Sample records for strain accumulation processes

  1. Time-dependent constitutive modeling of drive belts—II. The effect of the shape of material retardation spectrum on the strain accumulation process

    NASA Astrophysics Data System (ADS)

    Zupančič, B.; Emri, I.

    2009-11-01

    This is the second paper in the series addressing the constitutive modeling of dynamically loaded elastomeric products such as power transmission belts. During the normal operation of such belts certain segments of the belt structure are loaded via tooth-like cyclical loading. When the time-dependent properties of the elastomeric material “match” the time-scale of the dynamic loading a strain accumulation (incrementation) process occurs. It was shown that the location of a critical rotation speed strongly depends on the distribution (shape) of the retardation spectrum, whereas the magnitude of the accumulated strain is governed by the strength of the corresponding spectrum lines. These interrelations are extremely non-linear. The strain accumulation process is most intensive at the beginning of the drive belt operation, and is less intensive for longer belts. The strain accumulation process is governed by the spectrum lines that are positioned within a certain region, which we call the Strain Accumulation Window (SAW). An SAW is always located to the right of the spectrum line, L i , at log ( ω λ i )=0, where ω is the operational angular velocity. The width of the SAW depends on the width of the material spectrum. Based on the following analysis a new designing criterion is proposed for use in engineering applications for selecting a proper material for general drive-belt operations.

  2. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-03

    During bread-making processes, yeast cells are exposed to various baking-associated stresses. High-sucrose concentrations exert severe osmotic stress that seriously damages cellular components by generation of reactive oxygen species (ROS). Previously, we found that the accumulation of proline conferred freeze-thaw stress tolerance and the baker's yeast strain that accumulated proline retained higher-level fermentation abilities in frozen doughs than the wild-type strain. In this study, we constructed self-cloning diploid baker's yeast strains that accumulate proline. These resultant strains showed higher cell viability and lower intracellular oxidation levels than that observed in the wild-type strain under high-sucrose stress condition. Proline accumulation also enhanced the fermentation ability in high-sucrose-containing dough. These results demonstrate the usefulness of proline-accumulating baker's yeast for sweet dough baking. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2016-08-01

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.

  4. Factors influencing the accumulation of ciprofloxacin in Pseudomonas aeruginosa.

    PubMed Central

    Celesk, R A; Robillard, N J

    1989-01-01

    Ciprofloxacin accumulation in Pseudomonas aeruginosa was measured by a bioassay. Drug accumulation in strain PAO2 was compared with that of three spontaneous ciprofloxacin-resistant mutants selected with 0.5 micrograms of ciprofloxacin per ml. PAO4701 cfxA2 contains a mutation in the gyrA gene, PAO4742 cfxB5 may represent a permeability mutant based on pleiotropic drug resistance, and PAO4700 cfxA1 cfxB1 contains both types of mutations. In all strains, drug accumulation was similar, reaching steady state during the first minute of exposure. Drug accumulation was unsaturable over a range of 5 to 80 micrograms/ml, suggesting that ciprofloxacin accumulates by diffusion in P. aeruginosa. Although all four strains accumulated two- to sevenfold more ciprofloxacin in the presence of the inhibitor carbonyl cyanide m-chlorophenylhydrazone, the cfxB mutants accumulated two- to fourfold less drug than either PAO2 or the cfxA2 mutant. Polyacrylamide gel analysis revealed a protein common to cfxB mutants only, while all strains had similar lipopolysaccharide profiles. The results suggest that ciprofloxacin accumulation in P. aeruginosa is a complex phenomenon that may be affected by both an energy-dependent drug efflux process and outer envelope composition. Images PMID:2514623

  5. Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization

    PubMed Central

    Hu, Meng-Long; Zha, Jian; He, Lin-Wei; Lv, Ya-Jin; Shen, Ming-Hua; Zhong, Cheng; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Cellobiose accumulation and the compromised temperature for yeast fermentation are the main limiting factors of enzymatic hydrolysis process during simultaneous saccharification and fermentation (SSF). In this study, genes encoding cellobiose transporter and β-glucosidase were introduced into an industrial Saccharomyces cerevisiae strain, and evolution engineering was carried out to improve the cellobiose utilization of the engineered yeast strain. The evolved strain exhibited significantly higher cellobiose consumption rate (2.8-fold) and ethanol productivity (4.9-fold) compared with its parent strain. Besides, the evolved strain showed a high cellobiose consumption rate of 3.67 g/L/h at 34°C and 3.04 g/L/h at 38°C. Moreover, little cellobiose was accumulated during SSF of Avicel using the evolved strain at 38°C, and the ethanol yield from Avicel increased by 23% from 0.34 to 0.42 g ethanol/g cellulose. Overexpression of the genes encoding cellobiose transporter and β-glucosidase accelerated cellobiose utilization, and the improvement depended on the strain background. The results proved that fast cellobiose utilization enhanced ethanol production by reducing cellobiose accumulation during SSF at high temperature. PMID:26973619

  6. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1989-01-01

    A particularly detailed set of observations in the vicinity of an intraplate, thrust earthquake (M 7.4) in Argentina, indicate a cyclic pattern of deformation very similar to that reported previously for interplate earthquakes. This deformation cycle, which may be characteristic of many seismically active areas, consists of: (1) steady strain accumulation, possibly punctuated by strain reversals; (2) coseismic strain release; (3) a period of continued strain release due to afterslip (persisting for perhaps a year or so); and (4) rapid postseismic strain accumulation which decreases exponentially and grades into steady strain accumulation. Deformation associated with three earthquakes in the U.S. (1940, M7.1 Imperial Valley California; 1964, M8.4 Alaska; 1959, M7.5 Hebgen Lake, Montana) are interpreted in light of this general earthquake cycle and are used to investigate the mechanics of strain release for these events. These examples indicate that large postseismic movements can occur for strike-slip, thrust, and normal fault events, and both viscoelastic relaxation and postseismic after-slip must be incorporated in models of earthquake related deformation. The mechanics of the strain release process revealed by these examples has implications for estimating earthquake repeat times from geodetic observations near active faults.

  7. Characterization of a selenium-tolerant rhizosphere strain from a novel Se-hyperaccumulating plant Cardamine hupingshanesis.

    PubMed

    Tong, Xinzhao; Yuan, Linxi; Luo, Lei; Yin, Xuebin

    2014-01-01

    A novel selenium- (Se-) hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT) theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L(-1). When exposed to 1.5 mg Se L(-1), SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L(-1) or 15.0 mg Se L(-1), As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L(-1), indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant.

  8. Insights into Feast-Famine polyhydroxyalkanoate (PHA)-producer selection: Microbial community succession, relationships with system function and underlying driving forces.

    PubMed

    Huang, Long; Chen, Zhiqiang; Wen, Qinxue; Zhao, Lizhi; Lee, Duu-Jong; Yang, Lian; Wang, Yao

    2017-12-18

    The Feast-Famine (FF) process has been frequently used to select polyhydroxyalkanoate (PHA)-accumulating mixed cultures (MCs), but there has been little insight into the ecophysiology of the microbial community during the selection process. In three FF systems with well-defined conditions, synchronized variations in higher-order properties of MCs and complicate microbial community succession mainly including enrichment and elimination of non-top competitors and unexpected turnover of top competitors, were observed. Quantification of PHA-accumulating function genes (phaC) revealed that the top competitors maintained the PHA synthesis by playing consecutive roles when the highly dynamic turnover occurred. Due to its specific physiological characteristics during the PHA-accumulating process, Thauera strain OTU 7 was found to be responsible for the fluctuating SVI, which threatened the robustness of the FF system. This trait was also responsible for its later competitive exclusion by the other PHA-producer, Paracoccus strain OTU 1. Deterministic processes dominated the entire FF system, resulting in the inevitable microbial community succession in the acclimation phase and maintenance of the stable PHA-accumulating function in the maturation phase. However, neutral processes, likely caused by predation from bacterial phages, also occurred, which led to the unpredictable temporal dynamics of the top competitors. Copyright © 2017. Published by Elsevier Ltd.

  9. Law of damage accumulation and fracture criteria in highly filled polymer materials

    NASA Astrophysics Data System (ADS)

    Bykov, D. L.; Kazakov, A. V.; Konovalov, D. N.; Mel'nikov, V. P.; Milyokhin, Yu. M.; Peleshko, V. A.; Sadovnichii, D. N.

    2014-09-01

    We present the results of a large series of experiments aimed at the study of laws of damage accumulation and fracture in highly filled polymer materials under loading conditions of various types: monotone, repeated, low- and high-cycle, with varying type of stress state, dynamic (in general, more than 50 programs implemented on specimens from one lot of material). The data obtained in these test allow one to make conclusions about the constitutive role of the attained maximum of strain intensity when estimating the accumulated damage in the process of uniaxial tension by various programs (in particular, an additional cyclic deformation below the preliminary attained strain maximum does not affect the limit values of strain and stress in the subsequent active extension), about the strong influence of the stress state on the deformation and fracture, about the specific features of the nonlinear behavior of the material under the shock loading conditions and its influence on the repeated deformation. All tests are described (with an accuracy acceptable in practical calculations, both with respect to stresses and strains in the process of loading and at the moment of fracture) in the framework of the same model of nonlinear viscoelasticity with the same set of constants. The constants of the proposed model are calculated according to a relatively simple algorithm by using the results of standard uniaxial tension tests with constant values of the strain rate and hydrostatic pressure (each test for 2-3 levels of these parameters chosen from the ranges proposed in applications, each loading lasts until the fracture occurs, and one of the tests contains an intermediate interval of total loading and repeated loading) and one axial shock compression test if there are dynamic problems in the applications. The model is based on the use of the criterion fracture parameter which, in the class of proportional loading processes, is the sum of partial increments of the strain intensity on active segments of the process (where the strain intensity is at its historical maximum) with the form of the stress state and the intensity of strain rates taken into account.

  10. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    NASA Astrophysics Data System (ADS)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-03-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  11. Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process

    NASA Astrophysics Data System (ADS)

    Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.

    2018-06-01

    A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.

  12. Bioconversion of oil sludge into biomass of lipid metabolites for use as a source of biofuel

    NASA Astrophysics Data System (ADS)

    Shchemelinina, T. N.; Matistov, N. V.; Markarova, M. Yu; Anchugova, E. M.

    2018-01-01

    The possibilities for the generation of biofuel from the results of the accumulation of lipids in oil-contaminated environments were studied. This type of accumulation occurs in the biomass of yeast strains Rhodotorula sp. VKM Y-2993D; in bacteria like Pseudomonas libanensis B-3041D and in consortia of microalgal strains such as Acutodesmus obliquus Syko-A Ch-055-12, Chlorella sp. SYKO A Ch-011-10, Monoraphidium sp., and Anabaena sp. The most promising of these for processing petroleum hydrocarbons into biofuels was found to be the consortium of microalgal strains, the content of palmitic acid of which reached 49.0 %, thereby achieving a mid-range cetane number.

  13. L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway

    PubMed Central

    Liu, Lina; Duan, Xuguo; Wu, Jing

    2016-01-01

    Acetate accumulation during the fermentation process of Escherichia coli FB-04, an L-tryptophan production strain, is detrimental to L-tryptophan production. In an initial attempt to reduce acetate formation, the phosphate acetyltransferase gene (pta) from E. coli FB-04 was deleted, forming strain FB-04(Δpta). Unfortunately, FB-04(Δpta) exhibited a growth defect. Therefore, pta was replaced with a pta variant (pta1) from E. coli CCTCC M 2016009, forming strain FB-04(pta1). Pta1 exhibits lower catalytic capacity and substrate affinity than Pta because of a single amino acid substitution (Pro69Leu). FB-04(pta1) lacked the growth defect of FB-04(Δpta) and showed improved fermentation performance. Strain FB-04(pta1) showed a 91% increase in L-tryptophan yield in flask fermentation experiments, while acetate production decreased by 35%, compared with its parent FB-04. Throughout the fed-batch fermentation process, acetate accumulation by FB-04(pta1) was slower than that by FB-04. The final L-tryptophan titer of FB-04(pta1) reached 44.0 g/L, representing a 15% increase over that of FB-04. Metabolomics analysis showed that the pta1 genomic substitution slightly decreased carbon flux through glycolysis and significantly increased carbon fluxes through the pentose phosphate and common aromatic pathways. These results indicate that this strategy enhances L-tryptophan production and decreases acetate accumulation during the L-tryptophan fermentation process. PMID:27348810

  14. Characterization of a Selenium-Tolerant Rhizosphere Strain from a Novel Se-Hyperaccumulating Plant Cardamine hupingshanesis

    PubMed Central

    Yuan, Linxi; Luo, Lei; Yin, Xuebin

    2014-01-01

    A novel selenium- (Se-) hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT) theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L−1. When exposed to 1.5 mg Se L−1, SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L−1 or 15.0 mg Se L−1, As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L−1, indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant. PMID:25478582

  15. Characterization of a S-adenosyl-l-methionine (SAM)-accumulating strain of Scheffersomyces stipitis.

    PubMed

    Križanović, Stela; Butorac, Ana; Mrvčić, Jasna; Krpan, Maja; Cindrić, Mario; Bačun-Družina, Višnja; Stanzer, Damir

    2015-06-01

    S-adenosyl-l-methionine (SAM) is an important molecule in the cellular metabolism of mammals. In this study, we examined several of the physiological characteristics of a SAM-accumulating strain of the yeast Scheffersomyces stipitis (M12), including SAM production, ergosterol content, and ethanol tolerance. S. stipitis M12 accumulated up to 52.48 mg SAM/g dry cell weight. Proteome analyses showed that the disruption of C-24 methylation in ergosterol biosynthesis, a step mediated by C-24 sterol methyltransferase (Erg6p), results in greater SAM accumulation by S. stipitis M12 compared to the wild-type strain. A comparative proteome-wide analysis identified 25 proteins that were differentially expressed by S. stipitis M12. These proteins are involved in ribosome biogenesis, translation, the stress response, ubiquitin-dependent catabolic processes, the cell cycle, ethanol tolerance, posttranslational modification, peroxisomal membrane stability, epigenetic regulation, the actin cytoskeleton and cell morphology, iron and copper homeostasis, cell signaling, and energy metabolism. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  16. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.

    PubMed

    Guzik, Maciej W; Kenny, Shane T; Duane, Gearoid F; Casey, Eoin; Woods, Trevor; Babu, Ramesh P; Nikodinovic-Runic, Jasmina; Murray, Michael; O'Connor, Kevin E

    2014-05-01

    A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.

  17. The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease.

    PubMed

    Ayers, Jacob I; Schutt, Charles R; Shikiya, Ronald A; Aguzzi, Adriano; Kincaid, Anthony E; Bartz, Jason C

    2011-03-01

    Prion strains are characterized by differences in the outcome of disease, most notably incubation period and neuropathological features. While it is established that the disease specific isoform of the prion protein, PrP(Sc), is an essential component of the infectious agent, the strain-specific relationship between PrP(Sc) properties and the biological features of the resulting disease is not clear. To investigate this relationship, we examined the amplification efficiency and conformational stability of PrP(Sc) from eight hamster-adapted prion strains and compared it to the resulting incubation period of disease and processing of PrP(Sc) in neurons and glia. We found that short incubation period strains were characterized by more efficient PrP(Sc) amplification and higher PrP(Sc) conformational stabilities compared to long incubation period strains. In the CNS, the short incubation period strains were characterized by the accumulation of N-terminally truncated PrP(Sc) in the soma of neurons, astrocytes and microglia in contrast to long incubation period strains where PrP(Sc) did not accumulate to detectable levels in the soma of neurons but was detected in glia similar to short incubation period strains. These results are inconsistent with the hypothesis that a decrease in conformational stability results in a corresponding increase in replication efficiency and suggest that glia mediated neurodegeneration results in longer survival times compared to direct replication of PrP(Sc) in neurons.

  18. Accumulation of Citrulline by Microbial Arginine Metabolism during Alcoholic Fermentation of Soy Sauce.

    PubMed

    Fang, Fang; Zhang, Jiran; Zhou, Jingwen; Zhou, Zhaohui; Li, Tieqiao; Lu, Liling; Zeng, Weizhu; Du, Guocheng; Chen, Jian

    2018-03-07

    Citrulline, the major precursor of ethyl carbamate in soy sauce, is an intermediate catabolite of arginine produced by bacteria present in soy sauce moromi mash. Pediococcus acidilactici is responsible for the formation of citrulline during the lactic acid fermentation process of soy sauce. However, citrulline accumulation during the alcoholic fermentation process and the corresponding bacteria involved have not been identified. Salt-tolerant, arginine-utilizing bacteria were isolated from moromi mash during the alcoholic fermentation process. Under normal cultivation conditions, arginine utilization by these strains did not contribute to citrulline accumulation. However, the conversion of arginine to citrulline by these bacteria increased when cultivated during the alcoholic fermentation process. Additionally, the ethanol-enhanced solubility of free fatty acids in moromi mash stimulated the accumulation of citrulline. Staphylococcus exhibited the highest capability in the conversion of arginine to citrulline.

