  15. Directional Wave Spectra Observed During Intense Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  16. Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations

    NASA Astrophysics Data System (ADS)

    Feng, Xingru; Li, Mingjie; Yin, Baoshu; Yang, Dezhou; Yang, Hongwei

    2018-06-01

    This is a study of the storm surge trends in some of the typhoon-prone coastal areas of China. An unstructured-grid, storm surge-wave-tide coupled model was established for the coastal areas of Zhejiang, Fujian and Guangdong provinces. The coupled model has a high resolution in coastal areas, and the simulated results compared well with the in situ observations and satellite altimeter data. The typhoon-induced storm surges along the coast of the study areas were simulated based on the established coupled model for the past 20 years (1997-2016). The simulated results were used to analyze the trends of the storm surges in the study area. The extreme storm surge trends along the central coast of Fujian Province reached up to 0.06 m/y, significant at the 90% confidence level. The duration of the storm surges greater than 1.0 and 0.7 m had an increasing trend along the coastal area of northern Fujian Province, significant at confidence levels of 70%-91%. The simulated trends of the extreme storm surges were also validated by observations from two tide gauge stations. Further studies show that the correlation coefficient (RTE) between the duration of the storm surge greater than 1 m and the annual ENSO index can reach as high as 0.62, significant at the 99% confidence level. This occurred in a location where the storm surge trend was not significant. For the areas with significant increasing storm surge trends, RTE was small and not significant. This study identified the storm surge trends for the full complex coastline of the study area. These results are useful both for coastal management by the government and for coastal engineering design.

  17. Gravity Waves Generated by Convection: A New Idealized Model Tool and Direct Validation with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Alexander, M. Joan; Stephan, Claudia

    2015-04-01

    In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional circulation and provides a new method for future development of realistic convective gravity wave parameterizations.

  18. Coherence of river and ocean conditions along the US West Coast during storms

    USGS Publications Warehouse

    Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goni, M.A.

    2011-01-01

    The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river-ocean temporal coherence for four coastal river-shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river-shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river-ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river-shelf systems. Although there are seasonal variations in river-ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river-ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast. ?? 2011 Elsevier Ltd.

  19. A simple model for the spatially-variable coastal response to hurricanes

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; Holman, R.A.; Howd, P.A.

    2007-01-01

    The vulnerability of a beach to extreme coastal change during a hurricane can be estimated by comparing the relative elevations of storm-induced water levels to those of the dune or berm. A simple model that defines the coastal response based on these elevations was used to hindcast the potential impact regime along a 50-km stretch of the North Carolina coast to the landfalls of Hurricane Bonnie on August 27, 1998, and Hurricane Floyd on September 16, 1999. Maximum total water levels at the shoreline were calculated as the sum of modeled storm surge, astronomical tide, and wave runup, estimated from offshore wave conditions and the local beach slope using an empirical parameterization. Storm surge and wave runup each accounted for ∼ 48% of the signal (the remaining 4% is attributed to astronomical tides), indicating that wave-driven process are a significant contributor to hurricane-induced water levels. Expected water levels and lidar-derived measures of pre-storm dune and berm elevation were used to predict the spatially-varying storm-impact regime: swash, collision, or overwash. Predictions were compared to the observed response quantified using a lidar topography survey collected following hurricane landfall. The storm-averaged mean accuracy of the model in predicting the observed impact regime was 55.4%, a significant improvement over the 33.3% accuracy associated with random chance. Model sensitivity varied between regimes and was highest within the overwash regime where the accuracies were 84.2% and 89.7% for Hurricanes Bonnie and Floyd, respectively. The model not only allows for prediction of the general coastal response to storms, but also provides a framework for examining the longshore-variable magnitudes of observed coastal change. For Hurricane Bonnie, shoreline and beach volume changes within locations that experienced overwash or dune erosion were two times greater than locations where wave runup was confined to the foreshore (swash regime). During Hurricane Floyd, this pattern became more pronounced as magnitudes of change were four times greater within the overwash regime than in the swash regime. Comparisons of pre-storm topography to a calm weather survey collected one year after Hurricane Floyd's landfall show long-term beach volume loss at overwash locations. Here, the volume of sand eroded from the beach was balanced by the volume of overwash deposits, indicating that the majority of the sand removed from the beach was transported landward across the island rather than being transported offshore. In overwash locations, sand was removed from the nearshore system and unavailable for later beach recovery, resulting in a more permanent response than observed within the other regimes. These results support the predictive capabilities of the storm scaling model and illustrate that the impact regimes provide a framework for explaining the longshore-variable coastal response to hurricanes.

  20. The demise of a major Acropora palmata bank-barrier reef off the southeast coast of Barbados, West Indies

    NASA Astrophysics Data System (ADS)

    MacIntyre, I. G.; Glynn, P. W.; Toscano, M. A.

    2007-12-01

    Formerly attributed to human activity, the demise of a bank-barrier reef off southeastern Barbados known as Cobbler’s Reef is now thought to be largely the result of late Holocene, millennial-scale storm damage. Eleven surface samples of the reef crest coral Acropora palmata from nine sites along its 15-km length plot above the western Atlantic sea-level curve from 3,000 to 4,500 cal years ago (calibrated, calendar 14C years). These elevated clusters suggest that the reef complex suffered extensive storm damage during this period. The constant heavy wave action typical of this area and consequent low herbivory maintain conditions favoring algal growth, thereby limiting the reestablishment of post-storm reef framework. Site descriptions and detailed line surveys show a surface now composed mainly of reworked fragments of A. palmata covered with algal turf, macroalgae and crustose coralline algae. The reef contains no live A. palmata and only a few scattered coral colonies consisting primarily of Diploria spp . and Porites astreoides, along with the hydrocoral Millepora complanata. A few in situ framework dates plot at expected depths for normal coral growth below the sea-level curve during and after the period of intense storm activity. The most recent of these in situ samples are 320 and 400 cal years old. Corals of this late period likely succumbed to high turbidity associated with land clearance for sugarcane agriculture in the mid-1600s.

  1. Quartz grains reveal sedimentary palaeoenvironment and past storm events: A case study from eastern Baltic

    NASA Astrophysics Data System (ADS)

    Kalińska-Nartiša, Edyta; Stivrins, Normunds; Grudzinska, Ieva

    2018-01-01

    Sediment record collected from the coastal lake serves as a powerful tool for reconstructing changes in palaeoenvironment and understanding the potential signals of past storminess. In this study, we use several proxies from sediment of the Holocene Thermal Maximum at coastal Lake Lilaste, Latvia. We focus on surface texture of quartz grains from the mineral inorganic fraction as indicators of depositional environments. We then use this as a proxy for potential storm transport and combine with information on granulometry, diatom stratigraphy and chronology to answer the question whether flux of quartz grains in the lake originated from the sea or from the land. Analyses in a binocular and scanning electron microscope reveal that most of the investigated quartz grains originate from dwelling in the seawater and wave action in the nearshore zone. Grains representing very energetic subaqueous environment similar to storm events are also present. Terrestrial record is of minor significance and visible through occurrence of aeolian quartz grains. During drier and colder conditions, an influx of sand with aeolian imprint was delivered to the lake between 8500 and 7800 cal yr BP. Marine and terrestrial conditions alternated between 7800 and 6000 cal yr BP. Storm-induced grains were likely deposited three times: at 7300 cal yr BP, 6600-6400 cal yr BP, and 6200-6000 cal yr BP. Overall stable marine environmental conditions prevailed between 6000 and 4000 cal yr BP except of the last portion of terrestrial-induced sediment at 4100 cal yr BP.

  2. Policies for Reducing Coastal Risk on the East and Gulf Coasts

    NASA Astrophysics Data System (ADS)

    Glickson, D.; Johnson, S.

    2014-12-01

    Hurricane- and coastal storm-related economic losses have increased substantially over the past century, largely due to expanding population and development in susceptible coastal areas. Concurrent with this growth, the federal government has assumed an increasing proportion of the financial responsibility associated with U.S. coastal storms, which may discourage state and local governments from taking appropriate actions to reduce risk and enhance resilience. Strategies to manage coastal storm risks fall into two categories: reducing the probability of flooding or wave impact (such as seawalls, storm surge barriers, beach nourishment, dune building, restoration/expansion of oyster reefs, salt marshes, and mangroves) and reducing the number or vulnerability of people or structures (such as relocation, land-use planning, and elevating or floodproofing buildings). Over the past century, most coastal risk management programs have emphasized coastal armoring, while doing little to decrease development in harm's way. This National Research Council report calls for the development of a national vision for managing coastal risks that includes a long-term view, regional solutions, and recognition of all benefits. A national coastal risk assessment is needed to identify high priority areas. Benefit-cost analysis provides a reasonable framework to evaluate national investments in coastal risk reduction, if constrained by other important environmental, social, and life-safety factors. Extensive collaboration and additional policy changes will be necessary to move from a nation that is primarily reactive to coastal disasters to one that invests wisely in coastal risk reduction and builds resilience among coastal communities.

  3. Hindcast storm events in the Bering Sea for the St. Lawrence Island and Unalakleet Regions, Alaska

    USGS Publications Warehouse

    Erikson, Li H.; McCall, Robert T.; van Rooijen, Arnold; Norris, Benjamin

    2015-01-01

    This study provides viable estimates of historical storm-induced water levels in the coastal communities of Gambell and Savoonga situated on St. Lawrence Island in the Bering Sea, as well as Unalakleet located at the head of Norton Sound on the western coast of Alaska. Gambell, Savoonga, and Unalakleet are small Native Villages that are regularly impacted by coastal storms but where little quantitative information about these storms exists. The closest continuous water-level gauge is at Nome, located more than 200 kilometers from both St. Lawrence Island and Unalakleet. In this study, storms are identified and quantified using historical atmospheric and sea-ice data and then used as boundary conditions for a suite of numerical models. The work includes storm-surge (temporary rise in water levels due to persistent strong winds and low atmospheric pressures) modeling in the Bering Strait region, as well as modeling of wave runup along specified sections of the coast in Gambell and Unalakleet. Modeled historical water levels are used to develop return periods of storm surge and storm surge plus wave runup at key locations in each community. It is anticipated that the results will fill some of the data void regarding coastal flood data in western Alaska and be used for production of coastal vulnerability maps and community planning efforts.

  4. Hurricane Irma's Effects on Dune and Beach Morphology at Matanzas Inlet, Atlantic Coast of North Florida: Impacts and Inhibited Recovery?

    NASA Astrophysics Data System (ADS)

    Adams, P. N.; Conlin, M. P.; Johnson, H. A.; Paniagua-Arroyave, J. F.; Woo, H. B.; Kelly, B. P.

    2017-12-01

    During energetic coastal storms, surge from low atmospheric pressure, high wave set-up, and increased wave activity contribute to significant morphologic change within the dune and upper beach environments of barrier island systems. Hurricane Irma made landfall on the southwestern portion of the Florida peninsula, as a category 4 storm on Sept 10th, 2017 and tracked northward along the axis of the Florida peninsula for two days before dissipating over the North American continent. Observations along the North Florida Atlantic coast recorded significant wave heights of nearly 7 m and water levels that exceeded predictions by 2 meters on the early morning of Sept. 11th. At Fort Matanzas National Monument, the dune and upper beach adjacent to Matanzas Inlet experienced landward retreat during the storm, diminishing the acreage of dune and scrub habitat for federally-listed endangered and threatened animal species, including the Anastasia beach mouse, gopher tortoises, and several protected shore birds. Real Time Kinematic (RTK) GPS surveys, conducted prior to the passage of the storm (Sept. 8) and immediately after the storm (Sept. 13) document dune scarp retreat >10 m in places and an average retreat of 7.8 m (+/- 5.2 m) of the 2-m beach contour, attributable to the event, within the study region. Although it is typical to see sedimentary recovery at the base of dunes within weeks following an erosive event of this magnitude, our follow up RTK surveys, two weeks (Sept. 26) and five weeks (Oct. 19) after the storm, document continued dune retreat and upper beach lowering. Subsequent local buoy observations during the offshore passage of Hurricanes Jose, Maria (Sept. 17 and 23, respectively) and several early-season Nor'easters recorded wave heights well above normal (2-3 meters) from the northeast. The lack of recovery may reveal a threshold vulnerability of the system, in which the timing of multiple moderate-to-high wave events, in the aftermath of a land falling-hurricane, produces a long-term morphological response, inhibiting the dune sedimentary system from reestablishing its previous configuration.

  5. Catastrophe loss modelling of storm-surge flood risk in eastern England.

    PubMed

    Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom

    2005-06-15

    Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.

  6. Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Wu, Xue; Alexander, M. Joan

    2018-02-01

    Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.

  7. Gravity shear waves atop the cirrus layer of intense convective storms

    NASA Technical Reports Server (NTRS)

    Stobie, J. G.

    1975-01-01

    Recent visual satellite photographs of certain intense convective storms have revealed concentric wave patterns. A model for the generation and growth of these waves is proposed. The proposed initial generating mechanism is similar to the effect noticed when a pebble is dropped into a calm pond. The penetration of the tropopause by overshooting convection is analogous to the pebble's penetration of the water's surface. The model for wave growth involves instability due to the wind shear resulting from the cirrus outflow. This model is based on an equation for the waves' phase speed which is similar to the Helmholtz equation. It, however, does not assume an incompressible atmosphere, but rather assumes density is a logarithmic function of height. Finally, the model is evaluated on the two mid-latitude and three tropical cases. The data indicate that shearing instability may be a significant factor in the appearance of these waves.

  8. Hindcasting Storm-Induced Erosional Hazards for the Outer Banks, NC.

    NASA Astrophysics Data System (ADS)

    Wetzell, L. M.; Howd, P. A.; Sallenger, A. H.

    2002-12-01

    The spatial variability of dune response along a section of the NC Outer Banks has been examined for the 1999 Hurricane Dennis. Dennis generated some of the largest wave heights recorded in the past 20 years along the Outer Banks of North Carolina, reaching 6.3 meters (measured at the U.S. Army Corps of Engineers Field Research Facility at Duck, North Carolina). Pre and post-storm topography was measured as part of a joint USGS-NASA program using lidar technology. These data were used to calculate changes in the elevation and location of the dune crest and dune base (Dhi and Dlo). Roughly 66% of the region from Cape Hatteras to Ocracoke Inlet experienced some dune erosion. The spatial variability in dune response is compared to hindcast erosion hazard predictions. Observations of maximum wave conditions are used as input to SWAN, a 3rd generation and shoaling wave model, output from which is used to drive empirical relationships for wave runup. Estimates of hazard potential are derived from Sallenger's recently proposed storm impact scale. The hindcast hazard potentials are then compared to direct observations.

  9. Storm-associated Alfvén Waves in the Polar Environment

    NASA Astrophysics Data System (ADS)

    Keiling, A.; Wygant, J. R.; Dombeck, J. P.

    2017-12-01

    Global polar distribution maps of Alfvénic Poynting flux and Alfvén-wave-accelerated electrons now exist from a number of satellites, orbiting at various altitudes, including below and in the auroral acceleration region (AAR), above the AAR and in the equatorial plasma sheet. Together with auroral images, it has been established that the nightside aurora, in particular its premidnight to midnight dominance, is coupled to these waves. Moreover, global simulations have reproduced the observed nightside distribution of Alfvén waves, coming from the far-tail magnetospheric dynamo. While recent studies, using low-altitude and equatorial satellites, have shown a deviation from this average nightside pattern during storm times, as of now there is no such study to provide the link between these regions, namely just above the AAR. In this presentation, we will present Polar spacecraft-based data during storm times, covering the altitude range from 4 to 7 RE (geocentric distance) and spanning a time period of six years. The results will be put in context to published studies, in particular with regard to morphology and dissipation.

  10. Storm-wave-induced seabed deformation: Results from in situ observation in the Yellow River subaqueous delta

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Wang, Z. Mr; Liu, X.; Shan, H.

    2017-12-01

    Submarine landslides move large volumes of sediment and are often hazardous to offshore installations. Current research into submarine landslides mainly relies on marine surveying techniques. In contrast, in situ observations of the submarine landslide process, specifically seabed deformation, are sparse, and therefore restrict our understanding of submarine landslide mechanisms and the establishment of a disaster warning scheme. The submarine landslide monitoring (SLM) system, which has been designed to partly overcome these pitfalls, can monitor storm-wave-induced submarine landslides in situ and over a long time period. The SLM system comprises two parts: (1) a hydrodynamic monitoring tripod for recording hydrodynamic data and (2) a shape accel array for recording seabed deformation at different depths. This study recorded the development of the SLM system and the results of in situ observation in the Yellow River Delta, China, during the boreal winter of 2014-2015. The results show an abrupt small-scale storm-wave-induced seabed shear deformation; the shear interface is in at least 1.5-m depth and the displacement of sediments at 1.23-m depth is more than 13 mm. The performance of the SLM system confirms the feasibility and stability of this approach. Further, the in situ observations, as well as the laboratory tests, helped reveal the profound mechanism of storm-wave-induced seabed deformation.

  11. National assessment of nor’easter-induced coastal erosion hazards: mid- and northeast Atlantic coast

    USGS Publications Warehouse

    Birchler, Justin J.; Dalyander, P. Soupy; Stockdon, Hilary F.; Doran, Kara S.

    2015-09-21

    Extreme coastal changes caused by hurricanes or nor’easters may increase the vulnerability of communities both during a storm and to future storms. For example, when sand dunes are substantially eroded, inland structures are exposed to storm surge and waves. On barrier islands, absent or low dunes allow water to flow inland across the island.

  12. Giant boulders and Last Interglacial storm intensity in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Rovere, Alessio; Casella, Elisa; Harris, Daniel L.; Lorscheid, Thomas; Nandasena, Napayalage A. K.; Dyer, Blake; Sandstrom, Michael R.; Stocchi, Paolo; D'Andrea, William J.; Raymo, Maureen E.

    2017-11-01

    As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ˜128–116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past “superstorms,” they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.

  13. Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique

    NASA Astrophysics Data System (ADS)

    Krien, Yann; Dudon, Bernard; Roger, Jean; Arnaud, Gael; Zahibo, Narcisse

    2017-09-01

    In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge - up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.

  14. Giant boulders and Last Interglacial storm intensity in the North Atlantic.

    PubMed

    Rovere, Alessio; Casella, Elisa; Harris, Daniel L; Lorscheid, Thomas; Nandasena, Napayalage A K; Dyer, Blake; Sandstrom, Michael R; Stocchi, Paolo; D'Andrea, William J; Raymo, Maureen E

    2017-11-14

    As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.

  15. Thunderstorm-environment interactions determined with three-dimensional trajectories

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1980-01-01

    Diagnostically determined three dimensional trajectories were used to reveal some of the scale interaction processes that occur between convective storms and their environment. Data from NASA's fourth Atmospheric Variability Experiment are analyzed. Two intense squall lines and numerous reports of severe weather occurred during the period. Convective storm systems with good temporal and spatial continuity are shown to be related to the development and movement of short wave circulation systems aloft that propagate eastward within a zonal mid tropospheric wind pattern. These short wave systems are found to produce the potential instability and dynamic triggering needed for thunderstorm formation. The environmental flow patterns, relative to convective storm systems, are shown to produce large upward air parcel movements in excess of 50 mb/3h in the immediate vicinity of the storms. The air undergoing strong lifting originates as potentially unstable low level air traveling into the storm environment from southern and southwestern directions. The thermo and hydrodynamical processes that lead to changes in atmospheric structure before, during, and after convective storm formation are described using total time derivatives of pressure or net vertical displacement, potential temperature, and vector wind calculated by following air parcels.

  16. 77 FR 24585 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... revising the Holtec International HI-STORM 100 System listing within the ``List of Approved Spent Fuel...) 72.214, by revising the Holtec International HI-STORM 100 System listing within the ``List of...

  17. Data and numerical analysis of astronomic tides, wind-waves, and hurricane storm surge along the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bilskie, M. V.; Hagen, S. C.; Medeiros, S. C.; Cox, A. T.; Salisbury, M.; Coggin, D.

    2016-05-01

    The northern Gulf of Mexico (NGOM) is a unique geophysical setting for complex tropical storm-induced hydrodynamic processes that occur across a variety of spatial and temporal scales. Each hurricane includes its own distinctive characteristics and can cause unique and devastating storm surge when it strikes within the intricate geometric setting of the NGOM. While a number of studies have explored hurricane storm surge in the NGOM, few have attempted to describe storm surge and coastal inundation using observed data in conjunction with a single large-domain high-resolution numerical model. To better understand the oceanic and nearshore response to these tropical cyclones, we provide a detailed assessment, based on field measurements and numerical simulation, of the evolution of wind waves, water levels, and currents for Hurricanes Ivan (2004), Dennis (2005), Katrina (2005), and Isaac (2012), with focus on Mississippi, Alabama, and the Florida Panhandle coasts. The developed NGOM3 computational model describes the hydraulic connectivity among the various inlet and bay systems, Gulf Intracoastal Waterway, coastal rivers and adjacent marsh, and built infrastructure along the coastal floodplain. The outcome is a better understanding of the storm surge generating mechanisms and interactions among hurricane characteristics and the NGOM's geophysical configuration. The numerical analysis and observed data explain the ˜2 m/s hurricane-induced geostrophic currents across the continental shelf, a 6 m/s outflow current during Ivan, the hurricane-induced coastal Kelvin wave along the shelf, and for the first time a wealth of measured data and a detailed numerical simulation was performed and was presented for Isaac.

  18. Intense hurricane strikes in southeastern New England since A.D. 1000

    NASA Astrophysics Data System (ADS)

    Donnelly, J. P.; Ettinger, R.; Cleary, P.

    2001-05-01

    Intense, category 3, 4, and 5 landfalling hurricanes pose a significant threat to lives and resources in coastal areas. Intense hurricane strikes also play a significant role in transporting sediments and shaping coastal landforms. Potential links between human-induced climate change and the frequency and intensity of tropical cyclones and the recent concentration of resources and population in areas where intense hurricanes may strike necessitate examination of decadal-to-millennial-scale variability in hurricane activity. The National Oceanic and Atmospheric Administration hurricane activity records for the western Atlantic Ocean only go back to the late 19th century. In the northeast United States historical records of hurricanes date back 370 years. We use stratigraphic evidence from coastal wetlands to extend the record of intense hurricane strikes into the prehistoric period in southeastern New England. Storm surge and wave action associated with intense storms can overtop barrier islands, remove sand and gravel from the beach and nearshore environment and deposit these sediments across the surface of coastal wetlands. In a regime of rising sea level, organic wetland sediments accumulate on top of these storm-induced deposits, preserving a record of past storms. We reconstructed storm deposition records within coastal marshes from eastern Connecticut to Cape Cod, Massachusetts. We matched these records to the historic record of storms and established the age of prehistoric storm deposits dating back about 1000 years with isotopic and stratigraphic dating techniques. The ages of storm deposits at all sites correlate to historic intense hurricane strikes. Prehistoric storm deposits can repeatedly be correlated among multiple sites and are of similar character and extent to the more recent deposits that we attribute to historic intense hurricane strikes. Therefore these older storm deposits were also likely deposited during prehistoric intense hurricanes. We documented at least eight deposits consistent with intense hurricane strikes in the last 1000 years. We identified deposits associated with historic intense hurricanes that occurred in A.D. 1954, 1938, 1869, 1815, 1638 and/or 1635. In addition we identified deposits likely associated with prehistoric intense hurricane strikes that occurred in A.D. 1400-1450, 1300-1400, and 1100-1150. These records indicate no apparent correlation between the frequency of intense hurricane landfalls in southeastern New England and the Little Ice Age and Medieval Warm Period climate oscillations.

  19. A storm time, Pc 5 event observed in the outer magnetosphere by ISEE 1 and 2 - Wave properties

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Scarf, F. L.; Mcpherron, R. L.; Anderson, R. R.

    1986-01-01

    The properties of the waves composing a classical storm time Pc 5 event, recorded by the satellite pair ISEE 1,2 during an inbound nearly equatorial pass in the dusk sector on August 21-22, 1978, are described. On the basis of these observations it is concluded that the events of the August 21-22 pass resulted from a combination of sources, namely, distant wideband excitation and ion drift instability, plus a coupling of wave modes. It is suggested that the observed phenomenon was a radial cross section of the type of event reported by Barfield et al. (1972).

  20. Hurricane Isaac: observations and analysis of coastal change

    USGS Publications Warehouse

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography, airborne light detection and ranging (lidar) topographic surveys, and ground-based topographic surveys. This report documents data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline, beaches, dunes, and infrastructure in the region that was heavily impacted by Hurricane Isaac. The report is divided into the following sections: Section 1: Introduction Section 2: Storm Overview, presents a synopsis of the storm, including meteorological evolution, wind speed impact area, wind-wave generation, and storm-surge extent and magnitudes. Section 3: Coastal-Change Observations, describes data-collection missions, including acquisition of oblique aerial photography and airborne lidar topographic surveys, in response to Hurricane Isaac. Section 4: Coastal-Change Analysis, describes data-analysis methods and observations of coastal change.

  1. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    USGS Publications Warehouse

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-01-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500–10,000 m3s−1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  2. A numerical model investigation of the impacts of Hurricane Sandy on water level variability in Great South Bay, New York

    NASA Astrophysics Data System (ADS)

    Bennett, Vanessa C. C.; Mulligan, Ryan P.; Hapke, Cheryl J.

    2018-06-01

    Hurricane Sandy was a large and intense storm with high winds that caused total water levels from combined tides and storm surge to reach 4.0 m in the Atlantic Ocean and 2.5 m in Great South Bay (GSB), a back-barrier bay between Fire Island and Long Island, New York. In this study the impact of the hurricane winds and waves are examined in order to understand the flow of ocean water into the back-barrier bay and water level variations within the bay. To accomplish this goal, a high resolution hurricane wind field is used to drive the coupled Delft3D-SWAN hydrodynamic and wave models over a series of grids with the finest resolution in GSB. The processes that control water levels in the back-barrier bay are investigated by comparing the results of four cases that include: (i) tides only; (ii) tides, winds and waves with no overwash over Fire Island allowed; (iii) tides, winds, waves and limited overwash at the east end of the island; (iv) tides, winds, waves and extensive overwash along the island. The results indicate that strong local wind-driven storm surge along the bay axis had the largest influence on the total water level fluctuations during the hurricane. However, the simulations allowing for overwash have higher correlation with water level observations in GSB and suggest that island overwash provided a significant contribution of ocean water to eastern GSB during the storm. The computations indicate that overwash of 7500-10,000 m3s-1 was approximately the same as the inflow from the ocean through the major existing inlet. Overall, the model results indicate the complex variability in total water levels driven by tides, ocean storm surge, surge from local winds, and overwash that had a significant impact on the circulation in Great South Bay during Hurricane Sandy.

  3. Storm-driven sediment transport in Massachusetts Bay

    USGS Publications Warehouse

    Warner, J.C.; Butman, B.; Dalyander, P.S.

    2008-01-01

    Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and Stellwagen Basin.

  4. sUAS for Rapid Pre-Storm Coastal Characterization and Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; Slocum, R. K.; Spore, N.

    2015-12-01

    Open coast beaches and surf-zones are dynamic three-dimensional environments that can evolve rapidly on the time-scale of hours in response to changing environmental conditions. Up-to-date knowledge about the pre-storm morphology of the coast can be instrumental in making accurate predictions about coastal change and damage during large storms like Hurricanes and Nor'Easters. For example, alongshore variations in the shape of ephemeral sandbars along the coastline can focus wave energy, subjecting different stretches of coastline to significantly higher waves. Variations in beach slope and width can also alter wave runup, causing higher wave-induced water levels which can cause overwash or inlet breaching. Small Unmanned Aerial Systems (sUAS) offer a new capability to rapidly and inexpensively map vulnerable coastlines in advance of approaching storms. Here we present results from a prototype system that maps coastal topography and surf-zone morphology utilizing a multi-camera sensor. Structure-from-motion algorithms are used to generate topography and also constrain the trajectory of the sUAS. These data, in combination with mount boresight information, are used to rectify images from ocean-facing cameras. Images from all cameras are merged to generate a wide field of view allowing up to 5 minutes of continuous imagery time-series to be collected as the sUAS transits the coastline. Water imagery is then analyzed using wave-kinematics algorithms to provide information on surf-zone bathymetry. To assess this methodology, the absolute and relative accuracy of topographic data are evaluated in relation to simultaneously collected terrestrial lidar data. Ortho-rectification of water imagery is investigated using visible fixed targets installed in the surf-zone, and through comparison to stationary tower-based imagery. Future work will focus on evaluating how topographic and bathymetric data from this sUAS approach can be used to update forcing parameters in both empirical and numerical models predicting coast inundation and erosion in advance of storms.

  5. Skill assessment of a real-time forecast system utilizing a coupled hydrologic and coastal hydrodynamic model during Hurricane Irene (2011)

    NASA Astrophysics Data System (ADS)

    Dresback, Kendra M.; Fleming, Jason G.; Blanton, Brian O.; Kaiser, Carola; Gourley, Jonathan J.; Tromble, Evan M.; Luettich, Richard A.; Kolar, Randall L.; Hong, Yang; Van Cooten, Suzanne; Vergara, Humberto J.; Flamig, Zac L.; Lander, Howard M.; Kelleher, Kevin E.; Nemunaitis-Monroe, Kodi L.

    2013-12-01

    Due to the devastating effects of recent hurricanes in the Gulf of Mexico (e.g., Katrina, Rita, Ike and Gustav), the development of a high-resolution, real-time, total water level prototype system has been accelerated. The fully coupled model system that includes hydrology is an extension of the ADCIRC Surge Guidance System (ASGS), and will henceforth be referred to as ASGS-STORM (Scalable, Terrestrial, Ocean, River, Meteorological) to emphasize the major processes that are represented by the system.The ASGS-STORM system incorporates tides, waves, winds, rivers and surge to produce a total water level, which provides a holistic representation of coastal flooding. ASGS-STORM was rigorously tested during Hurricane Irene, which made landfall in late August 2011 in North Carolina. All results from ASGS-STORM for the advisories were produced in real-time, forced by forecast wind and pressure fields computed using a parametric tropical cyclone model, and made available via the web. Herein, a skill assessment, analyzing wind speed and direction, significant wave heights, and total water levels, is used to evaluate ASGS-STORM's performance during Irene for three advisories and the best track from the National Hurricane Center (NHC). ASGS-STORM showed slight over-prediction for two advisories (Advisory 23 and 25) due to the over-estimation of the storm intensity. However, ASGS-STORM shows notable skill in capturing total water levels, wind speed and direction, and significant wave heights in North Carolina when utilizing Advisory 28, which had a slight shift in the track but provided a more accurate estimation of the storm intensity, along with the best track from the NHC. Results from ASGS-STORM have shown that as the forecast of the advisories improves, so does the accuracy of the models used in the study; therefore, accurate input from the weather forecast is a necessary, but not sufficient, condition to ensure the accuracy of the guidance provided by the system. While Irene provided a real-time test of the viability of a total water level system, the relatively insignificant freshwater discharges precludes definitive conclusions about the role of freshwater discharges on total water levels in estuarine zones. Now that the system has been developed, on-going work will examine storms (e.g., Floyd) for which the freshwater discharge played a more meaningful role.

  6. Typhoon Haiyan's sedimentary record in coastal environments of the Philippines and its palaeotempestological implications

    NASA Astrophysics Data System (ADS)

    Brill, Dominik; May, Simon Matthias; Engel, Max; Reyes, Michelle; Pint, Anna; Opitz, Stephan; Dierick, Manuel; Gonzalo, Lia Anne; Esser, Sascha; Brückner, Helmut

    2016-12-01

    On 8 November 2013, category 5 Supertyphoon Haiyan made landfall on the Philippines. During a post-typhoon survey in February 2014, Haiyan-related sand deposition and morphological changes were documented at four severely affected sites with different exposure to the typhoon track and different geological and geomorphological settings. Onshore sand sheets reaching 100-250 m inland are restricted to coastal areas with significant inundation due to amplification of surge levels in embayments or due to accompanying long-wave phenomena at the most exposed coastlines of Leyte and Samar. However, localized washover fans with a storm-typical laminated stratigraphy occurred even along coasts with limited inundation due to waves overtopping or breaching coastal barriers. On a recent reef platform off Negros in the Visayan Sea, storm waves entrained coral rubble from the reef slope and formed an intertidal coral ridge several hundreds of metres long when breaking at the reef edge. As these sediments and landforms were generated by one of the strongest storms ever recorded, they not only provide a recent reference for typhoon signatures that can be used for palaeotempestological and palaeotsunami studies in the region but might also increase the general spectrum of possible cyclone deposits. Although a rather atypical example for storm deposition due to the influence of infra-gravity waves, it nevertheless provides a valuable reference for an extreme case that should be considered when discriminating between storm and tsunami deposits in general. Even for sites with low topography and high inundation levels during Supertyphoon Haiyan, the landward extent of the documented sand sheets seems significantly smaller than typical sand sheets of large tsunamis. This criterion may potentially be used to distinguish both types of events.

  7. Ridge-Runnel and Swash Dynamics Field Experiment on a Steep Meso-Tidal Beach

    NASA Astrophysics Data System (ADS)

    Figlus, J.; Song, Y.-K.; Chardon-Maldonado, P.; Puleo, J. A.

