Sample records for stoves

  1. Perceptions of the health effects of stoves in Mongolia.

    PubMed

    Gordon, Joanna K; Emmel, Nick D; Manaseki, Semira; Chambers, Jacky

    2007-01-01

    The purpose of this paper is to evaluate the views of stove users in Ulaanbaatar, Mongolia on how stoves affect their health. In this paper focus groups were conducted with improved stove users; traditional stove users; and a mix of traditional and improved stove users. Individual interviews were also held with various types of stove users. A translator moderated all discussions with a questioning route. All discussions were fully transcribed and translated. The transcripts were analysed by identifying common themes in responses to form an emerging theory. The findings in the paper are that all stove users recognised respiratory symptoms caused by stove smoke and other health effects such as warmth, dirt and workload, which they perceived to be important. Stove users had a lack of knowledge about the diseases caused by the smoke. Public health was a key driver for the improved stove project, yet has been neglected in improved stove marketing. The study used in this paper was limited by the language barrier. Some of the meanings of participants' responses may have been lost in translation. This paper has highlighted the importance of the health effects of stove smoke to stove users. Uptake of the improved stoves has been low. Public health should be included in marketing strategies for improved stoves to increase their uptake. The paper shows that acute respiratory infections are a major cause of mortality world-wide. Indoor air pollution from burning biomass fuels in household stoves causes a significant proportion of respiratory infections. No qualitative research has been published exploring stove users' views on the health effects of stoves. This paper provides an insight into stove users' perceptions for those interested in people-centred approaches to tackling international health issues.

  2. A user-centered, iterative engineering approach for advanced biomass cookstove design and development

    NASA Astrophysics Data System (ADS)

    Shan, Ming; Carter, Ellison; Baumgartner, Jill; Deng, Mengsi; Clark, Sierra; Schauer, James J.; Ezzati, Majid; Li, Jiarong; Fu, Yu; Yang, Xudong

    2017-09-01

    Unclean combustion of solid fuel for cooking and other household energy needs leads to severe household air pollution and adverse health impacts in adults and children. Replacing traditional solid fuel stoves with high efficiency, low-polluting semi-gasifier stoves can potentially contribute to addressing this global problem. The success of semi-gasifier cookstove implementation initiatives depends not only on the technical performance and safety of the stove, but also the compatibility of the stove design with local cooking practices, the needs and preferences of stove users, and community economic structures. Many past stove design initiatives have failed to address one or more of these dimensions during the design process, resulting in failure of stoves to achieve long-term, exclusive use and market penetration. This study presents a user-centered, iterative engineering design approach to developing a semi-gasifier biomass cookstove for rural Chinese homes. Our approach places equal emphasis on stove performance and meeting the preferences of individuals most likely to adopt the clean stove technology. Five stove prototypes were iteratively developed following energy market and policy evaluation, laboratory and field evaluations of stove performance and user experience, and direct interactions with stove users. The most current stove prototype achieved high performance in the field on thermal efficiency (ISO Tier 3) and pollutant emissions (ISO Tier 4), and was received favorably by rural households in the Sichuan province of Southwest China. Among household cooks receiving the final prototype of the intervention stove, 88% reported lighting and using it at least once. At five months post-intervention, the semi-gasifier stoves were used at least once on an average of 68% [95% CI: 43, 93] of days. Our proposed design strategy can be applied to other stove development initiatives in China and other countries.

  3. Burns and fires in South Africa's informal settlements: Have approved kerosene stoves improved safety?

    PubMed

    Kimemia, David; van Niekerk, Ashley; Govender, Rajen; Seedat, Mohamed

    2018-06-01

    This study is a follow-on to an intervention project that implemented South African Bureau of Standards approved kerosene stoves and safety education in 150 households of a Johannesburg informal settlement. An investigation conducted 12 months later established that 43 stoves had operational defects, yet 23 households continued using the faulty appliances. This study focuses on (1) the psychological and behavioural factors associated with continued use of faulty stoves by the 23 households, and (2), the specific technical failures of these stoves. The study involved one-on-one recall interviews with the households using defective stoves (N=21) and laboratory-based stove tests for seven of the affected appliances. The results indicate that the stoves had defects in critical safety features such as flame control and the self-extinguishing mechanism. Four stove malfunctions of minor burn affect were reported in the study. Continued use of the damaged stoves was significantly associated with the time from receipt of the stove to detection of first failure: stoves that failed later on were more significantly likely to remain in use as compared to those that failed sooner. The findings point to the need for strengthening enforcement of appliance standards, public education on kerosene stove use, and structural change for the energy-poor. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  4. Adoption of Clean Cookstoves after Improved Solid Fuel Stove Programme Exposure: A Cross-Sectional Study in Three Peruvian Andean Regions.

    PubMed

    Wolf, Jennyfer; Mäusezahl, Daniel; Verastegui, Hector; Hartinger, Stella M

    2017-07-08

    This study examined measures of clean cookstove adoption after improved solid fuel stove programmes in three geographically and culturally diverse rural Andean settings and explored factors associated with these measures. A questionnaire was administered to 1200 households on stove use and cooking behaviours including previously defined factors associated with clean cookstove adoption. Logistic multivariable regressions with 16 pre-specified explanatory variables were performed for three outcomes; (1) daily improved solid fuel stove use, (2) use of liquefied petroleum gas stove and (3) traditional stove displacement. Eighty-seven percent of households reported daily improved solid fuel stove use, 51% liquefied petroleum gas stove use and 66% no longer used the traditional cookstove. Variables associated with one or more of the three outcomes are: education, age and civil status of the reporting female, household wealth and size, region, encounters of problems with the improved solid fuel stove, knowledge of somebody able to build an improved solid fuel stove, whether stove parts are obtainable in the community, and subsidy schemes. We conclude that to be successful, improved solid fuel stove programmes need to consider (1) existing household characteristics, (2) the household's need for ready access to maintenance and repair, and (3) improved knowledge at the community level.

  5. Adoption of Clean Cookstoves after Improved Solid Fuel Stove Programme Exposure: A Cross-Sectional Study in Three Peruvian Andean Regions

    PubMed Central

    Wolf, Jennyfer; Mäusezahl, Daniel; Verastegui, Hector; Hartinger, Stella M.

    2017-01-01

    This study examined measures of clean cookstove adoption after improved solid fuel stove programmes in three geographically and culturally diverse rural Andean settings and explored factors associated with these measures. A questionnaire was administered to 1200 households on stove use and cooking behaviours including previously defined factors associated with clean cookstove adoption. Logistic multivariable regressions with 16 pre-specified explanatory variables were performed for three outcomes; (1) daily improved solid fuel stove use, (2) use of liquefied petroleum gas stove and (3) traditional stove displacement. Eighty-seven percent of households reported daily improved solid fuel stove use, 51% liquefied petroleum gas stove use and 66% no longer used the traditional cookstove. Variables associated with one or more of the three outcomes are: education, age and civil status of the reporting female, household wealth and size, region, encounters of problems with the improved solid fuel stove, knowledge of somebody able to build an improved solid fuel stove, whether stove parts are obtainable in the community, and subsidy schemes. We conclude that to be successful, improved solid fuel stove programmes need to consider (1) existing household characteristics, (2) the household’s need for ready access to maintenance and repair, and (3) improved knowledge at the community level. PMID:28698468

  6. Demonstrating bias and improved inference for stoves' health benefits.

    PubMed

    Mueller, Valerie; Pfaff, Alexander; Peabody, John; Liu, Yaping; Smith, Kirk R

    2011-12-01

    Many studies associate health risks with household air pollution from biomass fuels and stoves. Evaluations of stove improvements can suffer from bias because they rarely address health-relevant differences between the households who get improvements and those who do not. We demonstrate both the potential for bias and an option for improved stove inference by applying to household air pollution a technique used elsewhere in epidemiology, propensity-score matching (PSM), based on a stoves-and-health survey for China (15 counties, 3500 households). Health-relevant factors (age, wealth, kitchen ventilation) do in fact differ considerably between the households with stove improvements and those without. We study the resulting bias in estimates of cleaner-stove impacts using a self-reported Physical Component Summary (PCS). Typical stoves-literature regressions with little control for non-stove factors suggest no benefits from a cleaner-fuel stove relative to a traditional biomass stove. Yet increasing controls raises the impact estimates. Our PSM estimates address the differences in health-relevant factors using 'apples to apples' comparisons between those with improved stoves and 'similar' households. This generates higher estimates of clean-stove benefits, which are on the order of one half the standard deviation of the PCS outcome. Our data demonstrate the potential importance of bias in household air pollution studies. This results from failure to address the possibility that those receiving improved stoves are themselves prone to better or worse health outcomes. It suggests the value of data collection and of study design for cookstove interventions and, more generally, for policy interventions within many health outcomes.

  7. A quantitative performance assessment of improved cooking stoves and traditional three-stone-fire stoves using a two-pot test design in Chamwino, Dodoma, Tanzania

    NASA Astrophysics Data System (ADS)

    Hafner, J.; Uckert, G.; Graef, F.; Hoffmann, H.; Kimaro, A. A.; Sererya, O.; Sieber, S.

    2018-02-01

    In Tanzania, a majority of rural residents cook using firewood-based three-stone-fire stoves. In this study, quantitative performance differences between technologically advanced improved cooking stoves and three-stone-fire stoves are analysed. We test the performance of improved cooking stoves and three-stone-fire stoves using local cooks, foods, and fuels, in the semi-arid region of Dodoma in Tanzania. We used the cooking protocol of the Controlled Cooking Test following a two-pot test design. The findings of the study suggest that improved cooking stoves use less firewood and less time than three-stone-fire stoves to conduct a predefined cooking task. In total, 40 households were assessed and ask to complete two different cooking tasks: (1) a fast cooking meal (rice and vegetables) and (2) a slow cooking meal (beans and rice). For cooking task 1, the results show a significant reduction in firewood consumption of 37.1% by improved cooking stoves compared to traditional three-stone-fire stoves; for cooking task 2 a reduction of 15.6% is found. In addition, it was found that the time needed to conduct cooking tasks 1 and 2 was significantly reduced by 26.8% and 22.8% respectively, when improved cooking stoves were used instead of three-stone-fire-stoves. We observed that the villagers altered the initial improved cooking stove design, resulting in the so-called modified improved cooking stove. In an additional Controlled Cooking Test, we conducted cooking task 3: a very fast cooking meal (maize flour and vegetables) within 32 households. Significant changes between the initial and modified improved cooking stoves regarding firewood and time consumption were not detected. However, analyses show that both firewood and time consumption during cooking was reduced when large amounts (for 6-7 household members) of food were prepared instead of small amounts (for 2-3 household members).

  8. Quantifying Stove Emissions Related to Different Use Patterns for the Silver mini (Small Turkish) Space Heating Stove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy; Lunden, Melissa; Wilson, Daniel

    2012-08-01

    Air pollution levels in Ulaanbaatar, Mongolia’s capital, are among the highest in the world. A primary source of this pollution is emissions from traditional coal - burning space heating stoves used in the Ger (tent) regions around Ulaanbaatar. Significant investment has been made to replace traditional heating stoves with improved low - emission high-efficiency stoves. Testing performed to support selection of replacement stoves or for optimizing performance may not be representative of true field performance of the improved stoves. Field observations and lab measurements indicate that performance is impacted , often adversely, by how stoves are actually being used inmore » the field. The objective of this project is to identify factors that influence stove emissions under typical field operating conditions and to quantify the impact of these factors. A highly - instrumented stove testing facility was constructed to allow for rapid and precise adjustment of factors influencing stove performance. Tests were performed using one of the improved stove models currently available in Ulaanbaatar. Complete burn cycles were conducted with Nailakh coal from the Ulaanbaatar region using various startup parameters, refueling conditions , and fuel characteristics . Measurements were collected simultaneously from undiluted chimney gas, diluted gas drawn directly from the chimney and plume gas collected from a dilution tunnel above the chimney. CO, CO 2, O 2, temperature, pressure, and particulate matter (PM) were measured . We found that both refueling events and coal characteristics strongly influenced PM emissions and stove performance. Start-up and refueling events lead to increased PM emissions with more than 98% of PM mass emitted during the 20% of the burn where coal ignition occurs. CO emissions are distributed more evenly over the burn cycle, peaking both during ignition and late in the burn cycle . We anticipate these results being useful for quantifying public health outcomes related to the distribution of improved stoves and to identify opportunities for improving and sustaining performance of the new stoves .« less

  9. Adoption and use of a semi-gasifier cooking and water heating stove and fuel intervention in the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Clark, S.; Carter, E.; Shan, M.; Ni, K.; Niu, H.; Tseng, J. T. W.; Pattanayak, S. K.; Jeuland, M.; Schauer, J. J.; Ezzati, M.; Wiedinmyer, C.; Yang, X.; Baumgartner, J.

    2017-07-01

    Improved cookstoves and fuels, such as advanced gasifier stoves, carry the promise of improving health outcomes, preserving local environments, and reducing climate-forcing air pollutants. However, low adoption and use of these stoves in many settings has limited their benefits. We aimed to improve the understanding of improved stove use by describing the patterns and predictors of adoption of a semi-gasifier stove and processed biomass fuel intervention in southwestern China. Of 113 intervention homes interviewed, 79% of homes tried the stove, and the majority of these (92%) continued using it 5-10 months later. One to five months after intervention, the average proportion of days that the semi-gasifier stove was in use was modest (40.4% [95% CI 34.3-46.6]), and further declined over 13 months. Homes that received the stove in the first batch used it more frequently (67.2% [95% CI 42.1-92.3] days in use) than homes that received it in the second batch (29.3% [95% CI 13.8-44.5] days in use), likely because of stove quality and user training. Household stove use was positively associated with reported cooking needs and negatively associated with age of the main cook, household socioeconomic status, and the availability of substitute cleaner-burning stoves. Our results show that even a carefully engineered, multi-purpose semi-gasifier stove and fuel intervention contributed modestly to overall household energy use in rural China.

  10. Chimney stoves modestly improved indoor air quality measurements compared with traditional open fire stoves: results from a small-scale intervention study in rural Peru.

    PubMed

    Hartinger, S M; Commodore, A A; Hattendorf, J; Lanata, C F; Gil, A I; Verastegui, H; Aguilar-Villalobos, M; Mäusezahl, D; Naeher, L P

    2013-08-01

    Nearly half of the world's population depends on biomass fuels to meet domestic energy needs, producing high levels of pollutants responsible for substantial morbidity and mortality. We compare carbon monoxide (CO) and particulate matter (PM2.5) exposures and kitchen concentrations in households with study-promoted intervention (OPTIMA-improved stoves and control stoves) in San Marcos Province, Cajamarca Region, Peru. We determined 48-h indoor air concentration levels of CO and PM2.5 in 93 kitchen environments and personal exposure, after OPTIMA-improved stoves had been installed for an average of 7 months. PM2.5 and CO measurements did not differ significantly between OPTIMA-improved stoves and control stoves. Although not statistically significant, a post hoc stratification of OPTIMA-improved stoves by level of performance revealed mean PM2.5 and CO levels of fully functional OPTIMA-improved stoves were 28% lower (n = 20, PM2.5, 136 μg/m(3) 95% CI 54-217) and 45% lower (n = 25, CO, 3.2 ppm, 95% CI 1.5-4.9) in the kitchen environment compared with the control stoves (n = 34, PM2.5, 189 μg/m(3), 95% CI 116-261; n = 44, CO, 5.8 ppm, 95% CI 3.3-8.2). Likewise, although not statistically significant, personal exposures for OPTIMA-improved stoves were 43% and 17% lower for PM2.5 (n = 23) and CO (n = 25), respectively. Stove maintenance and functionality level are factors worthy of consideration for future evaluations of stove interventions. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Chimney stoves modestly improved indoor air quality measurements compared with traditional open fire stoves: results from a small-scale intervention study in rural Peru

    PubMed Central

    Hartinger, S.M.; Commodore, A.A.; Hattendorf, J.; Lanata, C.F.; Gil, A.I.; Verastegui, H.; Aguilar-Villalobos, M.; Mäusezahl, D.; Naeher, L.P.

    2015-01-01

    Nearly half of the world’s population depends on biomass fuels to meet domestic energy needs, producing high levels of pollutants responsible for substantial morbidity and mortality. We compare carbon monoxide (CO) and particulate matter (PM2.5) exposures and kitchen concentrations in households with study promoted intervention (OPTIMA-improved) stoves and control stoves in San Marcos Province, Cajamarca Region, Peru. We determined 48hr indoor air concentration levels of CO and PM2.5 in 93 kitchen environments and personal exposure, after OPTIMA-improved stoves had been installed for an average of seven months. PM2.5 and CO measurements did not differ significantly between OPTIMA-improved stoves and control stoves. Although not statistically significant, a post-hoc stratification of OPTIMA-improved stoves by level of performance revealed mean PM2.5 and CO levels of fully functional OPTIMA-improved stoves were 28% lower (n=20, PM2.5, 136μg/m3 95%CI 54–217) and 45% lower (n=25, CO, 3.2ppm, 95%CI 1.5–4.9) in the kitchen environment compared to the control stoves (n=34, PM2.5, 189μg/m3, 95%CI 116–261; n=44, CO, 5.8ppm, 95%CI 3.3–8-2). Likewise, although not statistically significant, personal exposures for OPTIMA-improved stoves were 43% and 167% lower for PM2.5 (n=23) and CO (n=25) respectively. Stove maintenance and functionality level are factors worthy of consideration for future evaluations of stove interventions. PMID:23311877

  12. Designing a behavioral intervention using the COM-B model and the theoretical domains framework to promote gas stove use in rural Guatemala: a formative research study.

    PubMed

    Thompson, Lisa M; Diaz-Artiga, Anaité; Weinstein, John R; Handley, Margaret A

    2018-02-14

    Three billion people use solid cooking fuels, and 4 million people die from household air pollution annually. Shifting households to clean fuels, like liquefied petroleum gas (LPG), may protect health only if stoves are consistently used. Few studies have used an implementation science framework to systematically assess "de-implementation" of traditional stoves, and none have done so with pregnant women who are more likely to adopt new behaviors. We evaluated an introduced LPG stove coupled with a phased behavioral intervention to encourage exclusive gas stove use among pregnant women in rural Guatemala. We enrolled 50 women at < 20 weeks gestation in this prospective cohort study. All women received a free 3-burner LPG stove and ten tank refills. We conducted formative research using COM-B Model and Theoretical Domains Framework (TDF). This included thematic analysis of focus group findings and classes delivered to 25 pregnant women (Phase 1). In Phase 2, we complemented classes with a home-based tailored behavioral intervention with a different group of 25 pregnant women. We mapped 35 TDF constructs onto survey questions. To evaluate stove use, we placed temperature sensors on wood and gas stoves and estimated fraction of stove use three times during pregnancy and twice during the first month after infant birth. Class attendance rates were above 92%. We discussed feasible ways to reduce HAP exposure, proper stove use, maintenance and safety. We addressed food preferences, ease of cooking and time savings through cooking demonstrations. In Phase 2, the COM-B framework revealed that other household members needed to be involved if the gas stove was to be consistently used. Social identity and empowerment were key in decisions about stove repairs and LPG tank refills. The seven intervention functions included training, education, persuasion, incentivization, modelling, enablement and environmental restructuring. Wood stove use dropped upon introduction of the gas stove from 6.4 h to 1.9 h. This is the first study using the COM-B Model to develop a behavioral intervention that promotes household-level sustained use of LPG stoves. This study lays the groundwork for a future LPG stove intervention trial coupled with a behavioral change intervention. NCT02812914, registered 3 June 2016, retrospectively registered.

  13. Farmer innovation driven by needs and understanding: building the capacities of farmer groups for improved cooking stove construction and continued adaptation

    NASA Astrophysics Data System (ADS)

    Uckert, G.; Hafner, J.; Graef, F.; Hoffmann, H.; Kimaro, A.; Sererya, O.; Sieber, S.

    2017-12-01

    Enhancing food security is one of the main goals of subsistence farmers in Sub-Saharan Africa. This study investigates the implementation of improved loam-made cooking stoves and its contribution to coping and livelihood strategies. Controlled combustion, air as well as smoke flue, and heat insulation facilitate the more efficient fuel consumption of improved cooking stoves compared to traditional stoves—namely three stone fires. Although the majority of small-scale farmers in Sub-Saharan Africa rely on the free public good of firewood, the increasing time needed for collecting firewood implies high opportunity costs for productive members of the family. The primary outcomes for users of improved stoves are reduced fuel consumption, greater safety, saved time, and reduced smoke in the kitchen. The paper illustrates part of the output, outcome, and impact of a participatory action research approach for implementing improved cooking stoves. Special emphasis was put on enabling the villagers to construct their stoves without external support, hence having locally manufactured stoves made of mud, bricks, and dried grass. The impact pathway of improved cooking stoves followed the training-of-trainers concept, where members of the initially established farmer groups were trained to construct stoves on their own. Special focus was given to knowledge exchange and knowledge transfer in order to increase firewood efficiency and overall satisfaction of users of improved cook stoves. Encouraging the members to further adapt the stoves enabled them to scale-up the construction of improved cooked stoves into a business model and increase dissemination while creating income. Although many important benefits, like time and knowledge gain, were identified by the farmers after adoption of the new technology, we found adoption rates differed significantly between regions.

  14. Impacts of stove use patterns and outdoor air quality on household air pollution and cardiovascular mortality in southwestern China.

    PubMed

    Snider, Graydon; Carter, Ellison; Clark, Sierra; Tseng, Joy Tzu Wei; Yang, Xudong; Ezzati, Majid; Schauer, James J; Wiedinmyer, Christine; Baumgartner, Jill

    2018-05-04

    Decades of intervention programs that replaced traditional biomass stoves with cleaner-burning technologies have failed to meet the World Health Organization (WHO) interim indoor air quality target of 35-μg m -3 for PM 2.5 . Many attribute these results to continued use of biomass stoves and poor outdoor air quality, though the relative impacts of these factors have not been empirically quantified. We measured 496 days of real-time stove use concurrently with outdoor and indoor air pollution (PM 2.5 ) in 150 rural households in Sichuan, China. The impacts of stove use patterns and outdoor air quality on indoor PM 2.5 were quantified. We also estimated the potential avoided cardiovascular mortality in southwestern China associated with transition from traditional to clean fuel stoves using established exposure-response relationships. Mean daily indoor PM 2.5 was highest in homes using both wood and clean fuel stoves (122 μg m -3 ), followed by exclusive use of wood stoves (106 μg m -3 ) and clean fuel stoves (semi-gasifiers: 65 μg m -3 ; gas or electric: 55 μg m -3 ). Wood stoves emitted proportionally higher indoor PM 2.5 during ignition, and longer stove use was not associated with higher indoor PM 2.5 . Only 24% of days with exclusive use of clean fuel stoves met the WHO indoor air quality target, though this fraction rose to 73% after subtracting the outdoor PM 2.5 contribution. Reduced PM 2.5 exposure through exclusive use of gas or electric stoves was estimated to prevent 48,000 yearly premature deaths in southwestern China, with greater reductions if local outdoor PM 2.5 is also reduced. Clean stove and fuel interventions are not likely to reduce indoor PM 2.5 to the WHO target unless their use is exclusive and outdoor air pollution is sufficiently low, but may still offer some cardiovascular benefits. Copyright © 2018. Published by Elsevier Ltd.

  15. Indoor Particulate Matter Concentration, Water Boiling Time, and Fuel Use of Selected Alternative Cookstoves in a Home-Like Setting in Rural Nepal.

    PubMed

    Ojo, Kristen D; Soneja, Sutyajeet I; Scrafford, Carolyn G; Khatry, Subarna K; LeClerq, Steven C; Checkley, William; Katz, Joanne; Breysse, Patrick N; Tielsch, James M

    2015-07-07

    Alternative cookstoves are designed to improve biomass fuel combustion efficiency to reduce the amount of fuel used and lower emission of air pollutants. The Nepal Cookstove Trial (NCT) studies effects of alternative cookstoves on family health. Our study measured indoor particulate matter concentration (PM2.5), boiling time, and fuel use of cookstoves during a water-boiling test in a house-like setting in rural Nepal. Study I was designed to select a stove to be used in the NCT; Study II evaluated stoves used in the NCT. In Study I, mean indoor PM2.5 using wood fuel was 4584 μg/m3, 1657 μg/m3, and 2414 μg/m3 for the traditional, alternative mud brick stove (AMBS-I) and Envirofit G-series, respectively. The AMBS-I reduced PM2.5 concentration but increased boiling time compared to the traditional stove (p-values < 0.001). Unlike AMBS-I, Envirofit G-series did not significantly increase overall fuel consumption. In Phase II, the manufacturer altered Envirofit stove (MAES) and Nepal Nutrition Intervention Project Sarlahi (NNIPS) altered Envirofit stove (NAES), produced lower mean PM2.5, 1573 μg/m3 and 1341 μg/m3, respectively, relative to AMBS-II 3488 μg/m3 for wood tests. The liquid propane gas stove had the lowest mean PM2.5 concentrations, with measurements indistinguishable from background levels. Results from Study I and II showed significant reduction in PM2.5 for all alternative stoves in a controlled setting. In study I, the AMBS-I stove required more fuel than the traditional stove. In contrast, in study II, the MAES and NAES stoves required statistically less fuel than the AMBS-II. Reductions and increases in fuel use should be interpreted with caution because the composition of fuels was not standardized--an issue which may have implications for generalizability of other findings as well. Boiling times for alternative stoves in Study I were significantly longer than the traditional stove--a trade-off that may have implications for acceptability of the stoves among end users. These extended cooking times may increase cumulative exposure during cooking events where emission rates are lower; these differences must be carefully considered in the evaluation of alternative stove designs.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stokes, David

    This program seeks to demonstrate a solution to enhance existing biomass cookstove performance through the use of RTI’s Thermoelectric Enhanced Cookstove Add-on (TECA) device. The self-powered TECA device captures a portion of heat from the stove and converts it to electricity through a thermoelectric (TE) device to power a blower. Colorado State University and Envirofit International are partners to support the air injection design and commercialization to enhance combustion in the stove and reduce emissions. Relevance: By demonstrating a proof of concept of the approach with the Envirofit M-5000 stove and TECA device, we hope to apply this technology tomore » existing stoves that are already in use and reduce emissions for stoves that have already found user acceptance to provide a true health benefit. Challenges: The technical challenges include achieving Tier 4 emissions from a biomass stove and for such a stove to operate reliably in the harsh field environment. Additional challenges include the fact that it is difficult to develop a cost effective solution and insure adoption and proper use in the field. Outcomes: In this program we have demonstrated PM emissions at 82 mg/MJd, a 70% reduction as compared to baseline stove operation. We have also developed a stove optimization approach that reduces the number of costly experiments. We have evaluated component-level reliability and will be testing the stove prototype in the field for performance and reliability.« less

  17. Does peer use influence adoption of efficient cookstoves? Evidence from a randomized controlled trial in Uganda.

    PubMed

    Beltramo, Theresa; Blalock, Garrick; Levine, David I; Simons, Andrew M

    2015-01-01

    The authors examined the effect of peer usage on consumer demand for efficient cookstoves with a randomized controlled trial in rural Uganda. The authors tested whether the neighbors of buyers who ordered and received a stove are more likely to purchase an efficient cookstove than the neighbors of buyers who ordered but have not yet received a stove. The authors found that neighbors of buyers who have experience with the stove are not detectably more likely to purchase a stove than neighbors of buyers who have not yet received their stove. The authors found evidence of peer effects in opinions about efficient cookstoves. Knowing that a prominent member of the community has the efficient stove predicts 17-22 percentage points higher odds of strongly favoring the stove. However, this more favorable opinion seemingly has no effect on purchase decisions.

  18. Update on EPA Stove Testing, Focus on Batch-Fueled Stoves

    EPA Science Inventory

    A webinar, entitled Update on EPA Stove Testing, Focus on Batch-Fueled Stoves, will be presented by Jim Jetter, EPA, and will be hosted by the Global Alliance for Clean Cookstoves on August 20, 2013. The purpose of this webinar is to (1) provide an update on the EPA cookstove te...

  19. Characterizing Particulate Matter Exfiltration Estimates for Alternative Cookstoves in a Village-Like Household in Rural Nepal.

    PubMed

    Soneja, Sutyajeet I; Tielsch, James M; Khatry, Subarna K; Zaitchik, Benjamin; Curriero, Frank C; Breysse, Patrick N

    2017-11-01

    Alternative stoves are an intervention option to reduce household air pollution. The amount of air pollution exiting homes when alternative stoves are utilized is not known. In this paper, particulate matter exfiltration estimates are presented for four types of alternative stoves within a village-like home, which was built to reflect the use of local materials and common size, in rural Nepal. Four alternative stoves with chimneys were examined, which included an alternative mud brick stove, original Envirofit G3355 model, manufacture altered Envirofit G3355, and locally altered Envirofit G3355. Multiple linear regression was utilized to determine estimates of PM2.5 exfiltration. Overall exfiltration fraction average (converted to a percent) for the four stoves were: alternative mud brick stove with chimney 56%, original Envirofit G3355 model with chimney 87%, manufacture altered Envirofit G3355 model with chimney 69%, and locally altered Envirofit G3355 model with chimney 69%. Alternative cookstoves resulted in higher overall average exfiltration due to direct and indirect ventilation relative to traditional, mud-based stoves. This contrast emphasizes the need for an improved understanding of the climate and health implications that are believed to come from implementing alternative stoves on a large scale and the resultant shift of exposure burden from indoors to outdoors.

  20. Characterizing Particulate Matter Exfiltration Estimates for Alternative Cookstoves in a Village-Like Household in Rural Nepal

    NASA Astrophysics Data System (ADS)

    Soneja, Sutyajeet I.; Tielsch, James M.; Khatry, Subarna K.; Zaitchik, Benjamin; Curriero, Frank C.; Breysse, Patrick N.

    2017-11-01

    Alternative stoves are an intervention option to reduce household air pollution. The amount of air pollution exiting homes when alternative stoves are utilized is not known. In this paper, particulate matter exfiltration estimates are presented for four types of alternative stoves within a village-like home, which was built to reflect the use of local materials and common size, in rural Nepal. Four alternative stoves with chimneys were examined, which included an alternative mud brick stove, original Envirofit G3355 model, manufacture altered Envirofit G3355, and locally altered Envirofit G3355. Multiple linear regression was utilized to determine estimates of PM2.5 exfiltration. Overall exfiltration fraction average (converted to a percent) for the four stoves were: alternative mud brick stove with chimney 56%, original Envirofit G3355 model with chimney 87%, manufacture altered Envirofit G3355 model with chimney 69%, and locally altered Envirofit G3355 model with chimney 69%. Alternative cookstoves resulted in higher overall average exfiltration due to direct and indirect ventilation relative to traditional, mud-based stoves. This contrast emphasizes the need for an improved understanding of the climate and health implications that are believed to come from implementing alternative stoves on a large scale and the resultant shift of exposure burden from indoors to outdoors.

  1. Behavioral Attitudes and Preferences in Cooking Practices with Traditional Open-Fire Stoves in Peru, Nepal, and Kenya: Implications for Improved Cookstove Interventions

    PubMed Central

    Rhodes, Evelyn L.; Dreibelbis, Robert; Klasen, Elizabeth; Naithani, Neha; Baliddawa, Joyce; Menya, Diana; Khatry, Subarna; Levy, Stephanie; Tielsch, James M.; Miranda, J. Jaime; Kennedy, Caitlin; Checkley, William

    2014-01-01

    Global efforts are underway to develop and promote improved cookstoves which may reduce the negative health and environmental effects of burning solid fuels on health and the environment. Behavioral studies have considered cookstove user practices, needs and preferences in the design and implementation of cookstove projects; however, these studies have not examined the implications of the traditional stove use and design across multiple resource-poor settings in the implementation and promotion of improved cookstove projects that utilize a single, standardized stove design. We conducted in-depth interviews and direct observations of meal preparation and traditional, open-fire stove use of 137 women aged 20–49 years in Kenya, Peru and Nepal prior in the four-month period preceding installation of an improved cookstove as part of a field intervention trial. Despite general similarities in cooking practices across sites, we identified locally distinct practices and norms regarding traditional stove use and desired stove improvements. Traditional stoves are designed to accommodate specific cooking styles, types of fuel, and available resources for maintenance and renovation. The tailored stoves allow users to cook and repair their stoves easily. Women in each setting expressed their desire for a new stove, but they articulated distinct specific alterations that would meet their needs and preferences. Improved cookstove designs need to consider the diversity of values and needs held by potential users, presenting a significant challenge in identifying a “one size fits all” improved cookstove design. Our data show that a single stove design for use with locally available biomass fuels will not meet the cooking demands and resources available across the three sites. Moreover, locally produced or adapted improved cookstoves may be needed to meet the cooking needs of diverse populations while addressing health and environmental concerns of traditional stoves. PMID:25286166

  2. Emission reduction potentials of improved cookstoves and their issues in adoption: An Indian outlook.

    PubMed

    Sharma, Monikankana; Dasappa, S

    2017-12-15

    Biomass as a fuel for cooking is a common practice in rural India, and about 700 million people use traditional stoves to meet their energy demand. However, the thermal and the combustion efficiencies of these stoves are very low, leading to an inefficient use of biomass, and also, resulting in significant indoor air pollution. Research development has however led to the development of some improved stoves viz., natural draft and forced draft for both domestic as well as large scale cooking applications and government is trying to promote them. Forced draft stoves using processed biomass fuels (pellets) have received more prominence due to their superior performance, however, higher initial cost and limited fuel distribution networks have remained the key challenges. Improved natural draft stoves too have gained attention for being relatively inexpensive, and they are more likely to hit the rural households. In this paper, we have examined the environmental benefits obtained by the use of improved stoves for two important scenarios: traditional stoves are replaced by (i)improved natural draft stoves and, (ii) by improved natural draft as well as forced draft stoves. In the best case scenario (case ii), i.e., by shifting 111 million households who currently use wood to the forced draft stoves, and another 45 million households who are dependent on dung cake and agro residues to the improved natural draft stoves, the emission reduction that can be achieved are as follows: particulate matter (PM) 875 kT, black carbon (BC) 229 kT, organic carbon (OC) 525 kT, methane (CH 4 )1178 kT and non methane hydrocarbon (NMHC) of 564 kT. With the promotion of only natural draft improved stoves, the total reductions would be ∼12% lower than the combinational promotion. The CO 2 equivalent reduction is estimated to be ∼70-80 MT per year. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Are rocket mud stoves associated with lower indoor carbon monoxide and personal exposure in rural Kenya?

    PubMed

    Ochieng, C A; Vardoulakis, S; Tonne, C

    2013-02-01

    Household use of biomass fuels is a major source of indoor air pollution and poor health in developing countries. We conducted a cross-sectional investigation in rural Kenya to assess household air pollution in homes with traditional three-stone stove and rocket mud stove (RMS), a low-cost unvented wood stove. We conducted continuous measurements of kitchen carbon monoxide (CO) concentrations and personal exposures in 102 households. Median 48-h kitchen and personal CO concentrations were 7.3 and 6.5 ppm, respectively, for three-stone stoves, while the corresponding concentrations for RMS were 5.8 and 4.4 ppm. After adjusting for kitchen location, ventilation, socio-economic status, and fuel moisture content, the use of RMS was associated with 33% lower levels of kitchen CO [95% Confidence Interval (CI), 64.4-25.1%] and 42% lower levels of personal CO (95% CI, 66.0-1.1%) as compared to three-stone stoves. Differences in CO concentrations by stove type were more pronounced when averaged over the cooking periods, although they were attenuated after adjusting for confounding. In conclusion, RMS appear to lower kitchen and personal CO concentrations compared to the traditional three-stone stoves but overall, the CO concentrations remain high. The rocket mud stoves (RMS) were associated with lower CO concentrations compared to three-stone stoves. However, the difference in concentrations was modest and concentrations in both stove groups exceeded the WHO guideline of 7 μg/m(3) , suggesting the unvented RMSs on their own are unlikely to appreciably benefit health in this population. Greater air quality benefit could be realized if the stoves were complemented with behavior change, including education on extinguishing fire when not in use as well as fuel drying, and cooking in locations that are separate from the main house. © 2012 John Wiley & Sons A/S.

  4. Indoor Particulate Matter Concentration, Water Boiling Time, and Fuel Use of Selected Alternative Cookstoves in a Home-Like Setting in Rural Nepal

    PubMed Central

    Ojo, Kristen D.; Soneja, Sutyajeet I.; Scrafford, Carolyn G.; Khatry, Subarna K.; LeClerq, Steven C.; Checkley, William; Katz, Joanne; Breysse, Patrick N.; Tielsch, James M.

    2015-01-01

    Alternative cookstoves are designed to improve biomass fuel combustion efficiency to reduce the amount of fuel used and lower emission of air pollutants. The Nepal Cookstove Trial (NCT) studies effects of alternative cookstoves on family health. Our study measured indoor particulate matter concentration (PM2.5), boiling time, and fuel use of cookstoves during a water-boiling test in a house-like setting in rural Nepal. Study I was designed to select a stove to be used in the NCT; Study II evaluated stoves used in the NCT. In Study I, mean indoor PM2.5 using wood fuel was 4584 μg/m3, 1657 μg/m3, and 2414 μg/m3 for the traditional, alternative mud brick stove (AMBS-I) and Envirofit G-series, respectively. The AMBS-I reduced PM2.5 concentration but increased boiling time compared to the traditional stove (p-values < 0.001). Unlike AMBS-I, Envirofit G-series did not significantly increase overall fuel consumption. In Phase II, the manufacturer altered Envirofit stove (MAES) and Nepal Nutrition Intervention Project Sarlahi (NNIPS) altered Envirofit stove (NAES), produced lower mean PM2.5, 1573 μg/m3 and 1341 μg/m3, respectively, relative to AMBS-II 3488 μg/m3 for wood tests. The liquid propane gas stove had the lowest mean PM2.5 concentrations, with measurements indistinguishable from background levels. Results from Study I and II showed significant reduction in PM2.5 for all alternative stoves in a controlled setting. In study I, the AMBS-I stove required more fuel than the traditional stove. In contrast, in study II, the MAES and NAES stoves required statistically less fuel than the AMBS-II. Reductions and increases in fuel use should be interpreted with caution because the composition of fuels was not standardized—an issue which may have implications for generalizability of other findings as well. Boiling times for alternative stoves in Study I were significantly longer than the traditional stove—a trade-off that may have implications for acceptability of the stoves among end users. These extended cooking times may increase cumulative exposure during cooking events where emission rates are lower; these differences must be carefully considered in the evaluation of alternative stove designs. PMID:26198238

  5. A laboratory fuel efficiency and emissions comparison between Tanzanian traditional and improved biomass cooking stoves and alternative fuels

    NASA Astrophysics Data System (ADS)

    Mitchell, B. R.; Maggio, J. C.; Paterson, K.

    2010-12-01

    Large amounts of aerosols are emitted from domestic biomass burning globally every day. Nearly three billion people cook in their homes using traditional fires and stoves. Biomass is the primary fuel source which results in detrimental levels of indoor air pollution as well as having a strong impact on climate change. Variations in emissions occur depending on the combustion process and stove design as well as the condition and type of fuel used. The three most commonly used fuels for domestic biomass burning are wood, charcoal, and crop residue. In addition to these commonly used fuels and because of the increased difficulty of obtaining charcoal and wood due to a combination of deforestation and new governmental restrictions, alternative fuels are becoming more prevalent. In the Republic of Tanzania a field campaign was executed to test previously adopted and available traditional and improved cooking stoves with various traditional and alternative fuels. The tests were conducted over a two month period and included four styles of improved stoves, two styles of traditional cooking methods, and eight fuel types. The stoves tested include a sawdust stove, ceramic and brick insulated metal stoves, and a mud stove. A traditional three-stone fire was also tested as a benchmark by which to compare the other stoves. Fuel types tested include firewood, charcoal (Acacia), sawdust, pressed briquettes, charcoal dust briquettes, and carbonized crop residue. Water boiling tests were conducted on each stove with associated fuel types during which boiling time, water temperature, CO, CO2, and PM2.5μm emissions were recorded. All tests were conducted on-site in Arusha, Tanzania enabling the use of local materials and fuels under local conditions. It was found that both stove design and fuel type play a critical role in the amount of emissions produced. The most influential design aspect affecting emissions was the size of the combustion chamber in combination with air intake. However, it was clear that varying fuel types has the largest influence on emissions and therefore has greater potential for reducing emissions compared to stove design. Most notably, alternative fuels such as carbonized crop residue produced far fewer particulates and lower carbon monoxide levels. With particulates and carbon monoxide emissions having the most damaging effects to human health, alternative fuels offer a cleaner burning option. The testing expanded understanding of current stove design and common cooking practices in and around the Arusha region of Tanzania while laying the foundation for future development of a more efficient stove and a cleaner burning biomass fuel.

  6. Evaluation of exposure reduction to indoor air pollution in stove intervention projects in Peru by urinary biomonitoring of polycyclic aromatic hydrocarbon metabolites.

    PubMed

    Li, Zheng; Sjödin, Andreas; Romanoff, Lovisa C; Horton, Kevin; Fitzgerald, Christopher L; Eppler, Adam; Aguilar-Villalobos, Manuel; Naeher, Luke P

    2011-10-01

    Burning biomass fuels such as wood on indoor open-pit stoves is common in developing regions. In such settings, exposure to harmful combustion products such as fine particulate matter (PM(2.5)), carbon monoxide (CO) and polycyclic aromatic hydrocarbons (PAHs) is of concern. We aimed to investigate if the replacement of open pit stoves by improved stoves equipped with a chimney would significantly reduce exposure to PAHs, PM(2.5) and CO. Two stove projects were evaluated in Peru. Program A was part of the Juntos National Program in which households built their own stoves using materials provided. In Program B, Barrick Gold Corporation hired a company to produce and install the stoves locally. A total of 30 and 27 homes participated in Program A and B, respectively. We collected personal and kitchen air samples, as well as morning urine samples from women tasked with cooking in the households before and after the installation of the improved stoves. Median levels of PM(2.5) and CO were significantly reduced in kitchen and personal air samples by 47-74% after the installation of the new stoves, while the median reduction of 10 urinary hydroxylate PAH metabolites (OH-PAHs) was 19%-52%. The observed OH-PAH concentration in this study was comparable or higher than the 95th percentile of the general U.S. population, even after the stove intervention, indicating a high overall exposure in this population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A pilot study of traditional indoor biomass cooking and heating in rural Bhutan: gas and particle concentrations and emission rates.

    PubMed

    Wangchuk, T; He, C; Knibbs, L D; Mazaheri, M; Morawska, L

    2017-01-01

    Although many studies have reported the health effects of biomass fuels in developing countries, relatively few have quantitatively characterized emissions from biomass stoves during cooking and heating. The aim of this pilot study was to characterize the emission characteristics of different biomass stoves in four rural houses in Bhutan during heating (metal chimney stove), rice cooking (traditional mud stove), fodder preparation (stone tripod stove), and liquor distillation (traditional mud stove). Three stage measurements (before, during, and after the activity had ceased) were conducted for PM 2.5 , particle number (PN), CO, and CO 2 . When stoves were operated, the pollutant concentrations were significantly elevated above background levels, by an average of 40 and 18 times for PM 2.5 and CO, respectively. Emission rates (mg/min) ranged from 1.07 × 10 2 (PM 2.5 ) and 3.50 × 10 2 (CO) for the stone tripod stove during fodder preparation to 6.20 × 10 2 (PM 2.5 ) and 2.22 × 10 3 (CO) for the traditional mud stove during liquor distillation. Usable PN data were only available for one house, during heating using a metal chimney stove, which presented an emission rate of 3.24 × 10 13 particles/min. Interventions to control household air pollution in Bhutan, in order to reduce the health risks associated with cooking and heating, are recommended. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Particulate Matter 2.5 Exposure and Self-Reported Use of Wood Stoves and Other Indoor Combustion Sources in Urban Nonsmoking Homes in Norway.

    PubMed

    Wyss, Annah B; Jones, Anna Ciesielski; Bølling, Anette K; Kissling, Grace E; Chartier, Ryan; Dahlman, Hans Jørgen; Rodes, Charles E; Archer, Janet; Thornburg, Jonathan; Schwarze, Per E; London, Stephanie J

    2016-01-01

    Few studies have examined particulate matter (PM) exposure from self-reported use of wood stoves and other indoor combustion sources in urban settings in developed countries. We measured concentrations of indoor PM < 2.5 microns (PM2.5) for one week with the MicroPEM™ nephelometer in 36 households in the greater Oslo, Norway metropolitan area. We examined indoor PM2.5 levels in relation to use of wood stoves and other combustion sources during a 7 day monitoring period using mixed effects linear models with adjustment for ambient PM2.5 levels. Mean hourly indoor PM2.5 concentrations were higher (p = 0.04) for the 14 homes with wood stove use (15.6 μg/m3) than for the 22 homes without (12.6 μg/m3). Moreover, mean hourly PM2.5 was higher (p = 0.001) for use of wood stoves made before 1997 (6 homes, 20.2 μg/m3), when wood stove emission limits were instituted in Norway, compared to newer wood stoves (8 homes, 11.9 μg/m3) which had mean hourly values similar to control homes. Increased PM2.5 levels during diary-reported burning of candles was detected independently of concomitant wood stove use. These results suggest that self-reported use of wood stoves, particularly older stoves, and other combustion sources, such as candles, are associated with indoor PM2.5 measurements in an urban population from a high income country.

  9. Perceptions of Improved Biomass and Liquefied Petroleum Gas Stoves in Puno, Peru: Implications for Promoting Sustained and Exclusive Adoption of Clean Cooking Technologies.

    PubMed

    Hollada, Jacqueline; Williams, Kendra N; Miele, Catherine H; Danz, David; Harvey, Steven A; Checkley, William

    2017-02-13

    Many households in low- and middle-income countries cook with inefficient biomass-burning stoves, which cause high levels of household air pollution and threaten long-term health. Although clean stoves and fuels are available, uptake and consistent use has been low. Using observations and in-depth interviews, we assessed the attitudes, preferences, and beliefs about traditional versus liquefied petroleum gas (LPG) stoves in rural Puno, Peru. A total of 31 in-depth interviews were conducted with primary cooks and their families, health workers, community leaders, and improved stove contractors. Six in-home observations of meal preparation were also conducted. Six major barriers to consistent use of clean stoves were identified: (1) perceived differences in food taste and nutrition by stove type; (2) cooking niches filled by different stoves; (3) social norms related to cooking practices; (4) safety concerns; (5) comparative costs of using different stoves; and (6) lack of awareness and concern about long-term health risks. These findings suggest that to successfully reduce household air pollution, clean cooking programs and policies must consider the many factors influencing adoption beyond health, such as cost, taste, fears, and cultural traditions. These factors could be incorporated into community-based and national efforts to scale-up sustained and exclusive adoption of clean cooking.

  10. Perceptions of Improved Biomass and Liquefied Petroleum Gas Stoves in Puno, Peru: Implications for Promoting Sustained and Exclusive Adoption of Clean Cooking Technologies

    PubMed Central

    Hollada, Jacqueline; Williams, Kendra N.; Miele, Catherine H.; Danz, David; Harvey, Steven A.; Checkley, William

    2017-01-01

    Many households in low- and middle-income countries cook with inefficient biomass-burning stoves, which cause high levels of household air pollution and threaten long-term health. Although clean stoves and fuels are available, uptake and consistent use has been low. Using observations and in-depth interviews, we assessed the attitudes, preferences, and beliefs about traditional versus liquefied petroleum gas (LPG) stoves in rural Puno, Peru. A total of 31 in-depth interviews were conducted with primary cooks and their families, health workers, community leaders, and improved stove contractors. Six in-home observations of meal preparation were also conducted. Six major barriers to consistent use of clean stoves were identified: (1) perceived differences in food taste and nutrition by stove type; (2) cooking niches filled by different stoves; (3) social norms related to cooking practices; (4) safety concerns; (5) comparative costs of using different stoves; and (6) lack of awareness and concern about long-term health risks. These findings suggest that to successfully reduce household air pollution, clean cooking programs and policies must consider the many factors influencing adoption beyond health, such as cost, taste, fears, and cultural traditions. These factors could be incorporated into community-based and national efforts to scale-up sustained and exclusive adoption of clean cooking. PMID:28208813

  11. Improvement in household stoves and risk of chronic obstructive pulmonary disease in Xuanwei, China: retrospective cohort study

    PubMed Central

    Chapman, Robert S; He, Xingzhou; Blair, Aaron E; Lan, Qing

    2005-01-01

    Objective To test whether improvement in household coal stoves affected the incidence of chronic obstructive pulmonary disease (COPD) in Xuanwei County, China. Design Retrospective cohort study (follow-up 1976-92) comparing incidence of COPD between groups with and without chimneys. Participants 20 453 people born into homes with unvented coal stoves;16 606 (81.2%) subsequently changed to stoves with chimneys. Intervention Installation of a chimney in households in which unvented stoves had been used previously. Results Installation of a chimney was associated with distinct reduction in the incidence of COPD. Compared with people who did not have chimneys, the Cox-modelled risk ratio (relative risk) was 0.58 (95% confidence interval 0.49 to 0.70, P < 0.001) in men and 0.75 (0.62 to 0.92, P = 0.005) in women. Modelled risk ratios were robust to different Cox model specifications. Relative risks decreased with time since stove improvement. In both sexes, the reduction in risk became unequivocal about 10 years after stove improvement. Conclusions In Xuanwei, incidence of COPD decreased markedly after household coal stoves were improved. PMID:16234255

  12. Comparative Use of Personal and Installed Tables and Stoves in Public Campgrounds.

    ERIC Educational Resources Information Center

    Bury, Richard L.; Dutra, Robert S.

    This survey reports the use of installed tables and stoves as compared with the use of personal tables and stoves at 20 campgrounds in the central Sierra Nevada during the summer of 1961. The data reveal about 70 percent of the campers brought a portable stove. Installed grates were used by only half of the campers who had them available, and…

  13. Real-life effectiveness of 'improved' stoves and clean fuels in reducing PM2.5 and CO: Systematic review and meta-analysis.

    PubMed

    Pope, Daniel; Bruce, Nigel; Dherani, Mukesh; Jagoe, Kirstie; Rehfuess, Eva

    2017-04-01

    2.8 billion people cook with solid fuels, resulting in almost 3 million premature deaths from household air pollution (HAP). To date, no systematic assessment of impacts on HAP of 'improved' stove and clean fuel interventions has been conducted. This systematic review synthesizes evidence for changes in kitchen and personal PM 2.5 and carbon monoxide (CO) following introduction of 'improved' solid fuel stoves and cleaner fuels in low- and middle-income countries (LMIC). Searches of published and unpublished literature were conducted through databases and specialist websites. Eligible studies reported mean (24 or 48h) small particulate matter (majority PM 2.5 ) and/or CO. Eligible interventions were solid fuel stoves (with/without chimneys, advanced combustion), clean fuels (liquefied petroleum gas, biogas, ethanol, electricity, solar) and mixed. Data extraction and quality appraisal were undertaken using standardized forms, and publication bias assessed. Baseline and post-intervention values and percentage changes were tabulated and weighted averages calculated. Meta-analyses of absolute changes in PM and CO were conducted. Most of the 42 included studies (112 estimates) addressed solid fuel stoves. Large reductions in pooled kitchen PM 2.5 (ranging from 41% (29-50%) for advanced combustion stoves to 83% (64-94%) for ethanol stoves), and CO (ranging from 39% (11-55%) for solid fuel stoves without chimneys to 82% (75-95%) for ethanol stoves. Reductions in personal exposure of 55% (19-87%) and 52% (-7-69%) for PM 2.5 and CO respectively, were observed for solid fuel stoves with chimneys. For the majority of interventions, post-intervention kitchen PM 2.5 levels remained well above WHO air quality guideline (AQG) limit values, although most met the AQG limit value for CO. Subgroup and sensitivity analyses did not substantially alter findings; publication bias was evident for chimney stove interventions but this was restricted to before-and-after studies. In everyday use in LMIC, neither 'improved' solid fuel stoves nor clean fuels (probably due to neighbourhood contamination) achieve PM 2.5 concentrations close to 24-hour AQG limit values. Household energy policy should prioritise community-wide use of clean fuels. Copyright © 2017. Published by Elsevier Ltd.

  14. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations.

    PubMed

    Paulin, L M; Diette, G B; Scott, M; McCormack, M C; Matsui, E C; Curtin-Brosnan, J; Williams, D L; Kidd-Taylor, A; Shea, M; Breysse, P N; Hansel, N N

    2014-08-01

    Nitrogen dioxide (NO2 ), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high-efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre-intervention and at 1 week and 3 months post-intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow-up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P < 0.01) and bedroom (22%, P = 0.02), but at 3 months, a significant reduction was seen only in the kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes. Several combustion sources unique to the residential indoor environment, including gas stoves, produce nitrogen dioxide (NO2), and higher NO2 concentrations, are associated with worse respiratory morbidity in people with obstructive lung disease. A handful of studies have modified the indoor environment by replacing unvented gas heaters; this study, to our knowledge, is the first randomized study to target unvented gas stoves. The results of this study show that simple home interventions, including replacement of an unvented gas stove with an electric stove or placement of HEPA air purifiers with carbon filters, can significantly decrease indoor NO2 concentrations. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users

    NASA Astrophysics Data System (ADS)

    Lin, Nan; Chen, Yuanchen; Du, Wei; Shen, Guofeng; Zhu, Xi; Huang, Tianbo; Wang, Xilong; Cheng, Hefa; Liu, Junfeng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy Y.; Xing, Baoshan; Tao, Shu

    2016-12-01

    Polycyclic aromatica hydrocarbons (PAHs) are a group of compounds with carcinogenic potentials and residential solid fuel combustion is one major source of PAHs in most developing countries. Replacement of traditional stoves with improved ones is believed to be a practical approach to reduce pollutant emissions, however, field assessments on the performance and consequent impacts on air quality and human health after adopting improved stoves are rare. The study is the first time to quantify inhalation exposure to PAHs among the residents who adopted wood gasifier stoves. The results were compared to those still burning coals in the region and compared to exposure levels for different fuel/stove users in literature. The results showed that the PAHs exposure levels for the wood gasifier stove users were significantly lower than the values for those using traditional wood stoves reported in literature, and the daily exposure concentrations of BaPeq (Benzo[a]pyrene equivalent concentration) can be reduced by 48%-91% if traditional wood stoves were replaced by wood gasifier stoves. The corresponding Incremental Lifetime Cancer Risk (ILCR) decreased approximately four times from 1.94 × 10-4 to 5.17 × 10-5. The average concentration of the total 26 PAHs for the wood users was 1091 ± 722 ng/m3, which was comparable to 1060 ± 927 ng/m3 for those using anthracite coals, but the composition profiles were considerably different. The average BaPeq were 116 and 25.8 ng/m3 for the wood and coal users, respectively, and the corresponding ILCR of the anthracite coal users was 1.69 × 10-5, which was nearly one third of those using the wood gasifier stoves. The wood users exposed to not only high levels of high molecular weight PAHs, but relatively high fractions of particulate phase PAHs in small particles compared to the coal users, resulting in high exposure risks.

  16. Quantitative Guidance for Stove Usage and Performance to Achieve Health and Environmental Targets

    PubMed Central

    Chiang, Ranyee A.

    2015-01-01

    Background Displacing the use of polluting and inefficient cookstoves in developing countries is necessary to achieve the potential health and environmental benefits sought through clean cooking solutions. Yet little quantitative context has been provided on how much displacement of traditional technologies is needed to achieve targets for household air pollutant concentrations or fuel savings. Objectives This paper provides instructive guidance on the usage of cooking technologies required to achieve health and environmental improvements. Methods We evaluated different scenarios of displacement of traditional stoves with use of higher performing technologies. The air quality and fuel consumption impacts were estimated for these scenarios using a single-zone box model of indoor air quality and ratios of thermal efficiency. Results Stove performance and usage should be considered together, as lower performing stoves can result in similar or greater benefits than a higher performing stove if the lower performing stove has considerably higher displacement of the baseline stove. Based on the indoor air quality model, there are multiple performance–usage scenarios for achieving modest indoor air quality improvements. To meet World Health Organization guidance levels, however, three-stone fire and basic charcoal stove usage must be nearly eliminated to achieve the particulate matter target (< 1–3 hr/week), and substantially limited to meet the carbon monoxide guideline (< 7–9 hr/week). Conclusions Moderate health gains may be achieved with various performance–usage scenarios. The greatest benefits are estimated to be achieved by near-complete displacement of traditional stoves with clean technologies, emphasizing the need to shift in the long term to near exclusive use of clean fuels and stoves. The performance–usage scenarios are also provided as a tool to guide technology selection and prioritize behavior change opportunities to maximize impact. Citation Johnson MA, Chiang RA. 2015. Quantitative guidance for stove usage and performance to achieve health and environmental targets. Environ Health Perspect 123:820–826; http://dx.doi.org/10.1289/ehp.1408681 PMID:25816219

  17. Lung Function in Rural Guatemalan Women Before and After a Chimney Stove Intervention to Reduce Wood Smoke Exposure: Results From the Randomized Exposure Study of Pollution Indoors and Respiratory Effects and Chronic Respiratory Effects of Early Childhood Exposure to Respirable Particulate Matter Study.

    PubMed

    Guarnieri, Michael; Diaz, Esperanza; Pope, Daniel; Eisen, Ellen A; Mann, Jennifer; Smith, Kirk R; Smith-Sivertsen, Tone; Bruce, Nigel G; Balmes, John R

    2015-11-01

    COPD is the third most frequent cause of death globally, with much of this burden attributable to household biomass smoke exposure in developing countries. As biomass smoke exposure is also associated with cardiovascular disease, lower respiratory infection, lung cancer, and cataracts, it presents an important target for public health intervention. Lung function in Guatemalan women exposed to wood smoke from open fires was measured throughout the Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) stove intervention trial and continued during the Chronic Respiratory Effects of Early Childhood Exposure to Respirable Particulate Matter (CRECER) cohort study. In RESPIRE, early stove households received a chimney woodstove at the beginning of the 18-month trial, and delayed stove households received a stove at trial completion. Personal exposure to wood smoke was assessed with exhaled breath carbon monoxide (CO) and personal CO tubes. Change in lung function between intervention groups and as a function of wood smoke exposure was assessed using random effects models. Of 306 women participating in both studies, acceptable spirometry was collected in 129 early stove and 136 delayed stove households (n = 265), with a mean follow-up of 5.6 years. Despite reduced wood smoke exposures in early stove households, there were no significant differences in any of the measured spirometric variables during the study period (FEV1, FVC, FEV1/FVC ratio, and annual change) after adjustment for confounding. In these young Guatemalan women, there was no association between lung function and early randomization to a chimney stove or personal wood smoke exposure. Future stove intervention trials should incorporate cleaner stoves, longer follow-up, or potentially susceptible groups to identify meaningful differences in lung function.

  18. Quantitative Guidance for Stove Usage and Performance to Achieve Health and Environmental Targets.

    PubMed

    Johnson, Michael A; Chiang, Ranyee A

    2015-08-01

    Displacing the use of polluting and inefficient cookstoves in developing countries is necessary to achieve the potential health and environmental benefits sought through clean cooking solutions. Yet little quantitative context has been provided on how much displacement of traditional technologies is needed to achieve targets for household air pollutant concentrations or fuel savings. This paper provides instructive guidance on the usage of cooking technologies required to achieve health and environmental improvements. We evaluated different scenarios of displacement of traditional stoves with use of higher performing technologies. The air quality and fuel consumption impacts were estimated for these scenarios using a single-zone box model of indoor air quality and ratios of thermal efficiency. Stove performance and usage should be considered together, as lower performing stoves can result in similar or greater benefits than a higher performing stove if the lower performing stove has considerably higher displacement of the baseline stove. Based on the indoor air quality model, there are multiple performance-usage scenarios for achieving modest indoor air quality improvements. To meet World Health Organization guidance levels, however, three-stone fire and basic charcoal stove usage must be nearly eliminated to achieve the particulate matter target (< 1-3 hr/week), and substantially limited to meet the carbon monoxide guideline (< 7-9 hr/week). Moderate health gains may be achieved with various performance-usage scenarios. The greatest benefits are estimated to be achieved by near-complete displacement of traditional stoves with clean technologies, emphasizing the need to shift in the long term to near exclusive use of clean fuels and stoves. The performance-usage scenarios are also provided as a tool to guide technology selection and prioritize behavior change opportunities to maximize impact.

  19. Biomass conservation potential of pottery/ceramic lined Mamta Stove: An improved stove promoted under National Programme on Improved Cookstoves in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, R.; Yadla, V.L.

    1995-10-01

    To combat biomass scarcity and ensure a cleaner cooking environment with less drudgery, among other things, a variety of improved stoves are promoted under National Programme on Improved Cookstoves (NPIC). Mamta Stove (MS) is one among such improved stoves. An indepth study was undertaken covering a sample of twenty-five rural families with the primary objective of assessing fuel saving potential of MS under field conditions through Kitchen Performance Test (KPT). Conventional stove (CS) used in almost all the families was shielded horse-shoe shaped stove with a negligible proportion using three stone open fire. Nearly 88% depended only on zero privatemore » cost fuels. The mean number of persons for whom the stoves were used on the days of field measurements in case of CS and MS were 5.6 and 5.7 respectively with an SD of 1.16 and standard adult equivalent (SAE) was approximately 4. Cooking pots included a concave roasting pan, a deep frying pan and flat bottomed pots. The mean daily fuel consumption on CS and MS were estimated to be 4.88 kg and 3.75 kg respective, thereby, resulting in fuel saving to the tune of 24% on MS. The paper discusses at length the design features of CS and MS, meal pattern, cooking habits, need for user training, consumerism in the area of cooking and stove technology, economics of switching over to MS and policy implications of commercialization of hitherto subsidized stove program. Further, salient characteristics of high and low cooking fuel consumers on MS are presented to bring to limelight their profile.« less

  20. Wood Stove Pollution in the Developed World: A Case to Raise Awareness Among Pediatricians.

    PubMed

    Rokoff, Lisa B; Koutrakis, Petros; Garshick, Eric; Karagas, Margaret R; Oken, Emily; Gold, Diane R; Fleisch, Abby F

    2017-06-01

    Use of wood for residential heating is regaining popularity in developed countries. Currently, over 11 million US homes are heated with a wood stove. Although wood stoves reduce heating costs, wood smoke may adversely impact child health through the emission of gaseous and particulate air pollutants. Our purpose is to raise awareness of this environmental health issue among pediatricians. To summarize the state of the science, we performed a narrative review of articles published in PubMed and Web of Science. We identified 36 studies in developed countries that reported associations of household wood stove use and/or community wood smoke exposure with pediatric health outcomes. Studies primarily investigated respiratory outcomes, with no evaluation of cardiometabolic or neurocognitive health. Studies found community wood smoke exposure to be consistently associated with adverse pediatric respiratory health. Household wood stove use was less consistently associated with respiratory outcomes. However, studies of household wood stoves always relied on participant self-report of wood stove use, while studies of community wood smoke generally assessed air pollution exposure directly and more precisely in larger study populations. In most studies, important potential confounders, such as markers of socioeconomic status, were unaccounted for and may have biased results. We conclude that studies with improved exposure assessment, that measure and account for confounding, and that consider non-respiratory outcomes are needed. While awaiting additional data, pediatricians can refer patients to precautionary measures recommended by the US Environmental Protection Agency (EPA) to mitigate exposure. These include replacing old appliances with EPA-certified stoves, properly maintaining the stove, and using only dry, well-seasoned wood. In addition, several studies have shown mechanical air filters to effectively reduce wood stove pollution exposure in affected homes and communities. Copyright © 2017 Mosby, Inc. All rights reserved.