  19. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  20. Generation of lycopene-overproducing strains of the fungus Mucor circinelloides reveals important aspects of lycopene formation and accumulation.

    PubMed

    Zhang, Yingtong; Chen, Haiqin; Navarro, Eusebio; López-García, Sergio; Chen, Yong Q; Zhang, Hao; Chen, Wei; Garre, Victoriano

    2017-03-01

    To generate lycopene-overproducing strains of the fungus Mucor circinelloides with interest for industrial production and to gain insight into the catalytic mechanism of lycopene cyclase and regulatory process during lycopene overaccumulation. Three lycopene-overproducing mutants were generated by classic mutagenesis techniques from a β-carotene-overproducing strain. They carried distinct mutations in the carRP gene encoding lycopene cyclase that produced loss of enzymatic activity to different extents. In one mutant (MU616), the lycopene cyclase was completely destroyed, and a 43.8% (1.1 mg/g dry mass) increase in lycopene production was observed in comparison to that by the previously existing lycopene overproducer. In addition, feedback regulation of the end product was suggested in lycopene-overproducing strains. A lycopene-overaccumulating strain of the fungus M. circinelloides was generated that could be an alternative for the industrial production of lycopene. Vital catalytic residues for lycopene cyclase activity and the potential mechanism of lycopene formation and accumulation were identified.

  1. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albican strains.

    PubMed

    Maesaki, S; Marichal, P; Hossain, M A; Sanglard, D; Vanden Bossche, H; Kohno, S

    1998-12-01

    We investigated the effects of combining tacrolimus and azole antifungal agents in azole-resistant strains of Candida albicans by comparing the accumulation of [3H]itraconazole. The CDR1-expressing resistant strain C26 accumulated less itraconazole than the CaMDR-expressing resistant strain C40 or the azole-sensitive strain B2630. A CDR1-expressing Saccharomyces cerevisiae mutant, DSY415, showed a marked reduction in the accumulation of both fluconazole and itraconazole. A CaMDR-expressing S. cerevisiae mutant, DSY416, also showed lower accumulation of fluconazole, but not of itraconazole. The addition of sodium azide, an electron-transport chain inhibitor, increased the intracellular accumulation of itraconazole only in the C26 strain, and not in the C40 or B2630 strains. Addition of tacrolimus, an inhibitor of multidrug resistance proteins, resulted in the highest increase in itraconazole accumulation in the C26 strain. The combination of itraconazole and tacrolimus was synergic in azole-resistant C. albicans strains. In the C26 strain, the MIC of itraconazole decreased from >8 to 0.5 mg/L when combined with tacrolimus. Our results showed that two multidrug resistance phenotypes (encoded by the CDR1 and CaMDR genes) in C. albicans have different substrate specificity for azole antifungal agents and that a combination of tacrolimus and azole antifungal agents is effective against azole-resistant strains of C. albicans.

  2. Thinking outside the "bug": a unique assay to measure intracellular drug penetration in gram-negative bacteria.

    PubMed

    Zhou, Ying; Joubran, Camil; Miller-Vedam, Lakshmi; Isabella, Vincent; Nayar, Asha; Tentarelli, Sharon; Miller, Alita

    2015-04-07

    Significant challenges are present in antibiotic drug discovery and development. One of these is the number of efficient approaches Gram-negative bacteria have developed to avoid intracellular accumulation of drugs and other cell-toxic species. In order to better understand these processes and correlate in vitro enzyme inhibition to whole cell activity, a better assay to evaluate a key factor, intracellular accumulation of the drug, is urgently needed. Here, we describe a unique liquid chromatography (LC)-mass spectrometry (MS) approach to measure the amount of cellular uptake of antibiotics by Gram-negative bacteria. This method, which measures the change of extracellular drug concentration, was evaluated by comparing the relative uptake of linezolid by Escherichia coli wild-type versus an efflux pump deficient strain. A higher dosage of the drug showed a higher accumulation in these bacteria in a dosing range of 5-50 ng/mL. The Escherichia coli efflux pump deficient strain had a higher accumulation of the drug than the wild-type strain as predicted. The approach was further validated by determining the relative meropenem uptake by Pseudomonas aeruginosa wild-type versus a mutant strain lacking multiple porins. These studies show great promise of being applied within antibiotic drug discovery, as a universal tool to aid in the search for compounds that can easily penetrate bacterial cells.

  3. Accumulation of 10 Fluoroquinolones by Wild-Type or Efflux Mutant Streptococcus pneumoniae

    PubMed Central

    Piddock, Laura J. V.; Johnson, M. M.

    2002-01-01

    A method for measuring fluoroquinolone accumulation by Streptococcus pneumoniae was rigorously examined. The accumulation of ciprofloxacin, clinafloxacin, gatifloxacin, grepafloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin, sitafloxacin, and trovafloxacin in the presence and absence of either carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) or reserpine was determined for two wild-type fluoroquinolone-susceptible capsulated S. pneumoniae strains (M3 and M4) and the noncapsulated strain R6. Two efflux mutants, R6N (which overexpresses PmrA) and a mutant of M4, M22 (no expression of PmrA), were also examined. Essentially, the fluoroquinolones fell into two groups. (i) One group consisting of ciprofloxacin, grepafloxacin, and norfloxacin accumulated to 72 to 92 ng/mg (dry weight) of cells in all strains. (ii) The remainder of the agents accumulated to 3 to 30 ng/mg (dry weight) of cells. With a decrease in hydrophobicity, there was a decrease in the concentration accumulated. With an increase in the molecular weight of the free form of each agent, there was also a decrease in the concentration accumulated. The strains differed in their responses to reserpine and CCCP. For the three fluoroquinolone-susceptible strains, only reserpine had a significant effect upon accumulation of moxifloxacin and clinafloxacin by M3 and showed no effect for the other agents and strains. For M3 and M4, CCCP enhanced the concentration of ciprofloxacin and norfloxacin accumulated, whereas for R6, the effect was only statistically significant for ofloxacin. Efflux mutant M22 accumulated less ciprofloxacin, gatifloxacin, and ofloxacin than M4 did. M22 accumulated more norfloxacin than M4 did. Reserpine and CCCP had variable effects as for the other strains. Differences in the accumulation of fluoroquinolones by R6 and R6N were highly dependent upon growth phase, and only for norfloxacin was there a significant difference between two strains. PMID:11850266

  4. Induced Protoporphyrin IX Accumulation by the δ-Aminolevulinic Acid in Bacteria and its Potential Use in the Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Brígido-Aparicio, Cyntiha; Ramón-Gallegos, Eva; Arenas-Huertero, Francisco Jesús; Uribe-Hernández, Raúl

    2008-08-01

    The increasing incident of resistant strains to antibiotic has encouraged the search of new antibacterial treatments, such as the photodynamic therapy. In recent years, photodynamic therapy has demonstrated being a good technology for the treatment of recurrent bacteria infection. PDT presents a hopeful approach to eliminate Gram positive and negative bacteria in immunological compromised patients. This therapy uses a laser in combination with a photosensibilizer in presence of intracellular molecular oxygen. The process generates an effect of phototoxicity in bacterial cells. The aim of this work was to determine the in vitro conditions to accumulate PpIX in effective concentrations in Staphylococcus aureus ATCC25923 and Streptococcus pyogenes, which are responsible of human cutaneous diseases. A cellular suspension of both strains was prepared in TSB to obtain growth in Log-phase, then, the suspensions were adjusted to a final concentration of 2.61×108 cells/mL. The strains were exposed to increasing concentrations from 0 to 160μg/mL of δ-ALA in order to determinate the concentration that induces the biggest accumulation of PpIX. PpIX was measured using the Piomelli method modified for bacteria. The concentration selected was 40 mg/mL of ALA. It was found that in basal concentration of δ-ALA (0 μg/mL) both strains accumulated similar amount of PpIX. In concentrations of 5 mg/mL of δ-ALA it was observed a significant (p<0.001) increment in PpIX concentration. Finally it was realized a kinetic to determinate the optimal accumulation over the time at 0, 5, 10, 15 and 30 min, and 1, 2, 4, 8, 16 and 32 h. It was found that the ideal time for PDT application, in both strains, was 24 h because in smaller times there was not statistically significant difference. The S. aureus ATCC25923 accumulated significantly the biggest concentration of PpIX with regard to S. pyogenes. In conclusion, it was found that the optimal conditions to apply PDT will be to expose both strains to 40 mg/mL of ALA and to irradiate at 24 h after the exposition.

  5. Bioaccumulation of Vanadium by Vanadium-Resistant Bacteria Isolated from the Intestine of Ascidia sydneiensis samea.

    PubMed

    Romaidi; Ueki, Tatsuya

    2016-06-01

    Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity.

  6. Accumulated financial strain and women's health over three decades.

    PubMed

    Shippee, Tetyana Pylypiv; Wilkinson, Lindsay R; Ferraro, Kenneth F

    2012-09-01

    Drawing from cumulative inequality theory, this research examines how accumulated financial strain affects women's self-rated health in middle and later life. Using data from the National Longitudinal Survey of Mature Women (1967-2003), we employ random-coefficient growth curve models to examine whether recurring financial strain influences women's health, above and beyond several measures of objective social status. Predicted probabilities of poor health were estimated by the frequency of financial strain. Financial strain is associated with rapid declines in women's health during middle and later life, especially for those women who reported recurrent strain. Changes in household income and household wealth were also associated with women's health but did not eliminate the effects due to accumulated financial strain. Accumulated financial strain has long-term effects on women's health during middle and later life. The findings demonstrate the importance of measuring life course exposure to stressors in studies of health trajectories.

  7. Using strain rates to forecast seismic hazards

    USGS Publications Warehouse

    Evans, Eileen

    2017-01-01

    One essential component in forecasting seismic hazards is observing the gradual accumulation of tectonic strain accumulation along faults before this strain is suddenly released as earthquakes. Typically, seismic hazard models are based on geologic estimates of slip rates along faults and historical records of seismic activity, neither of which records actively accumulating strain. But this strain can be estimated by geodesy: the precise measurement of tiny position changes of Earth’s surface, obtained from GPS, interferometric synthetic aperture radar (InSAR), or a variety of other instruments.

  8. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves.

    PubMed

    Siaut, Magali; Cuiné, Stéphan; Cagnon, Caroline; Fessler, Boris; Nguyen, Mai; Carrier, Patrick; Beyly, Audrey; Beisson, Fred; Triantaphylidès, Christian; Li-Beisson, Yonghua; Peltier, Gilles

    2011-01-21

    When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content. They also suggest the existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions. Optimization of such interactions is an alternative to targeted metabolic engineering strategies in the search for high oil yields.

  9. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    PubMed Central

    2011-01-01

    Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content. They also suggest the existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions. Optimization of such interactions is an alternative to targeted metabolic engineering strategies in the search for high oil yields. PMID:21255402

  10. The numerical simulation study of the dynamic evolutionary processes in an earthquake cycle on the Longmen Shan Fault

    NASA Astrophysics Data System (ADS)

    Tao, Wei; Shen, Zheng-Kang; Zhang, Yong

    2016-04-01

    The Longmen Shan, located in the conjunction of the eastern margin the Tibet plateau and Sichuan basin, is a typical area for studying the deformation pattern of the Tibet plateau. Following the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), a great deal of observations and studies on geology, geophysics, and geodesy have been carried out for this region, with results published successively in recent years. Using the 2D viscoelastic finite element model, introducing the rate-state friction law to the fault, this thesis makes modeling of the earthquake recurrence process and the dynamic evolutionary processes in an earthquake cycle of 10 thousand years. By analyzing the displacement, velocity, stresses, strain energy and strain energy increment fields, this work obtains the following conclusions: (1) The maximum coseismic displacement on the fault is on the surface, and the damage on the hanging wall is much more serious than that on the foot wall of the fault. If the detachment layer is absent, the coseismic displacement would be smaller and the relative displacement between the hanging wall and foot wall would also be smaller. (2) In every stage of the earthquake cycle, the velocities (especially the vertical velocities) on the hanging wall of the fault are larger than that on the food wall, and the values and the distribution patterns of the velocity fields are similar. While in the locking stage prior to the earthquake, the velocities in crust and the relative velocities between hanging wall and foot wall decrease. For the model without the detachment layer, the velocities in crust in the post-seismic stage is much larger than those in other stages. (3) The maximum principle stress and the maximum shear stress concentrate around the joint of the fault and detachment layer, therefore the earthquake would nucleate and start here. (4) The strain density distribution patterns in stages of the earthquake cycle are similar. There are two concentration areas in the model, one is located in the mid and upper crust on the hanging wall where the strain energy could be released by permanent deformation like folding, and the other lies in the deep part of the fault where the strain energy could be released by earthquakes. (5) The whole earthquake dynamic process could be clearly reflected by the evolutions of the strain energy increments on the stages of the earthquake cycle. In the inter-seismic period, the strain energy accumulates relatively slowly; prior to the earthquake, the fault is locking and the strain energy accumulates fast, and some of the strain energy is released on the upper crust on the hanging wall of the fault. In coseismic stage, the strain energy is released fast along the fault. In the poseismic stage, the slow accumulation process of strain recovers rapidly as that in the inerseismic period in around one hundred years. The simulation study in this thesis would help better understand the earthquake dynamic process.

  11. Production, process optimization and molecular characterization of polyhydroxyalkanoate (PHA) by CO2 sequestering B. cereus SS105.

    PubMed

    Maheshwari, Neha; Kumar, Madan; Thakur, Indu Shekhar; Srivastava, Shaili

    2018-04-01

    Carbon dioxide sequestering bacterial strains were previously isolated from free air CO 2 enriched (FACE) soil. In the present study, these strains were screened for PHA accumulation and Bacillus cereus SS105 was found to be the most prominent PHA accumulating strain on sodium bicarbonate and molasses as carbon source. This strain was further characterized by Spectrofluorometric method and Confocal microscopy after staining with Nile red. PHA granules in inclusion bodies were visualized by Transmission Electron Microscopy. The PHA and its monomer composition were characterized by GC-MS followed by FTIR and NMR. The genetic basis of PHA production was confirmed by the amplification, cloning and analysis of PHA biosynthesis genes phaR, phaB and phaC from B. cereus with the degenerate primers. The PHA production was further optimized by Response Surface Methodology and the percent increase observed after optimization was 55.16% (w/v). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    NASA Astrophysics Data System (ADS)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  13. Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides.

    PubMed

    Zhang, Xin; Lin, Ai-Jun; Zhao, Fang-Jie; Xu, Guo-Zhong; Duan, Gui-Lan; Zhu, Yong-Guan

    2008-12-01

    This study investigates As accumulation and tolerance of the aquatic fern Azolla. Fifty strains of Azolla showed a large variation in As accumulation. The highest- and lowest-accumulating ferns among the 50 strains were chosen for further investigations. Azolla caroliniana accumulated two times more As than Azolla filiculoides owing to a higher influx velocity for arsenate. A. filiculoides was more resistant to external arsenate due to a lower uptake. Both strains showed a similar degree of tolerance to internal As. Arsenate and arsenite were the dominant As species in both Azolla strains, with methylated As species accounting for <5% of the total As. A. filiculoides had a higher proportion of arsenite than A. caroliniana. Both strains effluxed more arsenate than arsenite, and the amount of As efflux was proportional to the amount of As accumulation. The potential of growing Azolla in paddy fields to reduce As transfer from soil and water to rice should be further evaluated.

  14. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault.

    PubMed

    Hussain, Ekbal; Wright, Tim J; Walters, Richard J; Bekaert, David P S; Lloyd, Ryan; Hooper, Andrew

    2018-04-11

    Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~10 20  Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.

  15. Strain analysis and microstructural evolution characteristic of neoproterozoic rocks associations of Wadi El Falek, centre Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Rahim, Said H. Abd El; Nashar, El Said R. El

    2012-09-01

    The estimation of finite strain in rocks is fundamental to a meaningful understanding of deformational processes and products on all scales from microscopic fabric development to regional structural analyses. The Rf/φ and Fry methods on feldspar porphyroclasts and mafic grains from 5 granite, 1 metavolcanic, 3 metasedimentary and 1 granodiorite samples were used in Wadi El Falek region. Finite-strain data shows that a high to moderate range of deformation of the granitic to metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.60 to 4.10 for the Rf/φ method and from 2.80 to 4.90 for the Fry method. Furthermore, the short axes are subvertical associated with a subhorizontal foliation. We conclude that finite strain in the deformed granite rocks is of the same order of magnitude as that from metavolcano-sedimentary rocks. Furthermore, contacts formed during intrusion of plutons with some faults in the Wadi El Falek area under brittle to semi-ductile deformation conditions. In this case, finite strain accumulated during superimposed deformation on the already assembled nappe structure. It indicates that the nappe contacts formed during the accumulation of finite strain.

  16. Multilevel modeling of damage accumulation processes in metals

    NASA Astrophysics Data System (ADS)

    Kurmoiartseva, K. A.; Trusov, P. V.; Kotelnikova, N. V.