    2014-12-01

    Ridge-runnel (RR) systems are morphological features that may form in the intermittently wet and dry zone of the beach immediately after storm events. Their onshore migration provides a natural way of recovery for an eroded beach but the detailed swash interactions and complex feedback mechanisms between wave dynamics, sediment transport and profile evolution are not well understood and challenging to measure in-situ. During a storm, elevated water levels and large waves can significantly erode the beach profile in a matter of hours through offshore-directed sediment transport. The beach recovery process, on the other hand, occurs over a much longer time period during less intense wave conditions. In the beginning of this 3-week field campaign at South Bethany Beach, Delaware, a Nor'easter, eroded significant portions of this steep, meso-tidal beach and formed a pronounced RR system which then evolved during the less energetic conditions after the storm. An extensive cross-shore array of sensors was installed immediately after the storm measuring near-bed velocity profiles (5 Nortek Vectrino Profilers) and horizontal velocities (6 Sontec Electromagnetic Current Meters; 1 side-looking Nortek Vectrino) suspended sediment concentrations (10 Optical Backscatter Sensors OBS-3+), and pressure fluctuations (7 GE Druck pressure transducers) in the swash zone. Dense topography surveys of the RR system were conducted twice a day during low tide conditions with a Leica RTK GPS rover system. In addition, sediment grab samples along the entire RR cross-section were collected daily. An offshore ADCP with surface wave tracking capability (Nortek 2MHz AWAC AST) measured directional wave spectra and current profiles at a water depth of approximately 6m. The RR system showed rapid onshore migration over the two tide cycles immediately after the storm, followed by a period of vertical ridge accretion of up to 3 ft at certain locations. A first look at the collected data and analysis results related to the feedback mechanisms between wave forcing and RR evolution is presented along with a discussion of difficulties encountered during the experiment.

  8. The aurora as a source of planetary-scale waves in the middle atmosphere. [atmospheric turbulence caused by auroral energy absorption

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Straus, J. M.

    1974-01-01

    Photographs of global scale auroral forms taken by scanning radiometers onboard weather satellites in 1972 show that auroral bands exhibit well organized wave motion with typical zonal wave number of 5 or so. The scale size of these waves is in agreement with that of well organized neutral wind fields in the 150- to 200-km region during the geomagnetic storm of May 27, 1967. Further, the horizontal scale size revealed by these observations are in agreement with that of high altitude traveling ionospheric disturbances. It is conjectured that the geomagnetic storm is a source of planetary and synoptic scale neutral atmospheric waves in the middle atmosphere. Although there is, at present, no observation of substorm related waves of this scale size at mesospheric and stratospheric altitudes, the possible existence of a new source of waves of the proper scale size to trigger instabilities in middle atmospheric circulation systems may be significant in the study of lower atmospheric response to geomagnetic activity.

  9. Observations of Deep Ionospheric F-Region Density Depletions with FPMU Instrumentation and their Relationship with the Global Dynamics of the June 22-23, 2015 Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Sazykin, Stan; Chandler, Michael O.; Hairston, Marc; Minow, Joseph I.; Anderson, Brian J.

    2017-01-01

    The magnetic storm that commenced on June 22-23, 2015 was one of the largest storms in our current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the shock wave on the magnetosphere. Observations from several spacecraft observed the dynamic response of the magnetosphere and ionosphere. MMS observatories in the near earth tail These low altitude measurements are correlated in the magnetosphere with particle flux dropouts measured by MMS We follow the timing of this storm in the ionosphere with the density depletions throughout the ISS orbits, DMSP drift velocities, and enhanced AMPERE Birkland currents. Together these observations and simulation results will be assembled to provide each region's context to the global dynamics and time evolution of the storm. The models during these event support and flesh out the puzzle of the global dynamics.

  10. Supplemental Material for: Examining the Roles of the Easterly Wave Critical Layer and Vorticity Accretion During the Tropical Cyclogenesis of Hurricane Sandy

    DTIC Science & Technology

    2014-01-01

    equatorial waves, and extratropical intrusions. When convection is phase-locked to the underlying dynamic structure to such an extent that this...classification evidently guarantees (in all but a few instances) subsequent growth to a named tropical storm . It is not only the statistical narrowness of the...representing numerical simulations that moist vortical updrafts are the essential building blocks of the tropical storm within the rotating proto-vortex. These

  11. On the source of flare-ejecta responsible for geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1974-01-01

    It is shown that magnetic bottles as the sources of moving metric type 4 bursts are not responsible for the development of geomagnetic storms, despite the fact that shock waves producing type 2 bursts are the sources of the interplanetary shock waves, which produce SSC's on the geomagnetic field. These magnetic bottles, in general, tend to move in the solar envelope with the speed of several hundred Km/sec at most, which is much slower than that of the motion of type 2 radio sources.

  12. Changes in the extreme wave heights over the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, Nadia; Soomere, Tarmo

    2017-04-01

    Storms over the Baltic Sea and northwestern Europe have a large impact on the population, offshore industry, and shipping. The understanding of extreme events in sea wave heights and their change due to the climate change and variability is critical for assessment of flooding risks and coastal protection. The BACCII Assessment of Climate Change for the Baltic Sea Basin showed that the extreme events analysis of wind waves is currently not very well addressed, as well as satellite observations of the wave heights. Here we discuss the analysis of all existing satellite altimetry data over the Baltic Sea Basin regarding extremes in the wave heights. In this talk for the first time, we present an analysis of 100-yr return periods, fitted generalized Pareto and Weibull distributions, number, and frequency of extreme events in wave heights in the Baltic Sea measured by the multi-mission satellite altimetry. The data span more than 23 years and provide an excellent spatial coverage over the Baltic Sea, allowing to study in details spatial variations and changes in extreme wave heights. The analysis is based on an application of the Initial Distribution Method, Annual Maxima method and Peak-Over-Threshold approach to satellite altimetry data, all validated in comparison with in-situ wave height measurements. Here we show that the 100-yr return periods of wave heights show significant spatial changes over the Baltic Sea indicating a decrease in the southern part of the Baltic Sea and an increase in adjacent areas, which can significantly affect coast vulnerability. Here we compare the observed shift with storm track database data and discuss a spatial correlation and possible connection between the changes in the storm tracks over the Baltic Sea and the change in the extreme wave heights.

  13. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... cask designs. Discussion This rule will add the Holtec HI-STORM Flood/Wind (FW) cask system to the list...

  14. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Proposed... spent fuel storage cask regulations by revising the Holtec International HI-STORM 100 dry cask storage... Amendment No. 8 to CoC No. 1014 and does not include other aspects of the HI-STORM 100 dry storage cask...

  15. 77 FR 9515 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... regulations by revising the Holtec International HI-STORM 100 dry cask storage system listing within the... and safety will be adequately protected. This direct final rule revises the HI-STORM 100 listing in 10...

  16. Modern sedimentation processes in a wave-dominated coastal embayment: Espírito Santo Bay, southeast Brazil

    NASA Astrophysics Data System (ADS)

    Bastos, Alex Cardoso; Costa Moscon, Daphnne Moraes; Carmo, Dannilo; Neto, José Antonio Baptista; da Silva Quaresma, Valéria

    2015-02-01

    Sediment dynamics in wave-dominated coastal embayments are generally controlled by seasonal meteorological conditions, storms having a particularly strong influence. In the present study, such hydrodynamic processes and associated deposits have been investigated in a coastal embayment located along the southeast coast of Brazil, i.e. Espírito Santo Bay, in the winter (June/July) of 2008. The bay has undergone a series of human interventions that have altered the local hydrodynamic processes and, consequently, the sediment transport patterns. Facies distribution and sediment dynamics were examined by acoustic seabed mapping, sediment and core sampling, hydrodynamic measurements and sand transport modelling. The results show that sediment distribution can be described in terms of nearshore and offshore zones. The offshore bay sector is predominantly composed of "palimpsest" lithoclastic medium-coarse sands deposited in the course of the early Holocene transgression that peaked about 5,000 years ago. In the inner bay or nearshore zone (up to depths of 4-8 m), these older transgressive deposits are today overlain by a thin (up to 30-cm-thick) and partly patchy blanket of younger regressive fine sand/muddy fine sands. Both coarse- and fine-grained facies are being reworked during high-energy events (Hs>1.5 m) when fine sediment is resuspended, weak tide-induced drift currents causing the sand patches to be displaced. The coarser sediment, by contrast, is mobilized as bedload to produce wave ripples with spacings of up to 1.2 m. These processes lead to a sharp spatial delimitation between a fine sand/mud facies and a rippled coarse sand facies. The fine sand patches have a relief of about 20-30 cm and reveal a typical internal tempestite depositional sequence. Fair-weather wave-induced sediment transport (Hs<1 m), supported by weak tidal currents, seems to only affect the fine sediment facies. Sediment dynamics in Espírito Santo Bay is thus essentially controlled by wave action during storms, tidal currents playing a very subordinate role. Anthropogenic changes due to the construction of a port at the entrance of the bay have not only produced erosion along the beach, but could also explain the occurrence of sand patches concentrated in the north-eastern part of the bay. Because storm-induced deposits of the type observed in this study have an inherently patchy distribution, this feature needs to be taken into consideration when interpreting the rock record in terms of modern analogues.

  17. Communicating Coastal Risk Analysis in an Age of Climate Change

    DTIC Science & Technology

    2011-10-01

    extratropical storm systems); the geometry and geomorphology of the area (regional and local bathymetry and topography, including rivers, marshes, and...at risk from coastal hazards including storm surge inundation, precipitation driven flooding, waves, and coastal erosion. This population segment...will likely be exposed to increased risk as impacts of a changing climate are felt through elevated sea levels and potentially increased storm

  18. Aircraft Observation of Gravity Wave Breaking at the Storm Top and Comparison with High Resolution Cloud Model Simulations and Satellite Images

    NASA Astrophysics Data System (ADS)

    Wang, P. K.; Cheng, K. Y.; Lindsey, D. T.

    2017-12-01

    Deep convective clouds play an important role in the transport of momentum, energy, and chemical species from the surface to upper troposphere and lower stratosphere (UT/LS), but exactly how these processes occur and how important they are as compared to other processes are still up to debate. The main hurdle to the complete understanding of these transport processes is the difficulty in observing storm systems directly. Remote sensing data such as those obtained by radars and satellites are very valuable but they need correct interpretation before we can use them profitably. We have performed numerical simulations of thunderstorms using a physics-based cloud resolving model and compared model results with satellite observations. Many major features of observed satellite storm top images, such as cold-V, close in warm area, above anvil cirrus plumes, are successfully simulated and can be interpreted by the model physics. However, due to the limitation of resolution and other ambiguities, we have been unable to determine the real cause of some features such as the conversion of jumping cirrus to long trail plumes and whether or no small scale ( < 1 km) wave breaking occur. We are fortunate to have encountered a line of sea breeze storms along the coast of China during a flight from Beijing to Taipei in July 2106. The flight was at an altitude such that storm tops could be clearly observed. Nearly all of the mature storm cells that can be identified had very vigorous storm top activities, indicating very strong stratosphere/troposphere exchange (STE). There is no doubt that the signatures of wave breaking, i.e., jumping cirrus, occurs from very small scale (< 1 km) to tens of km. this matches our previous model results very well. Furthermore, one storm cell shows very clearly the process whereby a jumping cirrus is being transformed into a long trail cirrus plume which was often observed in satellite images. We have also obtained the corresponding Himawari-8 satellite images for this line of storms. Aircraft observation, satellite images and model results will be compared and the implications to STE discussed.

  19. Sensitivity of storm wave modeling to wind stress evaluation methods

    NASA Astrophysics Data System (ADS)

    Chen, Yingjian; Yu, Xiping

    2017-06-01

    The application of the wave boundary layer model (WBLM) for wind stress evaluation to storm wave modeling is studied using Hurricane Katrina (2005) as an example, which is chosen due to its great intensity and good availability of field data. The WBLM is based on the momentum and energy conservation equations and takes into account the physical details of air-sea interaction processes as well as energy dissipation due to the presence of sea spray. Four widely-used bulk-type formulas are also used for comparison. Simulated significant wave heights with WBLM are shown to agree well with the observed data over deep water. The WBLM yields a smaller wind stress coefficient on the left hand side of the hurricane track, which is reasonable considering the effect of the sea state on momentum transfer. Quantitative results show that large differences of the significant wave height are observed in the hurricane core among five wind stress evaluation methods and the differences are up to 12 m, which is in agreement with the general knowlege that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. However, it is the depth-induced energy dissipation, rather than the wind energy input, that dominates the wave height in the shallow water region. A larger value of depth-induced breaking parameter in the wave model results in better agreement with the measurements over shallow water.

  20. Physical response of a back-barrier estuary to a post-tropical cyclone

    USGS Publications Warehouse

    Beudin, Alexis; Ganju, Neil Kamal; Defne, Zafer; Aretxabaleta, Alfredo

    2017-01-01

    This paper presents a modeling investigation of the hydrodynamic and sediment transport response of Chincoteague Bay (VA/MD, USA) to Hurricane Sandy using the Coupled Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system. Several simulation scenarios with different combinations of remote and local forces were conducted to identify the dominant physical processes. While 80% of the water level increase in the bay was due to coastal sea level at the peak of the storm, a rich spatial and temporal variability in water surface slope was induced by local winds and waves. Local wind increased vertical mixing, horizontal exchanges, and flushing through the inlets. Remote waves (swell) enhanced southward flow through wave setup gradients between the inlets, and increased locally generated wave heights. Locally generated waves had a negligible effect on water level but reduced the residual flow up to 70% due to enhanced apparent roughness and breaking-induced forces. Locally generated waves dominated bed shear stress and sediment resuspension in the bay. Sediment transport patterns mirrored the interior coastline shape and generated deposition on inundated areas. The bay served as a source of fine sediment to the inner shelf, and the ocean-facing barrier island accumulated sand from landward-directed overwash. Despite the intensity of the storm forcing, the bathymetric changes in the bay were on the order of centimeters. This work demonstrates the spectrum of responses to storm forcing, and highlights the importance of local and remote processes on back-barrier estuarine function.

  1. Acceleration of Magnetospheric Relativistic Electrons by Ultra-Low Frequency Waves: A Comparison between Two Cases Observed by Cluster and LANL Satellites

    NASA Technical Reports Server (NTRS)

    Shao, X.; Fung, S. F.; Tan, L. C.; Sharma, A. S.

    2010-01-01

    Understanding the origin and acceleration of magnetospheric relativistic electrons (MREs) in the Earth's radiation belt during geomagnetic storms is an important subject and yet one of outstanding questions in space physics. It has been statistically suggested that during geomagnetic storms, ultra-low-frequency (ULF) Pc-5 wave activities in the magnetosphere are correlated with order of magnitude increase of MRE fluxes in the outer radiation belt. Yet, physical and observational understandings of resonant interactions between ULF waves and MREs remain minimum. In this paper, we show two events during storms on September 25, 2001 and November 25, 2001, the solar wind speeds in both cases were > 500 km/s while Cluster observations indicate presence of strong ULF waves in the magnetosphere at noon and dusk, respectively, during a approx. 3-hour period. MRE observations by the Los Alamos (LANL) spacecraft show a quadrupling of 1.1-1.5 MeV electron fluxes in the September 25, 2001 event, but only a negligible increase in the November 2.5, 2001 event. We present a detailed comparison between these two events. Our results suggest that the effectiveness of MRE acceleration during the September 25, 2001 event can be attributed to the compressional wave mode with strong ULF wave activities and the physical origin of MRE acceleration depends more on the distribution of toroidal and poloidal ULF waves in the outer radiation belt.

  2. Comparison of two recent storm surge events based on results of field surveys

    NASA Astrophysics Data System (ADS)

    Nakamura, Ryota; Shibayama, Tomoya; Mikami, Takahito; Esteban, Miguel; Takagi, Hiroshi; Maell, Martin; Iwamoto, Takumu

    2017-10-01

    This paper compares two different types of storm surge disaster based on field surveys. Two cases: a severe storm surge flood with its height of over 5 m due to Typhoon Haiyan (2013) in Philippine, and inundation of storm surge around Nemuro city in Hokkaido of Japan with its maximum surge height of 2.8 m caused by extra-tropical cyclone are taken as examples. For the case of the Typhoon Haiyan, buildings located in coastal region were severely affected due to a rapidly increase in ocean surface. The non-engineering buildings were partially or completely destroyed due to their debris transported to an inner bay region. In fact, several previous reports indicated two unique features, bore-like wave and remarkably high speed currents. These characteristics of the storm surge may contribute to a wide-spread corruption for the buildings around the affected region. Furthermore, in the region where the surge height was nearly 3 m, the wooden houses were completely or partially destroyed. On the other hand, in Nemuro city, a degree of suffering in human and facility caused by the storm surge is minor. There was almost no partially destroyed residential houses even though the height of storm surge reached nearly 2.8 m. An observation in the tide station in Nemuro indicated that this was a usual type of storm surge, which showed a gradual increase of sea level height in several hours without possessing the unique characteristics like Typhoon Haiyan. As a result, not only the height of storm surge but also the robustness of the buildings and characteristics of storm surge, such as bore like wave and strong currents, determined the existent of devastation in coastal regions.

  3. Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm time inner magnetosphere

    DOE PAGES

    Chaston, C. C.; Bonnell, J. W.; Wygant, J. R.; ...

    2015-12-06

    Here we report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to>50 keV while the electrons are field aligned up to ~1 keV. These particle distributions are observed during intervals of broadband low-frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfvén waves and kinetic field line resonances. The fluctuations extend from L≈3 out to the apogee of the Van Allen Probes spacecraft at L ≈ 6.5. Theymore » thereby span most of the L shell range occupied by the ring current. Lastly, these measurements suggest a model for ionospheric ion outflow and energization driven by dispersive Alfvén waves that may account for the large storm time contribution of ionospheric ions to magnetospheric energy density.« less

  4. Ionospheric total electron content seismo-perturbation after Japan's March 11, 2011, M=9.0 Tohoku earthquake under a geomagnetic storm; a nonlinear principal component analysis

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Woei

    2012-10-01

    Nonlinear principal component analysis (NLPCA) is implemented to analyze the spatial pattern of total electron content (TEC) anomalies 3 hours after Japan's Tohoku earthquake that occurred at 05:46:23 on 11 March, 2011 (UTC) ( M w =9). A geomagnetic storm was in progress at the time of the earthquake. NLPCA and TEC data processing were conducted on the global ionospheric map (GIM) for the time between 08:30 to 09:30 UTC, about 3 hours after this devastating earthquake and ensuing tsunami. Analysis results show stark earthquake-associated TEC anomalies that are widespread, and appear to have been induced by two acoustic gravity waves due to strong shaking (vertical acoustic wave) and the generation of the tsunami (horizontal Rayleigh mode gravity wave). The TEC anomalies roughly fit the initial mainshock and movement of the tsunami. Observation of the earthquake-associated TEC anomalies does not appear to be affected by a contemporaneous geomagnetic storm.

  5. EMIC waves covering wide L shells: MMS and Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei

    2017-07-01

    During 04:45:00-08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6-9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.tract type="synopsis">le type="main">Plain Language SummaryThe spatial distribution of EMIC waves is an opening question. With combined observations of MMS and Van Allen Probes, this paper has reported EMIC waves covering wide L shells. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. The result is helpful to revealing the spatial distribution and role of He2+ in excitation of EMIC waves.

  6. A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..

  7. Assessing coastal flood risk and sea level rise impacts at New York City area airports

    NASA Astrophysics Data System (ADS)

    Ohman, K. A.; Kimball, N.; Osler, M.; Eberbach, S.

    2014-12-01

    Flood risk and sea level rise impacts were assessed for the Port Authority of New York and New Jersey (PANYNJ) at four airports in the New York City area. These airports included John F. Kennedy International, LaGuardia, Newark International, and Teterboro Airports. Quantifying both present day and future flood risk due to climate change and developing flood mitigation alternatives is crucial for the continued operation of these airports. During Hurricane Sandy in October 2012 all four airports were forced to shut down, in part due to coastal flooding. Future climate change and sea level rise effects may result in more frequent shutdowns and disruptions in travel to and from these busy airports. The study examined the effects of the 1%-annual-chance coastal flooding event for present day existing conditions and six different sea level rise scenarios at each airport. Storm surge model outputs from the Federal Emergency Management Agency (FEMA) provided the present day storm surge conditions. 50th and 90thpercentile sea level rise projections from the New York Panel on Climate Change (NPCC) 2013 report were incorporated into storm surge results using linear superposition methods. These projections were evaluated for future years 2025, 2035, and 2055. In addition to the linear superposition approach for storm surge at airports where waves are a potential hazard, one dimensional wave modeling was performed to get the total water level results. Flood hazard and flood depth maps were created based on these results. In addition to assessing overall flooding at each airport, major at-risk infrastructure critical to the continued operation of the airport was identified and a detailed flood vulnerability assessment was performed. This assessment quantified flood impacts in terms of potential critical infrastructure inundation and developed mitigation alternatives to adapt to coastal flooding and future sea level changes. Results from this project are advancing the PANYNJ's understanding of the effects of sea level rise on coastal flooding at the airports and guiding decision-making in the selection of effective adaptation actions. Given the importance of these airports to transportation, this project is advancing security and continuity of national and international commerce well into the 21st century.

  8. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the Holtec HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage... Title 10 of the Code of Federal Regulations Section 72.214 to add the Holtec HI- STORM Flood/Wind cask...

  9. Effects on surface meteorological parameters and radiation levels of a heavy dust storm occurred in Central Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Maghrabi, A. H.; Al-Dosari, A. F.

    2016-12-01

    On 24 April 2015 a severe dust storm event arrived at Riyadh causing various problems. The quantitative impact of this dusty event on solar ultraviolet radiation UVA and UVB, global solar radiation component, downward and outgoing long-wave radiation, and some meteorological variables, was investigated and presented. The results showed significant changes in all of these parameters due to this event. Shortly after the storm arrived, UVA, UVB, global radiation, and air temperature rapidly decrease by 83%, 86%, 57.5%, and 9.4%, respectively. Atmospheric pressure increased by 4 mbar, relative humidly increased from 8% to 16%, and wind direction became northerly with wind speed increasing to a maximum of 6.3 m/s. Outgoing long-wave radiation decreased by 19 W/m2 and downward long-wave radiation increased by 41 W/m2. The dust storm caused the atmosphere to emit radiation that resembled that of a black body. The daily average of the atmospheric pressure showed no changes compared to a non-dusty day. Apart from the relative humidity (which increased by about 32%), the remainder of the variables have shown significant reduction, with different magnitudes, in their daily values due to the dust event compared to the values of a non-disturbed reference day. For instance, the daily mean values of the UVA radiation, air temperature, and outgoing long-wave radiation, decreased in the dusty day by 15.6%, 30.8% and 11.4%, respectively, as compared to the clear day.

  10. Integrated modeling of the dynamic meteorological and sea surface conditions during the passage of Typhoon Morakot

    NASA Astrophysics Data System (ADS)

    Lee, Han Soo; Yamashita, Takao; Hsu, John R.-C.; Ding, Fei

    2013-01-01

    In August 2009, Typhoon Morakot caused massive flooding and devastating mudslides in the southern Taiwan triggered by extremely heavy rainfall (2777 mm in 4 days) which occurred during its passage. It was one of the deadliest typhoons that have ever attacked Taiwan in recent years. In this study, numerical simulations are performed for the storm surge and ocean surface waves, together with dynamic meteorological fields such as wind, pressure and precipitation induced by Typhoon Morakot, using an atmosphere-waves-ocean integrated modelling system. The wave-induced dissipation stress from breaking waves, whitecapping and depth-induced wave breaking, is parameterized and included in the wave-current interaction process, in addition to its influence on the storm surge level in shallow water along the coast of Taiwan. The simulated wind and pressure field captures the characteristics of the observed meteorological field. The spatial distribution of the accumulated rainfall within 4 days, from 00:00 UTC 6 August to 00:00 UTC 10 August 2009, shows similar patterns as the observed values. The 4-day accumulated rainfall of 2777 mm at the A-Li Shan mountain weather station for the same period depicted a high correlation with the observed value of 2780 mm/4 days. The effects of wave-induced dissipation stress in the wave-current interaction resulted in increased surge heights on the relatively shallow western coast of Taiwan, where the bottom slope of the bathymetry ranges from mild to moderate. The results also show that wave-breaking has to be considered for accurate storm surge prediction along the east coast of Taiwan over the narrow bank of surf zone with a high horizontal resolution of the model domain.

  11. Giant boulders and Last Interglacial storm intensity in the North Atlantic

    PubMed Central

    Casella, Elisa; Harris, Daniel L.; Lorscheid, Thomas; Nandasena, Napayalage A. K.; Dyer, Blake; Sandstrom, Michael R.; Stocchi, Paolo; D’Andrea, William J.; Raymo, Maureen E.

    2017-01-01

    As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128–116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past “superstorms,” they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity. PMID:29087331

  12. Environmental Assessment for Demolition of SAC Alert Facility

    DTIC Science & Technology

    2008-05-01

    the installation and may improve the quality of storm water leaving the installation. No negative impact to storm water quality is anticipated...and drainage and storm water quality would be anticipated to Improve. Implementing the proposed action would have the potential to impact surface

  13. How to Recognize and Distinguish Low-Latitude Ionospheric Storms Disturbances Produced by TIDs or PPEFs During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Ribeiro, B. A.; Kavutarapu, V.; Fejer, B. G.; Pillat, V. G.

    2016-12-01

    The effects of geomagnetic storms on ionosphere are one of the important aspects of the space weather and identifying the possible sources of these perturbations is important. Among the possible sources of ionospheric perturbations, the Travelling Ionospheric Disturbance (TID) and Prompt Penetration Electric Field (PPEF) are the most important. In this study, we present and discuss the ionospheric response in the Brazilian sector due to geomagnetic storms occurred during January 2013 and March 2015. These space weather events were investigated using a network of 100 GPS-TEC stations. It has been noticed that the VTEC was disturbed during main phase in both storms. During the first event (January), a positive ionospheric storm peak in TEC is observed first beyond the EIA crest and sometime later at low-latitude and equatorial region. This delayed response at different latitudes could be a signature of TID propagation. In this specific event a TID propagating to northwest direction with a velocity of about 200 m/s. However, during the second event (March), 3 positive ionospheric storm peaks were observed in the VTEC from equator to low latitudes during the storm main phase, but these 3 peaks do not present wave propagation characteristics. Probably, an eastward electric field penetrated at equatorial and low-latitude regions uplifts the F-region where the recombination rates are lower leading to a positive ionospheric storm. To distinguish if the positive ionospheric storm was produced by TID or PPEF, it is important to observe the positive ionospheric storm changes along the meridional direction. In case of TIDs, a meridional propagation of the disturbance wave with a phase and speed will be observed. Therefore, the perturbation occurs first beyond the EIA crest and sometime later at the low latitudes and finally at the equatorial region. In case of PPEF the positive ionospheric storm takes place almost simultaneously from beyond the EIA crest to equatorial region.

  14. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

    USGS Publications Warehouse

    Barnard, Patrick; Maarten van Ormondt,; Erikson, Li H.; Jodi Eshleman,; Hapke, Cheryl J.; Peter Ruggiero,; Peter Adams,; Foxgrover, Amy C.

    2014-01-01

    The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

  15. Barrier Island Failure During Hurricane Katrina

    NASA Astrophysics Data System (ADS)

    Sallenger, A.; Howd, P.; Stockdon, H.; Wright, C. W.; Fauver, L.; Guy, K.

    2006-12-01

    Classical models of barrier-island response to storms predict that wave runup can periodically overtop an island and transport sand from its seaside to its bayside, forcing the island to migrate landward. While this process can destroy fixed human developments, the island survives with little net change in form or dimensions. In contrast, we find that Louisiana's Chandeleur Islands during Hurricane Katrina were not periodically overtopped by waves, but were continuously inundated by storm surge. When such inundation occurs locally on a barrier island, it can force the erosion of a narrow breach that connects sea and bay. However, little is known about the response of a barrier island when it is entirely submerged. Here, we show that the Chandeleur Islands approached complete failure, losing 84% of their surface area. Their Gulf of Mexico shorelines retreated landward an average of 268 m, the largest retreat ever reported for a storm. Sand was stripped from the islands, reducing their peak elevation from >6 m to <3 m and exposing them to further degradation and potential failure by future hurricanes of less intensity than Katrina. Further, the islands that survived Katrina were marsh remnants composed of mud and vegetation that relatively small waves diminished following the storm. The Chandeleur Islands are prone to failure because of their location on the Mississippi delta where small sand supply and large sea-level rise (induced locally by land subsidence) limit natural rebuilding of the islands following a storm. The response of the delta's barrier islands during Hurricane Katrina provides a warning of how the world's barrier islands might respond to storm-surge inundation should predictions of accelerated global sea level rise prove accurate.

  16. Impacts of Hurricane Rita on the beaches of western Louisiana: Chapter 5D in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Stockdon, Hilary F.; Fauver, Laura A.; Sallenger,, Asbury H.; Wright, C. Wayne

    2007-01-01

    Hurricane Rita made landfall as a category 3 storm in western Louisiana in late September 2005, 1 month following Hurricane Katrina's devastating landfall in the eastern part of the State. Large waves and storm surge inundated the lowelevation coastline, destroying many communities and causing extensive coastal change including beach, dune, and marsh erosion.

  17. Kennedy Space Center ocean beach erosion

    NASA Technical Reports Server (NTRS)

    Mehta, A. J.; Obrien, M. P.

    1973-01-01

    Dune barrier erosion and possible breakthrough due to storm and hurricane wave activity is studied near Mosquito Lagoon, in Kennedy Space Center property. The results of a geological as well as hydrodynamic appraisal of the problem area indicate that no inlet has existed across the dune barrier since 500 A.D., and that there is little likelihood of a possible breakthrough inlet remaining open permanently, primarily because the relatively shallow lagoon does not contain enough volume of water to maintain an inlet between the ocean and the lagoon. It is therefore recommended that only minimal measures, such as closing up the man-made passes across the dunes, be carried out to ensure continuation of the action of natural beach maintaining processes.

  18. Sorted bedform pattern evolution: Persistence, destruction and self-organized intermittency

    NASA Astrophysics Data System (ADS)

    Goldstein, Evan B.; Murray, A. Brad; Coco, Giovanni

    2011-12-01

    We investigate the long-term evolution of inner continental shelf sorted bedform patterns. Numerical modeling suggests that a range of behaviors are possible, from pattern persistence to spatial-temporal intermittency. Sorted bedform persistence results from a robust sorting feedback that operates when the seabed features a sufficient concentration of coarse material. In the absence of storm events, pattern maturation processes such as defect dynamics and pattern migration tend to cause the burial of coarse material and excavation of fine material, leading to the fining of the active layer. Vertical sorting occurs until a critical state of active layer coarseness is reached. This critical state results in the local cessation of the sorting feedback, leading to a self-organized spatially intermittent pattern, a hallmark of observed sorted bedforms. Bedforms in shallow conditions and those subject to high wave climates may be temporally intermittent features as a result of increased wave orbital velocity during storms. Erosion, or deposition of bimodal sediment, similarly leads to a spatially intermittent pattern, with individual coarse domains exhibiting temporal intermittence. Recurring storm events cause coarsening of the seabed (strengthening the sorting feedback) and the development of large wavelength patterns. Cessation of storm events leads to the superposition of storm (large wavelength) and inter-storm (small wavelength) patterns and spatial heterogeneity of pattern modes.

  19. Dynamics of the Trapped Electron Phase Space Density in Relation to the Wave Activity in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J.

    2008-05-01

    The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.

  20. An innovative early warning system for floods and operational risks in harbours

    NASA Astrophysics Data System (ADS)

    Smets, Steven; Bolle, Annelies; Mollaert, Justine; Buitrago, Saul; Gruwez, Vincent

    2016-04-01

    Early Warning Systems (EWS) are nowadays becoming fairly standard in river flood forecasting or in large scale hydrometeorological predictions. For complex coastal morphodynamic problems or in the vicinity of complex coastal structures, such as harbours, EWS are much less used because they are both technically and computationally still very challenging. To advance beyond the state-of-the-art, the EU FP7 project Risc-KIT (www.risc-kit.eu) is developing prototype EWS which address specifically these topics. This paper describes the prototype EWS which IMDC has developed for the case study site of the harbour of Zeebrugge. The harbour of Zeebrugge is the largest industrial seaport on the coast of Belgium, extending more than 3 km into the sea. Two long breakwaters provide shelter for the inner quays and docks for regular conditions and frequent storms. Extreme storms surges and waves can however still enter the harbour and create risks for the harbour operations and infrastructure. The prediction of the effects of storm surges and waves inside harbours are typically very complex and challenging, due to the need of different types of numerical models for representing all different physical processes. In general, waves inside harbours are a combination of locally wind generated waves and offshore wave penetration at the port entrance. During extreme conditions, the waves could overtop the quays and breakwaters and flood the port facilities. Outside a prediction environment, the conditions inside the harbour could be assessed by superimposing processes. The assessment can be carried out by using a combination of a spectral wave model (i.e. SWAN) for the wind generated waves and a Boussinesq type wave model (i.e. Mike 21 BW) for the wave penetration from offshore. Finally, a 2D hydrodynamic model (i.e. TELEMAC) can be used to simulate the overland flooding inside the port facilities. To reproduce these processes in an EWS environment, an additional challenge is to cope with the limitations of the calculation engines. This is especially true with the Boussinesq model. A model train is proposed that integrates processed based modelling, for wind generated waves, with an intelligent simplification of the Boussinesq model for the wave penetration effects. These wave conditions together with the extreme water levels (including storm surge) can then be used to simulate the overtopping/overflow behaviour for the quays. Finally, the hydrodynamic model TELEMAC is run for the inundation forecast inside the port facilities. The complete model train was integrated into the Deltares Delft FEWS software to showcase the potential for real time operations.