  1. Wood Stove Pollution in the Developed World: A Case to Raise Awareness Among Pediatricians

    PubMed Central

    Rokoff, Lisa B.; Koutrakis, Petros; Garshick, Eric; Karagas, Margaret R.; Oken, Emily; Gold, Diane R.; Fleisch, Abby F.

    2017-01-01

    Use of wood for residential heating is regaining popularity in developed countries. Currently, over 11 million US homes are heated with a wood stove. Although wood stoves reduce heating costs, wood smoke may adversely impact child health through the emission of gaseous and particulate air pollutants. Our purpose is to raise awareness of this environmental health issue among pediatricians. To summarize the state of the science, we performed a narrative review of articles published in PubMed and Web of Science. We identified 36 studies in developed countries that reported associations of household wood stove use and/or community wood smoke exposure with pediatric health outcomes. Studies primarily investigated respiratory outcomes, with no evaluation of cardiometabolic or neurocognitive health. Studies found community wood smoke exposure to be consistently associated with adverse pediatric respiratory health. Household wood stove use was less consistently associated with respiratory outcomes. However, studies of household wood stoves always relied on participant self-report of wood stove use, while studies of community wood smoke generally assessed air pollution exposure directly and more precisely in larger study populations. In most studies, important potential confounders, such as markers of socioeconomic status, were unaccounted for and may have biased results. We conclude that studies with improved exposure assessment, that measure and account for confounding, and that consider non-respiratory outcomes are needed. While awaiting additional data, pediatricians can refer patients to precautionary measures recommended by the US Environmental Protection Agency (EPA) to mitigate exposure. These include replacing old appliances with EPA-certified stoves, properly maintaining the stove, and using only dry, well-seasoned wood. In addition, several studies have shown mechanical air filters to effectively reduce wood stove pollution exposure in affected homes and communities. PMID:28583817

  2. Characterization of fine and carbonaceous particles emissions from pelletized biomass-coal blends combustion: Implications on residential crop residue utilization in China

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan

    2016-09-01

    Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.

  3. Fuel efficient stoves for the poorest two billion

    NASA Astrophysics Data System (ADS)

    Gadgil, Ashok

    2012-03-01

    About 2 billion people cook their daily meals on generally inefficient, polluting, biomass cookstoves. The fuels include twigs and leaves, agricultural waste, animal dung, firewood, and charcoal. Exposure to resulting smoke leads to acute respiratory illness, and cancers, particularly among women cooks, and their infant children near them. Resulting annual mortality estimate is almost 2 million deaths, higher than that from malaria or tuberculosis. There is a large diversity of cooking methods (baking, boiling, long simmers, brazing and roasting), and a diversity of pot shapes and sizes in which the cooking is undertaken. Fuel-efficiency and emissions depend on the tending of the fire (and thermal power), type of fuel, stove characteristics, and fit of the pot to the stove. Thus, no one perfect fuel-efficient low-emitting stove can suit all users. Affordability imposes a further severe constraint on the stove design. For various economic strata within the users, a variety of stove designs may be appropriate and affordable. In some regions, biomass is harvested non-renewably for cooking fuel. There is also increasing evidence that black carbon emitted from stoves is a significant contributor to atmospheric forcing. Thus improved biomass stoves can also help mitigate global climate change. The speaker will describe specific work undertaken to design, develop, test, and disseminate affordable fuel-efficient stoves for internally displaced persons (IDPs) of Darfur, Sudan, where the IDPs face hardship, humiliation, hunger, and risk of sexual assault owing to their dependence on local biomass for cooking their meals.

  4. Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, Kayje; Han, Tae Won; Granderson, Jessica

    2011-06-01

    In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified formmore » of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.« less

  5. Fuel Efficient Stoves for Darfur Camps of Internally DisplacedPersons - Report of Field Trip to North and South Darfur, Nov. 16 -Dec.17, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitsky, Christina; Gadgil, Ashok; Jacobs, Mark

    Approximately 2.2 million internally displaced persons (''IDPs'') in Darfur are living in dense camps scattered in arid areas with low fuelwood productivity. Unsustainable harvesting of fuelwood by the IDPs has created ever increasing zones of denudation, that now (in November 2005) have reached several kilometers from the camp boundaries. Leaving the safety of the camps to fetch fuelwood from farther and farther away imposes great risk and hardship on the IDP women. Three different metal fuel efficient stove (''FES'') designs were tested in Darfur IDP camps for their suitability to substantially reduce the fuelwood needs of IDPs. The mud-and-dung ''ITDG''more » stoves being promoted under the current FES program were also examined and tested. A modified design of the ITDG mud-and-dung stove, ''Avi'', was developed, built and tested. Systematic informal surveys of IDP households were undertaken in North and South Darfur to understand the household parameters related to family size, food, fuel, cooking habits, cooking pots, expenditure on fuel, and preferences related to alternative ways to spend time/money if fuel could be saved. Surveys found that a significant fraction of families are missing meals for lack of fuel (50% in South Darfur, and 90% in the North Darfur camps visited by the mission). About 60% of women in South Darfur, and about 90% of women in North Darfur camps purchase fuelwood. Selling some of the food rations to purchase fuel to cook meals was significant (40%) in South Darfur and has become common (80%) in North Darfur. The LBNL mission found that two of the metal stoves and the mud-and-dung Avi can significantly reduce fuelwood consumption using the same fuel, pot, cooking methods, and food ingredients used by Darfur IDPs. The most suitable design for Darfur conditions would be a modified ''Tara'' stove. With training of the cooks in tending the fire, this stove can save 50% fuel for the IDPs. The stove costs less than $10 (US) to produce in Darfur, and saves fuelwood worth $160 annually at local market prices. For programmatic and administrative reasons, the LBNL mission do not recommend a mud-and-dung stove, for which control of quality and dimensional accuracy is expensive and cumbersome to administer, particularly in a rapid large rollout effort. A light metal stove, on the other hand, can be rapidly produced in large numbers locally in Darfur, with good quality control exercised on the material and dimensions of the stoves right at the workshop where it is produced. LBNL mission also recommends immediate trials of 50 Tara stoves in a pilot technical rollout, 500 Tara stoves in a pilot social rollout, in parallel with a technical effort to modify the Tara design to make it better suited for Darfur camp conditions. The mission also recommends a program for manufacturing, disseminating the metal stoves, and educating the IDPs in fuel-efficient cooking practices. Monitoring of the stove quality, dissemination effort and training should be an integral part of the program, with systematic summaries planned with 10,000, 50,000 and 100,000 stoves have been disseminated. In the above pilot rollouts as well as in the final implementation, it is important to continue to pay attention to training of the cooks in tending the cooking fire in the stoves, and offer continued social reinforcement to this training (e.g., through periodic competitions to cook normal meals with the least fuelwood use.)« less

  6. On the possibilities of reduction in emission caused by home tile stoves in Cracow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szewczyk, W.

    1995-12-31

    The coal-fired tile stoves are still very popular in Poland. The estimated total number of such home stoves operated in Cracow reaches ca. 100 000. Operation of these stoves during the heating season belongs to the most significant sources of air pollution. Type and scale of emission of the most important pollutants, caused by coal combustion in home stoves in Cracow has been determined basing upon the investigations carried out at the laboratory of the Department of Power Engineering Machines and Devices, Academy of Mining and Metallurgy, Cracow, Poland within the American-Polish Program of Elimination of Low Emission Sources inmore » Cracow. Further experiments included in this Program allowed to estimate the attainable efficiency of home tile stoves and possible reduction in pollutant emission resulting from their operation. A short discussion of these data and capacities is presented in this lecture.« less

  7. Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China.

    PubMed

    Liu, Yafei; Zhang, You; Li, Chuang; Bai, Yun; Zhang, Daoming; Xue, Chunyu; Liu, Guangqing

    2018-05-15

    Pollutant emissions from incomplete combustion of raw coal in low-efficiency residential heating stoves greatly contribute to winter haze in China. Semi-coke coals and improved heating stoves are expected to lower air pollutant emissions and are vigorously promoted by the Chinese government in many national and local plans. In this study, the thermal performance and air pollutant emissions from semi-coke combustion in improved heating stoves were measured in a pilot rural county and compared to the baseline of burning raw coal to quantify the mitigation potential of air pollutant emissions. A total of five stove-fuel combinations were tested, and 27 samples from 27 different volunteered households were obtained. The heating efficiency of improved stoves increased, but fuel consumption appeared higher with more useful energy output compared to traditional stoves. The emission factors of PM 2.5 , SO 2 , and CO 2 of semi-coke burning in specified improved stoves were lower than the baseline of burning raw coal chunk, but no significant NOx and CO decreases were observed. The total amount of PM 2.5 and SO 2 emissions per household in one heating season was lower, but CO, CO 2 , and NOx increased when semi-coke coal and specified improved stoves were deployed. Most differences were not statistically significant due to the limited samples and large variation, indicating that further evaluation would be needed to make conclusions that could be considered for policy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations

    PubMed Central

    Paulin, L. M.; Diette, G. B.; Scott, M.; McCormack, M. C.; Matsui, E. C.; Curtin-Brosnan, J.; Williams, D. L.; Kidd-Taylor, A.; Shea, M.; Breysse, P. N.; Hansel, N. N.

    2016-01-01

    Nitrogen dioxide (NO2), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high-efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre-intervention and at 1 week and 3 months post-intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow-up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P < 0.01) and bedroom (22%, P = 0.02), but at 3 months, a significant reduction was seen only in the kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes. PMID:24329966

  9. Seasonal fuel consumption, stoves, and end-uses in rural households of the far-western development region of Nepal

    NASA Astrophysics Data System (ADS)

    Lam, Nicholas L.; Upadhyay, Basudev; Maharjan, Shovana; Jagoe, Kirstie; Weyant, Cheryl L.; Thompson, Ryan; Uprety, Sital; Johnson, Michael A.; Bond, Tami C.

    2017-12-01

    Understanding how fuels and stoves are used to meet a diversity of household needs is an important step in addressing the factors leading to continued reliance on polluting devices, and thereby improving household energy programs. In Nepal and many other countries dependent on solid fuel, efforts to mitigate the impacts of residential solid fuel use have emphasized cooking while focusing less on other solid fuel dependent end-uses. We employed a four-season fuel assessment in a cohort of 110 households residing in two elevation regions of the Far-Western Development Region (Province 7) of Nepal. Household interviews and direct fuel weights were used to assess seasonality in fuel consumption and its association with stoves that met cooking and non-cooking needs. Per-capita fuel consumption in winter was twice that of other measured seasons, on average. This winter increase was attributed to greater prevalence of use and fuel consumption by supplemental stoves, not the main cooking stove. End-use profiles showed that fuel was used in supplemental stoves to meet the majority of non-meal needs in the home, notably water heating and preparation of animal food. This emphasis on fuels, stoves, and the satisfaction of energy needs—rather than just stoves or fuels—leads to a better understanding of the factors leading to device and fuel choice within households.

  10. Using exhaled carbon monoxide and carboxyhemoglobin to evaluate the effectiveness of a chimney stove model in Peru.

    PubMed

    Eppler, Adam R; Fitzgerald, Christopher; Dorner, Stephen C; Aguilar-Villalobos, Manuel; Rathbun, Stephen L; Adetona, Olorunfemi; Naeher, Luke P

    2013-01-01

    Measurement of biological indicators of physiological change may be useful in evaluating the effectiveness of stove models, which are intended to reduce indoor smoke exposure and potential health effects. We examined changes in exhaled carbon monoxide (CO), percentage carboxy-hemoglobin, and total hemoglobin in response to the installation of a chimney stove model by the Juntos National Program in Huayatan, Peru in 2008. Biomarkers were measured in a convenience sample comprising 35 women who met requirements for participation, and were measured before and three weeks after installation of a chimney stove. The relationships between exposure to indoor smoke and biomarker measurements were also analyzed using simple linear regression models. Exhaled CO reduced from 6.71 ppm (95% CI 5.84-7.71) to 3.14 ppm (95% CI 2.77-3.66) three weeks after stove installation (P < 0.001) while % COHb reduced from 1.76% (95% CI 1.62-1.91) to 1.18% (95% CI 1.12-1.25; P < 0.001). Changes in exhaled CO and % COHb from pre- to post-chimney stove installation were not correlated with corresponding changes in exposure to CO and PM2.5 even though the exposures also reduced after stove installation. Exhaled CO and % COHb both showed improvement with reduction in concentration after the installation of the chimney cook stoves, indicating a positive physiological response subsequent to the intervention.

  11. SOLID-FUEL HOUSEHOLD COOK STOVES: CHARACTERIZATION OF PERFORMANCE AND EMISSIONS

    EPA Science Inventory

    Previous studies have shown that some fuel-efficient solid-fuel cook stoves have had worse pollutant emissions of PICs (products of incomplete combustion) than traditional cooking methods. Better stoves have been developed to reduce emissions, but test results have not previously...

  12. Temperature dataloggers as stove use monitors (SUMs): Field methods and signal analysis

    PubMed Central

    Ruiz-Mercado, Ilse; Canuz, Eduardo; Smith, Kirk R.

    2013-01-01

    We report the field methodology of a 32-month monitoring study with temperature dataloggers as Stove Use Monitors (SUMs) to quantify usage of biomass cookstoves in 80 households of rural Guatemala. The SUMs were deployed in two stoves types: a well-operating chimney cookstove and the traditional open-cookfire. We recorded a total of 31,112 days from all chimney cookstoves, with a 10% data loss rate. To count meals and determine daily use of the stoves we implemented a peak selection algorithm based on the instantaneous derivatives and the statistical long-term behavior of the stove and ambient temperature signals. Positive peaks with onset and decay slopes exceeding predefined thresholds were identified as “fueling events”, the minimum unit of stove use. Adjacent fueling events detected within a fixed-time window were clustered in single “cooking events” or “meals”. The observed means of the population usage were: 89.4% days in use from all cookstoves and days monitored, 2.44 meals per day and 2.98 fueling events. We found that at this study site a single temperature threshold from the annual distribution of daily ambient temperatures was sufficient to differentiate days of use with 0.97 sensitivity and 0.95 specificity compared to the peak selection algorithm. With adequate placement, standardized data collection protocols and careful data management the SUMs can provide objective stove-use data with resolution, accuracy and level of detail not possible before. The SUMs enable unobtrusive monitoring of stove-use behavior and its systematic evaluation with stove performance parameters of air pollution, fuel consumption and climate-altering emissions. PMID:25225456

  13. Effective height of chimney for biomass cook stove simulated by computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Faisal; Setiawan, A.; Wusnah; Khairil; Luthfi

    2018-02-01

    This paper presents the results of numerical modelling of temperature distribution and flow pattern in a biomass cooking stove using CFD simulation. The biomass stove has been designed to suite the household cooking process. The stove consists of two pots. The first is the main pot located on the top of the combustion chamber where the heat from the combustion process is directly received. The second pot absorbs the heat from the exhaust gas. A chimney installed at the end of the stove releases the exhaust gas to the ambient air. During the tests, the height of chimney was varied to find the highest temperatures at both pots. Results showed that the height of the chimney at the highest temperatures of the pots is 1.65 m. This chimney height was validated by developing a model for computational fluid dynamics. Both experimental and simulations results show a good agreement and help in tune-fining the design of biomass cooking stove.

  14. Fabrication of a biomass stove and conversion of electricity from waste heat using TEG

    NASA Astrophysics Data System (ADS)

    Osmani, Imteaz; Haque, Md. Mahmoodul; Hossain, Md. Asad; Haque, Md. Mominul; Bhuiyan, Humayun Kabir

    2017-12-01

    Replacing of the old inefficient open stove with the efficient or more efficient one is an important challenge for the developing countries. Adding thermoelectric generators increases the efficiency of the stove and can provide electricity that satisfies the basic needs: light, phones and other electronic. Various fuels have been used for measuring the performance of the stove and also by incorporating TEG with stove its performance was also measured. Different data were obtained and compared from the burning of various fuels and by changing the dimensions of the sidewalls of the stove. TEG setup has been discussed briefly in t he experimental setup section and scope of using switching electric regulator for stabilizing the voltage has also been discusse d. Through the thermal contact resistance and heat transfer through module the performance of the generator is measured. A study of power measurement is done by the practical experiment where the TEG has produced up to 4.6W.

  15. Seasonal variation of indoor and outdoor air quality of nitrogen dioxide in homes with gas and electric stoves.

    PubMed

    Dėdelė, Audrius; Miškinytė, Auksė

    2016-09-01

    Indoor air pollution significantly influences personal exposure to air pollution and increases health risks. Nitrogen dioxide (NO2) is one of the major air pollutants, and therefore it is important to properly determine indoor concentration of this pollutant considering the fact that people spend most of their time inside. The aim of this study was to assess indoor and outdoor concentration of NO2 during each season; for this purpose, passive sampling was applied. We analyzed homes with gas and electric stoves to determine and compare the concentrations of NO2 in kitchen, living room, and bedroom microenvironments (MEs). The accuracy of passive sampling was evaluated by comparing the sampling results with the data from air quality monitoring stations. The highest indoor concentration of NO2 was observed in kitchen ME during the winter period, the median concentration being 28.4 μg m(-3). Indoor NO2 levels in homes with gas stoves were higher than outdoor levels during all seasons. The concentration of NO2 was by 2.5 times higher in kitchen MEs with gas stoves than with electric stoves. This study showed that the concentration of NO2 in indoor MEs mainly depended on the stove type used in the kitchen. Homes with gas stoves had significantly higher levels of NO2 in all indoor MEs compared with homes where electric stoves were used.

  16. Combustion performance of cellulosic biomass in a gasifier-based cookstove

    NASA Astrophysics Data System (ADS)

    Sulaiman, Shaharin A.; Romli, Raffisyazana

    2012-06-01

    Depletion in fossil fuel and increase in the world population may change the trend in future kitchens in households. Cooking with LPG fuel may one day become impossible and households would have to consider alternatives such as electric stoves. One other solution to this problem is through the use of biomass cook stoves. However, traditional cook stoves, predominantly used in the households, are not efficient and its utilizations for domestic cooking have been a major contributor to the ill effects related in respiratory and other health problem. Improved cook stoves programs implemented in the developing world attempt to address these problems. Biomass gasification appears to have significant potential in Asia for domestic cooking applications. Gasifier-based cook stoves are fuel efficient in comparison to traditional cook stove. The objective of this paper is to study the performance of various type of cellulosic biomass in a gasifier-based cook stove. The biomass considered in this study are oil palm fronds, dried leaves, wood sticks, coconut shells, bagasse, charcoal, and saw dust. The samples are analyzed in order to study their chemical properties. The thermochemical properties of the biomass were characterized. The performance of the each of the samples is studied by observing the time taken to boil water. It is found that oil palm fronds are the best type of biomass for the gasifer cook stove. It is also concluded that the higher the carbon content and the calorific value in a biomass, the lesser the time taken to boil the water.

  17. FIELD PERFORMANCE OF WOODBURNING STOVES IN CRESTED BUTTE DURING THE 1991-92 HEATING SEASON

    EPA Science Inventory

    The report gives results of an evaluation of the 1991-92 field performance of 11 woodburning stoves in and around Crested Butte, CO. Measurements included particulate matter (PM), carbon monoxide, total unburned hydrocarbons, and weekly average burn rates. The monitored stoves in...

  18. Biogas Cook Stoves for Healthy and Sustainable Diets? A Case Study in Southern India.

    PubMed

    Anderman, Tal Lee; DeFries, Ruth S; Wood, Stephen A; Remans, Roseline; Ahuja, Richie; Ulla, Shujayath E

    2015-01-01

    Alternative cook stoves that replace solid fuels with cleaner energy sources, such as biogas, are gaining popularity in low-income settings across Asia, Africa, and South America. Published research on these technologies focuses on their potential to reduce indoor air pollution and improve respiratory health. Effects on other cooking-related aspects, such as diets and women's time management, are less understood. In this study, in southern India, we investigate if using biogas cook stoves alters household diets and women's time management. We compare treatment households who are supplied with a biogas cook stove with comparison households who do not have access to these stoves, while controlling for several socio-economic factors. We find that diets of treatment households are more diverse than diets of comparison households. In addition, women from treatment households spend on average 40 min less cooking and 70 min less collecting firewood per day than women in comparison households. This study illustrates that alongside known benefits for respiratory health, using alternative cook stoves may benefit household diets and free up women's time. To inform development investments and ensure these co-benefits, we argue that multiple dimensions of sustainability should be considered in evaluating the impact of alternative cook stoves.

  19. Pilot study to reduce emissions, improve health, and offset BC emissions through the distribution of improved cook stoves in Nepal

    NASA Astrophysics Data System (ADS)

    Banmali Pradhan, B.; Panday, A. K.; Surapipith, V.

    2013-12-01

    In most developing countries, wood and other biomass fuels are still the primary source of energy for the majority of the people, particularly the poor. It is estimated that cook stoves account for approximately 20% of global black carbon emissions. In Nepal 87% of energy is supplied from traditional biomass and 75% of households still depend on biomass as a cooking fuel. The substitution of traditional cook stoves with improved cook stoves provides an important way to reduce black carbon emissions. In 2013 the International Centre for Integrated Mountain Development (ICIMOD) has commenced a pilot study that both examines ways to effectively disseminate improved cookstoves across remote rural mountain regions, and also quantifies the resulting changes in emissions, air quality and health. The selected study area is in Bajrabarahi Village in Makawanpur district, to the southwest of Kathmandu. The study area consists of around 1600 households, which are divided into control groups and groups where the cook stove intervention is taking place. The study complements the ';Clean Cooking energy solution for all by 2017' announced by the Government of Nepal recently, and will provide insights to the government on ways to effectively reduce black carbon emissions from cook stoves. To make the study robust and sustainable, local women's group and a local medical institution are involved in the project right from the conceptualization stage. The study region has been chosen in part because the medical school Patan Academy of Health Sciences (PAHS) has already started a long term health assessment in the region, and has built up considerable local contacts. The local women's group is working on the modality of cook stove distribution through micro credit programmes in the village. We will distribute the best available manufactured, fan-assisted cook stoves that are expected to reduce BC emissions the most. Health assessments, emissions estimates, as well as measurements of indoor and outdoor air quality will be done before and after the stoves are disseminated. Having obtained funds for the purchase of improved cook stoves from Nepal's diesel automobile sector, we compare the emissions of black carbon from the sponsoring diesel vehicles with the reduction in black carbon emissions from the sponsored improved cook stoves, thereby pioneering methods to offset black carbon emissions.

  20. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditionalmore » stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality-controlled stove and emissions equipment at levels scalable to meet global demand; and 3) global distribution through a variety of channels and partners. ARC has been instrumental in designing and improving more than 100 stove designs over the past thirty years. In the last four years, ASAT and ARC have played a key role in the production and sales of over 200,000 improved stoves in the developed and developing world. The ARC-designed emissions equipment is currently used by researchers in laboratories and field studies on five continents. During Phase I of the DOE STTR grant, ASAT and ARC worked together to apply their wealth of product development experience towards creating the next generation of improved cookstoves and emissions monitoring equipment. Highlights of Phase I for the biomass cookstove project include 1) the development of several new stove technologies that reached the DOE 50/90 benchmark; 2) fabrication of new stove prototypes by ASAT’s manufacturing partner, Shengzhou Stove Manufacturing (SSM); 3) field testing of prototype stoves with consumers in Puerto Rico and the US; and 4) the selection of three stove prototypes for further development and commercialization during Phase II. Highlights of Phase I for the emissions monitoring equipment project include: 1) creation of a new emissions monitoring equipment product, the Laboratory Emissions Monitoring System (LEMS 2) the addition of gravimetric PM measurements to the stove testing systems to meet International Standards Organization criteria; 3) the addition of a CO{sub 2} sensor and wireless 3G capability to the IAP Meter; and 4) and the improvement of sensors and signal quality on all systems. Twelve Regional Testing and Knowledge Centers purchased this equipment during the Phase I project period.« less

  1. 'Oorja' in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households.

    PubMed

    Thurber, Mark C; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2014-04-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 "Oorja" stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of "agricultural waste" to make pellets. The business orientation of First Energy allowed the company to pivot rapidly to commercial customers when the household market encountered difficulties. The business background of managers also facilitated the initial marketing and distribution efforts that allowed the stove distribution to reach scale.

  2. Air pollution-related health and climate benefits of clean cookstove programs in Mozambique

    NASA Astrophysics Data System (ADS)

    Anenberg, Susan C.; Henze, Daven K.; Lacey, Forrest; Irfan, Ans; Kinney, Patrick; Kleiman, Gary; Pillarisetti, Ajay

    2017-02-01

    Approximately 95% of households in Mozambique burn solid fuels for cooking, contributing to elevated indoor and outdoor fine particulate matter (PM2.5) concentrations and subsequent health and climate impacts. Little is known about the potential health and climate benefits of various approaches for expanding the use of cleaner stoves and fuels in Mozambique. We use state-of-the-science methods to provide a first-order estimation of potential air pollution-related health and climate benefits of four illustrative scenarios in which traditional cooking fires and stoves are displaced by cleaner and more efficient technologies. For rural areas, we find that a 10% increase in the number of households using forced draft wood-burning stoves could achieve >2.5 times more health benefits from reduced PM2.5 exposure (200 avoided premature deaths and 14 000 avoided disability adjusted life years, DALYs, over a three-year project lifetime) compared to natural draft stoves in the same households, assuming 70% of households use the new technology for both cases. Expanding use of LPG stoves to 10% of households in five major cities is estimated to avoid 160 premature deaths and 11 000 DALYs from reduced PM2.5 exposure for a three-year intervention, assuming 60% of households use the new stove. Advanced charcoal stoves would achieve ∽80% of the PM2.5-related health benefits of LPG stoves. Approximately 2%-5% additional health benefits would result from reduced ambient PM2.5, depending on the scenario. Although climate impacts are uncertain, we estimate that all scenarios would reduce expected climate change-related temperature increases from continued solid fuel use by 4%-6% over the next century. All results are based on an assumed adjustment factor of 0.8 to convert from laboratory-based emission reduction measurements to exposure reductions, which could be optimistic in reality given potential for continued use of the traditional stove. We conclude that cleaner cooking stoves in Mozambique can achieve health and climate benefits, though both are uncertain and local information about baseline and intervention PM2.5 exposure levels are needed.

  3. Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations

    NASA Astrophysics Data System (ADS)

    Garland, Charity; Delapena, Samantha; Prasad, Rajendra; L'Orange, Christian; Alexander, Donee; Johnson, Michael

    2017-11-01

    Black carbon (BC) emissions from household cookstoves consuming solid fuel produce approximately 25 percent of total anthropogenic BC emissions. The short atmospheric lifetime of BC means that reducing BC emissions would result in a faster climate response than mitigating CO2 and other long-lived greenhouse gases. This study presents the results of optical BC measurements of two new cookstove emissions field assessments and 17 archived cookstove datasets. BC was determined from attenuation of 880 nm light, which is strongly absorbed by BC, and linearly related between 1 and 125 attenuation units. A relationship was experimentally determined correlating BC mass deposition on quartz filters determined via thermal optical analysis (TOA) and on PTFE and quartz filters using transmissometry, yielding an attenuation cross-section (σATN) for both filter media types. σATN relates TOA measurements to optical measurements on PTFE and quartz (σATN(PTFE) = 13.7 cm-2 μg, R2 = 0.87, σATN(Quartz) = 15.6 cm-2 μg, R2 = 0.87). These filter-specific σATN, optical measurements of archived filters were used to determine BC emission factors and the fraction of particulate matter (PM) in the form of black carbon (BC/PM). The 19 stoves measured fell into five stove classes; simple wood, rocket, advanced biomass, simple charcoal, and advanced charcoal. Advanced biomass stoves include forced- and natural-draft gasifiers which use wood or biomass pellets as fuel. Of these classes, the simple wood and rocket stoves demonstrated the highest median BC emission factors, ranging from 0.051 to 0.14 g MJ-1. The lowest BC emission factors were seen in charcoal stoves, which corresponds to the generally low PM emission factors observed during charcoal combustion, ranging from 0.0084 to 0.014 g MJ-1. The advanced biomass stoves generally showed an improvement in BC emissions factors compared to simple wood and rocket stoves, ranging from 0.0031 to 0.071 g MJ-1. BC/PM ratios were highest for the advanced and rocket stoves. Potential relative climate impacts were estimated by converting aerosol emissions to CO2-equivalent, and suggest that some advanced stove/fuel combinations could provide substantial climate benefits.

  4. ‘Oorja’ in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households

    PubMed Central

    Thurber, Mark C.; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2015-01-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 “Oorja” stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of “agricultural waste” to make pellets. The business orientation of First Energy allowed the company to pivot rapidly to commercial customers when the household market encountered difficulties. The business background of managers also facilitated the initial marketing and distribution efforts that allowed the stove distribution to reach scale. PMID:25814822

  5. Clinical study on the effect of infrared radiation of a tiled stove on patients with hand osteoarthritis.

    PubMed

    Stange-Rezende, L; Stamm, T A; Schiffert, T; Sahinbegovic, E; Gaiger, A; Smolen, J; Machold, K P

    2006-01-01

    To explore the effect of infrared radiation of a tiled stove on patients with hand osteoarthritis (OA). A randomized controlled crossover study was performed with 45 patients with hand OA. This sample was randomly assigned to two groups: group A [first 3 hours spent three times a week during 3 weeks in a heated tiled stove room ('Stove Period') and after 2 weeks without treatment this group was observed for another 3 weeks ('Control Period')]; and group B (first assigned to the control period and the stove period following the treatment-free period). Assessments included the visual analogue scale (VAS) for general pain, pain in the hands, and global hand function, grip strength, the Moberg Picking-up Test (MPUT), the Australian/Canadian Osteoarthritis Hand Index (AUSCAN), and the Medical Outcomes Study (MOS) 36-item Short-Form Health Status Survey (SF-36). Fourteen (31%) patients improved on the VAS for general pain at the end of the tiled stove period as compared to 10 patients (22%) during the control period (p = 0.314, chi2-test). The AUSCAN pain domain showed a significant improvement after the tiled stove period (p = 0.034). Others pain parameters analysed (VAS for pain in hands and SF-36 bodily pain) showed moderate but not significant improvement (p = 0.682 and p = 0.237, respectively) compared to the control period. This study did not prove positive effects of the tiled stove exposure, although the numerical improvement in all pain measures suggests some possible positive effects on this symptom of hand OA.

  6. Validation of numerical model for cook stove using Reynolds averaged Navier-Stokes based solver

    NASA Astrophysics Data System (ADS)

    Islam, Md. Moinul; Hasan, Md. Abdullah Al; Rahman, Md. Mominur; Rahaman, Md. Mashiur

    2017-12-01

    Biomass fired cook stoves, for many years, have been the main cooking appliance for the rural people of developing countries. Several researches have been carried out to the find efficient stoves. In the present study, numerical model of an improved household cook stove is developed to analyze the heat transfer and flow behavior of gas during operation. The numerical model is validated with the experimental results. Computation of the numerical model is executed the using non-premixed combustion model. Reynold's averaged Navier-Stokes (RaNS) equation along with the κ - ɛ model governed the turbulent flow associated within the computed domain. The computational results are in well agreement with the experiment. Developed numerical model can be used to predict the effect of different biomasses on the efficiency of the cook stove.

  7. A health intervention or a kitchen appliance? Household costs and benefits of a cleaner burning biomass-fuelled cookstove in Malawi.

    PubMed

    Cundale, Katie; Thomas, Ranjeeta; Malava, Jullita Kenala; Havens, Deborah; Mortimer, Kevin; Conteh, Lesong

    2017-06-01

    Pneumonia is the leading cause of mortality for children under five years in sub-Saharan Africa. Household air pollution has been found to increase risk of pneumonia, especially due to exposure from dirty burning biomass fuels. It has been suggested that advanced stoves, which burn fuel more efficiently and reduce smoke emissions, may help to reduce household air pollution in poor, rural settings. This qualitative study aims to provide an insight into the household costs and perceived benefits from use of the stove in Malawi. It was conducted alongside The Cooking and Pneumonia Study (CAPS), the largest village cluster-level randomised controlled trial of an advanced combustion cookstove intervention to prevent pneumonia in children under five to date. In 2015, using 100 semi-structured interviews this study assessed household time use and perceptions of the stove from both control and intervention participants taking part in the CAPS trial in Chilumba. Household direct and indirect costs associated with the intervention were calculated. Users overwhelming liked using the stove. The main reported benefits were reduced cooking times and reduced fuel consumption. In most interviews, the health benefits were not initially identified as advantages of the stove, although when prompted, respondents stated that reduced smoke emissions contributed to a reduction in respiratory symptoms. The cost of the stove was much higher than most respondents said they would be willing to pay. The stoves were not primarily seen as health products. Perceptions of limited impact on health was subsequently supported by the CAPS trial data which showed no significant effect on pneumonia. While the findings are encouraging from the perspective of acceptability, without innovative financing mechanisms, general uptake and sustained use of the stove may not be possible in this setting. The findings also raise the question of whether the stoves should be marketed and championed as 'health interventions'. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. The impact of wood stove technology upgrades on indoor residential air quality

    NASA Astrophysics Data System (ADS)

    Allen, Ryan W.; Leckie, Sara; Millar, Gail; Brauer, Michael

    2009-12-01

    Fine particulate matter (PM 2.5) air pollution has been linked to adverse health impacts, and combustion sources including residential wood-burning may play an important role in some regions. Recent evidence suggests that indoor air quality may improve in homes where older, non-certified wood stoves are exchanged for lower emissions EPA-certified alternatives. As part of a wood stove exchange program in northern British Columbia, Canada, we sampled outdoor and indoor air at 15 homes during 6-day sampling sessions both before and after non-certified wood stoves were exchanged. During each sampling session two consecutive 3-day PM 2.5 samples were collected onto Teflon filters, which were weighed and analyzed for the wood smoke tracer levoglucosan. Residential PM 2.5 infiltration efficiencies ( Finf) were estimated from continuous light scattering measurements made with nephelometers, and estimates of Finf were used to calculate the outdoor- and indoor-generated contributions to indoor air. There was not a consistent relationship between stove technology and outdoor or indoor concentrations of PM 2.5 or levoglucosan. Mean Finf estimates were low and similar during pre- and post-exchange periods (0.32 ± 0.17 and 0.33 ± 0.17, respectively). Indoor sources contributed the majority (˜65%) of the indoor PM 2.5 concentrations, independent of stove technology, although low indoor-outdoor levoglucosan ratios (median ≤ 0.19) and low indoor PM 2.5-levoglucosan correlations ( r ≤ 0.19) suggested that wood smoke was not a major indoor PM 2.5 source in most of these homes. In summary, despite the potential for extensive wood stove exchange programs to reduce outdoor PM 2.5 concentrations in wood smoke-impacted communities, we did not find a consistent relationship between stove technology upgrades and indoor air quality improvements in homes where stoves were exchanged.

  9. Women targeted and women negated. An aspect of the environmental movement in Bangladesh.

    PubMed

    Mannan, M

    1996-05-01

    There are many ways to solve environmental problems. In this article the issue of energy consumption in Bangladesh and the rapid introduction of improved stove projects illustrates the importance of involving women in decision making that directly involves their lives. 82% of total energy consumption is based on traditional, renewable resources such as firewood, agricultural residues, tree residues, and dung. It is argued that resource depletion is related to population growth, the introduction of high yield seeds and related agricultural practices, and the lack of a sound basis for social and natural forestry. Improved stoves were introduced in order to reduce the depletion of resources. It was assumed that women would understand the value of preserving national natural resources and that energy resources for cooking were becoming scarce. The improved technology had the advantage of saving energy and saving women's time and effort in biomass and fuelwood collection. What was not considered in the decision was the design of the stove which was not adaptable to traditional cooking tools and pots and was more time consuming. The new stoves produced ash too quickly that needed to be removed before the combustion process was obstructed. The stove required straight straw or fuelwood, when available supplies were irregularly shaped. The ash residues could not be recycled, whereas potash could be used as fertilizer. Stoves required the use of a trained and sophisticated user. Stoves were expensive commodities. Women's time was obstructed because the stove needed tending and the usual chores could not be performed while food was cooking. The women in several projects rejected the stoves based on technological, cultural, and economic factors. It is argued that the environmental movement in Bangladesh conceptualized the environmental problem in economic terms but solved the problem technologically. The failure was in imposing new technology on women and in an inappropriate understanding of the situation.

  10. Safe drinking water and clean air: an experimental study evaluating the concept of combining household water treatment and indoor air improvement using the Water Disinfection Stove (WADIS).

    PubMed

    Christen, Andri; Navarro, Carlos Morante; Mäusezahl, Daniel

    2009-09-01

    Indoor air pollution and unsafe water remain two of the most important environmental risk factors for the global burden of infectious diseases. Improved stoves and household water treatment (HWT) methods represent two of the most effective interventions to fight respiratory and diarrhoeal illnesses at household level. Since new improved stoves are highly accepted and HWT methods have their drawbacks regarding sustained use, combining the two interventions in one technical solution could result in notable positive convenience and health benefits. A WAter DIsinfection Stove (WADIS) based on a Lorena-stove design with a simple flow-through boiling water-treatment system was developed and tested by a pilot experimental study in rural Bolivia. The results of a post-implementation evaluation of two WADIS and 27 Lorena-stoves indicate high social acceptance rather due to convenience gains of the stove than to perceived health improvements. The high efficacy of the WADIS-water treatment system, with a reduction of microbiological contamination load in the treated water from 87600 thermotolerant coliform colony forming units per 100mL (CFU/100mL) to zero is indicative. The WADIS concept unifies two interventions addressing two important global burdens of disease. WADIS' simple design, relying on locally available materials and low manufacturing costs (approx. 6 US) indicates potential for spontaneous diffusion and scaling up.

  11. Burns of children caused by electric stoves.

    PubMed

    Still, J; Craft-Coffman, B; Law, E; Colon-Santini, J; Grant, J

    1998-01-01

    During a 2-year period, eight patients sustained burns caused by the tipping over of electric stoves. In seven of these cases, children aged 2 to 4 years stood up on the open oven door of a stove. The stove then tipped forward, and a pot of boiling liquid on the stove spilled onto the child, who fell forward across the oven door. The general area of involvement was back and buttocks, with spattered areas elsewhere on the body. In one other case, an older child, aged 8, sat on the open oven door and was burned when a pot fell on him. The weight of the children ranged from 12.7 to 20 kilograms, with a mean of 15.2 kilograms. The 8-year old weighed 14.9 kilos. Burn size ranged from 3% to 30%, with a mean of 16.75%. All burns were second-degree and were treated by debridement and coverage with either porcine grafts or Biobrane (Dow Hickman Pharmaceuticals, Inc.). Healing was satisfactory in all cases. Hospital stay ranged from 2 to 20 days. The increase in the use of electric stove has led to a situation in which children, usually toddlers, can overbalance the stove and bring down the pots sitting on the heating elements. This represents another mechanism by which young children can be injured in the kitchen; the awareness of this should be disseminated.

  12. Understanding consumer preference and willingness to pay for improved cookstoves in Bangladesh.

    PubMed

    Rosenbaum, Julia; Derby, Elisa; Dutta, Karabi

    2015-01-01

    The USAID/WASHplus project conducted a comprehensive assessment to understand consumer needs and preferences as they relate to increasing the uptake and consistent, exclusive, and correct use of improved cookstoves (ICSs) in Bangladesh. The assessment included household ICS trials, fuel and stove use monitoring, and consumers' perceived value of and willingness to pay for ICSs. Results showed that cooks appreciated and liked the ICS, but that no models met consumer needs sufficiently to replace traditional stoves. Initially, many preferred ICSs over traditional stoves, but this preference decreased over the 3-week trial period. Complaints and suggestions for improvement fell into two general categories: those that can be addressed through fairly simple modifications to the stove design, and those more appropriately addressed through point-of-purchase consumer education and follow-up from service agents or health outreach workers. Most households using the ICS realized fuel use reductions, although these were lower than expected, partly because of continued parallel traditional stove use. When given the option to purchase the stoves at market value, only one of 105 households did so; however, a separate assessment showed that 80% of participants (12 of 15 households) preferred to keep the stove rather than receive a cash buyout at market value. This indicates that users value the ICS when acquisition barriers are removed and highlights the need for better financing options.

  13. Models to predict emissions of health-damaging pollutants and global warming contributions of residential fuel/stove combinations in China.

    PubMed

    Edwards, Rufus D; Smith, Kirk R; Zhang, Junfeng; Ma, Yuqing

    2003-01-01

    Residential energy use in developing countries has traditionally been associated with combustion devices of poor energy efficiency, which have been shown to produce substantial health-damaging pollution, contributing significantly to the global burden of disease, and greenhouse gas (GHG) emissions. Precision of these estimates in China has been hampered by limited data on stove use and fuel consumption in residences. In addition limited information is available on variability of emissions of pollutants from different stove/fuel combinations in typical use, as measurement of emission factors requires measurement of multiple chemical species in complex burn cycle tests. Such measurements are too costly and time consuming for application in conjunction with national surveys. Emissions of most of the major health-damaging pollutants (HDP) and many of the gases that contribute to GHG emissions from cooking stoves are the result of the significant portion of fuel carbon that is diverted to products of incomplete combustion (PIC) as a result of poor combustion efficiencies. The approximately linear increase in emissions of PIC with decreasing combustion efficiencies allows development of linear models to predict emissions of GHG and HDP intrinsically linked to CO2 and PIC production, and ultimately allows the prediction of global warming contributions from residential stove emissions. A comprehensive emissions database of three burn cycles of 23 typical fuel/stove combinations tested in a simulated village house in China has been used to develop models to predict emissions of HDP and global warming commitment (GWC) from cooking stoves in China, that rely on simple survey information on stove and fuel use that may be incorporated into national surveys. Stepwise regression models predicted 66% of the variance in global warming commitment (CO2, CO, CH4, NOx, TNMHC) per 1 MJ delivered energy due to emissions from these stoves if survey information on fuel type was available. Subsequently if stove type is known, stepwise regression models predicted 73% of the variance. Integrated assessment of policies to change stove or fuel type requires that implications for environmental impacts, energy efficiency, global warming and human exposures to HDP emissions can be evaluated. Frequently, this involves measurement of TSP or CO as the major HDPs. Incorporation of this information into models to predict GWC predicted 79% and 78% of the variance respectively. Clearly, however, the complexity of making multiple measurements in conjunction with a national survey would be both expensive and time consuming. Thus, models to predict HDP using simple survey information, and with measurement of either CO/CO2 or TSP/CO2 to predict emission factors for the other HDP have been derived. Stepwise regression models predicted 65% of the variance in emissions of total suspended particulate as grams of carbon (TSPC) per 1 MJ delivered if survey information on fuel and stove type was available and 74% if the CO/CO2 ratio was measured. Similarly stepwise regression models predicted 76% of the variance in COC emissions per MJ delivered with survey information on stove and fuel type and 85% if the TSPC/CO2 ratio was measured. Ultimately, with international agreements on emissions trading frameworks, similar models based on extensive databases of the fate of fuel carbon during combustion from representative household stoves would provide a mechanism for computing greenhouse credits in the residential sector as part of clean development mechanism frameworks and monitoring compliance to control regimes.

  14. Experimental and numerical investigations of heat transfer and thermal efficiency of an infrared gas stove

    NASA Astrophysics Data System (ADS)

    Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.

    2018-01-01

    An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.

  15. How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions

    NASA Astrophysics Data System (ADS)

    Fachinger, Friederike; Drewnick, Frank; Gieré, Reto; Borrmann, Stephan

    2017-06-01

    For a common household wood stove and a pellet stove we investigated the dependence of emission factors for various gaseous and particulate pollutants on burning phase, burning condition, and fuel. Ideal and non-ideal burning conditions (dried wood, under- and overload, small logs, logs with bark, excess air) were used. We tested 11 hardwood species (apple, ash, bangkirai, birch, beech, cherry, hickory, oak, olive, plum, sugar maple), 4 softwood species (Douglas fir, pine, spruce, spruce/fir), treated softwood, beech and oak wood briquettes, paper briquettes, brown coal, wood chips, and herbaceous species (miscanthus, Chinese silver grass) as fuel. Particle composition (black carbon, non-refractory, and some semi-refractory species) was measured continuously. Repeatability was shown to be better for the pellet stove than for the wood stove. It was shown that the user has a strong influence on wood stove emission behavior both by selection of the fuel and of the burning conditions: Combustion efficiency was found to be low at both very low and very high burn rates, and influenced particle properties such as particle number, mass, and organic content in a complex way. No marked differences were found for the emissions from different wood species. For non-woody fuels, much higher emission factors could be observed (up to five-fold increase). Strongest enhancement of emission factors was found for burning of small or dried logs (up to six-fold), and usage of excess air (two- to three-fold). Real world pellet stove emissions can be expected to be much closer to laboratory-derived emission factors than wood stove emissions, due to lower dependence on user operation.

  16. Improved stove interventions to reduce household air pollution in low and middle income countries: a descriptive systematic review.

    PubMed

    Thomas, Emma; Wickramasinghe, Kremlin; Mendis, Shanthi; Roberts, Nia; Foster, Charlie

    2015-07-14

    Household air pollution (HAP) resulting from the use of solid fuels presents a major public health hazard. Improved stoves have been offered as a potential tool to reduce exposure to HAP and improve health outcomes. Systematic information on stove interventions is limited. We conducted a systematic review of the current evidence of improved stove interventions aimed at reducing HAP in real life settings. An extensive search of ten databases commenced in April 2014. In addition, we searched clinical trial registers and websites for unpublished studies and grey literature. Studies were included if they reported on an improved stove intervention aimed at reducing HAP resulting from solid fuel use in a low or middle-income country. The review identified 5,243 records. Of these, 258 abstracts and 57 full texts were reviewed and 36 studies identified which met the inclusion criteria. When well-designed, implemented and monitored, stove interventions can have positive effects. However, the impacts are unlikely to reduce pollutant levels to World Health Organization recommended levels. Additionally, many participants in the included studies continued to use traditional stoves either instead of, or in additional to, new improved options. Current evidence suggests improved stove interventions can reduce exposure to HAP resulting from solid fuel smoke. Studies with longer follow-up periods are required to assess if pollutant reductions reported in the current literature are sustained over time. Adoption of new technologies is challenging and interventions must be tailored to the needs and preferences of the households of interest. Future studies require greater process evaluation to improve knowledge of implementation barriers and facilitators. The review was registered on Prospero (registration number CRD42014009796).

  17. Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator.

    PubMed

    Lertsatitthanakorn, C

    2007-05-01

    The use of biomass cook stoves is widespread in the domestic sector of developing countries, but the stoves are not efficient. To advance the versatility of the cook stove, we investigated the feasibility of adding a commercial thermoelectric (TE) module made of bismuth-telluride based materials to the stove's side wall, thereby creating a thermoelectric generator system that utilizes a proportion of the stove's waste heat. The system, a biomass cook stove thermoelectric generator (BITE), consists of a commercial TE module (Taihuaxing model TEP1-1264-3.4), a metal sheet wall which acts as one side of the stove's structure and serves as the hot side of the TE module, and a rectangular fin heat sink at the cold side of the TE module. An experimental set-up was built to evaluate the conversion efficiency at various temperature ranges. The experimental set-up revealed that the electrical power output and the conversion efficiency depended on the temperature difference between the cold and hot sides of the TE module. At a temperature difference of approximately 150 degrees C, the unit achieved a power output of 2.4W. The conversion efficiency of 3.2% was enough to drive a low power incandescent light bulb or a small portable radio. A theoretical model approximated the power output at low temperature ranges. An economic analysis indicated that the payback period tends to be very short when compared with the cost of the same power supplied by batteries. Therefore, the generator design formulated here could be used in the domestic sector. The system is not intended to compete with primary power sources but serves adequately as an emergency or backup source of power.

  18. Cord Wood Testing in a Non-Catalytic Wood Stove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T.; Trojanowski, R.; Wei, G.

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here ismore » to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.« less

  19. 75 FR 81966 - Top of the Stove Stainless Steel Cooking Ware From the Republic of Korea: Final Results of Sunset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Stainless Steel Cooking Ware From the Republic of Korea: Final Results of Sunset Reviews and Revocation of... reviews of the antidumping and countervailing duty orders on top of the stove stainless steel cooking ware... the stove stainless steel cooking ware from Korea includes all non-electric cooking ware of stainless...

  20. Reductions in indoor black carbon concentrations from improved biomass stoves in rural India.

    PubMed

    Patange, Omkar S; Ramanathan, Nithya; Rehman, I H; Tripathi, Sachi Nand; Misra, Amit; Kar, Abhishek; Graham, Eric; Singh, Lokendra; Bahadur, Ranjit; Ramanathan, V

    2015-04-07

    Deployment of improved biomass burning cookstoves is recognized as a black carbon (BC) mitigation measure that has the potential to achieve health benefits and climate cobenefits. Yet, few field based studies document BC concentration reductions (and resulting human exposure) resulting from improved stove usage. In this paper, data are presented from 277 real-world cooking sessions collected during two field studies to document the impacts on indoor BC concentrations inside village kitchens as a result of switching from traditional stoves to improved forced draft (FD) stoves. Data collection utilized new low-cost cellphone methods to monitor BC, cooking duration, and fuel consumption. A cross sectional study recorded a reduction of 36% in BC during cooking sessions. An independent paired sample study demonstrated a statistically significant reduction of 40% in 24 h BC concentrations when traditional stoves were replaced with FD stoves. Reductions observed in these field studies differ from emission factor reductions (up to 99%) observed under controlled conditions in laboratory studies. Other nonstove sources (e.g., kerosene lamps, ambient concentrations) likely offset the reductions. Health exposure studies should utilize reductions determined by field measurements inside village kitchens, in conjunction with laboratory data, to assess the health impacts of new cooking technologies.

  1. Symptoms of respiratory illness in young children and the use of wood-burning stoves for indoor heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honicky, R.E.; Osborne, J.S.; Akpom, C.A.

    1985-03-01

    The occurrence of symptoms of respiratory illness among preschool children living in homes heated by wood-burning stoves was examined by conducting an historical prospective study (n . 62) with an internal control group (matched for age, sex, and town of residence). Exposures of subjects were not significantly different (P greater than .05) with respect to parental smoking, urea-formaldehyde foam insulation, and use of humidifiers. The control group made significantly greater use of gas stoves for cooking whereas the study group made greater use of electric stoves for cooking and of air filters (P less than .05). Only one home usedmore » a kerosene space heater. During the winter of 1982, moderate and severe symptoms in all categories were significantly greater for the study group compared with the control group (P less than .001). These differences could not be accounted for by medical histories (eg, allergies, asthma), demographic or socioeconomic characteristics, or by exposure to sources of indoor air pollution other than wood-burning stoves. Present findings suggest that indoor heating with wood-burning stoves may be a significant etiologic factor in the occurrence of symptoms of respiratory illness in young children.« less

  2. Effects of a liquefied petroleum gas stove intervention on pollutant exposure and adult cardiopulmonary outcomes (CHAP): study protocol for a randomized controlled trial.

    PubMed

    Fandiño-Del-Rio, Magdalena; Goodman, Dina; Kephart, Josiah L; Miele, Catherine H; Williams, Kendra N; Moazzami, Mitra; Fung, Elizabeth C; Koehler, Kirsten; Davila-Roman, Victor G; Lee, Kathryn A; Nangia, Saachi; Harvey, Steven A; Steenland, Kyle; Gonzales, Gustavo F; Checkley, William

    2017-11-03

    Biomass fuel smoke is a leading risk factor for the burden of disease worldwide. International campaigns are promoting the widespread adoption of liquefied petroleum gas (LPG) in resource-limited settings. However, it is unclear if the introduction and use of LPG stoves, in settings where biomass fuels are used daily, reduces pollution concentration exposure, improves health outcomes, or how cultural and social barriers influence the exclusive adoption of LPG stoves. We will conduct a randomized controlled, field intervention trial of LPG stoves and fuel distribution in rural Puno, Peru, in which we will enroll 180 female participants aged 25-64 years and follow them for 2 years. After enrollment, we will collect information on sociodemographic characteristics, household characteristics, and cooking practices. During the first year of the study, LPG stoves and fuel tanks will be delivered to the homes of 90 intervention participants. During the second year, participants in the intervention arm will keep their LPG stoves, but the gas supply will stop. Control participants will receive LPG stoves and vouchers to obtain free fuel from distributors at the beginning of the second year, but gas will not be delivered. Starting at baseline, we will collect longitudinal measurements of respiratory symptoms, pulmonary function, blood pressure, endothelial function, carotid artery intima-media thickness, 24-h dietary recalls, exhaled carbon monoxide, quality-of-life indicators, and stove-use behaviors. Environmental exposure assessments will occur six times over the 2-year follow-up period, consisting of 48-h personal exposure and kitchen concentration measurements of fine particulate matter and carbon monoxide, and 48-h kitchen concentrations of nitrogen dioxide for a subset of 100 participants. Findings from this study will allow us to better understand behavioral patterns, environmental exposures, and cardiovascular and pulmonary outcomes resulting from the adoption of LPG stoves. If this trial indicates that LPG stoves are a feasible and effective way to reduce household air pollution and improve health, it will provide important information to support widespread adoption of LPG fuel as a strategy to reduce the global burden of disease. ClinicalTrials.gov, ID: NCT02994680 , Cardiopulmonary Outcomes and Household Air Pollution (CHAP) Trial. Registered on 28 November 2016.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezzati, M.; Mbinda, B.M.; Kammen, D.M.

    Suspended particulate matter and carbon emissions from the combustion of biomass, in addition to their environmental consequences, have been causally associated with the incidence of respiratory and eye infections. Improved stoves offer the potential for emissions reduction. The authors compare the emissions of suspended particulate matter and carbon monoxide from traditional and improved biofuel stoves in Kenya under the actual conditions of household use. Data for analysis is from 137 14-h days of continuous real-time emission concentration monitoring in a total of 38 households. Their analysis shows that improved (ceramic) wood-burning stoves reduce daily average suspended particulate matter concentration bymore » 48% during the active burning period and by 77% during the smoldering phase. Ceramic stoves also reduce the median and the 75th and 95th percentiles of daily emission concentration during the burning period and the 95th percentile during the smoldering phase, and therefore shift the overall emission profile downward. Improved charcoal-burning stoves also offer reductions in indoor air pollution compared to the traditional metal stove, but these are not statistically significant. The greatest reduction in emission concentration is achieved as a result of transition from wood to charcoal where mean emission concentrations drop by 87% during the burning period and by 92% when smoldering as well as large reductions in the median and 75th and 95th percentiles. These results indicate that transition to charcoal, followed by the use of improved wood stoves, are viable options for reduction of human exposure to indoor air pollution in many developing nations.« less

  4. Biogas Stoves Reduce Firewood Use, Household Air Pollution, and Hospital Visits in Odisha, India.

    PubMed

    Lewis, Jessica J; Hollingsworth, John W; Chartier, Ryan T; Cooper, Ellen M; Foster, William Michael; Gomes, Genna L; Kussin, Peter S; MacInnis, John J; Padhi, Bijaya K; Panigrahi, Pinaki; Rodes, Charles E; Ryde, Ian T; Singha, Ashok K; Stapleton, Heather M; Thornburg, Jonathan; Young, Cora J; Meyer, Joel N; Pattanayak, Subhrendu K

    2017-01-03

    Traditional cooking using biomass is associated with ill health, local environmental degradation, and regional climate change. Clean stoves (liquefied petroleum gas (LPG), biogas, and electric) are heralded as a solution, but few studies have demonstrated their environmental health benefits in field settings. We analyzed the impact of mainly biogas (as well as electric and LPG) stove use on social, environmental, and health outcomes in two districts in Odisha, India, where the Indian government has promoted household biogas. We established a cross-sectional observational cohort of 105 households that use either traditional mud stoves or improved cookstoves (ICS). Our multidisciplinary team conducted surveys, environmental air sampling, fuel weighing, and health measurements. We examined associations between traditional or improved stove use and primary outcomes, stratifying households by proximity to major industrial plants. ICS use was associated with 91% reduced use of firewood (p < 0.01), substantial time savings for primary cooks, a 72% reduction in PM 2.5 , a 78% reduction in PAH levels, and significant reductions in water-soluble organic carbon and nitrogen (p < 0.01) in household air samples. ICS use was associated with reduced time in the hospital with acute respiratory infection and reduced diastolic blood pressure but not with other health measurements. We find many significant gains from promoting rural biogas stoves in a context in which traditional stove use persists, although pollution levels in ICS households still remained above WHO guidelines.

  5. Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency

    NASA Astrophysics Data System (ADS)

    Bertrand, Amelie; Stefenelli, Giulia; Bruns, Emily A.; Pieber, Simone M.; Temime-Roussel, Brice; Slowik, Jay G.; Prévôt, André S. H.; Wortham, Henri; El Haddad, Imad; Marchand, Nicolas

    2017-11-01

    To reduce the influence of biomass burning on air quality, consumers are encouraged to replace their old woodstove with new and cleaner appliances. While their primary emissions have been extensively investigated, the impact of atmospheric aging on these emissions, including secondary organic aerosol (SOA) formation, remains unknown. Here, using an atmospheric smog chamber, we aim at understanding the chemical nature and quantify the emission factors of the primary organic aerosols (POA) from three types of appliances for residential heating, and to assess the influence of aging thereon. Two, old and modern, logwood stoves and one pellet burner were operated under typical conditions. Emissions from an entire burning cycle (past the start-up operation) were injected, including the smoldering and flaming phases, resulting in highly variable emission factors. The stoves emitted a significant fraction of POA (up to 80%) and black carbon. After ageing, the total mass concentration of organic aerosol (OA) increased on average by a factor of 5. For the pellet stove, flaming conditions were maintained throughout the combustion. The aerosol was dominated by black carbon (over 90% of the primary emission) and amounted to the same quantity of primary aerosol emitted by the old logwood stove. However, after ageing, the OA mass was increased by a factor of 1.7 only, thus rendering OA emissions by the pellet stove almost negligible compared to the other two stoves tested. Therefore, the pellet stove was the most reliable and least polluting appliance out of the three stoves tested. The spectral signatures of the POA and aged emissions by a High Resolution - Time of Flight - Aerosol Mass Spectrometer (Electron Ionization (EI) at 70 eV) were also investigated. The m/z 44 (CO2+) and high molecular weight fragments (m/z 115 (C9H7+), 137 (C8H9O2+), 167 (C9H11O3+) and 181 (C9H9O4+, C14H13+)) correlate with the modified combustion efficiency (MCE) allowing us to discriminate further between emissions generated from smoldering vs flaming conditions.

  6. Mitigation of Short-Lived Climate Pollutants from Residential Coal Heating and Combined Heating/Cooking Stoves: Impacts on the Cryosphere, Policy Options, and Co-benefits

    NASA Astrophysics Data System (ADS)

    Chafe, Z.; Anenberg, S.; Klimont, Z.; Kupiainen, K.; Lewis, J.; Metcalfe, J.; Pearson, P.

    2017-12-01

    Residential solid fuel combustion for cooking, heating, and other energy services contributes to indoor and outdoor air pollution, and creates impacts on the cryosphere. Solid fuel use often occurs in colder climates and at higher elevations, where a wide range of combustion emissions can reduce reflectivity of the snow- and ice-covered surfaces, causing climatic warming. Reducing short-lived climate pollutants (SLCPs), such as black carbon (BC), could have substantial climate and health co-benefits, especially in areas where emissions influence the cryosphere. A review of existing literature and emissions estimates, conducted as part of the Warsaw Summit on BC and Other Emissions from Residential Coal Heating Stoves and Combined Cooking/Heating Stoves, found little nationally-representative data on the fuels and technologies used for heating and combined cooking/heating. The GAINS model estimates that 24 million tonnes of coal equivalent were combusted by households for space heating globally in 2010, releasing 190 kilotons (kt) BC. Emissions from combined cooking/heating are virtually unknown. Policy instruments could mitigate cryosphere-relevant emissions of SLCPs from residential heating or cooking. These include indoor air quality guidelines, stove emission limits, bans on the use of specific fuels, regulatory codes that stipulate when burning can occur, stove changeout programs, and voluntary public education campaigns. These measures are being implemented in countries such as Chile (fuelwood moisture reduction campaign, energy efficiency, heating system improvements), Mongolia (stove renovation, fuel switching), Peru (improved stove programs), Poland (district heating, local fuel bans), United States (stove emission regulation) and throughout the European Community (Ecodesign Directive). Few, if any, of these regulations are likely to reduce emissions from combined cooking/heating. This research team found no global platform to create and share model standards, policies, regulatory instruments, or fiscal approaches that could reduce cryosphere impacts. There has been little coordination between the cookstove and heating stove communities; better communication and success sharing could harmonize efforts and lead to greater mitigation of cryosphere-relevant emissions.

  7. 76 FR 90 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Concrete Steel Wire Strand A-580-852 1/1/10--12/31/10 Top-of-the Stove Stainless Steel Cooking Ware\\2\\ A... South Korea: Top-of-the-Stove Stainless Steel Cooking Ware \\3\\ C-580-602 1/1/10--11/21/10 The People's... antidumping duty order on Top-of-the Stove Stainless Steel Cooking Ware was revoked due to sunset review...

  8. Influence of different types of coals and stoves on the emissions of parent and oxygenated PAHs from residential coal combustion in China.