    2017-12-01

    To predict the behavior of components and constructions it is necessary to develop the methods and mathematical models which take into account the self-organization of microstructural processes and the strain localization. The damage accumulation processes and the evolution of material properties during deformation are important to take into account. The heterogeneity of the process of damage accumulation is due to the appropriate physical mechanisms at the scale levels, which are lower than the macro-level. The purpose of this work is to develop a mathematical model for analyzing the behavior of polycrystalline materials that allows describing the damage accumulation processes. Fracture is the multistage and multiscale process of the build-up of micro- and mesodefects over the wide range of loading rates. The formation of microcracks by mechanisms is caused by the interactions of the dislocations of different slip systems, barriers, boundaries and the inclusions of the secondary phase. This paper provides the description of some of the most well-known models of crack nucleation and also suggests the structure of a mathematical model based on crystal plasticity and dislocation models of crack nucleation.

  17. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels.

    PubMed

    Takagi, Hiroshi; Taguchi, Junpei; Kaino, Tomohiro

    2016-08-01

    During fermentation processes, Saccharomyces cerevisiae cells are exposed to multiple stresses, including a high concentration of ethanol that represents toxicity through intracellular reactive oxygen species (ROS) generation. We previously reported that proline protected yeast cells from damage caused by various stresses, such as freezing and ethanol. As an anti-oxidant, proline is suggested to scavenge intracellular ROS. In this study, we examined the role of intracellular proline during ethanol treatment in S. cerevisiae strains that accumulate different concentrations of proline. When cultured in YPD medium, there was a significant accumulation of proline in the put1 mutant strain, which is deficient in proline oxidase, in the stationary phase. Expression of the mutant PRO1 gene, which encodes the γ-glutamyl kinase variant (Asp154Asn or Ile150Thr) with desensitization to feedback inhibition by proline in the put1 mutant strain, showed a prominent increase in proline content as compared with that of the wild-type strain. The oxidation level was clearly increased in wild-type cells after exposure to ethanol, indicating that the generation of ROS occurred. Interestingly, proline accumulation significantly reduces the ROS level and increases the survival rate of yeast cells in the stationary phase under ethanol stress conditions. However, there was not a clear correlation between proline content and survival rate in yeast cells. An appropriate level of intracellular proline in yeast might be important for its stress-protective effect. Hence, the engineering of proline metabolism could be promising for breeding stress-tolerant industrial yeast strains. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Characterization of Clostridium thermocellum strains with disrupted fermentation end product pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Veen, Douwe; Lo, Jonathan; Brown, Steven D

    2013-01-01

    Clostridium thermocellum is a thermophilic, cellulolytic anaerobe that is a candidate microorganism for industrial biofuels production. Strains with mutations in genes associated with production of Llactate ( ldh) and/or acetate ( pta) were characterized to gain insight into the intracellular processes that convert cellobiose to ethanol and other fermentation end products. Cellobiose-grown cultures of the ldh strain had identical biomass accumulation, fermentation end products, transcription profile and intracellular metabolite concentrations compared to its parent strain (DSM1313 hpt spo0A). The pta-deficient strain grew slower and had 30% lower final biomass concentration compared to the parent strain, yet produced 75% more ethanol.more » A ldh pta double mutant strain evolved for faster growth had growth rate and ethanol yield comparable to the parent strain, whereas its biomass accumulation was comparable to pta. Free amino acids were secreted by all examined strains, with both pta strains secreting higher amounts of alanine, valine, isoleucine, proline, glutamine, and threonine. Valine concentration for ldh pta reached 5 mM by the end of growth, or 2.7% of the substrate carbon utilized. These secreted amino acid concentrations correlate with increased intracellular pyruvate concentrations, up to 6-fold in the pta and 16-fold in the ldh pta strain. We hypothesize that the deletions in fermentation end product pathways result in an intracellular redox imbalance, which the organism attempts to relieve, in part by recycling NADP+ through increased production of amino acids.« less

  20. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Veen, Douwe; Lo, Jonathan; Brown, Steven D

    2013-01-01

    Clostridium thermocellum is a thermophilic, cellulolytic anaerobe that is a candidate microorganism for industrial biofuels production. Strains with mutations in genes associated with production of L-lactate (Dldh) and/or acetate (Dpta) were characterized to gain insight into the intracellular processes that convert cellobiose to ethanol and other fermentation end-products. Cellobiose-grown cultures of the Dldh strain had identical biomass accumulation, fermentation end-products, transcription profile, and intracellular metabolite concentrations compared to its parent strain (DSM1313 Dhpt Dspo0A). The Dpta-deficient strain grew slower and had 30 % lower final biomass concentration compared to the parent strain, yet produced 75% more ethanol. A Dldh Dptamore » double-mutant strain evolved for faster growth had a growth rate and ethanol yield comparable to the parent strain, whereas its biomass accumulation was comparable to Dpta. Free amino acids were secreted by all examined strains, with both Dpta strains secreting higher amounts of alanine, valine, isoleucine, proline, glutamine, and threonine. Valine concentration for Dldh Dpta reached 5 mM by the end of growth, or 2.7 % of the substrate carbon utilized. These secreted amino acid concentrations correlate with increased intracellular pyruvate concentrations, up to sixfold in the Dpta and 16-fold in the Dldh Dpta strain. We hypothesize that the deletions in fermentation end-product pathways result in an intracellular redox imbalance, which the organism attempts to relieve, in part by recycling NADP* through increased production of amino acids.« less

  1. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger.

    PubMed

    Hu, Wei; Li, Wenjian; Chen, Hao; Liu, Jing; Wang, Shuyang; Chen, Jihong

    2017-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research.

  2. Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous fermentations during the production of the artisanal Brazilian cachaça.

    PubMed

    Gomes, Fátima C O; Pataro, Carla; Guerra, Juliana B; Neves, Maria J; Corrêa, Soraya R; Moreira, Elizabeth S A; Rosa, Carlos A

    2002-05-01

    Twenty-seven Schizosaccharomyces pombe isolates from seven cachaça distilleries were tested for maximum temperature of growth and fermentation, osmotolerance, ethanol resistance, invertase production, and trehalose accumulation. Two isolates were selected for studies of trehalose accumulation under heat shock and ethanol stress. The S. pombe isolates were also characterized by RAPD-PCR. The isolates were able to grow and ferment at 41 degrees C, resisted concentrations of 10% ethanol, and grew on 50% glucose medium. Four isolates yielded invertase activity of more than 100 micromol of reducing sugar x mg(-1) x min(-1). The S. pombe isolates were able to accumulate trehalose during stationary phase. Two isolates, strains UFMG-A533 and UFMG-A1000, submitted to a 15 min heat shock, were able to accumulate high trehalose levels. Strain UFMG-A533 had a marked reduction in viability during heat shock, but strain UFMG-A1000 preserved a viability rate of almost 20% after 15 min at 48 degrees C. No clear correlation was observed between trehalose accumulation and cell survival during ethanol stress. Strain UFMG-A1000 had higher trehalose accumulation levels than strain UFMG-A533 under conditions of combined heat treatment and ethanol stress. Molecular analysis showed that some strains are maintained during the whole cachaça production period; using the RAPD-PCR profiles, it was possible to group the isolates according to their isolation sites.

  3. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    PubMed

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Lifetime prediction for the subsurface crack propagation using three-dimensional dynamic FEA model

    NASA Astrophysics Data System (ADS)

    Yin, Yuan; Chen, Yun-Xia; Liu, Le

    2017-03-01

    The subsurface crack propagation is one of the major interests for gear system research. The subsurface crack propagation lifetime is the number of cycles remaining for a spall to appear, which can be obtained through either stress intensity factor or accumulated plastic strain analysis. In this paper, the heavy loads are applied to the gear system. When choosing stress intensity factor, the high compressive stress suppresses Mode I stress intensities and severely reduces Mode II stress intensities in the heavily loaded lubricated contacts. Such that, the accumulated plastic strain is selected to calculate the subsurface crack propagation lifetime from the three-dimensional FEA model through ANSYS Workbench transient analysis. The three-dimensional gear FEA dynamic model with the subsurface crack is built through dividing the gears into several small elements. The calculation of the total cycles of the elements is proposed based on the time-varying accumulated plastic strain, which then will be used to calculate the subsurface crack propagation lifetime. During this process, the demonstration from a subsurface crack to a spall can be uncovered. In addition, different sizes of the elements around the subsurface crack are compared in this paper. The influences of the frictional coefficient and external torque on the crack propagation lifetime are also discussed. The results show that the lifetime of crack propagation decreases significantly when the external load T increasing from 100 N m to 150 N m. Given from the distributions of the accumulated plastic strain, the lifetime shares no significant difference when the frictional coefficient f ranging in 0.04-0.06.

  5. Development of eco-friendly bioplastic like PHB by distillery effluent microorganisms.

    PubMed

    Gangurde, Nilesh S; Sayyed, Riyaz Z; Kiran, Shashi; Gulati, Arvind

    2013-01-01

    During screening for poly-β-hydroxybutyrate (PHB) producing bacteria from distillery effluent sample, six out of 30 isolates comprising of three strains of Alcaligenes sp., two strains of Bacillus sp., and one strain of Pseudomonas sp. were found to accumulate varying levels of intracellular PHB. Amongst the various isolates, Alcaligenes sp. RZS4 was found as the potent PHB-producing organism, accumulating higher amounts of PHB. PHB productivity was further enhanced in the presence of oxygen, nitrogen-limiting conditions, and cloning of PHB synthesizing genes of Alcaligenes sp. RZS 4 into Escherichia coli. A twofold increase in PHB yield was obtained from recombinant E. coli vis-à-vis Alcaligenes sp.; the recombinant E. coli accumulated more PHB in NDMM, produced good amount of PHB in a single-stage cultivation process under both nutrient-rich and nutrient-deficient conditions. Extraction of PHB with acetone-alcohol (1:1) was found as suitable method for optimum extraction of PHB as this mixture selectively extracted PHB without affecting the non-PHB cell mass. PHB extract from recombinant E. coli showed the presence of C-H, =O stretching, =C-H deformation, =C-H, =CH, and =C-O functional groups characteristic of PHB.

  6. Engineered coryneform bacteria as a bio-tool for arsenic remediation.

    PubMed

    Villadangos, Almudena F; Ordóñez, Efrén; Pedre, Brandán; Messens, Joris; Gil, Jose A; Mateos, Luis M

    2014-12-01

    Despite current remediation efforts, arsenic contamination in water sources is still a major health problem, highlighting the need for new approaches. In this work, strains of the nonpathogenic and highly arsenic-resistant bacterium Corynebacterium glutamicum were used as inexpensive tools to accumulate inorganic arsenic, either as arsenate (As(V)) or arsenite (As(III)) species. The assays made use of "resting cells" from these strains, which were assessed under well-established conditions and compared with C. glutamicum background controls. The two mutant As(V)-accumulating strains were those used in a previously published study: (i) ArsC1/C2, in which the gene/s encoding the mycothiol-dependent arsenate reductases is/are disrupted, and (ii) MshA/C mutants unable to produce mycothiol, the low molecular weight thiol essential for arsenate reduction. The As(III)-accumulating strains were either those lacking the arsenite permease activities (Acr3-1 and Acr3-2) needed in As(III) release or recombinant strains overexpressing the aquaglyceroporin genes (glpF) from Corynebacterium diphtheriae or Streptomyces coelicolor, to improve As(III) uptake. Both genetically modified strains accumulated 30-fold more As(V) and 15-fold more As(III) than the controls. The arsenic resistance of the modified strains was inversely proportional to their metal accumulation ability. Our results provide the basis for investigations into the use of these modified C. glutamicum strains as a new bio-tool in arsenic remediation efforts.

  7. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    PubMed

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Lipid Accumulation from Glucose and Xylose in an Engineered, Naturally Oleaginous Strain of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoshaug, Eric P; Van Wychen, Stefanie R; Zhang, Min

    Saccharomyces cerevisiae, a well-known industrial yeast for alcoholic fermentation, is not historically known to accumulate lipids. Four S. cerevisiae strains used in industrial applications were screened for their ability to accumulate neutral lipids. Only one, D5A, was found to accumulate up to 20% dry cell weight (dcw) lipids. This strain was further engineered by knocking out ADP-activated serine/threonine kinase (SNF1) which increased lipid accumulation to 35% dcw lipids. In addition, we engineered D5A to utilize xylose and found that D5A accumulates up to 37% dcw lipids from xylose as the sole carbon source. Further we over-expressed different diacylglycerol acyltransferase (DGA1)more » genes and boosted lipid accumulation to 50%. Fatty acid speciation showed that 94% of the extracted lipids consisted of 5 fatty acid species, C16:0 (palmitic), C16:1n7 (palmitoleic), C18:0 (stearic), C18:1n7 (vaccenic), and C18:1n9 (oleic), while the relative distributions changed depending on growth conditions. In addition, this strain accumulated lipids concurrently with ethanol production.« less

  9. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger

    PubMed Central

    Li, Wenjian; Chen, Hao; Liu, Jing; Wang, Shuyang; Chen, Jihong

    2017-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research. PMID:28650980

  10. Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs.

    PubMed

    Kaino, Tomohiro; Tateiwa, Tetsuya; Mizukami-Murata, Satomi; Shima, Jun; Takagi, Hiroshi

    2008-09-01

    We constructed self-cloning diploid baker's yeast strains by disrupting PUT1, encoding proline oxidase, and replacing the wild-type PRO1, encoding gamma-glutamyl kinase, with a pro1(D154N) or pro1(I150T) allele. The resultant strains accumulated intracellular proline and retained higher-level fermentation abilities in the frozen doughs than the wild-type strain. These results suggest that proline-accumulating baker's yeast is suitable for frozen-dough baking.

  11. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion.

    PubMed

    He, Tengxia; Li, Zhenlun; Sun, Quan; Xu, Yi; Ye, Qing

    2016-01-01

    A hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was found to display high removal capabilities for heterotrophic nitrification with ammonium and for aerobic denitrification with nitrate or nitrite nitrogen. When strain Y-11 was cultivated for 4days at 15°C with the initial ammonium, nitrate and nitrite nitrogen concentrations of 209.62, 204.61 and 204.33mg/L (pH 7.2), the ammonium, nitrate and nitrite removal efficiencies were 93.6%, 93.5% and 81.9% without nitrite accumulation, and the corresponding removal rates reached as high as 2.04, 1.99 and 1.74mg/L/h, respectively. Additionally, ammonium was removed mainly during the simultaneous nitrification and denitrification process. All results demonstrate that P. tolaasii strain Y-11 has the particularity to remove ammonium, nitrate and nitrite nitrogen at low temperatures, which guarantees it for future application in winter wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Microstructural Evolution of Al-1Fe (Weight Percent) Alloy During Accumulative Continuous Extrusion Forming

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Guan, Ren-Guo; Tie, Di; Shang, Ying-Qiu; Jin, Hong-Mei; Li, Hong-Chao

    2018-04-01

    As a new microstructure refining method, accumulative continuous extrusion forming (ACEF) cannot only refine metal matrix but also refine the phases that exist in it. In order to detect the refinements of grain and second phase during the process, Al-1Fe (wt pct) alloy was processed by ACEF, and the microstructural evolution was analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results revealed that the average grain size of Al-1Fe (wt pct) alloy decreased from 13 to 1.2 μm, and blocky Al3Fe phase with an average length of 300 nm was granulated to Al3Fe particle with an average diameter of 200 nm, after one pass of ACEF. Refinement of grain was attributed to continuous dynamic recrystallization (CDRX), and the granulation of Al3Fe phase included the spheroidization resulting from deformation heat and the fragmentation caused by the coupling effects of strain and thermal effect. The spheroidization worked in almost the entire deformation process, while the fragmentation required strain accumulation. However, fragmentation contributed more than spheroidization. Al3Fe particle stimulated the formation of substructure and retarded the migration of recrystallized grain boundary, but the effect of Al3Fe phase on refinement of grain could only be determined by the contrastive investigation of Al-1Fe (wt pct) alloy and pure Al.

  13. Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression.

    PubMed

    Bargossi, Eleonora; Tabanelli, Giulia; Montanari, Chiara; Lanciotti, Rosalba; Gatto, Veronica; Gardini, Fausto; Torriani, Sandra

    2015-01-01

    The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.

  14. Energy-Dependent Accumulation of Fluoroquinolones in Quinolone-Resistant Klebsiella pneumoniae Strains

    PubMed Central

    Martínez-Martínez, Luis; García, Isabel; Ballesta, Sofía; Benedí, Vicente Javier; Hernández-Allés, Santiago; Pascual, Alvaro

    1998-01-01

    The intracellular accumulation of norfloxacin and pefloxacin in Klebsiella pneumoniae was evaluated. The roles of lipopolysaccharide, capsule, and outer membrane proteins were not important for the intrabacterial accumulation of fluoroquinolones in isogenic strains with known outer membrane alterations. In fluoroquinolone-resistant clinical isolates also expressing GyrA alterations, an active efflux leading to decreased accumulation of the drugs enhanced their resistance to these agents. PMID:9661034

  15. Interactions of Saprophytic Yeasts with a nor Mutant of Aspergillus flavus

    PubMed Central

    Hua, Sui-Sheng T.; Baker, James L.; Flores-Espiritu, Melanie

    1999-01-01

    The nor mutant of Aspergillus flavus has a defective norsolorinic acid reductase, and thus the aflatoxin biosynthetic pathway is blocked, resulting in the accumulation of norsolorinic acid, a bright red-orange pigment. We developed a visual agar plate assay to monitor yeast strains for their ability to inhibit aflatoxin production by visually scoring the accumulation of this pigment of the nor mutant. We identified yeast strains that reduced the red-orange pigment accumulation in the nor mutant. These yeasts also reduced aflatoxin accumulation by a toxigenic strain of A. flavus. These yeasts may be useful for reducing aflatoxin contamination of food commodities. PMID:10347069

  16. Estimating Strain Accumulation in the New Madrid and Wabash Valley Seismic Zones

    NASA Astrophysics Data System (ADS)

    Craig, T. J.; Calais, E.