  1. Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Paral, J.; Hudson, M. K.; Kress, B. T.; Wiltberger, M. J.; Wygant, J. R.; Singer, H. J.

    2015-08-01

    Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L = 4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on the Van Allen Probes for the 8 October 2013 storm with ULF wave power simulated using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) magnetospheric simulation code coupled to the Rice Convection Model (RCM). Two other storms with strong magnetopause compression, 8-9 October 2012 and 17-18 March 2013, are also examined. We show that the global MHD model captures the azimuthal magnetosonic impulse propagation speed and amplitude observed by the Van Allen Probes which is responsible for prompt acceleration at MeV energies reported for the 8 October 2013 storm. The simulation also captures the ULF wave power in the azimuthal component of the electric field, responsible for acceleration and radial transport of electrons, at frequencies comparable to the electron drift period. This electric field impulse has been shown to explain observations in related studies (Foster et al., 2015) of electron acceleration and drift phase bunching by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on the Van Allen Probes.

  2. Reconnaissance investigation of Caribbean extreme wave deposits--Preliminary observations, interpretations, and research directions

    USGS Publications Warehouse

    Morton, Robert A.; Richmond, Bruce M.; Jaffe, Bruce E.; Gelfenbaum, Guy

    2006-01-01

     This report presents an overview of preliminary geological investigations and recommended future research activities in the Caribbean region pertaining to coastal hazards with an emphasis on establishing tsunami risk for U.S. territories. Fieldwork was conducted in March 2006 on the islands of Bonaire, Puerto Rico, and Guadeloupe to evaluate the stratigraphic records of extreme wave deposits as possible indicators of paleotsunami recurrence. Morphological, sedimentological, and stratigraphic evidence indicate that shore-parallel coral rubble deposits composed of coarse clasts and sand that are 10s of meters wide and several meters thick are depositional complexes that have accumulated for a few centuries or millennia, and are not entirely the result of one or a few tsunamis as previously reported. The origins of boulder fields on elevated rock platforms of the Caribbean islands are more complicated than the origins of ridge complexes because boulder fields can be constructed by either storm waves or tsunamis. What is needed now for more conclusive interpretations is a systematic sedimentological approach to deposit analysis and a set of criteria for distinguishing between coarse clast storm and tsunami deposits. Assembling more field data from other Caribbean islands, analyzing stratigraphic deposits on Puerto Rico and Bonaire, and investigating boulder field deposits resulting from a historical tsunami can accomplish this. Also needed are improved sediment transport models for coarse clasts that can be used to estimate the competence and capacity of tsunamis and storms waves and to determine whether a deposit likely was created by a tsunami or extreme storm. Improved models may also be useful for reconstructing the magnitude of extreme wave events.

  3. Improving the Analysis Capabilities of the Synthetic Theater Operations Research Model (STORM)

    DTIC Science & Technology

    2014-09-01

    course of action CSG carrier strike group DMSO defense modeling and simulation DOD Department of Defense DOE design of experiments ESG...development of an overall objective or end-state; a ways ( courses of action); and a means (available resources). STORM is a campaign analysis tool that...refers to the courses of action (COA) that are carefully planned out in advance by individuals relevant to a specific campaign (such as N81). For

  4. Low-grazing angle laser scans of foreshore topography, swash and inner surf-zone wave heights, and mean water level: validation and storm response

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.; Forte, M.; Slocum, R.

    2010-12-01

    Accurately predicting beach evolution during storms requires models that correctly parameterize wave runup and inner surf-zone processes, the principle drivers of sediment exchange between the beach and surf-zone. Previous studies that aimed at measuring wave runup and swash zone water levels have been restricted to analyzing water-elevation time series of (1) the shoreward-most swash excursion using video imaging or near-bed resistance wires, or (2) the free water surface at a particular location on the foreshore using pressure sensors. These data are often compared with wave forcing parameters in deeper water as well as with beach topography observed at finite intervals throughout the time series to identify links between foreshore evolution, wave spectra, and water level variations. These approaches have lead to numerous parameterizations and empirical equations for wave runup but have difficulty providing adequate data to quantify and understand short-term spatial and temporal variations in foreshore evolution. As a result, modeling shoreline response and changes in sub-aerial beach volume during storms remains a substantial challenge. Here, we demonstrate a novel technique in which a terrestrial laser scanner is used to continuously measure beach and foreshore topography as well as water elevation (and wave height) in the swash and inner surf-zone during storms. The terrestrial laser scanner is mounted 2-m above the dune crest at the Field Research Facility in Duck, NC in line with cross-shore wave gauges located at 2-m, 3-m, 5-m, 6-m, and 8-m of water depth. The laser is automated to collect hourly, two-dimensional, 20-minute time series of data along a narrow swath in addition to an hourly three-dimensional laser scan of beach and dune topography +/- 250m alongshore from the laser. Low grazing-angle laser scans are found to reflect off of the surface of the water, providing spatially (e.g. dx <= 0.1 m) and temporally (e.g. dt = 3Hz) dense elevation data of the foreshore, swash, and inner-surf zone bore heights. Foreshore elevation precision is observed to be < 0.01m. Sea surface elevation data is confined to the breaking region and is more extensive in rough, fully-dissipative surf zones, with the fronts of breaking waves and dissipated bores resolved most clearly. Time series of swash front (runup) data will be compared with simultaneously collected video-imaged swash timestacks, and wave height data of the inner surf zone will be compared with wave data from an aquadopp in 2m of water depth. In addition, analysis of the water level time series data at 10 cm intervals across the profile enables reconstruction of the shoreline setup profile as well as cross-shore variations in 1D wave spectra. Foreshore beach morphology evolution is analyzed using both the 2D cross-shore profile data, as well as the 3D topographic data during multiple storm events. Potential sources of error in the measurements, such as shadowing of the wave troughs or reflectance off of wave spray is identified and quantified.

  5. Polarimetric Measurements Over the Sea-Surface with the Airborne STORM Radar in the Context of the Geophysical Validation of the ENVISAT ASAR

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.; Mouche, A.

    2003-04-01

    Among the new specificities of the ENVISAT/ASAR particular polarization diversity make the instrument very promising, but require complementary studies in addition to those already completed with the ERS data. Moreover, in the context of the preparation of other missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. In particular, over the ocean the question remains open regarding the estimate of wind speed, directional spectra of surface ocean waves and maybe other parameters related to wave breaking. CETP has designed and developed a new airborne radar called STORM], which has a full polarimetric capability. STORM is a new-version of the RESSAC airborne radar already used in previous experiments (Hauser et al, JGR 1992). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. In addition to RESSAC (which was mono-polarized) it offers a polarization diversity (receiving simultaneously in H and V polarizations) which enables us to analyze the radar cross- section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. In the context of the validation of the ASAR wave mode of ENVISAT, a field experiment will be carried out in October and November 2002 over the ocean (offshore the coasts of Brittany, France), with STORM] embarked on the MERLIN-IV aircraft of Meteo-France. We intend to perform about 20 flights under the ENVISAT SAR swath during a one-month experiment, with overpasses over a directional wave buoy also equipped with wind measurements. The ASAR image mode (in HH or VV) or alternating polarization mode will be requested during these flights. STORM will be used in a mode which will permit to measure the full complex scattering matrix over the sea surface at incidence angles ranging from 10 to 35°. In addition to conventional analysis of the radar cross-sections in HH, and VV polarizations to estimate wind speed and directional wave spectra, cross-polarized cross-sections and parameters derived from the full polarimetric matrix will be analyzed to investigate their relation with the environmental conditions (wind, waves), using co-located in situ measurements. With this combination of measurements we will first assess the performance of the ASAR products and inversion scheme to estimate the 2D wave spectra and wind in various configurations of polarization state. In addition, we expect new results on the parameters related to the full polarimetric matrix and their relation with environmental conditions. During this workshop, first results of this experiment will be presented.

  6. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region: The Magnetic Storm May 1-7 1998

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.

    2003-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  7. 33 CFR 203.15 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., after the structure has been damaged by a flood, hurricane, or coastal storm, to the level of protection... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... of hurricanes, tsunamis, and coastal storms. These effects are primarily to protect against wave...

  8. Multi-scale variability of storm Ophelia 2017: The importance of synchronised environmental variables in coastal impact.

    PubMed

    Guisado-Pintado, Emilia; Jackson, Derek W T

    2018-07-15

    Low frequency, high magnitude storm events can dramatically alter coastlines, helping to relocate large volumes of sediments and changing the configuration of landforms. Increases in the number of intense cyclones occurring in the Northern Hemisphere since the 1970s is evident with more northward tracking patterns developing. This brings added potential risk to coastal environments and infrastructure in northwest Europe and therefore understanding how these high-energy storms impact sandy coasts in particular is important for future management. This study highlights the evolution of Storm (formally Hurricane) Ophelia in October 2017 as it passed up and along the western seaboard of Ireland. The largest ever recorded Hurricane to form in the eastern Atlantic, we describe, using a range of environmental measurements and wave modelling, its track and intensity over its duration whilst over Ireland. The impact on a stretch of sandy coast in NW Ireland during Storm Ophelia, when the winds were at their peak, is examined using terrestrial laser scanning surveys pre- and post-storm to describe local changes of intertidal and dune edge dynamics. During maximum wind conditions (>35 knots) waves no >2m were recorded with an oblique to parallel orientation and coincident with medium to low tide (around 0.8m). Therefore, we demonstrate that anticipated widespread coastal erosion and damage may not always unfold as predicted. In fact, around 6000m 3 of net erosion occurred along the 420m stretch of coastline with maximum differences in beach topographic changes of 0.8m. The majority of the sediment redistribution occurred within the intertidal and lower beach zone with some limited dune trimming in the southern section (10% of the total erosion). Asynchronous high water (tide levels), localised offshore winds as well as coastline orientation relative to the storm winds and waves plays a significant role in reducing coastal erosional impact. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Observing storm surges from space: Hurricane Igor off Newfoundland

    PubMed Central

    Han, Guoqi; Ma, Zhimin; Chen, Dake; deYoung, Brad; Chen, Nancy

    2012-01-01

    Coastal communities are becoming increasingly more vulnerable to storm surges under a changing climate. Tide gauges can be used to monitor alongshore variations of a storm surge, but not cross-shelf features. In this study we combine Jason-2 satellite measurements with tide-gauge data to study the storm surge caused by Hurricane Igor off Newfoundland. Satellite observations reveal a storm surge of 1 m in the early morning of September 22, 2010 (UTC) after the passage of the storm, consistent with the tide-gauge measurements. The post-storm sea level variations at St. John's and Argentia are associated with free equatorward-propagating continental shelf waves (with a phase speed of ~10 m/s and a cross-shelf decaying scale of ~100 km). The study clearly shows the utility of satellite altimetry in observing and understanding storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models. PMID:23259048

  10. EMIC wave events during the four QARBM challenge intervals

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Posch, J. L.; Braun, D.; Li, W.; Angelopoulos, V.; Kellerman, A. C.; Kletzing, C.; Lessard, M.; Mann, I. R.; Tero, R.; Shiokawa, K.; Wygant, J. R.

    2017-12-01

    We present observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM focus group on Quantitative Assessment of Radiation Belt Modeling: March 17-18 (Stormtime Enhancement), May 31-June 2 (Stormtime Dropout), September 19-20 (Non-storm Enhancement), and September 23-25 (Non-storm Dropout). Observations include EMIC wave data from the Van Allen Probes and THEMIS spacecraft in the inner magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from the low-altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination reveals consistent occurrence patterns, which are then used to evaluate the effectiveness of EMIC waves in causing dropouts of radiation belt electrons during these GEM events.

  11. Modeling Storm Surges Using Discontinuous Galerkin Methods

    DTIC Science & Technology

    2016-06-01

    devastating impact on coastlines throughout the United States. In order to accurately understand the impacts of storm surges there needs to be an effective ...model. One of the governing systems of equations used to model storm surges’ effects is the Shallow Water Equations (SWE). In this thesis, we solve the...closer to the shoreline. In our simulation, we also learned of the effects spurious waves can have on the results. Due to boundary conditions, a

  12. Detection and Modeling of a Meteotsunami in Lake Erie During a High Wind Event on May 27, 2012

    NASA Astrophysics Data System (ADS)

    Anderson, E. J.; Schwab, D. J.; Lombardy, K. A.; LaPlante, R. E.

    2012-12-01

    On May 27, 2012, a mesoscale convective system moved southeast across the central basin of Lake Erie (the shallowest of the Great Lakes) causing an increase in surface wind speed from 3 to 15 m/s over a few minutes. Although no significant pressure change was observed during this period (+1 mbar), the storm resulted in 3 reported edge waves on the southern shore (5 minutes apart), with wave heights up to 7 feet (2.13 m). Witnesses along the coast reported that the water receded before the waves hit, the only warning of the impending danger. After impact on the southern shore, several individuals were stranded in the water near Cleveland, Ohio. Fortunately, there were no fatalities or serious injury as a result of the edge waves. The storm event yielded two separate but similar squall line events that impacted the southern shore of Lake Erie several hours apart. The first event had little impact on nearshore conditions, however, the second event (moving south-eastward at 21.1 m/s or 41 knots), resulted in 7 ft waves near Cleveland as reported above. The thunderstorms generated three closely packed outflow boundaries that intersected the southern shore of Lake Erie between 1700 and 1730 UTC. The outflow boundaries were followed by a stronger outflow at 1800 UTC. Radial velocities on the WSR-88D in Cleveland, Ohio indicated the winds were stronger in the second outflow boundary. The radar indicated winds between 20.6 and 24.7 m/s (40 and 48 knots) within 240 meters (800 feet) above ground level. In order to better understand the storm event and the cause of the waves that impacted the southern shore, a three-dimensional hydrodynamic model of Lake Erie has been developed using the Finite Volume Coastal Ocean Model (FVCOM). The model is being developed as part of the Great Lakes Coastal Forecasting (GLCFS), a set of experimental real-time pre-operational hydrodynamic models run at the NOAA Great Lakes Research Laboratory that forecast currents, waves, temperature, and water levels for the Great Lakes and connecting channels. The model is simulated for the storm period on May 27, 2012 to reproduce both the benign and the wave-inducing events using interpolated 6-minute meteorology (wind, pressure, air temperature) from shoreline observations recorded by the National Weather Service. Additional scenarios are carried out to understand the influence of storm speed and direction, wind speed, and pressure change on edge wave production near the southern shore of Lake Erie. Through this study, we hope to fully elucidate the early summer meteotsunami event and build an understanding that will enable the development of a meteotsunami forecasting system for the Great Lakes.

  13. Understanding impacts of tropical storms and hurricanes on submerged bank reefs and coral communities in the northwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lugo-Fernández, A.; Gravois, M.

    2010-06-01

    A 100-year climatology of tropical storms and hurricanes within a 200-km buffer was developed to study their impacts on coral reefs of the Flower Garden Banks (FGB) and neighboring banks of the northwestern Gulf of Mexico. The FGB are most commonly affected by tropical storms from May through November, peaking in August-September. Storms approach from all directions; however, the majority of them approach from the southeast and southwest, which suggests a correlation with storm origin in the Atlantic and Gulf of Mexico. A storm activity cycle lasting 30-40 years was identified similar to that known in the Atlantic basin, and is similar to the recovery time for impacted reefs. On average there is 52% chance of a storm approaching within 200 km of the FGB every year, but only 17% chance of a direct hit every year. Storm-generated waves 5-25 m in height and periods of 11-15 s induce particle speeds of 1-4 m s -1 near these reefs. The wave-current flow is capable of transporting large (˜3 cm) sediment particles, uplifting the near-bottom nepheloid layer to the banks tops, but not enough to break coral skeletons. The resulting storm-driven turbulence induces cooling by heat extraction, mixing, and upwelling, which reduces coral bleaching potential and deepens the mixed layer by about 20 m. Tropical storms also aid larvae dispersal from and onto the FGB. Low storm activity in 1994-2004 contributed to an 18% coral cover increase, but Hurricane Rita in 2005 reduced it by 11% and brought coral cover to nearly pre-1994 levels. These results suggest that the FGB reefs and neighboring reef banks act as coral refugia because of their offshore location and deep position in the water column, which shields them from deleterious effects of all but the strongest hurricanes.

  14. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm

    USGS Publications Warehouse

    Gedan, Keryn B.; Kirwan, Matthew L.; Wolanski, Eric; Barbier, Edward B.; Silliman, Brian R.

    2011-01-01

    For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline protection.

  15. The Surge, Wave, and Tide Hydrodynamics (SWaTH) network of the U.S. Geological Survey—Past and future implementation of storm-response monitoring, data collection, and data delivery

    USGS Publications Warehouse

    Verdi, Richard J.; Lotspeich, R. Russell; Robbins, Jeanne C.; Busciolano, Ronald J.; Mullaney, John R.; Massey, Andrew J.; Banks, William S.; Roland, Mark A.; Jenter, Harry L.; Peppler, Marie C.; Suro, Thomas P.; Schubert, Christopher E.; Nardi, Mark R.

    2017-06-20

    After Hurricane Sandy made landfall along the northeastern Atlantic coast of the United States on October 29, 2012, the U.S. Geological Survey (USGS) carried out scientific investigations to assist with protecting coastal communities and resources from future flooding. The work included development and implementation of the Surge, Wave, and Tide Hydrodynamics (SWaTH) network consisting of more than 900 monitoring stations. The SWaTH network was designed to greatly improve the collection and timely dissemination of information related to storm surge and coastal flooding. The network provides a significant enhancement to USGS data-collection capabilities in the region impacted by Hurricane Sandy and represents a new strategy for observing and monitoring coastal storms, which should result in improved understanding, prediction, and warning of storm-surge impacts and lead to more resilient coastal communities.As innovative as it is, SWaTH evolved from previous USGS efforts to collect storm-surge data needed by others to improve storm-surge modeling, warning, and mitigation. This report discusses the development and implementation of the SWaTH network, and some of the regional stories associated with the landfall of Hurricane Sandy, as well as some previous events that informed the SWaTH development effort. Additional discussions on the mechanics of inundation and how the USGS is working with partners to help protect coastal communities from future storm impacts are also included.

  16. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.

  17. Gravity wave initiated convection

    NASA Astrophysics Data System (ADS)

    Hung, R. J.

    1990-09-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  18. Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives them out of the loss cone on the dayside. So convection and wave scattering reinforce each other in the nightside, but interfere in the dayside sector.

  19. 75 FR 19246 - Safety Zone; Desert Storm, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ...-AA00 Safety Zone; Desert Storm, Lake Havasu, AZ AGENCY: Coast Guard, DHS. ACTION: Temporary final rule... navigable waters of the Colorado River in Lake Havasu, Lake Havasu City, Arizona in support of the Desert.... Background and Purpose The Lake Racer LLC is sponsoring the Desert Storm Charity Poker Run and Exhibition Run...

  20. Boulder Dislodgement by Tsunamis and Storms: Version 2.0

    NASA Astrophysics Data System (ADS)

    Weiss, Robert

    2016-04-01

    In the past, boulder dislodgement by tsunami and storm waves has been approached with a simple threshold approach in which a boulder was moved if the sum of the acting forces on the boulder is larger than zero. The impulse theory taught us, however, that this criterion is not enough to explain particle dislodgement. We employ an adapted version of the Newton's Second Law of Motion (NSLM) in order to consider the essence of the impulse theory which is that the sum of the forces has to exceed a certain threshold for a certain period of time. Furthermore, a classical assumption is to consider linear waves. However, when waves travel toward the shore, they alter due to non-linear processes. We employ the TRIADS model to quantify that change and how it impacts boulder dislodgement. We present our results of the coupled model (adapted NSLM and TRIADS model). The results project a more complex picture of boulder transport by storms and tsunami. The following question arises: What information do we actually invert, and what does it tell us about the causative event?

  1. Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study.

    PubMed

    Cattell, C A; Breneman, A W; Thaller, S A; Wygant, J R; Kletzing, C A; Kurth, W S

    2015-09-28

    We show the first evidence for locally excited chorus at frequencies below 0.1  f ce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5  f ce and f / f ce decreases rapidly, often to frequencies well below 0.1  f ce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms can excite unusually low frequency chorus, which is resonant with more energetic electrons than typical chorus, with critical implications for understanding radiation belt evolution.

  2. Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, J. Bernard

    2016-03-06

    It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here in this paper we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8–9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that accelerationmore » by chorus is much more efficient than losses by microbursts during the storm. It is also revealed that the strong chorus wave activity without relativistic electron microbursts does not lead to significant flux variations of relativistic electrons. Thus, effective acceleration of relativistic electrons is caused by chorus that can cause relativistic electron microbursts.« less

  3. Potential impact of remote sensing data on sea-state analysis and prediction

    NASA Technical Reports Server (NTRS)

    Cardone, V. J.

    1983-01-01

    The severe North Atlantic storm which damaged the ocean liner Queen Elizabeth 2 (QE2) was studied to assess the impact of remotely sensed marine surface wind data obtained by SEASAT-A, on sea state specifications and forecasts. Alternate representations of the surface wind field in the QE2 storm were produced from the SEASAT enhanced data base, and from operational analyses based upon conventional data. The wind fields were used to drive a high resolution spectral ocean surface wave prediction model. Results show that sea state analyses would have been vastly improved during the period of storm formation and explosive development had remote sensing wind data been available in real time. A modest improvement in operational 12 to 24 hour wave forecasts would have followed automatically from the improved initial state specification made possible by the remote sensing data in both numerical and sea state prediction models. Significantly improved 24 to 48 hour wave forecasts require in addition to remote sensing data, refinement in the numerical and physical aspects of weather prediction models.

  4. Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-01-01

    Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27-24 Ma). Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system in the Early Miocene. The vast shell concentrations comprise a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deep to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished each recording a relative storm wave base depth. (1) A shallow storm wave base is shown by nearshore mollusks, corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclind foraminifers, Eupatagus echinoids and corallinaceans; and (3) a deep storm wave base is represented by an Amussiopecten-Schizaster echinoid assemblage. Vertical changes in these skeletal associations give evidence of gradually increasing tropical cyclone intensity in line with third-order sea level rise. The intensity of cyclones over the Arabian Sea is primarily linked to the strength of the Indian monsoon. Therefore and since the topographic boundary conditions for the Indian monsoon already existed in the Late Oligocene, the longer-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~26 Ma followed by a period of monsoon weakening during the peak of the Late Oligocene global warming (~24 Ma).

  5. Permian storm current-produced offshore bars from an ancient shelf sequence : Northwestern Karoo basin, republic of South Africa

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Zawada, P. K.

    The Ecca-Beaufort transition zone from the Karoo Basin comprises upward-coarsening sequences which are interpreted as prograding, storm-produced offshore bars. Eight facies are recognised: (A) dark-grey shale, (B) thinly interbedded siltstone and mudstone, (C) thinly interbedded siltstone and very fine-grained sandstone, (D) blue-grey coarse-grained siltstone, (E) low-angle truncated and flat-laminated sandstone, (F) wave-rippled sandstone, (G) planar cross-bedded sandstone, (H) intraformational clay-pellet conglomerate. Four sub-environments are recognised, these being: (1) the bar crest which comprises proximal tempestites, (2) the bar slope consisting of soft-sediment deformed siltstone, (3) the bar fringe/ margin which is composed of storm layers and offshore siltstones and (4) the interbar/offshore environment comprising siltstone and distal storm layers. These bars formed in response to wave and storm processes and migrated across a muddy shelf environment. The orientation of bars was probably coast-parallel to subparallel with respect to the inferred north-northwest-south-southeast coastline. These proposed, storm-produced bars acted as major depo-centres within the shelf setting of the study area. As shelf sediments are recorded from almost the entire northwestern Karoo Basin it is anticipated that bar formation was an important sedimentary factor in the deposition of the sediments now referred to as the Ecca-Beaufort transition zone.

  6. Self-organising of wave and beach relief in storm: field experiments

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Olga; Saprykina, Yana; Kuznetsov, Sergey; Stremel, Margarita; Korsinin, Dmitry; Trifonova, Ekaterina; Andreeva, Natalia

    2017-04-01

    This paper presents results of waves and morfodynamics observation carried out in frame of complex field experiments "Shkorpilowtsy-2016" and "Shkorpilowtsy-2007", which were made in order to understand how bottom deformations depend on wave parameters and how wave-bottom self-organisation process runs during storm events. Sediment transport and profile deformations were analysed taking into account the presence of underwater bar (data 2007) and without it (data 2016). Experiments were made on field base of Institute of Oceanology "Fridtjof Nansen" (Bulgarian Academy of Sciences) in Shkorpilowtsy settlement, that is locates on Black Sea coast, 40 km from Varna. The base is equipped with 253 m research pier that provide measuring until 5 m depth on distance 200 m from shore. During filed works synchronous observations on wave parameters and bottom changes were made on average three times a day for one month: 18.09-08.10.2007 and 07.10-02.11.2016. Morphological observations involved cross-shore beach profile deformations measuring along the scientific pier from shore to sea through each 2 m using metal pole in 2007 and metal or rope lot in 2016. Wave measurements included visual observations of breaking and surf zones location, wave type (wind or swell wave) and direction as well as free surface deviation (wave chronogram) registrations using high-frequency capacitive or resistance sensors mounted along the pier. In 2007 registration of free surface elevation was carried out with 7 capacitance and 8 resistant wire gauges, in 2016 - with 18 capacitance wire gauges. Sampling frequency was 5 Hz in 2007 and 20 Hz in 2016, duration of the records varied from 20 min up to one hour in 2007 and between 10 min and one hour in 2016. Wave spectra computed from chronogram allowed to estimate wave spectral (significant wave height, spectral peak and mean periods and complex) and integral parameters (Irribaren and Ursell numbers) to analyse dependence bottom deformations on it. Self-organising of bottom relief and waves were studied on a scale of several storms. Results of investigations show that increase of significant wave height and spectral peak period of wave entering in coastal zone as well as Ursell number lead to erosion, which was localised in first 100 m near on barred profile and covered whole observed profile in case without bar. Features of sediment transport by forming a mobile temporal underwater bar were examined for cases of flat sloping and barred underwater beach profiles. On timescale of one storm type of wave breaking affect sediment transport: plunging wave breaking is responsible for formation and evolution of underwater sand bar as well as decreasing of sediment amount in upper part of beach profile and shoreline regression, while spilling do not lead to significant bottom deformations. The work was supported by Russian Foundation of Basic Research (grants 16-55-76002 (ERA-a), 16-35-00542 (mol_a), 15-05-08239, 15-05-04669).

  7. Future Changes in Cyclonic Wave Climate in the North Atlantic, with a Focus on the French West Indies

    NASA Astrophysics Data System (ADS)

    Belmadani, A.; Palany, P.; Dalphinet, A.; Pilon, R.; Chauvin, F.

    2017-12-01

    Tropical cyclones (TCs) are a major environmental hazard in numerous small islands such as the French West Indies (Guadeloupe, Martinique, St-Martin, St-Barthélémy). The intense associated winds, which can reach 300 km/h or more, can cause serious damage in the islands and their coastlines. In particular, the combined action of waves, currents and low atmospheric pressure leads to severe storm surge and coastal flooding. Here we report on future changes in cyclonic wave climate for the North Atlantic basin, as a preliminary step for downscaled projections over the French West Indies at sub-kilometer-scale resolution. A new configuration of the Météo-France ARPEGE atmospheric general circulation model on a stretched grid with increased resolution in the tropical North Atlantic ( 15 km) is able to reproduce the observed distribution of maximum surface winds, including extreme events corresponding to Category 5 hurricanes. Ensemble historical simulations (1985-2014, 5 members) and future projections with the IPCC (Intergovernmental Panel on Climate Change) RCP8.5 scenario (2051-2080, 5 members) are used to drive the MFWAM (Météo-France Wave Action Model) over the North Atlantic basin. A lower 50-km resolution grid is used to propagate distant mid-latitude swells into a higher 10-km resolution grid over the cyclonic basin. Wave model performance is evaluated over a few TC case studies including the Sep-Oct 2016 Category 5 Hurricane Matthew, using an operational version of ARPEGE at similar resolution to force MFWAM together with wave buoy data. The latter are also used to compute multi-year wave statistics, which then allow assessing the realism of the MFWAM historical runs. For each climate scenario and ensemble member, a simulation of the cyclonic season (July to mid-November) is performed every year. The simulated sea states over the North Atlantic cyclonic basin over 150 historical simulations are compared to their counterparts over 150 future simulations. Changes in cyclonic wave climate are discussed in the light of concurrent changes in TC activity, inferred from objective tracking of individual TCs.

  8. Altimeter Observations of Wave Climate in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Babanin, A. V.; Liu, Q.; Zieger, S.

    2016-02-01

    Wind waves are a new physical phenomenon to the Arctic Seas, which in the past were covered with ice. Now, over summer months, ice coverage retreats up to high latitudes and waves are generated. The marginal open seas provide new opportunities and new problems. Navigation and other maritime activities become possible, but wave heights, storm surges and coastal erosion will likely increase. Air-sea interactions enter a completely new regime, with momentum, energy, heat, gas and moisture fluxes being moderated or produced by the waves, and impacting on upper-ocean mixing. All these issues require knowledge of the wave climate. We will report results of investigation of wave climate and its trends by means of satellite altimetry. This is a challenging, but important topic. On one hand, no statistical approach is possible since in the past for most of the Arctic Ocean there was limited wave activity. Extrapolations of the current observations into the future are not feasible, because ice cover and wind patterns in the Arctic are changing. On the other hand, information on the mean and extreme wave properties, such as wave height, period, direction, on the frequency of occurrence and duration of the storms is of great importance for oceanographic, meteorological, climate, naval and maritime applications in the Arctic Seas.

  9. Self-Consistent Ring Current Modeling with Propagating Electromagnetic Ion Cyclotron Waves in the Presence of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMlC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. Under certain conditions, relativistic electrons, with energies greater than or equal to 1 MeV, can be removed from the outer radiation belt by EMlC wave scattering during a magnetic storm (Summers and Thorne, 2003; Albert, 2003). That is why the modeling of EMlC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMlC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMlC waves in the global dynamic of self-consistent RC - EMlC waves coupling. The results of our newly developed model that will be presented at Huntsville 2006 meeting, focusing mainly on the dynamic of EMlC waves and comparison of these results with the previous global RC modeling studies devoted to EMlC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  10. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; moremore » intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.« less

  11. Observation and Modeling of Storm Generated Acoustic Waves in the Ionosphere Revealed in a Dense Network of GPS Receivers

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Azeem, S. I.

    2017-12-01

    Acoustic waves generated in the lower atmosphere may become an important source of variably in the upper atmosphere. Although they are excited with small amplitudes they are minimally subject to viscous dissipation and may reach significant amplitudes at F-region altitudes. A number of studies in the 1970s showed clear signatures in ionosonde data in the infrasonic period range attributable to thunder storm activity. We have examined Total Electron Content data from a dense network of over 4000 ground-based GPS receivers over the continental United States during an outbreak of severe weather, including tornados, over Kansas in May 2015. A sequence of GPS TEC images showed clear Traveling Ionospheric Disturbances (TIDs) in the form of concentric rings moving outward from the center of the storm region. The characteristics of the disturbance (phase speed and frequency) were consistent with acoustic waves in the infrasonic range. We have modeled the disturbance by including a tropospheric heat source representing latent heat release from a large thunderstorm. The disturbance at ionospheric altitudes resembles the observed disturbance in terms of phase speed, frequency and horizontal wavelength. We conclude that the observed TIDs in TEC were caused by an acoustic wave generated by deep convection.

  12. Validating high-resolution California coastal flood modeling with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)

    NASA Astrophysics Data System (ADS)

    O'Neill, A.

    2015-12-01

    The Coastal Storm Modeling System (CoSMoS) is a numerical modeling scheme used to predict coastal flooding due to sea level rise and storms influenced by climate change, currently in use in central California and in development for Southern California (Pt. Conception to the Mexican border). Using a framework of circulation, wave, analytical, and Bayesian models at different geographic scales, high-resolution results are translated as relevant hazards projections at the local scale that include flooding, wave heights, coastal erosion, shoreline change, and cliff failures. Ready access to accurate, high-resolution coastal flooding data is critical for further validation and refinement of CoSMoS and improved coastal hazard projections. High-resolution Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provides an exceptional data source as appropriately-timed flights during extreme tides or storms provide a geographically-extensive method for determining areas of inundation and flooding extent along expanses of complex and varying coastline. Landward flood extents are numerically identified via edge-detection in imagery from single flights, and can also be ascertained via change detection using additional flights and imagery collected during average wave/tide conditions. The extracted flooding positions are compared against CoSMoS results for similar tide, water level, and storm-intensity conditions, allowing for robust testing and validation of CoSMoS and providing essential feedback for supporting regional and local model improvement.