    PubMed

    Wang, Yan; Xu, Yue; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Chen, Tian; Li, Jun; Zhang, Gan

    2016-05-01

    To evaluate the influence of coal property and stove efficiency on the emissions of parent polycyclic aromatic hydrocarbons (pPAHs) and oxygenated PAHs (oPAHs) during the combustion, fifteen coal/stove combinations were tested in this study, including five coals of different geological maturities in briquette and chunk forms burned in two residential stoves. The emission factors (EFs) of pPAHs and oPAHs were in the range of 0.129-16.7 mg/kg and 0.059-0.882 mg/kg, respectively. The geological maturity of coal significantly affected the emissions of pPAHs and oPAHs with the lower maturity coals yielding the higher emissions. The chunk-to-briquette transformation of coal dramatically increased the emissions of pPAHs and oPAHs during the combustion of anthracite, whereas this transformation only elevated the emissions of high molecular weight PAHs for bituminous coals. The influence of stove type on the emissions of pPAHs and oPAHs was also geological-maturity-dependent. High efficiency stove significantly reduced the emissions of PAHs from those relatively high-maturity coals, but its influences on low-maturity coals were inconstant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Efficacy of interventions targeting household air pollution from residential wood stoves.

    PubMed

    Ward, Tony J; Semmens, Erin O; Weiler, Emily; Harrar, Solomon; Noonan, Curtis W

    2017-01-01

    Wood is commonly used for residential heating, but there are limited evidence-based interventions for reducing wood smoke exposures in the indoor environment. The Asthma Randomized Trial of Indoor Wood Smoke (ARTIS) study was designed to assess the efficacy of residential interventions to reduce indoor PM exposure from wood stoves. As part of a three-arm randomized placebo-controlled trial, two household-level interventions were evaluated: wood stove changeouts and air filtration units. Exposure outcomes included indoor measures such as continuous PM 2.5 , particle counts, and carbon monoxide. Median indoor PM 2.5 concentration was 17.5 μg/m 3 in wood-burning homes prior to interventions. No significant reductions in PM 2.5 concentrations were observed in the 40 homes receiving the placebo filter intervention. Sixteen homes received the wood stove changeout and showed no significant changes in PM 2.5 or particle counts. PM 2.5 concentrations were reduced by 68% in the filter intervention homes. Relative to placebo, air filtration unit homes had an overall PM 2.5 reduction of 63% (95% CI: 47-75%). Relative to the wood stove changeout, the filtration unit intervention was more efficacious and less expensive, yet compliance issues indicated a need for the evaluation of additional strategies for improving indoor air quality in homes using wood stoves.

  10. Impact of Reduced Maternal Exposures to Wood Smoke from an Introduced Chimney Stove on Newborn Birth Weight in Rural Guatemala

    PubMed Central

    Bruce, Nigel; Eskenazi, Brenda; Diaz, Anaite; Pope, Daniel; Smith, Kirk R.

    2011-01-01

    Background: A growing body of evidence indicates a relationship between household indoor air pollution from cooking fires and adverse neonatal outcomes, such as low birth weight (LBW), in resource-poor countries. Objective: We examined the effect of reduced wood smoke exposure in pregnancy on LBW of Guatemalan infants in RESPIRE (Randomized Exposure Study of Pollution Indoors and Respiratory Effects). Methods: Pregnant women (n = 266) either received a chimney stove (intervention) or continued to cook over an open fire (control). Between October 2002 and December 2004 we weighed 174 eligible infants (69 to mothers who used a chimney stove and 105 to mothers who used an open fire during pregnancy) within 48 hr of birth. Multivariate linear regression and adjusted odds ratios (ORs) were used to estimate differences in birth weight and LBW (< 2,500 g) associated with chimney-stove versus open-fire use during pregnancy. Results: Pregnant women using chimney stoves had a 39% reduction in mean exposure to carbon monoxide compared with those using open fires. LBW prevalence was high at 22.4%. On average, infants born to mothers who used a stove weighed 89 g more [95% confidence interval (CI), –27 to 204 g] than infants whose mothers used open fires after adjusting for maternal height, diastolic blood pressure, gravidity, and season of birth. The adjusted OR for LBW was 0.74 (95% CI, 0.33–1.66) among infants of stove users compared with open-fire users. Average birth weight was 296 g higher (95% CI, 109–482 g) in infants born during the cold season (after harvest) than in other infants; this unanticipated finding may reflect the role of maternal nutrition on birth weight in an impoverished region. Conclusions: A chimney stove reduced wood smoke exposures and was associated with reduced LBW occurrence. Although not statistically significant, the estimated effect was consistent with previous studies. PMID:21652290

  11. Risk factors for kerosene stove explosion burns seen at Kenyatta National Hospital in Kenya.

    PubMed

    Ombati, Alex N; Ndaguatha, Peter L W; Wanjeri, Joseph K

    2013-05-01

    The kerosene stove is a common cooking appliance in lower and middle income households in Kenya and if it explodes, life threatening thermal burn injuries may be sustained by those using the appliance. Women tend to be victims more frequently since traditionally they are the ones who are involved in cooking. The aim of this study was to determine risk factors predisposing to kerosene stove explosion burns seen at Kenyatta National Hospital. The study was a prospective longitudinal descriptive study carried out at the Kenyatta National Hospital. Forty-eight patients who met the inclusion criteria were recruited into the study over a period of 6 months from November 2010 to April 2011 and the data was collected using a structured questionnaire. The analysis, using SPSS version 17.0 was done by associating occurrence of injury to: age, sex, socioeconomic status and level of education of patient. Charts and tables were used to present the results. The mean age of patients who sustained kerosene stove explosion burns was 23.6 years (SD ± 11.7) with the commonest age group being 20-39 years. More females were affected than males by a ratio of 7:3 and ninety two percent of those who sustained these burns were either from poor or lower middle socio-economic class. Stove explosions occurred mainly during cooking and when kerosene refill was being done. Most of the patients (63%) reported having bought kerosene from fuel vendors and almost all explosions were caused by the wick type of stove (98%). Young females from poor socioeconomic background were found to be at a higher risk for kerosene stove explosion burns. The wick stove is a common cause of burns especially when users unwittingly refill it with kerosene when already lit resulting in an explosion. Prevention can be done through evidence based public health education targeting the groups at risk and enactment of relevant laws. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  12. Improved biomass stove intervention in rural Mexico: impact on the respiratory health of women.

    PubMed

    Romieu, Isabelle; Riojas-Rodríguez, Horacio; Marrón-Mares, Adriana Teresa; Schilmann, Astrid; Perez-Padilla, Rogelio; Masera, Omar

    2009-10-01

    Exposure to biomass smoke has been related to adverse health effects. In Mexico, one household in four still cooks with biomass fuel, but there has been no evaluation of the health impact of reducing indoor air pollution. To evaluate the health impact of the introduction of an improved biomass stove (Patsari; Interdisciplinary Group for Appropriate Rural Technology [GIRA], Patzcuaro, Mexico) in Mexican women. A randomized controlled trial was conducted in the Central Mexican state of Michoacán. Households were randomized to receive the Patsari stove or keep their traditional open fire. A total of 552 women were followed with monthly visits over 10 months to assess stove use, inquire about respiratory and other symptoms, and obtain lung function measurements. Statistical analysis was conducted using longitudinal models. Adherence to the intervention was low (50%). Women who reported using the Patsari stove most of the time compared with those using the open fire had significantly lower risk of respiratory symptoms (relative risk [RR], 0.77; 95% confidence interval [CI], 0.62-0.95 for cough and RR, 0.29; 95% CI, 0.11-0.77 for wheezing) adjusted for confounders. Similar results were found for other respiratory symptoms as well as for eye discomfort, headache, and back pain. Actual use of the Patsari stove was associated with a lower FEV(1) decline (31 ml) compared with the open fire use (62 ml) over 1 year of follow-up (P = 0.012) for women 20 years of age and older, adjusting for confounders. The use of the Patsari stove was significantly associated with a reduction of symptoms and of lung function decline comparable to smoking cessation.

  13. Heart of the Hearth: Making the Popular Clean, Not the Clean Popular - Technology Research, Development, and Tools for Clean Biomass Cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gist, Ryan

    This technical report summarizes the work completed by BioLite in fulfilment of the US DOE EERE award. The work plan focused on three key objectives: developing an optimized combustion system that demonstrates high combustion efficiency and low PM 2.5 and CO emissions, integrate the system into popular stove phenotypes – side-fed rocket stove architecture like the BioLite HomeStove, and the Patsari chimney stove in Mexico such that they maintain their important phenotypical characteristics, independently evaluate quantitative fuel and emissions performance of the integrated ‘Turbo-Patsari’ in Mexican households. The project activities were organized into six major tasks: A. Develop, fabricate, andmore » test proof-of-concept prototypes B. Develop field prototypes, assess user feedback and field performance C. Define revised stove design for pre-production model, Identify manufacturing requirements and estimated cost to build, Conduct reliability, emissions, and performance testing of pre-production Turbo-Patsari D. Build pre-production Turbo-Patsari stove combustion cores E. Conduct pre-production field trials F. Summarize field trial results and evaluate Turbo-Patsari for potential volume production. A two-pronged approach was adopted for the above tasks. The first involved building a modular test platform that allowed parametric variation of multiple stove design parameters that directly affect its performance – heat output, thermal efficiency, and emissions. The second part of the approach comprised of building a surrogate Patsari based on GIRA’s specifications that could then be modified or retrofitted for optimum performance based on the learnings from the modular test platform. The following sections of the report will describe the findings of tests on these platform, the subsequent development, design, and installation of the Turbo-Patsari, and finally the in-home field trial.« less

  14. Biomonitoring Human Exposure to Household Air Pollution and Association with Self-reported Health Symptoms – A Stove Intervention Study in Peru

    PubMed Central

    Li, Zheng; Commodore, Adwoa; Hartinger, Stella; Lewin, Michael; Sjödin, Andreas; Pittman, Erin; Trinidad, Debra; Hubbard, Kendra; Lanata, Claudio F.; Gil, Ana I.; Mäusezahl, Daniel; Naeher, Luke P.

    2016-01-01

    Background Household air pollution (HAP) from indoor biomass stoves contains harmful pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and is a leading risk factor for global disease burden. We used biomonitoring to assess HAP exposure and association with self-reported symptoms in 334 non-smoking Peruvian women to evaluate the efficacy of a stove intervention program. Methods We conducted a cross-sectional study within the framework of a community randomized control trial. Using urinary PAH metabolites (OH-PAHs) as the exposure biomarkers, we investigated whether the intervention group (n = 155, with new chimney-equipped stoves) were less exposed to HAP compared to the control group (n = 179, with mostly open-fire stoves). We also estimated associations between the exposure biomarkers, risk factors, and self-reported health symptoms, such as recent eye conditions, respiratory conditions, and headache. Results We observed reduced headache and ocular symptoms in the intervention group than the control group. Urinary 2-naphthol, a suggested biomarker for inhalation PAH exposure, was significantly lower in the intervention group (GM with 95% CI: 13.4 [12.3, 14.6] μg/g creatinine) compared to control group (16.5 [15.0, 18.0] μg/g creatinine). Stove type and/or 2-naphthol was associated with a number of self-reported symptoms, such as red eye (adjusted OR with 95% CI: 3.80 [1.32, 10.9]) in the past 48 h. Conclusions Even with the improved stoves, the biomarker concentrations in this study far exceeded those of the general populations and were higher than a no-observed-genotoxic-effect-level, indicating high exposure and a potential for increased cancer risk in the population. PMID:27680405

  15. Biomonitoring Human Exposure to Household Air Pollution and Association with Self-reported Health Symptoms - A Stove Intervention Study in Peru.

    PubMed

    Li, Zheng; Commodore, Adwoa; Hartinger, Stella; Lewin, Michael; Sjödin, Andreas; Pittman, Erin; Trinidad, Debra; Hubbard, Kendra; Lanata, Claudio F; Gil, Ana I; Mäusezahl, Daniel; Naeher, Luke P

    2016-12-01

    Household air pollution (HAP) from indoor biomass stoves contains harmful pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and is a leading risk factor for global disease burden. We used biomonitoring to assess HAP exposure and association with self-reported symptoms in 334 non-smoking Peruvian women to evaluate the efficacy of a stove intervention program. We conducted a cross-sectional study within the framework of a community randomized control trial. Using urinary PAH metabolites (OH-PAHs) as the exposure biomarkers, we investigated whether the intervention group (n=155, with new chimney-equipped stoves) were less exposed to HAP compared to the control group (n=179, with mostly open-fire stoves). We also estimated associations between the exposure biomarkers, risk factors, and self-reported health symptoms, such as recent eye conditions, respiratory conditions, and headache. We observed reduced headache and ocular symptoms in the intervention group than the control group. Urinary 2-naphthol, a suggested biomarker for inhalation PAH exposure, was significantly lower in the intervention group (GM with 95% CI: 13.4 [12.3, 14.6] μg/g creatinine) compared to control group (16.5 [15.0, 18.0] μg/g creatinine). Stove type and/or 2-naphthol was associated with a number of self-reported symptoms, such as red eye (adjusted OR with 95% CI: 3.80 [1.32, 10.9]) in the past 48h. Even with the improved stoves, the biomarker concentrations in this study far exceeded those of the general populations and were higher than a no-observed-genotoxic-effect-level, indicating high exposure and a potential for increased cancer risk in the population. Published by Elsevier Ltd.

  16. Field Testing of Alternative Cookstove Performance in a Rural Setting of Western India

    PubMed Central

    Muralidharan, Veena; Sussan, Thomas E.; Limaye, Sneha; Koehler, Kirsten; Williams, D’Ann L.; Rule, Ana M.; Juvekar, Sanjay; Breysse, Patrick N.; Salvi, Sundeep; Biswal, Shyam

    2015-01-01

    Nearly three billion people use solid fuels for cooking and heating, which leads to extremely high levels of household air pollution and is a major cause of morbidity and mortality. Many stove manufacturers have developed alternative cookstoves (ACSs) that are aimed at reducing emissions and fuel consumption. Here, we tested a traditional clay chulha cookstove (TCS) and five commercially available ACSs, including both natural draft (Greenway Smart Stove, Envirofit PCS-1) and forced draft stoves (BioLite HomeStove, Philips Woodstove HD4012, and Eco-Chulha XXL), in a test kitchen in a rural village of western India. Compared to the TCS, the ACSs produced significant reductions in particulate matter less than 2.5 µm (PM2.5) and CO concentrations (Envirofit: 22%/16%, Greenway: 24%/42%, BioLite: 40%/35%, Philips: 66%/55% and Eco-Chulha: 61%/42%), which persisted after normalization for fuel consumption or useful energy. PM2.5 and CO concentrations were lower for forced draft stoves than natural draft stoves. Furthermore, the Philips and Eco-Chulha units exhibited higher cooking efficiency than the TCS. Despite significant reductions in concentrations, all ACSs failed to achieve PM2.5 levels that are considered safe by the World Health Organization (ACSs: 277–714 μg/m3 or 11–28 fold higher than the WHO recommendation of 25 μg/m3;). PMID:25654775

  17. Climate and mortality changes due to reductions in household cooking emissions

    NASA Astrophysics Data System (ADS)

    Bergman, Tommi; Mielonen, Tero; Arola, Antti; Kokkola, Harri

    2016-04-01

    Household cooking is a significant cause for health and environmental problems in the developing countries. There are more than 3 billion people who use biomass for fuel in cooking stoves in their daily life. These cooking stoves use inadequate ventilation and expose especially women and children to indoor smoke. To reduce problems of the biomass burning, India launched an initiative to provide affordable and clean energy solutions for the poorest households by providing clean next-generation cooking stoves. The improved cooking stoves are expected to improve outdoor air quality and to reduce the climate-active pollutants, thus simultaneously slowing the climate change. Previous research has shown that the emissions of black carbon can be decreased substantially, as much as 90 % by applying better technology in cooking stoves. We have implemented reasonable (50% decrease) and best case (90% decrease) scenarios of the reductions in black and organic carbon due to improved cooking stoves in India into ECHAM-HAMMOZ aerosol-climate model. The global simulations of the scenarios will be used to study how the reductions of emissions in India affect the pollutant concentrations and radiation. The simulated reductions in particulate concentrations will also be used to estimate the decrease in mortality rates. Furthermore, we will study how the emission reductions would affect the global climate and mortality if a similar initiative would be applied in other developing countries.

  18. Health and Climate-Relevant Pollutant Concentrations from a Carbon-Finance Approved Cookstove Intervention in Rural India.

    PubMed

    Aung, Ther W; Jain, Grishma; Sethuraman, Karthik; Baumgartner, Jill; Reynolds, Conor; Grieshop, Andrew P; Marshall, Julian D; Brauer, Michael

    2016-07-05

    Efforts to introduce more efficient stoves increasingly leverage carbon-finance to scale up dissemination of interventions. We conducted a randomized intervention study to evaluate a Clean Development Mechanism approved stove replacement impact on fuelwood usage, and climate and health-relevant air pollutants. We randomly assigned 187 households to either receive the intervention or to continue using traditional stoves. Measurements of fine particulate matter (PM2.5) and absorbance were conducted in cooking areas, village center and at upwind background site. There were minor and overlapping seasonal differences (post- minus preintervention change) between control and intervention groups for median (95% CI) fuel use (-0.60 (-1.02, -0.22) vs -0.52 (-1.07, 0.00) kg day(-1)), and 24 h absorbance (35 (18, 60) vs 36 (22, 50) × 10(-6) m(-1)); for 24 h PM2.5, there was a higher (139 (61,229) vs 73(-6, 156) μg m(-3))) increase in control compared to intervention homes between the two seasons. Forty percent of the intervention homes continued using traditional stoves. For intervention homes, absorbance-to-mass ratios suggest a higher proportion of black carbon in PM2.5 emitted from intervention compared with traditional stoves. Absent of field-based evaluation, stove interventions may be pursued that fail to realize expected carbon reductions or anticipated health and climate cobenefits.

  19. Novel Heat Controller for Thermogenerators Working on Uncontrolled Stoves

    NASA Astrophysics Data System (ADS)

    Juanicó, Luis E.; Rinalde, Fabián; Taglialavore, Eduardo; Molina, Marcelo

    2013-07-01

    This paper describes the development of a thermogenerator designed for uncontrolled firewood household stoves. It was built on BiTe thermoelectric (TE) modules, and it uses a water pot as a cooling device that also serves as a hot water source. An original heat controller was developed; it has low thermal resistance ( R) during low-power operation, but its R can be continuously increased according to the stove temperature so that the TE never overheats while its power generation is optimized.

  20. Laboratory Measurements of Biomass Cook-stove Emissions Aged in an Oxidation Flow Reactor: Influence of Combustion and Aging Conditions on Aerosols

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Reece, S. M.; Sinha, A.; Wathore, R.

    2016-12-01

    Combustion in rudimentary and improved cook-stoves used by billions in developing countries can be a regionally dominant contributor to black carbon (BC), primary organic aerosols (POA) and precursors for secondary organic aerosol (SOA). Recent studies suggest that SOA formed during photo-oxidation of primary emissions from biomass burning may make important contribution to its atmospheric impacts. However, the extent to which stove type and operating conditions affect the amount, composition and characteristics of SOA formed from the aging of cookstoves emissions is still largely undetermined. Here we present results from experiments with a field portable oxidation flow reactor (F-OFR) designed to assess aging of cook-stove emissions in both laboratory and field settings. Laboratory tests results are used to compare the quantity and properties of fresh and aged emissions from a traditional open fire and twp alternative stove designs operated on the standard and alternate testing protocols. Diluted cookstove emissions were exposed to a range of oxidant concentrations in the F-OFR. Primary emissions were aged both on-line, to study the influence of combustion variability, and sampled from batched emissions in a smog chamber to examine different aging conditions. Data from real-time particle- and gas-phase instruments and integrated filter samples were collected up and down stream of the OFR. The properties of primary emissions vary strongly with stove type and combustion conditions (e.g. smoldering versus flaming). Experiments aging diluted biomass emissions from distinct phases of stove operation (smoldering and flaming) showed peak SOA production for both phases occurred between 3 and 6 equivalent days of aging with slightly greater production observed in flaming phase emissions. Changing combustion conditions had a stronger influence than aging on POA+SOA `emission factors'. Aerosol Chemical Speciation Monitor data show a substantial evolution of aerosol composition with aging. These results highlight the importance of both stoves' operating conditions and aging on composition and characteristics of emissions, which have important implications for regional air quality and climate forcing.

  1. Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions.

    PubMed

    Mukhopadhyay, Rupak; Sambandam, Sankar; Pillarisetti, Ajay; Jack, Darby; Mukhopadhyay, Krishnendu; Balakrishnan, Kalpana; Vaswani, Mayur; Bates, Michael N; Kinney, Patrick L; Arora, Narendra; Smith, Kirk R

    2012-09-05

    In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested, participants expressed satisfaction with the Philips brand as it met the local criteria for usability. Further understanding of how the introduction of an advanced stove influences patterns of household energy use is needed. The preliminary data provided here would be useful for designing feasibility and/or pilot studies aimed at intervention efforts locally and nationally.

  2. Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions

    PubMed Central

    Mukhopadhyay, Rupak; Sambandam, Sankar; Pillarisetti, Ajay; Jack, Darby; Mukhopadhyay, Krishnendu; Balakrishnan, Kalpana; Vaswani, Mayur; Bates, Michael N.; Kinney, Patrick L.; Arora, Narendra; Smith, Kirk R.

    2012-01-01

    Background In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. Methods Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. Results Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. Conclusions The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested, participants expressed satisfaction with the Philips brand as it met the local criteria for usability. Further understanding of how the introduction of an advanced stove influences patterns of household energy use is needed. The preliminary data provided here would be useful for designing feasibility and/or pilot studies aimed at intervention efforts locally and nationally. PMID:22989509

  3. Personal PM2.5 and indoor CO in nomadic tents using open and chimney biomass stoves on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Kang, Shichang; Chen, Pengfei; Zhang, Qianggong; Guo, Junming; Mi, Jue; Basang, Puchi; Luosang, Quzhen; Smith, Kirk R.

    2012-11-01

    Yak dung is the primary source of energy for cooking and heating of nomadic Tibetan herders. Personal PM2.5 and indoor CO concentrations and time-activity patterns were investigated in nomadic tents with open stoves and locally available chimney stoves. Personal PM2.5 monitoring using a light-scattering datalogger was performed with women in five tents with open fires and four with chimney stoves over 3 days. Meanwhile, indoor CO variation was also measured. Results showed that 24 h average concentrations of PM2.5 and CO in the tents with open stoves were 1.42 mg m-3 (n = 5, SD = 3.26) and 6.69 mg m-3 (n = 4; SD = 9.11), respectively, which were significantly higher than the tents with chimney stoves having 0.14 mg m-3 (n = 4; SD = 0.65) and 0.12 mg m-3 (n = 4; SD = 1.01) of PM2.5 and CO, respectively. Although chimney stoves significantly reduced indoor air pollution, the concentration of PM2.5 was still higher than annual WHO Air Quality Guideline (0.035 mg m-3). Diurnal variability of PM2.5 and CO was similar and had multiple peaks. This phenomenon was closely connected with behaviors of the participants within the tents. Average 1-h peak concentrations of PM2.5 and CO exceed 24-h mean values by a factor of 5.0 and 4.3, respectively. Significant correlation between hourly PM2.5 and CO concentrations was revealed. Generally, women and children spent 7 h longer than other family members within the tent each day and were thus exposed to higher levels of pollutants. Secondhand tobacco smoke and burning of yak oil lamps are also present in many households, but are much smaller contributors to the exposures. Therefore, yak dung combustion contributes substantially to the personal exposure of householders in this setting even during the warmest time of year in this setting and that although exposures are greatly reduced with chimney stoves; they are still high by comparison to national standards or WHO guidelines.

  4. 20 CFR 654.409 - Heating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... temperature in such quarters falls below 68°. (b) Any stoves or other sources of heat utilizing combustible... concrete slab, insulated metal sheet, or other fireproof material on the floor under each stove, extending...

  5. 20 CFR 654.409 - Heating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... temperature in such quarters falls below 68°. (b) Any stoves or other sources of heat utilizing combustible... concrete slab, insulated metal sheet, or other fireproof material on the floor under each stove, extending...

  6. 20 CFR 654.409 - Heating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... temperature in such quarters falls below 68°. (b) Any stoves or other sources of heat utilizing combustible... concrete slab, insulated metal sheet, or other fireproof material on the floor under each stove, extending...

  7. 20 CFR 654.409 - Heating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... temperature in such quarters falls below 68°. (b) Any stoves or other sources of heat utilizing combustible... concrete slab, insulated metal sheet, or other fireproof material on the floor under each stove, extending...

  8. 20 CFR 654.409 - Heating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... temperature in such quarters falls below 68°. (b) Any stoves or other sources of heat utilizing combustible... concrete slab, insulated metal sheet, or other fireproof material on the floor under each stove, extending...

  9. Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves

    NASA Astrophysics Data System (ADS)

    Du, Wei; Shen, Guofeng; Chen, Yuanchen; Zhu, Xi; Zhuo, Shaojie; Zhong, Qirui; Qi, Meng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2017-10-01

    Air pollutant emissions, fuel consumption, and household air pollution were investigated in rural Hubei, central China, as a revisited evaluation of an intervention program to replace coal use by wood in gasifier stoves. Measured emission factors were comparable to the results measured two years ago when the program was initiated. Coal combustion produced significantly higher emissions of CO2, CH4, and SO2 compared with wood combustion; however, wood combustion in gasifier stoves had higher emissions of primary PM2.5 (particles with diameter less than 2.5 μm), Elemental Carbon (EC) and Organic Carbon (OC). In terms of potential impacts on climate, although the use of wood in gasifier stoves produced more black carbon (6.37 vs 910 gCO2e per day per capita from coal and wood use) and less SO2 (-684 vs -312), obvious benefits could be obtained owing to greater OC emissions (-15.4 vs -431), fewer CH4 emissions (865 vs 409) and, moreover, a reduction of CO2 emissions. The total GWC100 (Global Warming Potential over a time horizon of 100 years) would decrease by approximately 90% if coal use were replaced with renewable wood burned in gasifier stoves. However, similar levels of ambient particles and higher indoor OC and EC were found at homes using wood gasifier stoves compared to the coal-use homes. This suggests critical investigations on potential health impacts from the carbon-reduction intervention program.

  10. Deployment of coal briquettes and improved stoves: possibly an option for both environment and climate.

    PubMed

    Zhi, Guorui; Peng, Conghu; Chen, Yingjun; Liu, Dongyan; Sheng, Guoying; Fu, Jiamo

    2009-08-01

    The use of coal briquettes and improved stoves by Chinese households has been encouraged by the government as a means of reducing air pollution and health impacts. In this study we have shown that these two improvements also relate to climate change. Our experimental measurements indicate that if all coal were burned as briquettes in improved stoves, particulate matter (PM), organic carbon (OC), and black carbon (BC) could be annually reduced by 63 +/- 12%, 61 +/- 10%, and 98 +/- 1.7%, respectively. Also, the ratio of BC to OC (BC/OC) could be reduced by about 97%, from 0.49 to 0.016, which would make the primary emissions of household coal combustion more optically scattering. Therefore, it is suggested that the government consider the possibility of: (i) phasing out direct burning of bituminous raw-coal-chunks in households; (ii) phasing out simple stoves in households; and, (iii) financially supporting the research, production, and popularization of improved stoves and efficient coal briquettes. These actions may have considerable environmental benefits by reducing emissions and mitigating some of the impacts of household coal burning on the climate. International cooperation is required both technologically and financially to accelerate the emission reduction in the world.

  11. 14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE (L TO R) LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  12. INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE DEPRESSIONS, WHICH WERE COVERED WITH IRON GRATES TO SUSPEND POTS OVER THE HEAT SOURCE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  13. New Folklore about Water.

    ERIC Educational Resources Information Center

    LeMaire, Peter; Waiveris, Charles

    1995-01-01

    Describes experiments designed to investigate the cooling rate of microwave-boiled water as compared to that of stove-boiled water. Concludes that within experimental limits, microwave-boiled water and stove-boiled water cool at the same rate. (JRH)

  14. Biomass Stoves and Lens Opacity and Cataract in Nepalese Women

    PubMed Central

    Pokhrel, Amod K.; Bates, Michael N.; Shrestha, Sachet P.; Bailey, Ian L.; DiMartino, Robert B.; Smith, Kirk R.; Joshi, N. D.

    2014-01-01

    Purpose Cataract is the most prevalent cause of blindness in Nepal. Several epidemiologic studies have associated cataracts with use of biomass cookstoves. These studies, however, have had limitations, including potential control selection bias and limited adjustment for possible confounding. This study, in Pokhara city, in an area of Nepal where biomass cookstoves are widely used without direct venting of the smoke to the outdoors, focuses on pre-clinical measures of opacity, while avoiding selection bias and taking into account comprehensive data on potential confounding factors Methods Using a cross-sectional study design, severity of lenticular damage, judged on the LOCS III scales, was investigated in females (n=143), aged 20-65 years, without previously diagnosed cataract. Linear and logistic regression analyses were used to examine the relationships with stove type and length of use. Clinically significant cataract, used in the logistic regression models, was defined as a LOCS III score > 2. Results Using gas cookstoves as the reference group, logistic regression analysis for nuclear cataract showed the evidence of relationships with stove type: for biomass stoves, the odds ratio (OR) was 2.58 (95% confidence interval [CI]: 1.22-5.46) and, for kerosene stoves, the OR was 5.18 (95% CI: 0.88-30.38). Similar results were found for nuclear color (LOCS III score > 2), but no association was found with cortical cataracts. Supporting a relationship between biomass stoves and nuclear cataract was a trend with years of exposure to biomass cookstoves (p=0.01). Linear regression analyses did not show clear evidence of an association between lenticular damage and stove types. Biomass fuel used for heating was not associated with any form of opacity. Conclusions This study provides support for associations of biomass and kerosene cookstoves with nuclear opacity and change in nuclear color. The novel associations with kerosene cookstove use deserve further investigation. PMID:23400024

  15. 76 FR 43346 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... production limits and restrictions while seeking permits to install and operate additional equipment to... pre-1988 wood stoves with cleaner burning parts and/or stoves. The Department of Justice will receive...

  16. Numerical investigation of the flow inside the combustion chamber of a plant oil stove

    NASA Astrophysics Data System (ADS)

    Pritz, B.; Werler, M.; Wirbser, H.; Gabi, M.

    2013-10-01

    Recently a low cost cooking device for developing and emerging countries was developed at KIT in cooperation with the company Bosch und Siemens Hausgeräte GmbH. After constructing an innovative basic design further development was required. Numerical investigations were conducted in order to investigate the flow inside the combustion chamber of the stove under variation of different geometrical parameters. Beyond the performance improvement a further reason of the investigations was to rate the effects of manufacturing tolerance problems. In this paper the numerical investigation of a plant oil stove by means of RANS simulation will be presented. In order to reduce the computational costs different model reduction steps were necessary. The simulation results of the basic configuration compare very well with experimental measurements and problematic behaviors of the actual stove design could be explained by the investigation.

  17. ANALYSIS OF RESIDENTIAL COAL STOVE EMISSIONS

    EPA Science Inventory

    The report gives results of an evaluation, in cooperation with the State of Vermont's Agency of Environmental Conservation, of emissions generated by anthracite and bituminous coal used for residential heating. A residential coal stove was operated with both coals, while comparin...

  18. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    EPA Science Inventory

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  19. Rapid drying soils with microwave ovens.

    DOT National Transportation Integrated Search

    2002-07-01

    Soils are normally dried in either a convection oven or stove. Inspections of field and laboratory moisture content testing indicated that the typical drying durations for a convection oven and stove were, 24 hours and 60 minutes, respectively. The o...

  20. 12. VIEW FROM MAIN ENTRANCE OF STOVE, ENGINE LATHE, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW FROM MAIN ENTRANCE OF STOVE, ENGINE LATHE, AND GRINDER (L TO R) IN FOREGROUND, SHAFTING ABOVE LOOKING SOUTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  1. Interior of main shucking room. The castiron pot belly stove ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of main shucking room. The cast-iron pot belly stove at center heated the room. Note the concrete tables and shucking stands lining the walls. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  2. Mutagenicity of Cookstove Emissions

    EPA Science Inventory

    The presentation by David DeMarini will focus on emission factors, including mutagenicity, for 3 stoves. It will correlate the emission factors to assess the health safety of the stove systems and place the mutagenicity emission factor in context with that of other combustion em...

  3. 16. SOUTH TO VIEW OF CIRCA 1900 MICHIGAN MACHINERY MFG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. SOUTH TO VIEW OF CIRCA 1900 MICHIGAN MACHINERY MFG. CO. PUNCH PRESS WITH WOOD-BURNING HEATING STOVE LOCATED IN THE CENTER OF THE FACTORY BUILDING. BESIDE THE HEATING STOVE, POINTING TOWARD THE PUNCH PRESS, IS A JIG USED TO POSITION ANGLE STEEL COMPONENTS OF STEEL WINDMILL TOWER LEGS FOR PUNCHING BOLT HOLES. THE SUPPORT FOR THE BRICK FLUE OF THE HEATING STOVE IS CONSTRUCTED FROM SALVAGED GALVANIZED ANGLE STEEL OF THE TYPE USED IN FABRICATING WINDMILL TOWERS MANUFACTURED IN THE FACTORY. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  4. Respiratory disease rates and pulmonary function in children associated with NO2 exposure.

    PubMed

    Speizer, F E; Ferris, B; Bishop, Y M; Spengler, J

    1980-01-01

    As part of a long-range, prospective study of the health effects of air pollution, approximately 8,000 children from 6 yrs to 10 yrs of age from 6 communities had questionnaires completed by their parents and had simple spirometry performed in school. Comparisons were made between children living in homes with gas stoves and those living in homes with electric stoves. Children from households with gas stoves had a greater history of respiratory illness before age 2 (average difference, 32.5/1,000 children) and small but significantly lower levels of FEV1 and FVC corrected for height (average difference, 16 ml and 18 ml, respectively). These findings were not explained by differences in social class or by parental smoking habits. Measurements taken in the homes for 24-h periods showed that NO2 levels were 4 to 7 times higher in homes with gas stoves than in homes with electric stoves. However, these 24-h measurements were generally well below the current federal 24-h outdoor standard of 100 micrograms/m3. Short-term peak exposures, which were in excess of 1,100 micrograms/m3, regularly occurred in kitchens. Further work will be required to determine the importance of these short-term peaks in explaining the effects noted.

  5. Primary and Photochemically Aged Aerosol Emissions from Biomass Cookstoves: Chemical and Physical Characterization.

    PubMed

    Reece, Stephen M; Sinha, Aditya; Grieshop, Andrew P

    2017-08-15

    Secondary organic aerosol (SOA) formation during photo-oxidation of primary emissions from cookstoves used in developing countries may make important contributions to their climate and air quality impacts. We present results from laboratory experiments with a field portable oxidation flow reactor (F-OFR) to study the evolution of emissions over hours to weeks of equivalent atmospheric aging. Lab tests, using dry red oak, measured fresh and aged emissions from a 3 stone fire (TSF), a "rocket" natural draft stove (NDS), and a forced draft gasifier stove (FDGS), in order of increasing modified combustion efficiency (MCE) and decreasing particulate matter emission factors (EF). SOA production was observed for all stoves/tests; organic aerosol (OA) enhancement factor ranged from 1.2 to 3.1, decreasing with increased MCE. In primary emissions, OA mass spectral fragments associated with oxygenated species (primary biomass burning markers) increased (decreased) with MCE; fresh OA from FDGS combustion was especially oxygenated. OA oxygenation increased with further oxidation for all stove emissions, even where minimal enhancement was observed. More efficient stoves emit particles with greater net direct specific warming than TSFs, with the difference increasing with aging. Our results show that the properties and evolution of cookstove emissions are a strong function of combustion efficiency and atmospheric aging.

  6. Development of thermoacoustic engine operating by waste heat from cooking stove

    NASA Astrophysics Data System (ADS)

    Chen, B. M.; Abakr, Y. A.; Riley, P. H.; Hann, D. B.

    2012-06-01

    There are about 1.5 billion people worldwide use biomass as their primary form of energy in household cooking[1]. They do not have access to electricity, and are too remote to benefit from grid electrical supply. In many rural communities, stoves are made without technical advancements, mostly using open fires cooking stoves which have been proven to be extremely low efficiency, and about 93% of the energy generated is lost during cooking. The cooking is done inside a dwelling and creates significant health hazard to the family members and pollution to environment. SCORE (www.score.uk.com) is an international collaboration research project to design and build a low-cost, high efficiency woodstove that uses about half amount of the wood of an open wood fire, and uses the waste heat of the stove to power a thermoacoustic engine (TAE) to produce electricity for applications such as LED lighting, charging mobile phones or charging a 12V battery. This paper reviews on the development of two types of the thermoacoustic engine powered by waste heat from cooking stove which is either using Propane gas or burning of wood as a cooking energy to produce an acceptable amount of electricity for the use of rural communities.

  7. 11. STOVE NUT USED IN THE MILL WHEN THE BRAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. STOVE NUT USED IN THE MILL WHEN THE BRAKE WHEEL DROVE ONE PAIR OF MILLSTONES DIRECTLY; FOUND ON THE FIRST FLOOR OF THE WINDMILL AT WATERMILL - Windmill at Water Mill, Montauk Highway & Halsey Lane, Water Mill, Suffolk County, NY

  8. 46 CFR 169.703 - Cooking and heating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... A-3, “Recommended Practices and Standards Covering Galley Stoves.” (b) The use of gasoline for... 6-5.11.1, 2, 3; 6-5.11.5; and 6-5.11.8 of NFPA 302. (ii) The use or stowage of stoves with attached...

  9. Study of a thermoelectric system equipped with a maximum power point tracker for stand-alone electric generation.

    NASA Astrophysics Data System (ADS)

    Favarel, C.; Champier, D.; Bédécarrats, J. P.; Kousksou, T.; Strub, F.

    2012-06-01

    According to the International Energy Agency, 1.4 billion people are without electricity in the poorest countries and 2.5 billion people rely on biomass to meet their energy needs for cooking in developing countries. The use of cooking stoves equipped with small thermoelectric generator to provide electricity for basic needs (LED, cell phone and radio charging device) is probably a solution for houses far from the power grid. The cost of connecting every house with a landline is a lot higher than dropping thermoelectric generator in each house. Thermoelectric generators have very low efficiency but for isolated houses, they might become really competitive. Our laboratory works in collaboration with plane`te-bois (a non governmental organization) which has developed energy-efficient multifunction (cooking and hot water) stoves based on traditional stoves designs. A prototype of a thermoelectric generator (Bismuth Telluride) has been designed to convert a small part of the energy heating the sanitary water into electricity. This generator can produce up to 10 watts on an adapted load. Storing this energy in a battery is necessary as the cooking stove only works a few hours each day. As the working point of the stove varies a lot during the use it is also necessary to regulate the electrical power. An electric DC DC converter has been developed with a maximum power point tracker (MPPT) in order to have a good efficiency of the electronic part of the thermoelectric generator. The theoretical efficiency of the MMPT converter is discussed. First results obtained with a hot gas generator simulating the exhaust of the combustion chamber of a cooking stove are presented in the paper.

  10. Proinflammatory effects of cookstove emissions on human bronchial epithelial cells.

    PubMed

    Hawley, B; Volckens, J

    2013-02-01

    Approximately half of the world's population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many 'improved' stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner-burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 h following exposure. Cells exposed to emissions from the cleaner-burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional three-stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. Emissions from more efficient, cleaner-burning cookstoves produced less inflammation in well-differentiated bronchial lung cells. The results support evidence that more efficient cookstoves can reduce the health burden associated with exposure to indoor pollution from the combustion of biomass. © 2012 John Wiley & Sons A/S.

  11. Modeling emission rates and exposures from outdoor cooking

    NASA Astrophysics Data System (ADS)

    Edwards, Rufus; Princevac, Marko; Weltman, Robert; Ghasemian, Masoud; Arora, Narendra K.; Bond, Tami

    2017-09-01

    Approximately 3 billion individuals rely on solid fuels for cooking globally. For a large portion of these - an estimated 533 million - cooking is outdoors, where emissions from cookstoves pose a health risk to both cooks and other household and village members. Models that estimate emissions rates from stoves in indoor environments that would meet WHO air quality guidelines (AQG), explicitly don't account for outdoor cooking. The objectives of this paper are to link health based exposure guidelines with emissions from outdoor cookstoves, using a Monte Carlo simulation of cooking times from Haryana India coupled with inverse Gaussian dispersion models. Mean emission rates for outdoor cooking that would result in incremental increases in personal exposure equivalent to the WHO AQG during a 24-h period were 126 ± 13 mg/min for cooking while squatting and 99 ± 10 mg/min while standing. Emission rates modeled for outdoor cooking are substantially higher than emission rates for indoor cooking to meet AQG, because the models estimate impact of emissions on personal exposure concentrations rather than microenvironment concentrations, and because the smoke disperses more readily outdoors compared to indoor environments. As a result, many more stoves including the best performing solid-fuel biomass stoves would meet AQG when cooking outdoors, but may also result in substantial localized neighborhood pollution depending on housing density. Inclusion of the neighborhood impact of pollution should be addressed more formally both in guidelines on emissions rates from stoves that would be protective of health, and also in wider health impact evaluation efforts and burden of disease estimates. Emissions guidelines should better represent the different contexts in which stoves are being used, especially because in these contexts the best performing solid fuel stoves have the potential to provide significant benefits.

  12. Measurement and modeling of indoor air pollution in rural households with multiple stove interventions in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Chowdhury, Zohir; Campanella, Luke; Gray, Christen; Al Masud, Abdullah; Marter-Kenyon, Jessica; Pennise, David; Charron, Dana; Zuzhang, Xia

    2013-03-01

    In the developing world, indoor air pollution (IAP) created from solid fuel used in traditional biomass cook stoves is a leading contributor of poor respiratory health, global burden of disease, and greenhouse pollutant emissions. In the present study, we piloted an experimental cross-sectional monitoring and evaluation design with 30 households in rural Lijiang and Deqin counties in northwest Yunnan province, China. This approach offers the ability to examine the effectiveness of improved cook stove (ICS) programs with a much smaller sample size than the typical population based pre- and post-intervention study that requires a large sample representative of the population. Continuous PM2.5 was measured with the UCB (currently known as UCB-PATS) and the TSI DustTrak and continuous CO was measured with the HOBO CO logger. Using the traditional method of cooking and heating, mean 24-h PM2.5 and CO concentrations in the kitchen were measured in the range of 0.15-0.71 mg m-3 for PM2.5 and 3.0-11 ppm for CO. These concentrations were compared to using a combination of improved stoves in the kitchen where PM2.5 and CO concentrations were measured in the range of 0.08-0.18 mg m-3 for PM2.5 and 0.7-5.5 ppm for CO. These concentrations yielded statistically significant reduction in IAP when replacing the traditional fireplace or traditional stove with an improved stove combination. Finally, we show a strong correlation between CO and PM2.5 (R2 = 0.72-0.76). The combination of this experimental design along with the monitoring and evaluation protocol presented here may provide a robust framework to rapidly assess the effectiveness of ICS interventions in progress.

  13. FIELD PERFORMANCE OF WOODBURNING STOVES IN CRESTED BUTTE, COLORADO

    EPA Science Inventory

    The paper discusses field emissions from woodstoves measured in Crested Butte, Colorado, during the winters of 1988-89 and 1989-90. Both particulate matter and carbon monoxide emissions were measured. The database from this work is large, including conventional stoves and EPA-cer...

  14. 75 FR 1333 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... KOREA: Top-of-the Stove Stainless Steel Cooking Ware A-580-601 1/1/09 - 12/31/09 THAILAND: Prestressed...-of-the-Stove Stainless Steel Cooking Ware C-580-602 1/1/09 - 12/31/09 Suspension Agreements MEXICO...

  15. IMPACT OF AN INDOOR COOK STOVE INTERVENTION ON MEASURES OF SYSTEMIC INFLAMMATION

    EPA Science Inventory

    Background and Aims: Approximately three billion people use inefficient and poorly-vented indoor cook stoves, which can result in high indoor air pollution concentrations. Few studies have evaluated the cardiovascular effects of indoor biomass burning. Methods: In this pilot s...

  16. Flame burns involving kerosene pressure stoves in India.

    PubMed

    Sawhney, C P

    1989-12-01

    The author has analysed 339 patients with extensive burns admitted to a teaching hospital and found them to be most common in poor socioeconomic groups with low incomes, poor housing and illiteracy. Thermal injuries afflicted 89 per cent of the patients and were generally accidental and occurred in homes with floor-level cooking: chemical and electrical burns (the remaining 11 per cent) were uncommon. Kerosene pressure stove accidents were a common cause of thermal burns and occurred in 65 per cent of the patients. These were reported in both sexes but were 3.5 times more common in females. Mishandling of kerosene pressure stoves was the commonest cause and occurred in 65.7 per cent of the patients and the next most common cause was wearing loose garments. Kerosene pressure stove accidents occurred commonly in the age group 16-35 years and were rare in other age groups. These burns were relatively more extensive, deep and carried a high mortality.

  17. The intensive margin of technology adoption--Experimental evidence on improved cooking stoves in rural Senegal.

    PubMed

    Bensch, Gunther; Peters, Jörg

    2015-07-01

    Today, almost 3 billion people in developing countries rely on biomass as primary cooking fuel, with profound negative implications for their well-being. Improved biomass cooking stoves are alleged to counteract these adverse effects. This paper evaluates take-up and impacts of low-cost improved stoves through a randomized controlled trial. The randomized stove is primarily designed to curb firewood consumption, but not smoke emissions. Nonetheless, we find considerable effects not only on firewood consumption, but also on smoke exposure and, consequently, smoke-related disease symptoms. The reduced smoke exposure results from behavioural changes in terms of increased outside cooking and a reduction in cooking time. We conclude that in order to assess the effectiveness of a technology-oriented intervention, it is critical to not only account for the incidence of technology adoption - the extensive margin - but also for the way the new technology is used - the intensive margin. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Quality of charcoal produced using micro gasification and how the new cook stove works in rural Kenya

    NASA Astrophysics Data System (ADS)

    Njenga, Mary; Mahmoud, Yahia; Mendum, Ruth; Iiyama, Muyiki; Jamnadass, Ramni; Roing de Nowina, Kristina; Sundberg, Cecilia

    2016-09-01

    Wood based energy is the main source of cooking and heating fuel in Sub-Saharan Africa. Its use rises as the population increases. Inefficient cook stoves result in fuel wastage and health issues associated with smoke in the kitchen. As users are poor women, they tend not to be consulted on cook stove development, hence the need for participatory development of efficient woodfuel cooking systems. This paper presents the findings of a study carried out in Embu, Kenya to assess energy use efficiency and concentrations of carbon monoxide and fine particulate matter from charcoal produced using gasifier cook stoves, compared to conventional wood charcoal. Charcoal made from Grevillea robusta prunings, Zea mays cob (maize cob) and Cocos nucifera (coconut shells) had calorific values of 26.5 kJ g-1, 28.7 kJ g-1 and 31.7 kJ g-1 respectively, which are comparable to conventional wood charcoal with calorific values of 33.1 kJ g-1. Cooking with firewood in a gasifier cook stove and use of the resultant charcoal as by-product to cook another meal in a conventional charcoal stove saved 41% of the amount of fuel compared to cooking with firewood in the traditional three stone open fire. Cooking with firewood based on G. robusta prunings in the traditional open fire resulted in a concentration of fine particulate matter of 2600 μg m-3, which is more than 100 times greater than from cooking with charcoal made from G. robusta prunings in a gasifier. Thirty five percent of households used the gasifier for cooking dinner and lunch, and cooks preferred using it for food that took a short time to prepare. Although the gasifier cook stove is energy and emission efficient there is a need for it to be developed further to better suit local cooking preferences. The energy transition in Africa will have to include cleaner and more sustainable wood based cooking systems.

  19. Piloting improved cookstoves in India.

    PubMed

    Lewis, Jessica J; Bhojvaid, Vasundhara; Brooks, Nina; Das, Ipsita; Jeuland, Marc A; Patange, Omkar; Pattanayak, Subhrendu K

    2015-01-01

    Despite the potential of improved cookstoves to reduce the adverse environmental and health impacts of solid fuel use, their adoption and use remains low. Social marketing-with its focus on the marketing mix of promotion, product, price, and place-offers a useful way to understand household behaviors and design campaigns to change biomass fuel use. We report on a series of pilots across 3 Indian states that use different combinations of the marketing mix. We find sales varying from 0% to 60%. Behavior change promotion that combined door-to-door personalized demonstrations with information pamphlets was effective. When given a choice amongst products, households strongly preferred an electric stove over improved biomass-burning options. Among different stove attributes, reduced cooking time was considered most valuable by those adopting a new stove. Households clearly identified price as a significant barrier to adoption, while provision of discounts (e.g., rebates given if households used the stove) or payments in installments were related to higher purchase. Place-based factors such as remoteness and nongovernmental organization operations significantly affected the ability to supply and convince households to buy and use improved cookstoves. Collectively, these pilots point to the importance of continued and extensive testing of messages, pricing models, and different stove types before scale-up. Thus, we caution that a one-size-fits-all approach will not boost improved cookstove adoption.

  20. In-field measurements of PCDD/F emissions from domestic heating appliances for solid fuels.

    PubMed

    Hübner, C; Boos, R; Prey, T

    2005-01-01

    Within this project the emissions into the atmosphere of polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) of 30 domestic heating appliances in Austrian households were tested. The appliances were single stoves (kitchen stove, continuous burning stove and tiled stove) and central heating boilers for solid fuels up to a nominal heat input of 50 kW. A main objective of this survey was to determine the PCDD/F emissions of domestic heating units under routine conditions. Therefore, the habitual combustion conditions used by the operators were not influenced. The original fuels and lightning supports were used and the operation of the units was carried out by the householders according to their usual practice. The data obtained were used to calculate in-field PCDD/F-emission factors. Most of the appliances have shown PCDD/F emissions within a concentration range of 0.01-0.3 ng TEQ/MJ. Modern fan-assisted wood heating boilers with afterburning and units for continuously burning of wood chips and wood pellets had the lowest emissions. High emissions were caused by unsuitable heating habits such as combustion of wastes and inappropriate operation of the appliances. There were only small differences between single stoves and central heating boilers or between wood and coal-fired appliances. The emission factors calculated are higher than those cited in literature, which are mainly derived from trials on test stands under laboratory conditions.

  1. Test Report - StoveTeam International, Ecocina Stove with Wood Fuel - Air Pollutant Emissions and Fuel Efficiency

    EPA Science Inventory

    Test results were obtained in accordance with ISO (International Organization for Standardization) IWA (International Workshop Agreement) 11:2012 that was unanimously affirmed by more than 90 stakeholders at the ISO International Workshop on Cookstoves on February 28-29, 2012 in ...

  2. Erythema ab igne of shins: a kerosene stove-induced prototype in diabetics.

    PubMed

    Milgrom, Y; Sabag, T; Zlotogorski, A; Heyman, S N

    2013-01-01

    A patient with erythema ab igne of shins is presented, caused by repeated thermal injury induced by a heating stove placed between the knees. This injury pattern has been repeatedly identified in diabetic patients involved in similar heating practice, underscoring a possible predisposition related to diabetic neuropathy.

  3. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    EPA Science Inventory

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  4. Test Report - In Stove 60-Liter Institutional Stove with Wood Fuel - Air Pollutant Emissions and Fuel Efficiency

    EPA Science Inventory

    Test results were obtained in accordance with ISO (International Organization for Standardization) IWA (International Workshop Agreement) 11:2012 that was unanimously affirmed by more than 90 stakeholders at the ISO International Workshop on Cookstoves on February 28-29, 2012 in ...

  5. FIELD PERFORMANCE OF WOODBURNING STOVES IN COLORADO DURING THE 1995-96 HEATING SEASON

    EPA Science Inventory

    The report gives results of evaluations of the field performance of 13 EPA-certified woodburning stoves in Crested Butte and Curecanti National Park, CO, during the winter of 1995-96. Measurements included particulate matter (PM), carbon monoxide (CO), and weekly average burn rat...

  6. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources

    NASA Astrophysics Data System (ADS)

    Jayarathne, Thilina; Stockwell, Chelsea E.; Bhave, Prakash V.; Praveen, Puppala S.; Rathnayake, Chathurika M.; Robiul Islam, Md.; Panday, Arnico K.; Adhikari, Sagar; Maharjan, Rashmi; Goetz, J. Douglas; DeCarlo, Peter F.; Saikawa, Eri; Yokelson, Robert J.; Stone, Elizabeth A.

    2018-02-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and heating fire. Fuel-based emission factors (EFs; with units of pollutant mass emitted per kilogram of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced-draft zigzag brick kiln, EFPM2.5 ranged from 12 to 19 g kg-1 with major contributions from OC (7 %), sulfate expected to be in the form of sulfuric acid (31.9 %), and other chemicals not measured (e.g., particle-bound water). For the clamp kiln, EFPM2.5 ranged from 8 to 13 g kg-1, with major contributions from OC (63.2 %), sulfate (23.4 %), and ammonium (16 %). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4 ± 1.2 g kg-1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125 ± 23 g kg-1. Garbage burning emissions contained triphenylbenzene and relatively high concentrations of heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and three-stone cooking fires. The comparisons of different cooking stoves and cooking fires revealed the highest PM emissions from three-stone cooking fires (7.6-73 g kg-1), followed by traditional mud stoves (5.3-19.7 g kg-1), mud stoves with a chimney for exhaust (3.0-6.8 g kg-1), rocket stoves (1.5-7.2 g kg-1), induced-draft stoves (1.2-5.7 g kg-1), and the bhuse chulo stove (3.2 g kg-1), while biogas had no detectable PM emissions. Idling motorcycle emissions were evaluated before and after routine servicing at a local shop, which decreased EFPM2.5 from 8.8 ± 1.3 to 0.71 ± 0.45 g kg-1 when averaged across five motorcycles. Organic species analysis indicated that this reduction in PM2.5 was largely due to a decrease in emission of motor oil, probably from the crankcase. The EF and chemical emissions profiles developed in this study may be used for source apportionment and to update regional emission inventories.

  7. Technology Innovations to Improve Biomass Cookstoves to Meet Tier 4 Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Still, Dean K; Hatfield, Micheal S

    Technology Innovations to Improve Biomass Cookstoves to Meet Tier 4 Standards. Protecting public health has become a major motivation for investigating how improved cook stoves might function as a viable intervention. Currently, the great majority of cookstoves for sale in the developing world were not designed for this purpose but instead success was based on criteria such as reduced fuel use, affordability, and ease of use. With DOE funding Aprovecho Research Center spent three years creating stoves using an iterative development and modeling approach resulting in four stoves that in lab tests met the World Health Organization (2014) intermediate ratemore » vented targets for PM2.5 and for CO.« less

  8. 19. RUSSIAN STOVE IN THE INDIAN HOUSE. FIREBOX IS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. RUSSIAN STOVE IN THE INDIAN HOUSE. FIREBOX IS AT THE LOWER RIGHT. THE FOOT-POWERED POTTER'S WHEEL IN THE BACKGROUND WAS COLLECTED BY HENRY MERCER, BUT WAS NOT USED IN PRODUCTION. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  9. The provision of stove timers to individuals with cognitive impairment.

    PubMed

    Nygård, Louise; Starkhammar, Sofia; Lilja, Margareta

    2008-03-01

    The aim of this study was to identify the characteristics of persons who were provided with timing devices on stoves, and to investigate the application procedure and recommendations for timer options. The case files at an Agency for Home Modifications in an urban community in Sweden during 2002 (n = 945) were audited. The sample was divided into two groups: those diagnosed or suspected of dementia or age-related memory deficits (n = 788), and those with other diagnoses (n = 151). Overall, the applicants for stove timers were elderly females, living alone. Assistance with the application forms by health professionals was common in both groups. However, the options available for tailoring the use of the device were not used consistently and the opportunity for professional follow-up appeared limited. The device seemed to be used as a safety precaution rather than as a device to support independent activity performance based on individual users' needs. The results indicate that improvements in the implementation and provision of stove timers could be achieved through education and collaboration between different stakeholders.

  10. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    NASA Astrophysics Data System (ADS)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  11. Does pan diameter influence carbon monoxide levels during heating of water to boiling point with a camping stove?

    PubMed

    Leigh-Smith, Simon; Stevenson, Richard; Watt, Martin; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether pan diameter influences carbon monoxide (CO) concentration during heating of water to boiling point with a camping stove. The hypothesis was that increasing pan diameter increases CO concentration because of greater flame dispersal and a larger flame. This was a randomized, prospective study. A Coleman Dual Fuel 533 stove was used to heat pans of water to boiling point, with CO concentration monitored every 30 seconds for 5 minutes. The stove was inside a partially ventilated 200-L cardboard box model that was inside an environmental chamber at -6 degrees C. Water temperature, water volume, and flame characteristics were all standardized. Ten trials were performed for each of 2 pan diameters (base diameters of 165 mm [small] and 220 mm [large]). There was a significant difference (P = .002) between the pans for CO levels at each measurement interval from 60 seconds onward. These differences were markedly larger after 90 seconds, with a mean difference of 185 ppm (95% CI 115, 276 ppm) for all the results from 120 seconds onwards. This study has shown that there is significantly higher CO production with a large-diameter pan compared with a small-diameter pan. These findings were evident by using a camping stove to heat water to boiling point when a maximum blue flame was present throughout. Thus, in enclosed environments it is recommended that small-diameter pans be used in an attempt to prevent high CO levels.

  12. Assessing the impact of water filters and improved cook stoves on drinking water quality and household air pollution: a randomised controlled trial in Rwanda.

    PubMed

    Rosa, Ghislaine; Majorin, Fiona; Boisson, Sophie; Barstow, Christina; Johnson, Michael; Kirby, Miles; Ngabo, Fidele; Thomas, Evan; Clasen, Thomas

    2014-01-01

    Diarrhoea and respiratory infections remain the biggest killers of children under 5 years in developing countries. We conducted a 5-month household randomised controlled trial among 566 households in rural Rwanda to assess uptake, compliance and impact on environmental exposures of a combined intervention delivering high-performance water filters and improved stoves for free. Compliance was measured monthly by self-report and spot-check observations. Semi-continuous 24-h PM2.5 monitoring of the cooking area was conducted in a random subsample of 121 households to assess household air pollution, while samples of drinking water from all households were collected monthly to assess the levels of thermotolerant coliforms. Adoption was generally high, with most householders reporting the filters as their primary source of drinking water and the intervention stoves as their primary cooking stove. However, some householders continued to drink untreated water and most continued to cook on traditional stoves. The intervention was associated with a 97.5% reduction in mean faecal indicator bacteria (Williams means 0.5 vs. 20.2 TTC/100 mL, p<0.001) and a median reduction of 48% of 24-h PM2.5 concentrations in the cooking area (p = 0.005). Further studies to increase compliance should be undertaken to better inform large-scale interventions. Clinicaltrials.gov; NCT01882777; http://clinicaltrials.gov/ct2/results?term=NCT01882777&Search=Search.

  13. Development and optimization of a stove-powered thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Mastbergen, Dan

    Almost a third of the world's population still lacks access to electricity. Most of these people use biomass stoves for cooking which produce significant amounts of wasted thermal energy, but no electricity. Less than 1% of this energy in the form of electricity would be adequate for basic tasks such as lighting and communications. However, an affordable and reliable means of accomplishing this is currently nonexistent. The goal of this work is to develop a thermoelectric generator to convert a small amount of wasted heat into electricity. Although this concept has been around for decades, previous attempts have failed due to insufficient analysis of the system as a whole, leading to ineffective and costly designs. In this work, a complete design process is undertaken including concept generation, prototype testing, field testing, and redesign/optimization. Detailed component models are constructed and integrated to create a full system model. The model encompasses the stove operation, thermoelectric module, heat sinks, charging system and battery. A 3000 cycle endurance test was also conducted to evaluate the effects of operating temperature, module quality, and thermal interface quality on the generator's reliability, lifetime and cost effectiveness. The results from this testing are integrated into the system model to determine the lowest system cost in $/Watt over a five year period. Through this work the concept of a stove-based thermoelectric generator is shown to be technologically and economically feasible. In addition, a methodology is developed for optimizing the system for specific regional stove usage habits.

  14. Assessing the Impact of Water Filters and Improved Cook Stoves on Drinking Water Quality and Household Air Pollution: A Randomised Controlled Trial in Rwanda

    PubMed Central

    Rosa, Ghislaine; Majorin, Fiona; Boisson, Sophie; Barstow, Christina; Johnson, Michael; Kirby, Miles; Ngabo, Fidele; Thomas, Evan; Clasen, Thomas

    2014-01-01

    Diarrhoea and respiratory infections remain the biggest killers of children under 5 years in developing countries. We conducted a 5-month household randomised controlled trial among 566 households in rural Rwanda to assess uptake, compliance and impact on environmental exposures of a combined intervention delivering high-performance water filters and improved stoves for free. Compliance was measured monthly by self-report and spot-check observations. Semi-continuous 24-h PM2.5 monitoring of the cooking area was conducted in a random subsample of 121 households to assess household air pollution, while samples of drinking water from all households were collected monthly to assess the levels of thermotolerant coliforms. Adoption was generally high, with most householders reporting the filters as their primary source of drinking water and the intervention stoves as their primary cooking stove. However, some householders continued to drink untreated water and most continued to cook on traditional stoves. The intervention was associated with a 97.5% reduction in mean faecal indicator bacteria (Williams means 0.5 vs. 20.2 TTC/100 mL, p<0.001) and a median reduction of 48% of 24-h PM2.5 concentrations in the cooking area (p = 0.005). Further studies to increase compliance should be undertaken to better inform large-scale interventions. Trial registration: Clinicaltrials.gov; NCT01882777; http://clinicaltrials.gov/ct2/results?term=NCT01882777&Search=Search PMID:24614750

  15. Residential indoor PM2.5 in wood stove homes: follow-up of the Libby changeout program

    PubMed Central

    Noonan, Curtis W.; Navidi, William; Sheppard, Lianne; Palmer, Christopher P.; Bergauff, Megan; Hooper, Kathi; Ward, Tony J.