    2014-12-01

    The mechanical behaviour -- and hence earthquake potential -- of faults in continental interiors is a question of critical importance for the resultant seismic hazard, but no consensus has yet been reached on this controversial topic. The debate has focused on the central and eastern United States, in particular the New Madrid Seismic Zone, struck by three magnitude 7 or greater earthquakes in 1811--1812, and to a lesser extent the Wabash Valley Seismic Zone just to the north. A key aspect of this issue is the rate at which strain is currently accruing on those faults in the plate interior, a quantity that remains debated. Understanding if the present-day strain rates indicate sufficient motion to account for the historical and paleoseismological earthquakes by steady-state fault behaviour, or if strain accumulation is time-dependent in this area, is critical for investigating the causative process driving this seismicity in the plate interior, and how regional strain reflects the interplay between stresses arising from different geological processes. Here we address this issue with an analysis of up to 14 years of continuous GPS data from a network of 200 sites in the central United States centred on the New Madrid and Wabash Valley seismic zones. We find that high-quality sites in these regions show motions that are consistently within the 95% confidence limit of zero deformation relative to a rigid background. These results place an upper bound on regional strain accrual of 0.2 mm/yr and 0.5 mm/yr in the New Madrid and Wabash Valley Seismic Zones, respectively. These results, together with increasing evidence for temporal clustering and spatial migration of earthquake sequences in continental interiors, indicate that either tectonic loading rates or fault properties vary with time in the NMSZ and possibly plate-wide.

  17. The evolution of γ-Mg17Al12 intermetallic compound during accumulative back extrusion and subsequent ageing treatment

    NASA Astrophysics Data System (ADS)

    Maghsoudi, M. H.; Zarei-Hanzaki, A.; Abedi, H. R.; Shamsolhodaei, A.

    2015-11-01

    Accumulative back extrusion (ABE) processing, as a novel severe plastic deformation (SPD) method, has been recently justified to be capable of modifying the microstructural characteristics of alloys. In line to its ongoing researches, the present work has been planned to study the evolution of γ-Mg17Al12 intermetallic phase during ABE and subsequent ageing treatment in a high Al-bearing Mg-Al-Zn alloy. The behaviour of γ intermetallic has been systematically examined as following points of view: (i) strain-temperature-dependent morphology changes, (ii) strain-induced dissolution, and (iii) re-ageing behaviour as a function of time and temperature. Aiming to analyse the morphology of eutectic γ compound with respect to the strain and temperature, 2D projections of effective diameter, shape factor and globularity have been made in strain/temperature graphs. The processing conditions (strain and temperature) corresponding to the desired and undesired morphologies are introduced and microstructurally explained through underlying plasticity mechanisms, i.e., 'necking-thinning-particle separation' and 'brittle fragmentation.' The former mechanism is suggested to be in relation with partial strain-induced dissolution of eutectic γ phase, leading to generation of a supersaturated solid solution. This has resulted to the observation of 'off-stoichiometry' phenomena in Mg17Al12 phase and has been justified through dislocation-assisted deformation mechanism at elevated temperature. Surprisingly, a unique re-ageing behaviour has been found for the obtained solid solutions, where a modified kinetics and morphology of γ phase precipitation were characterized. The altered precipitation behaviour is attributed to the specific defect structure achieved by SPD acting as fast diffusion channel for Al solutes.

  18. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given

    PubMed Central

    2010-01-01

    Background Freezing is an increasingly important means of preservation and storage of microbial strains used for many types of industrial applications including food processing. However, the yeast mechanisms of tolerance and sensitivity to freeze or near-freeze stress are still poorly understood. More knowledge on this regard would improve their biotechnological potential. Glycerol, in particular intracellular glycerol, has been assigned as a cryoprotectant, also important for cold/near-freeze stress adaptation. The S. cerevisiae glycerol active transporter Stl1p plays an important role on the fast accumulation of glycerol. This gene is expressed under gluconeogenic conditions, under osmotic shock and stress, as well as under high temperatures. Results We found that cells grown on STL1 induction medium (YPGE) and subjected to cold/near-freeze stress, displayed an extremely high expression of this gene, also visible at glycerol/H+ symporter activity level. Under the same conditions, the strains harbouring this transporter accumulated more than 400 mM glycerol, whereas the glycerol/H+ symporter mutant presented less than 1 mM. Consistently, the strains able to accumulate glycerol survive 25-50% more than the stl1Δ mutant. Conclusions In this work, we report the contribution of the glycerol/H+ symporter Stl1p for the accumulation and maintenance of glycerol intracellular levels, and consequently cell survival at cold/near-freeze and freeze temperatures. These findings have a high biotechnological impact, as they show that any S. cerevisiae strain already in use can become more resistant to cold/freeze-thaw stress just by simply adding glycerol to the broth. The combination of low temperatures with extracellular glycerol will induce the transporter Stl1p. This solution avoids the use of transgenic strains, in particular in food industry. PMID:21047428

  19. Structural integrity of additive materials: Microstructure, fatigue behavior, and surface processing

    NASA Astrophysics Data System (ADS)

    Book, Todd A.

    Although Additive Manufacturing (AM) offers numerous performance advantages over existing methods, AM structures are not being utilized for critical aerospace and mechanical applications due to uncertainties in their structural integrity as a result of the microstructural variations and defects arising from the AM process itself. Two of these uncertainties are the observed scatter in tensile strength and fatigue lives of direct metal laser sintering (DMLS) parts. With strain localization a precursor for material failure, this research seeks to explore the impact of microstructural variations in DMLS produced materials on strain localization. The first part of this research explores the role of the microstructure in strain localization of DMLS produced IN718 and Ti6Al4V specimens (as-built and post-processed) through the characterization of the linkage between microstructural variations, and the accumulation of plastic strain during monotonic and low cycle fatigue loading. The second part of this research explores the feasibility for the application of select surface processing techniques in-situ during the DMLS build process to alter the microstructure in AlSi10Mg to reduce strain localization and improve material cohesion. This study is based on utilizing experimental observations through the employment of advanced material characterization techniques such as digital image correlation to illustrate the impacts of DMLS microstructural variation.

  20. Determining Recoverable and Irrecoverable Contributions to Accumulated Strain in a NiTiPd High-Temperature Shape Memory Alloy During Thermomechanical Cycling

    NASA Technical Reports Server (NTRS)

    Monroe, J. A.; Karaman, I.; Lagoudas, D. C.; Bigelow, G.; Noebe, R. D.; Padula, S., II

    2011-01-01

    When Ni(29.5)Ti(50.5)Pd30 shape memory alloy is thermally cycled under stress, significant strain can accumulate due to elasticity, remnant oriented martensite and plasticity. The strain due to remnant martensite can be recovered by further thermal cycling under 0 MPa until the original transformation-induced volume change and martensite coefficient of thermal expansion are obtained. Using this technique, it was determined that the 8.15% total accumulated strain after cycling under 200 MPa consisted of 0.38%, 3.97% and 3.87% for elasticity, remnant oriented martensite and creep/plasticity, respectively.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rod, M.L. Alam, K.Y.; Cunningham, P.R.; Clark, D.P.

    When grown at high osmotic pressure, some strains of Escherichia coli K-12 synthesized substantial levels of free sugar and accumulated proline if it was present in the growth medium. The sugar was identified as trehalose. Strains of E. coli K-12 could be divided into two major classes with respect of osmoregulation. Those of class A showed a large increase in trehalose levels with increasing medium osmolarity and also accumulated proline from the medium, whereas those in class B showed no accumulation of trehalose or proline. Most class A strains carried suppressor mutations which arose during their derivation from the wildmore » type, whereas the osmodefective strains of class B were suppressor free. When amber suppressor mutations at the supD, supE, or supF loci were introduced into such sup{sup o} osmodefective strains, they became osmotolerant and gained the ability to accumulate trehalose in response to elevated medium osmolarity. It appears that the original K-12 strain of E. coli carries an amber mutation in a gene affecting osmoregulation. Mutants lacking ADP-glucose synthetase (glgC) accumulated trehalose normally, whereas mutants lacking UDP-glucose synthetase (galU) did not make trehalose and grew poorly in medium of high osmolarity. Trehalose synthesis was repressed by exogenous glycine betaine but not by proline.« less

  2. Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains.

    PubMed

    Zucchi, T D; de Moraes, L A B; de Melo, I S

    2008-12-01

    To evaluate the ability of Streptomyces sp. (strain ASBV-1) to restrict aflatoxin accumulation in peanut grains. In the control of many phytopathogenic fungi the Streptomyces sp. ASBV-1 strain showed promise. An inhibitory test using this strain and A. parasiticus was conducted in peanut grains to evaluate the effects of this interaction on spore viability and aflatoxin accumulation. In some treatments the Streptomyces sp ASBV-1 strain reduced the viability of A. parasiticus spores by c. 85%, and inhibited aflatoxin accumulation in peanut grains. The values of these reductions ranged from 63 to 98% and from 67% to 96% for aflatoxins B(1) and G(1), respectively. It was demonstrated that Streptomyces sp. ASBV-1 is able to colonize peanut grains and thus inhibit the spore viability of A. parasiticus, as well as reducing aflatoxin production. The positive finding for aflatoxin accumulation reduction in peanut grains seems promising and suggests a wider use of this actinobacteria in biological control programmes.

  3. Strain accumulation and rotation in the Eastern California Shear Zone

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Svarc, J.L.

    2001-01-01

    Although the Eastern California Shear Zone (ECSZ) (strike ???N25??W) does not quite coincide with a small circle drawn about the Pacific-North America pole of rotation, trilateration and GPS measurements demonstrate that the motion within the zone corresponds to right-lateral simple shear across a vertical plane (strike N33??W??5??) roughly parallel to the tangent to that local small circle (strike ???N40??W). If the simple shear is released by slip on faults subparallel to the shear zone, the accumulated rotation is also released, leaving no secular rotation. South of the Garlock fault the principal faults (e.g., Calico-Blackwater fault) strike ???N40??W, close enough to the strike of the vertical plane across which maximum right-lateral shear accumulates to almost wholly accommodate that accumulation of both strain and rotation by right-lateral slip. North of the Garlock fault dip slip as well as strike slip on the principal faults (strike ???N20??W) is required to accommodate the simple shear accumulation. In both cases the accumulated rotation is released with the shear strain. The Garlock fault, which transects the ECSZ, is not offset by north-northwest striking faults nor, despite geological evidence for long-term left-lateral slip, does it appear at the present time to be accumulating left-lateral simple shear strain across the fault due to slip at depth. Rather the motion is explained by right-lateral simple shear across the orthogonal ECSZ. Left-lateral slip on the Garlock fault will release the shear strain accumulating there but would augment the accumulating rotation, resulting in a secular clockwise rotation rate ???80 nrad yr-1 (4.6?? Myr-1).

  4. Sustained water-level changes caused by damage and compaction induced by teleseismic earthquakes

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Kurzon, Ittai; Doan, Mai-Linh; Lyakhovsky, Vladimir

    2016-07-01

    Sustained water-level increase and decrease induced by distant earthquakes were observed in two wells, Gomè 1 and Meizar 1 in Israel. The Gomè 1 well is located within a damage zone of a major fault zone, and Meizar 1 is relatively far from a fault. The monitored pressure change in both wells shows significant water-level oscillations and sustained water-level changes in response to the passage of the seismic waves. The sustained water-level changes include short-term (minutes) undrained behavior and longer-period (hours and days) drained behavior associated with groundwater flow. We model the short-term undrained response of water pressure oscillations and sustained change to the distant 2013 Mw 7.7 Balochistan earthquake by nonlinear elastic behavior of damaged rocks, accounting for small wave-induced compaction and damage accumulation. We suggest that the rocks are close to failure in both locations and strain oscillations produced by the passing seismic waves periodically push the rock above the yield cap, creating compaction when volumetric strain increases and damage when shear strain increases. Compaction increases pore pressure, whereas damage accumulation decreases pore pressure by fracture dilation. The dominant process depends on the properties of the rock. For highly damaged rocks, dilatancy is dominant and a sustained pressure decrease is expected. For low-damage rocks, compaction is the dominant process creating sustained water-level increase. We calculate damage and porosity changes associated to the Balochistan earthquake in both wells and quantify damage accumulation and compaction during the passage of the seismic waves.

  5. Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2.

    PubMed

    Yezza, A; Fournier, D; Halasz, A; Hawari, J

    2006-11-01

    A new bacterial strain, isolated from groundwater contaminated with explosives, was characterized as a pink-pigmented facultative methylotroph, affiliated to the genus Methylobacterium. The bacterial isolate designated as strain GW2 was found capable of producing the homopolymer poly-3-hydroxybutyrate (PHB) from various carbon sources such as methanol, ethanol, and succinate. Methanol acted as the best substrate for the production of PHB reaching 40 % w/w dry biomass. PHB accumulation was observed to be a growth-associated process, so that there was no need for two-step fermentation. Optimal growth occurred at 0.5 % (v/v) methanol concentration, and growth was strongly inhibited at alpha concentration above 2 % (v/v). Methylobacterium sp. strain GW2 was also able to accumulate the copolyester poly-3-hydroxybutyrate-poly-3-hydroxyvalerate (PHB/HV) when valeric acid was supplied as an auxiliary carbon source to methanol. After 66 h, a copolymer content of 30 % (w/w) was achieved with a PHB to PHV ratio of 1:2. Biopolymers produced by strain GW2 had an average molecular weight ranging from 229,350 to 233,050 Da for homopolymer PHB and from 362,430 to 411,300 Da for the copolymer PHB/HV.

  6. Effect of l-Proline on Sake Brewing and Ethanol Stress in Saccharomyces cerevisiae

    PubMed Central

    Takagi, Hiroshi; Takaoka, Miki; Kawaguchi, Akari; Kubo, Yoshito

    2005-01-01

    During the fermentation of sake, cells of Saccharomyces cerevisiae are exposed to high concentrations of ethanol, thereby damaging the cell membrane and functional proteins. l-Proline protects yeast cells from damage caused by freezing or oxidative stress. In this study, we evaluated the role of intracellular l-proline in cells of S. cerevisiae grown under ethanol stress. An l-proline-accumulating laboratory strain carries a mutant allele of PRO1, pro1D154N, which encodes the Asp154Asn mutant γ-glutamyl kinase. This mutation increases the activity of γ-glutamyl kinase and γ-glutamyl phosphate reductase, which catalyze the first two steps of l-proline synthesis and which together may form a complex in vivo. When cultured in liquid medium in the presence of 9% and 18% ethanol under static conditions, the cell viability of the l-proline-accumulating laboratory strain is greater than the cell viability of the parent strain. This result suggests that intracellular accumulation of l-proline may confer tolerance to ethanol stress. We constructed a novel sake yeast strain by disrupting the PUT1 gene, which is required for l-proline utilization, and replacing the wild-type PRO1 allele with the pro1D154N allele. The resultant strain accumulated l-proline and was more tolerant to ethanol stress than was the control strain. We used the strain that could accumulate l-proline to brew sake containing five times more l-proline than what is found in sake brewed with the control strain, without affecting the fermentation profiles. PMID:16332860

  7. Poly-β-hydroxybutyrate Metabolism Is Unrelated to the Sporulation and Parasporal Crystal Protein Formation in Bacillus thuringiensis.

    PubMed

    Wang, Xun; Li, Zhou; Li, Xin; Qian, Hongliang; Cai, Xia; Li, Xinfeng; He, Jin

    2016-01-01

    Poly-3-hydroxybutyrate (PHB) is a natural polymer synthesized by many bacteria as a carbon-energy storage material. It was accumulated maximally prior to the spore formation but was degraded during the process of sporulation in Bacillus thuringiensis. Intriguingly, B. thuringiensis also accumulates large amounts of insecticidal crystal proteins (ICPs) during sporulation, which requires considerable input of carbon and energy sources. How PHB accumulation affects sporulation and ICP formation remains unclear to date. Intuitively, one would imagine that accumulated PHB provides the energy required for ICP formation. Yet our current data indicate that this is not the case. First, growth curves of the deletion mutants of phaC (encoding the PHB synthase) and phaZ (encoding the PHB depolymerase) were found to be similar to the parent strain BMB171; no difference in growth rate could be observed. In addition we further constructed the cry1Ac10 ICP gene overexpression strains of BMB171 (BMB171-cry), as well as its phaC and phaZ deletion mutants ΔphaC-cry and ΔphaZ-cry to compare their spore and ICP production rates. Again, not much change of ICP production was observed among these strains either. In fact, PHB was still degraded in most ΔphaZ-cry cells as observed by transmission electron microscopy. Together these results indicated that there is no direct association between the PHB accumulation and the sporulation and ICP formation in B. thuringiensis. Some other enzymes for PHB degradation or other energy source may be responsible for the sporulation and/or ICP formation in B. thuringiensis.