  13. Developing Local Scale, High Resolution, Data to Interface with Numerical Storm Models

    NASA Astrophysics Data System (ADS)

    Witkop, R.; Becker, A.; Stempel, P.

    2017-12-01

    High resolution, physical storm models that can rapidly predict storm surge, inundation, rainfall, wind velocity and wave height at the intra-facility scale for any storm affecting Rhode Island have been developed by Researchers at the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) (Ginis et al., 2017). At the same time, URI's Marine Affairs Department has developed methods that inhere individual geographic points into GSO's models and enable the models to accurately incorporate local scale, high resolution data (Stempel et al., 2017). This combination allows URI's storm models to predict any storm's impacts on individual Rhode Island facilities in near real time. The research presented here determines how a coastal Rhode Island town's critical facility managers (FMs) perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale and explores methods to elicit this information from FMs in a format usable for incorporation into URI's storm models.

  14. Extreme waves under Hurricane Ivan.

    PubMed

    Wang, David W; Mitchell, Douglas A; Teague, William J; Jarosz, Ewa; Hulbert, Mark S

    2005-08-05

    Hurricane Ivan, a category 4 storm, passed directly over six wave-tide gauges deployed by the Naval Research Laboratory on the outer continental shelf in the northeastern Gulf of Mexico. Waves were observed with significant wave heights reaching 17.9 meters and maximum crest-to-trough individual wave heights of 27.7 meters (91 feet). Analysis suggests that significant wave heights likely surpassed 21 meters (69 feet) and that maximum crest-to-trough individual wave heights exceeded 40 meters (132 feet) near the eyewall.

  15. Simulation of coastal floodings during a typhoon event with the consideration of future sea-level rises.

    NASA Astrophysics Data System (ADS)

    Shu-Huei, Jhang; Chih-Chung, Wen; Dong-Jiing, Doong; Cheng-Han, Tsai

    2017-04-01

    Taiwan is an Island in the western Pacific Ocean and experienced more than 3 typhoons in a year. Typhoons bring intense rainfall, high waves, and storm surges, which often resulted in coastal flooding. The flooding can be aggravated by the sea level rise due to the global warming, which may subject Taiwan's coastal areas to more serious damage in the future than present. The objectives of this study are to investigate the flooding caused by typhoons in the Annan District, Tainan, a city on the southwest coast of Taiwan by numerical simulations, considering the effects of sea-level rises according to the level suggested by the 5th Assessment Report of IPCC (Intergovernmental Panel on Climate Change) for 2050 and 2100, respectively. The simulations were carried out by using MIKE21 HD (a hydrodynamic model) and MIKE21 SW (a spectral wave model). In our simulation, we used an intense typhoon, named Soudelor, as our base typhoon, which made its landfall on the east coast of Taiwan in the summer of 2015, traveled through the width of the island, and exited the island to the north of Tainan. The reasons we pick this typhoon are that it passed near our objective area, wind field data for this typhoon are available, and we have well documented coastal wave and water level measurements during the passage of Typhoon Soudelor. We firstly used ECMWF (European Centre for Medium-Range Weather Forecasts) wind field data to reconstruct typhoon waves and storm surges for this typhoon by using coupled MIKE21 SW and MIKE21 HD in a regional model. The resultant simulated wave height and sea-level height matched satisfactorily with the measured data. The wave height and storm surge calculated by the regional model provided the boundary conditions for our fine-grid domain. Then different sea-level rises suggested by the IPCC were incorporated into the fine-grid model. Since river discharge due to intense rainfall has also to be considered for coastal flooding, our fine-grid models encompass the estuary of River Yanshui, and measured upstream river discharges were used to simulate the interactions among tide, current, and wave near the estuary of Yanshui River. Our preliminary results showed that with only the effect of rainwater discharge, the maximum surface level of the river during the storm near the estuary was 1.4 m, which is not higher than the river embankments. With the storm surge, the river level at the same location was 2.2 m. With the storm surge and sea-level rise, the maximum river levels near the estuary were 3.6 m and 3.9 m for 2050 and 2100 scenarios, respective. These levels were higher than the embankment height of 3 m. This showed that due to higher sea-level, the area near the estuary will be flooded.

  16. Storm phase-partitioned rates and budgets of global Alfvénic energy deposition, electron precipitation, and ion outflow

    NASA Astrophysics Data System (ADS)

    Hatch, Spencer M.; LaBelle, James; Chaston, Christopher C.

    2018-01-01

    We review the role of Alfvén waves in magnetosphere-ionosphere coupling during geomagnetically active periods, and use three years of high-latitude FAST satellite observations of inertial Alfvén waves (IAWs) together with 55 years of tabulated measurements of the Dst index to answer the following questions: 1) How do global rates of IAW-related energy deposition, electron precipitation, and ion outflow during storm main phase and storm recovery phase compare with global rates during geomagnetically quiet periods? 2) What fraction of net IAW-related energy deposition, electron precipitation, and ion outflow is associated with storm main phase and storm recovery phase; that is, how are these budgets partitioned by storm phase? We find that during the period between October 1996 and November 1999, rates of IAW-related energy deposition, electron precipitation, and ion outflow during geomagnetically quiet periods are increased by factors of 4-5 during storm phases. We also find that ∼62-68% of the net Alfvénic energy deposition, electron precipitation, and ion outflow in the auroral ionosphere occurred during storm main and recovery phases, despite storm phases comprising only 31% of this period. In particular storm main phase, which comprised less than 14% of the three-year period, was associated with roughly a third of the total Alfvénic energy input and ion outflow in the auroral ionosphere. Measures of geomagnetic activity during the IAW study period fall near corresponding 55-year median values, from which we conclude that each storm phase is associated with a fraction of total Alfvénic energy, precipitation, and outflow budgets in the auroral ionosphere that is, in the long term, probably as great or greater than the fraction associated with geomagnetic quiescence for all times except possibly those when geomagnetic activity is protractedly weak, such as solar minimum. These results suggest that the budgets of IAW-related energy deposition, electron precipitation, and ion outflow are roughly equally partitioned by geomagnetic storm phase.

  17. Wave-Mean Flow Interaction in the Storm-Time Thermosphere Using a Two-Dimensional Model

    DTIC Science & Technology

    1990-01-01

    Hunsucker, 1982; Richmond, 1978, 1979a; Rees et. al., 1984; Roble et. al., 1978; Testud , 1970). 3) A global meridional circulation driven by the...theory of oscillatory waves. Trans. Cambridge Phil. Snc., 8, 441-455. Testud , J., 1970: Gra.ity waves generated during magnetic substorms. J. Atmos. Terr

  18. Field observation of morpho-dynamic processes during storms at a Pacific beach, Japan: role of long-period waves in storm-induced berm erosion.

    PubMed

    Mizuguchi, Masaru; Seki, Katsumi

    2015-01-01

    Many ultrasonic wave gages were placed with a small spacing across the swash zone to monitor either sand level or water level. Continuous monitoring conducted for a few years enabled the collection of data on the change in wave properties as well as swash-zone profiles. Data sets including two cases of large-scale berm erosion were analyzed. The results showed that 1) shoreline erosion started when high waves with significant power in long-period (1 to 2 min.) waves reached the top of a well-developed berm with the help of rising tide; 2) the beach in the swash zone was eroded with higher elevation being more depressed, while the bottom elevation just outside the swash zone remained almost unchanged; and 3) erosion stopped in a few hours after the berm was completely eroded or the swash-zone slope became uniformly mild. These findings strongly suggest that long waves play a dominant role in the swash-zone dynamics associated with these erosional events.

  19. Barrier Island Restoration for Storm Damage Reduction: Willapa Bay, Washington, USA

    DTIC Science & Technology

    2010-07-01

    Harbor Coastal Data Information Program ( CDIP ) 036 buoy located 13 miles northwest of the Entrance are utilized to specify the offshore wave boundary...condition. For the case of the March 3, 1999 storm, there is a gap in the CDIP buoy data; therefore the spectra from the National Data Buoy Center

  20. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples

    USGS Publications Warehouse

    Morton, Robert A.; Gelfenbaum, Guy; Jaffe, Bruce E.

    2007-01-01

    Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity. Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally 30 cm thick, generally extend The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly

  1. MANGO Imager Network Observations of Geomagnetic Storm Impact on Midlatitude 630 nm Airglow Emissions

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Bhatt, A.

    2017-12-01

    The Midlatitude Allsky-imaging Network for GeoSpace Observations (MANGO) is a network of imagers filtered at 630 nm spread across the continental United States. MANGO is used to image large-scale airglow and aurora features and observes the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network consists of seven all-sky imagers providing continuous coverage over the United States and extending south into Mexico. This network sees high levels of medium and large scale wave activity due to both neutral and geomagnetic storm forcing. The geomagnetic storm observations largely fall into two categories: Stable Auroral Red (SAR) arcs and Large-scale traveling ionospheric disturbances (LSTIDs). In addition, less-often observed effects include anomalous airglow brightening, bright swirls, and frozen-in traveling structures. We will present an analysis of multiple events observed over four years of MANGO network operation. We will provide both statistics on the cumulative observations and a case study of the "Memorial Day Storm" on May 27, 2017.

  2. The CI-Flow Project: A System for Total Water Level Prediction from the Summit to the Sea

    DTIC Science & Technology

    2011-11-01

    round and may be applied to all types of coastal storms , including intense cool- season extratropical cyclones (i.e., nor’easters). In addition...associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface Within this project, Cl-FLOW addresses...presented for Hurricane Isabel (2003), Hurricane Earl (20I0), and Tropical Storm Nicole (2010) for the Tar -Pamlico and Neuse River basins of North

  3. Wind Wave Climate of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Medvedeva, Alisa

    2017-04-01

    Storms in the Baltic Sea in autumn and winter are very frequent. In this research the goal is to estimate decadal and interannual changes of the wave fields for the entire Baltic Sea. The wave parameters, such as significant wave heights and periods, were simulated for the period 1979-2015 years based on NCEP/CFSR Reanalysis data fields and for the period 1948-2010 years based on NCEP/NCAR Reanalysis data. For accuracy estimation of the model the statistical characteristics, such as correlation coefficient, bias, scatter index and RMSE were calculated. Also two computational meshes were compared: rectangular and triangulated. In this study the third generation spectral wind-wave model SWAN was used for simulations. For wind input data two types of wind reanalysis were chosen: NCEP/CFSR with 1-hour time step and NCEP/NCAR with time step of 6 hours. The final computational grid for rectangular mesh for the Baltic Sea is 0.05×0.05°. The simulated data were compared with instrumental data of the Sweden buoys and of the acoustic wave recorder fixed at the Russian oil platform. The results reveal that for the Baltic Sea it is more efficient to use rectangular mesh for the deep open area and irregular mesh near the coast. Simulations using wind data from NCEP/NCAR significantly decreases the quality of the results compared with NCEP/CFSR wind data: Bias increases in 10 times (-0.730), RMSE - in 2-3 times (0.89). The following results of numerical modeling using NCEP/NCAR the storm situations, when the significant wave height exceeded 2 meters, were identified for the 63-year period. An average of about 50 storms per year happened in the Baltic Sea in this time period. The storminess of the Baltic Sea tends to increase. The twenty-year periodicity with the increase in the 70-s and 90-s years of XX century was revealed. The average yearly significant wave height increases in the second part of the century too and differs from 2.4 to 3.3 m. Storm cyclones are connected with the global atmosphere circulation patterns. According to similar research of the other west seas of Russia by the analogous methods, such kind of twenty-year periodicity was identified for the Caspian Sea and the Sea of Azov, but the storminess there for the period from 1948 to 2010 decreases.

  4. Coastal Hazard due to Tropical Cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Silva-Casarin, R.; Mendoza-Baldwin, E.; Marino-Tapia, I.; Enriquez, C.; Ruiz, G.; Escalante-MAncera, E.; Ruíz-Rentería, F.

    2013-05-01

    The Mexican coast is hit every year by at least 3 cyclones and it is affected for nearly 59 hours a year on average; this induces undesirable consequences, such as coastal erosion and flooding. To evaluate the hazard to which the coastal zone is exposes, a historical characterization of atmospheric conditions (surface winds and pressure conditions of the storms), waves (wave heights and their associated wave periods) and flooding levels due to tropical storms for more than 60 years is presented. The atmospheric and wave conditions were evaluated using a modification of the original parametric Hydromet-Rankin Vortex Model by Bretschneider (1990) and Holland (1980) as presented by Silva, et al. (2002). The flooding levels caused by hurricanes were estimated using a two-dimensional, vertically averaged finite volume model to evaluate the storm surge, Posada et al. (2008). The cyclone model was compared to the data series of 29 cyclones recorded by buoys of the National Data Buoy Center-NOAA and some data recorded in shallow waters near Cancun, Mexico and the flooding model was compared with observed data from Cancun, Mexico; both models gave good results. For the extreme analyses of wind, wave heights and maximum flooding levels on the Mexican coasts, maps of the scale and location parameters used in the Weibull cumulative distribution function and numerical results for different return periods are provided. The historical occurrence of tropical storms is also revised as some studies indicate that the average intensity of tropical cyclones is increasing; no definite trends pointing to an increase in storm frequency or intensity were found. What was in fact found is that although there are more cyclones in the Pacific Ocean and these persist longer, the intensity of the cyclones in the Atlantic Ocean is greater affecting. In any case, the strong necessity of avoiding storm induced coastal damage (erosion and flooding) is reflected in numerous works, such as this one, which aim to better manage the coastal area and reduce its vulnerability to hurricanes. References Bretschneider, C.L., 1990. Tropical Cyclones. Handbook of Coastal and Ocean Engineering, Gulf Publishing Co., Vol. 1, 249-370. Holland, G.L., 1980. An analytical model of wind and pressure profiles in hurricanes. Monthly Weather Review, 108, 1212-1218. Posada, G., Silva, R. & de Brye, S. 2008. Three dimensional hydrodynamic model with multiquadtree meshes. American Journal of Environmental Sciences. 4(3): 209-222. Silva, R., Govaere, G., Salles, P., Bautista, G. & Díaz, G. 2002. Oceanographic vulnerability to hurricanes on the Mexican coast. International Conference on Coastal Engineering, pp. 39-51.

  5. The trauma signature of 2016 Hurricane Matthew and the psychosocial impact on Haiti

    PubMed Central

    Shultz, James M.; Cela, Toni; Marcelin, Louis Herns; Espinola, Maria; Heitmann, Ilva; Sanchez, Claudia; Jean Pierre, Arielle; Foo, Cheryl YunnShee; Thompson, Kip; Klotzbach, Philip; Espinel, Zelde; Rechkemmer, Andreas

    2016-01-01

    ABSTRACT Background. Hurricane Matthew was the most powerful tropical cyclone of the 2016 Atlantic Basin season, bringing severe impacts to multiple nations including direct landfalls in Cuba, Haiti, Bahamas, and the United States. However, Haiti experienced the greatest loss of life and population disruption. Methods. An established trauma signature (TSIG) methodology was used to examine the psychological consequences of Hurricane Matthew in relation to the distinguishing features of this event. TSIG analyses described the exposures of Haitian citizens to the unique constellation of hazards associated with this tropical cyclone. A hazard profile, a matrix of psychological stressors, and a “trauma signature” summary for the affected population of Haiti - in terms of exposures to hazard, loss, and change - were created specifically for this natural ecological disaster. Results. Hazard characteristics of this event included: deluging rains that triggered mudslides along steep, deforested terrain; battering hurricane winds (Category 4 winds in the “eye-wall” at landfall) that dismantled the built environment and launched projectile debris; flooding “storm surge” that moved ashore and submerged villages on the Tiburon peninsula; and pummeling wave action that destroyed infrastructure along the coastline. Many coastal residents were left defenseless to face the ravages of the storm. Hurricane Matthew's slow forward progress as it remained over super-heated ocean waters added to the duration and degree of the devastation. Added to the havoc of the storm itself, the risks for infectious disease spread, particularly in relation to ongoing epidemics of cholera and Zika, were exacerbated. Conclusions. Hurricane Matthew was a ferocious tropical cyclone whose meteorological characteristics amplified the system's destructive force during the storm's encounter with Haiti, leading to significant mortality, injury, and psychological trauma. PMID:28321360

  6. The evolution of convective storms from their footprints on the sea as viewed by synthetic aperture radar from space

    NASA Technical Reports Server (NTRS)

    Atlas, David; Black, Peter G.

    1994-01-01

    SEASAT synthetic aperture radar (SAR) echoes from the sea have previously been shown to be the result of rain and winds produced by convective stroms; rain damps the surface waves and causes ech-free holes, while the diverging winds associated with downdraft generate waves and associated echoes surrounding the holes. Gust fronts are also evident. Such a snapshot from 8 July 1978 has been examined in conjunction with ground-based radar. This leads to the conclusion that the SAR storm footprints resulted from storm processes that occurred up to an hour or more prior to the snapshot. A sequence of events is discerned from the SAR imagery in which new cell growth is triggered in between the converging outflows of two preexisting cells. In turn, the new cell generates a mini-squall line along its expanding gust front. While such phenomena are well known over land, the spaceborne SAR now allows important inferences to be made about the nature and frequency of convective storms over the oceans. The storm effects on the sea have significant implications for spaceborne wind scatterometry and rainfall measurements. Some of the findings herein remain speculative because of the great distance to the Miami weather radar-the only source of corroborative data.

  7. Footprints of storms on the sea: A view from spaceborne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Atlas, David

    1994-01-01

    Synthetic aperture radar (SAR) on board Seasat observed images of stormlike echoes on the sea in 1978. The core of these images is usually an echo-free hole which is attributed to the damping of the short (30-cm) radar detectable gravity waves by the intense rain in the storm core. Although 'the beating down of waves by rain' is consistent with observations by seafarers and with the first scientific explanation of the phenomenon by Reynolds (1875), neither theory nor experiment has provided definitive support. One experiment appears to provide the key; it shows that the kenetic energy of the rain produces sufficient turbulence in a thin fresh water layer to damp 30-cm waves in 10-20 s, thus producing the echo-free hole. A sequence of positive feedbacks then serves to damp the longer waves. The angular dependence of the sea surface echo cross sections seen by Seasat SAR outside the echo-free hole indicates winds diverging from the downdraft induced by the intense rain core. The wind-generated waves and associated echoes extend out to a sharply defined gust front. The sea surface footprint thus mimics the features of a storm microburst. The variations in surface radar cross section due to a combination of rain and wind effects impacts spaceborne measurements of surface winds by scatterometry and rainfall measurements by radar. Portions of this synthesis remain speculative but serve as hypotheses for further research.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian, L. K.; Wei, H. Y.; Russell, C. T.

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probablymore » due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.« less

  9. Making and breaking the sediment record - characterising effects of tsunamis, storms and average conditions on dune erosion and recovery: a forward modelling exploration.

    NASA Astrophysics Data System (ADS)

    Roelvink, Dano; Costas, Susana

    2015-04-01

    Geological records contain a wealth of information about accretionary episodes in the life of a coastal profile, such as age and type of the deposits and circumstances during which the accretion took place; of erosional events mainly the final limit of the erosion and circumstances under which the erosion took place can be estimated. To obtain a more complete picture of the events shaping the sedimentary record and transport processes involved, process-based modelling can be a useful tool (e.g. Apotsos et al., 2011). However, application of such modelling to different types of events remains a challenge. In our presentation we intend to show examples of the effects of different events on the stratigraphic record and to discuss the challenges related to the modelling of each of these types of events. The test site chosen is the Costa da Caparica, south of Lisbon, Portugal. The stratigraphic record and progradation rates of the coastal were obtained combining geophysical (Ground Penetrating Radar) and dating (Optically Stimulating Luminescence) techniques, which document very recent ages for the preserved coastal barrier. Within the record, we focus on a period around the big tsunami of 1755, during which the shoreline experienced a long-term prograding trend with evidence of severe erosion events. Rather than trying to exactly reproduce the stratigraphy observed here, we will carry out exploratory simulations to create 'building blocks' of stratigraphy related to the different types of events, which we can loosely compare with observations reported in Rebelo et al. (2013). The model applied for all simulations is XBeach (Roelvink et al., 2009), which is used in three different modes (no short waves, time-varying wave action balance, stationary wave action balance, respectively) to accommodate the impact of tsunamis, storms, and average conditions; for the latter we include the dune and associated processes in a simplified aeolian transport and response model. In all cases we resolve wave-averaged flows, bed load and suspended load transport and morphology change including avalanching. Results will be presented in terms of both profile change and resulting contribution to stratigraphy, allowing to evaluate the effects of these different building blocks on the stratigraphic record. References: Apotsos, A., G. Gelfenbaum, and B. Jaffe, 2011. Process-based modeling of tsunami inundation and sediment transport, J. Geophys. Res., 116, F01006, doi:10.1029/2010JF001797. Rebêlo, L., Costas, S., Brito, P., Ferraz, M., Prudêncio, M. I. and Burbidge, C., 2013. Imprints of the 1755 tsunami in the Tróia Peninsula shoreline, Portugal In: Conley, D.C., Masselink, G., Russell, P.E. and O'Hare, T.J. (eds.), Proceedings 12th International Coastal Symposium (Plymouth, England), Journal of Coastal Research, Special Issue No. 65, pp. 814-819, ISSN 0749-0208. Dano Roelvink, Ad Reniers, Ap van Dongeren, Jaap van Thiel de Vries, Robert McCall, Jamie Lescinski. Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, Volume 56, Issues 11-12, November-December 2009, Pages 1133-1152

  10. Modelling of sediment transport pattern in the mouth of the Rhone delta: Role of storm and flood events

    NASA Astrophysics Data System (ADS)

    Boudet, L.; Sabatier, F.; Radakovitch, O.

    2017-11-01

    The delta of the Rhone River is one of the most important in the Mediterranean Sea. Beach erosion problems along its coasts have developed in recent decades, raising the need for a better understanding of the sediment transport processes at the Rhone mouth and the adjacent beaches. Because field data are very difficult to obtain in such an energetic environment, a high-resolution numerical model (Delft3D) is applied to this area. This model is calibrated by taking into account hydrodynamical and morphological observations. Special attention is given to storm and flood events, which are the major morphological drivers. Therefore, scenarios with different wave and flow conditions are run to estimate the influence of these events on the sediment transport. The analysis of historical hydrological data shows that storms from the southeast represent 70% of the events between 1979 to 2010 and that 20% of them were followed by a flood within a few days. Consequently, specific simulations for such conditions are performed using Delft3D. The model simulates trends in the bedload sediment transport that are consistent with the bedforms observed in the bathymetry data. The total sediment transport at the outlet is only influenced by the river flow, but sediment transport at the mouth-bar depends on an equilibrium between the influence of floods and storms and the succession of these events. A period of 2 or 3 days separating the storm and flood peaks is sufficient to differentiate wave and river flow-induced sediment transport. The waves constrain the total transport on the mouth-bar and shallow mouth-lobe and induce a longshore transfer towards the adjacent beaches. The riverine sediments can be exported seaward only if a flood is energetic enough compared to the storm intensity. Regardless, when a flood is greater than the decadal return period (7800 m3 s-1), the sediment is transported from the outlet across the mouth-bar and is directed offshore.

  11. Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Shimozono, Takenori; Tajima, Yoshimitsu; Kennedy, Andrew B.; Nobuoka, Hisamichi; Sasaki, Jun; Sato, Shinji

    2015-06-01

    Super typhoon Haiyan struck the Philippines on 8 November 2013, marking one of the strongest typhoons at landfall in recorded history. Extreme storm waves attacked the Pacific coast of Eastern Samar where the violent typhoon first made landfall. Our field survey confirmed that storm overwash heights of 6-14 m above mean sea level were distributed along the southeastern coast and extensive inundation occurred in some coastal villages in spite of natural protection by wide fringing reefs. A wave model based on Boussinesq-type equations is constructed to simulate wave transformation over shallow fringing reefs and validated against existing laboratory data. Wave propagation and runup on the Eastern Samar coast are then reproduced using offshore boundary conditions based on a wave hindcast. The model results suggest that extreme waves on the shore are characterized as a superposition of the infragravity wave and sea-swell components. The balance of the two components is strongly affected by the reef width and beach slope through wave breaking, frictional dissipation, reef-flat resonances, and resonant runup amplification. Therefore, flood characteristics significantly differ from site to site due to a large variation of the two topographic parameters on the hilly coast. Strong coupling of infragravity waves and sea swells produces extreme runup on steep beaches fronted by narrow reefs, whereas the infragravity waves become dominant over wide reefs and they evolve into bores on steep beaches.

  12. Impacts of winter storms on air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqing; Perrie, Will; Vagle, Svein

    2006-07-01

    The objective of this study is to investigate air-sea gas exchange during winter storms, using field measurements from Ocean Station Papa in the Northeast Pacific (50°N, 145°W). We show that increasing gas transfer rates are coincident with increasing winds and deepening depth of bubble penetration, and that this process depends on sea state. Wave-breaking is shown to be an important factor in the gas transfer velocity during the peaks of the storms, increasing the flux rates by up to 20%. Gas transfer rates and concentrations can exhibit asymmetry, reflecting a sudden increase with the onset of a storm, and gradual recovery stages.

  13. Shallow water observations of the bottom boundary during an energetic storm

    NASA Astrophysics Data System (ADS)

    Sheremet, A.; Klammer, H.; Calantoni, J.

    2016-12-01

    We report high-resolution field observations collected at the U.S. Army Corps of Engineers, Field Research Facility, Duck, NC from 26 January - 10 March 2015. The experiment deployed two instrument arrays near the 6-m and 8-m isobaths that included acoustic Doppler current profilers, acoustic Doppler velocimeters, pressure and CTD sensors to monitor waves, currents, turbulence, temperature, conductivity and suspended sediment concentration at high temporal and vertical resolution. Additionally, munitions, or "targets", were deployed that spanned a range of sizes and densities with munitions mobility and burial monitored continuously at the 8-m array with sector scanning sonars and at the 6-m array with a pencil beam sonar. The roughly 6-week long experiment observed a sequence of at least 10 winter storm events, six of which were characterized by significant wave heights exceeding 2 m at the 8-m instrument array, with peak periods typically around 10 s. During the strongest storm from 10 - 15 February 2015, waves at the 8-m array had peak periods around 14 s and significant wave heights exceeding 2 m for more than 3 days, with significant wave heights exceeding 5 m at the peak of activity. Despite the tremendous amount of hydrodynamic activity bathymetric surveys performed on 16 January 2015 (before) and 17 March 2015 (after) the experiment showed only 5 - 10 cm variation in bed elevation at the 8-m array, suggesting that the local gradients in sediment transport were nearly negligible. Additionally, time series of tilt and heading sensors indicated periods of "jacking" of the instrument frame that was initially moored using four pipes, about 3 m in length, jetted into the seafloor, while some targets were found buried up to 60 cm deep. We will present a detailed analysis of the near-bed hydrodynamics during the most energetic storm and present a simple model to explain the observed burial depths of targets.

  14. Bottom-boundary-layer measurements on the continental shelf off the Ebro River, Spain

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.; Losada, M.A.; Medina, R.

    1990-01-01

    Measurements of currents, waves and light transmission obtained with an instrumented bottom tripod (GEOPROBE) were used in conjunction with a theoretical bottom-boundary-layer model for waves and currents to investigate sediment transport on the continental shelf south of the Ebro River Delta, Spain. The current data show that over a 48-day period during the fall of 1984, the average transport at 1 m above the seabed was alongshelf and slightly offshore toward the south-southwest at about 2 cm/s. A weak storm passed through the region during this period and caused elevated wave and current speeds near the bed. The bottom-boundary-layer model predicted correspondingly higher combined wave and current bottom shear velocities at this time, but the GEOPROBE optical data indicate that little to no resuspension occurred. This result suggests that the fine-grained bottom sediment, which has a clay component of 80%, behaves cohesively and is more difficult to resuspend than noncohesive materials of similar size. Model computations also indicate that noncohesive very fine sand in shallow water (20 m deep) was resuspended and transported mainly as bedload during this storm. Fine-grained materials in shallow water that are resuspended and transported as suspended load into deeper water probably account for the slight increase in sediment concentration at the GEOPROBE sensors during the waning stages of the storm. The bottom-boundary-layer data suggest that the belt of fine-grained bottom sediment that extends along the shelf toward the southwest is deposited during prolonged periods of low energy and southwestward bottom flow. This pattern is augmented by enhanced resuspension and transport toward the southwest during storms. ?? 1990.

  15. Evaluation of wave runup predictions from numerical and parametric models

    USGS Publications Warehouse

    Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.

    2014-01-01

    Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.

  16. Risk Assessment of Hurricane Storm Surge for Tampa Bay

    NASA Astrophysics Data System (ADS)

    Lin, N.; Emanuel, K.

    2011-12-01

    Hurricane storm surge presents a major hazard for the United States and many other coastal areas around the world. Risk assessment of current and future hurricane storm surge provides the basis for risk mitigation and related decision making. This study investigates the hurricane surge risk for Tampa Bay, located on the central west coast of Florida. Although fewer storms have made landfall in the central west Florida than in regions farther west in the Gulf of Mexico and the east coast of U.S., Tampa Bay is highly vulnerable to storm surge due to its geophysical features. It is surrounded by low-lying lands, much of which may be inundated by a storm tide of 6 m. Also, edge waves trapped on the west Florida shelf can propagate along the coastline and affect the sea level outside the area of a forced storm surge; Tampa Bay may be affected by storms traversing some distance outside the Bay. Moreover, when the propagation speed of the edge wave is close to that of a storm moving parallel to the coast, resonance may occur and the water elevation in the Bay may be greatly enhanced. Therefore, Tampa Bay is vulnerable to storms with a broad spectrum of characteristics. We apply a model-based risk assessment method to carry out the investigation. To estimate the current surge risk, we apply a statistical/deterministic hurricane model to generate a set of 1500 storms for the Tampa area, under the observed current climate (represented by 1981-2000 statistics) estimated from the NCAR/NCEP reanalysis. To study the effect of climate change, we use four climate models, CNRM-CM3, ECHAM, GFDL-CM2.0, and MIROC3.2, respectively, to drive the hurricane model to generate four sets of 1500 Tampa storms under current climate conditions (represented by 1981-2000 statistics) and another four under future climate conditions of the IPCC-AR4 A1B emission scenario (represented by 2081-2100 statistics). Then, we apply two hydrodynamic models, the Advanced Circulation (ADCIRC) model and the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model with grids of various resolutions to simulate the surges induced by the synthetic storms. The surge risk under each of the climate scenarios is depicted by a surge return level curve (exceedance probability curve). For the city of Tampa, the heights of the 100-year, 500-year, and 1000-year surges under the current climate are estimated to be 3.85, 5.66, and 6.31 m, respectively. Two of the four climate models predict that surge return periods will be significantly shortened in the future climates due to the change of storm climatology; the current 100-year surge may happen every 50 years or less, the 500-year surge every 200 years or less, and the 1000-year surge every 300 years or less. The other two climate models predict that the surge return periods will become moderately shorter or remain almost unchanged in the future climates. Extreme surges up to 12 m at Tampa appear in our simulations. Although occurring with very small probabilities, these extreme surges would have a devastating impact on the Tampa Bay area. By examining the generated synthetic surge database, we study the characteristics of the extreme storms at Tampa Bay, especially for the storms that may interact with edge waves along the Florida west coast.

  17. RELATIONSHIPs among Geomagnetic storms, interplanetary shocks, magnetic clouds, and SUNSPOT NUMBER during 1995-2012

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.; Lepping, R. P.; Wu, C. C.

    2015-12-01

    During 1995-2012 Wind recorded 168 magnetic clouds (MCs), 197 magnetic cloud-like structures (MCLs), and 358 interplanetary (IP) shocks. Ninety four MCs and 56 MCLs had upstream shock waves. The following features are found: (i) Averages of solar wind speed, interplanetary magnetic field (IMF), duration (<Δt>), strength of Bzmin, and intensity of the associated geomagnetic storm/activity (Dstmin) for MCs with upstream shock waves (MCSHOCK) are higher (or stronger) than those averages for the MCs without upstream shock waves (MCNO-SHOCK). (ii) The <Δt> of MCSHOCK events (≈19.6 hr) is 9% longer than that for MCNO-SHOCK events (≈17.9 hr). (iii) For the MCSHOCK events, the average duration of the sheath (<ΔtSHEATH>) is 12.1 hrs. These findings could be very useful for space weather predictions, i.e. IP shocks driven by MCs are expected to arrive at Wind (or at 1 AU) about ~12 hours ahead of the front of the MCs on average. (iv) The occurrence frequency of IP shocks is well associated with sunspot number (SSN). The average intensity of geomagnetic storms measured by for MCSHOCK and MCNOSHOCK events is -102 and -31 nT, respectively. The is -78, -70, and -35 nT for the 358 IP shocks, 168 MCs, and 197 MCLs, respectively. These results imply that IP shocks, when they occur with MCs/MCLs, must play an important role in the strength of geomagnetic storms. We speculate as to why this is so. Yearly occurrence frequencies of MCSHOCK and IP shocks are well correlated with solar activity (e.g., SSN). Choosing the right Dstmin estimating formula for predicting the intensity of MC-associated geomagnetic storms is crucial for space weather predictions.