    2012-01-01

    In 2005 through 2008 a small rural mountain valley community engaged in a wood stove changeout program to address concerns of poor ambient air quality. During this program we assessed changes to indoor air quality before and after the introduction of a new, lower emission wood stove. We previously reported a greater than 70% reduction in indoor PM2.5 concentrations in homes following the installation of a new EPA-certified stove within the home. We report here on follow-up of the experiences in these and other homes over three winters of sample collection. In 21 homes, we compared pre-changeout PM2.5 concentrations (mean (sd) = 45.0 (33.0) μg/m3) to multiple post-changeout measures of PM2.5 concentrations using a DustTrak. The mean reduction (and 95% confidence interval) from pre-changeout to post-changeout was −18.5 μg/m3 (−31.9, −5.2), adjusting for ambient PM2.5, ambient temperature, and other factors. Findings across homes and across years were highly variable, and a subset of homes did not experience a reduction in PM2.5 following changeout. Reductions were also observed for organic carbon, elemental carbon, and levoglucosan, but increases were observed for dehydroabietic acid and abietic acid. Despite overall improvements in indoor air quality, the varied response across homes may be due to factors other than the introduction of a new wood stove. PMID:22607315

  16. Impact of cleaner fuel use and improved stoves on acute respiratory infections: evidence from India.

    PubMed

    Lamichhane, Prabhat; Sharma, Anurag; Mahal, Ajay

    2017-11-01

    The use of cleaner fuel and improved stoves has been promoted as a means to lower harmful emissions from solid fuels. However, little is known about how exclusive use of cleaner fuels, mixed fuel use and improved stoves influences children's health. We compared the impact of using liquefied petroleum gas (LPG) exclusively with mixed fuel use (LPG plus polluting fuels) and with exclusive use of polluting fuels on acute respiratory infections (ARI) among 16 157 children 0-4 years of age from households in the 2012 Indian Human Development Survey. Inverse probability weighting (IPW) procedures for multiple treatments were used for this evaluation. Children from households using LPG had a 5.0% lower probability of reporting ARI relative to exclusive users of polluting fuels, with larger effects (10.7%) in rural households. The probability of ARI in households using improved stoves and mixed fuel use was also lower in rural households, by 2.9% and 2.8%, respectively. The magnitude of effect varied across population subgroups, with the highest effects for children living in households living in kachha (low quality material) houses households identified as poor. Use of LPG and improved stoves lowered the probability of ARI among children younger than 5 years. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Maximum Regional Emission Reduction Potential in Residential Sector Based on Spatial Distribution of Population and Resources

    NASA Astrophysics Data System (ADS)

    Winijkul, E.; Bond, T. C.

    2011-12-01

    In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with current emission in residential sector can be estimated, based on the cleanest plausible fuels and stove availability.

  18. Effect of a clean stove intervention on inflammatory biomarkers in pregnant women in Ibadan, Nigeria: A randomized controlled study.

    PubMed

    Olopade, Christopher O; Frank, Elizabeth; Bartlett, Emily; Alexander, Donee; Dutta, Anindita; Ibigbami, Tope; Adu, Damilola; Olamijulo, John; Arinola, Ganiyu; Karrison, Theodore; Ojengbede, Oladosu

    2017-01-01

    Exposure to household air pollution (HAP) has been linked to systemic inflammation. We determined the impact of transition from traditional firewood/kerosene stove to bioethanol-burning stove on inflammatory biomarkers in pregnant Nigerian women. Women (n=324), cooking with kerosene/firewood, were recruited during their first trimester of pregnancy from June 2013-October 2015 and were randomly allocated to either control (n=162) or intervention (n=162) group using web-based randomization. Controls continued to use their own firewood/kerosene stove, while intervention participants received bioethanol CleanCook stoves. Serum concentrations of retinol-binding protein (RBP), malondialdehyde (MDA), tumor necrosis factor alpha (TNF)-α, interleukin (IL)-6, and IL-8 were measured by ELISA. After excluding 53 women (loss of follow-up, untimely biomarker assessments, incorrect dates of enrollment), data from 271 women were included in analysis. Mean (SD) change in RBP, MDA, TNF-α, IL-6, and IL-8 between baseline and third trimester was -2.16 (4.47), -19.6 (46.4), 3.72 (37.2), 0.51 (14.4), and 13.2 (197), respectively, in intervention and -2.25 (4.30), -24.6 (43.6), 7.17 (32.6), -1.79, (11.4), and 31.3 (296) in control groups. None of these changes differed significantly between the two treatment arms. However, changes from baseline in TNF-α levels were significantly different between intervention and control groups in subset of women (n=99) using firewood before trial (-7.03 [32.9] vs. +12.4 [33.6]; 95% CI for group difference: -35.4 to -3.4, p=0.018). Decrease in TNF-α concentration from baseline to third trimesters in intervention group women could indicate reduced cardiovascular stress and prothrombotic effects from decreased HAP. Our findings suggest that ethanol-burning stoves may mitigate cardiovascular health risks. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Assessing the impact of a wood stove replacement program on air quality and children's health.

    PubMed

    Noonan, Curtis W; Ward, Tony J; Navidi, William; Sheppard, Lianne; Bergauff, Megan; Palmer, Chris

    2011-12-01

    Many rural mountain valley communities experience elevated ambient levels of fine particulate matter (PM*) in the winter, because of contributions from residential wood-burning appliances and sustained temperature inversion periods during the cold season. A wood stove change-out program was implemented in a community heavily affected by wood-smoke-derived PM2.5 (PM < or = 2.5 microm in aerodynamic diameter). The objectives of this study were to evaluate the impact of this intervention program on ambient and indoor PM2.5 concentrations and to identify possible corresponding changes in the frequency of childhood respiratory symptoms and infections and illness-related school absences. Over 1100 old wood stoves were replaced with new EPA-certified wood stoves or other heating sources. Ambient PM2.5 concentrations were 30% lower in the winter after the changeout program, compared with baseline winters, which brought the community's ambient air within the PM2.5 standards of the U.S. Environmental Protection Agency (U.S. EPA). The installation of a new wood stove resulted in an overall reduction in indoor PM2.5 concentrations in a small sample of wood-burning homes, but the effects were highly variable across homes. Community-level reductions in wood-smoke-derived PM2.5 concentration were associated with decreased reports of childhood wheeze and of other childhood respiratory health conditions. The association was not limited to children living in homes with wood stoves nor does it appear to be limited to susceptible children (e.g., children with asthma). Community-level reductions in wood-smoke-derived PM2.5 concentration were also associated with lower illness-related school absences among older children, but this finding was not consistent across all age-groups. This community-level intervention provided a unique opportunity to prospectively observe exposure and outcome changes resulting from a targeted air pollution reduction strategy.

  20. Strategies for Developing and Implementing Longitudinal and Comprehensive Curricular Content in the Domestic Living Domain.

    ERIC Educational Resources Information Center

    Sweet, Mark; And Others

    Issues involved in domestic living skills training with severely handicapped students are examined. The importance of verifying subenvironments within the student's home (e.g., to teach operation of a gas stove to a student with a gas stove at home) is emphasized. Instructional emphases are delineated for early childhood, elementary school, middle…

  1. Differential effects of smoking on lung cancer mortality before and after household stove improvement in Xuanwei, China.

    PubMed

    Lee, K-M; Chapman, R S; Shen, M; Lubin, J H; Silverman, D T; He, X; Hosgood, H D; Chen, B E; Rajaraman, P; Caporaso, N E; Fraumeni, J F; Blair, A; Lan, Q

    2010-08-24

    In Xuanwei County, Yunnan Province, China, lung cancer mortality rates in both males and females are among the highest in China. We evaluated differential effects of smoking on lung cancer mortality before and after household stove improvement with chimney to reduce exposure to smoky coal emissions in the unique cohort in Xuanwei, China. Effects of independent variables on lung cancer mortality were measured as hazard ratios and 95% confidence intervals using a multivariable Cox regression model that included separate time-dependent variables for smoking duration (years) before and after stove improvement. We found that the effect of smoking on lung cancer risk becomes considerably stronger after chimney installation and consequent reduction of indoor coal smoke exposure.

  2. Evaluation of Behavior Change Communication Campaigns to Promote Modern Cookstove Purchase and Use in Lower Middle Income Countries

    PubMed Central

    Johnson, Michael; Jagoe, Kirstie; Charron, Dana; Young, Bonnie N.; Rahman, A. S. M. Mashiur; Omolloh, Daniel; Ipe, Julie

    2017-01-01

    Nearly three billion people worldwide burn solid fuels and kerosene in open fires and inefficient stoves to cook, light, and heat their homes. Cleaner-burning stoves reduce emissions and can have positive health, climate, and women’s empowerment benefits. This article reports on the protocol and baseline data from the evaluation of four behavior change communication (BCC) campaigns carried out in lower to middle income countries aimed at promoting the sale and use of cleaner-burning stoves. Interventions implemented in Bangladesh, Kenya, and Nigeria are using a range of BCC methods including mass media, digital media, outdoor advertising, and inter-personal communication. The mixed methods evaluation comprises three large-scale surveys: one pre-BCC and two follow-ups, along with smaller scale assessments of stove uptake and patterns of use. Baseline results revealed varying levels of awareness of previous promotions and positive attitudes and beliefs about modern (i.e., relatively clean-burning) cookstoves. Differences in cookstove preferences and behaviors by gender, socio-demographics, media use, and country/region were observed that may affect outcomes. Across all three countries, cost (lack of funds) a key perceived barrier to buying a cleaner-burning stove. Future multivariate analyses will examine potential dose-response effects of BCC on cookstove uptake and patterns of use. BCC campaigns have the potential to promote modern cookstoves at scale. More research on campaign effectiveness is needed, and on how to optimize messages and channels. This evaluation builds on a limited evidence base in the field. PMID:29271949

  3. Analysis of the chemical composition of ultrafine particles from two domestic solid biomass fired room heaters under simulated real-world use

    NASA Astrophysics Data System (ADS)

    Ozgen, Senem; Becagli, Silvia; Bernardoni, Vera; Caserini, Stefano; Caruso, Donatella; Corbella, Lorenza; Dell'Acqua, Manuela; Fermo, Paola; Gonzalez, Raquel; Lonati, Giovanni; Signorini, Stefano; Tardivo, Ruggero; Tosi, Elisa; Valli, Gianluigi; Vecchi, Roberta; Marinovich, Marina

    2017-02-01

    Two common types of wood (beech and fir) were burned in commercial pellet (11.1 kW) and wood (8.2 kW) stoves following a combustion cycle simulating the behavior of a real-world user. Ultrafine particulate matter (UFP, dp < 100 nm) was sampled with three parallel multistage impactors and analyzed for metals, main water soluble ions, anhydrosugars, total carbon, and PAH content. The measurement of the number concentration and size distribution was also performed by a fourth multistage impactor. UFP mass emission factors averaged to 424 mg/kgfuel for all the tested stove and wood type (fir, beech) combinations except for beech log burning in the wood stove (838 mg/kgfuel). Compositional differences were observed for pellets and wood UFP samples, where high TC levels characterize the wood log combustion and potassium salts are dominant in every pellet sample. Crucial aspects determining the UFP composition in the wood stove experiments are critical situations in terms of available oxygen (a lack or an excess of combustion air) and high temperatures. Whereas for the automatically controlled pellets stove local situations (e.g., hindered air-fuel mixing due to heaps of pellets on the burner pot) determine the emission levels and composition. Wood samples contain more potentially carcinogenic PAHs with respect to pellets samples. Some diagnostic ratios related to PAH isomers and anhydrosugars compiled from experimental UFP data in the present study and compared to literature values proposed for the emission source discrimination for atmospheric aerosol, extend the evaluation usually limited to higher particle size fractions also to UFP.

  4. Better Protection of Glass-Fronted Stoves Is Needed in Sweden Because of the Increase in the Number of Contact Burns Among Small Children.

    PubMed

    Zötterman, Johan; Steinvall, Ingrid; Elmasry, Moustafa

    2018-06-13

    The impression among the attending physicians at their Burn Centre is that the number of contact burns caused by glass-fronted stoves is increasing, particularly in the youngest group of patients. It is an interesting subgroup, as these injuries are preventable. The authors' aim of this study was to find out whether the incidence of burns after contact with glass-fronted stoves has increased.The authors included all patients aged between 0 and 3.9 years who presented to the National Burn Centre during the period 2008-2015 with contact burn injuries caused by glass-fronted stoves. The change in incidence over time was calculated from national records and analyzed with simple linear regression.Fifty-six patients were included, of whom 20 were treated during the past 2 years of the study. Thirty-seven of the 56 were boys (66%), median (10-90 percentiles) age was 1.1 (0.7-2.5) years, percentage total body surface area burned was 0.6% (0.1-2.0), 12 were admitted for overnight stay in hospital, and seven needed operations. The incidence was 0.34/100 000 children-years during the first 2 years, and it was three times as high during the past 2 years. The increase in incidence was 0.24/100 000 children-years by each 2-year period (P = .02).The authors' results indicate that contact burns among children caused by glass-fronted stoves are increasing in Sweden. The authors propose that there should be a plan for their prevention put in place.

  5. Evaluation of Behavior Change Communication Campaigns to Promote Modern Cookstove Purchase and Use in Lower Middle Income Countries.

    PubMed

    Evans, William Douglas; Johnson, Michael; Jagoe, Kirstie; Charron, Dana; Young, Bonnie N; Rahman, A S M Mashiur; Omolloh, Daniel; Ipe, Julie

    2017-12-22

    Nearly three billion people worldwide burn solid fuels and kerosene in open fires and inefficient stoves to cook, light, and heat their homes. Cleaner-burning stoves reduce emissions and can have positive health, climate, and women's empowerment benefits. This article reports on the protocol and baseline data from the evaluation of four behavior change communication (BCC) campaigns carried out in lower to middle income countries aimed at promoting the sale and use of cleaner-burning stoves. Interventions implemented in Bangladesh, Kenya, and Nigeria are using a range of BCC methods including mass media, digital media, outdoor advertising, and inter-personal communication. The mixed methods evaluation comprises three large-scale surveys: one pre-BCC and two follow-ups, along with smaller scale assessments of stove uptake and patterns of use. Baseline results revealed varying levels of awareness of previous promotions and positive attitudes and beliefs about modern (i.e., relatively clean-burning) cookstoves. Differences in cookstove preferences and behaviors by gender, socio-demographics, media use, and country/region were observed that may affect outcomes. Across all three countries, cost (lack of funds) a key perceived barrier to buying a cleaner-burning stove. Future multivariate analyses will examine potential dose-response effects of BCC on cookstove uptake and patterns of use. BCC campaigns have the potential to promote modern cookstoves at scale. More research on campaign effectiveness is needed, and on how to optimize messages and channels. This evaluation builds on a limited evidence base in the field.

  6. Self-rated health among Mayan women participating in a randomised intervention trial reducing indoor air pollution in Guatemala.

    PubMed

    Díaz, Esperanza; Bruce, Nigel; Pope, Dan; Díaz, Anaité; Smith, Kirk R; Smith-Sivertsen, Tone

    2008-06-05

    Indoor air pollution (IAP) from solid fuels is a serious health problem in low-income countries that can be alleviated using improved stoves. Although women are the principal users, few studies have investigated the self-assessed impact of the stoves on their health and lives. This study was conducted in rural highland Guatemala, involving 89 intervention and 80 control Mayan Indian young women (mean 27.8 years, SD 7.2). Outcomes were assessed after approximately 18 months use of the new stove. Our objectives were to compare self-rated health and change in health among women participating in a randomised control trial comparing a chimney stove with an open fire, to describe impacts on women's daily lives and their perceptions of how reduced kitchen smoke affects their own and their children's health. On intention-to-treat analysis, 52.8% of intervention women reported improvement in health, compared to 23.8% of control women (p < 0.001). Among 84 intervention women who reported reduced kitchen smoke as an important change, 88% linked this to improvement in their own health, particularly for non-respiratory symptoms (for example eye discomfort, headache); 57% linked reduced smoke to improvement in their children's health, particularly sore eyes. Women's perception of their health was improved, but although smoke reduction was valued, this was linked mainly with alleviation of non-respiratory symptoms like eye discomfort and headache. More focus on such symptoms may help in promoting demand for improved stoves and cleaner fuels, but education about more severe consequences of IAP exposure is also required.

  7. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    EPA Pesticide Factsheets

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  8. Berkeley Lighting Cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lask, Kathleen; Gadgil, Ashok

    A lighting cone is a simple metal cone placed on the fuel bed of a stove during ignition to act as a chimney, increasing the draft through the fuel bed. Many stoves tend to be difficult to light due to poor draft through the fuel bed, so lighting cones are used in various parts of the world as an inexpensive accessory to help with ignition.

  9. 76 FR 2708 - Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    .... 701- TA-267 and 731-TA-304 (Third Review)] Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From Korea AGENCY: United States International Trade Commission...-steel cooking ware from Taiwan and the antidumping and countervailing duty orders on imports of top-of...

  10. Factors Influencing Household Uptake of Improved Solid Fuel Stoves in Low- and Middle-Income Countries: A Qualitative Systematic Review

    PubMed Central

    Debbi, Stanistreet; Elisa, Puzzolo; Nigel, Bruce; Dan, Pope; Eva, Rehfuess

    2014-01-01

    Household burning of solid fuels in traditional stoves is detrimental to health, the environment and development. A range of improved solid fuel stoves (IS) are available but little is known about successful approaches to dissemination. This qualitative systematic review aimed to identify factors that influence household uptake of IS in low- and middle-income countries. Extensive searches were carried out and studies were screened and extracted using established systematic review methods. Fourteen qualitative studies from Asia, Africa and Latin-America met the inclusion criteria. Thematic synthesis was used to synthesise data and findings are presented under seven framework domains. Findings relate to user and stakeholder perceptions and highlight the importance of cost, good stove design, fuel and time savings, health benefits, being able to cook traditional dishes and cleanliness in relation to uptake. Creating demand, appropriate approaches to business, and community involvement, are also discussed. Achieving and sustaining uptake is complex and requires consideration of a broad range of factors, which operate at household, community, regional and national levels. Initiatives aimed at IS scale up should include quantitative evaluations of effectiveness, supplemented with qualitative studies to assess factors affecting uptake, with an equity focus. PMID:25123070

  11. Factors influencing household uptake of improved solid fuel stoves in low- and middle-income countries: a qualitative systematic review.

    PubMed

    Debbi, Stanistreet; Elisa, Puzzolo; Nigel, Bruce; Dan, Pope; Eva, Rehfuess

    2014-08-13

    Household burning of solid fuels in traditional stoves is detrimental to health, the environment and development. A range of improved solid fuel stoves (IS) are available but little is known about successful approaches to dissemination. This qualitative systematic review aimed to identify factors that influence household uptake of IS in low- and middle-income countries. Extensive searches were carried out and studies were screened and extracted using established systematic review methods. Fourteen qualitative studies from Asia, Africa and Latin-America met the inclusion criteria. Thematic synthesis was used to synthesise data and findings are presented under seven framework domains. Findings relate to user and stakeholder perceptions and highlight the importance of cost, good stove design, fuel and time savings, health benefits, being able to cook traditional dishes and cleanliness in relation to uptake. Creating demand, appropriate approaches to business, and community involvement, are also discussed. Achieving and sustaining uptake is complex and requires consideration of a broad range of factors, which operate at household, community, regional and national levels. Initiatives aimed at IS scale up should include quantitative evaluations of effectiveness, supplemented with qualitative studies to assess factors affecting uptake, with an equity focus.

  12. Carbonized mix kerosene and water with cavitation method as an alternative energy

    NASA Astrophysics Data System (ADS)

    Casnan, Irzaman

    2017-03-01

    The world's population continuously grows at a quarter million people per day. This fast-growing population had raised the world energy consumption up to 474 × 1018 J per year with 80 to 90 percent derived from the combustion of fossil fuels. It is estimated that the fossil energy will be lasted in 42 years. Rice husk is an alternative of non-fossil energy that may be utilized in traditional way of cooking (burning it in a traditional stove). However, burning the husk produces some carbon gasses that may pollute the air. In order to reduce the gas pollution, the gas may be mixed with kerosene and water using sonochemical technique to produce dry steam. This steam is a good fuel for a traditional stove. It is confirmed that 1 liter of water can be boiled in 11 minutes when the temperature of the water is 95°C while the stove is 264°C. the sonochemical technique had successfully increased the efficiency of the energy consumption of the stove up to 17%. The carbonized fuel is also not expensive since its cost is only around 6 C (IDR 570) for boiling 1 liter of water.

  13. Inspecting what you expect: Applying modern tools and techniques to evaluate the effectiveness of household energy interventions

    NASA Astrophysics Data System (ADS)

    Pillarisetti, Ajay

    Exposure to fine particles (PM2.5) resulting from solid fuel use for household energy needs - including cooking, heating, and lighting - is one of the leading causes of ill-health globally and is responsible for approximately 4 million premature deaths and 84 million lost disability-adjusted life years globally. The well-established links between cooking and ill-health are modulated by complex social, behavioral, technological, and environmental issues that pose unique challenges to efforts that seek to reduce this large health burden. Despite growing interest in the field - and numerous technical solutions that, in the laboratory at least, reduce emissions of harmful air pollutants from solid fuel combustion - there exists a need for refined tools, models, and techniques (1) for measuring environmental pollution in households using solid fuel, (2) for tracking adoption of interventions, and (3) for estimating the potential health benefits attributable to an intervention. Part of the need for higher spatial and temporal resolution data on particular concentrations and dynamics is being met by low-cost sensing platforms that provide large amounts of time-resolved data on critical parameters of interest, including PM2.5 concentrations and time-of-use metrics for heat-generating appliances, like stoves. Use of these sensors can result in non-trivial challenges, including those related to data management and analysis, and field logistics, but also enables novel lines of inquiry and insight. Chapter 2 presents a long-term deployment of real-time PM2.5 sensors in rural, solid-fuel-using kitchens, specifically seeking to evaluate how well commonly measured 24 or 48-hour samples represent long-term means. While short-term measures were poor predictors of long-term means, the dataset enabled evaluation of numerous sampling strategies - including sampling once per week, month, or season - that had much lower errors and higher probabilities of estimating the true mean. Chapters 3 and 4 describe the selection and deployment of 200 advanced cookstoves to pregnant women in rural Palwal District, Haryana, India. Chapter 3 focuses on selection and evaluation of an intervention stove in the community, including preliminary measurement of exposure to PM 2.5 and CO. These data suggest one method of piloting interventions and exposure assessment methods prior to larger rollouts to ensure community acceptability and feasibility. Chapter 4 specifically addresses adoption and use of the intervention stove over a period of approximately one year through the deployment of data-logging thermometers on 200 traditional and intervention stoves. Intervention stove use declined steadily over time and stabilized after approximately 200 days, while use of the traditional stove remained constant, emphasizing the need for monitoring both traditional and intervention stoves and for monitoring for periods of time beyond just the initial deployment to truly understand use. Chapter 4 additionally investigated intervention stove failures and how well short measures of stove use predict long-term trends (similar to the analysis performed in Chapter 2). Chapter 5 focuses on utilizing the best available knowledge of exposure-response relationships to estimate the potential health impacts of an intervention at the national level in a software package called HAPIT, the Household Air Pollution Intervention Tool. HAPIT combines background disease data from the 2010 Global Burden of Disease with demographic and socioeconomic data and relative risk estimates from the integrated exposure-response curves to estimate disability-adjusted life years (DALYs) and deaths that could be averted by an exposure-reducing household air pollution intervention. Chapter 5 outlines the methodologies powering HAPIT and contains two example scenarios - one in which open fires are replaced by well-operating chimney stoves, and a second where they are replaced by LPG - informed by data from the RESPIRE trial and ongoing work in Guatemala. Chapter 6 synthesizes work from the proceeding chapters and offers suggestions for future lines of inquiry.

  14. A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka.

    PubMed

    Chartier, R; Phillips, M; Mosquin, P; Elledge, M; Bronstein, K; Nandasena, S; Thornburg, V; Thornburg, J; Rodes, C

    2017-01-01

    Solid fuel burning cookstoves are a major source of household air pollution (HAP) and a significant environmental health risk in Sri Lanka. We report results of the first field study in Sri Lanka to include direct measurements of both real-time indoor concentrations and personal exposures of fine particulate matter (PM 2.5 ) in households using the two most common stove types in Sri Lanka. A purposive sample of 53 households was selected in the rural community of Kopiwatta in central Sri Lanka, roughly balanced for stove type (traditional or improved 'Anagi') and ventilation (chimney present or absent). At each household, 48-h continuous real-time measurements of indoor kitchen PM 2.5 and personal (primary cook) PM 2.5 concentrations were measured using the RTI MicroPEM ™ personal exposure monitor. Questionnaires were used to collect data related to household demographics, characteristics, and self-reported health symptoms. All primary cooks were female and of an average age of 47 years, with 66% having completed primary education. Median income was slightly over half the national median monthly income. Use of Anagi stoves was positively associated with a higher education level of the primary cook (P = 0.026), although not associated with household income (P = 0.18). The MicroPEM monitors were well-received by participants, and this study's valid data capture rate exceeded 97%. Participant wearing compliance during waking hours was on average 87.2% on Day 1 and 83.3% on Day 2. Periods of non-compliance occurred solely during non-cooking times. The measured median 48-h average indoor PM 2.5 concentration for households with Anagi stoves was 64 μg/m 3 if a chimney was present and 181 μg/m 3 if not. For households using traditional stoves, these values were 70 μg/m 3 if a chimney was present and 371 μg/m 3 if not. Overall, measured indoor PM 2.5 concentrations ranged from a minimum of 33 μg/m 3 to a maximum of 940 μg/m 3 , while personal exposure concentrations ranged from 34 to 522 μg/m 3 . Linear mixed effects modeling of the dependence of indoor concentrations on stove type and presence or absence of chimney showed a significant chimney effect (65% reduction; P < 0.001) and an almost significant stove effect (24% reduction; P = 0.054). Primary cooks in households without chimneys were exposed to substantially higher levels of HAP than those in households with chimneys, while exposures in households with traditional stoves were moderately higher than those with improved Anagi stoves. As expected, simultaneously measuring both indoor concentrations and personal exposure levels indicate significant exposure misclassification bias will likely result from the use of a stationary monitor as a proxy for personal exposure. While personal exposure monitoring is more complex and expensive than deploying simple stationary devices, the value an active personal PM monitor like the MicroPEM adds to an exposure study should be considered in future study designs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Phosgene Poisoning Caused by the Use of Chemical Paint Removers Containing Methylene Chloride in Ill-Ventilated Rooms Heated by Kerosene Stoves

    PubMed Central

    Gerritsen, W. B.; Buschmann, C. H.

    1960-01-01

    Two cases resembling poisoning by phosgene following the use of a paint remover containing methylene chloride in ill-ventilated rooms heated by an oil stove are described. Experiments carried out under similar conditions demonstrated the production of phosgene in toxic concentrations. The potential hazards from non-inflammable solvents are discussed. PMID:13827592

  16. Nitrogen dioxide and respiratory illness in children. Part II: Assessment of exposure to nitrogen dioxide.

    PubMed

    Lambert, W E; Samet, J M; Hunt, W C; Skipper, B J; Schwab, M; Spengler, J D

    1993-06-01

    Repeated measurements of nitrogen dioxide were obtained from 1988 to 1991 in the homes of 1,205 infants living in Albuquerque, NM. Passive diffusion samplers were used to obtain a series of two-week integrated measurements from the home of each infant for use in a cohort study of the relation of residential exposure to nitrogen dioxide and respiratory illnesses. Information on stove use and time spent inside the residence was collected at two-week and two-month intervals, respectively. During the winter, in the bedrooms of homes with gas cooking stoves, mean nitrogen dioxide concentrations were 21 parts per billion (ppb); mean concentrations in the living room and kitchen were 29 ppb and 34 ppb, respectively. In homes with electric cooking stoves, the mean bedroom concentration was 7 ppb during the winter. Lower indoor concentrations were observed during the summer in homes with both gas and electric stoves. On average, infants spent approximately 12.3 hours per day in their bedrooms, 7.3 hours in the living rooms, 35 minutes in the kitchens, and 3.8 hours out of their homes. (As a condition of participation, none of the infants spent more than 20 hours per week in day care outside of their homes). The mean time infants spent in the kitchen during cooking was approximately nine minutes per day. We tested whether exposures of infants living in homes with gas stoves could be reasonably estimated by measurements in the bedroom in comparison with time-weighted average concentrations based on time-activity data and simultaneous nitrogen dioxide measurements in the kitchen, living room, and bedroom. In 1,937 two-week intervals from 587 infants, 90% of time-weighted exposure (on the three-level classification used in this study) estimates were in agreement with estimates based on bedroom concentrations alone. The agreement of the time-weighted nitrogen dioxide exposure estimates with the bedroom concentrations is attributed to limited amounts of cooking stove use (the mean was 29 minutes per day), small room-to-room differences in nitrogen dioxide concentrations (the mean kitchen-bedroom difference was 12 ppb), and the relatively large proportion of time that infants spent in their bedrooms.

  17. Characterization and cytotoxicity of PAHs in PM2.5 emitted from residential solid fuel burning in the Guanzhong Plain, China.

    PubMed

    Sun, Jian; Shen, Zhenxing; Zeng, Yaling; Niu, Xinyi; Wang, Jinhui; Cao, Junji; Gong, Xuesong; Xu, Hongmei; Wang, Taobo; Liu, Hongxia; Yang, Liu

    2018-05-28

    The emission factors (EFs) of polycyclic aromatic hydrocarbons (PAHs) in PM 2.5 were measured from commonly used stoves and fuels in the rural Guanzhong Plain, China. The toxicity of the PM 2.5 also was measured using in vitro cellular tests. EFs of PAHs varied from 0.18 mg kg -1 (maize straw charcoal burning in a clean stove) to 83.3 mg kg -1 (maize straw burning in Heated Kang). The two largest influencing factors on PAH EFs were air supply and volatile matter proportion in fuel. Improvements in these two factors could decrease not only EFs of PAHs but also the proportion of 3-ring to 5-ring PAHs. Exposure to PM 2.5 extracts caused a concentration-dependent decline in cell viability but an increase in reactive oxygen species (ROS), tumor necrosis factor a (TNF-α) and interleukin 6 (IL-6). PM 2.5 emitted from maize burning in Heated Kang showed the highest cytotoxicity, and EFs of ROS and inflammatory factors were the highest as well. In comparison, maize straw charcoal burning in a clean stove showed the lowest cytotoxicity, which indicated a clean stove and fuel treatment were both efficient methods for reducing cytotoxicity of primary PM 2.5 . The production of these bioreactive factors were highly correlated with 3-ring and 4-ring PAHs. Specifically, pyrene, anthracene and benzo(a)anthracene had the highest correlations with ROS production (R = 0.85, 0.81 and 0.80, respectively). This study shows that all tested stoves emitted PM 2.5 that was cytotoxic to human cells; thus, there may be no safe levels of exposure to PM 2.5 emissions from cooking and heating stoves using solid fuels. The study may also provide a new approach for evaluating the cytotoxicity of primary emitted PM 2.5 from solid fuel burning as well as other PM 2.5 sources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Can currently available advanced combustion biomass cook-stoves provide health relevant exposure reductions? Results from initial assessment of select commercial models in India.

    PubMed

    Sambandam, Sankar; Balakrishnan, Kalpana; Ghosh, Santu; Sadasivam, Arulselvan; Madhav, Satish; Ramasamy, Rengaraj; Samanta, Maitreya; Mukhopadhyay, Krishnendu; Rehman, Hafeez; Ramanathan, Veerabhadran

    2015-03-01

    Household air pollution from use of solid fuels is a major contributor to the national burden of disease in India. Currently available models of advanced combustion biomass cook-stoves (ACS) report significantly higher efficiencies and lower emissions in the laboratory when compared to traditional cook-stoves, but relatively little is known about household level exposure reductions, achieved under routine conditions of use. We report results from initial field assessments of six commercial ACS models from the states of Tamil Nadu and Uttar Pradesh in India. We monitored 72 households (divided into six arms to each receive an ACS model) for 24-h kitchen area concentrations of PM2.5 and CO before and (1-6 months) after installation of the new stove together with detailed information on fixed and time-varying household characteristics. Detailed surveys collected information on user perceptions regarding acceptability for routine use. While the median percent reductions in 24-h PM2.5 and CO concentrations ranged from 2 to 71% and 10-66%, respectively, concentrations consistently exceeded WHO air quality guideline values across all models raising questions regarding the health relevance of such reductions. Most models were perceived to be sub-optimally designed for routine use often resulting in inappropriate and inadequate levels of use. Household concentration reductions also run the risk of being compromised by high ambient backgrounds from community level solid-fuel use and contributions from surrounding fossil fuel sources. Results indicate that achieving health relevant exposure reductions in solid-fuel using households will require integration of emissions reductions with ease of use and adoption at community scale, in cook-stove technologies. Imminent efforts are also needed to accelerate the progress towards cleaner fuels.

  19. Self-rated health among Mayan women participating in a randomised intervention trial reducing indoor air pollution in Guatemala

    PubMed Central

    Díaz, Esperanza; Bruce, Nigel; Pope, Dan; Díaz, Anaité; Smith, Kirk R; Smith-Sivertsen, Tone

    2008-01-01

    Background Indoor air pollution (IAP) from solid fuels is a serious health problem in low-income countries that can be alleviated using improved stoves. Although women are the principal users, few studies have investigated the self-assessed impact of the stoves on their health and lives. Methods This study was conducted in rural highland Guatemala, involving 89 intervention and 80 control Mayan Indian young women (mean 27.8 years, SD 7.2). Outcomes were assessed after approximately 18 months use of the new stove. Our objectives were to compare self-rated health and change in health among women participating in a randomised control trial comparing a chimney stove with an open fire, to describe impacts on women's daily lives and their perceptions of how reduced kitchen smoke affects their own and their children's health. Results On intention-to-treat analysis, 52.8% of intervention women reported improvement in health, compared to 23.8% of control women (p < 0.001). Among 84 intervention women who reported reduced kitchen smoke as an important change, 88% linked this to improvement in their own health, particularly for non-respiratory symptoms (for example eye discomfort, headache); 57% linked reduced smoke to improvement in their children's health, particularly sore eyes. Conclusion Women's perception of their health was improved, but although smoke reduction was valued, this was linked mainly with alleviation of non-respiratory symptoms like eye discomfort and headache. More focus on such symptoms may help in promoting demand for improved stoves and cleaner fuels, but education about more severe consequences of IAP exposure is also required. PMID:18533994

  20. Use of remotely reporting electronic sensors for assessing use of water filters and cookstoves in Rwanda.

    PubMed

    Thomas, Evan A; Barstow, Christina K; Rosa, Ghislaine; Majorin, Fiona; Clasen, Thomas

    2013-01-01

    Remotely reporting electronic sensors offer the potential to reduce bias in monitoring use of environmental health interventions. In the context of a five-month randomized controlled trial of household water filters and improved cookstoves in rural Rwanda, we collected data from intervention households on product compliance using (i) monthly surveys and direct observations by community health workers and environmental health officers, and (ii) sensor-equipped filters and cookstoves deployed for about two weeks in each household. The adoption rate interpreted by the sensors varied from the household reporting: 90.5% of households reported primarily using the intervention stove, while the sensors interpreted 73.2% use, and 96.5% of households reported using the intervention filter regularly, while the sensors interpreted no more than 90.2%. The sensor-collected data estimated use to be lower than conventionally collected data both for water filters (approximately 36% less water volume per day) and cookstoves (approximately 40% fewer uses per week). An evaluation of intrahousehold consistency in use suggests that households are not using their filters or stoves on an exclusive basis, and may be both drinking untreated water at times and using other stoves ("stove-stacking"). These results provide additional evidence that surveys and direct observation may exaggerate compliance with household-based environmental interventions.

  1. How do People in Rural India Perceive Improved Stoves and Clean Fuel? Evidence from Uttar Pradesh and Uttarakhand

    PubMed Central

    Bhojvaid, Vasundhara; Jeuland, Marc; Kar, Abhishek; Lewis, Jessica J.; Pattanayak, Subhrendu K.; Ramanathan, Nithya; Ramanathan, Veerabhadran; Rehman, Ibrahim H.

    2014-01-01

    Improved cook stoves (ICS) have been widely touted for their potential to deliver the triple benefits of improved household health and time savings, reduced deforestation and local environmental degradation, and reduced emissions of black carbon, a significant short-term contributor to global climate change. Yet diffusion of ICS technologies among potential users in many low-income settings, including India, remains slow, despite decades of promotion. This paper explores the variation in perceptions of and preferences for ICS in Uttar Pradesh and Uttarakhand, as revealed through a series of semi-structured focus groups and interviews from 11 rural villages or hamlets. We find cautious interest in new ICS technologies, and observe that preferences for ICS are positively related to perceptions of health and time savings. Other respondent and community characteristics, e.g., gender, education, prior experience with clean stoves and institutions promoting similar technologies, and social norms as perceived through the actions of neighbours, also appear important. Though they cannot be considered representative, our results suggest that efforts to increase adoption and use of ICS in rural India will likely require a combination of supply-chain improvements and carefully designed social marketing and promotion campaigns, and possibly incentives, to reduce the up-front cost of stoves. PMID:24473110

  2. Life Cycle Assessment of Cookstoves and Fuels in India ...

    EPA Pesticide Factsheets

    This presentation was requested by the Global Alliance to augment they scheduled to present update on the use of LCA to better understand implications of future policy that consider all pollutants including criteria, air toxics, and other pollutants impacting air quality concerns in these countries. EPA research quantitatively demonstrates through the application of LCA that both cooking fuel mix substitutions and stove technology upgrades provide promising avenues for reducing particulate matter and black carbon emissions. India’s continued reliance on crop residue and dung contributes disproportionately to particulate matter and black carbon environmental impacts. The greatest environmental benefit in China can be realized by promoting fuel mix substitutions or stove technology improvements to replace the combustion of coal powder in traditional stoves. Kenya and Ghana would benefit from adoption of improved stove designs for both firewood and charcoal fuel. Use of improved charcoal kiln technology also has the potential to significantly reduce the impact of charcoal use and production. The study generally demonstrates the positive relative environmental results associated with LPG and natural gas, which show a limited tendency to shift environmental burdens away from indoor air pollutants and to other impact categories such as fossil fuel depletion, freshwater eutrophication, and terrestrial acidification potential when substituted for traditional fuels. T

  3. How do people in rural India perceive improved stoves and clean fuel? Evidence from Uttar Pradesh and Uttarakhand.

    PubMed

    Bhojvaid, Vasundhara; Jeuland, Marc; Kar, Abhishek; Lewis, Jessica J; Pattanayak, Subhrendu K; Ramanathan, Nithya; Ramanathan, Veerabhadran; Rehman, Ibrahim H

    2014-01-27

    Improved cook stoves (ICS) have been widely touted for their potential to deliver the triple benefits of improved household health and time savings, reduced deforestation and local environmental degradation, and reduced emissions of black carbon, a significant short-term contributor to global climate change. Yet diffusion of ICS technologies among potential users in many low-income settings, including India, remains slow, despite decades of promotion. This paper explores the variation in perceptions of and preferences for ICS in Uttar Pradesh and Uttarakhand, as revealed through a series of semi-structured focus groups and interviews from 11 rural villages or hamlets. We find cautious interest in new ICS technologies, and observe that preferences for ICS are positively related to perceptions of health and time savings. Other respondent and community characteristics, e.g., gender, education, prior experience with clean stoves and institutions promoting similar technologies, and social norms as perceived through the actions of neighbours, also appear important. Though they cannot be considered representative, our results suggest that efforts to increase adoption and use of ICS in rural India will likely require a combination of supply-chain improvements and carefully designed social marketing and promotion campaigns, and possibly incentives, to reduce the up-front cost of stoves.

  4. Energy and exergy analysis of cookstove by using Cedrus deodara (deodar wood) and saccharum officinarum (sugar cane) waste

    NASA Astrophysics Data System (ADS)

    Chouhan, A. P. Singh; Yaseen, S.; Pruthi, A.

    2017-07-01

    Deodar (Cedrus deodara) wood collected from the Kashmir region in India. This study is focused on energy and exergy analysis of cook stove by using deodar wood, demand of a cookstove is higher in rural areas. In ancient time U-shaped and three stone cook stove was used, but they emitted greenhouse gases CO and CO2 in the environment and these toxic emissions are also dangerous for human being and the environment. Sampada model cook stove used for the analysis of energy an exergy by using water boiling test with using deodar wood and bagasse samples and a mixture of wood and bagasse also used. Wood and bagasse characterized for the ultimate, proximate, calorific value before the water boiling test of the cookstove. Results carried out that the efficiency of cook stove with deodar wood was 33.33 % and exergy calculated 2.1 % and energy efficiency and energy efficiency by using bagasse were 23.23 % and 0.43 %, respectively, and wood and bagasse mixture ratio given energy and exergy efficiencies for ratios 75:25 is the best ratio of energy production. These results indicated that deodar wood is more stable because thermal stability of wood is greater than bagasse. Deodar is a suitable source for the combustion purposes of higher energy production.

  5. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchstetter, Thomas; Preble, Chelsea; Hadley, Odelle

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions.more » This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.« less

  6. Ocular injury with high-pressure paint: a case report.

    PubMed

    Bandyopadhyay, Chitrabhanu; Mitra, Arjit; Harrison, Rosalind J

    2009-01-01

    Chemical injury to the eye is an ophthalmic emergency that can be caused by a work-related accident or common household products. Uradil SZ261 G3Z-65 is a resin containing butyl gycol (2-butoxyethanol) and ethyl ethanol amine (2-dimethyaminoethanol). It is used in stoving enamels for interior and exterior use. The authors report a case of ocular surface injury with a highpressure industrial spray paint-Waterborne Stoving Gentian Blue containing Uradil.

  7. Rural-urban differences in cooking practices and exposures in Northern Ghana

    NASA Astrophysics Data System (ADS)

    Wiedinmyer, Christine; Dickinson, Katherine; Piedrahita, Ricardo; Kanyomse, Ernest; Coffey, Evan; Hannigan, Michael; Alirigia, Rex; Oduro, Abraham

    2017-07-01

    Key differences between urban and rural populations can influence the adoption and impacts of new cooking technologies and fuels. We examine these differences among urban and rural households that are part of the REACCTING study in Northern Ghana. While urban and rural populations in the study area all use multiple stoves, the types of stoves and fuels differ, with urban participants more likely to use charcoal and LPG while rural households rely primarily on wood. Further, rural and urban households tend to use different stoves/fuels to cook the same dishes—for example, the staple porridge Tuo Zaafi (TZ) is primarily cooked over wood fires in rural areas and charcoal stoves in urban settings. This suggests that fuel availability and ability to purchase fuel may be a stronger predictor of fuel choice than cultural preferences alone. Ambient concentrations of air pollutants also differ in these two types of areas, with urban areas having pollutant hot spots to which residents can be exposed and rural areas having more homogeneous and lower pollutant concentrations. Further, exposures to carbon monoxide and particulate matter differ in magnitude and in timing between urban and rural study participants, suggesting different behaviors and sources of exposures. The results from this analysis highlight important disparities between urban and rural populations of a single region and imply that such a characterization is needed to successfully implement and assess the impacts of household energy interventions.

  8. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    PubMed

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.

  9. Effect of reductions in biomass fuel exposure on symptoms of sleep apnea in children living in the peruvian andes: a preliminary field study.

    PubMed

    Castañeda, Jacqueline L; Kheirandish-Gozal, Leila; Gozal, David; Accinelli, Roberto A

    2013-10-01

    Multiple studies have evaluated the prevalence of sleep apnea in pediatric populations. Although environmental exposures to cigarette smoke (ECS) increase the risk of habitual snoring, no studies have thus far examined the potential contribution of indoor pollution in children. To determine the frequency of symptoms associated with sleep apnea in children exposed to traditional wood-burning stoves to open fire, and assess whether symptoms subside following implementation of improved less environmentally contaminating stoves. Residents of the communities of Chucllapampa, Sayhuapata, and Alparcuna in Cangallo province, department of Ayacucho, Peru were surveyed on two occasions within 12 months before and after the installation of an improved Inkawasi wood stove. The frequency of symptoms associated with sleep apnea was assessed in all children <15 years of age using a previously validated questionnaire. Parents of 59 children (62.7% males; mean age 7.76 ± 4.2 years) were interviewed representing >97% of the children in those small villages. The most common symptoms included nighttime awakenings, habitual snoring, repetitive movements during sleep, nasal congestion, and sore throat. After implementation of improved stoves in the homes, snoring (52.5% vs. 18.2%, P < 0.0001) nasal congestion (33.9% vs. 1.8%, P < 0.0001), behavioral hyperactivity (28.8% vs. 3.8%, P < 0.002), nighttime awakenings (42.4% vs. 1.7%, P < 0.0001), sore throat (38.2% vs. 5.5% P < 0.0001), breathing through the mouth during the day (33.9% vs. 1.8%, P < 0.001), daytime sleepiness (21.1% vs. 1.8%, P < 0.003), and falling asleep at school (14.6% vs. 0%, P < 0.03) were all significantly improved. Children exposed to traditional biomass fuel stoves had a higher frequency of symptoms related to sleep apnea, which decrease with improvements in biomass pollution. © 2012 Wiley Periodicals, Inc.

  10. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe

    NASA Astrophysics Data System (ADS)

    Kistler, Magdalena; Schmidl, Christoph; Padouvas, Emmanuel; Giebl, Heinrich; Lohninger, Johann; Ellinger, Reinhard; Bauer, Heidi; Puxbaum, Hans

    2012-05-01

    In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as “common oak”), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, “garden biomass” such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets. The composite average emission rates for log wood and briquettes were 2030 mg MJ-1 for CO; 89 mg MJ-1 for NOx, 311 mg MJ-1 for CxHy, 67 mg MJ-1 for particulate matter PM10 and average odor concentration was at 2430 OU m-3. CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx - comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m-3 (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m-3 for hornbeam to 5217 OU m-3 for fir, indicating a considerable influence of the wood type on odor concentration.

  11. Emissions and climate-relevant optical properties of pollutants emitted from a three-stone fire and the Berkeley-Darfur stove tested under laboratory conditions.

    PubMed

    Preble, Chelsea V; Hadley, Odelle L; Gadgil, Ashok J; Kirchstetter, Thomas W

    2014-06-03

    Cooking in the developing world generates pollutants that endanger the health of billions of people and contribute to climate change. This study quantified pollutants emitted when cooking with a three-stone fire (TSF) and the Berkeley-Darfur Stove (BDS), the latter of which encloses the fire to increase fuel efficiency. The stoves were operated at the Lawrence Berkeley National Laboratory testing facility with a narrow range of fuel feed rates to minimize performance variability. Fast (1 Hz) measurements of pollutants enabled discrimination between the stoves' emission profiles and development of woodsmoke-specific calibrations for the aethalometer (black carbon, BC) and DustTrak (fine particles, PM2.5). The BDS used 65±5% (average±95% confidence interval) of the wood consumed by the TSF and emitted 50±5% of the carbon monoxide emitted by the TSF for an equivalent cooking task, indicating its higher thermal efficiency and a modest improvement in combustion efficiency. The BDS reduced total PM2.5 by 50% but achieved only a 30% reduction in BC emissions. The BDS-emitted particles were, therefore, more sunlight-absorbing: the average single scattering albedo at 532 nm was 0.36 for the BDS and 0.47 for the TSF. Mass emissions of PM2.5 and BC varied more than emissions of CO and wood consumption over all tests, and emissions and wood consumption varied more among TSF than BDS tests. The international community and the Global Alliance for Clean Cookstoves have proposed performance targets for the highest tier of cookstoves that correspond to greater reductions in fuel consumption and PM2.5 emissions of approximately 65% and 95%, respectively, compared to baseline cooking with the TSF. Given the accompanying decrease in BC emissions for stoves that achieve this stretch goal and BC's extremely high global warming potential, the short-term climate change mitigation from avoided BC emissions could exceed that from avoided CO2 emissions.

  12. Acute Lower Respiratory Infection in Childhood and Household Fuel Use in Bhaktapur, Nepal

    PubMed Central

    Bates, Michael N.; Chandyo, Ram K.; Valentiner-Branth, Palle; Pokhrel, Amod K.; Mathisen, Maria; Basnet, Sudha; Shrestha, Prakash S.; Strand, Tor A.

    2013-01-01

    Background: Globally, solid fuels are used by about 3 billion people for cooking. These fuels have been associated with many health effects, including acute lower respiratory infection (ALRI) in young children. Nepal has a high prevalence of use of biomass for cooking and heating. Objective: This case–control study was conducted among a population in the Bhaktapur municipality, Nepal, to investigate the relationship of cookfuel type to ALRI in young children. Methods: Cases with ALRI and age-matched controls were enrolled from an open cohort of children 2–35 months old, under active monthly surveillance for ALRI. A questionnaire was used to obtain information on family characteristics, including household cooking and heating appliances and fuels. The main analysis was carried out using conditional logistic regression. Population-attributable fractions (PAF) for stove types were calculated. Results: A total of 917 children (452 cases and 465 controls) were recruited into the study. Relative to use of electricity for cooking, ALRI was increased in association with any use of biomass stoves [odds ratio (OR) = 1.93; 95% CI: 1.24, 2.98], kerosene stoves (OR = 1.87; 95% CI: 1.24, 2.83), and gas stoves (OR = 1.62; 95% CI: 1.05, 2.50). Use of wood, kerosene, or coal heating was also associated with ALRI (OR = 1.45; 95% CI: 0.97, 2.14), compared with no heating or electricity or gas heating. PAFs for ALRI were 18.0% (95% CI: 8.1, 26.9%) and 18.7% (95% CI: 8.4%–27.8%), for biomass and kerosene stoves, respectively. Conclusions: The study supports previous reports indicating that use of biomass as a household fuel is a risk factor for ALRI, and provides new evidence that use of kerosene for cooking may also be a risk factor for ALRI in young children. PMID:23512278

  13. Emissions from residential combustion considering end-uses and spatial constraints: Part II, emission reduction scenarios

    NASA Astrophysics Data System (ADS)

    Winijkul, Ekbordin; Bond, Tami C.

    2016-01-01

    Cooking, heating, and other activities in the residential sector are major sources of indoor and outdoor air pollution, especially when solid fuels are used to provide energy. Because of their deleterious effects on the atmosphere and human health, multinational strategies to reduce emissions have been proposed. This study examines the effects of some possible policies, considering realistic factors that constrain mitigation: end-uses, spatial constraints involving proximity to forest or electricity, existing technology, and assumptions about user behavior. Reduction scenarios are applied to a year-2010, spatially distributed baseline of emissions of particulate matter, black carbon, organic carbon, nitrogen oxides, methane, non-methane hydrocarbons, carbon monoxide, and carbon dioxide. Scenarios explored are: (1) cleanest current stove, where we assume that existing technology in each land type is applied to burn existing fuels; (2) stove standards, where we assume that stoves are designed to meet performance standards; and (3) clean fuels, where users adopt the cleanest fuels plausible in each land type. We assume that people living in forest access areas continue to use wood regardless of available fuels, so the clean-fuels scenario leads to a reduction in emissions of 18-25%, depending on the pollutant, across the study region. Cleaner stoves preferentially affect land types with forest access, where about half of the fuel is used; emission reductions range from 25 to 82%, depending on the pollutant. If stove performance standards can be met, particulate matter emissions are reduced by 62% for the loosest standards and 95% for the tightest standards, and carbon monoxide is reduced by 40% and 62% for the loosest and tightest standards. Reductions in specific regions and countries depend on the existing fuel mixture and the population division among land types, and are explored for Latin America, Africa, East Asia, South Asia, and Southeast Asia.

  14. PM2.5 in household kitchens of Bhaktapur, Nepal, using four different cooking fuels

    NASA Astrophysics Data System (ADS)

    Pokhrel, Amod K.; Bates, Michael N.; Acharya, Jiwan; Valentiner-Branth, Palle; Chandyo, Ram K.; Shrestha, Prakash S.; Raut, Anil K.; Smith, Kirk R.

    2015-07-01

    In studies examining the health effects of household air pollution (HAP), lack of affordable monitoring devices often precludes collection of actual air pollution data, forcing use of exposure indicators, such as type of cooking fuel used. Among the most important pollutants is fine particulate matter (PM2.5), perhaps the best single indicator of risk from smoke exposure. In this study, we deployed an affordable and robust device to monitor PM2.5 in 824 households in Bhaktapur, Nepal. Four primary cooking fuels were used in roughly equal proportions in these households: electricity (22%), liquefied petroleum gas (LPG) (29%), kerosene (23%), and biomass (26%). PM2.5 concentrations were measured in the kitchens using a light-scattering nephelometer, the UCB-PATS (University of California, Berkeley-Particle and Temperature monitoring System). The major predictors of PM2.5 concentrations in study households were investigated. The UCB-PATS results were well correlated with the gravimetric results (R2 = 0.84; for all fuels combined). The mean household PM2.5 concentrations across all seasons of the year were 656 (standard deviation (SD):924) μg/m3 from biomass; 169 (SD: 207) μg/m3 from kerosene; 101 (SD: 130) μg/m3 from LPG; and 80 (SD: 103) μg/m3 from electric stoves. In the multivariate regression of PM2.5 measures, compared with electric stoves, use of LPG, kerosene and biomass stoves were associated with increased indoor PM2.5 concentrations of 65% (95% CI: 38-95%), 146% (103-200%), and 733% (589-907%), respectively. The UCB-PATS performed well in the field. Biomass fuel stoves without flues were the most significant sources of PM2.5, followed by kerosene and then LPG stoves. Outdoor PM2.5, and season influenced indoor PM2.5 levels. Results support careful use of inexpensive light-scattering monitors for monitoring of HAP in developing countries.

  15. Development of a Multifuel Individual/Squad Stove

    DTIC Science & Technology

    1990-02-01

    1 . Final Letter Report, Fix Verification Test of the MISS, U.S. Army CRTC , April 1989. m. Health Hazard Assessment, 4 April 1989, enclosed. n...CIVIL, 1 \\48ABIpPTR TECHNICAL REPORT __...__AD _ NATICK/TR-90/020 ceq DEVELOPMENT OF A00 O MULTIFUEL o INDIVIDUAL/SQUAD STOVE N I O BY DONALD W...NUMBERS PROGRAM PROJECT ITASK ~ WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. D5i48 24 1 146 TITLE (Include Security Classification) D 2 Development of a

  16. Reviews Equipment: BioLite Camp Stove Game: Burnout Paradise Equipment: 850 Universal interface and Capstone software Equipment: xllogger Book: Science Magic Tricks and Puzzles Equipment: Spinthariscope Equipment: DC Power Supply HY5002 Web Watch

    NASA Astrophysics Data System (ADS)

    2013-05-01

    WE RECOMMEND BioLite CampStove Robust and multifaceted stove illuminates physics concepts 850 Universal interface and Capstone software Powerful data-acquisition system offers many options for student experiments and demonstrations xllogger Obtaining results is far from an uphill struggle with this easy-to-use datalogger Science Magic Tricks and Puzzles Small but perfectly formed and inexpensive book packed with 'magic-of-science' demonstrations Spinthariscope Kit for older students to have the memorable experience of 'seeing' radioactivity WORTH A LOOK DC Power Supply HY5002 Solid and effective, but noisy and lacks portability HANDLE WITH CARE Burnout Paradise Car computer game may be quick off the mark, but goes nowhere fast when it comes to lab use WEB WATCH 'Live' tube map and free apps would be a useful addition to school physics, but maths-questions website of no more use than a textbook

  17. Beer, Wood, and Welfare ‒ The Impact of Improved Stove Use Among Dolo-Beer Breweries

    PubMed Central

    2015-01-01

    Local beer breweries in Burkina Faso absorb a considerable amount of urban woodfuel demand. We assess the woodfuel savings caused by the adoption of improved brewing stoves by these micro-breweries and estimate the implied welfare effects through the woodfuel market on private households as well as the environmental effect. We find substantial wood savings among the breweries, 36% to 38% if they fully switch to an improved stove. In absolute amounts, they save about 0.176 kg of fuelwood per litre of dolo brewed. These savings imply huge reductions in CO2-emissions and reduce the overall demand for woodfuel, which is predominantly used by the poorer strata for cooking purposes. We provide estimates for the price decrease that might result from this and show that the urban poor are likely to benefit. Thus, the intervention under study is an example for a green growth intervention with pro-poor welfare gains – something green growth strategies should look for. PMID:26244341

  18. Predicting wood pellet stove ownership and acquisition in Albuquerque, NM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansford, R.; Skaggs, R.; Owensby, F.

    1994-12-31

    Wood pellet stove (WPS) ownership and acquisition in Albuquerque, New Mexico was predicted using a model of qualitative choice. Using data obtained from a telephone survey, households were divided into four groups: current WPS owners, non-owners considering ownership, non-owners not considering ownership, and those who had not heard of WPS technology. Variables used to predict what category a household will be in include homeowners` socioeconomic and home-heating characteristics. Results indicate few WPS stoves are currently in use in Albuquerque. However, current WPS owners and those considering WPS acquisition tend to have higher incomes, more years of education, larger homes, andmore » use their fireplaces more frequently than average. Clean air regulations in Albuquerque will require changes in home woodburning. The WPS is an efficient and clean device; however, lack of knowledge of WPS technology, satisfaction with current heating systems, and limited awareness of the potential impact of clean air regulations indicate WPS usage in Albuquerque will remain limited.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, E.L.

    Efforts at promoting more fuel-efficient charcoal stoves to replace traditional charcoal stoves in Kenya offer some lessons for the dissemination of appropriate technologies. This paper looks at the market-based approach which has made the Kenyan charcoal stoves project a success. Trends in woodfuels (wood and charcoal) consumption in Kenya are identified; the traditional technology for charcoal combustion and the upgraded traditional technologies are described; production achievement and the dissemination and promotion strategy used are examined; and a financial and economic analysis is performed with social, health and environmental effects assessed. Other ways to achieve a more favourable balance between woodfuelsmore » consumption and supply are then discussed looking at more efficient charcoal kilns and household woodstoves, improved institutional stoves and increased wood production. The replication potential of the Kenya experiment in other countries is also explored. The lessons learnt from the the Kenya experience concern the relationship between technology, choice and delivery systems as they interact with, economic, institutional, and policy factors. In this case, the design work accepted the traditional technology as a starting point which helped ensure widespread acceptance by households. The potential desirability of relying on local artisans to manufacture consumer durables using existing private sector channels to market these goods is also shown. It also highlights the importance of going beyond a laissez-faire approach and supporting training, demonstration, and publicity to faciliate the workings of the private sector. In the Kenyan case, technology choice was relatively unsubsidized and left ot the preferences of consumers.« less

  20. Results of a Survey of Residential Home Heating Fuel and Stove Type and Use in the Shiprock Area of the Navajo Nation

    USGS Publications Warehouse

    Bunnell, Joseph E.; Garcia, Linda V.

    2008-01-01

    For many Navajo people, coal provides an affordable and convenient means of home heating. However, coal combustion results in the formation and mobilization of materials that are known risk factors for respiratory and other diseases. The level of respiratory morbidity among the Navajo people is higher than can be explained by usual epidemiological risk factors. The Shiprock area of the Navajo Nation is somewhat unique in that atmospheric thermal inversions trap air pollution low to the ground, especially in winter. There are two large mine mouth coal-fired power plants located in the vicinity, with a third plant in the planning stages. Both of the existing power plants are exempt from regulation under the U.S. Environmental Protection Agency 1990 Amendments to the Clean Air Act due to their age. The purpose of this survey was to assess the fuel and stove type and use, and document other household characteristics that might be related to the exposure of potentially toxic coal combustion products. A total of 137 surveys was conducted in English and Navajo to ascertain and document fuel usage and the type, size and conditions of heating stoves used in both traditional and modern homes. Results have been presented to the community at the Shiprock Chapter in the Navajo language. To increase public awareness, ways to properly use and store coal and to improve stove function and ventilation were also shared.

  1. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    PubMed

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO 2 ), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM 2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM 2.5 , OC, EC, CO, and CO 2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of the first EPA-certified wood and coal combination stove.

  2. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe

    PubMed Central

    Kistler, Magdalena; Schmidl, Christoph; Padouvas, Emmanuel; Giebl, Heinrich; Lohninger, Johann; Ellinger, Reinhard; Bauer, Heidi; Puxbaum, Hans

    2012-01-01

    In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as “common oak”), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, “garden biomass” such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets. The composite average emission rates for log wood and briquettes were 2030 mg MJ−1 for CO; 89 mg MJ−1 for NOx, 311 mg MJ−1 for CxHy, 67 mg MJ−1 for particulate matter PM10 and average odor concentration was at 2430 OU m−3. CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx – comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m−3 (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m−3 for hornbeam to 5217 OU m−3 for fir, indicating a considerable influence of the wood type on odor concentration. PMID:23471123

  3. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe.

    PubMed

    Kistler, Magdalena; Schmidl, Christoph; Padouvas, Emmanuel; Giebl, Heinrich; Lohninger, Johann; Ellinger, Reinhard; Bauer, Heidi; Puxbaum, Hans

    2012-05-01

    In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as "common oak"), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, "garden biomass" such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets. The composite average emission rates for log wood and briquettes were 2030 mg MJ -1 for CO; 89 mg MJ -1 for NO x , 311 mg MJ -1 for C x H y , 67 mg MJ -1 for particulate matter PM 10 and average odor concentration was at 2430 OU m -3 . CO, C x H y and PM 10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NO x - comparable to the log wood emissions. Odor from pellets combustion was not detectable. C x H y and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NO x rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m -3 (dry leaves). The odor concentration correlated with CO, C x H y and PM 10 . For log wood combustion average odor ranged from 536 OU m -3 for hornbeam to 5217 OU m -3 for fir, indicating a considerable influence of the wood type on odor concentration.

  4. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication.