  8. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    PubMed

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predictedmore » stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.« less

  10. Xylose utilization in recombinant zymomonas

    DOEpatents

    Caimi, Perry G; McCole, Laura; Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V

    2014-03-25

    Xylose-utilizing Zymomonas strains studied were found to accumulate ribulose when grown in xylose-containing media. Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, and increased ethanol production.

  11. Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type.

    PubMed

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A; Haïk, Stéphane

    2013-03-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.

  12. Prion Propagation and Toxicity Occur In Vitro with Two-Phase Kinetics Specific to Strain and Neuronal Type

    PubMed Central

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A.

    2013-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrPSc) of the host-encoded prion protein (PrPC), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrPSc distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau. PMID:23255799

  13. Disease-Associated Prion Protein in Neural and Lymphoid Tissues of Mink (Mustela vison) Inoculated with Transmissible Mink Encephalopathy

    PubMed Central

    Schneider, D. A.; Harrington, R. D.; Zhuang, D.; Yan, H.; Truscott, T. C.; Dassanayake, R. P.; O'Rourke, K. I.

    2012-01-01

    Summary Transmissible spongiform encephalopathies (TSEs) are diagnosed by immunodetection of disease-associated prion protein (PrPd). The distribution of PrPd within the body varies with the time-course of infection and between species, during interspecies transmission, as well as with prion strain. Mink are susceptible to a form of TSE known as transmissible mink encephalopathy (TME), presumed to arise due to consumption of feed contaminated with a single prion strain of ruminant origin. After extended passage of TME isolates in hamsters, two strains emerge, HY and DY, each of which is associated with unique structural isoforms of PrPTME and of which only the HY strain is associated with accumulation of PrPTME in lymphoid tissues. Information on the structural nature and lymphoid accumulation of PrPTME in mink is limited. In this study, 13 mink were challenged by intracerebral inoculation using late passage TME inoculum after which brain and lymphoid tissues were collected at preclinical and clinical time points. The distribution and molecular nature of PrPTME was investigated by techniques including blotting of paraffin wax-embedded tissue and epitope mapping by western blotting. PrPTME was detected readily in the brain and retropharyngeal lymph node during preclinical infection with delayed progression of accumulation within other lymphoid tissues. For comparison, three mink were inoculated by the oral route and examined during clinical disease. Accumulation of PrPTME in these mink was greater and more widespread, including follicles of rectoanal mucosa-associated lymphoid tissue. Western blot analyses revealed that PrPTME accumulating in the brain of mink is structurally most similar to that accumulating in the brain of hamsters infected with the DY strain. Collectively, the results of extended passage in mink are consistent with the presence of only a single strain of TME, the DY strain, capable of inducing accumulation of PrPTME in the lymphoid tissues of mink but not in hamsters. Thus mink are a relevant animal model for further study of this unique strain, which ultimately may have been introduced through consumption of a TSE of ruminant origin. PMID:22595634

  14. Microstructure, accumulated strain, and mechanical behavior of AA6061 Al alloy severely deformed at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Magalhães, D. C.; Kliauga, A. M.; Ferrante, M.; Sordi, V. L.

    2017-05-01

    The combination of Severe Plastic Deformation (SPD) and cryogenic temperatures can be an efficient way to obtain metals and alloys with very refined microstructure and thus optimize the strength-ductility pair. However, there is still a lack of studies on cryogenic SPD process and their effects on microstructure and mechanical properties, especially in precipitation-hardenable aluminum alloys. This study describes the effect of low temperature processing on microstructure, aging kinetic and tensile properties of AA6061 Al alloy after cryo-SPD. Samples of AA6061 Al alloy in the solutionized state was processed by Equal-channel angular pressing (ECAP) at 77 K and 298 K, up to accumulate true strains up to 4.2. Results indicated that the aging kinetic is accelerated when deformation is performed at cryogenic temperature, dislocation density measurement by x-ray and diffraction analysis at TEM achieved a saturation level of 2×1015 m-2 by ECAP at 298K and 5×1015 m-2 after cryogenic ECAP plus precipitation hardening. The same level of yield strength was observed in both deformation procedures but an improvement in uniform elongation was achieved by cryogenic ECAP followed by a T6 treatment

  15. Modelling of the Impact Response of Fibre-Reinforced Composites

    DTIC Science & Technology

    1990-09-30

    observed under tensile loading alone, the damage accumulation process following initial tensile fracture of a fibre tow somewhere within the test specimen...results to be obtained which are not inconsistent with those observed experimentally. Sim- ilarly the delamination process is modelled assuming an...publication either in journals or in conference proceedings. 1 . J. Harding and K. Saka, "The effect of strain rate on the tensile failure of woven reinforced

  16. Rapid intraplate strain accumulation in the New Madrid seismic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L.; Zoback, M.D.; Segall, P.

    1992-09-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes greater than 8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time. 34 refs.

  17. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    PubMed

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Strengthen effects of dominant strains on aerobic digestion and stabilization of the residual sludge.

    PubMed

    Liu, Yongjun; Gao, Min; Zhang, Aining; Liu, Zhe

    2017-07-01

    In order to strengthen the aerobic digestion of residual sludge, shorten the time of sludge stabilization and further reduce operating costs, 3 dominant strains identified as Pseudomonas sp. L3, Acinetobacter sp. L16 and Bacillus sp. L19 were isolated from long-term aerobic digestion sludge. Results showed that the sludge stabilization time were reduced by 3-4days compared with the control when the dominant strains were added to the process of sludge aerobic digestion. The addition of dominant strains accelerated the accumulation of TOC, nitrate nitrogen and ammonia nitrogen in the digestive solution at different levels, and it was beneficial to the dissolution of phosphorus. Controlling DO 3-5mg/L, pH 6.5, the strains of Pseudomonas sp. L3 and Bacillus sp. L19 were combined dosing with the dosage of 2% in the process of sludge aerobic digestion, compared with the control, digestion rates of TOC and MLSS were increased about 19% and 16%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Strong interseismic coupling, fault afterslip, and viscoelastic flow before and after the Oct. 9, 1995 Colima-Jalisco earthquake: continuous GPS measurements from Colima, Mexico

    USGS Publications Warehouse

    Azua, B.M.; DeMets, C.; Masterlark, Timothy

    2002-01-01

    Continuous GPS measurements from Colima, Mexico during 4/93-6/01, bracketing the Oct. 9, 1995 M = 8.0 Colima-Jalisco earthquake, provide new constraints on Rivera plate subduction mechanics. Modeling of margin-normal strain accumulation before the earthquake suggests the Rivera-North America subduction interface was fully locked. Transient postseismic motion from 10/ 95-6/97 is well fit by a model that includes logarithmically-decaying fault afterslip, elastic strain from shallow fault relocking, and possibly a minor viscoelastic response, but is fit poorly by models that assume a dominant Maxwell viscoelastic response of the lower crust and upper mantle, independent of the assumed viscosities. Landward, margin-normal motion since mid-1997 is parallel to but ??? 75% slower than the pre-seismic velocity. Afterslip alone fails to account for this slowdown. The viscoelastic response predicted by a FEM correctly resolves the remaining velocity difference within the uncertainties. Both processes thus offset elastic strain accumulating from the relocked subduction interface.

  20. Metabolic Footprint Analysis Uncovers Strain Specific Overflow Metabolism and D-Isoleucine Production of Staphylococcus Aureus COL and HG001

    PubMed Central

    Dörries, Kirsten; Lalk, Michael

    2013-01-01

    During infection processes, Staphylococcus aureus is able to survive within the host and to invade tissues and cells. For studying the interaction between the pathogenic bacterium and the host cell, the bacterial growth behaviour and its metabolic adaptation to the host cell environment provides first basic information. In the present study, we therefore cultivated S. aureus COL and HG001 in the eukaryotic cell culture medium RPMI 1640 and analyzed the extracellular metabolic uptake and secretion patterns of both commonly used laboratory strains. Extracellular accumulation of D-isoleucine was detected starting during exponential growth of COL and HG001 in RPMI medium. This non-canonical D-amino acid is known to play a regulatory role in adaptation processes. Moreover, individual uptake of glucose, accumulation of acetate, further overflow metabolites, and intermediates of the branched-chain amino acid metabolism constitute unique metabolic footprints. Altogether these time-resolved footprint analyses give first metabolic insights into staphylococcal growth behaviour in a culture medium used for infection related studies. PMID:24312553

  1. Arrest of cell cycle by inhibition of ribonucleotide reductase induces accumulation of NAD+ by Mn2+-supplemented growth of Corynebacterium ammoniagenes.

    PubMed

    Abbouni, Bouziane; Elhariry, Hesham M; Auling, Georg

    2003-01-01

    Cell division of the wild type strain Corynebacterium (formerly Brevibacterium) ammoniagenes ATCC 6872 which requires 1 microM Mn2+ for balanced growth was inhibited by addition of 20 mM hydroxyurea (HU) or 10 mM p-methoxyphenol (MP) to a Mn2+-supplemented fermentation medium at an appropriate time. Scanning electron microscopy (SEM) showed a restricted elongation characteristic of arrest of the cell cycle in coryneform bacteria. The cultures treated with HU or MP had, respectively, a fourfold or sixfold enhanced accumulation of NAD+ by a salvage biosynthetic pathway. An assay of nucleotide-permeable cells for ribonucleotide reductase activity using [3H-CDP] as substrate revealed a pre-early and complete decline of DNA precursor biosynthesis not found in the untreated control. Overproduction of NAD+ is an alternative to the conventional fermentation process using Mn2+ deficiency. A simple model is presented to discuss the metabolic regulation of the new process based on the presence of a manganese ribonucleotide reductase (Mn-RNR) in the producing strain.

  2. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources

    PubMed Central

    Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid. PMID:29098157

  3. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources.

    PubMed

    Gientka, Iwona; Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua , Debaryomyces hansenii , Kluyveromyces marxianus , Kazachstania unispora , and Zygotorulaspora florentina . We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L -1 . Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.

  4. Microscopic full-field three-dimensional strain measurement during the mechanical testing of additively manufactured porous biomaterials.

    PubMed

    Genovese, Katia; Leeflang, Sander; Zadpoor, Amir A

    2017-05-01

    A custom-designed micro-digital image correlation system was used to track the evolution of the full-surface three-dimensional strain field of Ti6Al4V additively manufactured lattice samples under mechanical loading. The high-magnification capabilities of the method allowed to resolve the strain distribution down to the strut level and disclosed a highly heterogeneous mechanical response of the lattice structure with local strain concentrations well above the nominal global strain level. In particular, we quantified that strain heterogeneity appears at a very early stage of the deformation process and increases with load, showing a strain accumulation pattern with a clear correlation to the later onset of the fracture. The obtained results suggest that the unique opportunities offered by the proposed experimental method, in conjunction with analytical and computational models, could serve to provide novel important information for the rational design of additively manufactured porous biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Strain accumulation in bituminous binders under repeated creep-recovery loading predicted from small-amplitude oscillatory shear (SAOS) experiments

    NASA Astrophysics Data System (ADS)

    Laukkanen, Olli-Ville; Winter, H. Henning

    2017-11-01

    The creep-recovery (CR) test starts out with a period of shearing at constant stress (creep) and is followed by a period of zero-shear stress where some of the accumulated shear strain gets reversed. Linear viscoelasticity (LVE) allows one to predict the strain response to repeated creep-recovery (RCR) loading from measured small-amplitude oscillatory shear (SAOS) data. Only the relaxation and retardation time spectra of a material need to be known and these can be determined from SAOS data. In an application of the Boltzmann superposition principle (BSP), the strain response to RCR loading can be obtained as a linear superposition of the strain response to many single creep-recovery tests. SAOS and RCR data were collected for several unmodified and modified bituminous binders, and the measured and predicted RCR responses were compared. Generally good agreement was found between the measured and predicted strain accumulation under RCR loading. However, in the case of modified binders, the strain accumulation was slightly overestimated (≤20% relative error) due to the insufficient SAOS information at long relaxation times. Our analysis also demonstrates that the evolution in the strain response under RCR loading, caused by incomplete recovery, can be reasonably well predicted by the presented methodology. It was also shown that the outlined modeling framework can be used, as a first approximation, to estimate the rutting resistance of bituminous binders by predicting the values of the Multiple Stress Creep Recovery (MSCR) test parameters.

  6. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.

    PubMed

    Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng

    2016-10-01

    The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na 2 CO 3 amendment or NaHCO 3 amendment. However, Na 2 CO 3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L -1 Na 2 CO 3 amendment and 15 g L -1 sea salt, respectively.

  7. Metal Accumulation and Vanadium-Induced Multidrug Resistance by Environmental Isolates of Escherichia hermannii and Enterobacter cloacae

    PubMed Central

    Hernández, Alicia; Mellado, Rafael P.; Martínez, José L.

    1998-01-01

    Contaminated soils from an oil refinery were screened for the presence of microorganisms capable of accumulating either nickel, vanadium, or both metals. Three strains of bacteria that belonged to the family Enterobacteriaceae were selected. Two of them were Escherichia hermannii strains, and outer membrane profile (OMP) analysis showed that they were similar to a strain of clinical origin; the other one was an Enterobacter cloacae strain that differed from clinical isolates. The selected bacteria accumulated both nickel and vanadium. Growth in the presence of vanadium induced multidrug resistance phenotypes in E. hermannii and E. cloacae. Incubation with this metal changed the OMP profile of E. hermannii but did not produce variations in the expression of the major OMPs of E. cloacae. PMID:9797283

  8. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains.

    PubMed

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue

    2016-11-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200mg/L), Zn (1800mg/L) and Pb (1200mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains+3mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd accumulation in rice grains and show potential for bioremediation of Cd-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Do weak global stresses synchronize earthquakes?

    NASA Astrophysics Data System (ADS)

    Bendick, R.; Bilham, R.

    2017-08-01

    Insofar as slip in an earthquake is related to the strain accumulated near a fault since a previous earthquake, and this process repeats many times, the earthquake cycle approximates an autonomous oscillator. Its asymmetric slow accumulation of strain and rapid release is quite unlike the harmonic motion of a pendulum and need not be time predictable, but still resembles a class of repeating systems known as integrate-and-fire oscillators, whose behavior has been shown to demonstrate a remarkable ability to synchronize to either external or self-organized forcing. Given sufficient time and even very weak physical coupling, the phases of sets of such oscillators, with similar though not necessarily identical period, approach each other. Topological and time series analyses presented here demonstrate that earthquakes worldwide show evidence of such synchronization. Though numerous studies demonstrate that the composite temporal distribution of major earthquakes in the instrumental record is indistinguishable from random, the additional consideration of event renewal interval serves to identify earthquake groupings suggestive of synchronization that are absent in synthetic catalogs. We envisage the weak forces responsible for clustering originate from lithospheric strain induced by seismicity itself, by finite strains over teleseismic distances, or by other sources of lithospheric loading such as Earth's variable rotation. For example, quasi-periodic maxima in rotational deceleration are accompanied by increased global seismicity at multidecadal intervals.

  10. Characterization of Vibrio fluvialis-Like Strains Implicated in Limp Lobster Disease

    PubMed Central

    Tall, B. D.; Fall, S.; Pereira, M. R.; Ramos-Valle, M.; Curtis, S. K.; Kothary, M. H.; Chu, D. M. T.; Monday, S. R.; Kornegay, L.; Donkar, T.; Prince, D.; Thunberg, R. L.; Shangraw, K. A.; Hanes, D. E.; Khambaty, F. M.; Lampel, K. A.; Bier, J. W.; Bayer, R. C.