  18. Storm Water Sampling Data 11-16-17.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Robert C.

    In the California Industrial General Permit (IGP) 2014-0057-DWQ for storm water monitoring, effective July 1, 2015, there are 21 contaminants that have been assigned NAL (Numeric Action Level) values, both annual and instantaneous.

  19. Modelling and in-situ measurements of intense currents during a winter storm in the Gulf of Aigues-Mortes (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Michaud, Héloïse; Leredde, Yann; Estournel, Claude; Berthebaud, Éric; Marsaleix, Patrick

    2013-09-01

    While oceanic circulation in the Gulf of Lion (GoL) has often been studied in calm weather or with northerly winds (Tramontane or Mistral) through observations and numerical circulation models, few studies have focused on southeasterly storm events. Yet, correct representation of the circulation during storms is crucial if the suspension of sediments is to be correctly modelled throughout the Gulf. The purpose of this paper is to describe the hydrodynamics in the Gulf of Aigues-Mortes (NW of the GoL) during the storm of 18 February 2007 by using a set of data from an ADCP station placed at a depth of 65 m on the sea bed off the coast at Sète, supplemented by the ocean circulation model SYMPHONIE. This storm was characterized by a moderate south-easterly wind (15 m . s-1) and waves of up to 5 m of significant height at its apex. At the ADCP, strong currents of up to 0.8 m . s-1 near the surface and 0.5 m . s-1 near the bottom were recorded, parallel to the coast, flowing towards the south-west. The simulated currents were widely underestimated, even taking the effect of waves into account in the model. It was suspected that the representation of the wind in the atmospheric model was an underestimation. A new simulation was therefore run with an arbitrarily chosen stronger wind and its results were in much better agreement with the measurements. A simplified theoretical analysis successfully isolated the wind-induced processes, responsible for the strong currents measured during the apex and the strong vertical shear that occurred at the beginning of the storm. These processes were: 1/ the barotropic geostrophic current induced by a wind parallel to the coast and 2/ the Ekman spiral. The duration of the storm (about 36 h at the apex) explains the continuous increase of the current as predicted by the theory. The frictionally induced Ekman transport explains the current shear in the surface layer in the rising stage of the storm, and the addition of high waves and strong wind at the apex is more in favour of strong vertical mixing in the surface layer.

  20. Variability of tidal signals in the Brent Delta Front: New observations on the Rannoch Formation, northern North Sea

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Li, Zhiyang

    2016-04-01

    Detailed observations on the Rannoch Formation in several deep Viking Graben wells indicate that the 'classical' wave-dominated Brent delta-front shows coupled storm-tide processes. The tidal signals are of three types: I): alternations of thick cross-laminated sandstone and thin mud-draped sandstone, whereby double mud drapes are prominent but discretely distributed, II): a few tidal bundles within bottomsets and foresets of up to 10 cm-thick sets cross-strata, and III): dm-thick heterolithic lamination showing multiple, well-organized sand-mud couplets. During progradation of the Brent Delta, the Rannoch shoreline system passed upward from 1) a succession dominated by clean-water, storm-event sets and cosets frequently and preferentially interbedded with type I tidal beds, and occasional types II and III tidal deposits, toward 2) very clean storm-event beds less frequently separated by types II and III tidal beds, and then into 3) a thin interval showing muddier storm-event beds mainly alternating with type II tidal beds. It is likely that those variations in preservation bias of storm and tidal beds in each facies succession result from combined effects of 1) the frequency and duration of storms; 2) river discharge; and 3) the absolute and relative strength of tides. Tidal deposits are interpreted as inter-storm, fair-weather deposits, occurred preferentially in longer intermittent fair-weather condition and periods of lower river discharge, and well-pronounced in the distal-reach of delta-front. The formation and preservation of tidal signals between storm beds, indicate that the studied Rannoch Formation was most likely a storm-dominated, tide-influenced delta front 1) near the mouth of a large Brent river, where a significant tidal prism and high tidal range might be expected, and 2) in a setting where there were relatively high sedimentation rates associated with high local subsidence rates, so that the storm waves did not completely rework the inter-storm deposits. The documentation of the unconventional Rannoch Formation contributes to our understanding of mixed-energy coastal systems.

  1. Trend analysis of the wave storminess: the wave direction

    NASA Astrophysics Data System (ADS)

    Casas Prat, M.; Sierra, J. P.; Mösso, C.; Sánchez-Arcilla, A.

    2009-09-01

    Climate change has an important role in the current scientific research because of its possible future negative consequences. Concerning the climate change in the coastal engineering field, the apparent sea level rise is one of the key parameters as well as the wave height and the wave direction temporal variations. According to the IPCC (2007), during the last century the sea level has been increasing with a mean rate of 1.7 ± 0.5 mm/yr. However, at local/regional scale the tendency significantly differs from the global trend since the local pressure and wind field variations become more relevant. This appears to be particularly significant in semi-enclosed areas in the Mediterranean Sea (Cushman-Roisin et al., 2001). Even though the existing unsolved questions related to the sea level rise, the uncertainty concerning the wave height is even larger, in which stormy conditions are especially important because they are closely related to processes such as coastal erosion, flooding, etc. Therefore, it is necessary to identify possible existing tendencies of storm related parameters. In many studies, only the maximum wave height and storm duration are analysed, remaining the wave direction in a second term. Note that a possible rotation of the mean wave direction may involve severe consequences since most beach and harbour defence structures have been designed assuming a constant predominant wave incidence. Liste et al. (2004) illustrated this fact with an example in which a rotation of only 2 degrees of the mean energy flux vector could produce a beach retreat of 20 m. Another possible consequence would be a decrease of the harbour operability: increased frequency of storms in the same direction as the harbour entrance orientation would influence the navigability. The present study, which focuses in the Catalan coast (NW Mediterranean Sea), aims to improve the present knowledge of the wave storminess variations at regional scale, specially focusing on the wave directionality. It is based on 44 year hindcast model data (1958-2001) of the HIPOCAS project, enabling to work with a longer time series compared to the existing measured ones. 41 nodes of this database are used, containing 3 hourly simulated data of significant wave height and wave direction, among other parameters. For storm definition, the Peak Over Threshold (POT) method is used with some additional duration requirements in order to analyse statistically independent events (Mendoza & Jiménez, 2006). Including both wave height and storm duration, the wave storminess is characterised by the energy content (Mendoza & Jiménez, 2004), being in turn log-transformed because of its positive scale. Separately, the wave directionality itself is analysed in terms of different sectors and approaching their probability of occurrence by counting events and using Bayesian inference (Agresti, 2002). Therefore, the original data is transformed into compositional data and, before performing the trend analysis, the isometric logratio (ilr) transformation (Egozcue et al., 2003) is done. In general, the trend analysis methodology consists in two steps: 1) trend detection and 2) trend quantification. For 1) the Mann Kendall test is used in order to identify the nodes with significant trend. For these selected nodes, the trend quantification is done, comparing two methods: 1) a simple linear regression analysis complemented with the bootstrap technique and 2) a Bayesian analysis, assuming normally distributed data with linearly increasing mean. Preliminary results show no significant trend for both annual mean and maximum energy content except for some nodes located to the Northern Catalan coast. Regarding the wave direction (but not only considering stormy conditions) there is a tendency of North direction to decrease whereas South and Southeast direction seems to increase.

  2. An early warning system for marine storm hazard mitigation

    NASA Astrophysics Data System (ADS)

    Vousdoukas, M. I.; Almeida, L. P.; Pacheco, A.; Ferreira, O.

    2012-04-01

    The present contribution presents efforts towards the development of an operational Early Warning System for storm hazard prediction and mitigation. The system consists of a calibrated nested-model train which consists of specially calibrated Wave Watch III, SWAN and XBeach models. The numerical simulations provide daily forecasts of the hydrodynamic conditions, morphological change and overtopping risk at the area of interest. The model predictions are processed by a 'translation' module which is based on site-specific Storm Impact Indicators (SIIs) (Ciavola et al., 2011, Storm impacts along European coastlines. Part 2: lessons learned from the MICORE project, Environmental Science & Policy, Vol 14), and warnings are issued when pre-defined threshold values are exceeded. For the present site the selected SIIs were (i) the maximum wave run-up height during the simulations; and (ii) the dune-foot horizontal retreat at the end of the simulations. Both SIIs and pre-defined thresholds were carefully selected on the grounds of existing experience and field data. Four risk levels were considered, each associated with an intervention approach, recommended to the responsible coastal protection authority. Regular updating of the topography/bathymetry is critical for the performance of the storm impact forecasting, especially when there are significant morphological changes. The system can be extended to other critical problems, like implications of global warming and adaptive management strategies, while the approach presently followed, from model calibration to the early warning system for storm hazard mitigation, can be applied to other sites worldwide, with minor adaptations.

  3. Exploring the Cause of Catastrophic Caribbean Inundation in 1200-1480 C.E. Using Numerical Models Compared with Geological Evidence

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Atwater, B. F.; Ten Brink, U. S.; Roeber, V.

    2016-12-01

    Did a tsunami of nearby origin cause the most extreme of the late Holocene overwash on an island near the NE corner of the Caribbean Plate? Or did this overwash result instead from tsunami-like bores of a hurricane? These alternatives arise at Anegada, a storm-prone island 120 km south of the Puerto Rico Trench. The island has geological evidence for three kinds of extreme waves, the most extreme of which scattered hundreds of coral boulders as much as 600 m inland sometime between 1200 C.E. and 1480 C.E. The flooding dwarfed the effects of modern historical hurricanes on the island, and also of overwash in 1650-1800 that may represent the 1755 Lisbon tsunami. New tsunami and hurricane wave simulations, incorporating lidar bathymetry and topography, have been tuned to the evidence for extreme waves in 1200-1480. These simulations were run for different hypothetical transatlantic, trench, and outer rise tsunami sources, and for extreme hurricanes. The successful tsunami scenarios entail minimum earthquake magnitudes of 8.4 for thrust faulting on the subduction interface and 8.2 for normal faulting on the outer wall of the trench. "Success" signifies inundation of all, or nearly all, the sites where field evidence for flooding in 1200-1480 has been found. Such success has not been obtained with any of the 15 hurricane scenarios tried thus far. These scenarios presuppose storms of category 5 in which infragravity waves form tsunami-like bores at a fringing coral reef. We tried five scenarios for each of three storm tracks that pass at different orientations within 40 km of Anegada. The rigorous storm model package accounts for linkage of circulation, spectral wave, and Boussineq models in nested computational schemes that explain both phase-averaging and phase-resolving wave processes. We are making additional simulations with the same kind of phase-resolving Boussinesq model that has replicated tsunami-like bores from surf beat on reef-protected shore in the Philippines during 2013 Typhoon Haiyan.

  4. Characteristics and present trends of wave extremes in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Pino, Cosimo; Lionello, Piero; Galati, Maria Barbara

    2010-05-01

    Wind generated surface waves are an important factor characterizing marine storminess and the marine environment. This contribution considers characteristics and trends of SWH (Significant Wave Height) extremes (both high and low extremes, such as dead calm duration are analyzed). The data analysis is based on a 44-year long simulation (1958-2001) of the wave field in the Mediterranean Sea. The quality of the model simulation is controlled using satellite data. The results show the different characteristics of the different parts of the basin with the variability being higher in the western (where the highest values are produced) than in the eastern areas of the basin (where absence of wave is a rare condition). In fact, both duration of storms and of dead calm episodes is larger in the east than in the west part of the Mediterranean. The African coast and the southern Ionian Sea are the areas were exceptional values of SWH are expected to occur in correspondence with exceptional meteorological events. Significant trends of storm characteristics are present only in sparse areas and suggest a decrease of both storm intensity and duration (a marginal increase of storm intensity is present in the center of the Mediterranean). The statistics of extremes and high SWH values is substantially steady during the second half of the 20th century. The influence of the large-scale teleconnection patterns (TlcP) that are known to be relevant for the Mediterranean climate on the intensity and spatial distribution of extreme SWH (Significant Wave Height) has been investigated. The analysis was focused on the monthly scale analysing the variability of links along the annual cycle. The considered TlcP are the North Atlantic Oscillation, the East-Atlantic / West-Russian pattern and the Scandinavian pattern and their effect on the intensity and the frequency of high/low SWH conditions. The results show it is difficult to establish a dominant TlcP for SWH extremes, because all 4 patterns considered are important for at least few months in the year and none of them is important for the whole year. High extremes in winter and fall are more influenced by the TlcPs than in other seasons and low extremes.

  5. Circulation patterns and wave climate along the coast of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; García Codrán, J. C.

    2010-09-01

    Evidences of an active erosion (beach retreat, falling cliffs, damaged infrastructures) are observed in many coastal areas around the Iberian Peninsula. Morphogenetic coastal processes result from individual episodes of storminess that can accelerate or mitigate the expected impacts of the global rising trend of average sea levels. Thus, a good understanding of the local forcing processes is required in order to assess the impacts of future sea levels. The spatial and temporal variability of the wave climate along the cost of the Iberian Peninsula and their relationships with regional scale circulation patterns and local-scale winds are the main objectives of this contribution. The oceanographic data set consists of observed hourly data from 7 buoys disseminated along the Spanish coastline, and hindcasted 3-hourly analogous parameters (SIMAR 44 database), provided by Puertos del Estado. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). The influence of the local conditions was highlighted comparing meteorological data from the buoys and synop reports from coastal stations. To explore the regional atmospheric mechanisms responsible for the wave variability, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the area. The synoptic catalogue was obtained following a well-known procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. As expected, rougher wave climate are observed along the northern and western coast of the Iberian Peninsula, open to the Atlantic storms. The Mediterranean shorelines experiences calmer conditions, although the Gulf of Lions, Catalonian coast and Balearic Islands suffer stormier episodes than Mar de Alborán. Moderate wave power conditions occurred frequently by circulation patterns predominately stable and characterized by weak (mostly sea breezes) winds. Synoptic situations dominated by extra-tropical cyclones produced the highest, but least frequent wave power conditions. Depending on the location of the shorelines, three types of storm events are defined: 1. Long winds fetch and locally strong westerly and northwesterly winds expose the northern coast of Iberia to episodes of intense storminess. Extratropical disturbances tracking between the 50-60°N parallels are the main forcing mechanism of those episodes, many of them result of a cyclogenesis processes along the eastern coast of North America. In some cases, the systems evolves as a secondary cyclon, crossing the area southward of the 50°N parallel; significant wave heights can be as high as the northernmost cyclones, but the wave period is slightly lower. 2.Cyclones tracking along the 40°N parallel bring stormy conditions to the western coast and the Gulf of Cádiz area, associated to southwesterly winds. 3. Finally, the Mediterranean shoreline suffer the worst conditions during easterly and northeasterly wind events, usually dominanted by local disturbances formed along the Western Mediterranean basin. Trends observed on the different circulation patterns can explain the temporal evolution of the wave climate along the Spanish coast, characterized by calmer conditions on the south and an increase of the wave period on the north, without discernible wave height trend. The overall results indicated that this synoptic climatological approach provides a viable framework to establish and examine links between weather systems and wave conditions.

  6. Modes of cross-shore sediment transport on the shoreface of the Middle Atlantic Bight

    USGS Publications Warehouse

    Wright, L.D.; Boon, John D.; Kim, S.C.; List, J.H.

    1991-01-01

    The mechanisms responsible for onshore and offshore sediment fluxes across the shoreface zone seaward of the surf zone were examined in a 3-year field study. The study was conducted in the southern part of the Middle Atlantic Bight in the depth region 7–17 m using instrumented tripods supporting electromagnetic current meters, pressure sensors, suspended sediment concentration sensors, and sonar altimeters. The observations embraced fairweather, moderate energy, swell-dominated, and storm conditions. Cross-shore mean flows ranged from near zero during fairweather to > 20 cm s−1 during the storm; oscillatory flows were on the order of 10 cm s−1 during fairweather and 100 cm s−1 during the storm. Suspended sediment concentrations at about 10 cm above the bed were < 0.1 kg m−3 under fairweather conditions, 1–2 kg m−3 under moderate swell conditions, and > 5 kg m−3 during the storm.Three methods were applied to evaluate the relative importance of incident waves, long-period oscillations, mean flows and gravity in effecting shoreward or seaward sediment flux: (1) an energetics transport model was applied to instantaneous near-bottom velocity data, (2) higher moments of near-bottom flows were estimated and compared, and (3) suspended sediment fluxes were estimated directly from the instantaneous products of cross-shore velocity and suspended sediment concentration. The results show that measurable contributions were made by all four of the processes. Most significantly, mean flows were seen to dominate and cause offshore fluxes during the storm and to contribute significantly to onshore and offshore flux during fairweather and moderate energy. Incident waves were, in all cases, the major source of bed shear stress but also caused shoreward as well as seaward net sediment advection. Low-frequency effects involving wave groups and long-period waves made secondary contributions to cross-shore sediment flux. Contrary to expectations, low-frequency fluxes were just as often shoreward as seaward. Whereas cross-correlations between suspended sediment concentration and the instantaneous near-bottom current speed were high and in phase under storm conditions, they were weak and out of phase during fairweather conditions. This suggests that simple energetics models are probably inadequate for predicting fairweather transport of suspended sediment.

  7. DRUG MARKET RECONSTITUTION AFTER HURRICANE KATRINA: LESSONS FOR LOCAL DRUG ABUSE CONTROL INITIATIVES

    PubMed Central

    Bennett, Alex S.; Golub, Andrew; Dunlap, Eloise

    2011-01-01

    Hurricane Katrina accomplished what no law enforcement initiative could ever achieve: It completely eradicated the New Orleans drug market. However, Katrina did little to eliminate the demand for drugs. This article documents the process of the drug market reconstitution that occurred 2005–2008 based on in-depth interviews and focus groups with predominately low-income drug users and sellers. Before Katrina, the drug market was largely characterized by socially-bonded participants involved with corporate style distribution. After Katrina, a violent freelance market emerged. The conclusion draws recommendations for law enforcement for dealing with drug markets after a major disaster. This article uses New Orleans as a case study to chart the process of drug market reconstitution following an extreme disaster, namely Hurricane Katrina. On August 29, 2005, Hurricane Katrina made landfall and engulfed the New Orleans area, overwhelming levees and causing extensive flooding and destruction across the city. The storm generated 30- to 40-foot waves, which demolished many cities and small towns in Southern Mississippi and Alabama and caused considerable wind damage further inland. Although the hurricane eye missed central New Orleans by about 30 miles, the wave action in Lake Pontchartrain caused several levees to break and flood most of eastern New Orleans, which was under sea level. The storm had an impact on practically all New Orleans residents and almost destroyed New Orleans (Cooper & Block, 2006; Levitt & Whitaker, 2009; Lee, 2006). Our research focused on the impact of this storm on the drug markets in New Orleans. Katrina destroyed the physical environment and organizational structure that sustained the drug trade, yet drug use and sales did not disappear. During and soon after the storm, improvised sales and distribution organizations provided a wide range of illicit drugs to users (see Dunlap, Johnson, Kotarba, & Fackler, 2009; Dunlap & Golub, 2010; Dunlap, Johnson & Morse, 2007). This article examines the next historical period, the continuation of drug use among those returning to New Orleans and the rebuilding of drug market structures. The analysis provides a short review of drug markets before Katrina. Our main focus is the reconstitution process during the three years following the disaster. We pay special attention to street-level dealers and the end users’ lived experiences in primarily poorer neighborhoods, illustrating elements of continuity and change as various actors reconstituted New Orleans’ drug market. PMID:22582027

  8. Sele coastal plain flood risk due to wave storm and river flow interaction

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub-critical simulation, the boundary condition is a known downstream WSE, in this case the elevated water level due to wave setup, wind setup and inverted barometer, while the upstream boundary condition consisted in WSE corresponding to river discharges associated to different return periods. The results of the simulations evidence, for the last 10 kilometers of the river, the burst of critical inundation scenarios even with moderate flow discharge, if associated with concurrent storm surge which increase the water level at the river mouth, obstructing normal flow discharge.

  9. Evidence for Gravity Wave Seeding of Convective Ionospheric Storms Possibly Initiated by Thunderstorms

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Dao, E. V.

    2018-05-01

    With the increase in solar activity, the Communication/Outage Forecast System satellite decayed on orbit to below the F peak. As such, we can study the development of convective ionospheric storms and, most importantly, study large-scale seeding of the responsible instability. For decades, gravity has been suggested as being responsible for the long wavelengths in the range of 200 to 1,000 km, as are commonly observed using airglow and satellite data. Here we suggest that convective thunderstorms are a likely source of gravity waves and point out that recent theoretical analysis has shown this connection to be quite possible.

  10. The effect of changing topography on coastal tides and storm surge: a historical perspective

    NASA Astrophysics Data System (ADS)

    Talke, Stefan; Jay, David; Helaire, Lumas; Familkhalili, Ramin

    2016-11-01

    Over decadal and century time scales, the topography of coastal harbors changes due to natural and anthropogenic factors. These changes alter the mass and momentum balances of incoming waves, producing measureable changes to tides and surge. Here we use recently recovered archival data, historic bathymetric charts, and numerical models to assess changes in multiple estuaries. In the Columbia River estuary, Ems estuary, and Cape Fear Estuary, channel deepening has increased the M2 tide between 10 to 100% since the 19th century, due to both reduced frictional effects and altered resonance. The bathymetric perturbations also affect the propagation of other long-period waves: in Wilmington (NC), the worst-case scenario CAT-5 storm surge is modeled to increase by 50% since 19th century conditions. Similarly, in New York harbor, the 10 year storm-tide level has outpaced sea-level rise by nearly 30 cm since 1850. In the Columbia River, reduced friction has decreased the river slope (reducing water levels), but also led to amplification of both tides and flood waves. Going forward, historical bathymetric change may provide a clue to the future effects of climate change and continued anthropogenic development. National Science Foundation; US Army Corp of Engineers.

  11. Effect of severe hurricanes on biorock coral reef restoration projects in Grand Turk, Turks and Caicos Islands.

    PubMed

    Wells, Lucy; Perez, Fernando; Hibbert, Marlon; Clerveaux, Luc; Johnson, Jodi; Goreau, Thomas J

    2010-10-01

    Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5 m deep in Grand Turk, at Oasis (October 2006) and at Governor's Beach (November 2007). Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor's Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor's Beach. After hurricanes Hanna and Ike (September 2008) the Governor's Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure). Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas.

  12. A Permo-Carboniferous tide-storm interactive system: Talchir formation, Raniganj Basin, India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, H. N.; Bhattacharya, Biplab

    2006-08-01

    Sandstone/siltstone-mudstone interbedded facies of the Permo-Carboniferous Talchir formation, Gondwana Supergroup, is exposed in the Raniganj Basin and records the activities of tidal currents in a terminoglacial, storm-influenced shallow marine setting. Tidal bundles of various types with pause plane drapes, evidence of time-velocity asymmetry and rare bidirectional current flow patterns are indicative of tidal activity. Chance preservation of such structures from storm reworking might have occurred due to dampening of storm waves on the low-gradient muddy substrate of the tidal flat. The tide-generated stratifications are draped by over-thickened muddy-siltstone with wavy/hummocky laminations. Increased suspended sediment concentrations following a storm yielded such thick mudstone drapes. Thin beds containing tidal structures indicate poor sediment supply in a blind tidal embayment.

  13. Wave-current interaction in Willapa Bay

    USGS Publications Warehouse

    Olabarrieta, Maitane; Warner, John C.; Kumar, Nirnimesh

    2011-01-01

    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.

  14. Oceanographic conditions and sediment dynamic of the Barrang Caddi Island (Spermonde Archipelago, Indonesia)

    NASA Astrophysics Data System (ADS)

    Lanuru, M.; Samad, W.; Amri, K.; Priosambodo, D.

    2018-05-01

    Small islands are vulnerable to long-term natural disasters like coastal erosion due to their size and topography. Barrang Caddi is one the small island in the Spermonde Archipelago (South Sulawesi) that encountered serious coastal erosion. Several attempts have been done by the relevant parties like by building a wave breaker to prevent erosion. But in fact some parts of the island are still eroded. A comprehensive oceanographic study of the wave climate and coastal processes at work to delineate the factors responsible for shoreline chance and to identify the location that need protection is needed. In this study, physical oceanographic data including waves, currents, tide, bathymetry, sediment characteristics and sediment transport were collected in the Barrang Caddi Island to analyze the factors responsible for shoreline chance (erosion) in the island. Results of the study showed that tide in the study site is mixed tide, predominantly semidiurnal with tidal range of 118 cm. Current measurements using a electromagnetic current meter revealed that current velocities at the study site were relatively low and vary spatially and temporally with magnitude of 0.02 – 0.58 m/s. Under normal conditions (no storms) the significant wave height (H 1/3) varied from 0.04 to 0.20 m. The wave height decreases from the fore reef to the reef flat due to the presence of coral reefs that reduce wave energy (wave height). Sediments were dominated by biogenic sand with grain diameter of 0.38 – 1.04 mm. Island erosion analysis showed that wave action was a main factor that responsible for shoreline chance (erosion) at the island. Current velocity alone with average of 0.19 m/s was not strong enough to move (erode) sediments at the island.

  15. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.

    2018-03-01

    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  16. Wave Dynamics and Transport in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Alexander, M. Joan

    1999-01-01

    The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.

  17. Field-aligned structure of the storm time Pc 5 wave of November 14-15, 1979

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Higbie, P. R.; Fennell, J. F.; Amata, E.

    1987-06-01

    Magnetic field data from the four satellites SCATHA (P78-2), GOES 2, GOES 3, and GOES 2 have been analyzed to examine the magnetic field-aligned structure of a storm time Pc 5 wave that occurred on November 14-15, 1979. The wave had both transverse and compressional components. At a given instance, the compressional and the radial components oscillated in phase or 180 deg out of phase, and the compressional and the azimuthal components oscillated +90 deg or -90 deg out of phase. In addition, each component changed its amplitude with magnetic latitude: the compressional component had a minimum at the magnetic equator, whereas the transverse components had a maximum at the equator and minima several degrees off the equator. A 180 deg relative phase switching among the components occurred across the latitudes of amplitude minima. From these observations, the field line displacement of the wave is confirmed to have an antisymmetric standing structure about the magnetic equator with a parallel wave length of a few earth radii.

  18. Radio Wave Propagation for Communication on and around Mars. Part 1; Highlights: Propagation Through Mars Environment

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser

    1999-01-01

    We recommend to use the dayside Martian ionosphere as a reflector for global communication, because the dayside ionosphere has stable density peak and usable critic frequency. This is very crucial for the future Mars ground to around communication. The dayside ionosphere has been well modeled as a Chapman layer. We suggest to perform the Martian nightside ionospheric modeling study. Because the nightside ionosphere has very little measurements available, we propose to drop a digital ionosond instrument into the Mars surface for data collection. Even though the Martian tropospheric radio refractivity has small value, it still can cause the ray bending and multipath effects. We recommend to perform an accurate calculation on excess phase and group delays (range and time delays). Other effects, such as range rate errors, appearance angle deviation, defocusing loss on Mars, etc. are also needed to be estimated. Ice depolarization effects due to Martian clouds on radio waves is unknown yet, which is expected to be small, because lower optical depth and thinner layer of cloud: Total Martian atmospheric gaseous attenuation is expected to be less than 1 dB on microwaves band, because the Martian atmosphere has very low concentration in uncondensed H2O and O2. An accurate calculation for zenith opacity requires the information about scale heights of H2O and O2 distribution. An accurate water vapor altitude profile at Mars is not available yet. Under the normal condition, CO2 and N2 gases do not have electric or magnetic dipoles and do not absorb electromagnetic energy from the waves. However, they may generate the dipoles through a collision and interact with waves under a high density condition and absorb electromagnetic waves in the infrared and visible band. Dust storm is most dominant factor to the radio wave attenuation. Large Martian dust storm can cause at least 3 dB or higher loss to Ka band wave. For a normal dust storm, the attenuation is about 1 dB. The attenuation much depends on dust mass loading, dust size distribution, etc. Most large dust storm occur in the southern hemisphere during later spring and early summer when the southern hemisphere become suddenly hot.

  19. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    NASA Astrophysics Data System (ADS)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  20. Long Term Autonomous Ocean Remote Sensing Utilizing the Wave Glider

    NASA Astrophysics Data System (ADS)

    Griffith, J.

    2012-12-01

    Rising costs of ship time and increasing budgetary restrictions make installation and maintenance of fixed ocean buoys a logistical and financial challenge. The cost associated with launch, recovery, and maintenance has resulted in a limited number of deployed buoys, restricting data on oceanic conditions. To address these challenges, Liquid Robotics (LRI) has developed the Wave Glider, an autonomous, mobile remote sensing solution. This system utilizes wave energy for propulsion allowing for long duration deployments of up to one year while providing real-time data on meteorological and oceanographic conditions. In November 2011, LRI deployed four Wave Gliders on a mission to cross the Pacific Ocean (the PacX) from San Francisco to Australia (two vehicles) or Japan (two vehicles) while transmitting data on weather conditions, wave profiles, sea surface temperatures, and biological conditions in real-time. This report evaluates the vehicle's ability to operate as an ocean going data platform by comparing data from the onboard weather sensors with two moored buoys, NDBC 46092 (Monterey Bay) and NDBC 51000 (200 nmi NE of Maui). The report also analyzes data transmitted from all four vehicles as they passed directly through a tropical storm 580 nmi NE of Hawaii. Upon arriving at one of the aforementioned buoys, the gliders continuously circled for a period of two days at a distance of three to eight nautical miles to build a comparative dataset. Data from both platforms were streamed in near real time enabling mid-mission evaluation of the performance of sensors. Overall, results varied from a <0.5% difference in barometric pressure between buoy NDBC 46092 and the gliders to high disagreement in wind speed and direction. While comparisons to moored buoy data can provide valuable insight into the relative accuracy of each platform, differences in agreement on variables such as wind speed and direction were attributed to micro-spatial variability in oceanic conditions. In addition, all four PacX vehicles collected data from directly within a tropical storm off the coast of Hawaii. Starting on February 5th, 2012, the vehicles measured sustained winds of 40 knots for 4 days with gusts up to 80 knots at the height of the storm. The vehicles also measured sustained wave heights of 7m along with a barometric pressure drop to a low of 985 mbar. A pressure between 965 and 979 mbar is comparable to a category two hurricane while the measured wind speed falls within the range of a tropical storm on the SSHS. The wind data compares favorably to satellite imagery from the ASCAT satellite data of the same storm but with much higher spatial resolution. In conclusion, the Pacific crossing has provided solid evidence that the Wave Glider would provide a suitable and highly efficient platform for the observation of sea surface and lower atmospheric conditions over extended sampling periods. The system could be used to quickly and efficiently increase the operational density of ocean observations without the need for expensive deployment and recovery vessels. In future studies, data from the PacX will be compared with additional satellite and oceanic data sources to provide ground truthing of collected oceanographic data. In addition, two Wave Gliders will be deployed from Puerto Rico to monitor storm conditions from directly within a hurricane.

  1. 7 CFR 1806.23 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... other body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels, or abnormally high tidal water or rising coastal waters resulting from severe storms, hurricanes, or tidal waves resulting from volcano eruptions or earthquakes. (g) Mudslide or...

  2. 7 CFR 1806.23 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... other body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels, or abnormally high tidal water or rising coastal waters resulting from severe storms, hurricanes, or tidal waves resulting from volcano eruptions or earthquakes. (g) Mudslide or...

  3. 7 CFR 1806.23 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... other body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels, or abnormally high tidal water or rising coastal waters resulting from severe storms, hurricanes, or tidal waves resulting from volcano eruptions or earthquakes. (g) Mudslide or...

  4. 7 CFR 1806.23 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... other body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels, or abnormally high tidal water or rising coastal waters resulting from severe storms, hurricanes, or tidal waves resulting from volcano eruptions or earthquakes. (g) Mudslide or...

  5. 7 CFR 1806.23 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels, or abnormally high tidal water or rising coastal waters resulting from severe storms, hurricanes, or tidal waves resulting from volcano eruptions or earthquakes. (g) Mudslide or...

  6. Development of methods for improving levels 1 and 2 met/ocean parameter predictions

    DOT National Transportation Integrated Search

    2011-02-01

    The prediction of storm surge and wave forces and moments on bridges requires knowledge of design (100-year) water levels and wave heights and periods (met/ocean conditions) as well as bridge dimensions, elevation, orientation, etc. The American Asso...

  7. Modeling Storm-Influenced Suspended Particulate Matter Flocculation Using a Tide-Wave-Combined Biomineral Model.

    PubMed

    Chen, Peihung; Yu, Jason C S; Fettweis, Michael

    2018-03-01

      Flocculation of suspended particulate matter (SPM) in marine and estuarine environments is a complex process that is influenced by physical, biological, and chemical mechanisms. The flocculation model of Maggi (2009) was adapted to simulate flocculation under various weather conditions and during different seasons. The adaptation incorporated the effect of tide-wave-combined turbulence on floc dynamics. The model was validated using in situ measurements of floc size and SPM concentration from the southern North Sea during both calm and storm conditions. The results show that tide-wave-combined turbulence needs to be incorporated when simulating flocculation in a tide-wave-dominated environment. The observed seasonal variations in floc size (Fettweis et al., 2014) were reproduced using varying values for various floc strengths in different seasons. The results revealed that the biological effect on floc strength, which enhances aggregation, is stronger during summer, indicating that floc strength in the model should be varied seasonally.