    PubMed

    Li, Qing; Jiang, Jingkun; Wang, Shuxiao; Rumchev, Krassi; Mead-Hunter, Ryan; Morawska, Lidia; Hao, Jiming

    2017-01-15

    This review briefly introduces current status of indoor and ambient air pollution originating from household coal and biomass combustion in mainland China. Owing to low combustion efficiency, emissions of CO, PM 2.5 , black carbon (BC), and polycyclic aromatic hydrocarbons have significant adverse consequences for indoor and ambient air qualities, resulting in relative contributions of more than one-third in all anthropogenic emissions. Their contributions are higher in less economically developed regions, such as Guizhou (61% PM 2.5 , 80% BC), than that in more developed regions, such as Shanghai (4% PM 2.5 , 17% BC). Chimneys can reduce ~80% indoor PM 2.5 level when burning dirty solid fuels, such as plant materials. Due to spending more time near stoves, housewives suffer much more (~2 times) PM 2.5 than the adult men, especially in winter in northern China (~4 times). Improvement of stove combustion/thermal efficiencies and solid fuel quality are the two essential methods to reduce pollutant emissions. PM 2.5 and BC emission factors (EFs) have been identified to increase with volatile matter content in traditional stove combustion. EFs of dirty fuels are two orders higher than that of clean ones. Switching to clean ones, such as semi-coke briquette, was identified to be a feasible path for reducing >90% PM 2.5 and BC emissions. Otherwise, improvement of thermal and combustion efficiencies by using under-fire technology can reduce ~50% CO 2 , 87% NH 3 , and 80% PM 2.5 and BC emissions regardless of volatile matter content in solid fuel. However, there are still some knowledge gaps, such as, inventory for the temporal impact of household combustion on air quality, statistic data for deployed clean solid fuels and advanced stoves, and the effect of socioeconomic development. Additionally, further technology research for reducing air pollution emissions is urgently needed, especially low cost and clean stove when burning any type of solid fuel. Furthermore, emission-abatement oriented policy should base on sound scientific evidence to significantly reduce pollutant emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana (REACCTING): study rationale and protocol.

    PubMed

    Dickinson, Katherine L; Kanyomse, Ernest; Piedrahita, Ricardo; Coffey, Evan; Rivera, Isaac J; Adoctor, James; Alirigia, Rex; Muvandimwe, Didier; Dove, MacKenzie; Dukic, Vanja; Hayden, Mary H; Diaz-Sanchez, David; Abisiba, Adoctor Victor; Anaseba, Dominic; Hagar, Yolanda; Masson, Nicholas; Monaghan, Andrew; Titiati, Atsu; Steinhoff, Daniel F; Hsu, Yueh-Ya; Kaspar, Rachael; Brooks, Bre'Anna; Hodgson, Abraham; Hannigan, Michael; Oduro, Abraham Rexford; Wiedinmyer, Christine

    2015-02-12

    Cooking over open fires using solid fuels is both common practice throughout much of the world and widely recognized to contribute to human health, environmental, and social problems. The public health burden of household air pollution includes an estimated four million premature deaths each year. To be effective and generate useful insight into potential solutions, cookstove intervention studies must select cooking technologies that are appropriate for local socioeconomic conditions and cooking culture, and include interdisciplinary measurement strategies along a continuum of outcomes. REACCTING (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana) is an ongoing interdisciplinary randomized cookstove intervention study in the Kassena-Nankana District of Northern Ghana. The study tests two types of biomass burning stoves that have the potential to meet local cooking needs and represent different "rungs" in the cookstove technology ladder: a locally-made low-tech rocket stove and the imported, highly efficient Philips gasifier stove. Intervention households were randomized into four different groups, three of which received different combinations of two improved stoves, while the fourth group serves as a control for the duration of the study. Diverse measurements assess different points along the causal chain linking the intervention to final outcomes of interest. We assess stove use and cooking behavior, cooking emissions, household air pollution and personal exposure, health burden, and local to regional air quality. Integrated analysis and modeling will tackle a range of interdisciplinary science questions, including examining ambient exposures among the regional population, assessing how those exposures might change with different technologies and behaviors, and estimating the comparative impact of local behavior and technological changes versus regional climate variability and change on local air quality and health outcomes. REACCTING is well-poised to generate useful data on the impact of a cookstove intervention on a wide range of outcomes. By comparing different technologies side by side and employing an interdisciplinary approach to study this issue from multiple perspectives, this study may help to inform future efforts to improve health and quality of life for populations currently relying on open fires for their cooking needs.

  6. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position.

    PubMed

    Rim, Donghyun; Wallace, Lance; Nabinger, Steven; Persily, Andrew

    2012-08-15

    Cooking stoves, both gas and electric, are one of the strongest and most common sources of ultrafine particles (UFP) in homes. UFP have been shown to be associated with adverse health effects such as DNA damage and respiratory and cardiovascular diseases. This study investigates the effectiveness of kitchen exhaust hoods in reducing indoor levels of UFP emitted from a gas stove and oven. Measurements in an unoccupied manufactured house monitored size-resolved UFP (2 nm to 100 nm) concentrations from the gas stove and oven while varying range hood flow rate and burner position. The air change rate in the building was measured continuously based on the decay of a tracer gas (sulfur hexafluoride, SF(6)). The results show that range hood flow rate and burner position (front vs. rear) can have strong effects on the reduction of indoor levels of UFP released from the stove and oven, subsequently reducing occupant exposure to UFP. Higher range hood flow rates are generally more effective for UFP reduction, though the reduction varies with particle diameter. The influence of the range hood exhaust is larger for the back burner than for the front burner. The number-weighted particle reductions for range hood flow rates varying between 100 m(3)/h and 680 m(3)/h range from 31% to 94% for the front burner, from 54% to 98% for the back burner, and from 39% to 96% for the oven. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Asthma randomized trial of indoor wood smoke (ARTIS): Rationale and Methods

    PubMed Central

    Noonan, Curtis W.; Ward, Tony J.

    2012-01-01

    Background Particulate matter (PM) exposures have been linked with poor respiratory health outcomes, especially among susceptible populations such as asthmatic children. Smoke from biomass combustion for residential home heating is an important source of PM in many rural or peri-urban areas in the United States. Aim To assess the efficacy of residential interventions that reduce indoor PM exposure from wood stoves and to quantify the corresponding improvements in quality of life and health outcomes for asthmatic children. Design The Asthma Randomized Trial of Indoor wood Smoke (ARTIS) study is an in-home intervention study of susceptible children exposed to biomass combustion smoke. Children, ages 7 to 17, with persistent asthma and living in homes that heat with wood stoves were recruited for this three arm randomized placebo-controlled trial. Two household-level intervention strategies, wood stove replacement and air filters, were compared to a sham air filter placebo. Improvement in quality of life of asthmatic children was the primary outcomes. Secondary asthma-related health outcomes included peak expiratory flow (PEF) and forced expiratory volume in first second (FEV1), biomarkers in exhaled breath condensate, and frequency of asthma symptoms, medication usage, and healthcare utilization. Exposure outcomes included indoor and outdoor PM2.5 mass, particle counts of several size fractions, and carbon monoxide. Discussion To our knowledge, this was the first randomized trial in the US to utilize interventions targeting residential wood stoves to assess the impact on indoor PM and health outcomes in a susceptible population. Trial registration ClincialTrials.gov NCT00807183. PMID:22735495

  8. Tuberculosis and indoor biomass and kerosene use in Nepal: a case-control study.

    PubMed

    Pokhrel, Amod K; Bates, Michael N; Verma, Sharat C; Joshi, Hari S; Sreeramareddy, Chandrashekhar T; Smith, Kirk R

    2010-04-01

    In Nepal, tuberculosis (TB) is a major problem. Worldwide, six previous epidemiologic studies have investigated whether indoor cooking with biomass fuel such as wood or agricultural wastes is associated with TB with inconsistent results. Using detailed information on potential confounders, we investigated the associations between TB and the use of biomass and kerosene fuels. A hospital-based case-control study was conducted in Pokhara, Nepal. Cases (n = 125) were women, 20-65 years old, with a confirmed diagnosis of TB. Age-matched controls (n = 250) were female patients without TB. Detailed exposure histories were collected with a standardized questionnaire. Compared with using a clean-burning fuel stove (liquefied petroleum gas, biogas), the adjusted odds ratio (OR) for using a biomass-fuel stove was 1.21 [95% confidence interval (CI), 0.48-3.05], whereas use of a kerosene-fuel stove had an OR of 3.36 (95% CI, 1.01-11.22). The OR for use of biomass fuel for heating was 3.45 (95% CI, 1.44-8.27) and for use of kerosene lamps for lighting was 9.43 (95% CI, 1.45-61.32). This study provides evidence that the use of indoor biomass fuel, particularly as a source of heating, is associated with TB in women. It also provides the first evidence that using kerosene stoves and wick lamps is associated with TB. These associations require confirmation in other studies. If using kerosene lamps is a risk factor for TB, it would provide strong justification for promoting clean lighting sources, such as solar lamps.

  9. Kitchen PM2.5 concentrations and child acute lower respiratory infection in Bhaktapur, Nepal: The importance of fuel type.

    PubMed

    Bates, Michael N; Pokhrel, Amod K; Chandyo, Ram K; Valentiner-Branth, Palle; Mathisen, Maria; Basnet, Sudha; Strand, Tor A; Burnett, Richard T; Smith, Kirk R

    2018-02-01

    Globally, solid fuels are used by about 3 billion people for cooking and a smaller number use kerosene. These fuels have been associated with acute lower respiratory infection (ALRI) in children. Previous work in Bhaktapur, Nepal, showed comparable relationships of biomass and kerosene cooking fuels with ALRI in young children, compared to those using electricity for cooking. We examine the relationship of kitchen PM 2.5 concentrations to ALRI in those households. ALRI cases and age-matched controls were enrolled from a cohort of children 2-35 months old. 24-h PM 2.5 was measured once in each participant's kitchen. The main analysis was carried out with conditional logistic regression, with PM 2.5 measures specified both continuously and as quartiles. In the kitchens of 393 cases and 431 controls, quartiles of increasing PM 2.5 concentration were associated with a monotonic increase in odds ratios (OR): 1.51 (95% CI: 1.00, 2.27), 2.22 (1.47, 3.34), 2.48 (1.63, 3.77), for the 3 highest exposure quartiles. The general kitchen concentration-response shape across all stoves was supralinear. There was evidence for increased risk with biomass stoves, but the slope for kerosene stoves was steeper, the highest quartile OR being 5.36 (1.35, 21.3). Evidence for increased risk was also found for gas stoves. Results support previous reports that biomass and kerosene cooking fuels are both ALRI risk factors, but suggests that PM 2.5 from kerosene is more potent on a unit mass basis. Further studies with larger sample sizes and preferably using electricity as the baseline fuel are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Emissions from Residential Combustion considering End-Uses and Spatial Constraints

    NASA Astrophysics Data System (ADS)

    Bond, T. C.; Lam, N. L.; Winijkul, E.

    2015-12-01

    Cooking, heating, and other activities in the residential sector are major sources of indoor and outdoor air pollution, especially when solid fuels provide energy. Because of these deleterious effects, multinational strategies to alter technology and reduce emissions have been proposed, but to date, they have ignored many constraints on feasibility. We describe a framework to apportion national energy consumption among land types and household end-uses, to calculate emissions, and to evaluate mitigation strategies. We provide year-2010 emissions of particulate matter, black carbon, organic carbon, nitrogen oxides, methane, non-methane hydrocarbons, carbon monoxide, and carbon dioxide. The study area includes regions where solid biomass fuel provides more than 50% of total residential energy: Latin America, Africa, and Asia. Using nightlight data and population density, we classify land types as urban, electrified rural with and without forest access, and non-electrified rural with and without forest access. We apportion national-level residential fuel consumption among land types and end-uses, and assign technologies to each combination. About 13% of energy is consumed in urban areas, and 45% in non-urban land near forests. About half the energy is consumed in land without access to electricity. Cooking accounts for 54% of consumption, heating 9%, and lighting only 2%, with unidentified uses making up the remainder. We examine possible policies, considering realistic factors that constrain mitigation. Scenarios explored are: (1) cleanest current stove, where plausible existing technology is deployed; (2) stove standards, where stoves are designed to meet performance standards; and (3) clean fuels, where users adopt the cleanest plausible fuels; we assume that people living in forest access areas continue to use wood. For cleaner stoves, emission reductions range from 25-82%, depending on the pollutant. The clean-fuels scenario reduces emissions by 18-25%.

  11. Tuberculosis and Indoor Biomass and Kerosene Use in Nepal: A Case–Control Study

    PubMed Central

    Pokhrel, Amod K.; Bates, Michael N.; Verma, Sharat C.; Joshi, Hari S.; Sreeramareddy, Chandrashekhar T.; Smith, Kirk R.

    2010-01-01

    Background In Nepal, tuberculosis (TB) is a major problem. Worldwide, six previous epidemiologic studies have investigated whether indoor cooking with biomass fuel such as wood or agricultural wastes is associated with TB with inconsistent results. Objectives Using detailed information on potential confounders, we investigated the associations between TB and the use of biomass and kerosene fuels. Methods A hospital-based case–control study was conducted in Pokhara, Nepal. Cases (n = 125) were women, 20–65 years old, with a confirmed diagnosis of TB. Age-matched controls (n = 250) were female patients without TB. Detailed exposure histories were collected with a standardized questionnaire. Results Compared with using a clean-burning fuel stove (liquefied petroleum gas, biogas), the adjusted odds ratio (OR) for using a biomass-fuel stove was 1.21 [95% confidence interval (CI), 0.48–3.05], whereas use of a kerosene-fuel stove had an OR of 3.36 (95% CI, 1.01–11.22). The OR for use of biomass fuel for heating was 3.45 (95% CI, 1.44–8.27) and for use of kerosene lamps for lighting was 9.43 (95% CI, 1.45–61.32). Conclusions This study provides evidence that the use of indoor biomass fuel, particularly as a source of heating, is associated with TB in women. It also provides the first evidence that using kerosene stoves and wick lamps is associated with TB. These associations require confirmation in other studies. If using kerosene lamps is a risk factor for TB, it would provide strong justification for promoting clean lighting sources, such as solar lamps. PMID:20368124

  12. Indoor respirable particulate matter concentrations from an open fire, improved cookstove, and LPG/open fire combination in a rural Guatemalan community.

    PubMed

    Albalak, R; Bruce, N; McCracken, J P; Smith, K R; De Gallardo, T

    2001-07-01

    Improved biomass cookstoves have the potential to reduce pollutant emissions and thereby reduce pollution exposure among populations in developing countries who cook daily with biomass fuels. However, evaluation of such interventions has been very limited. This article presents results from a study carried out in 30 households in rural Guatemala. Twenty-four hour PM3.5 concentrations were compared over 8 months for three fuel/cookstove conditions (n = 10 households for each condition): a traditional open fire cookstove, an improved cookstove called the plancha mejorada, and a liquefied petroleum gas (LPG) stove/open fire combination. Twenty-four hour geometric mean PM3.5 concentrations were 1560 micrograms/m3 (n = 58; 95% C.I. 1310, 1850), 280 micrograms/m3 (n = 59; 95% C.I. 240-320), and 850 micrograms/m3 (n = 60; 95% C.I. 680-1050) for the open fire, plancha, and LPG/open fire combination, respectively. A generalized estimating equation model showed a 45% reduction in PM3.5 concentrations for the LPG/open fire combination as compared to the open fire alone. The difference approached significance (p < 0.0737). The plancha showed an 85% reduction in PM3.5 concentrations as compared to the open fire (p < 0.0001). An analysis of the interaction of time with stove type showed that the temporal trend in pollution did not significantly differ among the three stove types. The reduced PM3.5 concentrations were maintained over time. Season did not affect pollutant concentrations. Of the two interventions, the plancha appears to offer the best prospects for achieving substantial reductions in indoor air pollution levels, although issues of cost and stove maintenance remain to be addressed.

  13. Outdoor cooking prevalence in developing countries and its implication for clean cooking policies

    NASA Astrophysics Data System (ADS)

    Langbein, Jörg; Peters, Jörg; Vance, Colin

    2017-11-01

    More than 3 billion people use wood fuels for their daily cooking needs, with detrimental health implications related to smoke emissions. Best practice global initiatives emphasize the dissemination of clean cooking stoves, but these are often expensive and suffer from interrupted supply chains that do not reach rural areas. This emphasis neglects that many households in the developing world cook outdoors. Our calculations suggest that for such households, the use of less expensive biomass cooking stoves can substantially reduce smoke exposure. The cost-effectiveness of clean cooking policies can thus be improved by taking cooking location and ventilation into account.

  14. East Europe Report, Economic and Industrial Affairs

    DTIC Science & Technology

    1984-09-13

    and weekend cottages are becoming places of the "second ownership pro- cess": 40-50 percent of them are permanently furnished with electric or gas ...stove 15.9 8.2 10.3 19.3 16.6 18.6 4. Gas stove 27.1 30.3 29.7 36.8 47.- 47.4 5. Electric blender X 27.2 29.4 36.1 45.7 49.6 6. Electric food pro...30.8 31.4 38.- 10. Gas through-flow heater 10.6 13.7 12.6 14.- 14.9 18.8 11. Nonautomatic washing machine 80.1 85.4 88.2 77.8 73.7 70.8 12

  15. Welding of Armor: Summary of Ballistic Shock Test Results on 1-1/2 inch Homogeneous Armor ’H’ Plates Welded with Austenitic Electrodes and Tested at Aberdeen Proving Ground during the Period 1 April 1943 through 30 September 1943

    DTIC Science & Technology

    1944-04-10

    Laughlin Carnegie-Illinois Alloy Rods Metal & Thermit 9 1 Florence Stove Jones & Laughlin Great Lakes Crucible 10-11 U Ford Motor Ford Motor...Alloy Rods Harnischfeger A. 0, Smith Metal & Thermit Page 20 1 Kalanazoo Stove Great Lakes Crucible 2i -au 1C Lima Locomotive Youngstcvm Tones...Avery Page Metal & Thermit Crucible Heid-Avery Hollup McKay Metal & Thermit A. 0. Smith Crucible . C 38- 39 Uo Ui U2- U3 U7 50 51-55

  16. Nitrogen dioxide and respiratory illnesses in infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.

    1993-11-01

    Nitrogen dioxide is an oxidant gas that contaminates outdoor air and indoor air in homes with unvented gas appliances. A prospective cohort study was carried out to test the hypothesis that residential exposure to NO2 increases incidence and severity of respiratory illnesses during the first 18 months of life. A cohort of 1,205 healthy infants from homes without smokers was enrolled. The daily occurrence of respiratory symptoms and illnesses was reported by the mothers every 2 wk. Illnesses with wheezing or wet cough were classified as lower respiratory tract. Indoor NO2 concentrations were serially measured with passive samplers place inmore » the subjects' bedrooms. In stratified analyses, illness incidence rates did not consistently increase with exposure to NO2 or stove type. In multivariate analyses that adjusted for potential confounding factors, odds ratios were not significantly elevated for current or lagged NO2 exposures, or stove type. Illness duration, a measure of illness severity, was not associated with NO2 exposure. The findings can be extended to homes with gas stoves in regions of the United States where the outdoor air is not heavily polluted by NO2.« less

  17. Solar Fridges and Personal Power Grids: How Berkeley Lab is Fighting Global Poverty (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buluswar, Shashi; Gadgil, Ashok

    At this November 26, 2012 Science at the Theater, scientists discussed the recently launched LBNL Institute for Globally Transformative Technologies (LIGTT) at Berkeley Lab. LIGTT is an ambitious mandate to discover and develop breakthrough technologies for combating global poverty. It was created with the belief that solutions will require more advanced R&D and a deep understanding of market needs in the developing world. Berkeley Lab's Ashok Gadgil, Shashi Buluswar and seven other LIGTT scientists discussed what it takes to develop technologies that will impact millions of people. These include: 1) Fuel efficient stoves for clean cooking: Our scientists are improvingmore » the Berkeley Darfur Stove, a high efficiency stove used by over 20,000 households in Darfur; 2) The ultra-low energy refrigerator: A lightweight, low-energy refrigerator that can be mounted on a bike so crops can survive the trip from the farm to the market; 3) The solar OB suitcase: A low-cost package of the five most critical biomedical devices for maternal and neonatal clinics; 4) UV Waterworks: A device for quickly, safely and inexpensively disinfecting water of harmful microorganisms.« less

  18. Final Report: Wireless Instrument for Automated Measurement of Clean Cookstove Usage and Black Carbon Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukac, Martin; Ramanathan, Nithya; Graham, Eric

    2013-09-10

    Black carbon (BC) emissions from traditional cooking fires and other sources are significant anthropogenic drivers of radiative forcing. Clean cookstoves present a more energy-efficient and cleaner-burning vehicle for cooking than traditional wood-burning stoves, yet many existing cookstoves reduce emissions by only modest amounts. Further research into cookstove use, fuel types, and verification of emissions is needed as adoption rates for such stoves remain low. Accelerated innovation requires techniques for measuring and verifying such cookstove performance. The overarching goal of the proposed program was to develop a low-cost, wireless instrument to provide a high-resolution profile of the cookstove BC emissions andmore » usage in the field. We proposed transferring the complexity of analysis away from the sampling hardware at the measurement site and to software at a centrally located server to easily analyze data from thousands of sampling instruments. We were able to build a low-cost field-based instrument that produces repeatable, low-cost estimates of cookstove usage, fuel estimates, and emission values with low variability. Emission values from our instrument were consistent with published ranges of emissions for similar stove and fuel types.« less

  19. Heating with Biomass in the United Kingdom: Lessons from New Zealand

    NASA Astrophysics Data System (ADS)

    Mitchell, E. J. S.; Coulson, G.; Butt, E. W.; Forster, P. M.; Jones, J. M.; Williams, A.

    2017-03-01

    In this study we review the current status of residential solid fuel (RSF) use in the UK and compare it with New Zealand, which has had severe wintertime air quality issues for many years that is directly attributable to domestic wood burning in heating stoves. Results showed that RSF contributed to more than 40 μg m-3 PM10 and 10 μg m-3 BC in some suburban locations of New Zealand in 2006, with significant air quality and climate impacts. Models predict RSF consumption in New Zealand to decrease slightly from 7 PJ to 6 PJ between 1990 and 2030, whereas consumption in the UK increases by a factor of 14. Emissions are highest from heating stoves and fireplaces, and their calculated contribution to radiative forcing in the UK increases by 23% between 2010 and 2030, with black carbon accounting for more than three quarters of the total warming effect. By 2030, the residential sector accounts for 44% of total BC emissions in the UK and far exceeds emissions from the traffic sector. Finally, a unique bottom-up emissions inventory was produced for both countries using the latest national survey and census data for the year 2013/14. Fuel- and technology-specific emissions factors were compared between multiple inventories including GAINS, the IPCC, the EMEP/EEA and the NAEI. In the UK, it was found that wood consumption in stoves was within 30% of the GAINS inventory, but consumption in fireplaces was substantially higher and fossil fuel consumption is more than twice the GAINS estimate. As a result, emissions were generally a factor of 2-3 higher for biomass and 2-6 higher for coal. In New Zealand, coal and lignite consumption in stoves is within 24% of the GAINS inventory estimate, but wood consumption is more than 7 times the GAINS estimate. As a result, emissions were generally a factor of 1-2 higher for coal and several times higher for wood. The results of this study indicate that emissions from residential heating stoves and fireplaces may be underestimated in climate models. Emissions are increasing rapidly in the UK which may result in severe wintertime air quality reductions, as seen in New Zealand, and contribute to climate warming unless controls are implemented such as the Ecodesign emissions limits.

  20. Modeling indoor air pollution from cookstove emissions in developing countries using a Monte Carlo single-box model

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Lam, Nick; Brant, Simone; Gray, Christen; Pennise, David

    2011-06-01

    A simple Monte Carlo single-box model is presented as a first approach toward examining the relationship between emissions of pollutants from fuel/cookstove combinations and the resulting indoor air pollution (IAP) concentrations. The model combines stove emission rates with expected distributions of kitchen volumes and air exchange rates in the developing country context to produce a distribution of IAP concentration estimates. The resulting distribution can be used to predict the likelihood that IAP concentrations will meet air quality guidelines, including those recommended by the World Health Organization (WHO) for fine particulate matter (PM2.5) and carbon monoxide (CO). The model can also be used in reverse to estimate the probability that specific emission factors will result in meeting air quality guidelines. The modeled distributions of indoor PM2.5 concentration estimated that only 4% of homes using fuelwood in a rocket-style cookstove, even under idealized conditions, would meet the WHO Interim-1 annual PM2.5 guideline of 35 μg m-3. According to the model, the PM2.5 emissions that would be required for even 50% of homes to meet this guideline (0.055 g MJ-delivered-1) are lower than those for an advanced gasifier fan stove, while emissions levels similar to liquefied petroleum gas (0.018 g MJ-delivered-1) would be required for 90% of homes to meet the guideline. Although the predicted distribution of PM concentrations (median = 1320 μg m-3) from inputs for traditional wood stoves was within the range of reported values for India (108-3522 μg m-3), the model likely overestimates IAP concentrations. Direct comparison with simultaneously measured emissions rates and indoor concentrations of CO indicated the model overestimated IAP concentrations resulting from charcoal and kerosene emissions in Kenyan kitchens by 3 and 8 times respectively, although it underestimated the CO concentrations resulting from wood-burning cookstoves in India by approximately one half. The potential overestimation of IAP concentrations is thought to stem from the model's assumption that all stove emissions enter the room and are completely mixed. Future versions of the model may be improved by incorporating these factors into the model, as well as more comprehensive and representative data on stove emissions performance, daily cooking energy requirements, and kitchen characteristics.

  1. Adoption and sustained use of cleaner cooking fuels in rural India: a case control study protocol to understand household, network, and organizational drivers.

    PubMed

    Kumar, Praveen; Dhand, Amar; Tabak, Rachel G; Brownson, Ross C; Yadama, Gautam N

    2017-01-01

    Implementing efficient stoves and clean fuels in low and middle-income countries are critical for improving health of poor women and children and improve the environment. Cleaner biomass stoves, however, perform poorly against the World Health Organization's indoor air quality guidelines. This has shifted the focus to systematic dissemination and implementation of cleaner cooking systems such as liquefied petroleum gas (LPG) among poor communities. Even when there is some uptake of LPG by poor communities, its sustained use has been low. Concurrent use of LPG with traditional biomass cookstoves compromises reductions in household air pollution and limits health and environmental dividends. Therefore understanding key drivers of adoption and sustained implementation of clean fuels among the poor is critical. There is a significant gap, however, in the research to understand determinants and sustained exclusive use of clean fuels in rural poor communities. Using a case control study design, this study will explore the impact of affordability, accessibility, and awareness on adoption and sustained use of LPG among rural poor communities of India. The study uses a multistage random sampling to collect primary data from 510 households. Case group or LPG adopters constitute 255 households while control group or non-LPG adopters constitute the remaining 255 households. The study will deploy sophisticated stove use monitoring sensors in each of the stoves in 100 case group households to monitor stove use and stacking behavior (using clean and traditional systems of cooking) of participants for 12 months. Moreover, this will be the first study to explore the impact of personal social networks striated by gender on LPG adoption. This study is guided by the RE-AIM (Reach, Effectiveness, Adoption, Implementation, and Maintenance) implementation science evaluation framework. Lessons from this study will feed into a larger discussion on developing a pro-poor strategy to foster uptake and sustained use of cleaner cooking systems such as LPG. Understanding the determinants of adoption and sustained use of cleaner cooking systems through the RE-AIM framework will expand our insights on implementation of cleaner cooking systems among poor communities and will advance implementation science in the clean cooking sector. A thorough study of such implementation strategies is crucial to realize multiple UN Sustainable Development Goals on global health, climate change, and energy security.

  2. Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)

    ScienceCinema

    Gadgil, Ashok; Booker, Kayje; Rausch, Adam

    2018-06-08

    Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmental engineering. He helps to design and test stove designs in Ethiopia and elsewhere.

  3. Emission of volatile organic compounds from domestic coal stove with the actual alternation of flaming and smoldering combustion processes.

    PubMed

    Liu, Chengtang; Zhang, Chenglong; Mu, Yujing; Liu, Junfeng; Zhang, Yuanyuan

    2017-02-01

    Volatile organic compounds (VOCs) emissions from the chimney of a prevailing domestic stove fuelled with raw bituminous coal were measured under flaming and smoldering combustion processes in a farmer's house. The results indicated that the concentrations of VOCs quickly increased after the coal loading and achieved their peak values in a few minutes. The peak concentrations of the VOCs under the smoldering combustion process were significantly higher than those under the flaming combustion process. Alkanes accounted for the largest proportion (43.05%) under the smoldering combustion, followed by aromatics (28.86%), alkenes (21.91%), carbonyls (5.81%) and acetylene (0.37%). The emission factors of the total VOCs under the smoldering combustion processes (5402.9 ± 2031.8 mg kg -1 ) were nearly one order of magnitude greater than those under the flaming combustion processes (559.2 ± 385.9 mg kg -1 ). Based on the VOCs emission factors obtained in this study and the regional domestic coal consumption, the total VOCs emissions from domestic coal stoves was roughly estimated to be 1.25 × 10 8  kg a -1 in the Beijing-Tianjin-Hebei region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Stoves or Sugar? Willingness to Adopt Improved Cookstoves in Malawi

    PubMed Central

    Jagger, Pamela; Jumbe, Charles

    2016-01-01

    Malawi has set a target of adoption of two million improved cookstoves (ICS) by 2020. Meeting this objective requires knowledge about determinants of adoption, particularly in rural areas where the cost of traditional cooking technologies and fuels are non-monetary, and where people have limited capacity to purchase an ICS. We conducted a discrete choice experiment with 383 households in rural Malawi asking them if they would chose a locally made ICS or a package of sugar and salt of roughly equal value. Six months later, we assessed adoption and stove use patterns. Sixty-six percent of households chose the ICS. We find that having a larger share of crop residues in household fuel supply, awareness of the environmental impacts of woodfuel reliance, time the primary cook devotes to collecting fuelwood, and peer effects at the village-level increase the odds of choosing the ICS. Having a large labor supply for fuelwood collection and experience with a non-traditional cooking technology decreased the odds of choosing the ICS. In a rapid assessment six months after stoves were distributed, we found 80% of households were still using the ICS, but not exclusively. Our findings suggest considerable potential for wide-scale adoption of ICS in Malawi. PMID:27346912

  5. Polycyclic Aromatic Hydrocarbon Exposure in Household Air Pollution from Solid Fuel Combustion among the Female Population of Xuanwei and Fuyuan Counties, China

    PubMed Central

    2015-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) from burning “smoky” (bituminous) coal has been implicated as a cause of the high lung cancer incidence in the counties of Xuanwei and Fuyuan, China. Little is known about variations in PAH exposure from throughout the region nor how fuel source and stove design affects exposure. Indoor and personal PAH exposure resulting from solid fuel combustion in Xuanwei and Fuyuan was investigated using repeated 24 h particle bound and gas-phase PAH measurements, which were collected from 163 female residents of Xuanwei and Fuyuan. 549 particle bound (283 indoor and 266 personal) and 193 gas phase (all personal) PAH measurements were collected. Mixed effect models indicated that PAH exposure was up to 6 times higher when burning smoky coal than smokeless coal and varied by up to a factor of 3 between different smoky coal geographic sources. PAH measurements from unventilated firepits were up to 5 times that of ventilated stoves. Exposure also varied between different room sizes and season of measurement. These findings indicate that PAH exposure is modulated by a variety of factors, including fuel type, coal source, and stove design. These findings may provide valuable insight into potential causes of lung cancer in the area. PMID:25393345

  6. User Perspectives of Characteristics of Improved Cookstoves from a Field Evaluation in Western Kenya

    PubMed Central

    Loo, Jennifer D.; Hyseni, Lirije; Ouda, Rosebel; Koske, Selline; Nyagol, Ronald; Sadumah, Ibrahim; Bashin, Michelle; Sage, Mike; Bruce, Nigel; Pilishvili, Tamara; Stanistreet, Debbi

    2016-01-01

    Over half of the world’s population uses biomass fuels; these households cook on open fires indoors, increasing their risk of adverse health effects due to household air pollution (HAP) from biomass combustion. This study evaluated six improved cookstoves (ICS) for effectiveness and acceptability in a rural community in Western Kenya. This paper describes women’s views on each ICS compared to the traditional three-stone fire. Views on stove characteristics, fuel consumption, health effects and acceptability were assessed through structured interviews and focus group discussions. Data were coded and analyzed using a thematic approach. In total, 262 interviews and 11 focus groups were conducted from 43 women. Overall, women preferred the ICS over the traditional three-stone fire for various reasons including ease of use, efficiency, fuel efficiency and perceived reduction in smoke and improved health. However, there were clear preferences for specific ICS with almost half of women preferring a Philips stove. Despite acceptance and use of ICS, women used multiple stoves to meet their daily needs. Qualitative studies are essential to field evaluations to provide insight into user perspectives and acceptability of ICS and to inform research and development of technologies that are both effective in reducing HAP and practical in use. PMID:26828505

  7. Prototype Combined Heater/Thermoelectric Power Generator for Remote Applications

    NASA Astrophysics Data System (ADS)

    Champier, D.; Favarel, C.; Bédécarrats, J. P.; Kousksou, T.; Rozis, J. F.

    2013-07-01

    This study presents a prototype thermoelectric generator (TEG) developed for remote applications in villages that are not connected to the electrical power grid. For ecological and economic reasons, there is growing interest in harvesting waste heat from biomass stoves to produce some electricity. Because regular maintenance is not required, TEGs are an attractive choice for small-scale power generation in inaccessible areas. The prototype developed in our laboratory is especially designed to be implemented in stoves that are also used for domestic hot water heating. The aim of this system is to provide a few watts to householders, so they have the ability to charge cellular phones and radios, and to get some light at night. A complete prototype TEG using commercial (bismuth telluride) thermoelectric modules has been built, including system integration with an electric DC/DC converter. The DC/DC converter has a maximum power point tracker (MPPT) driven by an MC9SO8 microcontroller, which optimizes the electrical energy stored in a valve-regulated lead-acid battery. Physical models were used to study the behavior of the thermoelectric system and to optimize the performance of the MPPT. Experiments using a hot gas generator to simulate the exhaust of the combustion chamber of a stove are used to evaluate the system. Additionally, potential uses of such generators are presented.

  8. Carbon Monoxide (CO)

    MedlinePlus

    ... burning appliances -- including furnaces, stoves, fireplaces, clothes dryers, water heaters, and space heaters -- to detect deadly carbon monoxide leaks. Underwriters' Laboratory Product Safety Tips - Carbon Monoxide Alarms ...

  9. Unventilated indoor coal-fired stoves in Guizhou province, China: reduction of arsenic exposure through behavior changes resulting from mitigation and health education in populations with arsenicosis.

    PubMed

    An, Dong; Li, Dasheng; Liang, Yin; Jing, Zhengjin

    2007-04-01

    We report the results of a coordinated mitigation effort aimed at reducing arsenic (As) exposure in three counties of Guizhou province, China. Mitigation occurred in 2005 and encompassed 21 villages with 47,000 inhabitants, who were exposed to high levels of As in their diet through consumption of As-contaminated chili peppers and corn dried over unventilated stoves that burned coal containing high levels of As. The coal was mined by villagers from local pits. Inhalation of air that contained high levels of As contributed to approximately 25% of the daily As intake of 6-9 mg. Before mitigation, a baseline survey of 45,364 residents in 2004 identified more than 2,800 individuals with arsenicosis. The survey also found that many residents were aware of the health effects of As in general but lacked in-depth understanding of the link between coal use and arsenicosis. Consequently, an overwhelming majority (> 95%) continued to use high-As coal. This survey provided the basis for a health education campaign that promoted lifestyle changes coupled with the shutting down of local coal pits and the installation of 10,000 new stoves with chimneys for ventilation. The cost of the mitigation was about 4 million Yuan RMB (US$500,000) and was financed mostly by the government. A postmitigation response survey in 2005 found that > 85% of the residents now associate the use of coal with arsenicosis; > 90% correctly learned to operate the new ventilated stoves; and > 90% dry corn and chili peppers outdoors in the sun. Urinary As concentrations in the region decreased from 0.198 +/- 0.300 mg/L (n = 144) in 2004 to 0.049 +/- 0.009 mg/L (n = 50) in 2005 in individuals with arsenicosis (p < 0.01), which is consistent with the behavior changes.

  10. Village energy system dynamics of an isolated rural West African village

    NASA Astrophysics Data System (ADS)

    Johnson, Nathan Gregory

    This thesis examines the detailed energy system dynamics of an isolated rural agricultural village in West Africa. Every family lives on subsistence agriculture and there is no access to the electric grid. The study is based on a planning visit followed by three one-month studies in different seasons of a one-year period. Methods and findings are presented in three parts: (1) the overall dynamics of village energy supply and use for a one-year period, (2) the factors that influence fuel use for domestic cookstove applications, and (3) an assessment of the costs and benefits of various energy options for meeting domestic cooking needs. Wood and electricity account for 94% and less than 1% of village energy supply, respectively, yet both provide vital needs--cooked meals, hot water, warmth, clean water, lighting, and power for small electronics. The need for small-scale electricity is so great that the 21,000 disposable batteries purchased each year account for 65% of all domestic energy expenditures. Three-quarters of the annual village wood supply is burned within domestic cooking stoves. Multiple regression analysis was used to identify six factors that significantly impacted cooking energy use. These included the cookstove application, family size, total mass of wet and dry ingredients, mass of dry ingredients, use of burning embers as an igniter, and the number of fires used during a cooking event. Analysis indicated that cookstove type may affect fuel consumption but the effect was not statistically significant. Strong evidence was found of "stove stacking" in which improved stoves are used as additional cooking resources rather than a replacement for existing stoves. Sixty combinations of domestic cooking options were compared based on program cost and expected reduction in fuelwood use. Annualized capital costs ranged from zero to US$3,130 per year for reductions in wood use between 10.0% and 86.8% of the 234 metric tons of fuelwood used annually for cooking.

  11. Unventilated Indoor Coal-Fired Stoves in Guizhou Province, China: Reduction of Arsenic Exposure through Behavior Changes Resulting from Mitigation and Health Education in Populations with Arsenicosis

    PubMed Central

    An, Dong; Li, Dasheng; Liang, Yin; Jing, Zhengjin

    2007-01-01

    We the report results of a coordinated mitigation effort aimed at reducing arsenic (As) exposure in three counties of Guizhou province, China. Mitigation occurred in 2005 and encompassed 21 villages with 47,000 inhabitants, who were exposed to high levels of As in their diet through consumption of As-contaminated chili peppers and corn dried over unventilated stoves that burned coal containing high levels of As. The coal was mined by villagers from local pits. Inhalation of air that contained high levels of As contributed to approximately 25% of the daily As intake of 6–9 mg. Before mitigation, a baseline survey of 45,364 residents in 2004 identified more than 2,800 individuals with arsenicosis. The survey also found that many residents were aware of the health effects of As in general but lacked in-depth understanding of the link between coal use and arsenicosis. Consequently, an overwhelming majority (> 95%) continued to use high-As coal. This survey provided the basis for a health education campaign that promoted lifestyle changes coupled with the shutting down of local coal pits and the installation of 10,000 new stoves with chimneys for ventilation. The cost of the mitigation was about 4 million Yuan RMB (US$500,000) and was financed mostly by the government. A postmitigation response survey in 2005 found that > 85% of the residents now associate the use of coal with arsenicosis; > 90% correctly learned to operate the new ventilated stoves; and > 90% dry corn and chili peppers outdoors in the sun. Urinary As concentrations in the region decreased from 0.198 ± 0.300 mg/L (n = 144) in 2004 to 0.049 ± 0.009 mg/L (n = 50) in 2005 in individuals with arsenicosis (p < 0.01), which is consistent with the behavior changes. PMID:17450240

  12. Exposure to polycyclic aromatic hydrocarbons (PAHs), mutagenic aldehydes and particulate matter during pan frying of beefsteak.

    PubMed

    Sjaastad, Ann Kristin; Jørgensen, Rikke Bramming; Svendsen, Kristin

    2010-04-01

    Cooking with gas or electric stoves produces fumes, especially during frying, that contain a range of harmful and potentially mutagenic compounds as well as high levels of fine and ultrafine particles. The aim of this study was to see if polycyclic aromatic hydrocarbons (PAHs) and higher mutagenic aldehydes which were collected in the breathing zone of the cook, could be detected in fumes from the frying of beefsteak. The frying was performed in a model kitchen in conditions similar to those in a Western European restaurant kitchen. The levels of PAHs (16 EPA standard) and higher aldehydes (trans,trans-2,4-decadienal, 2,4-decadienal, trans-trans-2,4-nonadienal, trans-2-decenal, cis-2-decenal, trans-2-undecenal, 2-undecenal) were measured during frying on an electric or gas stove with margarine or soya bean oil as the frying fat. The number concentration of particles <100 nm in size (ultrafine) was also measured, as well as the mass concentration of total particulate matter. Levels of naphthalene were in the range of 0.15-0.27 microg/m(3) air. Measured levels of mutagenic aldehydes were between non-detectable and 61.80 microg/m(3) air. The exposure level of total aerosol was between 1.6 and 7.2 mg/m(3) air. Peak number concentrations of ultrafine particles were in the range of 6.0x10(4)-89.6x10(4) particles/cm(3) air. Naphthalene and mutagenic aldehydes were detected in most of the samples. The levels were variable, and seemed to be dependent on many factors involved in the frying process. However, according to the present results, frying on a gas stove instead of an electric stove causes increased occupational exposure to some of the components in cooking fumes which may cause adverse health effects.

  13. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from garbage burning, wood and dung cooking fires, motorcycles and brick kilns

    NASA Astrophysics Data System (ADS)

    Jayarathne, T. S.; Rathnayake, C.; Stockwell, C.; Daugherty, K.; Islam, R. M.; Christian, T. J.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Adhikari, S.; Rasmi, M.; Goetz, D.; DeCarlo, P. F.; Saikawa, E.; Yokelson, R. J.; Stone, E. A.

    2016-12-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in-situ characterization of widespread and under-sampled combustion sources in South Asia by determining emission factors (EF) for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon, inorganic ions, trace metals, and organic species. Garbage burning had the highest EF PM2.5 among the sampled sources ranging 7-124 g kg-1, with maximum EFs for garbage burned under higher moisture conditions. Garbage burning emissions contained high concentrations of polycyclic aromatic compounds (PAHs) and heavy metals (Pb, Cd, Zn) that are associated with acute and chronic health effects. Triphenylbenzene and antimony (Sb) were unique to garbage burning are good candidates for tracing this source. Cook stove emissions varied largely by stove technology (traditional mud stove, 3-stone cooking fire, chimney stove, etc.) and biomass fuel (dung, hardwood, twigs, and mixtures thereof). Burning dung consistently emitted more PM2.5 than burning wood and contained characteristic fecal sterols and stanols. Motorcycle emissions were evaluated before and after servicing, which decreased EF PM2.5 from 8.8 g kg-1 to 0.7 g kg-1. Organic species analysis indicated that this reduction in PM2.5­ is largely due to a decrease in emission of motor oil. For brick kilns, the forced draft zig-zag kilns had higher EF PM2.5 (12-19 g kg-1) compared to clamp kilns (8-13 g kg-1) and also exhibited chemical differences. PM2.5 emitted from the zig-zag kiln were mainly OC (7%), sulfate (32%) and uncharacterized chemical components (60%), while clamp kiln emissions were dominated by OC (64%) and ammonium sulfate (36%). The quantitative emission factors developed in this study may be used for source apportionment and to update regional emission inventories.

  14. Household air pollution following replacement of traditional open fire with an improved rocket type cookstove.

    PubMed

    Ochieng, Caroline; Vardoulakis, Sotiris; Tonne, Cathryn

    2017-02-15

    Cooking with biomass fuel is an important source of household air pollution (HAP) in developing countries, and a leading risk factor for ill-health. Although various designs of "improved cookstoves" (ICS) have been promoted as HAP interventions in these settings, few of them have undergone in-field evaluation, partly due to the challenge of conducting field measurements in remote settings. In this study we assessed the change in carbon monoxide (CO) exposure following the replacement of the traditional three-stone stove with a popular ICS in 49 homes in Western Kenya. We also assessed the suitability of using kitchen CO as a proxy for kitchen PM 2.5 . Reduction in 48h mean kitchen CO was 3.1ppm (95% CI: -8.1, 1.8) and in personal CO was 0.9ppm (95% CI: -4.3, 2.6) following stove replacements. Overall, 48-h kitchen and personal CO exposures were lower after stove replacement (28% and 12%, respectively) but with wide confidence intervals that also suggested possible increases in exposure. There were statistically significant reductions in peak kitchen and personal CO concentrations represented by the 8-h 95th percentile: reductions of 26.1ppm (95% CI: -44.6, -7.6) and 8.0ppm (95% CI: -12.2, -3.8), respectively. This is equivalent to 53% reduction in kitchen CO and 39% reduction in personal CO. We found good correlation between kitchen CO and PM 2.5 concentrations overall (r=0.73, n=33 over averaging periods approximating 1day), which varied by time of day and exposure setting. These variations limit the applicability of CO as a proxy measure for PM 2.5 concentrations. A combination of interventions, including better designed stoves, improved ventilation and cleaner fuels, may be needed to reduce HAP to levels that are likely to improve health. Copyright © 2016. Published by Elsevier B.V.

  15. Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadgil, Ashok; Booker, Kayje; Rausch, Adam

    2010-09-20

    Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmentalmore » engineering. He helps to design and test stove designs in Ethiopia and elsewhere.« less

  16. Camping in the Snow.

    ERIC Educational Resources Information Center

    Brown, Constance

    1979-01-01

    Describes the experience of winter snow camping. Provides suggestions for shelter, snow kitchens, fires and stoves, cooking, latrines, sleeping warm, dehydration prevention, and clothing. Illustrated with full color photographs. (MA)

  17. Cooking with Fire: The Mutagenicity- and PAH-Emission ...

    EPA Pesticide Factsheets

    Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. We evaluated two categories of solid-fuel cookstoves for 8 pollutant- and 4 mutagenicity-emission factors, correlated the mutagenicity-emission factors, and compared them to those of other combustion emissions. We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS); we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Other than NOx the emission factors per MJd correlated highly among each other (r2 ≥ 0.92); NOx correlated 0.58-0.76 with the other emission factors. Excluding NOx, the NDS and FDS reduced the emission factors on average 68 and 92%, respectively, relative to the TSF. Nonetheless, the mutagenicity-emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was intermediate to that of a large diesel bus engine and a small diesel generator. Both mutagenicity- and pollutant-emission factors may be informative for characterizing cookstove

  18. The effects of smokeless cookstoves on peak expiratory flow rates in rural Honduras.

    PubMed

    Rennert, W P; Porras Blanco, R M; Muniz, G B

    2015-09-01

    The use of biomass fuel for cooking in traditional cookstove designs negatively affects respiratory health of communities in developing countries. Indoor pollution affects particularly women and children, who are participating in food preparation. The effects of smokeless cookstove designs on indoor pollution are well documented, but few studies exist to assess the effects of improved stove designs on the respiratory health of community members. This study uses peak expiratory flow rate (PEFR) measurements in a before-and-after format to assess respiratory function of inhabitants of all 30 houses of Buenas Noches in central Honduras. PEFRs are measured before and 6 months after the installation of Justa stoves in people's homes. Health behaviors, respiratory symptoms and fire wood use are evaluated in a door-to-door survey format. A total of 137 eligible women and children between 6 and 14 years participated in the study. PEFR improved by 9.9-18.5% (P < 0.001) depending on the participants' exposure to indoor pollution. Health complaints like cough and behaviors like clinic visits did not change with the introduction of smokeless cookstove technology. Smokeless stoves improve respiratory health in an environment of high levels of indoor pollution. © The Author 2014. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Emission of PCDD/F, PCB, and HCB from combustion of firewood and pellets in residential stoves and boilers.

    PubMed

    Hedman, Björn; Naslund, Morgan; Marklund, Stellan

    2006-08-15

    To assess potential emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and hexachlorobenzene (HCB) from residential combustion of biofuels, experiments were performed in which various types of pellets and firewood were combusted in four types of stoves and boilers, with both full and reduced rates of air supply. Intermittent combustion of wood pellets resulted in emissions of 11 ng-(WHO-TEQ)/kg combusted fuel (dry weight). A modern, environmentally certified boiler yielded somewhat lower emissions of PCCD/F and PCB than a wood stove. Both gave <0.1 ng(WHO-TEQ)/m3n (1.3-6.5 ng(WHO-TEQ)/kg) and considerably lower emissions than an old boiler (7.0-13 ng(WHO-TEQ)/kg). No positive effect on emissions could be observed in full air combustion (simulating the use of a heat storage tank) compared to combustion with reduced air. Two of the wood combustion experiments included paper and plastic waste fuels. Chlorine-containing plastic waste gave rise to high emissions: ca. 310 ng(WHO-TEQ)/ kg over the whole combustion cycle. The homologue profiles of PCDD/Fs show characteristic differences between ashes and flue gas from combustions with different levels of air supply. These differences do not, however, seem to have any correlation to the relative amount of toxic congeners.

  20. Mutagenicity assessment of aerosols in emissions from domestic combustion processes.

    PubMed

    Canha, Nuno; Lopes, Isabel; Vicente, Estela Domingos; Vicente, Ana M; Bandowe, Benjamin A Musa; Almeida, Susana Marta; Alves, Célia A

    2016-06-01

    Domestic biofuel combustion is one of the major sources of regional and local air pollution, mainly regarding particulate matter and organic compounds, during winter periods. Mutagenic and carcinogenic activity potentials of the ambient particulate matter have been associated with the fraction of polycyclic aromatic hydrocarbons (PAH) and their oxygenated (OPAH) and nitrogenated (NPAH) derivatives. This study aimed at assessing the mutagenicity potential of the fraction of this polycyclic aromatic compound in particles (PM10) from domestic combustion by using the Ames assays with Salmonella typhimurium TA98 and TA100. Seven biofuels, including four types of pellets and three agro-fuels (olive pit, almond shell and shell of pine nuts), were tested in an automatic pellet stove, and two types of wood (Pinus pinaster, maritime pine, and Eucalyptus globulus, eucalypt) were burned in a traditional wood stove. For this latter appliance, two combustion phases-devolatilisation and flaming/smouldering-were characterised separately. A direct-acting mutagenic effect for the devolatilisation phase of pine combustion and for both phases of eucalypt combustion was found. Almond shell revealed a weak direct-acting mutagenic effect, while one type of pellets, made of recycled wastes, and pine (devolatilisation) presented a cytotoxic effect towards strain TA100. Compared to the manually fired appliance, the automatic pellet stove promoted lower polyaromatic mutagenic emissions. For this device, only two of the studied biofuels presented a weak mutagenic or cytotoxic potential.

  1. Assessment of particulate concentrations from domestic biomass combustion in rural Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauer, M.; Bartlett, K.; Regalado-Pineda, J.

    Recent evidence has suggested that woodsmoke exposure in developed countries is associated with acute and chronic health impacts. Particulate concentrations were measured in rural Mexican kitchens using biomass combustion for cooking. To investigate differences in indoor particle concentrations between kitchens using different fuels and stove types, measurements were made in eight kitchens using only biomass, six using only liquefied petroleum gas (LPG), six using a combination of biomass and LPG, and three using biomass in ventilated stoves. Outdoor samples were collected at the same time as the indoor samples. PM{sub 10} and PM{sub 2.5} measurements were made with inertial impactors,more » and particle light scattering was measured continuously with an integrating nephelometer. PM{sub 10} and PM{sub 2.5} concentrations (mean concentrations of 768 and 555 {mu}g m{sup -3}, respectively) in the kitchens burning only biomass were greater than in all other types (biomass > biomass + LPG > ventilated > LPG > outdoor). A similar trend was evident for the indoor/outdoor concentration ratio. Based on the short-term measurements estimated from the nephelometer data, PM{sub 10} and PM{sub 2.5} cooking period average and 5-min peak concentrations were significantly higher (p < 0.05) in kitchens using only biomass than in those using LPG, a combination of LPG and biomass, or a ventilated biomass stove. 20 refs., 3 figs., 3 tabs.« less

  2. Childproofing

    MedlinePlus

    ... better safety Burns: Replace traditional flame candles with battery-operated candles. Use knob covers on stoves. Turn ... carbon monoxide detectors throughout your home. Change the batteries twice a year when you change your smoke ...

  3. Cleaner cooking solutions to achieve health, climate, and economic cobenefits.

    PubMed

    Anenberg, Susan C; Balakrishnan, Kalpana; Jetter, James; Masera, Omar; Mehta, Sumi; Moss, Jacob; Ramanathan, Veerabhadran

    2013-05-07

    Nearly half the world's population must rely on solid fuels such as biomass (wood, charcoal, agricultural residues, and animal dung) and coal for household energy, burning them in inefficient open fires and stoves with inadequate ventilation. Household solid fuel combustion is associated with four million premature deaths annually; contributes to forest degradation, loss of habitat and biodiversity, and climate change; and hinders social and economic progress as women and children spend hours every day collecting fuel. Several recent studies, as well as key emerging national and international efforts, are making progress toward enabling wide-scale household adoption of cleaner and more efficient stoves and fuels. While significant challenges remain, these efforts offer considerable promise to save lives, improve forest sustainability, slow climate change, and empower women around the world.

  4. Accomplishments of the American-Polish program for elimination of low emissions in Krakow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T.A.; Pierce, B.

    1998-12-31

    Since 1990 the US Department of Energy (DOE) has been involved in a program aimed at reducing air pollution caused by small, coal-fired sources in Poland. The activity is focused on the city of Cracow, Poland with the intention that results will be applicable and extendable to the entire region. The effort under this program has been focused into 5 main areas of interest as follows: (1) energy conservation and extension of central station district heating; (2) replacement of coal- and coke-fired boilers with natural gas-fired boilers; (3) replacement of coal-fired home stoves with electric heating appliances; (4) reduction ofmore » emissions from stoker-fired boiler houses; and (5) reduction of emissions from coal-fired home heating stoves.« less

  5. WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure-risk functions

    NASA Astrophysics Data System (ADS)

    Bruce, Nigel; Pope, Dan; Rehfuess, Eva; Balakrishnan, Kalpana; Adair-Rohani, Heather; Dora, Carlos

    2015-04-01

    Background: 2.8 billion people use solid fuels as their primary cooking fuel; the resulting high levels of household air pollution (HAP) were estimated to cause more than 4 million premature deaths in 2012. The people most affected are among the world's poorest, and past experience has shown that securing adoption and sustained use of effective, low-emission stove technologies and fuels in such populations is not easy. Among the questions raised by these challenges are (i) to what levels does HAP exposure need to be reduced in order to ensure that substantial health benefits are achieved, and (ii) what intervention technologies and fuels can achieve the required levels of HAP in practice? New WHO air quality guidelines are being developed to address these issues. Aims: To address the above questions drawing on evidence from new evidence reviews conducted for the WHO guidelines. Methods: Discussion of key findings from reviews covering (i) systematic reviews of health risks from HAP exposure, (ii) newly developed exposure-response functions which combine combustion pollution risk evidence from ambient air pollution, second-hand smoke, HAP and active smoking, and (iii) a systematic review of the impacts of solid fuel and clean fuel interventions on kitchen levels of, and personal exposure to, PM2.5 and carbon monoxide (CO). Findings: Evidence on health risks from HAP suggest that controlling this exposure could reduce the risk of multiple child and adult health outcomes by 20-50%. The new integrated exposure-response functions (IERs) indicate that in order to secure these benefits, HAP levels require to be reduced to the WHO IT-1 annual average level (35 μg/m3 PM2.5), or below. The second review found that, in practice, solid fuel 'improved stoves' led to large percentage and absolute reductions, but post-intervention kitchen levels were still very high, at several hundreds of μg/m3 of PM2.5, although most solid fuel stove types met the WHO 24-hr average guideline for CO of 7 mg/m3. Clean fuel user studies were few, but also did not meet IT-1 for PM2.5, likely due to a combination of continuing multiple stove and fuel use, other sources in the home (e.g. kerosene lamps), and pollution from neighbours and other outdoor sources. Conclusions: Together, this evidence implies there needs to be a strategic shift towards more rapid and widespread promotion of clean fuels, along with efforts to encourage more exclusive use and control other sources in and around the home. For households continuing to rely on solid fuels, the best possible low-emission solid fuel stoves should be promoted, backed up by testing and in-field evaluation.

  6. 5. Historic American Buildings Survey Nathaniel R. Ewan, Photographer March ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Nathaniel R. Ewan, Photographer March 10, 1936 INTERIOR SHOWING ATSION STOVE - Chesterfield Friends Meeting House, Front & Church Streets, Crosswicks, Burlington County, NJ

  7. Differential exposure and acute health impacts of inhaled solid-fuel emissions from rudimentary and advanced cookstoves in female CD-1 mice.

    PubMed

    Gibbs-Flournoy, Eugene A; Gilmour, M Ian; Higuchi, Mark; Jetter, James; George, Ingrid; Copeland, Lisa; Harrison, Randy; Moser, Virginia C; Dye, Janice A

    2018-02-01

    There is an urgent need to provide access to cleaner end user energy technologies for the nearly 40% of the world's population who currently depend on rudimentary cooking and heating systems. Advanced cookstoves (CS) are designed to cut emissions and solid-fuel consumption, thus reducing adverse human health and environmental impacts. We hypothesized that, compared to a traditional (Tier 0) three-stone (3-S) fire, acute inhalation of solid-fuel emissions from advanced natural-draft (ND; Tier 2) or forced-draft (FD; Tier 3) stoves would reduce exposure biomarkers and lessen pulmonary and innate immune system health effects in exposed mice. Across two simulated cooking cycles (duration ~ 3h), emitted particulate mass concentrations were reduced 80% and 62% by FD and ND stoves, respectively, compared to the 3-S fire; with corresponding decreases in particles visible within murine alveolar macrophages. Emitted carbon monoxide was reduced ~ 90% and ~ 60%, respectively. Only 3-S-fire-exposed mice had increased carboxyhemoglobin levels. Emitted volatile organic compounds were FD ≪ 3-S-fire ≤ ND stove; increased expression of genes involved in xenobiotic metabolism (COX-2, NQO1, CYP1a1) was detected only in ND- and 3-S-fire-exposed mice. Diminished macrophage phagocytosis was observed in the ND group. Lung glutathione was significantly depleted across all CS groups, however the FD group had the most severe, ongoing oxidative stress. These results are consistent with reports associating exposure to solid fuel stove emissions with modulation of the innate immune system and increased susceptibility to infection. Lower respiratory infections continue to be a leading cause of death in low-income economies. Notably, 3-S-fire-exposed mice were the only group to develop acute lung injury, possibly because they inhaled the highest concentrations of hazardous air toxicants (e.g., 1,3-butadiene, toluene, benzene, acrolein) in association with the greatest number of particles, and particles with the highest % organic carbon. However, no Tier 0-3 ranked CS group was without some untoward health effect indicating that access to still cleaner, ideally renewable, energy technologies for cooking and heating is warranted. Published by Elsevier Inc.

  8. Personal child and mother carbon monoxide exposures and kitchen levels: methods and results from a randomized trial of woodfired chimney cookstoves in Guatemala (RESPIRE).

    PubMed

    Smith, Kirk R; McCracken, John P; Thompson, Lisa; Edwards, Rufus; Shields, Kyra N; Canuz, Eduardo; Bruce, Nigel

    2010-07-01

    During the first randomized intervention trial (RESPIRE: Randomized Exposure Study of Pollution Indoors and Respiratory Effects) in air pollution epidemiology, we pioneered application of passive carbon monoxide (CO) diffusion tubes to measure long-term personal exposures to woodsmoke. Here we report on the protocols and validations of the method, trends in personal exposure for mothers and their young children, and the efficacy of the introduced improved chimney stove in reducing personal exposures and kitchen concentrations. Passive diffusion tubes originally developed for industrial hygiene applications were deployed on a quarterly basis to measure 48-hour integrated personal carbon monoxide exposures among 515 children 0-18 months of age and 532 mothers aged 15-55 years and area samples in a subsample of 77 kitchens, in households randomized into control and intervention groups. Instrument comparisons among types of passive diffusion tubes and against a continuous electrochemical CO monitor indicated that tubes responded nonlinearly to CO, and regression calibration was used to reduce this bias. Before stove introduction, the baseline arithmetic (geometric) mean 48-h child (n=270), mother (n=529) and kitchen (n=65) levels were, respectively, 3.4 (2.8), 3.4 (2.8) and 10.2 (8.4) p.p.m. The between-group analysis of the 3355 post-baseline measurements found CO levels to be significantly lower among the intervention group during the trial period: kitchen levels: -90%; mothers: -61%; and children: -52% in geometric means. No significant deterioration in stove effect was observed over the 18 months of surveillance. The reliability of these findings is strengthened by the large sample size made feasible by these unobtrusive and inexpensive tubes, measurement error reduction through instrument calibration, and a randomized, longitudinal study design. These results from the first randomized trial of improved household energy technology in a developing country and demonstrate that a simple chimney stove can substantially reduce chronic exposures to harmful indoor air pollutants among women and infants.

  9. Personal child and mother carbon monoxide exposures and kitchen levels: Methods and results from a randomized trial of woodfired chimney cookstoves in Guatemala (RESPIRE)

    PubMed Central

    SMITH, KIRK R.; McCRACKEN, JOHN P.; THOMPSON, LISA; EDWARDS, RUFUS; SHIELDS, KYRA N.; CANUZ, EDUARDO; BRUCE, NIGEL

    2015-01-01

    During the first randomized intervention trial (RESPIRE: Randomized Exposure Study of Pollution Indoors and Respiratory Effects) in air pollution epidemiology, we pioneered application of passive carbon monoxide (CO) diffusion tubes to measure long-term personal exposures to woodsmoke. Here we report on the protocols and validations of the method, trends in personal exposure for mothers and their young children, and the efficacy of the introduced improved chimney stove in reducing personal exposures and kitchen concentrations. Passive diffusion tubes originally developed for industrial hygiene applications were deployed on a quarterly basis to measure 48-hour integrated personal carbon monoxide exposures among 515 children 0–18 months of age and 532 mothers aged 15–55 years and area samples in a subsample of 77 kitchens, in households randomized into control and intervention groups. Instrument comparisons among types of passive diffusion tubes and against a continuous electrochemical CO monitor indicated that tubes responded nonlinearly to CO, and regression calibration was used to reduce this bias. Before stove introduction, the baseline arithmetic (geometric) mean 48-h child (n=270), mother (n=529) and kitchen (n=65) levels were, respectively, 3.4 (2.8), 3.4 (2.8) and 10.2 (8.4) p.p.m. The between-group analysis of the 3355 post-baseline measurements found CO levels to be significantly lower among the intervention group during the trial period: kitchen levels: −90%; mothers: −61%; and children: −52% in geometric means. No significant deterioration in stove effect was observed over the 18 months of surveillance. The reliability of these findings is strengthened by the large sample size made feasible by these unobtrusive and inexpensive tubes, measurement error reduction through instrument calibration, and a randomized, longitudinal study design. These results from the first randomized trial of improved household energy technology in a developing country and demonstrate that a simple chimney stove can substantially reduce chronic exposures to harmful indoor air pollutants among women and infants. PMID:19536077

  10. Carbon monoxide poisoning

    MedlinePlus

    ... a chemical produced from the incomplete burning of natural gas or other products containing carbon. This includes exhaust, ... indoor and camp stoves) Water heaters that use natural gas Note: This list may not be all-inclusive.