    2003-01-01

    Studies were undertaken to characterize and determine the pathogenic mechanisms involved in a newly described systemic disease in Homarus americanus (American lobster) caused by a Vibrio fluvialis-like microorganism. Nineteen isolates were obtained from eight of nine lobsters sampled. Biochemically, the isolates resembled V. fluvialis, and the isolates grew optimally at 20°C; none could grow at temperatures above 23°C. The type strain (1AMA) displayed a thermal reduction time (D value) of 5.77 min at 37°C. All of the isolates required at least 1% NaCl for growth. Collectively, the data suggest that these isolates may embody a new biotype. Pulsed-field gel electrophoresis (PFGE) analysis of the isolates revealed five closely related subgroups. Some isolates produced a sheep hemagglutinin that was neither an outer membrane protein nor a metalloprotease. Several isolates possessed capsules. The isolates were highly susceptible to a variety of antibiotics tested. However, six isolates were resistant to erythromycin. Seventeen isolates harbored plasmids. Lobster challenge studies revealed that the 50% lethal dose of a plasmid-positive strain was 100-fold lower than that of a plasmid-negative strain, suggesting that the plasmid may enhance the pathogenicity of these microorganisms in lobsters. Microorganisms that were recovered from experimentally infected lobsters exhibited biochemical and PFGE profiles that were indistinguishable from those of the challenge strain. Tissue affinity studies demonstrated that the challenge microorganisms accumulated in heart and midgut tissues as well as in the hemolymph. Culture supernatants and polymyxin B lysates of the strains caused elongation of CHO cells in tissue culture, suggesting the presence of a hitherto unknown enterotoxin. Both plasmid-positive and plasmid-negative strains caused significant dose-related intestinal fluid accumulations in suckling mice. Absence of viable organisms in the intestinal contents of mice suggests that these microorganisms cause diarrhea in mice by intoxication rather than by an infectious process. Further, these results support the thermal reduction data at 37°C and suggest that the mechanism(s) that led to fluid accumulation in mice differs from the disease process observed in lobsters by requiring neither the persistence of viable microorganisms nor the presence of plasmids. In summary, results of lobster studies satisfy Koch's postulates at the organismal and molecular levels; the findings support the hypothesis that these V. fluvialis-like organisms were responsible for the originally described systemic disease, which is now called limp lobster disease. PMID:14660396

  11. Episodic strain accumulation in southern california.

    PubMed

    Thatcher, W

    1976-11-12

    Reexamination of horizontal geodetic data in the region of recently discovered aseismic uplift has demonstrated that equally unusual horizontal crustal deformation accompanied the development of the uplift. During this time interval compressive strains were oriented roughly normal to the San Andreas fault, suggesting that the uplift produced little shear strain accumulation across this fault. On the other hand, the orientation of the anomalous shear straining is consistent with strain accumulation across northdipping range-front thrusts like the San Fernando fault. Accordingly, the horizontal and vertical crustal deformation disclosed by geodetic observation is interpreted as a short epoch of rapid strain accumulation on these frontal faults. If this interpretation is correct, thrust-type earthquakes will eventually release the accumulated strains, but the geodetic data examined here cannot be used to estimate when these events might occur. However, observation of an unusual sequence of tilts prior to 1971 on a level line lying to the north of the magnitude 6.4 San Fernando earthquake offers some promise for precursor monitoring. The data are adequately explained by a simple model of up-dip aseismic slip propagation toward the 1971 epicentral region. These observations and the simple model that accounts for them suggest a conceptually straightforward monitoring scheme to search for similar uplift and tilt precursors within the uplifted region. Such premonitory effects could be detected by a combination of frequenlty repeated short (30 to 70 km in length) level line measurements, precise gravity traverses, and continuously recording gravimeters sited to the north of the active frontal thrust faults. Once identified, such precursors could be closely followed in space and time, and might then provide effective warnings of impending potentially destructive earth-quakes.

  12. A new strain of Claviceps purpurea accumulating tetracyclic clavine alkaloids.

    PubMed

    Schumann, B; Erge, D; Maier, W; Gröger, D

    1982-05-01

    A new strain of Claviceps was isolated from a blokked mutant of Claviceps purpurea. This strain accumulates substantial amounts of clavine alkaloids (2 g/l). The alkaloid fraction is composed of chanoclavine-I ( approximately 10%) and a mixture of agroclavine/elymoclavine (90%). Most suitable for alkaloid production in submerged culture is an ammoncitrate/sucrose medium. The genealogy of the new strain, designated Pepty 695/ch-I is the following one: Pepty 695/S (ergotoxine producer) --> Pepty 695/ch (secoergoline producer) --> Pepty 695/ch-I (tetracyclic clavine producer).

  13. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts

    PubMed Central

    Yu, Xinheng; Chen, Lei; Zhang, Weiwen

    2015-01-01

    Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalga-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalga-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories:chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogs regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae. PMID:25741321

  14. Effect of Glutathione on the Taste and Texture of Type I Sourdough Bread.

    PubMed

    Tang, Kai Xing; Zhao, Cindy J; Gänzle, Michael G

    2017-05-31

    Type I sourdough fermentations with Lactobacillus sanfranciscensis as predominant organism accumulate reduced glutathione through glutathione reductase (GshR) activity of L. sanfranciscensis. Reduced glutathione acts as chain terminator for gluten polymerization but is also kokumi-active and may thus enhance bread taste. This study implemented a type I model sourdough fermentations to quantitate glutathione accumulation sourdough, bread dough, and bread and to assess the effect of L. sanfranciscensis GshR on bread volume by comparison of L. sanfranciscensis and an isogenic strain devoid of GshR. L. sanfranciscensis sourdough accumulated the highest amount of reduced glutathione during proofing. Bread produced with the wild type strain had a lower volume when compared to the gshR deficient mutant. The accumulation of γ-glutamyl-cysteine was also higher in L. sanfranciscensis sourdoughs when compared to doughs fermented with the gshR mutant strain. The accumulation of reduced glutathione in L. sanfranciscensis bread did not enhance the saltiness of bread.

  15. Dissecting metabolic behavior of lipid over-producing strain of Mucor circinelloides through genome-scale metabolic network and multi-level data integration.

    PubMed

    Vongsangnak, Wanwipa; Kingkaw, Amornthep; Yang, Junhuan; Song, Yuanda; Laoteng, Kobkul

    2018-09-05

    Lipid accumulation is an important cellular process of oleaginous microorganisms. To dissect metabolic behavior of oleaginous Zygomycetes, the lipid over-producing strain, Mucor circinelloides WJ11, was subjected for omics-scale analysis. The genome annotation was improved and used for construction of genome-scale metabolic network of WJ11 strain. Then, the quality of the metabolic network was enhanced by incorporating gene and protein expression data. In addition to the known oleaginous genes, our results showed a number of newly identified unique genes of WJ11 strain, which involved in central carbon metabolism, lipid, amino acid and nitrogen metabolisms. The systematic compilations indicated the additional metabolic routes with the involvement in supplying precursors (acetyl-CoA, NADPH and fatty acyl substrate) for fatty acid and lipid biosynthesis. Interestingly, amino acid metabolism played a substantial role in responsive mechanism of the fungal cells to nutrient imbalance circumstance through lipogenesis as the finding of reporter metabolites (l-methionine, l-glutamate, l-aspartate, l-asparagine and l-glutamine) at lipid-accumulating stage. The cooperative function of certain lipid-degrading enzymes at the particular growth stage was elucidated by integrating the metabolic networks with gene expression data. The unique feature of carotenoid biosynthetic route in WJ11 strain was also identified by protein domain analysis. Taken together, there were cross-functional metabolisms in regulating lipid biosynthesis and retaining high level of cellular lipids in the representative of lipid over-producing strains. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Biodegradation of Chlorpyrifos and Its Hydrolysis Product 3,5,6-Trichloro-2-Pyridinol by a New Fungal Strain Cladosporium cladosporioides Hu-01

    PubMed Central

    Peng, Chuyan; Liu, Hongmei; Hu, Meiying; Zhong, Guohua

    2012-01-01

    Intensive use of chlorpyrifos has resulted in its ubiquitous presence as a contaminant in surface streams and soils. It is thus critically essential to develop bioremediation methods to degrade and eliminate this pollutant from environments. We present here that a new fungal strain Hu-01 with high chlorpyrifos-degradation activity was isolated and identified as Cladosporium cladosporioides based on the morphology and 5.8S rDNA gene analysis. Strain Hu-01 utilized 50 mg·L−1 of chlorpyrifos as the sole carbon of source, and tolerated high concentration of chlorpyrifos up to 500 mg·L−1. The optimum degradation conditions were determined to be 26.8°C and pH 6.5 based on the response surface methodology (RSM). Under these conditions, strain Hu-01 completely metabolized the supplemented chlorpyrifos (50 mg·L−1) within 5 d. During the biodegradation process, transient accumulation of 3,5,6-trichloro-2-pyridinol (TCP) was observed. However, this intermediate product did not accumulate in the medium and disappeared quickly. No persistent accumulative metabolite was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis at the end of experiment. Furthermore, degradation kinetics of chlorpyrifos and TCP followed the first-order model. Compared to the non-inoculated controls, the half-lives (t 1/2) of chlorpyrifos and TCP significantly reduced by 688.0 and 986.9 h with the inoculum, respectively. The isolate harbors the metabolic pathway for the complete detoxification of chlorpyrifos and its hydrolysis product TCP, thus suggesting the fungus may be a promising candidate for bioremediation of chlorpyrifos-contaminated water, soil or crop. PMID:23056611

  17. Bioconversion of Xylan to triglycerides by oil-rich yeasts. [Cryptococcus albidus; Cryptococcus terricoluus; Trichosporon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fall, R.; Phelps, P.; Spindler, D.

    A series of lipid-accumulating yeasts was examined for their potential to saccharify xylan and accumulate triglyceride. Of the genera tested, including Candida, Cryptococcus, Lipomyces, Rhodosporidium, Rhodotorula, and Trichosporon, only Crytococcus and Trichosporon isolates saccharified xylan. All of the strains could assimilate xylose and accumuate triglyceride under nitrogen-limiting conditions. Strains of Cryptococcus albidus were found to be especially useful for a one-step saccharification of xylan coupled to triglyceride synthesis. Crytococcus terricolus, a strain constitutive for lipid accumulation, lacked extracellular xylanase, but did assimilate xylose and xylobiose and was able to continuously convert xylan to triglyceride if the culture medium was supplementedmore » with xylanase. 22 references.« less

  18. Fusarium proliferatum strains change fumonisin biosynthesis and accumulation when exposed to host plant extracts.

    PubMed

    Górna, Karolina; Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2016-01-01

    Fumonisin concentrations in mycelia and media were studied in liquid Fusarium proliferatum cultures supplemented with host plant extracts. Furthermore, the kinetics of fumonisin accumulation in media and mycelia collected before and after extract addition was analysed as well as the changes in the expression of the FUM1 gene. Fumonisin content in culture media increased in almost all F. proliferatum strains shortly after plant extracts were added. The asparagus extract induced the highest FB level increase and the garlic extract was the second most effective inducer. Fumonisin level decreased constantly until 14th day of culturing, though for some strains also at day 8th an elevated FB level was observed. Pineapple extract induced the highest increase of fum1 transcript levels as well as fumonisin synthesis in many strains, and the peas extract inhibited fungal growth and fumonisin biosynthesis. Moreover, fumonisins were accumulated in mycelia of studied strains and in the respective media. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Release of radiogenic noble gases as a new signal of rock deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo

    In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less

  20. Release of radiogenic noble gases as a new signal of rock deformation

    DOE PAGES

    Bauer, Stephen J.; Gardner, W. Payton; Lee, Hyunwoo

    2016-10-09

    In this paper we investigate the release of radiogenic noble gas isotopes during mechanical deformation. We developed an analytical system for dynamic mass spectrometry of noble gas composition and helium release rate of gas produced during mechanical deformation of rocks. Our results indicate that rocks release accumulated radiogenic helium and argon from mineral grains as they undergo deformation. We found that the release of accumulated 4He and 40Ar from rocks follows a reproducible pattern and can provide insight into the deformation process. Increased gas release can be observed before dilation, and macroscopic failure is observed during high-pressure triaxial rock deformationmore » experiments. Accumulated radiogenic noble gases can be released due to fracturing of mineral grains during small-scale strain in Earth materials. Helium and argon are highly mobile, conservative species and could be used to provide information on changes in the state of stress and strain in Earth materials, and as an early warning signal of macroscopic failure. These results pave the way for the use of noble gases to trace and monitor rock deformation for earthquake prediction and a variety of other subsurface engineering projects.« less

  1. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    PubMed Central

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032

  2. Production, purification, and characterization of a polygalacturonase from a new strain of Kluyveromyces marxianus isolated from coffee wet-processing wastewater.

    PubMed

    Serrat, Manuel; Bermúdez, Rose Catalina; Villa, Tomás Gonzáles

    2002-03-01

    A new high polygalacturonase (PG)-producing Kluyveromyces marxianus strain was isolated from coffee wet-processing wastewater. PG production in this strain is not repressed in the presence of 100 g/L of glucose and, being growth-associated, reached its maximum accumulation in the culture medium at the beginning of the stationary phase. Oxygen and galacturonic acid negatively regulated enzyme synthesis, and glucose as the carbon source afforded better enzyme yields than lactose. The data reported here show that this strain exhibits the highest index of PG production among the wild-type strains reported so far (18.8 U/mL). PG was readily purified by ion-exchange chromatography on SP-Sepharose FF. The activity corresponded to a single protein with an M(r) of 41.7kDa according to sodium dodecyl sulfatepolyacrylamide gel electrophoresis. The enzyme was stable in the pH range of 3.0-5.0 and displayed an optimal temperature of 55 degrees C; it showed a typical endosplitting way of substrate hydrolysis and exhibited a fair degree of activity on pectin with a high degree of esterification.

  3. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    PubMed Central

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new molecular mechanism of resistance to pesticides. PMID:26258982

  4. A Comparative Study on Dwell Fatigue of Ti-6Al-2Sn-4Zr- xMo ( x = 2 to 6) Alloys on a Microstructure-Normalized Basis

    NASA Astrophysics Data System (ADS)

    Qiu, Jianke; Ma, Yingjie; Lei, Jiafeng; Liu, Yuyin; Huang, Aijun; Rugg, David; Yang, Rui

    2014-12-01

    The dwell effects of Ti624 x ( x = 2 to 6) alloys, including dwell fatigue life debit, fracture mode and strain accumulation, were characterized and compared. With increasing Mo content, the dwell fatigue life debit decreases quickly, and dwell fatigue fracture exhibits a transition from subsurface to surface initiation. Accompanying these changes, the accumulated strain decreases, and the pattern of secondary cracks loses morphological features typical of dwell cracks. These variations in the fatigue behavior of Ti624 x were attributed on the fundamental level to the dual effects of Mo: It decreases the β transus of titanium and, as a slow diffuser, reduces the rate of phase transformation from β to α. A higher Mo content encourages nucleation of multiple variants of α laths and promotes the transition from aligned colonies to basketweave microstructure during cooling after β forging. As a result both the grain size and microtexture intensity of α grains in the two-phase processed and heat treated microstructure are reduced. Smaller grain size of the alloys with higher Mo content produces smaller slip band spacing and reduces accumulated strain during dwell fatigue, thus reducing propensity for crack initiation. Microtexture was shown to be the direct cause of dwell sensitivity, and their relationship was described with the aid of a two-region redistribution model based on a previous two-element redistribution model proposed by Bache.

  5. Production of d-Tagatose from Dulcitol by Arthrobacter globiformis

    PubMed Central

    Izumori, Ken; Miyoshi, Tatsuji; Tokuda, Sachiko; Yamabe, Keizo

    1984-01-01

    A process for the bacterial oxidation of dulcitol to d-tagatose has been developed. The strain Arthrobacter globiformis ST48 used in this fermentation was isolated from soil. The yield of d-tagatose accumulated in the medium from dulcitol was as high as 85%. About 14 g of d-tagatose crystals was isolated from 1 liter of 2% dulcitol medium. PMID:16346663

  6. Modeling of direct wafer bonding: Effect of wafer bow and etch patterns

    NASA Astrophysics Data System (ADS)

    Turner, K. T.; Spearing, S. M.

    2002-12-01

    Direct wafer bonding is an important technology for the manufacture of silicon-on-insulator substrates and microelectromechanical systems. As devices become more complex and require the bonding of multiple patterned wafers, there is a need to understand the mechanics of the bonding process. A general bonding criterion based on the competition between the strain energy accumulated in the wafers and the surface energy that is dissipated as the bond front advances is developed. The bonding criterion is used to examine the case of bonding bowed wafers. An analytical expression for the strain energy accumulation rate, which is the quantity that controls bonding, and the final curvature of a bonded stack is developed. It is demonstrated that the thickness of the wafers plays a large role and bonding success is independent of wafer diameter. The analytical results are verified through a finite element model and a general method for implementing the bonding criterion numerically is presented. The bonding criterion developed permits the effect of etched features to be assessed. Shallow etched patterns are shown to make bonding more difficult, while it is demonstrated that deep etched features can facilitate bonding. Model results and their process design implications are discussed in detail.

  7. Characterization of halophilic C50 carotenoid-producing archaea isolated from solar saltworks in Bohai Bay, China

    NASA Astrophysics Data System (ADS)

    Sui, Liying; Liu, Liangsen; Deng, Yuangao

    2014-11-01

    Halophilic archaea comprise the majority of microorganisms found in hypersaline environments. C50 carotenoids accumulated in archaea cells are considered potential biotechnological products and possess a number of biological functions. Ten red colonies were isolated from brine water in a saltern crystallizer pond of the Hangu Saltworks, China. 16S rRNA gene sequence analysis showed that the colonies belonged to the extremely halophilic archaea genera Halobacterium and Halorubrum. Two representative strains, Halobacterium strain SP-2 and Halorubrum strain SP-4, were selected for further study on the phenotypic characteristics and effects of salinity and pH on accumulation and composition of pigments in their cells. The archaeal strains were isolated and grown in a culture medium prepared by dissolving yeast extract (10 g/L) and acid-hydrolyzed casein (7.5 g/L) into brine water obtained from a local salt pond. Their optimum salinity and pH for growth were 250 and 7, respectively, although pigment accumulation (OD490 / mL broth) was highest at pH 8. In addition, at 150-300 salinity, increasing salinity resulted in decreasing pigment accumulation. Analysis of the UV-Vis spectrum, TLC and HLPC chromatograms showed that C50 carotenoid bacterioruberin is the major pigment in both strains.