  8. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; hide

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  9. Storm surges formation in the White and Barents Seas

    NASA Astrophysics Data System (ADS)

    Arkhipkin, Victor; Dobrolyubov, Sergey; Korablina, Anastasia; Myslenkov, Stanislav

    2016-04-01

    Investigation of storm surges in the Arctic seas are of high priority in Russia due to the active development of offshore oil and gas, construction of facilities in the coastal zone, as well as for the safety of navigation. It is important to study the variability of surges, to predict this phenomena and subsequent economic losses, thus including such information into the Russian Arctic Development Program 2020. Surges in the White and Barents Seas are caused mainly by deep cyclones of two types: "diving" from the north (88% of all cyclones) and western. The average height of the storm surges in the White Sea is 0.6-0.9 m. An average duration of storm surges is about 80 hours. Mathematical modeling is used to analyze the characteristics of storm surges formation in the Dvina Bay of the White Sea, and in the Varandey village on the Barents Sea coast. Calculating storm surge heights in the White and Barents seas is performed using the ADCIRC model on an unstructured grid with a step from 20 km in the Barents Sea to 100 m in the White Sea. Unstructured grids allowed keeping small features of the coastline of the White and Barents seas, small islands and shallow banks, and assessing their impact on the development and transformation of wind-generated waves. The ADCIRC model used data of wind field reanalysis CFSv2. The storm surges were simulated for the time period from 1979 to 2010 and included scenarios with / without direct atmospheric pressure forcing, waves and tides. Numerical experiments have revealed distribution of storm surges in channels of the Northern Dvina River delta. The storm surges spreads in the model from the north-north-west of the Dvina Bay. As storm surge moves from the wellhead to the seaside estuary of the Northern Dvina (district Solombala), its height increases from 0.5 to 2 m. We also found a non-linear interaction of the surge and tide during the phase of surge destruction. This phenomenon is the highest in the period of low water, and the smallest in the period full of water. Analysis of storm surges in the Varandey village (the southern part of the Barents Sea) showed that the maximum height of storm surge reached 2.9 m in this region in July, 2010. The work performed was supported by the RSCF (grant № 14-37-00038)

  10. Comprehensive Condition Survey and Storm Waves, Circulation, and Sedimentation Study, Dana Point Harbor, California

    DTIC Science & Technology

    2011-07-01

    Tide on January 5, 2010 Figure 3-1 CMS-Wave Model Domain and Grid System Figure 3-2 CDIP 096 Wave and NOAA 9410660 Water Levels Figure 3-3 NDBC...Figure 3-10 Scatter plot of Observed CDIP and Hindcast Significant Wave Heights Figure 3-11 Comparison of Significant Wave Heights during the Month...obtained from the Coastal Data Information Program ( CDIP ) at Dana Point (Buoy 096) as well as the predicted tides at Newport Beach, CA (Station 9410580

  11. Estimates of suspended-sediment flux and bedform activity on the inner portion of the Eel continental shelf

    USGS Publications Warehouse

    Cacchione, D.A.; Wiberg, P.L.; Lynch, J.; Irish, J.; Traykovski, P.

    1999-01-01

    Energetic waves, strong bottom currents, and relatively high rates of sediment discharge from the Eel River combined to produce large amounts of suspended-sediment transport on the inner continental shelf near the Eel River during the winter of 1995-1996. Bottom-boundary-layer (BBL) measurements at a depth of ~50 m using the GEOPROBE tripod showed that the strongest near-bottom flows (combined wave and current speeds of over 1 m/s) and highest sediment concentrations (exceeding 2 g/l at ~1.2 m above the bed) occurred during two storms, one in December 1995 and the other in February 1996. Discharge from the Eel River during these storms was estimated at between 2 and 4 x 103 m3/s. Suspended-sediment flux (SSF) was measured 1.2 m above the bed and calculated throughout the BBL, by applying the tripod data to a shelf sediment-transport model. These results showed initially northward along-shelf SSF during the storms, followed by abrupt and persistent southward reversals. Along-shelf flux was more pronounced during and after the December storm than in February. Across-shelf SSF over the entire measurement period was decidedly seaward. This seaward transport could be responsible for surficial deposits of recent sediment on the outer shelf and upper continental slope in this region. Sediment ripples and larger bedforms were observed in the very fine to fine sand at 50-m depth using a sector-scanning sonar mounted on the tripod. Ripple wavelengths estimated from the sonar images were about 9 cm, which compared favorably with photographs of the bottom taken with a camera mounted on the tripod. The ripple patterns were stable during periods of low combined wave-current bottom stresses, but changed significantly during high-stress events, such as the February storm. Two different sonic altimeters recorded changes in bed elevation of 10 to 20 cm during the periods of measurement. These changes are thought to have been caused principally by the migration of low-amplitude, long-wavelength sand waves into the measurement area.

  12. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular, the repeatability in electron dynamics coupled with observations of processes leading to electron loss (EMIC waves) and acceleration (VLF or ULF waves) can be used to diagnose the relative importance of physical processes in radiation belt dynamics during storms.

  13. A joint method to retrieve directional ocean wave spectra from SAR and wave spectrometer data

    NASA Astrophysics Data System (ADS)

    Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan

    2016-07-01

    This paper proposes a joint method to simultaneously retrieve wave spectra at different scales from spaceborne Synthetic Aperture Radar (SAR) and wave spectrometer data. The method combines the output from the two different sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coefficient is estimated using an effective significant wave height (SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coefficient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as first guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length (PWL), and peak wave direction (PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR (ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting (ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.

  14. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  15. The threshold between storm overwash and inundation and the implication to paleo-storm records and climate signatures.

    NASA Astrophysics Data System (ADS)

    Smith, C. G.; Long, J.; Osterman, L. E.; Plant, N. G.; Marot, M. E.; Bernier, J.; Flocks, J. G.; Adams, C. S.

    2014-12-01

    In modern coastal systems, the sensitivity of a coastal site to erosion or deposition during storm conditions depends largely on the geomorphic configuration (e.g. dune or beach height and width) and the storm-induced oceanographic processes (surge and waves). Depending on the magnitude of these variables, coastal systems may be eroded, overwashed, breached, and/or inundated during the storm. To date, there has been no attempt to evaluate how these observable modern differences in storm-impact regimes might be utilized to interpret paleo-storm intensities and frequencies. Time-series of sediment texture, radioisotopic, and foraminiferal data from back-barrier environments along the Chandeleur Islands (Louisiana, USA) document the emplacement of a storm event deposit from Hurricane Isaac and we use this event to test paleo-storm intensity reconstruction methods. Water level reconstructed for the event layer using an advection (grain-size) settling model are 2 - 3 times greater than measured during the storm. The over-estimation is linked to the reconstruction model's assumptions concerning sediment transport during storms (i.e., overwash only), while actual processes included inundation as well. These contrasts may result in misidentification (i.e., presence/absence) and/or misclassification (i.e., intensity) of storms in the geologic record (e.g., low geomorphic conditions and high water levels) that would in turn affect the ability to link storm frequency or intensity to climatic drivers.

  16. Relationships between SC- and SI-associated ULF waves and ionospheric HF Doppler oscillations during the great geomagnetic storm of February 1986

    NASA Technical Reports Server (NTRS)

    Yumoto, K.; Takahashi, K.; Ogawa, T.; Tsunomura, S.; Nagai, T.

    1989-01-01

    The SC- and SI-associated ionospheric Doppler velocity oscillations and geomagnetic pulsations during the great geomagnetic storm of February 1986 are interpreted. This is done by considering the 'dynamo-motor' mechanism of ionospheric E-field and the global compressional oscillations of the magnetosphere and the ionosphere, respectively.

  17. Upper Ocean Inertial Currents Forced by a Strong Storm. I: Mixed Layer. II: Propagation into the Thermocline

    DTIC Science & Technology

    1993-12-20

    inertial waves during OCEAN STORMS. (this volume) Sanford, T. B., P. G. Black, J. R. Haustein , J. W. Feeney, G. Z. Forristall, and J. F. Price, 1987...J. R. Haustein , J. W. Feeney, G.Z. Forristall, J. F. Price, 1987: Ocean response to a hurricane, Part I: Observations. J. Phys. Oceanogr., 17, 2065

  18. Probing storm-time near-Earth magnetotail dynamics using 30 keV proton isotropic boundaries as tracers of precipitating and trapped populations

    NASA Astrophysics Data System (ADS)

    Ganushkina, N. Y.; Dubyagin, S.; Liemohn, M. W.

    2017-12-01

    The isotropic boundaries of the energetic protons, which can be routinely observed by low-altitude satellites, have been used as a tool to probe remotely the nightside magnetic configuration in the near-Earth region. The validity of this method is based on the assumption that the isotropic boundary is formed by the particle scattering on the curved field lines in the magnetotail current sheet. However recent results revealed that the wave-particle interaction process often can be responsible for the isotropic boundary formation especially during active times. Using numerous observations of the 30 keV proton isotropic boundaries and conjugated measurements of the magnetic field in the equatorial magnetosphere we demonstrate that isotropic boundary location can be used as a proxy of the magnetotail stretching even during magnetic storms. The results imply that the scattering on the curved field lines still plays major role as a mechanism of the isotropic boundary formation during storm-time. We found that the wave-particle interaction could lead to isotropic boundary formation in 15% of events. In addition, we discuss the morphology of the storm-time energetic proton precipitations.

  19. Monitoring Inland Storm Surge and Flooding from Hurricane Ike in Texas and Louisiana, September 2008

    USGS Publications Warehouse

    East, Jeffery W.; Turco, Michael J.; Mason, Jr., Robert R.

    2008-01-01

    The U.S. Geological Survey (USGS) deployed a temporary monitoring network of 117 pressure transducers (sensors) at 65 sites over an area of about 5,000 square miles to record the timing, areal extent, and magnitude of inland hurricane storm surge and coastal flooding generated by Hurricane Ike, which struck southeastern Texas and southwestern Louisiana September 12-13, 2008. Fifty-six sites were in Texas and nine were in Louisiana. Sites were categorized as surge, riverine, or beach/wave on the basis of proximity to the Gulf Coast. One-hundred five sensors from 59 sites (fig. 1) were recovered; 12 sensors from six sites either were lost during the storm or were not retrieved. All 59 sites (41 surge, 10 riverine, 8 beach/wave) had sensors to record water pressure (fig. 2), which is expressed as water level in feet above North American Vertical Datum of 1988 (NAVD88), and 46 sites had an additional sensor to record barometric pressure, expressed in pounds per square inch. Figure 3 shows an example of water level and barometric pressure over time recorded by sensors during the storm.

  20. Hydro morphodynamic modelling in Mediterranean storms: errors and uncertainties under sharp gradients

    NASA Astrophysics Data System (ADS)

    Sánchez-Arcilla, A.; Gracia, V.; García, M.

    2014-02-01

    This paper deals with the limits in hydrodynamic and morphodynamic predictions for semi-enclosed coastal domains subject to sharp gradients (in bathymetry, topography, sediment transport and coastal damages). It starts with an overview of wave prediction limits (based on satellite images) in a restricted domain such as is the Mediterranean basin, followed by an in-depth analysis of the Catalan coast, one of the land boundaries of such a domain. The morphodynamic modeling for such gradient regions is next illustrated with the simulation of the largest recorded storm in the Catalan coast, whose morphological impact is a key element of the storm impact. The driving wave and surge conditions produce a morphodynamic response that is validated against the pre and post storm beach state, recovered from two LIDAR images. The quality of the fit is discussed in terms of the physical processes and the suitability of the employed modeling equations. Some remarks about the role of the numerical discretization and boundary conditions are also included in the analysis. From here an assessment of errors and uncertainties is presented, with the aim of establishing the prediction limits for coastal engineering flooding and erosion analyses.

  1. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    USGS Publications Warehouse

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  2. Energization of Radiation Belt Electrons by High and Low Azimuthal Mode Number Poloidal Mode ULF Waves

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Brito, T.; Elkington, S. R.; Kress, B. T.; Liang, Y.

    2011-12-01

    CME-shock and CIR-driven geomagnetic storms are characterized by enhanced ULF wave activity in the magnetosphere. This enhanced ULF wave power produces both coherent and diffusive transport and energization, as well as pitch angle modification of radiation belt electrons in drift resonance with azimuthally propagating ULF waves. Recent observations of two CME-driven storms1,2 have suggested that poloidal mode waves with both low and high azimuthal mode number may be efficient at accelerating radiation belt electrons. We extend up to m = 50 the analysis of Ozeke and Mann3 who examined drift resonance for poloidal modes up to m = 40. We calculate radial diffusion coefficients for source population electrons in the 50 -500 keV range, and continued resonance with lower m-numbers at higher energies for ULF waves in the Pc 5, 0.4 - 10 mHz range. We use an analytic model for ULF waves superimposed on a compressed dipole, developed for equatorial plane studies by Elkington et al.4 and extended to 3D by Perry et al.4 Assuming a power spectrum which varies as ω-2, consistent with earlier observations, we find greater efficiency for radial transport and acceleration at lower m number where there is greater power for drift resonance at a given frequency. This assumption is consistent with 3D global MHD simulations using the Lyon-Fedder-Mobarry code which we have carried out for realistic solar wind driving conditions during storms. Coherent interaction with ULF waves can also occur at a rate which exceeds nominal radial diffusion estimates but is slower than prompt injection on a drift time scale. Depending on initial electron drift phase, some electrons are accelerated due to the westward azimuthal electric field Eφ, while others are decelerated by eastward Eφ, decreasing their pitch angle. A subset of trapped electrons are seen to precipitate to the atmosphere in 3D LFM simulations, showing modulation at the coherent poloidal mode ULF wave frequency in both simulations and MINIS balloon observations for the January 21, 2005 CME-driven storm. Thus Pc 5 poloidal mode ULF waves cause competing increase and decrease in relativistic electron flux. The relative efficiencies of both coherent and diffusive processes will be examined. 1Zong et al., JGR, doi:10.1029/2009JA014393, 2009. 2Tan et al., JGR, doi:10.1029/2010JA016226, 2011. 3Ozeke and Mann, JGR, doi:10.1029/2007JA012468, 2008. 4Elkington et al., doi:10.1029/2001JA009202, 2003, 2003. 5Perry et al., doi:10.1029/2004JA010760, 2005.

  3. Persistence rates and detection probabilities of oiled king eider carcasses on St Paul Island, Alaska

    USGS Publications Warehouse

    Fowler, A.C.; Flint, Paul L.

    1997-01-01

    Following an oil spill off St Paul Island, Alaska in February 1996, persistence rates and detection probabilities of oiled king eider (Somateria spectabilis) carcasses were estimated using the Cormack-Jolly-Seber model. Carcass persistence rates varied by day, beach type and sex, while detection probabilities varied by day and beach type. Scavenging, wave action and weather influenced carcass persistence. The patterns of persistence differed on rock and sand beaches and female carcasses had a different persistence function than males. Weather, primarily snow storms, and degree of carcass scavenging, diminished carcass detectability. Detection probabilities on rock beaches were lower and more variable than on sand beaches. The combination of persistence rates and detection probabilities can be used to improve techniques of estimating total mortality.

  4. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2016-04-01

    Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the issuing authority, these reports include wind speed and atmospheric pressure for a number of stations. However, there is also important ancillary information that includes satellite images, weather radar pictures, sea state recordings, tide gauge records, and coastal surveys. When collated together, the literature survey gives good view of events related to the autumn storm. The key information from media reports is backed up by quantitative numbers from the scientific literature. For energy meteorology in the offshore environment, there is an outline of extreme wave events that may be important to help define the ultimate limit state of engineering structures and the return periods of extreme waves. While this contribution focusses on events from an old storm in the autumn of 2006, more severe regional storms have occurred since then, and the scientific literature indicates that these may be linked with climate warming. Literature surveys may help to fully define extreme meteorological conditions offshore and benefit different branches of the energy industry in Europe.

  5. Simulation of a Rapid Dropout Event for Highly Relativistic Electrons with the RBE Model

    NASA Technical Reports Server (NTRS)

    Kang, S-B.; Fok, M.-C.; Glocer, A.; Min, K.-W.; Choi, C.-R.; Choi, E.; Hwang, J.

    2016-01-01

    A flux dropout is a sudden and sizable decrease in the energetic electron population of the outer radiation belt on the time scale of a few hours. We simulated a flux dropout of highly relativistic 2.5 MeV electrons using the Radiation Belt Environment model, incorporating the pitch angle diffusion coefficients caused by electromagnetic ion cyclotron (EMIC) waves for the geomagnetic storm events of 23-26 October 2002. This simulation showed a remarkable decrease in the 2.5 MeV electron flux during main phase of the storm, compared to those without EMIC waves. This decrease was independent of magnetopause shadowing or drift loss to the magnetopause. We suggest that the flux decrease was likely to be primarily due to pitch angle scattering to the loss cone by EMIC waves. Furthermore, the 2.5 MeV electron flux calculated with EMIC waves correspond very well with that observed from Solar Anomalous and Magnetospheric Particle EXplorer spacecraft. EMIC wave scattering is therefore likely one of the key mechanisms to understand flux dropouts. We modeled EMIC wave intensities by the Kp index. However, the calculated dropout is a several hours earlier than the observed one. We propose that Kp is not the best parameter to predict EMIC waves.

  6. Variability In Long-Wave Runup as a Function of Nearshore Bathymetric Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunkin, Lauren McNeill

    Beaches and barrier islands are vulnerable to extreme storm events, such as hurricanes, that can cause severe erosion and overwash to the system. Having dunes and a wide beach in front of coastal infrastructure can provide protection during a storm, but the influence that nearshore bathymetric features have in protecting the beach and barrier island system is not completely understood. The spatial variation in nearshore features, such as sand bars and beach cusps, can alter nearshore hydrodynamics, including wave setup and runup. The influence of bathymetric features on long-wave runup can be used in evaluating the vulnerability of coastal regionsmore » to erosion and dune overtopping, evaluating the changing morphology, and implementing plans to protect infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone. XBeach assumes that coastal erosion at the land-sea interface is dominated by bound long-wave processes. Several hydrodynamic conditions are used to force the numerical model. The XBeach simulation results suggest that bathymetric irregularity induces significant changes in the extreme long-wave runup at the beach and the energy indicator through the surfzone.« less

  7. Internal wave deposits in Jurassic Kermanshah pelagic carbonates and radiolarites (Kermanshah area, West Iran)

    NASA Astrophysics Data System (ADS)

    Abdi, Asad; Gharaie, Mohamad Hosein Mahmudy; Bádenas, Beatriz

    2014-12-01

    We report eventites generated by turbulence events triggered by breaking internal waves in Jurassic pelagic muds deposited in a graben area located between the Arabian and Bisotoun carbonate platforms, at the Kermanshah basin (West Iran). The 43 m-thick studied Pliensbachian-Aalenian succession at Kermanshah includes sponge spicule-radiolarian limestones and cherts with cm- to dm-thick intercalations of pyroclastic beds and coarse-grained deposits formed by neritic-derived grains and reworked pelagic material. Breaking of internal waves in localized areas reworked the available sediment on sea floor, including the erosion of cohesive pelagic muds and the resuspension of neritic-derived grains, which were resedimented from the Bisotoun platform most probably by storms or turbidity currents. The generated internal wave deposits include: flat- and round pebble limestone conglomerates, formed by deposition of pelagic clasts and neritic-derived grains near the breaker zone; laminated packstone-grainstones deposited by high-energy, upslope (swash) and downslope (backswash) flows; cm-thick packstone-grainstones with asymmetrical starved ripples and hummocy crossstratification, generated downdip by waning of backwash flows and internal wave oscillatory flows. These internal wave deposits predominate in the Pliensbachian-early Toarcian, and were related to internal waves developed along a thermocline linked to climate warming and excited by submarine volcanic eruptions, storms or tectonic shaking.

  8. Electrically-Active Convection and Tropical Cyclogenesis in the Atlantic and East Pacific

    NASA Technical Reports Server (NTRS)

    Leppert, Kenneth D., II; Petersen, Walter A.

    2010-01-01

    It has been hypothesized that deep, intense convective-scale "hot" towers may aid the process of tropical cyclogenesis and intensification through dynamic and thermodynamic feedbacks on the larger meso-to-synoptic scale circulation. In this study, we make use of NCEP Reanalysis data and Tropical Rainfall Measurement Mission (TRMM) lightning imaging sensor (LIS), precipitation radar (PR), and microwave imager (TMI) data to investigate the role that widespread and/or intense lightning-producing convection (i.e., "electrically-hot towers") present in African easterly waves (AEWs) may play in tropical cyclogenesis over the Atlantic, Caribbean, and East Pacific regions. NCEP Reanalysis 700 hPa meridional winds for the months of June to November for the years 2001-2009 were analyzed for the domain of 5degN-20degN and 130degW-20degE in order to partition individual AEWs into northerly, southerly, trough, and ridge phases. Subsequently, information from National Hurricane Center (NHC) storm reports was used to divide the waves into developing and non-developing waves and to further divide the developing waves into those waves that spawned storms that only developed to tropical storm strength and those that spawned storms that reached hurricane strength. The developing waves were also divided by the region in which they developed. To help determine the gross nature of the smaller convective scale, composites were created of all developing and non-developing waves as a function of AEW wave phase over the full analysis domain and over various smaller longitude bands by compositing TRMM PR, TMI, LIS, and IR brightness temperature data extracted from the NASA global-merged IR brightness temperature dataset. Finally, similar composites were created using various NCEP variables to assess the nature of the larger scale environment and circulation. Results suggest a clear distinction between developing and non-developing waves as developing waves near their region of development in terms of the intensity of convection (indicated by lightning flash rate), coverage of cold cloudiness (indicated by the percentage of a 2.5deg by 2.5deg box covered by IR brightness temperatures less than 210 K), and large-scale variables, such as midlevel moisture and upper-level upward motion. For example, waves that developed in the East Pacific longitude band (i.e., 130degW-95degW) were observed in that band to have a flash rate of 56.4 flashes/day, a coverage by brightness temperatures less than 210 K equal to 2.2%, a 700-hPa specific humidity anomaly of 0.4 g/kg, and a 300-hPa omega value of -0.04 Pascals/s in the trough phase compared to the non-developing wave trough values of 22.1 flashes/day, a coverage by brightness temperatures less than 210 K equal to 0.9%, a 700-hPa specific humidity anomaly of -0.3 g/kg, and a 300-hPa omega value of -0.01 Pascals/s.

  9. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a geomagnetic storm. A comparison of the ordinary and extraordinary modes of HF radio ray paths in quiet and disturbed conditions has been done. We considered in more detail the features of the radio ray paths in the presence of F3 layer in the equatorial ionosphere, the main ionospheric trough and tongue of ionization at high latitudes. It is shown that the results obtained with use of radio propagation and GSM TIP models adequately describe HF radio ray paths in the Earth's ionosphere and can be used in applications. These investigations were carried out at financial support of Russian Foundation for Basic Research (RFBR) - Grant # 12-05-31217 and RAS Program 22.

  10. Thyroid gland disorder emergencies: thyroid storm and myxedema coma.

    PubMed

    Hampton, Jessica

    2013-01-01

    Although thyroid dysfunction will develop in more than 12% of the US population during their lifetimes, true thyroid emergencies are rare. Thyroid storm and myxedema coma are endocrine emergencies resulting from thyroid hormone dysregulation, usually coupled with an acute illness as a precipitant. Careful assessment of risk and rapid action, once danger is identified, are essential for limiting morbidity and mortality related to thyroid storm and myxedema coma. This article reviews which patients are at risk, explains thyroid storm and myxedema coma, and describes pharmacological treatment and supportive cares.

  11. The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience.

    PubMed

    Guannel, Greg; Arkema, Katie; Ruggiero, Peter; Verutes, Gregory

    2016-01-01

    Natural habitats have the ability to protect coastal communities against the impacts of waves and storms, yet it is unclear how different habitats complement each other to reduce those impacts. Here, we investigate the individual and combined coastal protection services supplied by live corals on reefs, seagrass meadows, and mangrove forests during both non-storm and storm conditions, and under present and future sea-level conditions. Using idealized profiles of fringing and barrier reefs, we quantify the services supplied by these habitats using various metrics of inundation and erosion. We find that, together, live corals, seagrasses, and mangroves supply more protection services than any individual habitat or any combination of two habitats. Specifically, we find that, while mangroves are the most effective at protecting the coast under non-storm and storm conditions, live corals and seagrasses also moderate the impact of waves and storms, thereby further reducing the vulnerability of coastal regions. Also, in addition to structural differences, the amount of service supplied by habitats in our analysis is highly dependent on the geomorphic setting, habitat location and forcing conditions: live corals in the fringing reef profile supply more protection services than seagrasses; seagrasses in the barrier reef profile supply more protection services than live corals; and seagrasses, in our simulations, can even compensate for the long-term degradation of the barrier reef. Results of this study demonstrate the importance of taking integrated and place-based approaches when quantifying and managing for the coastal protection services supplied by ecosystems.

  12. The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience

    PubMed Central

    Guannel, Greg; Arkema, Katie; Ruggiero, Peter; Verutes, Gregory

    2016-01-01

    Natural habitats have the ability to protect coastal communities against the impacts of waves and storms, yet it is unclear how different habitats complement each other to reduce those impacts. Here, we investigate the individual and combined coastal protection services supplied by live corals on reefs, seagrass meadows, and mangrove forests during both non-storm and storm conditions, and under present and future sea-level conditions. Using idealized profiles of fringing and barrier reefs, we quantify the services supplied by these habitats using various metrics of inundation and erosion. We find that, together, live corals, seagrasses, and mangroves supply more protection services than any individual habitat or any combination of two habitats. Specifically, we find that, while mangroves are the most effective at protecting the coast under non-storm and storm conditions, live corals and seagrasses also moderate the impact of waves and storms, thereby further reducing the vulnerability of coastal regions. Also, in addition to structural differences, the amount of service supplied by habitats in our analysis is highly dependent on the geomorphic setting, habitat location and forcing conditions: live corals in the fringing reef profile supply more protection services than seagrasses; seagrasses in the barrier reef profile supply more protection services than live corals; and seagrasses, in our simulations, can even compensate for the long-term degradation of the barrier reef. Results of this study demonstrate the importance of taking integrated and place-based approaches when quantifying and managing for the coastal protection services supplied by ecosystems. PMID:27409584

  13. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    NASA Astrophysics Data System (ADS)

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  14. Flooding Mitigation of seawalls and river embankments to storm surges in the coastal areas of Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Wang, Xina

    2017-04-01

    The coastal areas of Guangdong Province, China are susceptible to the destructions of tropical cyclones and storm surges. The projected global warming, coastal subsidence and sea level rise together will bring about greater flooding risk to these areas. The seawall and river embankment have played a significant role in mitigating and preventing the coastal low-land areas from the impairment of storm surges flooding and wave runup. However, few risk assessment studies in this region consider the existence of seawall and river embankment and often overestimate the risk and potential economic loss and population affected due to storm surge flooding. This study utilizes a hydraulic model to simulate the overtop flooding and compare those without seawall and river embankment using several specific tropic storm events and extreme events of tropic storm surges in different return periods of 2, 10, 20, 50, 100, 200 and 500 years. Most seawalls are 4 or 5 meters plus another meter of wave levee above the local mean sea level. The river embankments are usually 4 or 5 meter higher than the local mean sea level as well and decrease from the outer estuary to the inner riverine. The modeling results considering seawall and river embankments and from real storm surges are in agreement with on-site survey and observations, while those without infusing seawall and river embankments overestimate the inundation condition and economic loss. Modeling results demonstrate that seawall and river embankment greatly reduce the flooding risk and prevent the low-land area from inundation for most tropic storm events, e.g., for extreme events less than 20 to 50 years, in the coastal areas of Guangdong Province, China. However, the seawall and river embankment may also cause catastrophic disasters once there is an engineering failure of seawalls and river embankment, especially once encountering with an extreme typhoon event, e.g., the 1969 super typhoon Viola in Shantou China and the 2005 hurricane Katrina in New Orleans, USA.

  15. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.

  16. A Robot for Coastal Marine Studies Under Hostile Conditions

    NASA Astrophysics Data System (ADS)

    Consi, T. R.

    2012-12-01

    Robots have long been used for scientific exploration of extremely remote environments such as planetary surfaces and the deep ocean. In addition to these physically remote places, there are many environments that are transiently remote in the sense that they are inaccessible to humans for a period of time. Coastal marine environments fall into this category. While quite accessible (and enjoyable) during good weather, the coast can become as remote as the moon when it is impacted by severe storms or hurricanes. For near shore and shallow water marine science unmanned underwater ground vehicles (UUGVs) are the robots of choice for reliable access under a variety of conditions. Ground vehicles are inherently amphibious being able to operate in complex coastal environments that can range from the completely dry beach, through the transiently wet swash zone, into the surf zone and beyond. During storms, UUGVs provide stable sensor platforms resistant to waves and currents by virtue of being locked to the substrate. In such situations free-swimming robots would be swept away. Mobility during storms enables a UUGV to orient itself to optimally resist forces that would dislodge fixed, moored platforms. Mobility can also enable a UUGV to either avoid burial, or unbury itself after a storm. Finally, the ability to submerge provides a great advantage over buoys and surface vehicles which would be smashed by heavy wave action. We have developed a prototype UUGV to enable new science in the surf zone and other shallow water environments. Named LMAR for Lake Michigan Amphibious Robot, it is designed to be deployed from the dry beach, enter the water to perform a near-shore survey, and return to the deployment point for recovery. The body of the robot is a heavy flattened box (base dimensions: 1.07 m X 1.10 m X .393 m, dry weight: ~127 kg, displacement: ~ 45 kg) with a low center of gravity for stability and robust construction to withstand waves and currents. It is topped by a 1.5 m surface penetrating mast which currently limits the operational depth, although the core vehicle can be deployed to depths in excess of 10 m. Propulsion is accomplished with two DC brushless motors driving six wide heavy tread pneumatic wheels, three on each side. Power is provided by NiMH batteries. An onboard computer controls propulsion, navigation and communications. Guidance and navigation utilize inertial sensors, an electronic compass and a GPS unit mounted on the mast. A scientist onshore can monitor data from the scientific payload as well as command the robot through a mast-mounted radio Ethernet bridge. Standard, off the shelf oceanographic sensors such as sondes and ADCPs can easily be integrated onto the robot making it a versatile sensing platform. We have successfully deployed the vehicle off a sandy beach in Lake Michigan where it has performed lawn-mower surveys in the surf zone. LMAR's design and field test results will be presented along with a discussion of how to further harden the vehicle for deployment in storms.

  17. Impacts of an "extreme" storm on a low-lying embayed sandy beach (Pals Bay, NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Durán, Ruth; Sagristà, Enric; Guillen, Jorge; Ruiz, Antonio; Jiménez, José Antonio

    2014-05-01

    The present study aims to assess the effects of an extreme storm in the medium-term evolution of a low-lying, low-tidal sandy coast based on airborne LIDAR (LIght Detection and Ranging) derived high-resolution topographic data. LIDAR data were acquired by the Institut Cartogràfic de Catalunya and analyzed in a Geographical Information System (GIS) environment in order to estimate the shoreline displacement (advance or retreat), volumetric changes of the emerged beach, dune erosion and overswash. LIDAR surveys were undertaken in October 2008 and August 2009 to evaluate the impact of an extreme storm that severely hit the north-west Mediterranean coast on 26 December 2008. During this storm, maximum significant wave heights of 7.5 m (with peaks of 14.4 m of maximum wave height) and maximum wave peak period of 12.8 s were recorded at the Palamós buoy, located at 90 m depth. In addition, several weak to moderate storms also occurred during the study period. The Pals Bay in the northern of Catalonia (NW Mediterranean) has been chosen for this study because: (i) it is a low-lying coastal land, which makes the coastline highly susceptible to flooding by waves during storms; and (ii) it includes high natural value areas and urbanized ones that show different behavior under the impact of storms. It comprises three beaches: the Pals Bay beach that extends along 6840 m between L'Estartit and Begur promontories, and two pocket beaches located at the southern end of the Pals Bay, Cala Moreta and Sa Riera, which are only 185 m and 188 m long, respectively. During the study period, shoreline position and volumetric changes in the large bay beach were not homogeneous. The coastline variations showed alongshore fluctuations up to 40 m, probably related to the development of rhythmic topographies in form of beach cups. Overall, the emerged beach experienced a net volumetric loss of -62 516 m3 (-9.14 m3/m). However, the loss of sediment was not uniform. In urbanized areas, sediment erosion occurred along the whole beach profile, whereas in natural areas foreshore erosion was accompanied by net accumulation of sediment in the backshore. This positive volumetric gain in the upper beach could be largely attributed to overwash processes during the extreme storm, which also caused dune erosion and overwash fan deposition. Nevertheless, the smaller pocked beaches behaved differently. In Cala Moreta, shoreline evolution presented an anti-clockwise rotation of the beach, with a small net loss of sediment of -265 m3 (-1.43 m3/m). Sa Riera showed a small retreat of the shoreline and an important accumulation of sediment in the backshore that resulted in a net positive volume balance in the emerged beach of +2515 m3 (+13.38 m3/m).