  11. 24 CFR 3280.709 - Installation of appliances.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... does not apply if both appliances are direct vent system (sealed combustion system) appliances. (2) If... stove shall not be installed in a sleeping room. (v) Hearth extension shall be of noncombustible...

  12. Asthma - what to ask the doctor - adult

    MedlinePlus

    ... I have a fire in my fireplace or wood-burning stove? What sort of changes do I ... 42. National Asthma Education and Prevention Program Expert Panel Report 3: Guidelines for the Diagnosis and Management ...

  13. Cookstove Research Update - Health effects

    EPA Science Inventory

    The topic by Jan Dye will focus on acute pulmonary and innate immunity health effects in mice inhaling cookstove emissions from natural draft or forced draft advanced stoves compared to a rudimentary three-stone fire.

  14. 33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ON HOT BLAST STOVES. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. 46 CFR 25.26-1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... is intended to be used for sleeping and is provided with installed bunks and mattresses. EPIRB means... preparation and extended storage of food. This does not include small alcohol or propane stoves with limited...

  16. 46 CFR 25.26-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is intended to be used for sleeping and is provided with installed bunks and mattresses. EPIRB means... preparation and extended storage of food. This does not include small alcohol or propane stoves with limited...

  17. 46 CFR 25.26-1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is intended to be used for sleeping and is provided with installed bunks and mattresses. EPIRB means... preparation and extended storage of food. This does not include small alcohol or propane stoves with limited...

  18. 46 CFR 25.26-1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... is intended to be used for sleeping and is provided with installed bunks and mattresses. EPIRB means... preparation and extended storage of food. This does not include small alcohol or propane stoves with limited...

  19. How to Keep Your Camping Adventure Disaster-Free.

    ERIC Educational Resources Information Center

    Feely, Herta

    1993-01-01

    A collection of suggestions for making camping trips safe for children and their families focus on hiking safety, water safety, poison prevention; and cooking safety (campfires, portable stoves, and food tips). (SM)

  20. Consent Decree for Harley-Davidson

    EPA Pesticide Factsheets

    Harley-Davidson will also pay a $12 million civil penalty and spend $3 million on a project to mitigate air pollution through a project to replace conventional woodstoves with cleaner-burning stoves in local communities.

  1. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells.

    PubMed

    Marabini, Laura; Ozgen, Senem; Turacchi, Silvia; Aminti, Stefania; Arnaboldi, Francesca; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Vecchi, Roberta; Becagli, Silvia; Caruso, Donatella; Corrado, Galli L; Marinovich, Marina

    2017-08-01

    In this paper, results on the potential toxicity of ultrafine particles (UFPs d<100nm) emitted by the combustion of logwood and pellet (hardwood and softwood) are reported. The data were collected during the TOBICUP (TOxicity of BIomass COmbustion generated Ultrafine Particles) project, carried out by a team composed of interdisciplinary research groups. The genotoxic evaluation was performed on A549 cells (human lung carcinomacells) using UFPs whose chemical composition was assessed by a suite of analytical techniques. Comet assay and γ-H2AX evaluation show a significant DNA damage after 24h treatment. The interpretation of the results is based on the correlation among toxicological results, chemical-physical properties of UFPs, and the type and efficiency conditions in residential pellet or logwood stoves. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfheim, I.; Ramdahl, T.

    The aims of the Scandinavian research programs dealing with pollution from wood heating are: To characterize the emissions from the most commonly used stoves burning typical Scandinavian wood. In this work the emphasis has been on the characterization of organic compounds in the emissions and especially on the identification of compounds which may have mutagenic effects; To identify compounds which are specific for wood combustion emission and thus can be used as marker compounds in ambient air studies; To assess the contribution of specific pollutants, i.e., polycyclic aromatic compounds and mutagens, from wood heating to ambient air; To study themore » influence of wood heating on indoor air quality; and To support the development of stoves with less polluting emissions. This paper presents a brief overview of the work done and the results obtained so far within the Norwegian project and in a joint Nordic project.« less

  3. PM10 emissions and PAHs: The importance of biomass type and combustion conditions.

    PubMed

    Zosima, Angela T; Tzimou-Tsitouridou, Roxani D; Nikolaki, Spyridoula; Zikopoulos, Dimitrios; Ochsenkühn-Petropoulou, Maria Th

    2016-01-01

    The aim of the present work was to investigate the impact of biomass combustion with respect to conditions and fuel types on particle emissions (PM10) and their PAHs content. Special concern was on sampling, quantification and characterization of PM using different appliances, fuels and operating procedures. For this purpose different lab-scale burning conditions, two pellets stoves (8.5 and 10 kW) and one open fireplace were tested by using eight fuel types of biomass. An analytical method is described for the quantitative determination of 16 PAHs using liquid-liquid extraction and subsequent measurement by gas chromatography coupled to a mass spectrometer (GC-MS). Average PM10 emissions ranged from about 65 to 170 mg/m(3) at lab-scale combustions with flow oxygen at 13% in the exhaust gas, 85-220 mg/m(3) at 20% O2, 47-83 mg/m(3) at pellet stove of 10 kW, 34-69 mg/m(3) at pellet stove of 8.5 kW and 106-194 mg/m(3) at the open fireplace. The maximum permitted particle emission limit is 150 mg/m(3). Pellets originated from olive trees and from nonmixture trees were found to emit the lowest particulate matter in relation to the others, so they are considered healthiest and suitable for domestic heating reasons. In general, the results show that biomass open burning is an important PM10 and PAHs emission source.

  4. A pilot study characterizing real time exposures to particulate matter and carbon monoxide from cookstove related woodsmoke in rural Peru

    NASA Astrophysics Data System (ADS)

    Commodore, Adwoa A.; Hartinger, Stella M.; Lanata, Claudio F.; Mäusezahl, Daniel; Gil, Ana I.; Hall, Daniel B.; Aguilar-Villalobos, Manuel; Naeher, Luke P.

    2013-11-01

    Nearly half of the world's population is exposed to household air pollution (HAP) due to long hours spent in close proximity to unvented cooking fires. We aimed to use PM2.5 and CO measurements to characterize exposure to cookstove generated woodsmoke in real time among control (n = 10) and intervention (n = 9) households in San Marcos, Cajamarca Region, Peru. Real time personal particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), and personal and kitchen carbon monoxide (CO) samples were taken. Control households used a number of stoves including open fire and chimney stoves while intervention households used study-promoted chimney stoves. Measurements were categorized into lunch (9 am-1 pm) and dinner (3 pm-7 pm) periods, where applicable, to adjust for a wide range of sampling periods (2.8-13.1 h). During the 4-h time periods, mean personal PM2.5 exposures were correlated with personal CO exposures during lunch (r = 0.67 p = 0.024 n = 11) and dinner (r = 0.72 p = 0.0011 n = 17) in all study households. Personal PM2.5 exposures and kitchen CO concentrations were also correlated during lunch (r = 0.76 p = 0.018 n = 9) and dinner (r = 0.60 p = 0.018 n = 15). CO may be a useful indicator of PM during 4-h time scales measured in real time, particularly during high woodsmoke exposures, particularly during residential biomass cooking.

  5. 102. Giullotine type gate (inclosed position to regulate furnace exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Giullotine type gate (inclosed position to regulate furnace exhaust gases to stoves during heating cycle. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  6. Update on U.S.EPA Cookstove Research Activities

    EPA Science Inventory

    The presentation includes background information on EPA's stove research, focuses on cookstove testing for air pollutant emissions and energy efficiency, and briefly describes current research activities. Ongoing activities are highlighted, and EPA contacts are provided.

  7. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons

    EPA Science Inventory

    Polycyclic Aromatic Hydrocarbons (PAHs) are products of incomplete combustion of organic materials; sources are, thus, widespread,including cigarette smoke, municipal waste incineration, wood stove emissions, coal conversion, energy production form fossil fuels, and automobile an...

  8. 43 CFR 8365.2-3 - Occupancy and use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Act of 1949, as amended (40 U.S.C. 484(m)); (c) Build any fire except in a stove, grill, fireplace or ring provided for such purpose; (d) Enter or remain in campgrounds closed during established night...

  9. 43 CFR 8365.2-3 - Occupancy and use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Act of 1949, as amended (40 U.S.C. 484(m)); (c) Build any fire except in a stove, grill, fireplace or ring provided for such purpose; (d) Enter or remain in campgrounds closed during established night...

  10. 43 CFR 8365.2-3 - Occupancy and use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Act of 1949, as amended (40 U.S.C. 484(m)); (c) Build any fire except in a stove, grill, fireplace or ring provided for such purpose; (d) Enter or remain in campgrounds closed during established night...

  11. 43 CFR 8365.2-3 - Occupancy and use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Act of 1949, as amended (40 U.S.C. 484(m)); (c) Build any fire except in a stove, grill, fireplace or ring provided for such purpose; (d) Enter or remain in campgrounds closed during established night...

  12. Sources of Combustion Products: An Introduction to Indoor Air Quality

    EPA Pesticide Factsheets

    In addition to environmental tobacco smoke, other sources of combustion products are unvented kerosene and gas space heaters, woodstoves, fireplaces, and gas stoves. The major pollutants released are carbon monoxide, nitrogen dioxide, and particles.

  13. The effect of indoor air pollutants on otitis media and asthma in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daigler, G.E.; Markello, S.J.; Cummings, K.M.

    1991-03-01

    This case-control study investigated the possible association between home environmental air pollutants and their effect on otitis media and asthma in children. Patients with physician-diagnosed otitis (n = 125, 74% response), with asthma (n = 137, 80% response), and controls (n = 237, 72% response) from a private pediatric practice seen between October 1986 and May 1987 were studied. A questionnaire inquired about housing characteristics (i.e., age, insulation, heating system) and sources of indoor air pollution such as cigarette smoking, use of woodburning stoves, household pets, etc. Analysis of the responses confirmed previous findings of significant relationships between maternal smokingmore » (P = .021), and the presence of pets (P = .034) and the occurrence of asthma. A newly reported relationship between exposure to woodburning stoves and the occurrence of otitis (P less than .05) was reported. This implicates yet another risk factor (wood burning) in the etiology of otitis media.« less

  14. Food-related coping strategies after Hurricane Andrew.

    PubMed

    Magnus, M H

    1994-06-01

    This telephone survey examined food-related coping strategies in Floridian households after Hurricane Andrew. Approximately 137 households of university faculty and staff who lived in hurricane-damaged areas were interviewed. The average respondent was a college-educated woman between 41 and 60 years old. Prevailing food-purchasing problems included food stores that were either closed, without perishable food, distant, or crowded. In the absence of electricity and water, changes in food preparation included preparation of meals without a stove, more frequent use of grills and canned food, simpler meals, and less cooking. Changes in kitchen cleanup included using more disposables, cleaning more often, washing dishes by hand, and cleaning up less often because of damage in the kitchen. Respondents indicated that the hurricane experience taught them that they should have acquired more general supplies (eg, coolers, thermoses, propane stoves, and gas burners), more water and ice, and more nonperishable foods before the hurricane.

  15. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China.

    PubMed

    Seow, W J; Downward, G S; Wei, H; Rothman, N; Reiss, B; Xu, J; Bassig, B A; Li, J; He, J; Hosgood, H D; Wu, G; Chapman, R S; Tian, L; Wei, F; Caporaso, N E; Vermeulen, R; Lan, Q

    2016-10-01

    The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation in the rural counties of Xuanwei and Fuyuan, in Yunnan Province, China, which have among the highest lung cancer rates in the nation, a total of 163 participants in 30 selected villages were enrolled. Indoor 24-h NO2 and SO2 samples were collected in each household over two consecutive days. Compared to smoky coal, smokeless coal use was associated with higher NO2 concentrations [geometric mean (GM) = 132 μg/m(3) for smokeless coal and 111 μg/m(3) for smoky coal, P = 0.065] and SO2 [limit of detection = 24 μg/m(3) ; percentage detected (%Detect) = 86% for smokeless coal and 40% for smoky coal, P < 0.001]. Among smoky coal users, significant variation of NO2 and SO2 air concentrations was observed across different stove designs and smoky coal sources in both counties. Model construction indicated that the measurements of both pollutants were influenced by stove design. This exposure assessment study has identified high levels of NO2 and SO2 as a result of burning solid fuels for cooking and heating. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mwangi, A.M.

    This study focuses on wood-energy production and consumption strategies among small-scale farm households in central Kenya. The specific objective were: (1) to determine how households had responded to specific wood-energy policies; (2) to identify factors associated with household adoption or non-adoption of the strategies. Different programs aimed at addressing wood-energy shortages in Kenya were initiated or strengthened during the 1980s: fuelwood or multipurpose tree planting; development and dissemination of improved stoves and fireplaces; promotion of increased accessibility to wood-energy substitutes. Household adoption levels for policy-supported strategies have remained low despite promotion. Survey data from two villages in Nyeri district weremore » collected to determine the factors associated with adoption of the Kenya Ceramic Jiko, the [open quotes]Kuni Mbili[close quotes] stove/fireplace, kerosene stoves, electric cookers, and fuelwood or multipurpose tree planting. Adoption rates varied from as low as 1 percent for electricity to 43 percent for the Kenya Ceramic Jiko. Important policy variables included extension visits per year, income levels, years of formal education received by head of household, access to different fuels, area of farm-land owned, household size, and locational characteristics of the villages. Policy recommendations included: use of research results to direct policy; improvement of information flows between policy makers, extension agents, and technology-users; increased support of agroforestry; and better program coordination. Recommendations for further research included: examining more areas where efficiency gains in energy production and consumption can be made, extending the study to cover the drier parts of central Kenya, and conducting regular case studies in order to better understand the adoption process over time.« less

  17. Trace metals related to historical iron smelting at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). The ore used at Hopewell Furnace was obtained from iron mines within 5 miles of the furnace. The iron-ore deposits were formed about 200 million years ago and contain abundant magnetite, the primary iron mineral, and accessory minerals enriched in arsenic, cobalt, copper, lead, and other metals. Hopewell Furnace, built by Mark Bird during 1770-71, was one of the last of the charcoal-burning, cold-blast iron furnaces operated in Pennsylvania. The most productive years for Hopewell Furnace were from 1830 to 1837. Castings were the most profitable product, especially the popular Hopewell Stove. More than 80,000 stoves were cast at Hopewell, which produced as many as 23 types and sizes of cooking and heating stoves. Beginning in the 1840s, the iron industry shifted to large-scale, steam-driven coke and anthracite furnaces. Independent rural enterprises like Hopewell could no longer compete when the iron and steel industries consolidated in urban manufacturing centers. The furnace ceased operation in 1883 (Kurjack, 1954). The U.S. Geological Survey (USGS), in cooperation with the National Park Service, completed a study at Hopewell Furnace National Historic Site (NHS) in Berks and Chester Counties, Pennsylvania, to determine the fate of toxic trace metals, such as arsenic, cobalt, and lead, released into the environment during historical iron-smelting operations. The results of the study, conducted during 2008-10, are presented in this fact sheet.

  18. Exposure to Household Air Pollution from Biomass-Burning Cookstoves and HbA1c and Diabetic Status among Honduran Women.

    PubMed

    Rajkumar, Sarah; Clark, Maggie L; Young, Bonnie N; Benka-Coker, Megan L; Bachand, Annette M; Brook, Robert D; Nelson, Tracy L; Volckens, John; Reynolds, Stephen J; L'Orange, Christian; Good, Nicholas; Koehler, Kirsten; Africano, Sebastian; Osorto Pinel, Anibal B; Peel, Jennifer L

    2018-06-13

    Household air pollution from biomass cookstoves is estimated to be responsible for more than two and a half million premature deaths annually, primarily in low and middle-income countries where cardiometabolic disorders, such as Type II Diabetes, are increasing. Growing evidence supports a link between ambient air pollution and diabetes, but evidence for household air pollution is limited. This cross-sectional study of 142 women (72 with traditional stoves and 70 with cleaner-burning Justa stoves) in rural Honduras evaluated the association of exposure to household air pollution (stove type, 24-hour average kitchen and personal fine particulate matter [PM 2.5 ] mass and black carbon) with glycated hemoglobin (HbA1c) levels and diabetic status based on HbA1c levels. The prevalence ratio [PR] per interquartile range increase in pollution concentration indicated higher prevalence of prediabetes/diabetes (versus normal HbA1c) for all pollutant measures (e.g., PR per 84 μg/m 3 increase in personal PM 2.5 , 1.49; 95% confidence interval [CI], 1.11 - 2.01). Results for HbA1c as a continuous variable were generally in the hypothesized direction. These results provide some evidence linking household air pollution with the prevalence of prediabetes/diabetes, and, if confirmed, suggest that the global public health impact of household air pollution may be broader than currently estimated. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. CO and NO emissions from pellet stoves: an experimental study

    NASA Astrophysics Data System (ADS)

    Petrocelli, D.; Lezzi, A. M.

    2014-04-01

    This work presents a report on an experimental investigation on pellet stoves aimed to fully understand which parameters influence CO and NO emissions and how it is possible to find and choose the optimal point of working. Tests are performed on three pellet stoves varying heating power, combustion chamber size and burner pot geometry. After a brief review on the factors which influence the production of these pollutants, we present and discuss the results of experimental tests aimed to ascertain how the geometry of the combustion chamber and the distribution of primary and secondary air, can modify the quantity of CO and NO in the flue gas. Experimental tests show that production of CO is strongly affected by the excess air and by its distribution: in particular, it is critical an effective control of air distribution. In these devices a low-level of CO emissions does require a proper setup to operate in the optimal range of excess air that minimizes CO production. In order to simplify the optimization process, we propose the use of instantaneous data of CO and O2 concentration, instead of average values, because they allow a quick identification of the optimal point. It is shown that the optimal range of operation can be enlarged as a consequence of proper burner pot design. Finally, it is shown that NO emissions are not a critical issue, since they are well below threshold enforced by law, are not influenced by the distribution of air in the combustion chamber, and their behavior as a function of air excess is the same for all the geometries investigated here.

  20. Indoor air pollution from burning yak dung as a household fuel in Tibet

    NASA Astrophysics Data System (ADS)

    Xiao, Qingyang; Saikawa, Eri; Yokelson, Robert J.; Chen, Pengfei; Li, Chaoliu; Kang, Shichang

    2015-02-01

    Yak dung is widely used for cooking and heating in Tibet. We measured real-time concentrations of black carbon (BC) and fine particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) emitted by yak dung burning in six households with different living conditions and stove types in the Nam Co region, Tibet. We observed a much lower average BC/PM2.5 mass ratio (0.013, range 0.006-0.028) from dung combustion in this area than previously reported estimates, ranging between 0.05 and 0.11. Based on our measurements, estimated fuel use, and published emission factors of BC and PM2.5, about 0.4-1.7 Gg/year of BC is emitted by yak dung combustion in Tibet in addition to the previously estimated 0.70 Gg/year of BC for Tibetan residential sources. Our survey shows that most residents were aware of adverse health impacts of indoor yak dung combustion and approximately 2/3 of residents had already installed chimney stoves to mitigate indoor air pollution. However, our measurements reveal that, without adequate ventilation, installing a chimney may not ensure good indoor air quality. For instance, the 6-h average BC and PM2.5 concentrations in a stone house using a chimney stove were 24.5 and 873 μg/m3, respectively. We also observed a change in the BC/PM2.5 ratios before and after a snow event. The impact of dung moisture content on combustion efficiency and pollutant emissions needs further investigation.

  1. Coal Use, Stove Improvement, and Adult Pneumonia Mortality in Xuanwei, China: A Retrospective Cohort Study

    PubMed Central

    Shen, Min; Chapman, Robert S.; Vermeulen, Roel; Tian, Linwei; Zheng, Tongzhang; Chen, Bingshu E.; Engels, Eric A.; He, Xingzhou; Blair, Aaron; Lan, Qing

    2009-01-01

    Background In Xuanwei County, China, unvented indoor coal burning is strongly associated with increased risk of lung cancer and chronic obstructive pulmonary disease. However, the impact of coal burning and stove improvement on risk of pneumonia is not clear. Methods We conducted a retrospective cohort study among all farmers born 1917 through 1951 and living in Xuanwei as of 1 January 1976. The analysis included a total of 42,422 cohort members. Follow-up identified all deaths in the cohort from 1976 through 1996. Ages at entry into and at exit from follow-up ranged from 24 to 59 years and from 25 to 80 years, respectively. The record search detected 225 deaths from pneumonia, and 32,332 (76%) were alive as of 31 December 1996. We constructed multivariable Cox models (time variable = age) to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results Use of coal, especially smokeless coal, was positively associated with pneumonia mortality. Annual tonnage and lifetime duration of smoky and smokeless coal use were positively associated with pneumonia mortality. Stove improvement was associated with a 50% reduction in pneumonia deaths (smoky coal users: HR, 0.521; 95% CI, 0.340–0.798; smokeless coal users: HR, 0.449; 95% CI, 0.215–0.937). Conclusions Our analysis is the first to suggest that indoor air pollution from unvented coal burning is an important risk factor for pneumonia death in adults and that improving ventilation by installing a chimney is an effective measure to decrease it. PMID:19270797

  2. Particle Morphology From Wood-Burning Cook Stoves Emissions

    NASA Astrophysics Data System (ADS)

    Peralta, O.; Carabali, G.; Castro, T.; Torres, R.; Ruiz, L. G.; Molina, L. T.; Saavedra, I.

    2013-12-01

    Emissions from three wood-burning cook stoves were sampled to collect particles. Transmission electron microscope (TEM) copper grids were placed on the last two stages of an 8-stage MOUDI cascade impactor (d50= 0.32, and 0.18 μm). Samples were obtained on two heating stages of cooking, the first is a quick heating process to boil 1 liter of water, and the second is to keep the water at 90 C. Absorption coefficient, scattering coefficients, and particles concentration (0.01 - 2.5 μm aerodynamic diameter) were measured simultaneously using an absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm), and a condensation particle counter connected to a chamber to dilute the wood stoves emissions. Transmission electron micrographic images of soot particles were acquired at different magnifications using a High Resolution Transmission Electron Microscope (HRTEM) JEOL HRTEM 4000EX operating at 200 kV, equipped with a GATAN digital micrograph system for image acquisition. The morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The presence of high numbers of carbon ceno-spheres can be attributed to pyrolysis, thermal degradation, and others processes prior to combustion. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50= 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, S and K.

  3. 64. General view looking northwest showing Rust Co. boiler stacks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. General view looking northwest showing Rust Co. boiler stacks with stock bin trestle in foreground and regenerative stoves in background. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  4. Physicochemical characterization of fine particles from small-scale wood combustion

    NASA Astrophysics Data System (ADS)

    Lamberg, Heikki; Nuutinen, Kati; Tissari, Jarkko; Ruusunen, Jarno; Yli-Pirilä, Pasi; Sippula, Olli; Tapanainen, Maija; Jalava, Pasi; Makkonen, Ulla; Teinilä, Kimmo; Saarnio, Karri; Hillamo, Risto; Hirvonen, Maija-Riitta; Jokiniemi, Jorma

    2011-12-01

    Emissions from small-scale wood combustion appliances are of special interest since fine particles have been consistently associated with adverse health effects. It has been reported that the physicochemical characteristics of the emitted particles affect also their toxic properties but the mechanisms behind these phenomena and the causative role of particles from wood combustion sources are still mostly unknown. Combustion situations vary significantly in small-scale appliances, especially in batch combustion. Combustion behaviour is affected by fuel properties, appliance type and operational practice. Particle samples were collected from six appliances representing different combustion situations in small-scale combustion. These appliances were five wood log fuelled stoves, including one stove equipped with modern combustion technology, three different conventional combustion appliances and one sauna stove. In addition, a modern small-scale pellet boiler represented advanced continuous combustion technology. The aim of the study was to analyze gas composition and fine particle properties over different combustion situations. Fine particle (PM 1) emissions and their chemical constituents emerging from different combustion situations were compared and this physicochemical data was combined with the toxicological data on cellular responses induced by the same particles (see Tapanainen et al., 2011). There were significant differences in the particle emissions from different combustion situations. Overall, the efficient combustion in the pellet boiler produced the smallest emissions whereas inefficient batch combustion in a sauna stove created the largest emissions. Improved batch combustion with air-staging produced about 2.5-fold PM 1 emissions compared to the modern pellet boiler (50.7 mg MJ -1 and 19.7 mg MJ -1, respectively), but the difference in the total particulate PAH content was 750-fold (90 μg MJ -1 and 0.12 μg MJ -1, respectively). Improved batch combustion and conventional batch combustion showed almost the same PM 1 emissions (51.6 mg MJ -1), but a 10-fold difference in total particulate PAH emissions (910 μg MJ -1). These results highlight that same PM 1 emissions can be associated with very different chemical compositions, potentially leading to different toxic properties of the particles. Thus, changing from an old, less efficient, combustion appliance to a modern appliance can have a greater impact on toxic properties than the emitted PM 1 mass might indicate.

  5. 25. CAFETERIA Note remains of tile floor in foreground. Food ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. CAFETERIA Note remains of tile floor in foreground. Food cooked on the stove was served to workers in the eating area to the left of the counter (off picture). - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  6. 16 CFR 1406.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD... of this rule: (a) Coal and wood burning appliances means fireplace stoves, room heater/fireplace... fuel may be wood, coal, or both. Radiant heaters transmit heat primarily by direct radiation...

  7. 16 CFR 1406.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD... of this rule: (a) Coal and wood burning appliances means fireplace stoves, room heater/fireplace... fuel may be wood, coal, or both. Radiant heaters transmit heat primarily by direct radiation...

  8. EDUCATION LEVEL IS GREATEST RISK-FACTOR IN CARBON MONOXIDE POISONING

    EPA Science Inventory

    Carbon monoxide (CO) is a toxic by-product of the combustion of fossil fuels. In confined spaces, inefficient combustion sources, such as furnaces, stoves, kerosene heaters and automobiles can generate levels of CO that interrupt oxygen transport throughout the body, potentially ...

  9. Acute pulmonary and innate immunity health effects in mice inhaling cookstove emissions

    EPA Science Inventory

    Background: Burning of solid-fuels in rudimentary stoves generates harmful emissions that contribute to poor indoor air quality and have detrimental impacts on human health. Acute health effects include respiratory and eye irritation, cough, acute lower respiratory infection and ...

  10. Potato Problem Solving

    ERIC Educational Resources Information Center

    Carrier, Sarah J.; Thomas, Annie

    2010-01-01

    "Watch out, the stove will burn you," "Ooh, ice cream headache!" Students construct their conceptions about heat and temperature through their own intuitions about daily life experiences. As a result, misconceptions can be born from these constructed concepts. The activity described here addresses student misconceptions about thermal insulation…

  11. [Methods for the rapid preparation of paraffin blocks].

    PubMed

    Shmurun, R I

    1992-01-01

    Two accelerated chloroform-paraffin processings of materials with the use of ultrasound (US) and microwave (MW) irradiation in the stove "Electronica" as well as a combined method with US- and MW-irradiation are proposed to shorten drastically the duration of the prehistologic processing.

  12. IACP (INTEGRATED AIR CANCER PROJECT) EMISSIONS: TRANSFORMATIONS AND FATE

    EPA Science Inventory

    As part of the Integrated Air Cancer Project (IACP), diluted emissions from wood stoves and automobiles were injected into a Teflon smog chamber and irradiated to simulate their photochemical transformation in the atmosphere. Changes in the chemical composition and physical prope...

  13. 16 CFR 1406.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.3 Definitions. For the purposes of this rule: (a) Coal and wood burning appliances means fireplace stoves, room heater/fireplace... chimney flue. (e) Cookstoves and ranges are chimney connected solid fuel burning appliances that are used...

  14. 16 CFR 1406.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.3 Definitions. For the purposes of this rule: (a) Coal and wood burning appliances means fireplace stoves, room heater/fireplace... chimney flue. (e) Cookstoves and ranges are chimney connected solid fuel burning appliances that are used...

  15. EMISSIONS FROM BURNING CABINET MAKING SCRAPS

    EPA Science Inventory

    The report gives results of an initial determination of differences in missions when burning ordinary cordwood compared to kitchen cabinet making scraps. he tests were performed in an instrumented woodstove testing laboratory on a stove that simulated units observed in use at a k...

  16. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets.

    PubMed

    Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Randomized Trial of Interventions to Improve Childhood Asthma in Homes with Wood-burning Stoves.

    PubMed

    Noonan, Curtis W; Semmens, Erin O; Smith, Paul; Harrar, Solomon W; Montrose, Luke; Weiler, Emily; McNamara, Marcy; Ward, Tony J

    2017-09-13

    Household air pollution due to biomass combustion for residential heating adversely affects vulnerable populations. Randomized controlled trials to improve indoor air quality in homes of children with asthma are limited, and no such studies have been conducted in homes using wood for heating. Our aims were to test the hypothesis that household-level interventions, specifically improved-technology wood-burning appliances or air-filtration devices, would improve health measures, in particular Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores, relative to placebo, among children living with asthma in homes with wood-burning stoves. A three-arm placebo-controlled randomized trial was conducted in homes with wood-burning stoves among children with asthma. Multiple preintervention and postintervention data included PAQLQ (primary outcome), peak expiratory flow (PEF) monitoring, diurnal peak flow variability (dPFV, an indicator of airway hyperreactivity) and indoor particulate matter (PM) PM2.5. Relative to placebo, neither the air filter nor the woodstove intervention showed improvement in quality-of-life measures. Among the secondary outcomes, dPFV showed a 4.1 percentage point decrease in variability [95% confidence interval (CI)=-7.8 to -0.4] for air-filtration use in comparison with placebo. The air-filter intervention showed a 67% (95% CI: 50% to 77%) reduction in indoor PM2.5, but no change was observed with the improved-technology woodstove intervention. Among children with asthma and chronic exposure to woodsmoke, an air-filter intervention that improved indoor air quality did not affect quality-of-life measures. Intent-to-treat analysis did show an improvement in the secondary measure of dPFV. ClincialTrials.gov NCT00807183. https://doi.org/10.1289/EHP849.

  18. Reducing indoor air pollutants with air filtration units in wood stove homes.

    PubMed

    McNamara, Marcy L; Thornburg, Jonathon; Semmens, Erin O; Ward, Tony J; Noonan, Curtis W

    2017-08-15

    Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5μm; PM 2.5 ) and coarse (particles with aerodynamic diameters <10μm and >2.5μm; PMc) particulate matter. Endotoxin, predominantly found within the coarse fraction of airborne particulate matter, is associated with proinflammatory effects and adverse outcomes among susceptible populations. The aim of this study was to assess the efficacy of air filter interventions in reducing indoor PM 2.5 , PMc, and PMc-associated endotoxin concentrations in homes using a wood stove for primary heating. Homes (n=48) were randomized to receive in-room air filtration units with either a high efficiency filter (i.e. active) or a lower efficiency fiberglass filter (i.e., placebo). The active filter intervention showed a 66% reduction in indoor PM 2.5 concentrations (95% CI: 42.2% to 79.7% reduction) relative to the placebo intervention. Both the active and the placebo filters were effective in substantially reducing indoor concentrations of PMc (63.3% and 40.6% average reduction for active and placebo filters, respectively) and PMc-associated endotoxin concentrations (91.8% and 80.4% average reductions, respectively). These findings support the use of high efficiency air filtration units for reducing indoor PM 2.5 in homes using a wood stove for primary heating. We also discovered that using lower efficiency, lower cost filter alternatives can be effective for reducing PMc and airborne endotoxin in homes burning biomass fuel. Copyright © 2017. Published by Elsevier B.V.

  19. Factors influencing the stable carbon isotopic signature of methane from combustion and biomass burning

    NASA Astrophysics Data System (ADS)

    Chanton, Jeffrey P.; Rutkowski, Christine M.; Schwartz, Candace C.; Ward, Darold E.; Boring, Lindsay

    2000-01-01

    Factors controlling the δ13C of methane released by combustion include the combustion efficiency of the fire and the δ13C of the fuel. Smoldering fires produced 13C-depleted methane relative to hot, flaming fires in controlled forest and grassland burns and within a wood stove. Pine forest burns in the southeastern United States produced methane which ranged from -21 to -30‰, while African grassland burns varied from -17 to -26‰, depending upon combustion phase. African woodland burns produced methane at -30‰. In forest burns in the southeastern United States, the δ13C of methane released with smoldering was significantly 13C depleted relative to methane released under hot flaming conditions. Methane released with smoldering was depleted by 2-3‰ relative to the fuel δ13C, but this difference was not significant. The δ13C of methane produced in a variety of wood stove conditions varied from -9 to -25‰ and also depended upon combustion efficiency. Similar results were found for methane produced by gasoline automobile engines, where the δ13C of methane varied from -9 to -22‰. For combustion occurring within the confining chamber of a wood stove or engine the δ13C of methane was clearly 13C enriched relative to the δ13C of the fuel, possibly because of preferential combustion of 12CH4 in the gas phase. Significant quantities of ethylene (up to 25 to 50% of methane concentrations) were produced in southeastern U.S. forest fires, which may have consequences for physiological and reproductive responses of plants in the ecosystem. Methane production in these fires varied from 0.2 to 8.5% of the carbon dioxide production.

  20. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    NASA Astrophysics Data System (ADS)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  1. Efficient utilization of short rotation tree biomass for cooking in India

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Chauhan, S. K.

    2012-04-01

    The human as well as livestock population increase is phenomenal in developing world including India. The survival of this huge population certainly depends on the carrying capacity of the natural systems, which is essentially determined by the nature itself. Present state of the forests can satisfy the needs of certain population and the demand for wood has rapidly outstripped the sustainability of forests. The fuelwood requirements in the developing world is approximately 80 per cent of total wood requirements and is the major cause of forest degradation. Therefore, there is need to maximize the productivity on one hand and protection/extention of the area on another hand. Wood substitution is an option including shifting from fuelwood for cooking to fossil fuels but in the changing climatic situation, this option is short term alternative. There is need to produce more and use the same efficiently to reduce the demands. Millions of households across the country are using crude cooking stoves for their daily needs which are not only energy inefficient but detrimental to women health also. It has been the policy of Government to encourage trees outside forests to minimize the pressure from forests through meeting requirements outside forests, which is possible through intensively managed short rotation forestry and also some initiatives have been taken to increase the fuelwood efficiency through improved cooking stove, which are working successfully. Woodfuel remained the most important source of household energy in India but regular attempts have not been made to improve the efficiency in its use. This paper will focus on potential of short rotation forestry plantations for energy consumption and its efficient use at domestic scale. This has three fold interrelated economic, environmental and social impact. Key words: Short Rotation Forestry, trees outside forests, wood energy, cooking stove

  2. Size distribution and clothing-air partitioning of polycyclic aromatic hydrocarbons generated by barbecue.

    PubMed

    Lao, Jia-Yong; Wu, Chen-Chou; Bao, Lian-Jun; Liu, Liang-Ying; Shi, Lei; Zeng, Eddy Y

    2018-10-15

    Barbecue (BBQ) is one of the most popular cooking activities with charcoal worldwide and produces abundant polycyclic aromatic hydrocarbons (PAHs) and particulate matter. Size distribution and clothing-air partitioning of particle-bound PAHs are significant for assessing potential health hazards to humans due to exposure to BBQ fumes, but have not been examined adequately. To address this issue, particle and gaseous samples were collected at 2-m and 10-m distances from a cluster of four BBQ stoves. Personal samplers and cotton clothes were carried by volunteers sitting near the BBQ stoves. Particle-bound PAHs (especially 4-6 rings) derived from BBQ fumes were mostly affiliated with fine particles in the size range of 0.18-1.8 μm. High molecular-weight PAHs were mostly unimodal peaking in fine particles and consequently had small geometric mean diameters and standard deviations. Source diagnostics indicated that particle-bound PAHs in BBQ fumes were generated primarily by combustion of charcoal, fat content in food, and oil. The influences of BBQ fumes on the occurrence of particle-bound PAHs decreased with increasing distance from BBQ stoves, due to increased impacts of ambient sources, especially by petrogenic sources and to a lesser extent by wind speed and direction. Octanol-air and clothing-air partition coefficients of PAHs obtained from personal air samples were significantly correlated to each other. High molecular-weight PAHs had higher area-normalized clothing-air partition coefficients in cotton clothes, i.e., cotton fabrics may be a significant reservoir of higher molecular-weight PAHs. Particle-bound PAHs from barbecue fumes are generated largely from charcoal combustion and food-charred emissions and mainly affiliated with fine particles. Copyright © 2018. Published by Elsevier B.V.

  3. Household air pollution, health, and climate change: cleaning the air

    NASA Astrophysics Data System (ADS)

    Goldemberg, Jose; Martinez-Gomez, Javier; Sagar, Ambuj; Smith, Kirk R.

    2018-03-01

    Air pollution from the use of solid household fuels is now recognized to be a major health risk in developing countries. Accordingly, there has been some shift in development thinking and investment from previous efforts, which has focused only on improving the efficiency of household fuel use, to those that focus on reducing exposure to the air pollution that leads to health impact. Unfortunately, however, this is occurring just as the climate agenda has come to dominate much of the discourse and action on international sustainable development. Thus, instead of optimizing approaches that centrally focus on the large health impact, the household energy agenda has been hampered by the constraints imposed by a narrow definition of sustainability—one primarily driven by the desire to mitigate greenhouse emissions by relying on renewable biomass fueling so-called improved cookstoves. In reality, however, solid biomass is extremely difficult to burn sufficiently cleanly in household stoves to reach health goals. In comparison to the international development community, however, some large countries, notably Brazil historically and more recently, India have substantially expanded the use of liquefied petroleum gas (LPG) in their household energy mix, using their own resources, having a major impact on their national energy picture. The net climate impact of such approaches compared to current biomass stoves is minimal or non-existent, and the social and health benefits are, in contrast, potentially great. LPG can be seen as a transition fuel for clean household energy, with induction stoves powered by renewables as the holy grail (an approach already being adopted by Ecuador as also discussed here). The enormous human and social benefits of clean energy, rather than climate concerns, should dominate the household energy access agenda today.

  4. Pregnancy outcomes and ethanol cook stove intervention: A randomized-controlled trial in Ibadan, Nigeria.

    PubMed

    Alexander, Donee A; Northcross, Amanda; Karrison, Theodore; Morhasson-Bello, Oludare; Wilson, Nathaniel; Atalabi, Omolola M; Dutta, Anindita; Adu, Damilola; Ibigbami, Tope; Olamijulo, John; Adepoju, Dayo; Ojengbede, Oladosu; Olopade, Christopher O

    2018-02-01

    Household air pollution (HAP) exposure has been linked to adverse pregnancy outcomes. A randomized controlled trial was undertaken in Ibadan, Nigeria to determine the impact of cooking with ethanol on pregnancy outcomes. Three-hundred-twenty-four pregnant women were randomized to either the control (continued cooking using kerosene/firewood stove, n=162) or intervention group (received ethanol stove, n=162). Primary outcome variables were birthweight, preterm delivery, intrauterine growth restriction (IUGR), and occurrence of miscarriage/stillbirth. Mean birthweights for ethanol and controls were 3076 and 2988g, respectively; the difference, 88g, (95% confidence interval: -18g to 194g), was not statistically significant (p=0.10). After adjusting for covariates, the difference reached significance (p=0.020). Rates of preterm delivery were 6.7% (ethanol) and 11.0% (control), (p=0.22). Number of miscarriages was 1(ethanol) vs. 4 (control) and stillbirths was 3 (ethanol) vs. 7 (control) (both non-significant). Average gestational age at delivery was significantly (p=0.015) higher in ethanol-users (39.2weeks) compared to controls (38.2weeks). Perinatal mortality (stillbirths and neonatal deaths) was twice as high in controls compared to ethanol-users (7.9% vs. 3.9%; p=0.045, after adjustment for covariates). We did not detect significant differences in exposure levels between the two treatment arms, perhaps due to large seasonal effects and high ambient air pollution levels. Transition from traditional biomass/kerosene fuel to ethanol reduced adverse pregnancy outcomes. However, the difference in birthweight was statistically significant only after covariate adjustment and the other significant differences were in tertiary endpoints. Our results are suggestive of a beneficial effect of ethanol use. Larger trials are required to validate these findings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Respiratory health and lung function in Chinese restaurant kitchen workers.

    PubMed

    Wong, Tze Wai; Wong, Andromeda H S; Lee, Frank S C; Qiu, Hong

    2011-10-01

    To measure air pollutant concentrations in Chinese restaurant kitchens using different stove types and assess their influence on workers' respiratory health. 393 kitchen workers from 53 Chinese restaurants were surveyed over 16 months: 115 workers from 21 restaurants using only electric stoves and 278 workers from 32 restaurants using only gas stoves. Workers were interviewed about their respiratory symptoms and had their lung function tested. Concentrations of nitric oxide (NO), nitrogen dioxide (NO(2)), carbon monoxide (CO), carbon dioxide (CO(2)), methane (CH(4)), non-methane hydrocarbons (NMHC), total volatile organic compounds (TVOC) and fine particulate matter (PM(2.5)) were measured using portable monitors and air-bag sampling. Temperature and noise levels were assessed. Median concentrations of NO, NO(2) and CO were 7.4, 1.5 and 1.6 times higher in gas-fuelled kitchens than in electric ones and average concentrations of PM(2.5) and TVOC were 81% and 78% higher, respectively. Differences were smaller for CH(4) and NMHC. Electricity-run kitchens were 4.5°C cooler and 9 dBA less noisy than gas-fuelled ones. Workers using electric cookers had significantly better lung function than their gas-using counterparts and their mean FEV(1) and FVC values were 5.4% and 3.8% higher, respectively, after adjustment for confounders. Wheeze, phlegm, cough and sore throat were more prevalent in workers using gas. The adjusted OR for having phlegm regularly was significantly higher. The poorer lung function and higher prevalence of respiratory symptoms among workers in gas-fuelled kitchens compared to those in electricity-powered kitchens may be associated with exposure to higher concentrations of toxic air pollutants generated during gas cooking.

  6. Nitrogen dioxide and respiratory illness in children. Part I: Health outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samet, J.M.; Lambert, W.E.; Skipper, B.J.

    1993-06-01

    We have carried out a prospective cohort study to test the hypothesis that exposure to nitrogen dioxide increases the incidence and severity of respiratory infections during the first 18 months of life. Between January 1988 and June 1990, 1,315 infants were enrolled into the study at birth and followed with prospective surveillance for the occurrence of respiratory infections and monitoring of nitrogen dioxide concentrations in their homes. The subjects were healthy infants from homes without smokers; they were selected with stratification by type of cooking stove at a ratio of four to one for gas and electric stoves. Illness experiencemore » was monitored by a daily diary of symptoms completed by the mother and a telephone interview conducted every two weeks. Illnesses with wheezing or wet cough were classified as involving the lower respiratory tract; all other respiratory illnesses were designated as involving the upper respiratory tract. Exposure to nitrogen dioxide was estimated by two-week average concentrations measured in the subjects' bedrooms with passive samplers. This analysis is limited to the 1,205 subjects completing at least one month of observation; of these, 823 completed the full protocol, contributing 82.8% of the total number of days during which the subjects were under observation. Incidence rates for all respiratory illnesses, all upper respiratory illness, all lower respiratory illnesses, and lower respiratory illness further divided into those with any wheezing, or wet cough without wheezing, were examined within strata of nitrogen dioxide exposure at the time of the illness, nitrogen dioxide exposure during the prior month, and type of cooking stove. Consistent trends of increasing illness incidence rates with increasing exposure to nitrogen dioxide were not evident for either the lagged or unlagged exposure variables.« less

  7. Emission factors from biomass burning in three types of appliances: fireplace, woodstove and pellet stove

    NASA Astrophysics Data System (ADS)

    Duarte, Márcio; Vicente, Estela; Calvo, Ana; Nunes, Teresa; Tarelho, Luis; Alves, Célia

    2014-05-01

    In the last years, the importance of biomass fuels has increased mainly for two reasons. One of them is the effort to control the emissions of greenhouse gases, and on the other hand, the increasing costs associated with fossil fuels. Besides that, biomass burning is now recognised as one of the major sources contributing to high concentrations of particulate matter, especially during winter time. Southern European countries have a lack of information regarding emission profiles from biomass burning. Because of that, in most source apportionment studies, the information used comes from northern and alpine countries, whose combustion appliances, fuels and habits are different from those in Mediterranean countries. Due to this lack of information, series of tests using different types of equipment, as well as fuels, were carried out in order to obtain emission profiles and emission factors that correspond to the reality in southern European countries. Tests involved three types of biomass appliances used in Portugal, a fireplace, a woodstove and a modern pellet stove. Emission factors (mg.kg-1 fuel, dry basis) for CO, THC and PM10 were obtained. CO emission factors ranged from 38, for pine on the woodstove, to 84 for eucalyptus in the fireplace. THC emissions were between 4 and 24, for pine in the woodstove and eucalyptus in the fireplace, respectively. PM10 emission factors were in the range from 3.99, for pine in the woodstove, to 17.3 for eucalyptus in the fireplace. On average, the emission factors obtained for the fireplace are 1.5 (CO) to 4 (THC) times higher than those of the woodstove. The fireplace has emission factors for CO, THC and PM10 10, 35 and 32 times, respectively, higher than the pellet stove.

  8. Randomized Trial of Interventions to Improve Childhood Asthma in Homes with Wood-burning Stoves

    PubMed Central

    Semmens, Erin O.; Smith, Paul; Harrar, Solomon W.; Montrose, Luke; Weiler, Emily; McNamara, Marcy; Ward, Tony J.

    2017-01-01

    Background: Household air pollution due to biomass combustion for residential heating adversely affects vulnerable populations. Randomized controlled trials to improve indoor air quality in homes of children with asthma are limited, and no such studies have been conducted in homes using wood for heating. Objectives: Our aims were to test the hypothesis that household-level interventions, specifically improved-technology wood-burning appliances or air-filtration devices, would improve health measures, in particular Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores, relative to placebo, among children living with asthma in homes with wood-burning stoves. Methods: A three-arm placebo-controlled randomized trial was conducted in homes with wood-burning stoves among children with asthma. Multiple preintervention and postintervention data included PAQLQ (primary outcome), peak expiratory flow (PEF) monitoring, diurnal peak flow variability (dPFV, an indicator of airway hyperreactivity) and indoor particulate matter (PM) PM2.5. Results: Relative to placebo, neither the air filter nor the woodstove intervention showed improvement in quality-of-life measures. Among the secondary outcomes, dPFV showed a 4.1 percentage point decrease in variability [95% confidence interval (CI)=−7.8 to −0.4] for air-filtration use in comparison with placebo. The air-filter intervention showed a 67% (95% CI: 50% to 77%) reduction in indoor PM2.5, but no change was observed with the improved-technology woodstove intervention. Conclusions: Among children with asthma and chronic exposure to woodsmoke, an air-filter intervention that improved indoor air quality did not affect quality-of-life measures. Intent-to-treat analysis did show an improvement in the secondary measure of dPFV. Trial registration: ClincialTrials.gov NCT00807183. https://doi.org/10.1289/EHP849 PMID:28935614

  9. Needs and perspectives of air quality improvement in Cracow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wertz, J.

    1995-12-31

    In 1970s and 80s the Cracow province area belonged to the regions of highest concentration of air pollutants throughout Europe. The majority of inhabitants, terrified of continuously worsening conditions of the environment, were of the opinion that this situation was caused by the industrial plants located within the Cracow area (town and/or province) as well as by the advection of pollutants from the neighboring Katowice province - the most industrialized region of Poland. The results of two large measurement series carried out in Cracow in 1984 and 1986 were surprising for the majority of the people. It appeared that 40%more » of the pollution came from local coal-fired boiler houses and household coal-fired stoves. These emission sources, situated at relatively low altitude above the ground level, were called low emission sources. The quantity of such sources has been estimated. It was estimated that the number of local boiler houses was close to 1,600 while the total number of household tile stoves reached 200,000. A full inventory of these sources drawn up in 1989-90 confirmed the quantity of existing boiler houses and the verified total number of tile stoves was 130,000. In 1986, the elimination of low emission sources was admitted to be one of the strategic directions of actions in the field of air quality protection. The following two solutions to this problem were accepted for implementation: (1) boiler house elimination by means of an administrative, compulsory decision, and (2) co-financing or even complete financing from the environmental protection fund, of the capital investment related to the elimination of a boiler house or its conversion to another mode of heating (gas, fuel-oil or connection to the municipal district heating loop). These two solutions are discussed.« less

  10. Indoor air pollution in slum neighbourhoods of Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Sanbata, Habtamu; Asfaw, Araya; Kumie, Abera

    2014-06-01

    An estimated 95% of the population of Ethiopia uses traditional biomass fuels, such as wood, dung, charcoal, or crop residues, to meet household energy needs. As a result of the harmful smoke emitted from the combustion of biomass fuels, indoor air pollution is responsible for more than 50,000 deaths annually and causes nearly 5% of the burden of disease in Ethiopia. Very limited research on indoor air pollution and its health impacts exists in Ethiopia. This study was, therefore, undertaken to assess the magnitude of indoor air pollution from household fuel use in Addis Ababa, the capital city of Ethiopia. During January and February, 2012, the concentration of fine particulate matter (PM2.5) in 59 households was measured using the University of California at Berkeley Particle Monitor (UCB PM). The raw data was analysed using Statistical Package of Social Science (SPSS version 20.0) software to determine variance between groups and descriptive statistics. The geometric mean of 24-h indoor PM2.5 concentration is approximately 818 μg m-3 (Standard deviation (SD = 3.61)). The highest 24-h geometric mean of PM2.5 concentration observed were 1134 μg m-3 (SD = 3.36), 637 μg m-3 (SD = 4.44), and 335 μg m-3 (SD = 2.51), respectively, in households using predominantly solid fuel, kerosene, and clean fuel. Although 24-h mean PM2.5 concentration between fuel types differed statistically (P < 0.05), post hoc pairwise comparison indicated no significant difference in mean concentration of PM2.5 between improved biomass stoves and traditional stoves (P > 0.05). The study revealed indoor air pollution is a major environmental and health hazard from home using biomass fuel in Addis Ababa. The use of clean fuels and efficient cooking stoves is recommended.

  11. Cocreating business's new social compact.

    PubMed

    Brugmann, Jeb; Prahalad, C K

    2007-02-01

    Moving beyond decades of mutual distrust and animosity, corporations and nongovernmental organizations (NGOs) are learning to cooperate with each other. Realizing that their interests are converging, the two sides are working together to create innovative business models that are helping to grow new markets and accelerate the eradication of poverty. The path to convergence has proceeded in three stages. In the initial be-responsible stage, companies and NGOs, realizing that they had to coexist, started to look for ways to influence each other through joint social responsibility projects. This experience paved the way for the get-into-business stage, in which NGOs and companies sought to serve the poor by setting up successful businesses. In the process, NGOs learned business discipline from the private sector, while corporations gained an appreciation for the local knowledge, low-cost business models, and community-based marketing techniques that the NGOs have mastered. Increased success on both sides has laid the foundation for the cocreate-business stage, in which companies and NGOs become key parts of each other's capacity to deliver value. When BP sought to market a duel-fuel portable stove in India, it set up one such cocreation system with three Indian NGOs. The system allowed BP to bring the innovative stove to a geographically dispersed market through myriad local distributors without incurring distribution costs so high that the product would become unaffordable. The company sold its stoves profitably, the NGOs gained access to a lucrative revenue stream that could fund other projects, and consumers got more than the ability to sit down to a hot meal-they got the opportunity to earn incomes as the local distributors and thus to gain economic and social influence.

  12. Emission of polycyclic aromatic hydrocarbons, toxicity, and mutagenicity from domestic cooking using sawdust briquettes, wood, and kerosene.

    PubMed

    Kim, OanhNguyenThi; Nghiem, Le Hoang; Phyu, Yin Latt

    2002-03-01

    Smoke samples, in both gas and particulate matter (PM) phases, of the three domestic stoves were collected using U.S. EPA modified method 5 and were analyzed for 17 PAH (HPLC-UV), acute toxicity (Microtox test), and mutagenicity (Amestest). The gas phase of smoke contributed > or = 95% of 17 PAH, > or = 96% of toxicity, and > or = 60% of mutagenicity. The highest emission factor of 17 PAH was from sawdust briquettes (260 mg/kg), but the highest emission of 11 genotoxic PAH was from kerosene (28 mg/kg). PM samples of kerosene smoke were not toxic. The total toxicity emission factor was the highest from sawdust, followed by kerosene and wood fuel. Smoke samples from the kerosene stove were not mutagenic. TA98 indicated the presence of both direct and indirect mutagenic activities in PM samples of sawdust and wood fuel but only direct mutagenic activities in the gas phase. TA100 detected only direct mutagenic activities in both PM and gas-phase samples. The higher mutagenicity emission factor was from wood fuel, 12 x 10(6) revertants/kg (TA100-S9) and 3.5 x 10(6) (TA98-S9), and lower from sawdust, 2.9 x 10(6) (TA100-S9) and 2.8 x 10(6) (TA98-S9). The low burning rate and high efficiency of a kerosene stove have resulted in the lowest PAH, toxicity, and mutagenicity emissions from daily cooking activities. The bioassays produced toxicity and mutagenicity results in correspondence with the PAH content of samples. The tests could be used for a quick assessment of potential health risks.

  13. Household environment and behavioral determinants of respiratory tract infection in infants and young children in northern Bangladesh.

    PubMed

    Nasanen-Gilmore, S Pieta K; Saha, Subir; Rasul, Izaz; Rousham, Emily K

    2015-01-01

    Respiratory tract infections (RTI) are one of the leading causes of under-five mortality in Bangladesh. Solid biomass fuels are the main source of domestic fuel used for cooking across Bangladesh, leading to smoke and pollution exposure in the home. This article aims to identify risk factors for RTI among children aged under five years in Bangladesh with a particular focus on the household environment, fuel use, and cooking practices. A cross-sectional household-health survey was carried out in 321 households in northern Bangladesh. The survey included care-giver interviews on cooking practices, child health, and household behaviors during cooking. Health status of the youngest child (under five years) from each household was recorded through maternal interviews, medical diagnosis, and assessment of biomarkers (C-reactive protein (CRP), hemoglobin) from finger-prick blood samples. Anthropometric status (weight, height) was recorded. Children who spent ≥30 minutes/day within 5 feet of the stove during cooking had a significantly increased risk of moderate/severe RTI compared with children spending <30 minutes/day close to the stove (OR = 2.15, 95%CI: 1.20-3.86, P = 0.01), independent of socio-economic status (SES), biomass fuel type (wood, dung, plant-derived, compressed rice husks), child age, anthropometric status, CRP and hemoglobin. In environments with a heavy reliance on solid biomass fuels, the amount of time a child spends near the stove during cooking may be an important risk for RTI. These novel findings from Bangladesh warrant further investigation of mother-infant behaviors during cooking in relation to child health, to ascertain whether the association is likely to be causal. © 2015 Wiley Periodicals, Inc.

  14. Morphology and Chemical Composition of soot particles emitted by Wood-burning Cook-Stoves: a HRTEM, XPS and Elastic backscattering Studies.

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, G. A., Sr.; Castro, T.; Peralta, O.; De la Cruz, W.; Días, J.; Amelines, O.; Rivera-Hernández, M.; Varela, A.; Muñoz-Muñoz, F.; Policroniades, R.; Murillo, G.; Moreno, E.

    2014-12-01

    The morphology, microstructure and the chemical composition on surface of soot particles were studied by using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and elastic backscattering spectrometry. In order to obtain freshly soot particles emitted by home-made wood-burning cook stoves, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot particles. The XPS survey spectra show a large carbon peak around 285 eV and the oxygen signal at 533 eV. Some differences observed in the carbon/oxygen (C/O) ratio of the particles probably depend on the combustion process efficiency of each cook-stove analyzed. The C-1s XPS spectra show an asymmetric broad peak and other with low intensity that corresponds to sp2 and sp3hybridization, which were fitted with a convolution using Gaussian functions. Elastic backscattering technique allows a chemical elemental analysis of samples and confirms the presence of C, O and Si observed by XPS. Additionally, the morphological properties of soot aggregates were analyzed calculating the border-based fractal dimension (Df). Particles exhibit complex shapes with high values of Df. Also, real-time absorption (σabs) and scattering (σsct) coefficients of fine (with aerodynamic diameter < 2.5 µm) soot particles were measured. The trend in σabs and σsct indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  15. Influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning.

    PubMed

    Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bin; Wang, Rong; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bin; Wu, Haisuo; Tao, Shu

    2013-03-01

    The uncertainty in emission estimation is strongly associated with the variation in emission factor (EF), which could be influenced by a variety of factors such as fuel properties, stove type, fire management and even methods used in measurements. The impacts of these factors are complicated and often interact with each other. Controlled burning experiments were conducted to investigate the influences of fuel mass load, air supply and burning rate on the emissions and size distributions of carbonaceous particulate matter (PM) from indoor corn straw burning in a cooking stove. The results showed that the EFs of PM (EF(PM)), organic carbon (EFoc) and elemental carbon (EF(EC)) were independent of the fuel mass load. The differences among them under different burning rates or air supply amounts were also found to be insignificant (p > 0.05) in the tested circumstances. PM from the indoor corn straw burning was dominated by fine PM with diameter less than 2.1 microm, contributing 86.4% +/- 3.9% of the total. The size distribution of PM was influenced by the burning rate and air supply conditions. On average, EF(PM), EF(OC) and EF(EC) for corn straw burned in a residential cooking stove were (3.84 +/- 1.02), (0.846 +/- 0.895) and (0.391 +/- 0.350) g/kg, respectively. EF(PM), EF(OC) and EF(EC) were found to be positively correlated with each other (p < 0.05), but they were not significantly correlated with the EF of co-emitted CO, suggesting that special attention should be paid to the use of CO as a surrogate for other incomplete combustion pollutants.

  16. Approaches to characterize inequities in air pollution exposures

    EPA Science Inventory

    Certain populations bear a disproportionate burden of air pollutant exposures resulting in inequity of risk. This may be due to proximity to outdoor sources such as major roadways and industry or increased prevalence of indoor sources such as cigarette smoking or gas stoves. Ther...

  17. 24 CFR 3280.709 - Installation of appliances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... systems designed only to accept external cooling (i.e., self contained air conditioning systems, etc.) (7) The installation of a self contained air conditioner comfort cooling appliance shall meet the... fireplace or fireplace stove, air intake assembly, hearth extension and the chimney shall be installed in...

  18. RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    This report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories -- cordwood stoves, fireplaces, masonry h...

  19. RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories--cordwood stoves, fireplaces, masonry heat...

  20. Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits

    EPA Science Inventory

    Nearly half the world’s population has to rely on solid fuels such as biomass (wood, charcoal, agricultural residues, and animal dung) and coal for household energy, burning them in inefficient open fires and stoves with inadequate ventilation. Household solid fuel combustion is...

  1. Solid-fuel cook stoves: Fuel efficiency and emissions testing--Austin

    EPA Science Inventory

    The World Health Organization estimates that approximately 1.6 million people prematurely die each year due to exposure to air pollutants from burning solid fuels for residential cooking and heating (WHO, 2010). Residential solid-fuel use accounts for approximately 25 percent of ...

  2. 22. INTERIOR VIEW, BASEMENT UNDER NORTH ROOM OF MAIN BLOCK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INTERIOR VIEW, BASEMENT UNDER NORTH ROOM OF MAIN BLOCK, VIEW OF NORTHWEST WALL SHOWING CORBELING BASE OF FIRST FLOOR CHIMNEY BLOCK WITH STOVE-PIPE HOLE, AND MORTISE AND TENON FRAMING FOR HEARTH BED - Clifton Farm, Off Baker Road, Frederick, Frederick County, MD

  3. HOUSEHOLD STOVE IMPROVEMENTS AND REDUCTION OF LUNG CANCER RISK IN XUANWEI, CHINA

    EPA Science Inventory

    In rural Xuanwei County, lung cancer rates are among China's highest. For household heating and cooking, residents traditionally used unvented indoor firepits, which generate very high indoor air pollution concentrations. Unvented "smoky" coal burning is a major lung cancer ris...

  4. SOURCE STRENGTHS OF ULTRAFINE AND FINE PARTICLES DUE TO COOKING WITH A GAS STOVE

    EPA Science Inventory

    Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were us...

  5. 16 CFR § 1406.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... BURNING APPLIANCES-NOTIFICATION OF PERFORMANCE AND TECHNICAL DATA § 1406.3 Definitions. For the purposes of this rule: (a) Coal and wood burning appliances means fireplace stoves, room heater/fireplace... chimney flue. (e) Cookstoves and ranges are chimney connected solid fuel burning appliances that are used...

  6. HOUSEHOLD STOVE IMPROVEMENT AND RISK OF LUNG CANCER IN XUANWEI, CHINA

    EPA Science Inventory

    Background:
    Lung cancer rates in rural Xuanwei County, Yunnan Province, are among the highest in China. Residents traditionally burned "smoky" coal in unvented indoor firepits that generated very high levels of air pollution. Since the 1970s, most residents have change...

  7. Cultural Values and Social Choice of Technology.

    ERIC Educational Resources Information Center

    Ackermann, Werner

    1981-01-01

    Explores the relationship between cultural values and technology through examination of both values and technology in specific social contexts. Illustrations are based on two case studies--the proliferation of eating and drinking places in the United States and introduction of the gas stove in Senegal. (DB)

  8. Lessons from a pilot program to induce stove replacements in Chile: design, implementation and evaluation

    NASA Astrophysics Data System (ADS)

    Gómez, Walter; Chávez, Carlos; Salgado, Hugo; Vásquez, Felipe

    2017-11-01

    We present the design, implementation, and evaluation of a subsidy program to introduce cleaner and more efficient household wood combustion technologies. The program was conducted in the city of Temuco, one of the most polluted cities in southern Chile, as a pilot study to design a new national stove replacement initiative for pollution control. In this city, around 90% of the total emissions of suspended particulate matter is caused by households burning wood. We created a simulated market in which households could choose among different combustion technologies with an assigned subsidy. The subsidy was a relevant factor in the decision to participate, and the inability to secure credit was a significant constraint for the participation of low-income households. Due to several practical difficulties and challenges associated with the implementation of large-scale programs that encourage technological innovation at the household level, it is strongly advisable to start with a small-scale pilot that can provide useful insights into the final design of a fuller, larger-scale program.