  8. Prion Strain Differences in Accumulation of PrPSc on Neurons and Glia Are Associated with Similar Expression Profiles of Neuroinflammatory Genes: Comparison of Three Prion Strains

    PubMed Central

    Carroll, James A.; Striebel, James F.; Rangel, Alejandra; Woods, Tyson; Phillips, Katie; Peterson, Karin E.; Race, Brent; Chesebro, Bruce

    2016-01-01

    Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice. PMID:27046083

  9. Research on the resurrection evolution mechanism of Gendakan ancient landslide in the upstream on Lancang River, China

    NASA Astrophysics Data System (ADS)

    H, D.

    2017-12-01

    The Gendakan ancient landslide is located on the West bank of the upstream on Lancang River and about 4 km downstream from the Gushui hydropower station dam site. The ancient landslide is 850 m long and 700 m wide, the drill cores show that the maximum thickness of the landslide body is 107 m, with a mean thickness of approximately 80 m. Thus, the overall volume is about 3000×104m3. At present, the landslide has obvious deformation and failure signs, the leading edge is collapsing step by step. Once the landslide is unstable, it will affect the construction and operation of the Gushui hydropower station. In this paper, the development characteristics of the landslide accumulation body and the characteristics of the resurrection deformation are summarized in detail from the regional geological environment of the Gandakan landslide accumulation body. The three-dimensional geological model is established to analyze the stress and strain, displacement change and deformation failure characteristics and further evaluate its resurrection evolution trend , Combined with the developmental characteristics of the typical rock mass in the nearshore slope of the engineering area, analyzes the process of the resurrection and evolution of the rooted landslide accumulation. The FLAC-3D finite difference software was used to analyze the shear strain increment, displacement and plastic zone of the landslide accumulation body under natural conditions and rainfall conditions. The results show: the Gendakan landslide is stable in the natural state, and its deformation and failure are mainly caused by the tensile and shearing of the surface, under the rainfall condition, the local deformation and failure of the landslide accumulation body is obvious and the resurrection deformation Intensified. The resurrection evolutionary process of Gendakan ancient landslide includes three steps below. 1) The landslide body trailing edge creep cracking, leading edge shear deformation. 2) Sliding surface, accelerate the decline. 3)Disintegration of collision and impact into the dam.

  10. The effect of energy substrates on PHB accumulation of Acidiphilium cryptum DX1-1.

    PubMed

    Xu, Ai-ling; Xia, Jin-lan; Song, Zhi-wen; Jiang, Peng; Xia, Yan; Wan, Min-xi; Zhang, Rui-yong; Yang, Yi; Liu, Ke-ke

    2013-09-01

    The effect of glucose and elemental sulfur on the growth and PHB accumulation of Acidiphilium cryptum DX1-1 was investigated. Meanwhile, the differential expressions of 19 genes related with PHB accumulation, sulfur metabolism and carbon fixed in heterotrophy, phytotrophy and mixotrophy were studied by RT-qPCR. The results showed that strain DX1-1 could accumulate PHB with sulfur as the energy substance and atmospheric CO2 as carbon resource. Glucose could improve the growth of strain DX1-1 cultured in medium with sulfur as the energy substance, and almost all the key enzyme-encoding genes related with PHB, sulfur metabolism and carbon fixed were basically up-regulated. PHB polymerase (Arcy_3030), ribulose-bisphosphate carboxylase (Acry_0825), ribulose-phosphate-epimerase (Acry_0022), and cysteine synthase A (Acry_2560) played important role in PHB accumulation, the modified expression of which could influence the PHB yield. With CO2 as carbon resource, the main initial substance of PHB accumulation for strain DX1-1 was acetyl-CoA, instead of acetate with the glucose as the carbon resource. Because of accumulating PHB by fixed atmospheric CO2 while independent of light, A. cryptum DX1-1 may have specifically potential in production of PHB.

  11. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-05-01

    Freeze tolerance is a necessary characteristic for industrial baker's yeast because frozen-dough baking is one of the key technologies for supplying oven-fresh bakery products to consumers. Both proline and trehalose are known to function as cryoprotectants in yeast cells. In order to enhance the freeze tolerance of yeast cells, we constructed a self-cloning diploid baker's yeast strain with simultaneous accumulation of proline, by expressing the PRO1-I150T allele, encoding the proline-feedback inhibition-less sensitive γ-glutamyl kinase, and trehalose, by disrupting the NTH1 gene, encoding neutral trehalase. The resultant strain retained higher tolerance to oxidative and freezing stresses than did the single proline- or trehalose-accumulating strain. Interestingly, our results suggest that proline and trehalose protect yeast cells from short-term and long-term freezing, respectively. Simultaneous accumulation of proline and trehalose in industrial baker's yeast also enhanced the fermentation ability in the frozen dough compared with the single accumulation of proline or trehalose. These results indicate that baker's yeast that accumulates both proline and trehalose is applicable for frozen-dough baking. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Maf1 Protein, Repressor of RNA Polymerase III, Indirectly Affects tRNA Processing*

    PubMed Central

    Karkusiewicz, Iwona; Turowski, Tomasz W.; Graczyk, Damian; Towpik, Joanna; Dhungel, Nripesh; Hopper, Anita K.; Boguta, Magdalena

    2011-01-01

    Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner. PMID:21940626

  13. Maf1 protein, repressor of RNA polymerase III, indirectly affects tRNA processing.

    PubMed

    Karkusiewicz, Iwona; Turowski, Tomasz W; Graczyk, Damian; Towpik, Joanna; Dhungel, Nripesh; Hopper, Anita K; Boguta, Magdalena

    2011-11-11

    Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner.

  14. Fungal accumulation of metals from building materials during brown rot wood decay.

    PubMed

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Jellison, Jody

    2014-08-01

    This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood decay.

  15. Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase.

    PubMed

    Gmeiner, Christoph; Saadati, Amirhossein; Maresch, Daniel; Krasteva, Stanimira; Frank, Manuela; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver

    2015-01-08

    Pichia pastoris is a prominent host for recombinant protein production, amongst other things due to its capability of glycosylation. However, N-linked glycans on recombinant proteins get hypermannosylated, causing problems in subsequent unit operations and medical applications. Hypermannosylation is triggered by an α-1,6-mannosyltransferase called OCH1. In a recent study, we knocked out OCH1 in a recombinant P. pastoris CBS7435 Mut(S) strain (Δoch1) expressing the biopharmaceutically relevant enzyme horseradish peroxidase. We characterized the strain in the controlled environment of a bioreactor in dynamic batch cultivations and identified the strain to be physiologically impaired. We faced cell cluster formation, cell lysis and uncontrollable foam formation.In the present study, we investigated the effects of the 3 process parameters temperature, pH and dissolved oxygen concentration on 1) cell physiology, 2) cell morphology, 3) cell lysis, 4) productivity and 5) product purity of the recombinant Δoch1 strain in a multivariate manner. Cultivation at 30°C resulted in low specific methanol uptake during adaptation and the risk of methanol accumulation during cultivation. Cell cluster formation was a function of the C-source rather than process parameters and went along with cell lysis. In terms of productivity and product purity a temperature of 20°C was highly beneficial. In summary, we determined cultivation conditions for a recombinant P. pastoris Δoch1 strain allowing high productivity and product purity.

  16. Cyclic stress effect on stress corrosion cracking of duplex stainless steel in chloride and caustic solutions

    NASA Astrophysics Data System (ADS)

    Yang, Di

    Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.

  17. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloy AZ91

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke; Anderson, Warwick; Jones, J. Wayne

    An investigation has been conducted on the influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91. Fatigue lifetimes were determined from total strain-controlled fatigue tests for strain amplitudes of 0.2%, 0.4% and 0.6%, under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using incremental step test (IST) methods. Two locations in a prototype casting with different thicknesses and, therefore, solidification rates, microstructure and porosity, were examined. In general., at all total strain amplitudes fatigue life was unaffected by microstructure refinement and was attributed to significant levels of porosity. Cyclic softening and a subsequent increased cyclic hardening rate, compared to monotonic tests, were observed, independent of microstructure. These results, fractography and damage accumulation processes, determined from metallographic sectioning, are discussed.

  18. The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa.

    PubMed

    Bowman, Barry J; Abreu, Stephen; Johl, Jessica K; Bowman, Emma Jean

    2012-11-01

    The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.

  19. Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains.

    PubMed

    Zinder, S H; Anguish, T

    1992-10-01

    CO and H(2) have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H(2), CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H(2) to partial pressures of 40 to 70 Pa (1 Pa = 0.987 x 10 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H(2) to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N(2)-CO(2), accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H(2) (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 mumol of viologen reduced min mg of protein. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H(2) in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate.

  20. Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains

    PubMed Central

    Zinder, S. H.; Anguish, T.

    1992-01-01

    CO and H2 have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H2, CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H2 to partial pressures of 40 to 70 Pa (1 Pa = 0.987 × 10-5 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H2 to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N2-CO2, accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H2 (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 μmol of viologen reduced min-1 mg of protein-1. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H2 in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate. PMID:16348788

  1. Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation.

    PubMed

    Byrd, Wyatt; Boedeker, Edgar C

    2013-03-15

    Although enterotoxigenic Escherichia coli (ETEC) infections are important causes of infantile and traveler's diarrhea there is no licensed vaccine available for those at-risk. Our goal is to develop a safe, live attenuated ETEC vaccine. We used an attenuated E. coli strain (O157:H7, Δ-intimin, Stx1-neg, Stx2-neg) as a vector (ZCR533) to prepare two vaccine strains, one strain expressing colonization factor antigen I (ZCR533-CFA/I) and one strain expressing CFA/I and a detoxified heat-labile enterotoxin (ZCR533-CFA/I+LThK63) to deliver ETEC antigens to mucosal sites in BALB/c mice. Following intranasal and intragastric immunization with the vaccine strains, serum IgG and IgA antibodies were measured to the CFA/I antigen, however, only serum IgG antibodies were detected to the heat-labile enterotoxin. Intranasal administration of the vaccine strains induced respiratory and intestinal antibody responses to the CFA/I and LT antigens, while intragastric administration induced only intestinal antibody responses with no respiratory antibodies detected to the CFA/I and LT antigens. Mice immunized intranasally with the vaccine strains showed enhanced clearance of wild-type (wt) ETEC bacteria from the lungs. Mice immunized intranasally and intragastrically with the vaccine strains were protected from intestinal colonization following oral challenge with ETEC wt bacteria. Mice immunized intragastrically with the ZCR533-CFA/I+LThK63 vaccine strain had less fluid accumulate in their intestine following challenge with ETEC wt bacteria or with purified LT as compared to the sham mice indicating that the immunized mice were protected from LT-induced intestinal fluid accumulation. Thus, mice intragastrically immunized with the ZCR533-CFA/I+LThK63 vaccine strain were able to effectively neutralize the activity of the LT enterotoxin. However, no difference in intestinal fluid accumulation was detected in the mice immunized intranasally with the vaccine strain as compared to the sham mice as the immunized mice induced insufficient intestinal anti-LT antibody to neutralize the activity of the enterotoxin. These results show that our ETEC vaccine induced serum and mucosal antibody responses to CFA/I and LT after mucosal administration which then acted to protect the immunized mice against lung and intestinal colonization, as well as, intestinal fluid accumulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Contribution of permeability and sensitivity to inhibition of DNA synthesis in determining susceptibilities of Escherichia coli, Pseudomonas aeruginosa, and Alcaligenes faecalis to ciprofloxacin.

    PubMed Central

    Bedard, J; Chamberland, S; Wong, S; Schollaardt, T; Bryan, L E

    1989-01-01

    To examine the correlation between bacterial cell susceptibility to ciprofloxacin and the magnitude of uptake and cell target sensitivity, the relative contribution of ciprofloxacin accumulation in intact cells and its ability to inhibit DNA synthesis were investigated among strains of Escherichia coli, Pseudomonas aeruginosa, and Alcaligenes faecalis. Uptake studies of [14C]ciprofloxacin demonstrated diffusion kinetics for P. aeruginosa and E. coli. Ciprofloxacin was more readily removed from E. coli J53 and A. faecalis ATCC 19018 by washing than from P. aeruginosa PAO503. These results indicate that the process of cell accumulation is different for P. aeruginosa in that the drug is firmly bound at an extracellular site. Whatever the washing conditions, A. faecalis accumulated less drug than either of the other two bacteria. Magnesium chloride (10 mM) caused a substantial decrease of ciprofloxacin accumulated and an increase in the MIC, depending upon the nature of the medium. The addition of carbonyl cyanide m-chlorophenylhydrazone caused a variable increase in drug accumulated, depending on the medium and the bacterial strain. The concentration of ciprofloxacin required to obtain 50% inhibition (ID50) of DNA synthesis for P. aeruginosa PAO503 and A. faecalis ATCC 19018 did not correlate with their corresponding MICs but did for E. coli J53. Treatment with EDTA decreased the ID50 of ciprofloxacin for P. aeruginosa PAO503 and its gyrA derivative by 5- and 2-fold, respectively, and decreased the ID50 for E. coli JB5R, a strain with a known decrease in OmpF, by 1.4-fold but did not decrease the ID50 for the normally susceptible E. coli J53. The ID(50) for P. aeruginosa obtained after EDTA treatment or in ether-permeabilized cells was higher than that obtained for the other two strains. The protonophore carbonyl cyanide m-chlorophenylhydrazone prevented killing by low ciprofloxacin concentrtaions, but sodium azide did not. The latter compound did not enhance killing in association with inhibition of a previously described energy-dependent efflux of ciprofloxacin susceptibility being the susceptibility to inhibition of DNA synthesis in E. coli, poor premeability associated with the small pore size of A. faecalis, and a combination of low permeability and reduced susceptibility of DNA synthesis to inhibition for P. aeruginosa. PMID:2510591

  3. Microstructural evolution and rheology of quartz in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Rahl, Jeffrey M.; Skemer, Philip

    2016-06-01

    We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.

  4. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications.

    PubMed Central

    Kim, J; Alizadeh, P; Harding, T; Hefner-Gravink, A; Klionsky, D J

    1996-01-01

    The accumulation of trehalose is a critical determinant of stress resistance in the yeast Saccharomyces cerevisiae. We have constructed a yeast strain in which the activity of the trehalose-hydrolyzing enzyme, acid trehalase (ATH), has been abolished. Loss of ATH activity was accomplished by disrupting the ATH1 gene, which is essential for ATH activity. The delta ath1 strain accumulated greater levels of cellular trehalose and grew to a higher cell density than the isogenic wild-type strain. In addition, the elevated levels of trehalose in the delta ath1 strain correlated with increased tolerance to dehydration, freezing, and toxic levels of ethanol. The improved resistance to stress conditions exhibited by the delta ath1 strain may make this strain useful in commercial applications, including baking and brewing. PMID:8633854

  5. Degradation of carbazole, dibenzothiophene, and dibenzofuran at low temperature by Pseudomonas sp. strain C3211.

    PubMed

    Jensen, Anne-Mette; Finster, Kai Waldemar; Karlson, Ulrich

    2003-04-01

    Pseudomonas sp. strain C3211 was isolated from a temperate climate soil contaminated with creosote. This strain was able to degrade carbazole, dibenzothiophene and dibenzofuran at 10 degrees C with acetone as a co-substrate. When dibenzothiophene was degraded by strain C3211, an orange compound, which absorbed at 472 nm, accumulated in the medium. Degradation of dibenzofuran was followed by accumulation of a yellowish compound, absorbing at 462 nm. The temperature optimum of strain C3211 for degradation of dibenzothiophene and dibenzofuran was at 20 to 21 degrees C, while the maximum temperature for degradation was at 27 degrees C. Both compounds were degraded at 4 degrees C. Degradation at 10 degrees C was faster than degradation at 25 degrees C. This indicates that strain C3211 is adapted to life at low temperatures.

  6. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11.

    PubMed

    Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2015-01-01

    The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA); however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11) isolated in this laboratory can produce lipid up to 36% (w/w) cell dry weight (CDW). We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative biochemical analysis with a low lipid-producing strain, M. circinelloides CBS 277.49, which accumulates less than 15% (w/w) lipid. M. circinelloides WJ11 produced more cell mass than that of strain CBS 277.49, although with slower glucose consumption. In the lipid accumulation phase, activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in strain WJ11 were greater than in CBS 277.49 by 46% and 17%, respectively, and therefore may provide more NADPH for fatty acid biosynthesis. The activities of NAD+:isocitrate dehydrogenase and NADP+:isocitrate dehydrogenase, however, were 43% and 54%, respectively, lower in WJ11 than in CBS 277.49 and may retard the tricarboxylic acid cycle and thereby provide more substrate for ATP:citrate lyase (ACL) to produce acetyl-CoA. Also, the activities of ACL and fatty acid synthase in the high lipid-producing strain, WJ11, were 25% and 56%, respectively, greater than in strain CBS 277.49. These enzymes may therefore cooperatively regulate the fatty acid biosynthesis in these two strains.