  18. Coarse, Intermediate and High Resolution Numerical Simulations of the Transition of a Tropical Wave Critical Layer to a Tropical Storm

    NASA Technical Reports Server (NTRS)

    Montgomery, M. T.; Dunkerton, T. J.; Wang, Z.

    2010-01-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together.

  19. 78 FR 57412 - Notice of Realty Action: Recreation and Public Purposes Act Classification and Lease/Conveyance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... treatment facility to filter oils and other toxins found in storm water before discharging it into the... filter oils and other toxins found in storm water before discharging it into the Animas River. The BLM...

  20. Subtropical Storm Andrea

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The circling clouds of an intense low-pressure system sat off the southeast coast of the United States on May 8, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. By the following morning, the storm developed enough to be classified as a subtropical storm, a storm that forms outside of the tropics, but has many of the characteristics--hurricane-force winds, driving rains, low pressure, and sometimes an eye--of a tropical storm. Although it arrived several weeks shy of the official start of the hurricane season (June 1), Subtropical Storm Andrea became the first named storm of the 2007 Atlantic hurricane season. The storm has the circular shape of a tropical cyclone in this image, but lacks the tight organization seen in more powerful storms. By May 9, the storm's winds reached 75 kilometers per hour (45 miles per hour), and the storm was not predicted to get any stronger, said the National Hurricane Center. Though Subtropical Storm Andrea was expected to remain offshore, its strong winds and high waves pummeled coastal states, prompting a tropical storm watch. The winds fueled wild fires (marked with red boxes) in Georgia and Florida. The wind-driven flames generated thick plumes of smoke that concentrated in a gray-brown mass over Tampa Bay, Florida. Unfortunately for Georgia and Florida, which are experiencing moderate to severe drought, Subtropical Storm Andrea was not predicted to bring significant rain to the region right away, according to reports on the Washington Post Website.

  1. Are inundation limit and maximum extent of sand useful for differentiating tsunamis and storms? An example from sediment transport simulations on the Sendai Plain, Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, Masashi; Goto, Kazuhisa; Bricker, Jeremy D.; Imamura, Fumihiko

    2018-02-01

    We examined the quantitative difference in the distribution of tsunami and storm deposits based on numerical simulations of inundation and sediment transport due to tsunami and storm events on the Sendai Plain, Japan. The calculated distance from the shoreline inundated by the 2011 Tohoku-oki tsunami was smaller than that inundated by storm surges from hypothetical typhoon events. Previous studies have assumed that deposits observed farther inland than the possible inundation limit of storm waves and storm surge were tsunami deposits. However, confirming only the extent of inundation is insufficient to distinguish tsunami and storm deposits, because the inundation limit of storm surges may be farther inland than that of tsunamis in the case of gently sloping coastal topography such as on the Sendai Plain. In other locations, where coastal topography is steep, the maximum inland inundation extent of storm surges may be only several hundred meters, so marine-sourced deposits that are distributed several km inland can be identified as tsunami deposits by default. Over both gentle and steep slopes, another difference between tsunami and storm deposits is the total volume deposited, as flow speed over land during a tsunami is faster than during a storm surge. Therefore, the total deposit volume could also be a useful proxy to differentiate tsunami and storm deposits.

  2. Comparison of Coastal Inundation in the Outer Banks during Three Recent Hurricanes

    NASA Astrophysics Data System (ADS)

    Liu, T.; Sheng, Y.

    2012-12-01

    Coastal inundation in the Outer Banks and Chesapeake Bay during several recent hurricanes - Isabel, Earl and Irene, in 2005, 2010 and 2011, respectively, have been successfully simulated using the storm surge modeling system, CH3D-SSMS, which includes coupled coastal and basin-scale storm surge and wave models. Hurricane Isabel, which made landfall at the Outer Banks area in 2005, generated high waves up to 20 m offshore and 2.5 m inside the Chesapeake Bay which significantly affected the peak surge, with wave induced set-up contributing up to about 20% of the peak surge. During Isabel, the observed wave height at Duck station (1 km offshore) reached over 6 meters at landfall time, while Earl and Irene generated relatively moderate waves, with peak wave height around 4 meters at that station but a much lower wave height before landfall. Simulations show that during Earl and Irene, wave induced set-up did not contribute as much as that during Isabel. At Duck Pier, wave effects accounted for ~36 cm or 20% of the peak surge of 1.71 m during Isabel, while waves contributed ~10 cm (10%) toward the peak surge of 1 m during Irene and even less during Earl. The maximum surge during Irene was largely caused by the strong wind, as confirmed by the model using H* wind. Inundation maps have been generated and compared based on the simulations of Isabel, Earl and Irene.

  3. Self-Consistent Ring Current Modeling with Propagating Electromagnetic Ion Cyclotron Waves in the Presence of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. To describe the RC evolution itself this study uses the ring current-atmosphere interaction model (RAM). RAM solves the gyration and bounce-averaged Boltzmann-Landau equation inside of geosynchronous orbit. Originally developed at the University of Michigan, there are now several branches of this model currently in use as describe by Liemohn namely those at NASA Goddard Space Flight Center This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at GEM meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  4. The role of localised Ultra-Low Frequency waves in energetic electron precipitation

    NASA Astrophysics Data System (ADS)

    Rae, J.; Murphy, K. R.; Watt, C.; Mann, I. R.; Ozeke, L.; Halford, A. J.; Sibeck, D. G.; Clilverd, M. A.; Rodger, C. J.; Degeling, A. W.; Singer, H. J.

    2016-12-01

    Electromagnetic waves play pivotal roles in radiation belt dynamics through a variety of different means. Typically, Ultra-Low Frequency (ULF) waves have historically been invoked for radial diffusive transport leading to both acceleration and loss of outer radiation belt electrons. Very-Low Frequency (VLF) and Extremely-Low Frequency (ELF) waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to direct modulation of the loss cone via localized compressional ULF waves. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity. We then perform statistical computations of the probability distribution to determine how likely a given magnetic perturbation would produce a given percentage change in the bounce loss-cone (BLC). We discuss the ramifications of the action of coherent, localized compressional ULF waves on drifting electron populations; their precipitation response can be a complex interplay between electron energy, the shape of the phase space density profile at pitch angles close to the loss cone, ionospheric decay timescales, and the time-dependence of the electron source. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. We determine that the two pivotal components not usually considered are localized ULF wave fields and ionospheric decay timescales. We conclude that ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm-times.

  5. Surface Wave Dynamics in the Coastal Zone

    DTIC Science & Technology

    2014-09-30

    also collected from the Duck measurement site, operated by the USACE Field Research Facility at Duck , North Carolina. The collection and validation...similar analysis for 10 storm periods using wave data collected at Duck , North Carolina. The preparations consist of creating a dedicated unstructured...validated in the Southern North Sea and Duck validation studies. The shallow water source terms for wave breaking and triad interactions are being

  6. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  7. SBEACH: Numerical Model for Simulating Storm-Induced Beach Change. Report 1. Empirical Foundation and Model Development

    DTIC Science & Technology

    1989-07-01

    such as the complex fluid motion over aii irregular bottom and absence of rigorous descriptions of broken waves and sediment-sediment interaction, also...prototype-scale conditions. The tests were carried out with both monochromatic and irregular waves for a dunelike foreshore with and without a...significant surf zone. For one case starting from a beach without "fore- shore," monochromatic waves produced a bar, whereas irregular waves of significant

  8. Hurricane modification and adaptation in Miami-Dade County, Florida.

    PubMed

    Klima, Kelly; Lin, Ning; Emanuel, Kerry; Morgan, M Granger; Grossmann, Iris

    2012-01-17

    We investigate tropical cyclone wind and storm surge damage reduction for five areas along the Miami-Dade County coastline either by hardening buildings or by the hypothetical application of wind-wave pumps to modify storms. We calculate surge height and wind speed as functions of return period and sea surface temperature reduction by wind-wave pumps. We then estimate costs and economic losses with the FEMA HAZUS-MH MR3 damage model and census data on property at risk. All areas experience more surge damages for short return periods, and more wind damages for long periods. The return period at which the dominating hazard component switches depends on location. We also calculate the seasonal expected fraction of control damage for different scenarios to reduce damages. Surge damages are best reduced through a surge barrier. Wind damages are best reduced by a portfolio of techniques that, assuming they work and are correctly deployed, include wind-wave pumps.

  9. Analysis and prediction of ocean swell using instrumented buoys

    NASA Technical Reports Server (NTRS)

    Mettlach, Theodore; Wang, David; Wittmann, Paul

    1994-01-01

    During the period 20-23 September 1990, the remnants of Supertyphoon Flo moved into the central North Pacific Ocean with sustained wind speeds of 28 m/s. The strong wind and large fetch area associated with this storm generated long-period swell that propagated to the west coast of North America. National Data Buoy Center moored-buoy stations, located in a network that ranged from the Gulf of Alaska to the California Bight, provided wave spectral estimates of the swell from this storm. The greatest dominant wave periods measured were approximately 20-25 s, and significant wave heights measured ranged from 3 to 8 m. Wave spectra from an array of three nondirectional buoys are used to find the source of the long-period swell. Directional wave spectra from a heave-pitch-roll buoy are also used to make an independent estimate of the source of the swell. The ridge-line method, using time-frequency contour plots of wave spectral energy density, is used to determine the time of swell generation, which is used with the appropriate surface pressure analysis to infer the swell generation area. The diagnosed sources of the swell are also compared with nowcasts from the Global Spectral Ocean Wave Model of the Fleet Numerical Oceanography Center. A simple method of predicting the propagation of ocean swell, by applying a simple kinematic model of wave propagation to the estimated point and time source, is demonstrated.

  10. Coastal Storm Model.

    DTIC Science & Technology

    1976-04-30

    hindcasting, whereas a con- stant azimuth and storm velocity are used in forecasting. Tte results of hindcast analysis at several sites are included in... undersea breeze conditions and wave- current interactions in the surf zone; Tech. Report TC-149-4, ONR Contract N00014-69-C-0107, Tetra Tech, Inc., Pasadena...MARYLAND 21043 DEPARTMENT UF GEOSCIENrES PURI)IUL UNIVERSITY -DR. RURERT L. MILLER ___ LAFAYE- TTE , INDIANA 47901 DEPARTMENT OF GEOPHYSICAL SCIENCES

  11. Defining the Space Atmosphere Interaction Region (SAIR)

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Schunk, R. W.

    2016-12-01

    Is there a unique region between space and a planet's atmosphere in which the majority of the interactions exist? Does the location of this region depend on the intensity of space weather events, i.e., solar flares or geomagnetic storms? Present day research has developed the term "Space Atmosphere Interactions Region" (SAIR) to express the idea that our understanding is least developed in regions of the upper atmosphere where incoming energy is transformed into some form of thermal energy of the local particle populations. During such processes, both the atmosphere and ionosphere are locally modified resulting in dynamics and modified chemistry that impacts a large part of the upper atmosphere and ionosphere. We consider energy sources from the lower atmosphere (waves), the Sun (flares), and magnetosphere (magnetic storms) and the locations of their energy transformation processes. From below, the atmospheric waves of different scales from gravity waves to planetary waves, while from above solar irradiance, auroral precipitation, and Joule heating are discussed as they determine the SAIR location. Of specific emphasis will be the dependence, or not, of the SAIR on the solar flare or geomagnetic storm intensity. This region will be identified as the location where local energy deposition equals or exceeds local thermal energy of the atmospheric constituents. This energy deposition impacts the atmosphere, ionosphere, and magnetosphere. Its impacts extend well beyond the SAIR. The relevance of the SAIR concept to other planets, and hence, exoplanet will be point out.

  12. Comment on "Modeling Extreme "Carrington-Type" Space Weather Events Using Three-Dimensional Global MHD Simulations" by C. M. Ngwira, A. Pulkkinen, M. M. Kuznetsova, and A. Glocer"

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce T.; Lakhina, Gurbax S.; Echer, Ezequiel; Hajra, Rajkumar; Nayak, Chinmaya; Mannucci, Anthony J.; Meng, Xing

    2018-02-01

    An alternative scenario to the Ngwira et al. (2014, https://doi.org/10.1002/2013JA019661) high sheath densities is proposed for modeling the Carrington magnetic storm. Typical slow solar wind densities ( 5 cm-3) and lower interplanetary magnetic cloud magnetic field intensities ( 90 nT) can be used to explain the observed initial and main phase storm features. A second point is that the fast storm recovery may be explained by ring current losses due to electromagnetic ion cyclotron wave scattering.

  13. The geomorphic effect of recent storms - Quantifying meso scale abrasion across a shore platform

    NASA Astrophysics Data System (ADS)

    Cullen, Niamh; Bourke, Mary; Naylor, Larissa

    2017-04-01

    Boulder abrasion trails (BATs) are lineations on the surface of rock platforms formed by the movement of traction-load clasts by waves. They have been observed on a variety of platform lithologies, including limestone, granite and basalt. Despite previous reporting of these features, the abrasion styles and geomorphic work done by boulder transport has not been quantified. We present the first quantitative measurement of shore platform erosion by boulder transport during extreme storms that occurred in the winter of 2015-2016. Following two storm events in 2016 we mapped and measured 33 individual BATs on a sandstone platform on the west coast of Ireland. The total (minimum) abraded surface area was 10m2. The total (minimum) volume of material abraded was 0.2m3. In order to test the efficacy of this process during non-storm conditions we conducted field experiments on the same platform. We identified two sites on the platform that were similar, but differed in their intertidal roughness. We installed an RBR solo wave pressure transducer (PT) at 0m OD at both locations to record wave data. We measured platform roughness, determined as the fractal dimension of the platform profiles at both sites. We deployed an array of boulders of known dimensions and mass, parallel to the shoreline at 0.5m intervals from the PTs. The experiments were conducted 1. during relatively calm conditions and 2. during higher energy conditions. Data was collected for one tidal cycle. Any boulder displacement distance and direction was measured and geomorphic effects were documented. We find that BATs are formed under a range of wave energy conditions. Our observations indicate that along the North Atlantic coastline, BATs can occur at a high frequency, only limited by sediment supply. Our data show that abrasion by boulder transport is a potentially significant geomorphological process acting to abrade platforms under contemporary climate conditions. In addition, our preliminary findings suggest that platform roughness exerts a strong influence on wave energy and potential boulder transport. We find that abrasion of the platform surface is a fundamentally important process which contributes to lowering of the platform surface over time.

  14. Environmental Assessment: 49th Materiel Maintenance Group BEAR Base Improvements Holloman Air Force Base, New Mexico

    DTIC Science & Technology

    2004-08-01

    land clearing action will be an irreversible commitment of resources. 4.3.2 Water Quality Construction project impacts to storm water quality can...nearby monitored outfalls for the MSGP. High turbidity, suspended solids, and decreased cross section due to deposition can violate storm water quality benchmarks...and result in a Notice of Violation for storm water quality permits. Beside erosive impacts, construction period activities can cause

  15. General Plan Environmental Assessment, Hurlburt Field, Florida

    DTIC Science & Technology

    2005-10-01

    water treatment "bank" or may require a separate storm water quality permit and individual treatment for the first half-inch of runoff. Finally, the...directly to adjacent Santa Rosa Sound. Individually, this project would result in a short-term, minor, adverse impact on storm water quality due...associated with MFH would be eliminated with a long-term, minor, beneficial impact on storm water quality in this sub-basin. No-Action Alternative—The

  16. Vulnerability of National Park Service beaches to inundation during a direct hurricane landfall: Fire Island National Seashore

    USGS Publications Warehouse

    Stockdon, Hilary F.; Thompson, David M.

    2007-01-01

    Waves and storm surge associated with strong tropical storms are part of the natural process of barrier-island evolution and can cause extensive morphologic changes in coastal parks, leading to reduced visitor accessibility and enjoyment. Even at Fire Island National Seashore, a barrier-island coastal park in New York where extratropical storms (northeasters) dominate storm activity, the beaches are vulnerable to the powerful, sand-moving forces of hurricanes. The vulnerability of park beaches to inundation, and associated extreme coastal change, during a direct hurricane landfall can be assessed by comparing the elevations of storm-induced mean-water levels (storm surge) to the elevations of the crest of the sand dune that defines the beach system. Maps detailing the inundation potential for Category 1-4 hurricanes can be used by park managers to determine the relative vulnerability of various barrier-island parks and to assess which areas of a particular park are more susceptible to inundation and extreme coastal changes.

  17. Wave processes and geologic responses on the floor of the Yellow Sea

    USGS Publications Warehouse

    Booth, James S.; Winters, William J.

    1991-01-01

    The floor of the Yellow Sea is a geologically mundane surface: it is nearly horizontal, lacks relief, and, with few exceptions, is devoid of conspicuous geomorphologic features. However, it is the principal repository for the prodigious sediment load of the Huanghe (Yellow River); and, due to its inherent shallowness (average depth is 40 m), it is frequently stressed by waves generated by winter storms and typhoons. Analyses of mass physical properties of cores representing the upper few meters of sediment in the central and north-central Yellow Sea (near the Shandong Peninsula), in conjunction with analyses of slope stability, failure modes, and erodibility, permit an assessment of the likelihood and effect of dynamic, transient geologic events on the seabed.Vane shear-strength profiles along with consolidation test data indicate that the present surface of the seabed is in a depositional mode and is compacting normally. in addition, liquid-limit profiles imply that in the study area these neritic sediments have been accumulating in an environment that probably has not been modified significantly since sea level reached its current level. There is no geotechnical evidence in the nine cores recovered that slope failures have occurred, and clasts, sand lenses or other manifestations of mass movements, including flows, also are absent. These observations support previous interpretations of seismic records. Moreover, slope stability analysis for static conditions shows that the sea floor is quite stable.Regardless, shear-stress levels generated by cyclic loading during major storms may approach the sediment shear strengths, and, when coupled with concomitant excess pore pressures, could cause slope failure. Unless the failed beds collapsed or flowed, however, there probably would be little conspicuous evidence of such a failure. in fact, evaluation of the potential of these sediments for disintegrative behavior suggests that they are not prone to either collapse or flow.Storm waves also generate oscillatory bottom currents that may erode the seabed. Whether the sediment is considered as cohesionless or cohesive, typhoons could have the potential to erode at all water depths within the Yellow Sea (i.e., to 90 m), and winter storms to water depths of 60 m or more. However, in the case of cohesive behavior, it could be that the effect of winter storms and most typhoons is generally less extreme. If the sea floor is repeatedly scoured, it is likely limited to the top few centimeters.Despite the fact that storm waves may cause slope failure and are certainly responsible for frequent scouring, they probably leave only a subtle sedimentologic imprint on the seabed.

  18. 24 CFR 791.407 - Headquarters Reserve.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... needs resulting from natural and other disasters, including hurricanes, tornadoes, storms, high water, wind driven water, tidal waves, tsunamis, earthquakes, volcanic eruptions, landslides, mudslides...

  19. Thermosphere-Ionosphere Fe/Fe+ (TIFe) Layers and Their Coupling with Geomagnetic Storms and Solar Wind

    NASA Astrophysics Data System (ADS)

    Chu, X.; Xu, Z.; Zhao, J.; Yu, Z.; Knipp, D. J.; Kilcommons, L. M.; Chen, C.; Fong, W.; Barry, I. F.; Hartinger, M.

    2016-12-01

    The discovery of thermospheric neutral Fe layers by lidar observations in Antarctica has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly, complementing the radar measurements of the ionosphere and the magnetometer measurements of the geomagnetic field. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere (AIM) coupling and processes. The stunning Fe layer event on 28 May 2011 with clear gravity wave signatures has been simulated successfully with the University of Colorado Thermosphere-Ionosphere Fe/Fe+ (TIFe) model, confirming the theoretical hypothesis that such thermospheric Fe layers are produced through the neutralization of converged Fe+layers. Over 5.5 years of lidar observations at McMurdo have revealed many more cases with variety of patterns - besides the `gravity wave' patterns, there are `diffusive' patterns with both upward and downward phase progressions of Fe layers, and `superposition' patterns with both gravity wave signature and diffusive background. Surprisingly, these Fe layer events exhibit close correlations with geomagnetic storms. They also correspond to remarkable activity of extreme solar wind events, e.g., high-speed stream (HSS) and coronal mass ejection (CME), etc. This paper conducts a systematic investigation of the coupling among TIFe layers, geomagnetic storms, solar wind and IMF via combining ground-based lidar, magnetometer, and SuperDARN data with DMSP, ACE and WIND satellite data along with the TIFe model simulations. We aim to quantitatively determine the relationship between TIFe and magnetic storms, and explore the mechanisms responsible for such correlations. The new insights gained through this investigation will certainly advance our understandings of the AIM coupling processes, especially the neutral atmosphere responses to geomagnetic storms and solar activity.

  20. Processes of physical change to the seabed and bivalve recruitment over a 10-year period following experimental hydraulic clam dredging on Banquereau, Scotian Shelf

    NASA Astrophysics Data System (ADS)

    Gilkinson, K.; King, E. L.; Li, M. Z.; Roddick, D.; Kenchington, E.; Han, G.

    2015-01-01

    A previous study on the effects of experimental hydraulic clam dredging on seabed habitat and commercial bivalve populations revealed a lack of recovery after a 3-year post-dredging period (1998-2001) on a deep (65-75 m) offshore sandy bank on the Scotian Shelf, Canada. Follow-up sidescan sonar surveys were carried out 5 and 10 years after dredging (2003, 2008) in order to identify long-term processes of seabed recovery. Grab sampling was carried out 10 years after dredging to identify post-dredging commercial bivalve recruitment. Changes in the seafloor, including dredge tracks, were documented with a series of 7 sidescan sonar surveys between 1998 and 2008. A sediment mobility model was constructed based on modeled tidal current and hindcast wave data over this time period to quantify natural seabed disturbance and interpret changes to the dredge tracks mapped by sidescan sonar surveys. The model indicated that tidal currents had minimal effect on sediment mobilization. The main driving force associated with re-working of surficial sediments as evidenced by deterioration of dredge tracks in sonograms was annual fall/winter storms. While the annual frequency of storms and associated wave heights was variable, the observations and sediment mobility calculations suggest that the most influential variable is the magnitude of individual large storms, specifically storms with a significant wave height of ∼11 m. These storms are capable of generating mobile sediment layers of 20-30 cm thickness, equivalent to the dredge blade cutting depth. It appears that, with minor exceptions, sediment properties have returned to pre-dredging conditions 10 years after dredging in this habitat. Based on known age-length relationships, the four commercial bivalve species showed very low recruitment at the experimental site over the 10-year post-dredging period. However, this is unlikely due to a dredging effect since a similar pattern was observed in non-dredged areas.

  1. Deepwater Horizon Oil-Protection Sand Berm and its Morphologic Interactions with a Natural Barrier Island: an Overview

    NASA Astrophysics Data System (ADS)

    Sallenger, A. H.; Plant, N. G.; Flocks, J.; Long, J. W.; Miselis, J. L.; Sherwood, C. R.; Hansen, M.; Nayegandhi, A.; Wright, W.

    2011-12-01

    After the Deepwater Horizon explosion and oil spill, Louisiana received permission to build a sand berm parallel to and offshore of the ~30-km-long Chandeleur Islands to capture floating oil and keep it from reaching mainland marshes. The berm was built with dredged sand to a height of approximately 2 m above mean sea level and within 100 m of the Gulf-side of the natural barrier island. Here, we update the status of the sand berm and how its morphology has evolved since construction began in June 2010. This is part of a study of morphologic change involving time series of airborne lidar topographic and bathymetric surveys, boat acoustic bathymetric surveys, satellite imagery, and modeling of sediment transport. Waves and sea level are being monitored with models and in-situ sensors. We will examine, as of our latest surveys, whether the introduction of new sand from the berm has significantly changed peak elevations, Dhigh, along the natural islands and hence changed island vulnerability to being overtopped by storm-driven water levels, such as still-water level (η, due to tides, surge, and wave setup) and runup (R, due to swash). Vulnerabilities to overwash, where R > Dhigh, and inundation, where η > Dhigh, will be identified. We will investigate the impacts on the berm and island of extra-tropical storms through June 2011 and tropical storms through the hurricane season of summer and early fall 2011. For example, during a storm in early January 2011, significant wave heights of 4.9 m generated runup on the berm where R > Dhigh. Four breaches were cut through the berm, the largest 590 m wide. This study provides a unique opportunity to investigate the wave and current transport of a large quantity of introduced sand and determine whether and how the sand nourishes a severely eroding barrier island.

  2. Wave and Current Measurements From the Coastal Storms Program (CSP) Buoy 41012 off St. Augustine, FL

    NASA Astrophysics Data System (ADS)

    Crout, R. L.

    2008-05-01

    The Coastal Storms Program (CSP) is a NOAA program that involves several different branches within NOAA. Components of the National Ocean Service, the National Weather Service, the National Marine Fisheries Service, and the Office of Oceanic and Atmospheric Research participate in CSP, which is administered by the Coastal Services Center. CSP selects an area where an impact in support of the NOAA Societal Goals can be made. The first area selected was the northeast coast of Florida in 2002. In addition to coastal water level stations and modeling efforts, a 3-meter discuss buoy (WMO 41012) was deployed off the coast of St. Augustine, FL in approximately 38 meters of water. In addition to the normal complement of meteorological sensors, Buoy 41012 contained a sensor to measure directional waves at hourly intervals, a temperature-conductivity sensor to measure near-surface temperature and salinity, and a current profiler to obtain near-surface to near-bottom currents at hourly intervals. These data on the continental shelf provide a view of the oceanography on the inner margin of the Gulf Stream. The data are served over the National Data Buoy Center's web page and over the Global Telecommunications System. The waves and currents during the period from September 2005 through December 2007 are related to coastal storms, hurricanes, tides, and Gulf Stream intrusions. During several late fall and winter periods the waves exceeded 4.5 meters. The on-offshore component of the currents appears to be tidally driven, however, predominant on- and off-shore flows are observed in response to storms and Gulf Stream intrusions. The primary component of the flow is aligned alongshore and although the tidal influence is obvious, extended periods of northward and southward currents are observed. Currents approaching 2 knots are observed at various times during the period that the buoy has been active. The high currents appear to be in response to strong wind events (atmospheric frontal passages) and Gulf Stream intrusions.

  3. VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.

    NASA Astrophysics Data System (ADS)

    Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.

    2017-12-01

    We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.

  4. Paleo-tsunami history along the northern Japan Trench: evidence from Noda Village, northern Sanriku coast, Japan

    NASA Astrophysics Data System (ADS)

    Inoue, Taiga; Goto, Kazuhisa; Nishimura, Yuichi; Watanabe, Masashi; Iijima, Yasutaka; Sugawara, Daisuke

    2017-12-01

    Throughout history, large tsunamis have frequently affected the Sanriku area of the Pacific coast of the Tohoku region, Japan, which faces the Japan Trench. Although a few studies have examined paleo-tsunami deposits along the Sanriku coast, additional studies of paleo-earthquakes and tsunamis are needed to improve our knowledge of the timing, recurrence interval, and size of historical and pre-historic tsunamis. At Noda Village, in Iwate Prefecture on the northern Sanriku coast, we found at least four distinct gravelly sand layers based on correlation and chronological data. Sedimentary features such as grain size and thickness suggest that extreme waves from the sea formed these layers. Numerical modeling of storm waves further confirmed that even extremely large storm waves cannot account for the distribution of the gravelly sand layers, suggesting that these deposits are highly likely to have formed by tsunami waves. The numerical method of storm waves can be useful to identify sand layers as tsunami deposits if the deposits are observed far inland or at high elevations. The depositional age of the youngest tsunami deposit is consistent with the AD 869 Jogan earthquake tsunami, a possible predecessor of the AD 2011 Tohoku-oki tsunami. If this is the case, then the study site currently defines the possible northern extent of the AD 869 Jogan tsunami deposit, which is an important step in improving the tsunami source model of the AD 869 Jogan tsunami. Our results suggest that four large tsunamis struck the Noda site between 1100 and 2700 cal BP. The local tsunami sizes are comparable to the AD 2011 and AD 1896 Meiji Sanriku tsunamis, considering the landward extent of each tsunami deposit.

  5. Distant storms as drivers of environmental change at Pacific atolls.

    PubMed

    Gardner, Jonathan P A; Garton, David W; Collen, John D; Zwartz, Daniel

    2014-01-01

    The central Pacific Ocean with its many low lying islands and atolls is under threat from sea level rise and increased storm activity. Here, we illustrate how increasing frequency and severity of large scale storm events associated with global climate change may be particularly profound at the local scale for human populations that rely on lagoon systems for provision of a variety of goods and services. In August 2011 a storm originating in the Southern Ocean caused a large amplitude ocean swell to move northward through the Pacific Ocean. Its arrival at Palmyra Atoll coincided with transient elevated sea surface height and triggered turnover of the lagoon water column. This storm-induced change to the lagoon reflects long distance connectivity with propagated wave energy from the Southern Ocean and illustrates the increasing threats generated by climate change that are faced by human populations on most low-lying Pacific islands and atolls.

  6. Distant Storms as Drivers of Environmental Change at Pacific Atolls

    PubMed Central

    Gardner, Jonathan P. A.; Garton, David W.; Collen, John D.; Zwartz, Daniel

    2014-01-01

    The central Pacific Ocean with its many low lying islands and atolls is under threat from sea level rise and increased storm activity. Here, we illustrate how increasing frequency and severity of large scale storm events associated with global climate change may be particularly profound at the local scale for human populations that rely on lagoon systems for provision of a variety of goods and services. In August 2011 a storm originating in the Southern Ocean caused a large amplitude ocean swell to move northward through the Pacific Ocean. Its arrival at Palmyra Atoll coincided with transient elevated sea surface height and triggered turnover of the lagoon water column. This storm-induced change to the lagoon reflects long distance connectivity with propagated wave energy from the Southern Ocean and illustrates the increasing threats generated by climate change that are faced by human populations on most low-lying Pacific islands and atolls. PMID:24498232

  7. Wave climate and nearshore lakebed response, Illinois Beach State Park, Lake Michigan

    USGS Publications Warehouse

    Booth, J.S.

    1994-01-01

    Only under these major storm conditions is there a realistic potential for wave-lakebed interaction (and associated wind-driven currents) to cause a significant net modification to the outer nearshore lakebed which, in turn, may promulgate change in the inner nearshore (surf) zone. Analysis of bathymetric and sediment grain-size data, used in conjuction with published wave hindcast data, wave propagation modeling, and previous studies in the area, indicates that this potential occurs, most likely, on a scale of years. -from Author

  8. An Optimized Combined Wave and Current Bottom Boundary Layer Model for Arbitrary Bed Roughness

    DTIC Science & Technology

    2017-06-30

    Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Flood and Storm Protection Division (HF), Coastal ...ER D C/ CH L TR -1 7- 11 Coastal Inlets Research Program An Optimized Combined Wave and Current Bottom Boundary Layer Model for...client/default. Coastal Inlets Research Program ERDC/CHL TR-17-11 June 2017 An Optimized Combined Wave and Current Bottom Boundary Layer Model

  9. Environmental Assessment for Clean and Stabilize Ditches at the Golf Course and C Street

    DTIC Science & Technology

    2003-08-01

    proposed action would require the disturbance of installation property, minimal decrease in storm water quality during the cleaning and a temporary...increase in noise levels during construction. Storm water quality would improve following the cleaning and stabilization. Erosion and sediment controls

  10. Storm wave deposits in southern Istria (Croatia)

    NASA Astrophysics Data System (ADS)

    Biolchi, Sara; Furlani, Stefano; Devoto, Stefano; Scicchitano, Giovanni

    2017-04-01

    The accumulation of large boulders related to extreme waves are well documented in different areas of the Mediterranean coasts, such as in Turkey, Algeria, Egypt, Greece (Lesbos and Crete islands), France, Spain, Malta, Italy (Sicily and Apulia regions). These deposits have been associated to storm or tsunami events or both, depending on the local history. If compared to the Mediterranean Sea, the Adriatic Sea is considered a shallow basin, with very low wave energy. In particular the NE Adriatic, where Istria Peninsula (Croatia) is located, geological and geomorphological evidences of extreme wave events have never been described, as well as no tsunamis have been registered. We present the boulder deposits that have been recently found out in southern Istria, at Premantura and Marlera localities and we discuss the mechanisms that could have been responsible of the detachment and movement of these large rocky blocks from the emerged part of the coast and from the sea bottom inland. A multidisciplinary approach was adopted: geological and geomorphological surveyings, UAV and digital photogrammetric analysis, applying of the hydrodynamic equations as well as underwater profiles were carried out between 2012 and 2016. The southern Istrian coasts are composed of Cretaceous bedded limestones, sub-horizontal or gently inclined toward the sea and are exposed to southern winds, Scirocco and Libeccio, with wide fetch. The boulder deposits occur in correspondence of flat promontories or ancient quarry pavements, where the topography, together with the bedding planes and a dense fracture pattern constitute the predisposing factors of the boulder sizing and detachment. Boulder sizes, density, position and elevation have been measured in order to apply the hydrodynamic equations, which provide wave height values that can discriminate a storm from a tsunami origin. Biogenic marine encrustations, sometimes very recent, have been observed on large part of the boulders, attesting the infralittoral and sublittoral zones as source area (joint bounded, submerged scenario). Moreover, some boulders show typical coastal karst features that are very similar to those observed in the coastal area, attesting a subaerial scenario and a consequent detachment, lifting and re-arrangement by waves. The comparison between satellite images from 2008 to 2016, pictures collected from the WEB, pictures collected during the swim survey of the coast during summer 2012 and UAV images taken in December 2016 allowed to observe movements of some boulders and the arrival of a new one. The latter is 2.25 x 1.65 x 0.95 m, with an estimate weight of 7.65 tonnes. Our observations and results, compared with the available wave data, seem to refer to multiple storm events, even very recent.