  9. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    PubMed Central

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; Lerch, Harry; Olea, Ricardo A.; Suitt, Stephen E.; Kolker, Allan

    2010-01-01

    Indoor air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM2.5 concentration in 20 homes was 36.0 μg/m3. This is the first time that PM2.5 has been quantified and characterized inside Navajo reservation residents' homes. PMID:20671946

  10. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.

    PubMed

    Kao, Chien-Ya; Chen, Tsai-Yu; Chang, Yu-Bin; Chiu, Tzai-Wen; Lin, Hsiun-Yu; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng

    2014-08-01

    The biomass and lipid productivity of Chlorella sp. MTF-15 cultivated using aeration with flue gases from a coke oven, hot stove or power plant in a steel plant of the China Steel Corporation in Taiwan were investigated. Using the flue gas from the coke oven, hot stove or power plant for cultivation, the microalgal strain obtained a maximum specific growth rate and lipid production of (0.827 d(-1), 0.688 g L(-1)), (0.762 d(-1), 0.961 g L(-1)), and (0.728 d(-1), 0.792 g L(-1)), respectively. This study demonstrated that Chlorella sp. MTF-15 could efficiently utilize the CO₂, NOX and SO₂ present in the different flue gases. The results also showed that the growth potential, lipid production and fatty acid composition of the microalgal strain were dependent on the composition of the flue gas and on the operating strategy deployed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    DOE PAGES

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; ...

    2010-01-01

    Indoormore » air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM 2.5 concentration in 20 homes was 36.0  μ g/ m 3 . This is the first time that PM 2.5 has been quantified and characterized inside Navajo reservation residents' homes.« less

  12. Testing and Optimizing a Stove-Powered Thermoelectric Generator with Fan Cooling.

    PubMed

    Zheng, Youqu; Hu, Jiangen; Li, Guoneng; Zhu, Lingyun; Guo, Wenwen

    2018-06-07

    In order to provide heat and electricity under emergency conditions in off-grid areas, a stove-powered thermoelectric generator (STEG) was designed and optimized. No battery was incorporated, ensuring it would work anytime, anywhere, as long as combustible materials were provided. The startup performance, power load feature and thermoelectric (TE) efficiency were investigated in detail. Furthermore, the heat-conducting plate thickness, cooling fan selection, heat sink dimension and TE module configuration were optimized. The heat flow method was employed to determine the TE efficiency, which was compared to the predicted data. Results showed that the STEG can supply clean-and-warm air (625 W) and electricity (8.25 W at 5 V) continuously at a temperature difference of 148 °C, and the corresponding TE efficiency was measured to be 2.31%. Optimization showed that the choice of heat-conducting plate thickness, heat sink dimensions and cooling fan were inter-dependent, and the TE module configuration affected both the startup process and the power output.

  13. Study of temperature characterization of agricultural waste in the development of stove for combine heat power

    NASA Astrophysics Data System (ADS)

    Yulianto, Muhamad; Agustina, Sri Endah; Hartulistiyoso, Edy; Nelwan, Leopold Oscar; Nurlela

    2017-03-01

    Indonesia is one of tropical country in the world, therefore biomass product can find a lot in Indonesia. In the other side, waste of agricultural product is one of biomass resources which is can be converting to energy using Combine Heat Power for the example. In this paper, will be discussed about the temperature characterization due to influence of feeding rate and air flow rate. The contribution of this paper will show the temperature achievement of flue gas as the result of direct combustion in a stove. The research conducted using coconut shell as raw fuel material with varying feed rate and air flow rate. In this research also use the excess air to know the effect. The result show that the temperature of flue gas in direct combustion of coconut shell can reach of 520°C and temperature at combustion chamber reach 840°C. This achievement is occurring in the certain variation of experiment.

  14. The use of conservation biomass feedstocks as potential bioenergy resources in the United Kingdom.

    PubMed

    Phillips, D; Mitchell, E J S; Lea-Langton, A R; Parmar, K R; Jones, J M; Williams, A

    2016-07-01

    A number of countries have introduced energy policies to reduce the emission of carbon dioxide which, in the case of bio-heat, has resulted in increased use of small wood burning stoves and boilers, particularly in Europe. There are issues surrounding the supply of sustainable wood feedstock, prompting a desire to utilise local biomass resources. This includes biomass generated through the management of natural woodlands in nature reserves and conservation areas. These management practices can also extend to other areas, such as raised bog wildernesses and estuary Reed beds. We term the biomass from this resource as conservation biomass. This study is concerned with the viability of this resource as a fuel within the United Kingdom, and combustion tests were carried out using a small domestic stove. It was concluded that there is as much as 500kty(-1) that could be used in this way. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. 78 FR 59475 - Architectural Barriers Act Accessibility Guidelines; Outdoor Developed Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... following outdoor constructed features provided at these facilities: Picnic tables, fire rings, grills... requirements for picnic tables, fire rings, grills, fireplaces, wood stoves, trash and recycling receptacles... have required 50 percent of picnic tables, fire rings, grills, and benches to comply with the...

  16. Healthy volunteers exposed to wood stove particles demonstrate inflammatory changes

    EPA Science Inventory

    Introduction. Human exposure to particles associated with wood burning is of great consequence in both indoor air quality and air pollution and has been listed by the World Health Organization as one of the world's ten greatest health concerns. This investigation tested the postu...

  17. 22. VIEW SHOWING CREW'S QUARTERS IN FORECASTLE, LOOKING FORWARD FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW SHOWING CREW'S QUARTERS IN FORECASTLE, LOOKING FORWARD FROM DOOR IN PORT SIDE OF BULKHEAD; BUNK FRAME, (LEFT IN VIEW), REMAINS OF SMALL CAST IRON STOVE NEAR DECK STANCHION (CENTER OF VIEW) - Bugeye "Louise Travers", Intersection of Routes 2 & 4, Solomons, Calvert County, MD

  18. 41 CFR 301-11.15 - What expenses may be considered part of the daily lodging cost when I rent on a long-term basis?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...., stove, refrigerator, chairs, tables, bed, sofa, television, or vacuum cleaner); (b) Cost of connecting/disconnecting and using utilities; (c) Cost of reasonable maid fees and cleaning charges; (d) Monthly telephone...

  19. Test Report, BioLite HomeStove with Wood Fuel, Air Pollutant Emissions and Fuel Efficiency

    EPA Science Inventory

    Test results were obtained in accordance with ISO (International Organization for Standardization) IWA (International Workshop Agreement) 11:2012 that was unanimously affirmed by more than 90 stakeholders at the ISO International Workshop on Cookstoves on February 28-29, 2012 in ...

  20. Test Report, BioLite Home Stove with Wood Fuel, Air Pollutant Emissions and Fuel Efficiency

    EPA Science Inventory

    Test results were obtained in accordance with ISO (International Organization for Standardization) IWA (International Workshop Agreement) 11:2012 that was unanimously affirmed by more than 90 stakeholders at the ISO International Workshop on Cookstoves on February 28-29, 2012 in ...

  1. What to Do in a Fire (For Kids)

    MedlinePlus

    ... damage property. You can do your part to prevent fires by never playing with matches, lighters, and other fire sources. Also stay away from fireplaces, candles, and stoves. By following this advice, you'll be doing important work — preventing fires in the first place! Reviewed by: ...

  2. Particulate matters emitted from maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Shen, Zhenxing; Cao, Junji; Zhang, Leiming; Wu, Tingting; Zhang, Qian; Yin, Xiuli; Lei, Yali; Huang, Yu; Huang, R.-J.; Liu, Suixin; Han, Yongming; Xu, Hongmei; Zheng, Chunli; Liu, Pingping

    2017-02-01

    Maize straw smoldering in "Heated Kang" is the traditional way for heating in winter in rural areas of Guanzhong Plain. This smolder procedure produced large quantities of pollutants and got more and more concern from both public and researchers. In this study, on-site measurements of straw smoldering in a residence with a Chinese 'Heated Kang' (Scenario 1) were done to determine the emissions factors (EFs) for pollutants. Moreover, EFs of pollutants from an advanced stove fired with maize straw (Scenario 2) and maize-straw pellet (Scenario 3) had been conducted in a laboratory to find the new measure to reduce the pollution emissions. The results showed that the EFs of PM2.5 for three scenarios were 38.26 ± 13.94 g·kg- 1, 17.50 ± 8.29 g·kg- 1 and 2.95 ± 0.71 g·kg- 1, respectively. Comparing EFs of pollutants from 3 scenarios indicates that both briquetting of straw and advanced stove with air distribution system could efficiently reduce pollutants emission especially for Scenario 3. In detail, EFs of PM2.5, OC, EC and water soluble ions all have over 90% reduction between Scenarios 1 and 3. All particle-size distributions were unimodal, and all peaked in particle sizes < 0.47 μm. The EFs for K+ and Cl- were the highest of cations and anions for the majority of size groups. Converting to pellets and advanced stoves for residential heating could reduce PM2.5 emission from 48.3 Gg to 3.59 Gg, OC from 19.0 Gg to 0.91 Gg, EC from 1.7 Gg to 0.17 Gg and over 90% reduction on total water soluble ions in the whole region. A box model simulation for the Guanzhong Plain indicated that this conversion would lead to a 7.7% reduction in PM2.5 (from 130 to 120 μg·m- 3) in normal conditions and a 14.2% reduction (from 350 to 300 μg·m- 3) in hazy conditions. The results highlighted that the straw pellets burning in advanced stove can effectively reduce pollutants emitted and improve the energy use efficiency in comparison with maize straw smoldering in "Heated Kang". The study supplies an effective measure to reduce the rural biomass burning emission, and this method can be used in not only Guanzhong Plain but also other undeveloped areas in the future.

  3. Agricultural waste as household fuel: techno-economic assessment of a new rice-husk cookstove for developing countries.

    PubMed

    Vitali, Francesco; Parmigiani, Simone; Vaccari, Mentore; Collivignarelli, Carlo

    2013-12-01

    In many rural contexts of the developing world, agricultural residues and the organic fraction of waste are often burned in open-air to clear the lands or just to dispose them. This is a common practice which generates uncontrolled emissions, while wasting a potential energy resource. This is the case of rice husk in the Logone Valley (Chad/Cameroon). In such a context household energy supply is a further critical issue. Modern liquid fuel use is limited and traditional solid fuels (mainly wood) are used for daily cooking in rudimentary devices like 3-stone fires, resulting in low efficiency fuel use, huge health impacts, increasing exploitation stress for the local natural resources. Rice husk may be an alternative fuel to wood for household energy supply. In order to recover such a biomass, the authors are testing a proper stove with an original design. Its lay-out (featuring a metal-net basket to contain the fuel and a chimney to force a natural air draft) allows a mix of combustion/gasification of the biomass occurring in a completely burning fire, appropriate for cooking tasks. According to results obtained with rigorous test protocols (Water Boiling Test), different lay-outs have been designed to improve the performance of the stove. Technical and economic issues have been addressed in the development of such a model; building materials have been chosen in order to guarantee a cost as low as possible, using locally available items. The feasibility of the introduction of the stove in the studied context was assessed through an economic model that keeps into account not only the technology and fuel costs, but also the energy performance. According to the model, the threshold for the trade-off of the stove is the use of rice husk to cover 10-15% of the household energy needs both with traditional fireplaces or with improved efficiency cookstoves. The use of the technology proposed in combination with improved woodstove would provide householders with an appropriate and convenient cooking technology portfolio, increasing the opportunities of choice of the preferred energy system for the user and allowing significant savings for the family budget (up to 50% of the total annual cooking energy expenditure). The proposed model may be used also as a tool for the evaluation of the affordability or for the comparison of different cooking technologies also in other similar contexts, given their specific techno-economic parameter values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE IN THE RIGHT; THE CENTRAL COMPLEX WITH STOVES IN THE CENTER. ELECTRICAL POWER HOUSE IS ON THE LEFT BEYOND THE CONVEYOR LIFT. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  5. IMPROVED COOK STOVES FOR HAITI USING THERMOELECTRICS TO REDUCE DEFORESTATION AND IMPROVE QUALITY OF LIFE

    EPA Science Inventory

    Haiti, the poorest country in the Western Hemisphere, is plagued with continual problems due to severe deforestation throughout the country. Haiti was once nearly completely covered by lush forest, but now less than three percent of Haiti is forested. This environmental cala...

  6. Science Project Ideas about Kitchen Chemistry. Revised Edition.

    ERIC Educational Resources Information Center

    Gardner, Robert

    This book presents science experiments that can be conducted in the kitchen. Contents include: (1) "Safety First"; (2) "Chemistry in and Near the Kitchen Sink"; (3) "Chemistry in the Refrigerator"; (4) "Chemistry on the Stove"; (5) "Chemistry on the Kitchen Counter"; and (6) "Further Reading and Internet Addresses." (YDS)

  7. Defense Logistics Agency Disposition Services as a Supply Source: A DoD-Wide Opportunity

    DTIC Science & Technology

    2013-07-01

    upon the eco - nomic benefits of reutilization. Reutilization already saves the DoD millions of dollars each year by enabling both internal and...cost, over the Internet at govliquidation. com, tents, boots, gasoline burners (stove/heating units), a medical suction apparatus, and bandages and

  8. GLOBAL METHANE EMISSIONS FROM MINOR ANTHROPOGENIC SOURCES AND BIOFUEL COMBUSTION IN RESIDENTIAL STOVES (JOURNAL)

    EPA Science Inventory

    Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emiss...

  9. Life Cycle Assessment of Cooking Fuel Systems in India, China, Kenya, and Ghana

    EPA Science Inventory

    Daily use of traditional cooking fuels and stoves in India, China, Kenya, and Ghana emits harmful air pollutants that result in over a million premature deaths annually. Reducing pollution from cookstoves is a key priority, as emissions from traditional cookstoves and open fires ...

  10. 24 CFR 3280.709 - Installation of appliances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... roof, a combustion air inlet, a hearth extension, and means to securely attach the fireplace or the... fireplace or fireplace stove, air intake assembly, hearth extension and the chimney shall be installed in... from the hearth dropping onto the area beneath the manufactured home. (iv) The fireplace or fireplace...

  11. 24 CFR 3280.709 - Installation of appliances.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., solid fuel-burning fireplaces and solid fuel-burning fireplace stoves, shall be installed to provide for...) Vertical clearance above cooking top. Ranges shall have a vertical clearance above the cooking top of not less than 24 inches. (See § 3280.204). (g) Solid fuel-burning factory-built fireplaces and fireplace...

  12. 24 CFR 3280.709 - Installation of appliances.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., solid fuel-burning fireplaces and solid fuel-burning fireplace stoves, shall be installed to provide for...) Vertical clearance above cooking top. Ranges shall have a vertical clearance above the cooking top of not less than 24 inches. (See § 3280.204). (g) Solid fuel-burning factory-built fireplaces and fireplace...

  13. Assembly room, bunkhouse first floor interior. Vent pipe for missing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Assembly room, bunkhouse first floor interior. Vent pipe for missing heating stove exited through opening into chimney, seen on the far wall. Walls are exposed studs and bracing with board and battan on the exterior and interior sides. - Sespe Ranch, Bunkhouse, 2896 Telegraph Road, Fillmore, Ventura County, CA

  14. EFFECTS OF BURNRATE, WOOD SPECIES, ALTITUDE, AND STOVE TYPE ON WOODSTOVE EMISSIONS

    EPA Science Inventory

    During the winter of 1986-87, the U.S. Environmental Protection Agency (EPA) conducted an emission measurement program in Boise, ID, as part of the Integrated Air Cancer Project (IACP). This program was designed to identify the potential mutagenic impact of residential wood burni...

  15. Translations on Narcotics and Dangerous Drugs, Number 299

    DTIC Science & Technology

    1977-05-11

    A six-man party led by the deputy OCPD [Officer in Charge of Police Department], acting ASP [Assistant Superintendent of Police] Tang Yau Hie also...just prepared from opium when police moved in. The stoves were still burning and some drugs were recovered from the pans. Kulim OCPD Deputy Supt

  16. 46 CFR 25.26-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... preparation and extended storage of food. This does not include small alcohol or propane stoves with limited cooking capability, or ice chests or similar devices that are intended for keeping small quantities of food for short durations. High seas means the waters beyond a line three nautical miles seaward of the...

  17. SUMMARY OF NEW TECHNOLOGY WOODSTOVE IN-HOUSE PERFORMANCE

    EPA Science Inventory

    The paper summarizes the in-house performance of new technology wood-stoves. se of wood as a residential heating fuel increased markedly in the U.S. during the l970s in response to an increase in fossil fuel costs. ost of the increase represented wood burned in airtight parlor st...

  18. Test Report - CleanCook Model A1 Stove with Alcohol Fuel - Air Pollutant Emissions and Fuel Efficiency

    EPA Science Inventory

    Test results were obtained in accordance with ISO (International Organization for Standardization) IWA (International Workshop Agreement) 11:2012 that was unanimously affirmed by more than 90 stakeholders at the ISO International Workshop on Cookstoves on February 28-29, 2012 in ...

  19. 36 CFR 1002.13 - Fires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Fires. 1002.13 Section 1002... § 1002.13 Fires. (a) The following are prohibited: (1) Lighting or maintaining a fire, except in... or lanterns in violation of established restrictions. (3) Lighting, tending, or using a fire, stove...

  20. MOLECULAR CHARACTERIZATION OF SMOKE FROM CAMPFIRE BURNING OF PINE WOOD (PINUS ELLIOTTII). (R823990)

    EPA Science Inventory

    Abstract

    Although campfires are typically enjoyable events, people are exposed to high concentrations of gaseous and particulate pollutants. The combustion conditions of wood burned in campfires are different from those of indoor wood burning in stoves or fireplaces. T...

  1. 40 CFR Table 1 to Subpart Xxxxxx... - Description of Source Categories Affected by This Subpart

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), coke and gas burning salamanders, liquid or gas solar energy collectors, solar heaters, space heaters (except electric), mechanical (domestic and industrial) stokers, wood and coal-burning stoves, domestic...; concrete mixers; cranes, except industrial plant overhead and truck-type cranes; dredging machinery; pavers...

  2. 40 CFR Table 1 to Subpart Xxxxxx... - Description of Source Categories Affected by This Subpart

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), coke and gas burning salamanders, liquid or gas solar energy collectors, solar heaters, space heaters (except electric), mechanical (domestic and industrial) stokers, wood and coal-burning stoves, domestic...; concrete mixers; cranes, except industrial plant overhead and truck-type cranes; dredging machinery; pavers...

  3. 40 CFR Table 1 to Subpart Xxxxxx... - Description of Source Categories Affected by This Subpart

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...), coke and gas burning salamanders, liquid or gas solar energy collectors, solar heaters, space heaters (except electric), mechanical (domestic and industrial) stokers, wood and coal-burning stoves, domestic...; concrete mixers; cranes, except industrial plant overhead and truck-type cranes; dredging machinery; pavers...

  4. Asthma and Respiratory Related Emergency Room Visits Associated with a Wildfire in Eastern North Carolina in the Summer of 2008

    EPA Science Inventory

    Rationale: Epidemiological studies have shown associations between the incidence of increased emergency room admissions, hospital and outpatient clinic visits for respiratory causes with the exposures to wood stove, wildfires, and other forms of organic mass burning. In June 2008...

  5. 36 CFR 261.52 - Fire.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Fire. 261.52 Section 261.52... in Areas Designated by Order § 261.52 Fire. When provided by an order, the following are prohibited: (a) Building, maintaining, attending or using a fire, campfire, or stove fire. (b) Using an explosive...

  6. 36 CFR 261.52 - Fire.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Fire. 261.52 Section 261.52... in Areas Designated by Order § 261.52 Fire. When provided by an order, the following are prohibited: (a) Building, maintaining, attending or using a fire, campfire, or stove fire. (b) Using an explosive...

  7. 36 CFR 261.52 - Fire.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Fire. 261.52 Section 261.52... in Areas Designated by Order § 261.52 Fire. When provided by an order, the following are prohibited: (a) Building, maintaining, attending or using a fire, campfire, or stove fire. (b) Using an explosive...

  8. 36 CFR 261.52 - Fire.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Fire. 261.52 Section 261.52... in Areas Designated by Order § 261.52 Fire. When provided by an order, the following are prohibited: (a) Building, maintaining, attending or using a fire, campfire, or stove fire. (b) Using an explosive...

  9. Testing Selected Behaviors to Reduce Indoor Air Pollution Exposure in Young Children

    ERIC Educational Resources Information Center

    Barnes, B. R.; Mathee, A.; Krieger, L.; Shafritz, L.; Favin, M.; Sherburne, L.

    2004-01-01

    Indoor air pollution is responsible for the deaths and illness of millions of young children in developing countries. This study investigated the acceptability (willingness to try) and feasibility (ability to perform) of four indoor air pollution reduction behaviors (improve stove maintenance practices, child location practices, ventilation…

  10. GREENOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES, PHASE IIA. HOUSEHOLD STOVES IN INDIA

    EPA Science Inventory

    The report contains a systematic set of measurements of carbon dioxide (CO2), carbon monoxide, methane, total non-methane organic compounds, nitrous oxide, sulfur dioxide, nitrogen dioxide, and total suspended particulate emissions from the commonest combustion devices in the wor...

  11. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    EPA Science Inventory

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  12. A Step or Two Back in Time.

    ERIC Educational Resources Information Center

    Thomson, Peggy

    1979-01-01

    Describes the National Park Service's Environmental Living Program for elementary school children in the San Francisco Bay Area, where teachers, parents, and children stay overnight in a historic fort and schooner, experience living in a past age, use candles and oil stoves, and engage in mock military and shipboard activities. (MF)

  13. DEAR FELLOW AMERICANS.

    ERIC Educational Resources Information Center

    GULMON, LYNN

    THE HOUSING, WORK, HEALTH, AND SCHOOLING CONDITIONS OF COLORADO MIGRANT WORKERS AND THEIR CHILDREN WERE PRESENTED. HOUSING CONDITIONS FOR DOMESTIC LABORERS WERE VERY POOR. THERE WERE NO WELLS, NO REFRIGERATION, NO RUNNING WATER, NO STOVES OTHER THAN WOODBURNING OR COAL ONES, AND NO SCREENS ON DOORS AND WINDOWS. IT WAS SUGGESTED THAT MIGRANT…

  14. Making Homes Safe for Babies and Toddlers.

    ERIC Educational Resources Information Center

    Snell, Pat

    1996-01-01

    Notes that infants and toddlers are particularly vulnerable to hazards around the home or child-care center. Explains how caregivers can protect children from the potential hazards of buckets and bathtubs; buttons, balloons, and bottle caps; stoves and heaters; firearms; stairs and stools; medicines, cleaners, and paint; cords; doors; and other…

  15. A comparative analysis of liquefied petroleum gas (LPG) and kerosene related burns.

    PubMed

    Ahuja, Rajeev B; Dash, Jayant K; Shrivastava, Prabhat

    2011-12-01

    Previous studies from our department reflected a trend of decreasing incidence of burns culminating from rising income levels, which were bringing about a change in the cooking fuel in many urban households [1,2]. These studies also indicated a changing scenario of increased incidence of burns from LPG mishaps [2]. In the absence of much information on the subject we felt it rather imperative to comparatively study the pattern of burn injuries resulting from LPG and kerosene. This prospective study was conducted on the clinical database of consecutive patients admitted with burns sustained due to LPG and kerosene from 1st January 2009 to 31st May 2010 (17 months). Data recorded for each patient included; age, gender, religion, socioeconomic status, literacy level, type of family unit, marital status, type of dwelling unit, mode of injury and its exact mechanism, place of incident, level of cooking stove, extent of burns (%TBSA), presence of features of inhalation injury, number of patients affected in a single mishap, size of LPG cylinder used, length of hospital stay and mortality. Of 731 flame burn patients in this study, 395 (54%) were due to kerosene burns and 200 (27.4%) from LPG mishaps. Significantly, the majority of injuries, in both the groups, occurred in lower middle class families living as nuclear units, in a single room dwelling, without a separate kitchen. Majority of LPG burns (70.5%, 141 patients) resulted from a gas leak and 25.5% were from cooking negligence (51 patients). 50.5% of kerosene accidents were from 'stove mishaps' and 49% due to cooking negligence. In all kerosene accidents the stove was kept at floor level but in LPG group 20.6% had the stove placed on a platform. There was a slight difference in mean TBSA burns; 51% in kerosene group compared to 41.5% TBSA in LPG group. There were nine episodes in LPG group in which there were more than three burn victims admitted for treatment. Very importantly, 77% patients in LPG group were from a large cylinder (14.2 kg), which uses a rubber connecting tube. Mortality in kerosene group (50.6%) was far higher than in LPG group (33.5%). This study, from 200 LPG burn admissions, for the first time details the profile from LPG mishaps. It is very interesting to note that of all burns in the world the inequitable distribution bias towards LMICs (low and middle income countries) extends further towards low middle class families within the LMIC. A major risk factor is constrained living condition of a single room dwelling unit. Almost all burns from LPG mishaps were potentially preventable if more care had been practiced to ensure safety. Since majority of LPG mishaps were from gas leaks, either from the rubber tube (Fig. 1) or the stove valve, the observation of floor level cooking in 79.4% of LPG cases may be an economic compulsion of a single room dwelling unit without much impact on the injury pattern. The small LPG cylinder (5 kg) in which the burner is placed directly over the cylinder, as one unit without a connecting tube, is safer because it reduces the chances of a gas leak from an ill-fitting or a cracked rubber connecting tube (Fig. 2). Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  16. 24 CFR 200.936 - Supplementary specific procedural requirements under HUD building products certification program...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... fireplace stoves certified under the HUD Building Products Certification Program shall be designed... and manufacturer series or model number; and (iv) The type of fuel to be used. (2) The certification... Accreditation Program. (2) The administrator shall visit the manufacturer's facility two times a year to assure...

  17. 24 CFR 200.936 - Supplementary specific procedural requirements under HUD building products certification program...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fireplace stoves certified under the HUD Building Products Certification Program shall be designed... and manufacturer series or model number; and (iv) The type of fuel to be used. (2) The certification... Accreditation Program. (2) The administrator shall visit the manufacturer's facility two times a year to assure...

  18. 24 CFR 200.936 - Supplementary specific procedural requirements under HUD building products certification program...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fireplace stoves certified under the HUD Building Products Certification Program shall be designed... and manufacturer series or model number; and (iv) The type of fuel to be used. (2) The certification... Accreditation Program. (2) The administrator shall visit the manufacturer's facility two times a year to assure...

  19. 24 CFR 200.936 - Supplementary specific procedural requirements under HUD building products certification program...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fireplace stoves certified under the HUD Building Products Certification Program shall be designed... and manufacturer series or model number; and (iv) The type of fuel to be used. (2) The certification... Accreditation Program. (2) The administrator shall visit the manufacturer's facility two times a year to assure...

  20. 40 CFR 60.531 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Residential Wood Heaters § 60.531... Act and subpart A of this part. At retail means the sale by a commercial owner of a wood heater to the... wood in the stove, except for coal ignition purposes, is prohibited by law, and (5) The model is listed...

  1. 40 CFR 60.531 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Residential Wood Heaters § 60.531... Act and subpart A of this part. At retail means the sale by a commercial owner of a wood heater to the... wood in the stove, except for coal ignition purposes, is prohibited by law, and (5) The model is listed...

  2. 40 CFR 60.531 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Residential Wood Heaters § 60.531... Act and subpart A of this part. At retail means the sale by a commercial owner of a wood heater to the... wood in the stove, except for coal ignition purposes, is prohibited by law, and (5) The model is listed...

  3. 6. VIEW LOOKING AFT ON PORT SIDE OF MAIN DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW LOOKING AFT ON PORT SIDE OF MAIN DECK FROM POINT NEAR GALLEY STOVE CHIMNEY. DECKHOUSES ARE (FORE TO AFT) GALLEY COMPANIONWAY, ENGINE ROOM SKYLIGHT, PILOTS' CABIN SKYLIGHT, AFT COMPANIONWAY TO PILOTS' CABIN AND STEERING GEAR BOX - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  4. Evaluation of Methods for Physical Characterization of the Fine Particle Emissions from Two Residential Wood Combustion Appliances

    EPA Science Inventory

    The fine particulate matter (PM) emissions from a U. S. certified non-catalytic wood stove and a zero clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission t...

  5. Save Energy: Save Money!

    ERIC Educational Resources Information Center

    Eccli, Eugene; And Others

    This publication is a collection of inexpensive energy saving tips and home improvements for home owners, particularly in low-income areas or in older homes. Section titles are: (1) Keeping Warm; (2) Getting Heat Where You Need It; (3) Using the Sun; (4) Furnaces, Stoves, and Fireplaces; (5) Insulation and Other Energy Needs; (6) Do-It-Yourself…

  6. VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND CASTING SEED ON THE LEFT, THE #1 BLAST FURNACE AND CASTING SHED ON THE RIGHT, AND THE STOVES, BOILERS, AND AUXILIARY EQUIPMENT IN THE CENTER. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  7. Lenz's law in the kitchen

    NASA Astrophysics Data System (ADS)

    Dindorf, Wojciech

    1999-05-01

    A steel blade—a rather vital part of a mixer—has fallen behind a cupboard in my kitchen. The cupboard is heavy and quite permanently mounted between stove and fridge. Hopeless situation! Unless—you are an experimental physicist. This straightforward demonstration helps in appreciating the connection between Lenz's law and the law of conservation of energy.

  8. Lightweight High-Temperature Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Fasheh, J. I.

    1985-01-01

    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  9. 78 FR 7340 - Approval and Promulgation of Implementation Plans; Idaho: Sandpoint PM10 Nonattainment Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Sandpoint City Ordinance 965 for control of residential burning because it strengthens the SIP. The EPA is... woodstoves and burning. The public awareness program provided citizens with information about stove sizing... uncertified solid fuel heating appliances, and implements a wood burning curtailment program in the City of...

  10. 6. VIEW, LOOKING EAST, TOWARD STERN ALONG PORT SIDE, IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW, LOOKING EAST, TOWARD STERN ALONG PORT SIDE, IRON STOVE CAGE IN CENTER, SMALL DOOR IN STERN BULKHEAD AT RIGHT REAR THAT LEADS TO LIVING QUARTERS AND STERN DECK Edward Larrabee, photographer, December 1984 - Shooters Island, Ships Graveyard, Vessel No. 37, Newark Bay, Staten Island (subdivision), Richmond County, NY

  11. SUSTAINABLE ANAEROBIC DIGESTER/COOK STOVE DESIGN TO PROMOTE HEALTH, ENVIRONMENT, AND ECONOMIC PROSPERITY FOR INDIGENOUS PEOPLE OF ECUADOR

    EPA Science Inventory

    Phase I prototype digesters demonstrated the feasibility of biogas generation, using simple materials such as trash cans, oil drums, and polyethylene bags – a full scale digester, based on prototype biogas production volumes, range from 5000 to 9000 liters, depending on ...

  12. 40 CFR 60.531 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Residential Wood Heaters § 60.531... Act and subpart A of this part. At retail means the sale by a commercial owner of a wood heater to the... wood in the stove, except for coal ignition purposes, is prohibited by law, and (5) The model is listed...

  13. 40 CFR 60.531 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Residential Wood Heaters § 60.531... Act and subpart A of this part. At retail means the sale by a commercial owner of a wood heater to the... wood in the stove, except for coal ignition purposes, is prohibited by law, and (5) The model is listed...

  14. Workyards: Playgrounds Planned for Adventure.

    ERIC Educational Resources Information Center

    Rudolph, Nancy

    The playgrounds pictured and discussed in this book are called Workyards. They are places where children play--in any way they elect. Limitations are set only by the space that is available and by the always changing and abundant supply of materials: lumber, nails, tools, old machinery, rope, sinks, stoves, pickets from an old fence, barrels, and…

  15. 4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN 'B'; PIPE, WOOD, STOVE MATERIALS, AND COLLAPSED ROOT CELLAR IN CENTRAL AREA. VERTICAL, DARK PIPE IS VISIBLE IN CENTER/UPPER THIRD. CAMERA POINTED EAST. - Florida Mountain Mining Sites, Lower Nottingham Mine, Western slope of Florida Mountain, Silver City, Owyhee County, ID

  16. Exposure of pregnant women to cookstove-related household air pollution in urban and periurban Trujillo, Peru.

    PubMed

    St Helen, Gideon; Aguilar-Villalobos, Manuel; Adetona, Olorunfemi; Cassidy, Brandon; Bayer, Charlene W; Hendry, Robert; Hall, Daniel B; Naeher, Luke P

    2015-01-01

    Although evidence suggests associations between maternal exposure to air pollution and adverse birth outcomes, pregnant women's exposure to household air pollution in developing countries is understudied. Personal exposures of pregnant women (N = 100) in Trujillo, Peru, to air pollutants and their indoor concentrations were measured. The effects of stove-use-related characteristics and ambient air pollution on exposure were determined using mixed-effects models. Significant differences in 48-hour kitchen concentrations of particulate matter (PM2.5), carbon monoxide (CO), and nitrogen dioxide (NO2) concentrations were observed across fuel types (p < 0.05). Geometric mean PM2.5 concentrations where 112 μg/m(3) (confidence limits [CLs]: 52, 242 μg/m(3)) and 42 μg/m(3) (21, 82 μg/m(3)) in homes where wood and gas were used, respectively. PM2.5 exposure was at levels that recent exposure-response analyses suggest may not result in substantial reduction in health risks even in homes where cleaner burning gas stoves were used.

  17. Genetic modification of the effect of maternal household air pollution exposure on birth weight in Guatemalan newborns.

    PubMed

    Thompson, Lisa M; Yousefi, Paul; Peñaloza, Reneé; Balmes, John; Holland, Nina

    2014-12-01

    Low birth weight is associated with exposure to air pollution during pregnancy. The purpose of this study was to evaluate whether null polymorphisms of Glutathione S-transferases (GSTs), specifically GSTM1 and GSTT1 genes in infants or mothers, modify the association between high exposures to household air pollution (HAP) from cooking fires and birth weight. Pregnant women in rural Guatemala were randomized to receive a chimney stove or continue to use open fires for cooking. Newborns were measured within 48 h of birth. 132 mother-infant pairs provided infant genotypes (n=130) and/or maternal genotypes (n=116). Maternal null GSTM1 was associated with a 144 g (95% CI, -291, 1) and combined maternal/infant null GSTT1 was associated with a 155 g (95% CI, -303, -8) decrease in birth weight. Although there was a trend toward higher birth weights with increasing number of expressed GST genes, the effect modification by chimney stove use was not demonstrated. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Life-Cycle Assessment of Cookstove Fuels in India and China ...

    EPA Pesticide Factsheets

    A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are reported for a suite of relevant life cycle impact assessment indicators: global climate change, energy demand, fossil depletion, water consumption, particulate matter formation, acidification, eutrophication and photochemical smog formation. Traditional fuels demonstrate notably poor relative performance in particulate matter formation, photochemical oxidant formation, freshwater eutrophication, and black carbon emissions. Most fuels demonstrate trade-offs between impact categories. Stove efficiency is found to be a crucial variable determining environmental performance across all impact categories. The study shows that electricity and many of the processed fuels, while yielding emission reductions in homes at the point of use, transfer many of those emissions upstream into the processing and distribution life cycle stage. To conduct LCA study of the cookstove fuels being used in India and China to determine how fuels and stoves compare based on a holistic assessment considering the LCA environmental tradeoffs

  19. Emission characteristics for polycyclic aromatic hydrocarbons from solid fuels burned in domestic stoves in rural China

    PubMed Central

    SHEN, Guofeng; TAO, Shu; Chen, Yuanchen; Zhang, Yanyan; Wei, Siye; Xue, Miao; Wang, Bin; WANG, Rong; LV, Yan; LI, Wei; SHEN, Huizhong; HUANG, Ye; CHEN, Han

    2014-01-01

    Emission characterization of polycyclic aromatic hydrocarbons (PAHs) from residential combustion of crop residues, woody material, coal, and biomass pellets in domestic stoves in rural China are compared in term of emission factors (EFs), influencing factors, composition profiles, isomer ratios and phase distributions. The EFs of PAHs vary by two orders of magnitude among fuel types suggesting that a detailed fuel categorization is useful in the development of an emission inventory and potential in emission abatement of PAHs by replacing dirty fuels with relatively cleaner ones. The influence of fuel moisture in biomass burning is non-linear. Biofuels with very low moisture display relatively high emissions as do fuels with very high moisture. Bituminous coals and brushwood yield relatively large fractions of high molecular PAHs. The emission factor of Benzo(a)pyrene equivalent quantity for raw bituminous coal is as high as 52 mg/kg, which is 1–2 orders of magnitude higher than the other fuels. For source diagnosis, high molecular weight isomers are more informative than low molecular weight ones and multiple ratios could be used together whenever possible. PMID:24245776

  20. Pathways to achieve universal household access to modern energy by 2030

    NASA Astrophysics Data System (ADS)

    Pachauri, Shonali; van Ruijven, Bas J.; Nagai, Yu; Riahi, Keywan; van Vuuren, Detlef P.; Brew-Hammond, Abeeku; Nakicenovic, Nebojsa

    2013-06-01

    A lack of access to modern energy impacts health and welfare and impedes development for billions of people. Growing concern about these impacts has mobilized the international community to set new targets for universal modern energy access. However, analyses exploring pathways to achieve these targets and quantifying the potential costs and benefits are limited. Here, we use two modelling frameworks to analyse investments and consequences of achieving total rural electrification and universal access to clean-combusting cooking fuels and stoves by 2030. Our analysis indicates that these targets can be achieved with additional investment of US200565-86 billion per year until 2030 combined with dedicated policies. Only a combination of policies that lowers costs for modern cooking fuels and stoves, along with more rapid electrification, can enable the realization of these goals. Our results demonstrate the critical importance of accounting for varying demands and affordability across heterogeneous household groups in both analysis and policy setting. While the investments required are significant, improved access to modern cooking fuels alone can avert between 0.6 and 1.8 million premature deaths annually in 2030 and enhance wellbeing substantially.

  1. Assessing exposures to household air pollution in public health research and program evaluation.

    PubMed

    Northcross, Amanda L; Hwang, Nina; Balakrishnan, Kalpana; Mehta, Sumi

    2015-03-01

    Exposure to smoke from the use of solid fuels and inefficient stoves for cooking and heating is responsible for approximately 4 million premature deaths yearly. As increasing investments are made to tackle this important public health issue, there is a need for identifying and providing guidance on best practices for exposure and stove performance monitoring, particularly for public health research and evaluation studies. This paper, which builds upon the discussion at an expert consultation on exposure assessment convened by the Global Alliance for Clean Cookstoves, the Centers for Disease Control and Prevention, and PATH in late 2012, aims to provide general guidance on what to monitor, who and where to monitor, and how to monitor household air pollution exposures. In addition, we summarize information about commercially available monitoring equipment and the technical properties of these monitors most important for household air pollution exposure assessment. The target audience includes epidemiologists conducting health studies and program evaluators aiming to quantify changes in exposures to estimate the potential health benefits of cookstoves intervention projects.

  2. An important missing source of atmospheric carbonyl sulfide: Domestic coal combustion

    NASA Astrophysics Data System (ADS)

    Du, Qianqian; Zhang, Chenglong; Mu, Yujing; Cheng, Ye; Zhang, Yuanyuan; Liu, Chengtang; Song, Min; Tian, Di; Liu, Pengfei; Liu, Junfeng; Xue, Chaoyang; Ye, Can

    2016-08-01

    Carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) emissions generated from prevailing domestic coal stoves fueled with raw bituminous coal were studied under alternation cycles of flaming and smoldering combustion. The measurements in the laboratory and the farmer's house indicated that COS and CO emissions mainly occurred under the condition of flame extinguishment after coal loading, whereas SO2 emissions were mainly generated through combustion with flame. The COS emission factors for the domestic stoves in the laboratory and the farmer's house were recorded as 0.57 ± 0.10 g COS kg-1 and 1.43 ± 0.32 g COS kg-1, being approximately a factor of 50 and 125 greater than that generated from coal power plants, respectively. Based on the COS emission factors measured in this study, COS emission from only domestic coal combustion in China would be at least 30.5 ± 5.6 Gg S yr-1 which was 1 magnitude greater than the current COS estimation from the total coal combustion in China.

  3. Experimentation on bio-kerosene stove using organic additive

    NASA Astrophysics Data System (ADS)

    Varshini, M.; Shetty, Divakar

    2017-07-01

    One of the basic worthy item used in most of the villages even now a day's also is the kerosene stove. But in the current scenario, the petroleum products are been replenished. So an alternate fuel should be found in order delve. This work is to check the contingency of blending pongamia oil and kerosene in which is used as an additive. Pongamia is one of the forest based fast growing evergreen tree which is capable of yielding 9 - 90 kg seeds from which 25% of oil can be extracted. Distilled cow urine is to be used so that the fuel can be stored for longer time and is odorless. Blends of 10% to 70% neat pongamia oil - kerosene(KEP) and pongamia oil - kerosene with additive(KEPWA) are prepared. The properties such as flash point, fire point and viscosity are determined. The blends are been compared by doing emission test. The blends with additive showed better properties and reducing in emission characteristics compared to neat blends. It is also observed that emission of CO is decreasing with increasing blends.

  4. Chemical characterisation of PM10 emissions from combustion in a closed stove of common woods grown in Portugal

    NASA Astrophysics Data System (ADS)

    Gonçalves, C.; Alves, C.; Pio, C.; Rzaca, M.; Schmidl, C.; Puxbaum, H.

    2009-04-01

    A series of source tests were conducted to determine the wood elemental composition, combustion gases and the chemical constitution of PM10 emissions from the closed stove combustion of four species of woods grown in Portugal: Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia. The burning tests were made in a closed stove with a dilution source sampler. To ascertain the combustion phase and conditions, continuous emission monitors measured O2, CO2, CO, NO, hydrocarbons, temperature and pressure, during each burning cycle. Woodsmoke samples have been collected and analysed to estimate the contribution of plant debris and biomass smoke to atmospheric aerosols. At this stage of work, cellulose, anhydrosugars and humic-like substances (HULIS) have been measured. Cellulose was determined photometrically after its conversion to D-Glucose. The determination of levoglucosan and other anhydrosugars, including mannosan and galactosan, was carried out by high performance liquid chromatography with electrochemical detection. HULIS determination was made with a total organic carbon analyser and an infrared non dispersive detector, after the isolation of substances. Cellulose was present in PM10 at mass fractions (w/w) of 0.13%, 0.13%, 0.05% and 0.08% for Eucalyptus globulos, Pinus pinaster, Quercus suber and Acacia longifolia, respectively. Levoglucosan was the major anhydrosugar present in the samples, representing mass fractions of 14.71%, 3.80%, 6.78% and 1.91%, concerning the above mentioned wood species, respectively. The levoglucosan-to-mannosan ratio, usually used to evaluate the proportion of hardwood or softwood smoke in PM10, gave average values of 34.9 (Eucalyptus globulos), 3.40 (Pinus pinaster), 24.8 (Quercus suber) and 10.4 (Acacia longifolia). HULIS were present at mass fractions of 2.35%, 2.99%, 1.52% and 1.72% for the four wood species listed in the same order as before.

  5. Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review

    PubMed Central

    Puzzolo, Elisa; Stanistreet, Debbi; Pope, Daniel; Bruce, Nigel G.

    2013-01-01

    Background: Globally, 2.8 billion people rely on household solid fuels. Reducing the resulting adverse health, environmental, and development consequences will involve transitioning through a mix of clean fuels and improved solid fuel stoves (IS) of demonstrable effectiveness. To date, achieving uptake of IS has presented significant challenges. Objectives: We performed a systematic review of factors that enable or limit large-scale uptake of IS in low- and middle-income countries. Methods: We conducted systematic searches through multidisciplinary databases, specialist websites, and consulting experts. The review drew on qualitative, quantitative, and case studies and used standardized methods for screening, data extraction, critical appraisal, and synthesis. We summarized our findings as “factors” relating to one of seven domains—fuel and technology characteristics; household and setting characteristics; knowledge and perceptions; finance, tax, and subsidy aspects; market development; regulation, legislation, and standards; programmatic and policy mechanisms—and also recorded issues that impacted equity. Results: We identified 31 factors influencing uptake from 57 studies conducted in Asia, Africa, and Latin America. All domains matter. Although factors such as offering technologies that meet household needs and save fuel, user training and support, effective financing, and facilitative government action appear to be critical, none guarantee success: All factors can be influential, depending on context. The nature of available evidence did not permit further prioritization. Conclusions: Achieving adoption and sustained use of IS at a large scale requires that all factors, spanning household/community and program/societal levels, be assessed and supported by policy. We propose a planning tool that would aid this process and suggest further research to incorporate an evaluation of effectiveness. Citation: Rehfuess EA, Puzzolo E, Stanistreet D, Pope D, Bruce NG. 2014. Enablers and barriers to large-scale uptake of improved solid fuel stoves: a systematic review. Environ Health Perspect 122:120–130; http://dx.doi.org/10.1289/ehp.1306639 PMID:24300100

  6. Association of Indoor Nitrogen Dioxide Exposure with Respiratory Symptoms in Children with Asthma

    PubMed Central

    Belanger, Kathleen; Gent, Janneane F.; Triche, Elizabeth W.; Bracken, Michael B.; Leaderer, Brian P.

    2006-01-01

    Rationale: Chronic exposure to indoor nitrogen dioxide (NO2) is a public health concern. Over half of U.S. households have a source of NO2, and experimental data suggest potential for adverse respiratory effects. Objective: To examine associations of indoor NO2 exposure with respiratory symptoms among children with asthma. Methods: NO2 was measured using Palmes tubes, and respiratory symptoms in the month before sampling were collected during home interviews of mothers of 728 children with active asthma. All were younger than 12 yr, lived at the sampled home for at least 2 mo, and had asthma symptoms or used maintenance medication within the previous year. Measurements: Respiratory symptoms (wheeze, persistent cough, shortness of breath, chest tightness). Results: Mean (SD) NO2 was 8.6 (9.1) ppb in homes with electric ranges and 25.9 (18.1) ppb in homes with gas stoves. In models stratified by housing type (a factor associated with socioeconomic status), gas stove presence and elevated NO2 were each significantly associated with respiratory symptoms, controlling for age, ethnicity, medication, mold/mildew, water leaks, and season of sampling. Among children in multifamily housing, exposure to gas stoves increased likelihood of wheeze (odds ratio [OR], 2.27; 95% confidence interval [95% CI], 1.15, 4.47), shortness of breath (OR, 2.33; 95% CI, 1.12, 5.06), and chest tightness (OR, 4.34; 95% CI, 1.76, 10.69), whereas each 20-ppb increase in NO2 increased both likelihood of any wheeze (OR, 1.52; 95% CI, 1.04, 2.21) or chest tightness (OR, 1.61; 95% CI, 1.04, 2.49), and days of wheeze (rate ratio (RR), 1.33; 95% CI, 1.05, 1.68) or chest tightness (RR, 1.51; 95% CI, 1.18, 1.91). Conclusion: Exposure to indoor NO2 at levels well below the Environmental Protection Agency outdoor standard (53 ppb) is associated with respiratory symptoms among children with asthma in multifamily housing. PMID:16254270

  7. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions.

    PubMed

    Zosima, Angela T; Tsakanika, Lamprini-Areti V; Ochsenkühn-Petropoulou, Maria Th

    2017-05-12

    The aim of this study was to investigate the impact of biomass combustion with respect to burning conditions and fuel types on particulate matter emissions (PM 10 ) and their metals as well as toxic elements content. For this purpose, different lab scale burning conditions were tested (20 and 13% O 2 in the exhaust gas which simulate an incomplete and complete combustion respectively). Furthermore, two pellet stoves (8.5 and 10 kW) and one open fireplace were also tested. In all cases, 8 fuel types of biomass produced in Greece were used. Average PM 10 emissions ranged at laboratory-scale combustions from about 65 to 170 mg/m 3 with flow oxygen at 13% in the exhaust gas and from 85 to 220 mg/m 3 at 20% O 2 . At pellet stoves the emissions were found lower (35 -85 mg/m 3 ) than the open fireplace (105-195 mg/m 3 ). The maximum permitted particle emission limit is 150 mg/m 3 . Metals on the PM 10 filters were determined by several spectrometric techniques after appropriate digestion or acid leaching of the filters, and the results obtained by these two methods were compared. The concentration of PM 10 as well as the total concentration of the metals on the filters after the digestion procedure appeared higher at laboratory-scale combustions with flow oxygen at 20% in the exhaust gas and even higher at fireplace in comparison to laboratory-scale combustions with 13% O 2 and pellet stoves. Modern combustion appliances and appropriate types of biomass emit lower PM 10 emissions and lower concentration of metals than the traditional devices where incomplete combustion conditions are observed. Finally, a comparison with other studies was conducted resulting in similar results.

  8. Achieving Tier 4 Emissions in Biomass Cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchese, Anthony; DeFoort, Morgan; Gao, Xinfeng

    Previous literature on top-lit updraft (TLUD) gasifier cookstoves suggested that these stoves have the potential to be the lowest emitting biomass cookstove. However, the previous literature also demonstrated a high degree of variability in TLUD emissions and performance, and a lack of general understanding of the TLUD combustion process. The objective of this study was to improve understanding of the combustion process in TLUD cookstoves. In a TLUD, biomass is gasified and the resulting producer gas is burned in a secondary flame located just above the fuel bed. The goal of this project is to enable the design of amore » more robust TLUD that consistently meets Tier 4 performance targets through a better understanding of the underlying combustion physics. The project featured a combined modeling, experimental and product design/development effort comprised of four different activities: Development of a model of the gasification process in the biomass fuel bed; Development of a CFD model of the secondary combustion zone; Experiments with a modular TLUD test bed to provide information on how stove design, fuel properties, and operating mode influence performance and provide data needed to validate the fuel bed model; Planar laser-induced fluorescence (PLIF) experiments with a two-dimensional optical test bed to provide insight into the flame dynamics in the secondary combustion zone and data to validate the CFD model; Design, development and field testing of a market ready TLUD prototype. Over 180 tests of 40 different configurations of the modular TLUD test bed were performed to demonstrate how stove design, fuel properties and operating mode influences performance, and the conditions under which Tier 4 emissions are obtainable. Images of OH and acetone PLIF were collected at 10 kHz with the optical test bed. The modeling and experimental results informed the design of a TLUD prototype that met Tier 3 to Tier 4 specifications in emissions and Tier 2 in efficiency. The final prototype was field tested in India.« less

  9. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    NASA Astrophysics Data System (ADS)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  10. Low-smoke chulha in Indian slums: study protocol for a randomised controlled trial.

    PubMed

    Thakur, Megha; Boudewijns, Esther A; Babu, Giridhara R; Winkens, Bjorn; de Witte, Luc P; Gruiskens, Jeroen; Sushama, Preeti; Ghergu, Cristian T; van Schayck, Onno C P

    2017-05-16

    Biomass fuel is used as a primary cooking source by more than half of the world's population, contributing to a high burden of disease. Although cleaner fuels are available, some households continue using solid fuels because of financial constraints and absence of infrastructure, especially in non-notified slums. The present study documents a randomised controlled study investigating the efficacy of improved cookstove on the personal exposure to air pollution and the respiratory health of women and children in an Indian slum. The improved cookstove was based on co-creation of a low-smoke chulha with local communities in order to support adaption and sustained uptake. The study will be conducted in a non-notified slum called Ashrayanagar in Bangalore, India. The study design will be a 1:1 randomised controlled intervention trial, including 250 households. The intervention group will receive an improved cookstove (low-smoke chulha) and the control group will continue using either the traditional cookstove (chulha) or a combination of the traditional stove and the kerosene/diesel stove. Follow-up time is 1 year. Outcomes include change in lung function (FEV 1/ FVC), incidence of pneumonia, change in personal PM 2.5 and CO exposure, incidence of respiratory symptoms (cough, phlegm, wheeze and shortness of breath), prevalence of other related symptoms (headache and burning eyes), change in behaviour and adoption of the stove. Ethical clearance was obtained from the Institutional Ethics Committee of the Indian Institute of Public Health Hyderabad- Bengaluru Campus. The findings from this study aim to provide insight into the effects of improved cookstoves in urban slums. Results can give evidence for the decrease of indoor air pollution and the improvement of respiratory health for children and women. The trial was registered with clinicaltrials.gov on 21 June 2016 with the identifier NCT02821650 ; A Study to Test the Impact of an Improved Chulha on the Respiratory Health of Women and Children in Indian Slums.

  11. Unventilated Indoor Coal-Fired Stoves in Guizhou Province, China: Cellular and Genetic Damage in Villagers Exposed to Arsenic in Food and Air

    PubMed Central

    Zhang, Aihua; Feng, Hong; Yang, Guanghong; Pan, Xueli; Jiang, Xianyao; Huang, Xiaoxin; Dong, Xuexin; Yang, Daping; Xie, Yaxiong; Peng, Luo; Jun, Li; Hu, Changjun; Jian, Li; Wang, Xilan

    2007-01-01

    Background Inorganic arsenic (iAs) is a well-known human carcinogen recognized by the World Health Organization and the International Agency for Research on Cancer. Currently, most iAs studies in populations are concerned with drinking water and occupational arsenicosis. In Guizhou province, arsenicosis caused by the burning of coal in unventilated indoor stoves is an unusual type of exposure. Because the poisoning mechanism involved in arsenicosis is as yet unknown and no effective therapy exists, progress has been slow on the prevention and therapy of arsenicosis. Objectives We examined the relationship between arsenic (As) exposure from the burning of coal in unventilated indoor stoves and genetic damage in humans, using cellular and molecular indices. We selected villagers from Jiaole township, Guizhou province, China, who had been exposed to milligram levels of As daily via food and air contaminated by the burning of As-containing coal in unventilated indoor stoves. Results The As-exposed subjects from Jiaole were divided into four groups according to skin lesion symptoms: nonpatients, mild, intermediate, and severe arsenicosis. Another 53 villagers from a town 12 km from Jiaole were recruited as the external control group. In the four groups of exposed subjects, As concentrations in urine and hair were 76–145 μg/L and 5.4–7.9 μg/g, respectively. These values were higher than those in the external control group, which had As concentrations of 46 μg/L for urine and 1.6 μg/g for hair. We measured sister chromatid exchange and chromosomal aberrations to determine human chromosome damage, and for DNA damage, we measured DNA single-strand breaks and DNA–protein cross-links. All measurements were higher in the four exposed groups compared with the external control group. DNA repair was impaired by As exposure, as indicated by the mRNA of O-6-methylguanine-DNA methyltransferase (MGMT), X-ray repair complementing defective repair in Chinese hamster cells 1 (XRCC1), and, to a lesser extent, by the mismatch repair gene hMSH2 mRNA. The expression of mutant-type p53 increased with aggravation of arsenicosis symptoms, whereas the expression of p16-INK4(p16) decreased. p53 mutated at a frequency of 30–17% in the carcinoma (n = 10) and precarcinoma (n = 12) groups. No mutation was found in p16, although deletion was evident. Deletion rates were 8.7% (n = 23) and 38.9% (n = 18) in noncarcinoma and carcinoma groups, respectively. Conclusions The results showed that long-term As exposure may be associated with damage of chromosomes and DNA, gene mutations, gene deletions, and alterations of DNA synthesis and repair ability. PMID:17450239

  12. 15. Site plan, 1915, bottom half With CT214, photocopied from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Site plan, 1915, bottom half With CT-2-14, photocopied from an ozalid print, 'Map of Plant of Sentinel Manufacturing Co.,' Folio 2, EWC. The Sentinel Manufacturing Co. produced gas stoves. They leased the Whitney Armory buildings about 1915. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  13. INFLUENCES OF ASTHMA AND HOUSEHOLD ENVIRONMENT ON LUNG FUNCTION OF CHILDREN AND ADOLESCENTS: THE THIRD NATIONAL HEALTH AND NUTRITION EXAMINATION SURVEY

    EPA Science Inventory

    We examined influences of asthma and household environment (passive smoking, gas stove use, and having a dog or cat), on seven measures of spirometric lung function in 8-16 yearold subjects, as measured in the Third National Health and Nutrition Examination Survey (NHANES III). ...

  14. Using a wood stove to heat greenhouses

    Treesearch

    Gloria Whitefeather-Spears

    2009-01-01

    The Red Lake Tribal Forestry Greenhouse in Red Lake, MN, utilizes four types of outdoor furnaces for heating through the fall, winter, and spring. The WoodMaster® is a highly efficient, wood-fired furnace that provides forced-air heat to the greenhouse. The HeatmorTM furnace is an economical wood-fired alternative that can provide lower...

  15. How much arsenic is released when CCA wood is burned?

    Treesearch

    Charles K. McMahon; Parshall B. Bush; Edwin A. Woolson

    1986-01-01

    Abstract. Waterborne salts have been used to preserve wood for many years. One of the more common formulations contains copper, chromium, and arsenic salts and is known as chromated copper arsenate, or CCA. Questions have been raised about the amount of arsenic released when CCA treated wood is burned in wood stoves, fireplaces, or boilers....

  16. Candidatus Liberibacter asiaticus titers in citrus cultivars in the field and in Asian citrus psyllid (ACP) inoculated greenhouse trees

    USDA-ARS?s Scientific Manuscript database

    A survey of seven citrus cultivars (C. sinensis, C. paradisi, ‘Temple’ tangor, ‘Minneola’ and ‘Orlando’ tangelos and, ‘Fallglo’ and ‘Sunburst’ mandarin hybrids) growing in commercial orchards in Florida revealed a correlation between visual ratings of HLB incidence and severity and CLas titer (Stove...

  17. A Museum You Can Touch

    ERIC Educational Resources Information Center

    Pierpont, Katherine

    2005-01-01

    Walking into Keil Hileman's classroom at Monticello Trails Middle School in Shawnee, KS, is a visual feast for the eyes. There is a suit of armor, a 1796 Flintock Musket, a wood burning stove from 1907, a circa 1920 porcelain barber's chair, steamer trunks carried from far off lands, a butter churn, a 1930s wringer washing machine, chamber pots,…

  18. PORE STRUCTURE OF SOOT DEPOSITS FROM SEVERAL COMBUSTION SOURCES. (R825303)

    EPA Science Inventory

    Abstract

    Soot was harvested from five combustion sources: a dodecane flame, marine and bus diesel engines, a wood stove, and an oil furnace. The soots ranged from 20% to 90% carbon by weight and molar C/H ratios from 1 to 7, the latter suggesting a highly condensed aro...

  19. LONG-TERM PERFORMANCE OF EPA-CERTIFIED PHASE 2 WOODSTOVES, KLAMATH FALLS AND PORTLAND, OREGON: 1998/1999

    EPA Science Inventory

    The report gives results of an evaluation of the condition and air emissions from old, phase-2-certified wood heaters installed in homes and used regularly for hoe heating since the 1992/1993 heating season or earlier. (NOTE: Wood stoves have been identified as a major source of ...

  20. 75 FR 62144 - Porcelain-on-Steel Cooking Ware From China and Taiwan; Top-of-the-Stove Stainless Steel Cooking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... changes, if any, in the supply and demand conditions or business cycle for the Domestic Like Product that...-3088. Limited disclosure of business proprietary information (BPI) under an administrative protective... Merchandise. If you are a domestic producer, union/worker group, or trade/business association; import/export...

  1. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../infectious waste incinerator covered by 40 CFR part 60, subpart Ce or subpart Ec. (c) An electric utility... furnace stoves as described in the EPA document, entitled “National Emission Standards for Hazardous Air... boilers as defined in this subpart. (o) Blast furnace gas fuel-fired boilers and process heaters as...

  2. 18. VIEW LOOKING FORWARD FROM ENGINE ROOM INTO GALLEY. STARBOARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW LOOKING FORWARD FROM ENGINE ROOM INTO GALLEY. STARBOARD ENGINE, FUEL TANK AND BATTERIES SHOWN IN RIGHT SIDE OF IMAGE. OIL-FIRED GALLEY STOVE AND FORWARD COMPANIONWAY LADDER IS IN VIEW THROUGH DOORWAY BEYOND. (HAER FIELD TEAM MEMBER CHRISTOPHER CYZEWSKI IN GALLEY) - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  3. The Asian Wood Pellet Markets

    Treesearch

    Joseph A. Roos; Allen Brackley

    2012-01-01

    This study examines the three major wood pellet markets in Asia: China, Japan, and South Korea. In contrast to the United States, where most wood pellets are used for residential heating with pellet stoves, a majority of the wood pellets in Asia are used for co-firing at coal-fired power plants. Our analysis indicated that Japan is the largest importer of wood pellets...

  4. Potential for Particulate Emission Reduction in Flue Gas Condensing Heat Exchangers in Biomass-Fired Boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, Thomas A.

    Direct biomass combustion for the production of heat is a broad field of technology which ranges from residential wood stoves to commercial and industrial boilers and furnaces. Fuels typically include pellets, chips and cord wood. Over the past decade, as a result of fuel price advantages and other benefits, wood burning has seen a significant growth.

  5. 78 FR 17157 - Approval of Air Quality Implementation Plans; Indiana; Disapproval of State Implementation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... as fuel, along with coke oven gas and natural gas, in the facility's blast furnace stoves, power... boilers operate on a combination of blast furnace gas, coke oven gas, and natural gas, their full... would remove the SO 2 emission limit for the blast furnace gas flare at the facility. For the reasons...

  6. Solar home on the range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wainwright, K.

    1999-10-01

    Solar technologies and indigenous materials are used in this remote Texas ranch house. Passive solar, thermal mass of adobe walls, photovoltaics, wood stoves, native stone, a ventilated roof, reflective barrier, and porch overhangs surrounding the house combine to keep the house comfortable all summer. The PV system used a passive solar tracking system that increased the electrical output by an overall 29 percent.