  11. The Potential of Wetlands in Reducing Storm Surge

    DTIC Science & Technology

    2010-01-01

    threatened by erosion and damage due to storm waves, wind, and surge. The risk of damage and loss of life is exacerbated by many factors, including coastal...obtained when attempting to correlate hurricane translation speed, surge hydrograph at the coast, and surge elevations inland. However, a trend was...greater surface roughness. In addition to reducing wind speeds, the models eliminate the wind stress in forested wetlands which inhibit wind from

  12. Enhancement of wind stress evaluation method under storm conditions

    NASA Astrophysics Data System (ADS)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  13. Ramp Creek and Harrodsburg Limestones: A shoaling-upward sequence with storm-produced features in southern Indiana, U.S.A.. Carbonate petrology seminar, Indiana University

    NASA Astrophysics Data System (ADS)

    1987-05-01

    Most previously described examples of storm-produced stratification have been reported from siliciclastic rocks. However, such features should also be common in carbonate rocks. The Mississippian (Valmeyeran) Ramp Creek and Harrodsburg Limestones, deposited on the east margin of the Illinois Basin on top of the Borden Delta, contain storm-produced features. The dolomitic, geode-bearing Ramp Creek Limestone contains muddying-upward sequences, commonly with scoured bases overlain by grainstones, packstones, wackestones, and burrowed mudstones. These sequences are similar to hummocky sequences formed by storm waves below fair-weather wave base. The middle portion of the section including the upper Ramp Creek and lower Harrodsburg Limestones contains dolomitized mud lenses of uncertain origin. They may have formed by the baffling effect of bryozoans and/or unpreserved algae. The Harrodsburg is gradational with the Ramp Creek and consists predominantly of grainstones and packstones deposited in shallower water. Low-angle cross-stratification and truncation surfaces suggest a foreshore depositional environment for the Harrodsburg. Neither formation contains any indication of supratidal deposition as has been previously suggested. Open marine conditions during deposition of both formations are indicated by the fauna which includes crinoids, bryozoans, brachiopods, corals, ostracods, echinoids, trilobites, molluscs, fish (sharks), and trace fossils.

  14. Stratigraphic framework of inner shelf storm-dominated sand ridges, Alabama EEZ: Implications for sequence stratigraphy, global climate change, and petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, D.J.; Parker, S.J.

    The Alabama exclusive economic zone (EEZ) contains an abundance of orthoquartzitic shelf sand ridges elongate northwest-southeast diagonally from the shoreline. Soft-sediment peels from 59 Vibracores[sup TM] from the Alabama inner shelf permit detailed description of sand ridge sedimentary structures, fabrics, and eight sea-floor sediment types. These overlie the pre-Holocene sequence boundary and lower Holocene transgressive sediments. In general, the ridges are capped by coarse stacked graded shelly sands, echinoid sands, and clean sands deposited well above storm wave base. The graded shelly sand microfacies, the most common sediment type, is inferred to represent shelf storm deposits because of its gradedmore » nature, sharp base, and variable thickness (0.1 to 4 m). Considerable patchiness of facies is found on a single sand ridge. The facies patchiness may result from the interplay between relict sediment distribution, present hydrodynamics and local difference in preserved shell content. Due to the microtidal regime of the Alabama EEZ and the prevalence of the graded sands on the ridge crests, the ridges are interpreted to be dominantly storm-wave in origin. This type of coarse, clean sandy deposit is a poorly studied yet important possible model for many shelf-sand petroleum reservoirs.« less

  15. Variation of Radiation Belt Content Indices and total electron energy During Magnetic Storms Based On Van Allen Probe Observations

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Xie, L.; Chen, L.; Pu, Z.

    2017-12-01

    We investigate the variability of the RBC indices and total electron energy for varying energies within outer belt during 42 isolate magnetic storms based on the electron flux data from MagEIS and REPT onboard Van Allen Probe-A spacecraft. Van Allan Probes travel throughout the entire radiation belt twice during each orbit, providing an excellent opportunity to measure the electron's pitch angle distributions near the magnetic equatorial plane which is essential to calculate the RBC index accurately. Instead of assuming an isotropic electron pitch angle distribution which is widely used in previous studies, we develop a new and reliable technique to infer the equatorial pitch angle distributions based on the off-equator measurements. The statistic results show that the total electron energy in outer belt increase in 80% storms and has a positive correlation with median value of AE during recovery phase and minimum -Dst. The possibility of observing RBC depletion increase at high energies. The upper limit energy of RBC enhancement has a positive correlation with median value of AE and Vsw during recovery phase and a negative correlation with median value of Nsw during storm, which is consist of the balance of acceleration by chorus waves and loss by EMIC waves.

  16. Storm-driven delivery of sediment to the continental slope: Numerical modeling for the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Kniskern, T. A.; Arango, H.

    2016-02-01

    The supply of sediment from the continental shelf to deeper waters is of critical importance for building continental margin repositories of sediment, and may also factor into episodic events on the continental slope such as turbidity currents and slope failures. While numerical sediment transport models have been developed for coastal and continental shelf areas, they have not often been used to infer sediment delivery to deeper waters. A three-dimensional coupled hydrodynamic - suspended sediment transport model for the northern Gulf of Mexico has been developed and run to evaluate the types of conditions that are associated with delivery of suspended sediment to the continental slope. Accounting for sediment delivery by riverine plumes and for sediment resuspension by energetic waves and currents, the sediment transport calculations were implemented within the Regional Ocean Modeling System (ROMS). The model domain represents the northern Gulf of Mexico shelf and slope including the Mississippi birdfoot delta and the Mississippi and DeSoto Canyons. To investigate the role of storms in driving down-slope sediment fluxes, model runs that encompassed fall, 2007 through late summer, 2008 the summer and fall of 2008 were analyzed. This time period included several winter storms, and the passage of two hurricanes (Ike and Gustav) over the study area. Preliminary results indicated that sediment delivery to the continental slope was triggered by the passage of these storm events, and focused at certain locations, such as submarine canyons. Additionally, a climatological analysis indicates that storm track influences both the wind-driven currents and wave energy on the shelf, and as such plays an important role in determining which storms trigger delivery of suspended continental shelf sediment to the adjacent slope.

  17. Observations of Deep Ionospheric F-Region Density Depletions with FPMU Instrumentation and their Relationship with the Global Dynamics of the June 22-23, 2015 Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Sazykin, Stan; Chandler, Michael; Hairston, Marc; Minow, Joseph; Anderson, Brian

    2017-01-01

    The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the leading-edge shock wave and a sheath carrying a large and highly variable interplanetary magnetic field (IMF) Bz with values ranging from +25 to -40 nT. During the subsequent interval from 0000 to 0800 UT, there was a second intensification of the geomagnetic storm resulting from the impact of the CME. We present dramatic responses of simultaneous particle measurements from the high-altitude Magnetospheric Multiscale Mission (MMS) at high altitudes in the magnetosphere (approx. 9-12 Re) and from the low-altitude (F-region) Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS). We analyze potential causes of these dramatic particle flux dropouts by putting them in the context of storm-time electrodynamics, and support our results with numerical simulations of the global magnetosphere and ionosphere. During the sheath phase of the storm, the MMS spacecraft in the near-earth equatorial plane observed a rapid reconfiguration of the magnetic field near 1923 UT. Initially in the warm plasmasheet, particle flux dropouts were observed as they tracked the plasma-sheet to lobe transitions with the stretching and thinning of the plasmasheet. Anti-sunward flowing O+ ions of ionospheric origin were also measured during this period, confirming that the MMS spacecraft temporarily was in a lobe.

  18. Observations of Deep Ionospheric F-Region Density Depletions with FPMU Instrumentation and Their Relationship with the Global Dynamics of the June 22-23, 2015 Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Sazykin, Stan; Chandler, Michael; Hairston, Marc; Minow, Joseph; Anderson, Brian

    2017-01-01

    The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the leading-edge shock wave and a sheath carrying a large and highly variable interplanetary magnetic field (IMF) Bz with values ranging from +25 to -40 nT. During the subsequent interval from 0000 to 0800 UT, there was a second intensification of the geomagnetic storm resulting from the impact of the CME. We present dramatic responses of simultaneous particle measurements from the high-altitude Magnetospheric Multiscale Mission (MMS) at high altitudes in the magnetosphere (approx. 9-12 Re) and from the low-altitude (F-region) Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS). We analyze potential causes of these dramatic particle flux dropouts by putting them in the context of storm-time electrodynamics, and support our results with numerical simulations of the global magnetosphere and ionosphere. During the sheath phase of the storm, the MMS spacecraft in the near-earth equatorial plane observed a rapid reconfiguration of the magnetic field near 1923 UT. Initially in the warm plasma sheet, particle flux dropouts were observed as they tracked the plasma-sheet to lobe transitions with the stretching and thinning of the plasma sheet. Anti-sunward flowing O+ ions of ionospheric origin were also measured during this period, confirming that the MMS spacecraft temporarily was in a lobe.

  19. Development of wave and surge atlas for the design and protection of coastal bridges in south Louisiana - phase 2, tech summary.

    DOT National Transportation Integrated Search

    2016-08-01

    The first phase of this project, documented in LTRC Final Report 528, developed meteorological/ : oceanographic (met/ocean) data for the 100-year storm return period in south Louisiana and presented the : data in a GIS platform known as the Wave and ...

  20. Phase II Report for SERRI Project No. 80037: Investigation of surge and wave reduction by vegetation (Phase II)

    USDA-ARS?s Scientific Manuscript database

    To better understand and quantify the effectiveness of wetland vegetation in mitigating the impact of hurricane and storm surges, this SERRI project (No. 80037) examined surge and wave attenuation by vegetation through laboratory experiments, field observations and computational modeling. It was a c...

  1. Mediterranean space-time extremes of wind wave sea states

    NASA Astrophysics Data System (ADS)

    Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro; Marcello Falcieri, Francesco; Bonaldo, Davide; Bergamasco, Andrea; Benetazzo, Alvise

    2014-05-01

    Traditionally, wind wave sea states during storms have been observed, modeled, and predicted mostly in the time domain, i.e. at a fixed point. In fact, the standard statistical models used in ocean waves analysis rely on the implicit assumption of long-crested waves. Nevertheless, waves in storms are mainly short-crested. Hence, spatio-temporal features of the wave field are crucial to accurately model the sea state characteristics and to provide reliable predictions, particurly of wave extremes. Indeed, the experimental evidence provided by novel instrumentations, e.g. WASS (Wave Acquisition Stereo System), showed that the maximum sea surface elevation gathered in time over an area, i.e. the space-time extreme, is larger than that one measured in time at a point, i.e. the time extreme. Recently, stochastic models used to estimate maxima of multidimensional Gaussian random fields have been applied to ocean waves statistics. These models are based either on Piterbarg's theorem or Adler and Taylor's Euler Characteristics approach. Besides a probability of exceedance of a certain threshold, they can provide the expected space-time extreme of a sea state, as long as space-time wave features (i.e. some parameters of the directional variance density spectrum) are known. These models have been recently validated against WASS observation from fixed and moving platforms. In this context, our focus was modeling and predicting extremes of wind waves during storms. Thus, to intensively gather space-time extremes data over the Mediterranean region, we used directional spectra provided by the numerical wave model SWAN (Simulating WAves Nearshore). Therefore, we set up a 6x6 km2 resolution grid entailing most of the Mediterranean Sea and we forced it with COSMO-I7 high resolution (7x7 km2) hourly wind fields, within 2007-2013 period. To obtain the space-time features, i.e. the spectral parameters, at each grid node and over the 6 simulated years, we developed a modified version of the SWAN model, the SWAN Space-Time (SWAN-ST). SWAN-ST results were post-processed to obtain the expected space-time extremes over the model domain. To this end, we applied the stochastic model of Fedele, developed starting from Adler and Taylor's approach, which we found to be more accurate and versatile with respect to Piterbarg's theorem. Results we obtained provide an alternative sight on Mediterranean extreme wave climate, which could represent the first step towards operationl forecasting of space-time wave extremes, on the one hand, and the basis for a novel statistical standard wave model, on the other. These results may benefit marine designers, seafarers and other subjects operating at sea and exposed to the frequent and severe hazard represented by extreme wave conditions.

  2. Environmental Assessment (EA): Proposed Truck Offload Station, Hill Air Force Base, Utah

    DTIC Science & Technology

    2012-11-09

    AFB storm drainage system . A spill occurred outside the containment area when a fuel trailer struck a concrete wall and the fuel tank ruptured...The trailer was immediately pulled into the containment area, but some fuel had already entered the Hill AFB storm drainage system and flowed to Pond 3...placed in containers for proper disposal. Clean water would then be released to the Hill AFB storm drainage system . The proposed action would

  3. 78 FR 34293 - Regulated Navigation Area; Gulf Intracoastal Waterway, Inner Harbor Navigation Canal, New Orleans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... of Proposed Rulemaking CPRA Coastal Protection Restoration Authority HSDRRS Hurricane Storm Damage... Canal, and the Algiers Canal. This action is necessary for the flood protection of high-risk areas... restrictions providing the necessary protections at the time and until the final floodwalls and storm...

  4. Environmental Assessment for EOD Stand-Up at NAS Fort Worth JRB

    DTIC Science & Technology

    2012-03-01

    Range: Implementation of the Proposed Action would result in a negligible or minor effect on storm water quality and volume. All construction...negligible or minor effect on storm water quality and volume at this site. All construction activities would comply with appropriate local, state, and

  5. Storm Surge Hazard in Oman Based on Cyclone Gonu and Historic Events

    NASA Astrophysics Data System (ADS)

    Blount, C.; Fritz, H. M.; Albusaidi, F. B.; Al-Harthy, A. H.

    2008-12-01

    Super Cyclone Gonu was the strongest tropical cyclone on record in the Arabian Sea. Gonu developed sustained winds reaching 240 km/h with gusts up to 315 km/h and an estimated central pressure of 920 mbar by late 4 June 2007 while centered east-southeast of Masirah Island on the coast of Oman. Gonu weakened after encountering dry air and cooler waters prior to the June 5 landfall on the eastern-most tip of Oman, becoming the strongest tropical cyclone to hit the Arabian Peninsula. Gonu dropped heavy rainfall near the eastern coastline, reaching up to 610 mm which caused wadi flooding and heavy damage. The shore parallel cyclone track resulted in coastal damage due to storm surge and storm wave impact along a 300km stretch of Omani coastline. Maximum high water marks, overland flow depths, and inundation distances were measured along the Gulf of Oman during the 1-4 August 2007 reconnaissance. The high water marks peaked at Ras al Hadd at the eastern tip of Oman exceeding 5 meters, surpassing 2004 Indian Ocean tsunami runup at every corresponding point. The cyclone caused $4 billion in damage and at least 49 deaths in the Sultanate of Oman. Prior to Gonu, only two similar cyclones struck the coast of Oman in the last 1200 years (in 865 and 1890). The 1890 storm, which remains the worst natural disaster in Oman's history, drenched the coast from Soor to Suwayq causing inland wadi flooding. Matrah and Muscat were the hardest hit areas with many ships being washed ashore and wrecked. The storm is known to have killed about 727 people and caused huge agricultural and shipping losses. Similarly, the 865 storm affected areas between Gobrah and Sohar. A high-resolution finite element ADCIRC mesh of the Arabian Sea is created to model storm surge and is coupled with STWAVE. Modeling results from Gonu are compared to measurements and used to determine the contribution from storm surge and waves. The 1890 and 865 storms are modeled with standard cyclone parameters and results are compared to historical records to estimate the storm tracks. These results can be used to assess the coastal vulnerability in the Gulf of Oman.

  6. Marine natural hazards in coastal zone: observations, analysis and modelling (Plinius Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira

    2010-05-01

    Giant surface waves approaching the coast frequently cause extensive coastal flooding, destruction of coastal constructions and loss of lives. Such waves can be generated by various phenomena: strong storms and cyclones, underwater earthquakes, high-speed ferries, aerial and submarine landslides. The most famous examples of such events are the catastrophic tsunami in the Indian Ocean, which occurred on 26 December 2004 and hurricane Katrina (28 August 2005) in the Atlantic Ocean. The huge storm in the Baltic Sea on 9 January 2005, which produced unexpectedly long waves in many areas of the Baltic Sea and the influence of unusually high surge created by long waves from high-speed ferries, should also be mentioned as examples of regional marine natural hazards connected with extensive runup of certain types of waves. The processes of wave shoaling and runup for all these different marine natural hazards (tsunami, coastal freak waves, ship waves) are studied based on rigorous solutions of nonlinear shallow-water theory. The key and novel results presented here are: i) parameterization of basic formulas for extreme runup characteristics for bell-shape waves, showing that they weakly depend on the initial wave shape, which is usually unknown in real sea conditions; ii) runup analysis of periodic asymmetric waves with a steep front, as such waves are penetrating inland over large distances and with larger velocities than symmetric waves; iii) statistical analysis of irregular wave runup demonstrating that wave nonlinearity nearshore does not influence on the probability distribution of the velocity of the moving shoreline and its moments, and influences on the vertical displacement of the moving shoreline (runup). Wave runup on convex beaches and in narrow bays, which allow abnormal wave amplification is also discussed. Described analytical results are used for explanation of observed extreme runup of tsunami, freak (sneaker) waves and ship waves on different coasts along different bottom profiles.

  7. Attributing Tropical Cyclogenesis to Equatorial Waves in the Western North Pacific

    NASA Technical Reports Server (NTRS)

    Schreck, Carl J., III; Molinari, John; Mohr, Karen I.

    2009-01-01

    The direct influences of equatorial waves on the genesis of tropical cyclones are evaluated. Tropical cyclogenesis is attributed to an equatorial wave when the filtered rainfall anomaly exceeds a threshold value at the genesis location. For an attribution threshold of 3 mm/day, 51% of warm season western North Pacific tropical cyclones are attributed to tropical depression (TD)-type disturbances, 29% to equatorial Rossby waves, 26% to mixed Rossby-Gravity waves, 23% to Kelvin waves, 13% to the Madden-Julian oscillation (MJO), and 19% are not attributed to any equatorial wave. The fraction of tropical cyclones attributed to TD-type disturbances is consistent with previous findings. Past studies have also demonstrated that the MJO significantly modulates tropical cyclogenesis, but fewer storms are attributed to the MJO than any other wave type. This disparity arises from the difference between attribution and modulation. The MJO produces broad regions of favorable conditions for cyclogenesis, but the MJO alone might not determine when and where a storm will develop within these regions. Tropical cyclones contribute less than 17% of the power in any portion of the equatorial wave spectrum because tropical cyclones are relatively uncommon equatorward of 15deg latitude. In regions where they are active, however, tropical cyclones can contribute more than 20% of the warm season rainfall and up to 50% of the total variance. Tropical cyclone-related anomalies can significantly contaminate wave-filtered precipitation at the location of genesis. To mitigate this effect, the tropical cyclone-related rainfall anomalies were removed before filtering in this study.

  8. Case study of the March 24, 1976 Elton, Louisiana tornado using satellite infrared imagery, Doppler sounder, rawinsonde, and radar observations

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1983-01-01

    The Elton, Louisiana tornado on March 24, 1976 has been studied using GOES digital infrared data for the growth and collapse of the cloud top, the temperature-height relationship and air mass instability from rawinsonde data, gravity waves from Doppler sounder records, and radar summaries from storm activity during the three-hour time period immediately preceding the touchdown of the tornado. In this case, the overshooting turret collapsed 30 minutes before the tornado touchdown as the eastward moving cloud reached Elton, Louisiana. Results show that the gravity waves were excited by the enhanced convection of the storm penetrating through the tropopause in the 2.5 hour time period before the tornado touched down.

  9. Repeated sharp flux dropouts observed at 6.6 earth radii during a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Fritz, T. A.; Konradi, A.

    1976-01-01

    A number of repeated rapid flux dropouts have been observed at 6.6 earth radii by the low-energy proton detectors on board the ATS 6 satellite during the July 4-6, 1974, geomagnetic storm period. These rapid flux changes are caused by the fact that the outer boundary of the trapped radiation region moves back and forth past the satellite. Although a tilting field line configuration can cause the boundary to pass the satellite, as has frequently been reported in the literature, the boundary is shown to be distorted by a large surface wave traveling eastward around the earth. The maximum velocity of the wave was observed to be about 40 km/s.

  10. Case study of the March 24, 1976 Elton, Louisiana tornado using satellite infrared imagery, doppler sounder, rawinsonde, and radar observations

    NASA Astrophysics Data System (ADS)

    Hung, R. J.; Smith, R. E.

    1983-05-01

    The Elton, Louisiana tornado on March 24, 1976 has been studied using GOES digital infrared data for the growth and collapse of the cloud top, the temperature-height relationship and air mass instability from rawinsonde data, gravity waves from Doppler sounder records, and radar summaries from storm activity during the three-hour time period immediately preceding the touchdown of the tornado. In this case, the overshooting turret collapsed 30 minutes before the tornado touchdown as the eastward moving cloud reached Elton, Louisiana. Results show that the gravity waves were excited by the enhanced convection of the storm penetrating through the tropopause in the 2.5 hour time period before the tornado touched down.

  11. The role of the equivalent blackbody temperature in the study of Atlantic Ocean tropical cyclones

    NASA Technical Reports Server (NTRS)

    Steranka, J.; Rodgers, E. B.; Gentry, R. C.

    1983-01-01

    Satellite measured equivalent blackbody temperatures of Atlantic Ocean tropical cyclones are used to investigate their role in describing the convection and cloud patterns of the storms and in predicting wind intensity. The high temporal resolution of the equivalent blackbody temperature measurements afforded with the geosynchronous satellite provided sequential quantitative measurements of the tropical cyclone which reveal a diurnal pattern of convection at the inner core during the early developmental stage; a diurnal pattern of cloudiness in the storm's outer circulation throughout the life cycle; a semidiurnal pattern of cloudiness in the environmental atmosphere surrounding the storms during the weak storm stage; an outward modulating atmospheric wave originating at the inner core; and long term convective bursts at the inner core prior to wind intensification.

  12. Geological record of severe storm impacts along the Texas Coast

    NASA Astrophysics Data System (ADS)

    Wallace, D.; Anderson, J. B.; Yu, W.

    2008-12-01

    Hurricanes act as one of the primary controls on barrier island migration through wave and wind energy, and their frequency has been suggested to indicate changes in climate (El Niño) cycles. Texas has an extensive coastline containing barriers in various stages of evolution. Through a detailed sedimentological examination and radiocarbon age constraints of offshore storm sands, beach ridge breaching events, storm surge channels, and washovers, we offer a geologic record of severe storm impacts along the Texas Coast. From offshore core data, we ascertain that sand storage along the upper and lower shoreface (the profile of which is controlled by catastrophic storm impacts) is minimal over geologic timescales (i.e. 100-1000 years). Hence, an offshore record of storm impact is lacking. Using high resolution LIDAR data, we map breaching events of prominent beach ridges. Storm surge channels on the bayside of barriers (which are cut by water flowing towards the Gulf of Mexico when storm surge recedes) are also being dated, although they likely record lower magnitude storms. This study reveals that hurricane washover formation is only a minor contributor to sand transport within the system, as accumulation rates in back-barriers range from .095 - .4m/C. By examining the sedimentological components of hurricane impacts, we establish a hurricane impact chronology and conclude that the frequency of major storms along the Texas Coast is actually quite minimal.

  13. Mathematical simulation of boulder dislodgement by high-energy marine flows in the western coast of Portugal

    NASA Astrophysics Data System (ADS)

    Canelas, Ricardo; Oliveira, Maria; Crespo, Alejandro; Neves, Ramiro; Costa, Pedro; Freitas, Conceição; Andrade, César; Ferreira, Rui

    2014-05-01

    The study of coastal boulder deposits related with marine abrupt inundation events has been addressed by several authors using conventional numerical solutions that simulate particle transport by storm and tsunami, sometimes with contradictory results (Nandasena et al. 2011, Kain et al. 2012). The biggest challenge has been the differentiation of the events (storm or tsunami), and the reconstruction of wave parameters (e.g. wave height, length, direction) responsible for the entrainment and transport of these megaclasts. In this study we employ an inverse-problem strategy to determine the cause of dislodgement of megaclasts and to explain the pattern of deposition found in some locations of the Portuguese western coast, well above maximum records of sea level. It is envisaged that the causes are either flows originated by wave breaking, typically associated to storms, which would impart large momentum in a short time interval (herein impulsive motion), or long waves such as a tsunamis, that would transport the clasts in a mode analogous to bedload (herein sustained motion). The geometry of the problem is idealized but represents the key features of overhanging layers related with fractures, bedding and differential erosion of sub-horizontal layers. In plan view, concave and convex coastline shapes are testes to assess the influence of flow concentration. These geometrical features are representative of the western Portuguese coast. The fluid-solid model solves numerically the Navier-Stokes equations for the liquid phase and Newton's motion equations for solid bodies. The discretization of both fluid and solids is performed with Smooth Particle Hydrodynamics (SPH). The model is based DualSPHyics code (www.dual.sphysics.org) and represents an effort to avoid different discretization techniques for different phases in motion. This approach to boulder transport demonstrates that the ability of high-energy flow events to entrain and transport large particles largely depends on fluid velocity, flow characteristic wavelength and local geometry. The results of the model allow for a classification of the deposition patterns associated with the combinations of hydrodynamic parameters characteristic of short (storms) and long waves (tsunamis). Ackownledgements: Project RECI/ECM-HID/0371/2012, funded by the Portuguese Foundation for Science and Technology (FCT), has partially supported this work. References Nandasena, N.A.K., Paris, R. e Tanaka, N., 2011. Reassessment of hydrodynamic equations: Minimum flow velocity to initaite boulder transport by high energy events (storms, tsunamis). Marine Geology, 281: 70-84. Kain, C.L; Gomez, C.; Moghaddam, A.E. (2012) Comment on 'Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis), by N.A.K. Nandasena, R. Paris and N. Tanaka [Marine Geology 281, 70-84], Marine Geology, Volumes 319-322, 1, pp. 75-76, ISSN 0025-3227, http://dx.doi.org/10.1016/j.margeo.2011.08.008.

  14. Assessment of current effect on waves in a semi-enclosed basin

    NASA Astrophysics Data System (ADS)

    Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.

    2012-04-01

    The wave-current interaction process in the semi-enclosed Adriatic Sea is studied using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, which is used to exchange data fields between the ocean model ROMS (Regional Ocean Modeling System) and the wave model SWAN (Simulating WAves Nearshore). The 2-way data transfer between circulation and wave models is synchronous with ROMS providing current fields, free surface elevation, and bathymetry to SWAN. In particular, the 3-D current profiles are averaged using a formulation that integrates the near-surface velocity over a depth controlled by the spectral mean wave number. This coupling procedure is carried out up to coastal areas by means of an offline grid nesting. The parent grid covers the whole Adriatic Sea and has a horizontal resolution of 2.0 km, whereas the child grid resolution increases to 0.5 km but it is limited to the northern Adriatic Sea (Gulf of Venice), where the current effect on waves is investigated. The most frequent winds blowing on the Adriatic Sea are the so-called Bora and Sirocco which cause high waves in the Adriatic Sea, although Bora waves are generally fetch-limited. In fact, Bora winds blow orthogonal to the main basin axis (approximately aligned with the NW-SE direction), while Sirocco has large spatial scale being a southeasterly wind. For the numerical simulations, the meteorological forcings are provided by the operational meteorological model COSMO-I7, which is the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium. During the analysis period, the simulated wind, current and wave are compared with observations at the ISMAR oceanographic tower located off the Venice littoral. Wave heights and sea surface winds are also compared with satellite-derived data. To account for the variability of sea states during a storm, the expected maximum individual wave height in a sea storm with a given history is also considered. During intense storms, the effect of coupling on wave heights is resulting in variations of the wave heights up to 15%, with some areas experiencing increase or decrease of wave spectral energy for opposite and following currents respectively. The study is part of the activities developed in the European Union (EU) funded FIELD_AC project (Fluxes, Interactions and Environment at the Land-ocean boundary. Downscaling, Assimilation and Coupling), which is conceived with the goal to better identify the most significant natural processes in coastal areas, and to address their impact on the coastal and nearshore dynamics by including them in a complete numerical prediction suite.

  15. Using Wave-Current Observations to Predict Bottom Sediment Processes on Muddy Beaches

    DTIC Science & Technology

    2012-09-30

    Hill and Foda , 1999; Chan and Liu, 2009; Holland et al., 2009; and others). Many theoretical models of wave-mud interaction have been proposed...transformation (see Section Figure 5) emerges from the analysis Sheremet et al., 2005; Jaramillo et al., 2008; Robillard, 2009; ?; ?. Under energetic waves, the...et al., 2010). The ongoing work has three directions of research: Data analysis : reconstruct the sequence of bed states in storms captured in the

  16. 36 CFR 78.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hurricane, tornado, storm, flood, high water, tidal wave, earthquake, volcanic eruption, landslide... determination of a Federal Agency Head, causes damage of sufficient severity and magnitude such that an...

  17. 36 CFR 78.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hurricane, tornado, storm, flood, high water, tidal wave, earthquake, volcanic eruption, landslide... determination of a Federal Agency Head, causes damage of sufficient severity and magnitude such that an...

  18. 36 CFR 78.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hurricane, tornado, storm, flood, high water, tidal wave, earthquake, volcanic eruption, landslide... determination of a Federal Agency Head, causes damage of sufficient severity and magnitude such that an...

  19. Insights into lateral marsh retreat mechanism through localized field measurements

    NASA Astrophysics Data System (ADS)

    Bendoni, M.; Mel, R.; Solari, L.; Lanzoni, S.; Francalanci, S.; Oumeraci, H.

    2016-02-01

    Deterioration of salt marshes may be due to several factors related to increased anthropic pressure, sea level rise, and erosive processes. While salt marshes can reach equilibrium in the vertical direction, adapting to sea level rise, they are inherently unstable in the horizontal direction. Marsh boundaries are characterized by scarps with bare sediment below the vegetated surface layer that can be easily removed by wave-induced erosion. In this work, we explore the different mechanisms involved in the erosion of marsh borders through the interpretation of field data. The analysis is based on a systematic field monitoring of a salt marsh in the Venice Lagoon subject to lateral erosion. Measurements included horizontal retreat of the scarp at various locations and wave height in front of the marsh during three storm surges. Continuous erosion and mass failures alternated during the observed period, leading to an average retreat up to 80 cm/yr. The data, collected roughly every month for 1.5 year, indicate that the linear relation that links the observed erosion rate to the impinging wave power exhibits a larger slope than that already estimated in literature on the basis of long-term surveys. Moreover, an increase in the gradient of erodibility is detected along the marsh scarp, due to the combined action of soil strengthening by vegetation on the marsh surface and the impact of wave breaking at the bank toe, which promote cantilever failures and increase the lateral erosion rate.

  20. Trace fossils from storm-influenced, oxygen-deficient outer shelf: lower Mississippian Price Formation of southern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjerstedt, T.W.

    The Price Formation in southern West Virginia was deposited dominantly in an oxygen-deficient, outer shelf environment along a siliciclastic profile from the basin plain to the alluvial plain. An overturned section at Bluefield, West Virginia, exposes the following lithofacies and environments in ascending order: laminated black silt-shales from the basin plain; a sand-rich submarine fan; outer shelf tempestites of hummocky, cross-stratified fine sandstone and completely bioturbated grayish-black, silt-shales; and shoreline sands in transition to thin, dirty coals of the coastal plain and Maccrady red beds of the alluvial plain. Trace fossils are abundant and are best preserved on the solesmore » of hummocky, cross-stratified sandstones. The Zoophycos ichnofacies occurs throughout 80 m of outer shelf deposits, which accumulated above storm wave base. The Zoophycos ichnofacies grades into the nearshore Skolithus ichnofacies with no apparent intervening Cruziana ichnofacies. Most ichnotaxa identified from the outer shelf are fodinichnia or pascichnia. Planar and helical Zoophycos, Helminthopsis, Helminthoida, Sclarituba (neonereites form), and Chondrites are characteristics. In most schemes, the Zoophycos ichnofacies occurs below storm wave base. At Bluefield, it has displaced the Cruziana ichnofacies above storm wave base due to the maintenance of a dysaerobic environment. The abundant organic matter preserved in a density-stratified water column was continually replenished during periods of upwelling. Conditions were extremely favorable for deposit feeders, but inhibiting to suspension feeders that were less tolerant of oxygen stress. The absence of distributary channel sands in the vertical sequence also indicates that offshore environments received no influx of oxygenated waters from the Price delta.« less

Top