  7. JPRS Report, Science & Technology, China: Energy.

    DTIC Science & Technology

    1988-02-10

    bedrock growth anticlines, buried hill fault blocks, rolling anticlines, compression anticlines, draped anticlines, volcanic diapers and others. The...development and utilization of solar , wind, geothermal and other energy resources, the energy conservation capacity and newly-added energy resources were...equivalent to 20 million tons of standard coal. The firewood-saving capacity in wood and coal-saving stoves, biogas pits and solar cookers alone was

  8. 9. Typical 'furnished rooms' overlook the Washington Street alley. Each ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Typical 'furnished rooms' overlook the Washington Street alley. Each has two double-hung windows that are fitted with roller-shade brackets. The plaster was formulated with lime and is heavily laden with animal hair. Each room is provided with a stove-pipe connection. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  9. Using Video Prompting to Teach Cooking Skills to Secondary Students with Moderate Disabilities

    ERIC Educational Resources Information Center

    Graves, Tara B.; Collins, Belva C.; Schuster, John W.; Kleinert, Harold

    2005-01-01

    Three secondary students with moderate disabilities acquired cooking skills through a constant time delay procedure used with video prompting. A multiple probe design was used to evaluate effectiveness of the procedure to teach preparation of a food item (a) on a stove, (b) in a microwave, and (c) on a counter top. The procedure was effective for…

  10. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... metal stanchion in the compartment must be boxed in the same manner. An overhead ceiling is not required when the overdeck is weather tight. All nail and bolt heads must be countersunk and any exposed metal... pipe for the stove which passes through the roof of the house must be kept at least 8 cm (3 inches...

  11. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... metal stanchion in the compartment must be boxed in the same manner. An overhead ceiling is not required when the overdeck is weather tight. All nail and bolt heads must be countersunk and any exposed metal... pipe for the stove which passes through the roof of the house must be kept at least 8 cm (3 inches...

  12. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... metal stanchion in the compartment must be boxed in the same manner. An overhead ceiling is not required when the overdeck is weather tight. All nail and bolt heads must be countersunk and any exposed metal... pipe for the stove which passes through the roof of the house must be kept at least 8 cm (3 inches...

  13. 21. INTERIOR VIEW OF THE MACHINE SHOP LOOKING SOUTH. FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR VIEW OF THE MACHINE SHOP LOOKING SOUTH. FROM LEFT TO RIGHT, PULLEY'S ABOVE FOR THE LATHE BELOW, ENTRANCE TO THE ELECTRICAL MOTOR ROOM, BORING MACHINE, PLANER, TOOL, BENCH AGAINST THE BACK WALL, DOORWAY INTO THE ANNEX, LONG LATHE. WOOD STOVE IN THE FOREGROUND RIGHT. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  14. 16. Interior view, greenhouse, south wall taken from the ground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Interior view, greenhouse, south wall taken from the ground. The original floor height is indicated by the joists on the left. The large opening on the right was formerly fitted with an exterior-fed iron stove used to heat the space on particularly cold days. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  15. 10. Detail view, greenhouse, south wall. These groundlevel openings were ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail view, greenhouse, south wall. These ground-level openings were part of the original heating system used to warm the greenhouse. The openings were likely related to the flues, while a larger opening to the west (not in photograph) contained an exterior-fed iron stove. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  16. Impact of Locally-Produced, Ceramic Cookstoves on Respiratory Disease in Children in Rural Western Kenya

    PubMed Central

    Foote, Eric M.; Gieraltowski, Laura; Ayers, Tracy; Sadumah, Ibrahim; Faith, Sitnah Hamidah; Silk, Benjamin J.; Cohen, Adam L.; Were, Vincent; Hughes, James M.; Quick, Robert E.

    2013-01-01

    Household air pollution is a risk factor for pneumonia, the leading cause of death among children < 5 years of age. From 2008 to 2010, a Kenyan organization sold ∼2,500 ceramic cookstoves (upesi jiko) that produce less visible household smoke than 3-stone firepits. During a year-long observational study, we made 25 biweekly visits to 200 homes to determine stove use and observe signs of acute respiratory infection in children < 3 years of age. Reported stove use included 3-stone firepit only (81.8%), upesi jiko only (15.7%), and both (2.3%). Lower, but not statistically significant, percentages of children in upesi jiko-using households than 3-stone firepit-using households had observed cough (1.3% versus 2.9%, rate ratio [RR] 0.48, 95% confidence interval [CI]: 0.22–1.03), pneumonia (0.9% versus 1.7%, RR 0.60, 95% CI: 0.24–1.48), and severe pneumonia (0.3% versus 0.6%, RR 0.66, 95% CI: 0.17–2.62). Upesi jiko use did not result in significantly lower pneumonia rates. Further research on the health impact of improved cookstoves is warranted. PMID:23243108

  17. Application of AI techniques to blast furnace operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination ofmore » fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.« less

  18. A note on calculation of efficiency and emissions from wood and wood pellet stoves

    NASA Astrophysics Data System (ADS)

    Petrocelli, D.; Lezzi, A. M.

    2015-11-01

    In recent years, national laws and international regulations have introduced strict limits on efficiency and emissions from woody biomass appliances to promote the diffusion of models characterized by low emissions and high efficiency. The evaluation of efficiency and emissions is made during the certification process which consists in standardized tests. Standards prescribe the procedures to be followed during tests and the relations to be used to determine the mean value of efficiency and emissions. As a matter of fact these values are calculated using flue gas temperature and composition averaged over the whole test period, lasting from 1 to 6 hours. Typically, in wood appliances the fuel burning rate is not constant and this leads to a considerable variation in time of composition and flow rate of the flue gas. In this paper we show that this fact may cause significant differences between emission values calculated according to standards and those obtained integrating over the test period the instantaneous mass and energy balances. In addition, we propose some approximated relations and a method for wood stoves which supply more accurate results than those calculated according to standards. These relations can be easily implemented in a computer controlled data acquisition systems.

  19. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    PubMed

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  20. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  1. Leave no trace practices: behaviors and preferences of wilderness visitors regarding use of cookstoves and camping away from lakes

    Treesearch

    Neal A. Christensen; David N. Cole

    2000-01-01

    This research used descriptive information collected in visitor studies conducted between 1990 and 1992 in eight different wildernesses around the United States to evaluate behaviors and preferences of wilderness visitors regarding cookstoves and camping away from lakes. The majority of visitors used stoves for cooking. However, in all but the Desolation Wilderness, at...

  2. A Hair & a Fungus: Showing Kids the Size of a Microbe

    ERIC Educational Resources Information Center

    Richter, Dana L.

    2013-01-01

    A simple method is presented to show kids the size of a microbe--a fungus hypha--compared to a human hair. Common household items are used to make sterile medium on a stove or hotplate, which is dispensed in the cells of a weekly plastic pill box. Mold fungi can be easily and safely grown on the medium from the classroom environment. A microscope…

  3. Physical properties and consumer reaction to use of compressed wood bricks in southeast Alaska

    Treesearch

    Allen M. Brackley; Robert Gorman; Karen Peterson

    2012-01-01

    In late 2008, a group of business people and entrepreneurs in southeast Alaska became aware of a compressed wood brick product that could be used as an alternative fuel in existing wood-burning stoves and heating equipment. The product differed from many others on the market in that it contained no additive to promote binding and burn characteristics. In 2009, local...

  4. Manufacturing Affordability

    DTIC Science & Technology

    2011-10-01

    Effective planning early in and throughout program develop - ment is critical to enabling manufacturing affordability. There is no silver bullet and no...unexpected lessons. “Gee, this stove is hot” may be an unexpected lesson for the toddler but should not be so for the adult. All production programs...in program design efforts from day 1 of Engineer- ing and Manufacturing Development , you should be seriously worried. A program that includes the

  5. 78 FR 5209 - Notice of Lodging of Proposed Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... vehicles and to keep them out of the stream of commerce; a wood-stove replacement project designed to... General U.S. DOJ--ENRD P.O. Box 7611 Washington, DC 20044-7611. During the public comment period, the... Library, U.S. DOJ--ENRD, P.O. Box 7611, Washington, DC 20044- 7611. Please enclose a check or money order...

  6. INTERIOR OF WORKSHOP LOOKING SOUTHWEST (When the airplane business ceased ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF WORKSHOP LOOKING SOUTHWEST (When the airplane business ceased in the early 1950s, Charles Arnold converted one of the original hangars into a workshop. The building was heated by the oil lamp shown in the center of the photograph, and by a separate wood-burning stove that is not shown) - Arnold Farm, Hangar / Workshop, 1948 Arnold Road, Coupeville, Island County, WA

  7. Acquisition Modernization: Transitioning Technology Into Warfighter Capability

    DTIC Science & Technology

    2011-08-01

    to test and evaluate the technology and integrate the new capability into operational weapon systems (Figure 4). This funding model creates stove...misalignment between missions, TRLs, and the RDT&E funding model is a major 11 contributor to the valley of death. Technologies become obsolete on... funding model of the acquisition system. Create an individual budget account to fund the development of promising technologies. The Acquisition

  8. Business Testing = BT. Test and Evaluation Methodology for Business Systems

    DTIC Science & Technology

    2010-05-12

    Not Intuitive Hard to Use Extensive Contractor Tail Stove Piped Systems Intelligence Transportation Logistics / Supply Finance Medical Human Resources...Capability 5 Politics Funding Requirements Busine s “IT” Acquisition Speed bumps Contracts Leadership Finance Testing Acquisition Engineering Security Legal... intelligent fool can make things bigger and more complex... It takes a touch of genius - and a lot of courage to move in the opposite direction

  9. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOEpatents

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  10. 12. INTERIOR OF KITCHEN/UTILITY AREA SHOWING OPEN FOURPANEL WOOD DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR OF KITCHEN/UTILITY AREA SHOWING OPEN FOUR-PANEL WOOD DOOR TO SOUTH BEDROOM AT PHOTO CENTER RIGHT, OPEN DOORWAY TO LIVING ROOM AT PHOTO CENTER LEFT, AND BUILT-IN CABINETS AND CEILING VENT BETWEEN THE DOORS AND AROUND THE STOVE/RANGE POSITION. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  11. Just-In-Time Logistics

    DTIC Science & Technology

    2006-02-07

    consumer confidence will boost and “just- in-time” logistics will be the lighter and leaner combat logistics support the Marine Corps has desperately...stove-piped logistics systems have done little to build customer or “warrior confidence”. Customers who requesting assets from the supply system...have become used to waiting thirty plus days to receive the asset. Consumers outside of the Marine Corps would refuse to accept such delays, but

  12. Evaluation of cellular effects of fine particulate matter from combustion of solid fuels used for indoor heating on the Navajo Nation using a stratified oxidative stress response model

    NASA Astrophysics Data System (ADS)

    Li, Ning; Champion, Wyatt M.; Imam, Jemal; Sidhu, Damansher; Salazar, Joseph R.; Majestic, Brian J.; Montoya, Lupita D.

    2018-06-01

    Communities in the Navajo Nation face public health burdens caused in part by the combustion of wood and coal for indoor heating using stoves that are old or in disrepair. Wood and coal combustion emits particulate matter (PM) with aerodynamic diameter < 2.5 μm (PM2.5), which can reach deep in the lung and cause injuries. Currently, there is little information about the health effects of wood and coal combustion-derived PM2.5 on Navajo Nation residents. This study tested the hypothesis that PM2.5 generated from solid fuel combustion in stoves commonly used by Navajo residents would induce stratified oxidative stress responses ranging from activation of antioxidant defense to inflammation and cell death in mouse macrophages (RAW 264.7). PM2.5 emitted from burning Ponderosa Pine (PP) and Utah Juniper (UJ) wood and Black Mesa (BM) and Fruitland (FR) coal in a stove representative of those widely used by Navajo residents were collected, and their aqueous suspensions used for cellular exposure. PM from combustion of wood had significantly more elemental carbon (EC) (15%) and soluble Ni (0.0029%) than the samples from coal combustion (EC: 3%; Ni: 0.0019%) and was also a stronger activator of antioxidant enzyme heme oxygenase-1 (11-fold increase vs. control) than that from coal (5-fold increase). Only PM from PP-wood (12-fold) and BM-coal (3-fold) increased the release of inflammatory cytokine tumor necrosis factor alpha. Among all samples, PP-wood consistently had the strongest oxidative stress and inflammatory effects. PM components, i.e. low-volatility organic carbon, EC, Cu, Ni and K were positively correlated with the cellular responses. Results showed that, at the concentrations tested, emissions from all fuels did not have significant cytotoxicity. These findings suggest that PM2.5 emitted from combustion of wood and coal commonly used by Navajo residents may negatively impact the health of this community.

  13. Process evaluation and assessment of use of a large scale water filter and cookstove program in Rwanda.

    PubMed

    Barstow, Christina K; Nagel, Corey L; Clasen, Thomas F; Thomas, Evan A

    2016-07-16

    In an effort to reduce the disease burden in rural Rwanda, decrease poverty associated with expenditures for fuel, and minimize the environmental impact on forests and greenhouse gases from inefficient combustion of biomass, the Rwanda Ministry of Health (MOH) partnered with DelAgua Health (DelAgua), a private social enterprise, to distribute and promote the use of improved cookstoves and advanced water filters to the poorest quarter of households (Ubudehe 1 and 2) nationally, beginning in Western Province under a program branded Tubeho Neza ("Live Well"). The project is privately financed and earns revenue from carbon credits under the United Nations Clean Development Mechanism. During a 3-month period in late 2014, over 470,000 people living in over 101,000 households were provided free water filters and cookstoves. Following the distribution, community health workers visited nearly 98 % of households to perform household level education and training activities. Over 87 % of households were visited again within 6 months with a basic survey conducted. Detailed adoption surveys were conducted among a sample of households, 1000 in the first round, 187 in the second. Approximately a year after distribution, reported water filter use was above 90 % (+/-4 % CI) and water present in filter was observed in over 76 % (+/-6 % CI) of households, while the reported primary stove was nearly 90 % (+/-4.4 % CI) and of households cooking at the time of the visit, over 83 % (+/-5.3 % CI) were on the improved stove. There was no observed association between household size and stove stacking behavior. This program suggests that free distribution is not a determinant of low adoption. It is plausible that continued engagement in households, enabled by Ministry of Health support and carbon financed revenue, contributed to high adoption rates. Overall, the program was able to demonstrate a privately financed, public health intervention can achieve high levels of initial adoption and usage of household level water filtration and improved cookstoves at a large scale.

  14. Characterization of gaseous emissions and ashes from the combustion of furniture waste.

    PubMed

    Moreno, Ana Isabel; Font, Rafael; Conesa, Juan A

    2016-12-01

    Gaseous emissions and ash obtained in the combustion of furniture waste have been studied, with particular emphasis on the emissions of hazardous pollutants, such as PCDD/Fs and dl-PCBS. Two different combustion procedures were carried out, one of them in a conventional residential stove (without an automatic control of combustion air and bad mixing of combustion gases with air), and the other in a laboratory-scale reactor (operating under substoichiometric conditions). Three different experiments were carried out in the residential stove, in which the gaseous emissions and ashes obtained were analysed. The fuel burnt out in two of the experiments was furniture wood waste and in one of the experiments, the fuel burnt out was briquettes composed of a mixture of furniture wood with 10wt.% of polyurethane foam. One of the purposes of these experiments was the evaluation of the possible inhibition effect of the higher nitrogen content on the formation of PCDD/Fs. Slight inhibition of the PCDD/F formation was found although, it is noteworthy that the lowest yield of PAHs, volatile and semi-volatile compounds were obtained in the combustion of these briquettes. In all experiments, the emission factors of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls (PCDD/Fs and dl-PCBs) were between 29 and 74ng WHO-TEQ/kg sample burnt, lower than that obtained by other authors in the burning of pine needles and cones. PCDD/Fs and dl-PCBs emissions from furniture wood waste combustion were also analysed in the laboratory scale reactor at 850°C and the results were compared with the values obtained from the combustion of solid wood (untreated wood). The total equivalent toxicity obtained was 21.1ng WHO-TEQ/kg sample for combustion of furniture wood waste, which is low in comparison with those obtained for other waste combustion in similar conditions. In the laboratory scale reactor, PCDFs were the dominant compounds in the profiles of PCDD/Fs, by contrast, in the combustion in the residential stove, the majority compounds were PCDDs, due to the different operation conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mutagenicity and Pollutant Emission Factors of Solid-Fuel Cookstoves: Comparison with Other Combustion Sources

    PubMed Central

    Mutlu, Esra; Warren, Sarah H.; Ebersviller, Seth M.; Kooter, Ingeborg M.; Schmid, Judith E.; Dye, Janice A.; Linak, William P.; Gilmour, M. Ian; Jetter, James J.; Higuchi, Mark; DeMarini, David M.

    2016-01-01

    Background: Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. Objective: We evaluated two categories of solid-fuel cookstoves for eight pollutant and four mutagenicity emission factors, correlated the mutagenicity emission factors, and compared them to those of other combustion emissions. Methods: We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS), and we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Results: With the exception of NOx, the emission factors per MJd were highly correlated (r ≥ 0.97); the correlation for NOx with the other emission factors was 0.58–0.76. Excluding NOx, the NDS and FDS reduced the emission factors an average of 68 and 92%, respectively, relative to the TSF. Nevertheless, the mutagenicity emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was between those of a large diesel bus engine and a small diesel generator. Conclusions: Both mutagenicity and pollutant emission factors may be informative for characterizing cookstove performance. However, mutagenicity emission factors may be especially useful for characterizing potential health effects and should be evaluated in relation to health outcomes in future research. An FDS operated as intended by the manufacturer is safer than a TSF, but without adequate ventilation, it will still result in poor indoor air quality. Citation: Mutlu E, Warren SH, Ebersviller SM, Kooter IM, Schmid JE, Dye JA, Linak WP, Gilmour MI, Jetter JJ, Higuchi M, DeMarini DM. 2016. Mutagenicity and pollutant emission factors of solid-fuel cookstoves: comparison with other combustion sources. Environ Health Perspect 124:974–982; http://dx.doi.org/10.1289/ehp.1509852 PMID:26895221

  16. Heat radiation approach for harnessing heat of the cook stove to generate electricity for lighting system and charging of mobile phone

    NASA Astrophysics Data System (ADS)

    Muñoz, Rodrigo C., Jr.; Manansala, Chad Deo G.

    2018-01-01

    This study is based on the potential of thermoelectric coupling such as the thermoelectric cooler module. A thermoelectric cooler converts the heat coming from the cook stove into electricity and store in a battery. A dc-dc boost converter will be used to produce enough voltage to light a minimum house dwelling or charge phone battery. This device will be helpful to those that faces a problem on electricity especially in the isolated areas. The study aims (1) to harness heat from the cook stove up to 110 °C (2) To automatically cool-off the system to protect the thermoelectric cooler from damage due to excessive heat using an electronic solenoid; (3) To store energy harnessed in the battery; (4) To amplify the output voltages of the battery using DC to DC boost converter for lighting system and charging of mobile phone battery. From various tests conducted, it can fully charge a mobile phone in 3 hours observing the unit’s battery voltage drop from 4.06V to 3.98V. In the testing it used different orientation of steel rod by conduction to transfer heat and by radiation through tubular steel with its different dimensions. Most recent testing proved that the 2x2x9 tubular steel by radiation had the best result. The temperature reached more than a hundred degree Celsius that met the objective. The test resulted of boosting the voltage of the battery output from 3.7V to 4.96V on the average. The boosted voltage decrease as the system’s cool-off mechanism operated when the temperature reached above 110 degree Celsius decreasing output voltage to 0.8V resulting the boosted voltage to drop to zero. Therefore, the proponents concluded that heat waste can be converted to electrical energy by harnessing heat through radiation, with the help of TEC that generates voltage for lighting and can be boosted to be used for mobile charging. Furthermore, the study proved that the excess heat can damaged the TEC which was prevented by using of cooling-off mechanism, making it more useful for longer time.

  17. Comparative study of different waste biomass for energy application.

    PubMed

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and environmental sectors. This is important considering that the cleaner fuel like LPG is still not available in rural areas of many parts of the world. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies

    NASA Astrophysics Data System (ADS)

    Jalava, Pasi I.; Happo, Mikko S.; Kelz, Joachim; Brunner, Thomas; Hakulinen, Pasi; Mäki-Paakkanen, Jorma; Hukkanen, Annika; Jokiniemi, Jorma; Obernberger, Ingwald; Hirvonen, Maija-Riitta

    2012-04-01

    Residential wood combustion causes major effects on the air quality on a global scale. The ambient particulate levels are known to be responsible for severe adverse health effects that include e.g. cardio-respiratory illnesses and cancer related effects, even mortality. It is known that biomass combustion derived emissions are affected by combustion technology, fuel being used and user-related practices. There are also indications that the health related toxicological effects are influenced by these parameters. This study we evaluated toxicological effects of particulate emissions (PM1) from seven different residential wood combusting furnaces. Two appliances i.e. log wood boiler and stove represented old batch combustion technology, whereas stove and tiled stove were designated as new batch combustion as three modern automated boilers were a log wood boiler, a woodchip boiler and a pellet boiler. The PM1 samples from the furnaces were collected in an experimental setup with a Dekati® gravimetric impactor on PTFE filters with the samples being weighed and extracted from the substrates and prior to toxicological analyses. The toxicological analyses were conducted after a 24-hour exposure of the mouse RAW 264.7 macrophage cell line to four doses of emission particle samples and analysis of levels of the proinflammatory cytokine TNFα, chemokine MIP-2, cytotoxicity with three different methods (MTT, PI, cell cycle analysis) and genotoxicity with the comet assay. In the correlation analysis all the toxicological results were compared with the chemical composition of the samples. All the samples induced dose-dependent increases in the studied parameters. Combustion technology greatly affected the emissions and the concomitant toxicological responses. The modern automated boilers were usually the least potent inducers of most of the parameters while emissions from the old technology log wood boiler were the most potent. In correlation analysis, the PAH and other organic composition and inorganic ash composition affected the toxicological responses differently. In conclusion, combustion technology largely affects the particulate emissions and their toxic potential this being reflected in substantially larger responses in devices with incomplete combustion. These differences become emphasized when the large emission factors from old technology appliances are taken into account.

  19. Modeling the potential health benefits of lower household air pollution after a hypothetical liquified petroleum gas (LPG) cookstove intervention.

    PubMed

    Steenland, Kyle; Pillarisetti, Ajay; Kirby, Miles; Peel, Jennifer; Clark, Maggie; Checkley, Will; Chang, Howard H; Clasen, Thomas

    2018-02-01

    Improved biomass and advanced fuel cookstoves can lower household air pollution (HAP), but levels of fine particulate matter (PM 2.5 ) often remain above the World Health Organization (WHO) recommended interim target of 35μg/m 3 . Based on existing literature, we first estimate a range of likely levels of personal PM 2.5 before and after a liquefied petroleum gas (LPG) intervention. Using simulations reflecting uncertainty in both the exposure estimates and exposure-response coefficients, we estimate corresponding expected health benefits for systolic blood pressure (SBP) in adults, birthweight, and pneumonia incidence among children <2years old. We also estimate potential avoided premature mortality among those exposed. Our best estimate is that an LPG stove intervention would decrease personal PM 2.5 exposure from approximately 270μg/m 3 to approximately 70μg/m 3 , due to likely continued use of traditional open-fire stoves. We estimate that this decrease would lead to a 5.5mmHg lower SBP among women over age 50, a 338g higher birthweight, and a 37% lower incidence of severe childhood pneumonia. We estimate that decreased SBP, if sustained, would result in a 5%-10% decrease in mortality for women over age 50. We estimate that higher birthweight would reduce infant mortality by 4 to 11 deaths per 1000 births; for comparison, the current global infant mortality rate is 32/1000 live births. Reduced exposure is estimated to prevent approximately 29 cases of severe pneumonia per year per 1000 children under 2, avoiding approximately 2-3 deaths/1000 per year. However, there are large uncertainties around all these estimates due to uncertainty in both exposure estimates and in exposure-response coefficients; all health effect estimates include the null value of no benefit. An LPG stove intervention, while not likely to lower exposure to the WHO interim target level, is still likely to offer important health benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. CHIPS. Volume 29, Issue 1, January - March 2011

    DTIC Science & Technology

    2011-03-01

    services, like electricity, heating or cable television. Bank/Finance Fraud: • They may create counterfeit checks using their victim’s name or...consolidating disparate, stove- piped networks into a single, modern, cost-effective enterprise network with a high level of service that meets...Holland, NGEN program manager. “If NMCI is not the most secure network in the world, it is certainly close. There is no shortfall flexibility

  1. 10. Looking northwest at the "community" area at the center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Looking northwest at the "community" area at the center of the store, and beyond at the main sales counters along the west wall; metal sheathing to protect the wood floor from the former heating stove can be seen in the foreground, and a wooden drawer unit for seeds is beyond the chairs - Horsepasture Store, U.S. Route 58 & State Route 687, Horse Pasture, Henry County, VA

  2. JCL Implementation On A Human Spaceflight Program

    NASA Technical Reports Server (NTRS)

    Kulpa, Vyga; Karpowich, Mike; Abel, Diana; Archiable, Wes; Carson, William

    2013-01-01

    Joint Confidence Level (JCL) analysis focuses on the integration of traditionally stove-piped programmatic components (schedule, cost and risk) to establish projected resource and schedule requirements at various confidence levels and to identify programmatic cost and schedule risk drivers. SLS Program consists of multiple Prime Contractors managed by independent SLS Elements which are integrated using SE&I and Program Management. SLS further integrates with GSDO and MPCV through ESD integrated working groups.

  3. The genotoxic contribution of wood smoke to indoor respirable suspended particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, P.M.; Rossman, T.G.; Daisey, J.M.

    1989-01-01

    The effect of wood burning stoves on the genotoxicity of indoor respirable organic matter was investigated for four homes during the winter and spring of 1986. Paired samples, one collected when the stove was not used and one when wood was burned, were extracted with dichloromethane and acetone. Aliquots of the dichloromethane extracts were analyzed with and without metabolic activation using the Microscreen bioassay. The Microscreen is a rapid, sensitive bioassay which measures a broad genotoxic endpoint, {lambda}-prophage induction. Per nanogram of organic material, wood smoke proved to be a major source of indirect (observed with metabolic activation) but notmore » direct genotoxins in homes. The increase in indirect genotoxicity for extracts from aerosol containing wood smoke is probably due to higher concentrations of polycyclic aromatic hydrocarbons in the wood smoke aerosol as well as other unidentified classes. The direct genotoxicity observed for extracts of aerosol not containing wood smoke decreased with metabolic activation. This direct genotoxicity may be related to cooking activities in the homes. The trends in genotoxicity observed per nanogram of organic material are more pronounced when expressed per m{sup 3} of air due to the higher percentage of extractable material in aerosol containing wood smoke.« less

  4. High productivity injection practices at Rouge Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, D.H.; Hegler, G.L.; Falls, C.E.

    1995-12-01

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day ormore » 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.« less

  5. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    NASA Astrophysics Data System (ADS)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  6. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    PubMed Central

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  7. Estimated health impact of a shift from light fuel to residential wood-burning in Upper Austria.

    PubMed

    Haluza, Daniela; Kaiser, August; Moshammer, Hanns; Flandorfer, Claudia; Kundi, Michael; Neuberger, Manfred

    2012-07-01

    The dependency on carbon-based fossil energy and growing awareness of climate change issues has induced ambitious policy initiatives to promote renewable energy sources for indoor heating. Combustion of regionally available material such as wood is considered a carbon-neutral alternative for oil and gas, but unregulated revival of wood stoves may cause detrimental health effects. For the prognosis of the health impact of air pollution due to the use of wood stoves, Upper Austria served for a case study. On the basis of recent measurements of particulate matter <10 μm in aerodynamic diameter (PM10) and nitrous gases (NO(x)), we compared the air pollution attributable to present energy mix (termed scenario 1) with two alternatives: For scenario 2, we assumed replacement of light fuel oil by either fossil gas or biomass, and for scenario 3, replacement of light fuel oil by biomass only. Compared with the current exposure from scenario 1, the increased annual mean PM10 levels are estimated to lead to 101 (95% CI 56;146) and 174 (95% CI 92;257) additional deaths among 1.4 million inhabitants per year for scenarios 2 and 3, respectively. Without adequate strategies for reducing the emissions of domestic heating facilities, replacement of fossil energy sources could lead to an increased health risk.

  8. Black carbon emissions from biomass and coal in rural China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated withmore » the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640±245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42±13%, 36±15%, and 22±10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households« less

  9. Quantifying trace elements in the emitted particulate matter during cooking and health risk assessment.

    PubMed

    Gorjinezhad, Soudabeh; Kerimray, Aiymgul; Amouei Torkmahalleh, Mehdi; Keleş, Melek; Ozturk, Fatma; Hopke, Philip K

    2017-04-01

    Particulate matter (PM) measurements were conducted during heating corn oil, heating corn oil mixed with the table salt and heating low fat ground beef meat using a PTFE-coated aluminum pan on an electric stove with low ventilation. The main objectives of this study were to measure the size segregated mass concentrations, emission rates, and fluxes of 24 trace elements emitted during heating cooking oil or oil with salt and cooking meat. Health risk assessments were performed based on the resulting exposure to trace elements from such cooking activities. The most abundant elements (significantly different from zero) were Ba (24.4 ug m -3 ) during grilling meat and Ti during heating oil with salt (24.4 ug m -3 ). The health assessment indicates that the cooking with an electric stove with poor ventilation leading to chronic exposures may pose the risk of significant adverse health effects. Carcinogenic risk exceeded the acceptable level (target cancer risk 1 × 10 -6 , US EPA 2015) by four orders of magnitude, while non-carcinogenic risk exceeded the safe level (target HQ = 1, US EPA 2015) by a factor of 5-20. Cr and Co were the primary contributors to the highest carcinogenic and non-carcinogenic risks, respectively.

  10. The carbon footprint of traditional woodfuels

    NASA Astrophysics Data System (ADS)

    Bailis, Robert; Drigo, Rudi; Ghilardi, Adrian; Masera, Omar

    2015-03-01

    Over half of all wood harvested worldwide is used as fuel, supplying ~9% of global primary energy. By depleting stocks of woody biomass, unsustainable harvesting can contribute to forest degradation, deforestation and climate change. However, past efforts to quantify woodfuel sustainability failed to provide credible results. We present a spatially explicit assessment of pan-tropical woodfuel supply and demand, calculate the degree to which woodfuel demand exceeds regrowth, and estimate woodfuel-related greenhouse-gas emissions for the year 2009. We estimate 27-34% of woodfuel harvested was unsustainable, with large geographic variations. Our estimates are lower than estimates from carbon offset projects, which are probably overstating the climate benefits of improved stoves. Approximately 275 million people live in woodfuel depletion `hotspots’--concentrated in South Asia and East Africa--where most demand is unsustainable. Emissions from woodfuels are 1.0-1.2 Gt CO2e yr-1 (1.9-2.3% of global emissions). Successful deployment and utilization of 100 million improved stoves could reduce this by 11-17%. At US$11 per tCO2e, these reductions would be worth over US$1 billion yr-1 in avoided greenhouse-gas emissions if black carbon were integrated into carbon markets. By identifying potential areas of woodfuel-driven degradation or deforestation, we inform the ongoing discussion about REDD-based approaches to climate change mitigation.

  11. Behavioral Reactivity Associated With Electronic Monitoring of Environmental Health Interventions--A Cluster Randomized Trial with Water Filters and Cookstoves.

    PubMed

    Thomas, Evan A; Tellez-Sanchez, Sarita; Wick, Carson; Kirby, Miles; Zambrano, Laura; Abadie Rosa, Ghislaine; Clasen, Thomas F; Nagel, Corey

    2016-04-05

    Subject reactivity--when research participants change their behavior in response to being observed--has been documented showing the effect of human observers. Electronics sensors are increasingly used to monitor environmental health interventions, but the effect of sensors on behavior has not been assessed. We conducted a cluster randomized controlled trial in Rwanda among 170 households (70 blinded to the presence of the sensor, 100 open) testing whether awareness of an electronic monitor would result in a difference in weekly use of household water filters and improved cookstoves over a four-week surveillance period. A 63% increase in number of uses of the water filter per week between the groups was observed in week 1, an average of 4.4 times in the open group and 2.83 times in the blind group, declining in week 4 to an insignificant 55% difference of 2.82 uses in the open, and 1.93 in the blind. There were no significant differences in the number of stove uses per week between the two groups. For both filters and stoves, use decreased in both groups over four-week installation periods. This study suggests behavioral monitoring should attempt to account for reactivity to awareness of electronic monitors that persists for weeks or more.

  12. Black carbon emissions from biomass and coal in rural China

    NASA Astrophysics Data System (ADS)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640 ± 245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42 ± 13%, 36 ± 15%, and 22 ± 10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households.

  13. Implementation Science to Accelerate Clean Cooking for Public Health

    PubMed Central

    Rosenthal, Joshua; Balakrishnan, Kalpana; Bruce, Nigel; Chambers, David; Graham, Jay; Jack, Darby; Kline, Lydia; Masera, Omar; Mehta, Sumi; Mercado, Ilse Ruiz; Neta, Gila; Pattanayak, Subhrendu; Puzzolo, Elisa; Petach, Helen; Punturieri, Antonello; Rubinstein, Adolfo; Sage, Michael; Sturke, Rachel; Shankar, Anita; Sherr, Kenny; Smith, Kirk; Yadama, Gautam

    2017-01-01

    Summary: Clean cooking has emerged as a major concern for global health and development because of the enormous burden of disease caused by traditional cookstoves and fires. The World Health Organization has developed new indoor air quality guidelines that few homes will be able to achieve without replacing traditional methods with modern clean cooking technologies, including fuels and stoves. However, decades of experience with improved stove programs indicate that the challenge of modernizing cooking in impoverished communities includes a complex, multi-sectoral set of problems that require implementation research. The National Institutes of Health, in partnership with several government agencies and the Global Alliance for Clean Cookstoves, has launched the Clean Cooking Implementation Science Network that aims to address this issue. In this article, our focus is on building a knowledge base to accelerate scale-up and sustained use of the cleanest technologies in low- and middle-income countries. Implementation science provides a variety of analytical and planning tools to enhance effectiveness of clinical and public health interventions. These tools are being integrated with a growing body of knowledge and new research projects to yield new methods, consensus tools, and an evidence base to accelerate improvements in health promised by the renewed agenda of clean cooking. PMID:28055947

  14. Domestic liquefied petroleum gas: are we using a kitchen bomb?

    PubMed

    Paliwal, G; Agrawal, K; Srivastava, R K; Sharma, S

    2014-09-01

    The aim of this study is to understand the aetiological factors and pattern of burns caused by the use of liquefied petroleum gas (LPG). This hospital based study was conducted on consecutive patients admitted with major burns from September 2011 to August 2012. The data was recorded on predesigned data sheet. Age, gender, mode of injury, its exact mechanism, place of incidence, extent of burn and inhalation injury were recorded for every patient. 182 patients with LPG related burn injury were admitted in one year. This is 11% of total burn patients received during the same period (182/1656). 147 incidents caused these burns due to gas leak from various parts of the LPG cooking system. Leakage was either from the cylinder, pipe or stove in 52%, 36% and 2% incidents respectively. Human error accounted for 3% incidents while in 7% the mechanism could not be ascertained. Leakage from 5kg cylinder with pipe was the commonest aetiological factor. There were 14 group casualties with more than one victim involved. LPG related burns are preventable to a large extent. There is a need to improve the safety standards in the LPG stove system. Public awareness needs to be improved. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  15. Performance of Charcoal Cookstoves for Haiti, Part 2: Results from the Controlled Cooking Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lask, Kathleen; Jones, Jennifer; Booker, Kayje

    2011-11-30

    Five charcoal cookstoves were tested using a Controlled Cooking Test (CCT) developed from cooking practices in Haiti. Cookstoves were tested for total burn time, specific fuel consumption, and emissions of carbon monoxide (CO), carbon dioxide (CO 2), and the ratio of carbon monoxide to carbon dioxide (CO/CO 2). These results are presented in this report along with LBNL testers’ observations regarding the usability of the stoves.

  16. Gianco, my Brother

    NASA Astrophysics Data System (ADS)

    Rota, Ester Gasperoni

    As a child, Gianco (the nickname by which he was known to family and friends) wanted to be a cook. Since cooking has never been my "cup of tea" I gladly allowed him to experiment on a stove that had been given to me for Christmas, a little electric marvel equipped with a real oven. He concocted sauces, baked cookies and cakes, which were eminently edible. Perhaps thanks to his childhood practice, Gianco's cooking was always far better than mine.

  17. 22. INTERIOR VIEW OF THE MACHINE SHOP LOOKING NORTH. FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INTERIOR VIEW OF THE MACHINE SHOP LOOKING NORTH. FROM LEFT TO RIGHT, NORTH END OF THE LONG LATHE, WOOD STOVE WITH A BRICK HEARTH FLOOR, FAR BACK LEFT CORNER IS THE MAIN CLUTCH FOR THE MILL POWER SHAFTS, SHAFT LATHE, SMALL PLANER, BORING MACHINE WITH IONIC COLUMN DETAIL., AND THE ENTRANCE TO THE ELECTRICAL MOTOR ROOM. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  18. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber.

    PubMed

    Afshari, A; Matson, U; Ekberg, L E

    2005-04-01

    Humans and their activities are known to generate considerable amounts of particulate matter indoors. Some of the activities are cooking, smoking and cleaning. In this study 13 different particle sources were for the first time examined in a 32 m3 full-scale chamber with an air change rate of 1.7 +/- 0.1/h. Two different instruments, a condensation particle counter (CPC) and an optical particle counter (OPC) were used to quantitatively determine ultrafine and fine particle emissions, respectively. The CPC measures particles from 0.02 microm to larger than 1.0 microm. The OPC was adjusted to measure particle concentrations in eight fractions between 0.3 and 1.0 microm. The sources were cigarette side-stream smoke, pure wax candles, scented candles, a vacuum cleaner, an air-freshener spray, a flat iron (with and without steam) on a cotton sheet, electric radiators, an electric stove, a gas stove, and frying meat. The cigarette burning, frying meat, air freshener spray and gas stove showed a particle size distribution that changed over time towards larger particles. In most of the experiments the maximum concentration was reached within a few minutes. Typically, the increase of the particle concentration immediately after activation of the source was more rapid than the decay of the concentration observed after deactivation of the source. The highest observed concentration of ultrafine particles was approximately 241,000 particles/cm3 and originated from the combustion of pure wax candles. The weakest generation of ultrafine particles (1.17 x 10(7) particles per second) was observed when ironing without steam on a cotton sheet, which resulted in a concentration of 550 particles/cm3 in the chamber air. The highest generation rate (1.47 x 10(10) particles per second) was observed in the radiator test. Humans and their activities are known to generate substantial amounts of particulate matter indoors and potentially they can have a strong influence on short-term exposure. In this study a quantitative determination of the emissions of fine and ultrafine particles from different indoor sources was performed. The aim is a better understanding of the origin and fate of indoor particles. The results may be useful for Indoor Air Quality models.

  19. ­­Secondary organic aerosol formation from photo-oxidation of wood combustion emissions: Characterization of gas phase precursors and their link to SOA budget

    NASA Astrophysics Data System (ADS)

    Bhattu, D.; Stefenelli, G.; Zotter, P.; Zhou, J.; Nussbaumer, T.; Bertrand, A.; Marchand, N.; Termine-Roussel, B.; Baltensperger, U.; Slowik, J.; Prevot, A. S.; El-Haddad, I.; Dommen, J.

    2016-12-01

    Current legislation limits the emission of particulate matter, but does not regulate the precursors potentially forming secondary organic aerosol (SOA). Recent literature has shown that only 22 non-traditional SOA precursors from residential wood combustion explains 84-116% of the observed SOA mass whereas traditional precursors in the models account for only 3-27% of the SOA mass (Bruns et al., 2016). Investigation of gas phase emissions from wood combustion and their SOA formation potential have largely focused on single combustion devices with limited operating conditions. As, both primary emissions and SOA formation is a strong function of device type, load, fuel and operating conditions, we have performed a detailed chamber study investigating the gas-phase precursors from beech wood using three combustion devices namely a pellet boiler (combustion conditions: optimum, lack and excess of oxygen), an industrial wood chip grate boiler (30% and 100% power), and a log wood stove (varying fuel load and moisture content) using a potential aerosol mass reactor (PAM) with varying OH exposure. The short residence time in the reactor allowed a time resolved picture of SOA production potential and reduced wall losses. The main aim of this study is to characterize the primary and aged gaseous emissions and investigate their SOA formation potential depending on their mass yield, molecular structures, functional groups and OH reactivity in order to ascertain the contribution of residential wood burning in total carbonaceous OA budget. The physical and chemical effects of different OA aging conditions were monitored using an SMPS, an Aethalometer, an HR-ToF-AMS, as well as a PTR-ToF-MS and other gas monitors. In pellet boiler, significant SOA mass enhancement is observed in excess oxygen conditions compared to optimum and oxygen deprived conditions. Highest gas phase emissions from wood stove are observed at cold start (start of each burn cycle) and lowest in burn out phase (end of each burn cycle). Despite of the comparable total gas phase emissions, the compositional space of wood stove emissions is largely occupied by SOA precursors compared to pellet boiler. Finally we will determine effective SOA mass yield of the speciated and unspeciated precursors and assess the extent to which SOA mass closure can be achieved.

  20. A strategy to increase adoption of locally-produced, ceramic cookstoves in rural Kenyan households.

    PubMed

    Silk, Benjamin J; Sadumah, Ibrahim; Patel, Minal K; Were, Vincent; Person, Bobbie; Harris, Julie; Otieno, Ronald; Nygren, Benjamin; Loo, Jennifer; Eleveld, Alie; Quick, Robert E; Cohen, Adam L

    2012-05-16

    Exposure to household air pollutants released during cooking has been linked to numerous adverse health outcomes among residents of rural areas in low-income countries. Improved cookstoves are one of few available interventions, but achieving equity in cookstove access has been challenging. Therefore, innovative approaches are needed. To evaluate a project designed to motivate adoption of locally-produced, ceramic cookstoves (upesi jiko) in an impoverished, rural African population, we assessed the perceived benefits of the cookstoves (in monetary and time-savings terms), the rate of cookstove adoption, and the equity of adoption. The project was conducted in 60 rural Kenyan villages in 2008 and 2009. Baseline (n = 1250) and follow-up (n = 293) surveys and a stove-tracking database were analyzed. At baseline, nearly all respondents used wood (95%) and firepits (99%) for cooking; 98% desired smoke reductions. Households with upesi jiko subsequently spent <100 Kenyan Shillings/week on firewood more often (40%) than households without upesi jiko (20%) (p = 0.0002). There were no significant differences in the presence of children <2 years of age in households using upesi jiko (48%) or three-stone stoves (49%) (p = 0.88); children 2-5 years of age were less common in households using upesi jiko versus three-stone stoves (46% and 69%, respectively) (p = 0.0001). Vendors installed 1,124 upesi jiko in 757 multi-family households in 18 months; 68% of these transactions involved incentives for vendors and purchasers. Relatively few (<10%) upesi jiko were installed in households of women in the youngest age quartile (<22 years) or among households in the poorest quintile. Our strategy of training of local vendors, appropriate incentives, and product integration effectively accelerated cookstove adoption into a large number of households. The strategy also created opportunities to reinforce health messages and promote cookstoves sales and installation. However, the project's overall success was diminished by inequitable and incomplete adoption by households with the lowest socioeconomic status and young children present. Additional evaluations of similar strategies will be needed to determine whether our strategy can be applied equitably elsewhere, and whether reductions in fuel use, household air pollution, and the incidence of respiratory diseases will follow adoption of improved cookstoves.

  1. A strategy to increase adoption of locally-produced, ceramic cookstoves in rural Kenyan households

    PubMed Central

    2012-01-01

    Background Exposure to household air pollutants released during cooking has been linked to numerous adverse health outcomes among residents of rural areas in low-income countries. Improved cookstoves are one of few available interventions, but achieving equity in cookstove access has been challenging. Therefore, innovative approaches are needed. To evaluate a project designed to motivate adoption of locally-produced, ceramic cookstoves (upesi jiko) in an impoverished, rural African population, we assessed the perceived benefits of the cookstoves (in monetary and time-savings terms), the rate of cookstove adoption, and the equity of adoption. Methods The project was conducted in 60 rural Kenyan villages in 2008 and 2009. Baseline (n = 1250) and follow-up (n = 293) surveys and a stove-tracking database were analyzed. Results At baseline, nearly all respondents used wood (95%) and firepits (99%) for cooking; 98% desired smoke reductions. Households with upesi jiko subsequently spent <100 Kenyan Shillings/week on firewood more often (40%) than households without upesi jiko (20%) (p = 0.0002). There were no significant differences in the presence of children <2 years of age in households using upesi jiko (48%) or three-stone stoves (49%) (p = 0.88); children 2–5 years of age were less common in households using upesi jiko versus three-stone stoves (46% and 69%, respectively) (p = 0.0001). Vendors installed 1,124 upesi jiko in 757 multi-family households in 18 months; 68% of these transactions involved incentives for vendors and purchasers. Relatively few (<10%) upesi jiko were installed in households of women in the youngest age quartile (<22 years) or among households in the poorest quintile. Conclusions Our strategy of training of local vendors, appropriate incentives, and product integration effectively accelerated cookstove adoption into a large number of households. The strategy also created opportunities to reinforce health messages and promote cookstoves sales and installation. However, the project’s overall success was diminished by inequitable and incomplete adoption by households with the lowest socioeconomic status and young children present. Additional evaluations of similar strategies will be needed to determine whether our strategy can be applied equitably elsewhere, and whether reductions in fuel use, household air pollution, and the incidence of respiratory diseases will follow adoption of improved cookstoves. PMID:22591643

  2. From Strategic to Tactical and Nowhere in Between: The USAF at the Operational Level

    DTIC Science & Technology

    2012-06-01

    stove piped, lacking the balance to operate effectively across the full ROMO. Finally, the lack of balance combined with the dual responsibilities...was able to reorganize and lead effectively . As for 12AF (AFSOUTH), despite a lack of balance on the staff leading to a slow transition to support...development, the teams focused on three central elements: a standardized organizational structure, manned with a cross-functionally balance staff to support

  3. The role of leak air in a double-wall chimney

    NASA Astrophysics Data System (ADS)

    Lichtenegger, Klaus; Hebenstreit, Babette; Pointner, Christian; Schmidl, Christoph; Höftberger, Ernst

    2015-06-01

    In modern buildings with tight shells, often room-independent air supply is required for proper operation of biomass stoves. One possibility to arrange this supply is to use a double-wall chimney with flue gas leaving through the pipe and fresh air entering through the annular gap. A one-dimensional quasi-static model based on balance equations has been developed and compared with experimental data. Inclusion of leak air is crucial for reproduction of the experimental results.

  4. Characterization of Black Carbon Mixing State

    DOE Data Explorer

    Sedlacek, Arthur; S, Satheesh; Springston, Stephen

    2013-11-06

    This measurement characterizes the types of BC emissions that result in near­surface BC­ containing particles in a region that is dominated by biomass and open pit/stove cooking. Specifically, examine three primary BC emission sources: (i) urban setting (e.g., fossil fuel emissions); and (ii) biomass burning. Source (i) are captured at the Indian Institute of Science (IISc) in Bangalore. Biomass emissions (ii) contains a series of 1­2 day measurement excursions to the rural area surrounding Bangalore.

  5. The role of the indoor environment: Residential determinants of allergy, asthma and pulmonary function in children from a US-Mexico border community.

    PubMed

    Svendsen, Erik R; Gonzales, Melissa; Commodore, Adwoa

    2018-03-01

    The El Paso Children's Health Study examined environmental risk factors for allergy and asthma among fourth and fifth grade schoolchildren living in a major United States-Mexico border city. Complete questionnaire information was available for 5210 children, while adequate pulmonary function data were available for a subset of 1874. Herein we studied indoor environmental health risk factors for allergy and asthma. Several indoor environmental risk factors were associated with allergy and asthma. In particular, we found that ant and spider pest problems, pet dogs, fireplace heat, central air conditioning, humidifier use, and cooking with gas stoves were positively associated with both allergy and asthma prevalence. With regards to asthma severity, our analysis indicated that exposure to pet dogs increased monotonically with increasing asthma severity while the lack of any heat source and gas stove use for cooking decreased monotonically with increasing asthma severity. Lung function also decreased among children who lived in homes with reported cockroach pest problem in the past year without concurrent use of pesticides. These effects on pulmonary function were present even after excluding children with a current physician's diagnosis of asthma. Clinicians and public health professionals may need to look closely at the contribution of these indoor risk factors on pulmonary health and quality of life among susceptible populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Household and caregiver characteristics and behaviours as predictors of unsafe exposure of children to paraffin appliances.

    PubMed

    Van Niekerk, A; Govender, R; Hornsby, N; Swart, L

    2017-06-01

    This study examines adult safety knowledge and practices regarding the use of paraffin cooking appliances. The use of these is common in South Africa with injury risks that are poorly understood. This cross-sectional study was in an informal settlement in Johannesburg, South Africa, where children were reportedly at high risk for burns. This study sought to clarify relationships between key risks and developed individual and composite variables from theoretical constructs and operational definitions of risks for burns. Risks included Child Use of Paraffin Appliances, Child Proximity to Cooking, Risky Stove Use, Caregiver's Burn Treatment Knowledge, Children Locked in House, Children Alone in House. Number of children remains as in proof as this was not a composite scale. Child Proximity to Cooking was associated with more children in the home. Households where children were in greater proximity to cooking were 6 times more likely to be left alone at home, with caregivers with no education over 100 times more likely to lock their children at home. Children locked in were often from homes where caregivers used appliances unsafely. In settings with hazardous energy use, compressed household configurations, and families with multiple children, Risky Stove Use and the practice of locking children in the home may be catastrophic. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  7. Life cycle assessment of biochar application in Vietnam using two pyrolysis technologies

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali; Cowie, Annette; Mai, Thi Lan Anh; Anaya de la Rosa, Ruy; Kristiansen, Paul; Brandão, Miguel; Joseph, Stephen

    2016-04-01

    This study presents a comparative analysis of the environmental impacts of biochar systems in Vietnam using household scale and district scale pyrolysis technologies. At the household scale, pyrolytic cook-stoves were assumed to be used by households to produce biochar. The pyrolytic cook-stoves burn pyrolysis gases and use the heat for cooking. At the district scale, the BIGchar 2200 unit, a continuous operation system, is utilised to convert rice husk to biochar. This unit allows for easy capture of produced gases, which can be used to generate energy products, adding value to biochar production and decreasing environmental costs through the displacement of fossil fuels. The biochar produced from each system was assumed to be applied to paddy rice fields. Results from Life Cycle Assessment showed that biochar production at the both scales for application to the soil significantly improved environmental performance of 1 Mg of rice husk relative to the reference scenario (open burning of husk) across a range of impacts including climate change (CC), particulate matter and non-renewable energy (NRE) use. Net carbon abatement of biochar systems ranged from 355 to 427 kg CO2-eq Mg-1 of spring rice husk at the household scale and district scale, respectively. The district scale offered greater carbon abatement primarily due to the higher rate of LPG displaced by this unit.

  8. Outdoor, indoor, and personal black carbon exposure from cookstoves burning solid fuels

    PubMed Central

    Downward, George S.; Hu, Wei; Rothman, Nat; Reiss, Boris; Wu, Guoping; Wei, Fusheng; Xu, Jun; Seow, Wei Jie; Brunekreef, Bert; Chapman, Robert S.; Qing, Lan; Vermeulen, Roel

    2015-01-01

    Background Black carbon (BC) emissions from solid fuel combustion are associated with increased morbidity and mortality and are important drivers of climate change. We studied BC measurements, approximated by particulate matter (PM2.5) absorbance, in rural Yunnan province, China whose residents use a variety of solid fuels for cooking and heating including: bituminous and anthracite coal, and wood. Methods Measurements were taken over 2 consecutive 24 h periods from 163 households in 30 villages. PM2.5 absorbance (PMabs) was measured using an EEL 043 Smoke Stain Reflectometer. Results PMabs measurements were higher in wood burning households (16.3 × 10−5 m−1) than bituminous and anthracite coal households (12 and 5.1 × 10−5 m−1 respectively). Among bituminous coal users, measurements varied by a factor of two depending on the coal source. Portable stoves (which are lit outdoors and brought indoors for use) were associated with reduced PMabs levels, but no other impact of stove design was observed. Outdoor measurements were positively correlated with and approximately half the level of indoor measurements (r= 0.49, p<0.01). Conclusion Measurements of BC (as approximated by PMabs) in this population are modulated by fuel type and source. This provides valuable insight into potential morbidity, mortality and climate change contributions of domestic usage of solid fuels. PMID:26452237

  9. Situational analysis of household energy and biomass use and associated health burden of indoor air pollution and mitigation efforts in Pakistan.

    PubMed

    Fatmi, Zafar; Rahman, Asma; Kazi, Ambreen; Kadir, M Masood; Sathiakumar, Nalini

    2010-07-01

    Biomass fuel burning leads to high levels of suspended particulate matter and hazardous chemicals in the indoor environment in countries where it is in common use, contributing significantly to indoor air pollution (IAP). A situational analysis of household energy and biomass use and associated health effects of IAP was conducted by reviewing published and un-published literature about the situation in Pakistan. In addition to attempt to quantify the burden of ill health due to IAP, this paper also appraises the mitigation measures undertaken to avert the problem in Pakistan. Unfortunately, IAP is still not a recognized environmental hazard in Pakistan and there are no policies and standards to control it at the household level. Only a few original studies related to health effects of IAP have been conducted, mainly on women's health and birth outcome, and only a few governmental, non-governmental and academic institutions are working to improve the IAP situation by introducing improved stoves and renewable energy technology at a small scale. Control of IAP health hazards in Pakistan requires an initial meeting of the stakeholders to define a policy and an action agenda. Simultaneously, studies gathering evidence of impact of intervention through available technologies such as improved stoves would have favorable impact on the health, especially of women and children in Pakistan.

  10. Oxidative potential of logwood and pellet burning particles assessed by a novel profluorescent nitroxide probe.

    PubMed

    Miljevic, B; Heringa, M F; Keller, A; Meyer, N K; Good, J; Lauber, A; Decarlo, P F; Fairfull-Smith, K E; Nussbaumer, T; Burtscher, H; Prevot, A S H; Baltensperger, U; Bottle, S E; Ristovski, Z D

    2010-09-01

    This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.

  11. ACCOMPLISHMENTS OF THE AMERICAN-POLISH PROGRAM FOR ELIMINATION OF LOW EMISSIONS IN KRAKOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUTCHER,T.A.; PIERCE,B.

    1998-11-05

    In 1991, US and Polish officials signed a Memorandum of Understanding formally initiating and directing the Cracow Clean Fossil Fuels and Energy Efficiency Program. Developing a program approach for the most effective use of the available funds required considerable effort on the part of all project participants. The team recognized early that the cost of solving the low emissions problem even in only one city far exceeded the amount of available US funds. Economic conditions in Poland limited availability of local capital funds for environmental projects. Imposing environmental costs on struggling companies or city residents under difficult conditions of themore » early 1990's required careful consideration of the economic and political impacts. For all of these reasons the program sought to identify technologies for achieving air quality goals which, through improved efficiency and/or reduced fuel cost, could be so attractive economically as to lead to self-sustaining activities beyond the end of the formal project. The effort under this program has been focused into 5 main areas of interest as follows: (1) Energy Conservation and Extension of Central Station District Heating; (2) Replacement of Coal- and Coke-Fired Boilers with Natural Gas-Fired Boilers; (3) Replacement of Coal-Fired Home Stoves with Electric Heating Appliances; (4) Reduction of Emissions from Stoker-Fired Boiler Houses; and (5) Reduction of Emissions from Coal-Fired Home Heating Stoves.« less

  12. Looking for Hazardous Pollutants in Your Kitchen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett

    2013-07-22

    For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.

  13. Designing Collaboration: How to Prepare SOF Augmentation Teams for Assignment to a U.S. Embassy Country Team

    DTIC Science & Technology

    2014-06-01

    allegiance will remain to their parent organization. Country team members must accept their role as part of an organization, willing to put the country...country team may be tempted to hold onto and treat certain types of information as special to their parent organization and keep it “stove piped...prepare personnel to master their assigned specialty within their parent organization, but do not emphasize preparing these same personnel for their

  14. Credit PSR. This view looks northeast (54°) at the open ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view looks northeast (54°) at the open burn unit as it is seen on approach from Circle Drive. The metal shed in front of the earth mound personnel shield contained controls for a stove that was formerly used to burn scrap propellants in the adjacent pit (see HAER photo CA163-V-1). Regulations changed to permit open pit burning of such materials - Jet Propulsion Laboratory Edwards Facility, Incinerator, Edwards Air Force Base, Boron, Kern County, CA

  15. Looking for Hazardous Pollutants in Your Kitchen

    ScienceCinema

    Singer, Brett

    2018-02-14

    For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.

  16. DMHRSwhy? The Value of the Defense Medical Human Resource System-Internet (DMHRSi) to the Military Health System (MHS)

    DTIC Science & Technology

    2015-02-01

    designed to be a “one-stop shop ” for decision-makers to assess the competency and Figure 1. DMHRSi Data Types (Adapted from TRICARE Management...standardization across the medical departments. First, the LCA module eliminated three “ antiquated , stand-alone, stove-piped systems,” thereby reducing costly...a “one-stop shop ” for medical education and training, but the DMHRSi capability is largely unused. At the MTF level, leaders should evaluate local

  17. An overview of carbon monoxide generation and release by home appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batey, J

    Carbon monoxide (CO) is an odorless, colorless and tasteless gas which is highly toxic and can be produced by many combustion sources commonly found within homes. Potential sources include boilers and furnaces, water heaters, space heaters, stoves, ovens, clothes dryers, wood stoves, fireplaces, charcoal grilles, automobiles, cigarettes, oil lamps, and candles. Any fuel that contains carbon can form CO including, natural gas, propane, kerosene, fuel oil, wood, and coal. Exposure to elevated CO levels typically requires its production by a combustion source and its release into the home through a venting system malfunction. The health effects of CO range frommore » headaches and flue-like symptoms to loss of concentration, coma and death depending on the concentration of CO and the exposure time. At levels of only 1%, which is the order of magnitude produced by automobile exhaust, carbon monoxide can cause death in less than 3 minutes. While most combustion equipment operate with low CO levels, many operating factors can contribute to elevated CO levels in the home including: burner adjustment, combustion air supply, house air-tightness, exhaust fan operation, cracked heat exchangers, vent blockages, and flue pipe damage. Test data on CO emissions is presented from a wide range of sources including Brookhaven National Laboratory, Gas Research Institute, American Gas Association, the US Environmental Protection Agency, and the US Consumer Product Safety Commission for many potential CO sources in and near the home.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, M.; Chapman, R.S.; Vermeulen, R.

    In Xuanwei County, China, unvented indoor coal burning is strongly associated with increased risk of lung cancer and chronic obstructive pulmonary disease. However, the impact of coal burning and stove improvement on risk of pneumonia is not clear. We conducted a retrospective cohort study among all farmers born 1917 through 1951 and living in Xuanwei as of 1 January 1976. The analysis included a total of 42,422 cohort members. Follow-up identified all deaths in the cohort from 1976 through 1996. Ages at entry into and at exit from follow-up ranged from 24 to 59 years and from 25 to 80more » years, respectively. The record search detected 225 deaths from pneumonia, and 32,332 (76%) were alive as of 31 December 1996. We constructed multivariable Cox models (time variable = age) to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Use of coal, especially smokeless coal, was positively associated with pneumonia mortality. Annual tonnage and lifetime duration of smoky and smokeless coal use were positively associated with pneumonia mortality. Stove improvement was associated with a 50% reduction in pneumonia deaths (smoky coal users: HR, 0.521; 95% CI, 0.340-0.798; smokeless coal users: HR, 0.449; 95% CI, 0.215-0.937). Our analysis is the first to suggest that indoor air pollution from unvented coal burning is an important risk factor for pneumonia death in adults and that improving ventilation by installing a chimney is an effective measure to decrease it.« less

  19. An uncommon case of a suicide with inhalation of hydrogen cyanide.

    PubMed

    Musshoff, F; Kirschbaum, K M; Madea, B

    2011-01-30

    An uncommon suicide by oral ingestion of potassium cyanide salts and contemporaneous inhalation of hydrogen cyanide is presented. A 48-year-old tradesman was found dead sitting in his car. A penetrating odor of bitter almonds was noticed when opening the doors. A camping stove and a cooking pot containing large amounts of dark blue crystals were found in the footwell of the car. White powder adhered to his fingers and to the area around the mouth. Furthermore bottles containing potassium ferrocyanide and different kinds of acid and leach were found in the car together with internet information about, e.g. potassium ferrocyanide and potassium cyanide. At autopsy hemorrhages and erosions of the mucosa of the respiratory tract, esophagus and stomach were found. Concentrations of cyanide were 0.2mg/l in stomach contents, 0.96mg/kg in brain tissue, 2.79mg/kg in lungs, and 5.3mg/l in blood. The white and toxic powder potassium cyanide was formed by heating of the yellow crystals of potassium ferrocyanide on the camping stove. This powder was probably ingested orally. Addition of acid converted the salt into the highly toxic gas hydrogen cyanide. Oxidation with atmospheric oxygen built the dark blue ferrous compound Prussian blue. This case report of a person who was not familiar with chemicals demonstrates the acquisition of professional information via the internet, enabling a suicide with a complex procedure. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong.

    PubMed

    Lee, S C; Li, W M; Chan, L Y

    2001-11-12

    Indoor air quality (IAQ) of a restaurant has increasingly received a lot of public concerns in Hong Kong. Unfortunately, there is limited data about the IAQ of Hong Kong restaurants. In order to characterize the current IAQ of local restaurants, four restaurants in metropolitan Hong Kong including a Korean barbecue style restaurant, a Chinese hot pot restaurant, a Chinese dim sum restaurant and a Western canteen were selected for this study. The results of this study showed that the mean concentrations of CO2 at restaurants with gas stoves for food cooking in dining areas exceeded the range from 40 to 60% indoor CO2 concentrations at restaurants without gas stoves in dining areas. The average levels of PM10 and PM2.5 at the Korean barbecue style restaurant were as high as 1442 and 1167 microg/m3, respectively. At the Korean barbecue and Chinese hot pot restaurants, the levels of PM2.5 accounted for 80-93% of their respective PM10 concentrations. The 1-h average levels of CO observed at Korean barbecue style and hot pot restaurants were 15,100 and 8000 microg/m3, respectively. Relatively high concentrations of CO2, CO, PM10, PM2.5 benzene, toluene, methylene chloride and chloroform were measured in the dining areas of the Korean barbecue style and the Chinese hot pot restaurants. The operations of pan-frying food and boiling food with soup in a hot pot could generate considerable quantities of air pollutants.

Top