  7. Sensitivity of Texas strains of Ceratocystis fagacearum to triazole fungicides

    Treesearch

    A. Dan Wilson; L.B. Forse

    1997-01-01

    Ten geographically diverse Texas strains of the oak wilt fungus Ceratocystis fagacearum were tested in vitro for their sensitivity to five triazole fungicides based on accumulated linear growth, linear growth rates, and dry weight accumulation in response to fungicide concentrations of 0.1 to 600 parts per billion (ppb). None of the triazoles inhibited growth at 0.1...

  8. A physical model for strain accumulation in the San Francisco Bay Region

    USGS Publications Warehouse

    Pollitz, F.F.; Nyst, M.

    2005-01-01

    Strain accumulation in tectonically active regions is generally a superposition of the effects of background tectonic loading, steady-state dislocation processes, such as creep, and transient deformation. In the San Francisco Bay region (SFBR), the most uncertain of these processes is transient deformation, which arises primarily in association with large earthquakes. As such, it depends upon the history of faulting and the rheology of the crust and mantle, which together determine the pattern of longer term (decade-scale) post-seismic response to earthquakes. We utilize a set of 102 GPS velocity vectors in the SFBR in order to characterize the strain rate field and construct a physical model of its present deformation. We first perform an inversion for the continuous velocity gradient field from the discrete GPS velocity field, from which both tensor strain rate and rotation rate may be extracted. The present strain rate pattern is well described as a nearly uniform shear strain rate oriented approximately N34??W (140 nanostrain yr-1) plus a N56??E uniaxial compression rate averaging 20 nanostrain yr-1 across the shear zone. We fit the velocity and strain rate fields to a model of time-dependent deformation within a 135-kin-wide, arcuate shear zone bounded by strong Pacific Plate and Sierra Nevada block lithosphere to the SW and NE, respectively. Driving forces are purely lateral, consisting of shear zone deformation imposed by the relative motions between the thick Pacific Plate and Sierra Nevada block lithospheres. Assuming a depth-dependent viscoelastic structure within the shear zone, we account for the effects of steady creep on faults and viscoelastic relaxation following the 1906 San Francisco and 1989 Loma Prieta earthquakes, subject to constant velocity boundary conditions on the edges of the shear zone. Fault creep is realized by evaluating dislocations on the creeping portions of faults in the fluid limit of the viscoelastic model. A priori plate-boundary(PB)-parallel motion is set to 38 mm yr -1. A grid search based on fitting the observed strain rate pattern yields a mantle viscosity of 1.2 ?? 1019 Pa s and a PB-perpendicular convergence rate of ???3 mm yr-1. Most of this convergence appears to be uniformly distributed in the Pacific-Sierra Nevada plate boundary zone. ?? 2005 RAS.

  9. Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paul, Surajit Kumar

    2013-07-01

    The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.

  10. Microstructure and Texture of Al-2.5wt.%Mg Processed by Combining Accumulative Roll Bonding and Conventional Rolling

    NASA Astrophysics Data System (ADS)

    Gatti, J. R.; Bhattacharjee, P. P.

    2014-12-01

    Evolution of microstructure and texture during severe deformation and annealing was studied in Al-2.5%Mg alloy processed by two different routes, namely, monotonic Accumulative Roll Bonding (ARB) and a hybrid route combining ARB and conventional rolling (CR). For this purpose Al-2.5%Mg sheets were subjected to 5 cycles of monotonic ARB (equivalent strain (ɛeq) = 4.0) processing while in the hybrid route (ARB + CR) 3 cycle ARB-processed sheets were further deformed by conventional rolling to 75% reduction in thickness (ɛeq = 4.0). Although formation of ultrafine structure was observed in the two processing routes, the monotonic ARB—processed material showed finer microstructure but weak texture as compared to the ARB + CR—processed material. After complete recrystallization, the ARB + CR-processed material showed weak cube texture ({001}<100>) but the cube component was almost negligible in the monotonic ARB-processed material-processed material. However, the ND-rotated cube components were stronger in the monotonic ARB-processed material-processed material. The observed differences in the microstructure and texture evolution during deformation and annealing could be explained by the characteristic differences of the two processing routes.

  11. Osmoregulation in Agrobacterium tumefaciens: accumulation of a novel disaccharide is controlled by osmotic strength and glycine betaine.

    PubMed Central

    Smith, L T; Smith, G M; Madkour, M A

    1990-01-01

    We have investigated the mechanism of osmotic stress adaptation (osmoregulation) in Agrobacterium tumefaciens biotype I (salt-tolerant) and biotype II (salt-sensitive) strains. Using natural-abundance 13C nuclear magnetic resonance spectroscopy, we identified all organic solutes that accumulated to significant levels in osmotically stressed cultures. When stressed, biotype I strains (C58, NT1, and A348) accumulated glutamate and a novel disaccharide, beta-fructofuranosyl-alpha-mannopyranoside, commonly known as mannosucrose. In the salt-sensitive biotype II strain K84, glutamate was observed but mannosucrose was not. We speculate that mannosucrose confers the extra osmotic tolerance observed in the biotype I strains. In addition to identifying the osmoregulated solutes that this species synthesizes, we investigated the ability of A. tumefaciens to utilize the powerful osmotic stress protectant glycine betaine when it is supplied in the medium. Results from growth experiments, nuclear magnetic resonance spectroscopy, and a 14C labeling experiment demonstrated that in the absence of osmotic stress, glycine betaine was metabolized, while in stressed cultures, glycine betaine accumulated intracellularly and conferred enhanced osmotic stress tolerance. Furthermore, when glycine betaine was taken up in stressed cells, its accumulation caused the intracellular concentration of mannosucrose to drop significantly. The possible role of osmoregulation of A. tumefaciens in the transformation of plants is discussed. PMID:2254260

  12. A viscoplastic study of crack-tip deformation and crack growth in a nickel-based superalloy at elevated temperature

    NASA Astrophysics Data System (ADS)

    Zhao, L. G.; Tong, J.

    Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant Δ K-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks. A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.

  13. Ratcheting induced cyclic softening behaviour of 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kreethi, R.; Mondal, A. K.; Dutta, K.

    2015-02-01

    Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.

  14. Examination of the technological properties of newly isolated strains of the genus Lactobacillus and possibilities for their application in the composition of starters.

    PubMed

    Denkova, Rositsa; Ilieva, Svetla; Denkova, Zapryana; Georgieva, Ljubka; Krastanov, Albert

    2014-05-04

    The ability of four Lactobacillus strains - Lactobacillus brevis LBRZ7 (isolated from fermented cabbage), Lactobacillus plantarum LBRZ12 (isolated from fermented cabbage), Lactobacillus fermentum LBRH9 (of human origin) and Lactobacillus casei ssp. rhamnosus LBRC11 (isolated from home-made cheese) - to grow in flour/water environment and to accumulate high concentrations of viable cells was examined. Two starters for sourdough were created for lab-scale production of wheat bread: a two-strain starter and a four-strain starter. Wheat bread with improved properties - greater loaf volume, enhanced flavour and softer and brighter crumb - was obtained from the 7% four-strain starter sourdough. The addition of sourdough in the production of wheat bread affected positively the technological and organoleptic characteristics of the final bread by inhibiting the growth of wild yeasts and mold and Bacillus spores without the addition of preservatives. The inclusion of 15% of the four-strain starter sourdough in the bread-making process led to enhanced safety and longer shelf life of the baked bread.

  15. Isolation and identification of poly beta hydroxybutyric acid accumulating bacteria of Staphylococcal sp. and characterization of biodegradable polyester.

    PubMed

    Roy, Bappaditya; Banerjee, Rajat; Chatterjee, Sumana

    2009-04-01

    Staphylococcus sp. strain BP/SU1, capable of degrading the biopolymer and utilize it as a source of carbon and energy, was isolated from activated sludge using METABOLIX (MBX D411G). It was found that this strain was capable of accumulating poly(3-hydroxybutyric acid) P(3-HB), as granule poly (3-hydroxybutyric acid), p(3-HB), inclusion bodies when grown under suitable nutrient conditions. These strains could sustain cell growth up to a dry mass of 9.24 g/l with a doubling time of 8 to 10 hr and could accumulate P(3-HB) as granular inclusion bodies to a cell dry weight of more than 12%. P(3-HB) accumulated by this organism was isolated and characterized through NMR, FT-IR spectroscopy, UV Spectroscopy, Mass spectroscopy and Differential Scanning Calorimetry. P(3-HB) granules so isolated showed physical and chemical properties that should be possessed by a superior quality thermoplastic biopolymer.

  16. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    PubMed

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. An Amylase-Like Protein, AmyD, Is the Major Negative Regulator for α-Glucan Synthesis in Aspergillus nidulans during the Asexual Life Cycle.

    PubMed

    He, Xiaoxiao; Li, Shengnan; Kaminskyj, Susan

    2017-03-27

    α-Glucan affects fungal cell-cell interactions and is important for the virulence of pathogenic fungi. Interfering with production of α-glucan could help to prevent fungal infection. In our previous study, we reported that an amylase-like protein, AmyD, could repress α-glucan accumulation in Aspergillus nidulans . However, the underlying molecular mechanism was not clear. Here, we examined the localization of AmyD and found it was a membrane-associated protein. We studied AmyD function in α-glucan degradation, as well as with other predicted amylase-like proteins and three annotated α-glucanases. AmyC and AmyE share a substantial sequence identity with AmyD, however, neither affects α-glucan synthesis. In contrast, AgnB and MutA (but not AgnE) are functional α-glucanases that also repress α-glucan accumulation. Nevertheless, the functions of AmyD and these glucanases were independent from each other. The dynamics of α-glucan accumulation showed different patterns between the AmyD overexpression strain and the α-glucanase overexpression strains, suggesting AmyD may not be involved in the α-glucan degradation process. These results suggest the function of AmyD is to directly suppress α-glucan synthesis, but not to facilitate its degradation.

  18. L-Methionine Production.

    PubMed

    Shim, Jihyun; Shin, Yonguk; Lee, Imsang; Kim, So Young

    L-Methionine has been used in various industrial applications such as the production of feed and food additives and has been used as a raw material for medical supplies and drugs. It functions not only as an essential amino acid but also as a physiological effector, for example, by inhibiting fat accumulation and enhancing immune response. Producing methionine from fermentation is beneficial in that microorganisms can produce L-methionine selectively using eco-sustainable processes. Nevertheless, the fermentative method has not been used on an industrial scale because it is not competitive economically compared with chemical synthesis methods. Presented are efforts to develop suitable strains, engineered enzymes, and alternative process of producing L-methionine that overcomes problems of conventional fermentation methods. One of the alternative processes is a two-step process in which the L-methionine precursor is produced by fermentation and then converted to L-methionine by enzymes. Directed efforts toward strain development and enhanced enzyme engineering will advance industrial production of L-methionine based on fermentation.

  19. Mutational landscape of yeast mutator strains.

    PubMed

    Serero, Alexandre; Jubin, Claire; Loeillet, Sophie; Legoix-Né, Patricia; Nicolas, Alain G

    2014-02-04

    The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32Δ and rad27Δ (replication), msh2Δ (mismatch repair), tsa1Δ (oxidative stress), mre11Δ (recombination), mec1Δ tel1Δ (DNA damage/S-phase checkpoints), pif1Δ (maintenance of mitochondrial genome and telomere length), cac1Δ cac3Δ (nucleosome deposition), and clb5Δ (cell cycle progression). This study reveals the diversity, complexity, and ultimate unique nature of each mutational spectrum, composed of punctual mutations, chromosomal structural variations, and/or aneuploidies. The mutations produced in clb5Δ/CCNB1, mec1Δ/ATR, tel1Δ/ATM, and rad27Δ/FEN1 strains extensively reshape the genome, following a trajectory dependent on previous events. It comprises the transmission of unstable genomes that lead to colony mosaicisms. This comprehensive analytical approach of mutator defects provides a model to understand how genome variations might accumulate during clonal evolution of somatic cell populations, including tumor cells.

  20. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    PubMed

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis

    DOE PAGES

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; ...

    2015-04-23

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shiftmore » in amino acid metabolism. We also report that Y. lipolytica secretes disaccharides early in batch culture and reabsorbs them when extracellular glucose is depleted. Exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.« less

  2. The arginine deiminase pathway of koji bacteria is involved in ethyl carbamate precursor production in soy sauce.

    PubMed

    Zhang, Jiran; Fang, Fang; Chen, Jian; Du, Guocheng

    2014-09-01

    Ethyl carbamate (EC) is a group 2A carcinogen generated from a few precursors in many fermented foods and alcoholic beverages. Citrulline, urea, carbamoyl phosphate, and ethanol are common precursors detected in fermented foods. In this study, citrulline was proved to be the main EC precursor in soy sauce, which was found to be accumulated in moromi mash period and correlated with the utilization of arginine by koji bacteria. Six koji isolates belonging to three genera were identified to be able to accumulate citrulline via the arginine deiminase (ADI) pathway. Among these strains, only Pediococcus acidilactici retained high activities in synthesis and accumulation of citrulline in the presence of high concentration of sodium chloride. These results suggested that P. acidilactici is responsible for the accumulation of citrulline, one of the EC precursors, in the process of soy sauce fermentation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution.

    PubMed

    Lan, Tu; Feng, Yue; Liao, Jiali; Li, Xiaolong; Ding, Congcong; Zhang, Dong; Yang, Jijun; Zeng, Junhui; Yang, Yuanyou; Tang, Jun; Liu, Ning

    2014-08-01

    In order to identify a more efficient biosorbent for (137)Cs, we have investigated the biosorption behavior and mechanism of (137)Cs on Rhodosporidium fluviale (R. fluviale) strain UA2, one of the dominant species of a fungal group isolated from a stable cesium solution. We observed that the biosorption of (137)Cs on R. fluviale strain UA2 was a fast and pH-dependent process in the solution composed of R. fluviale strain UA2 (5 g/L) and cesium (1 mg/L). While a Langmuir isotherm equation indicated that the biosorption of (137)Cs was a monolayer adsorption, the biosorption behavior implied that R. fluviale strain UA2 adsorbed cesium ions by electrostatic attraction. The TEM analysis revealed that cesium ions were absorbed into the cytoplasm of R. fluviale strain UA2 across the cell membrane, not merely fixed on the cell surface, which implied that a mechanism of metal uptake contributed largely to the cesium biosorption process. Moreover, PIXE and EPBS analyses showed that ion-exchange was another biosorption mechanism for the cell biosorption of (137)Cs, in which the decreased potassium ions were replaced by cesium ions. All the above results implied that the biosorption of (137)Cs on R. fluviale strain UA2 involved a two-step process. The first step is passive biosorption that cesium ions are adsorbed to cells surface by electrostatic attraction; after that, the second step is active biosorption that cesium ions penetrate the cell membrane and accumulate in the cytoplasm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Toward Homosuccinate Fermentation: Metabolic Engineering of Corynebacterium glutamicum for Anaerobic Production of Succinate from Glucose and Formate

    PubMed Central

    Litsanov, Boris; Brocker, Melanie

    2012-01-01

    Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Δcat Δpqo Δpta-ackA ΔldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pycP458S into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD+-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose). PMID:22389371

  5. Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae.

    PubMed

    Horng, Yu-Tze; Chang, Kai-Chih; Chou, Ta-Chung; Yu, Chung-Jen; Chien, Chih-Ching; Wei, Yu-Hong; Soo, Po-Chi

    2010-07-01

    1,3-Propanediol (1,3-PD) can be used for the industrial synthesis of a variety of compounds, including polyesters, polyethers, and polyurethanes. 1,3-PD is generated from petrochemical and microbial sources. 1,3-Propanediol is a typical product of glycerol fermentation, while acetate, lactate, 2,3-butanediol, and ethanol also accumulate during the process. Substrate and product inhibition limit the final concentration of 1,3-propanediol in the fermentation broth. It is impossible to increase the yield of 1,3-propanediol by using the traditional whole-cell fermentation process. In this study, dhaD and dhaK, the genes for glycerol dehydrogenase and dihydroxyacetone kinase, respectively, were inactivated by homologous recombination in Klebsiella pneumoniae. The dhaD/dhaK double mutant (designated TC100), selected from 5,000 single or double cross homologous recombination mutants, was confirmed as a double cross by using polymerase chain reaction. Analysis of the cell-free supernatant with high-performance liquid chromatography revealed elimination of lactate and 2,3-butanediol, as well as ethanol accumulation in TC100, compared with the wild-type strain. Furthermore, 1,3-propanediol productivity was increased in the TC100 strain expressing glycerol dehydratase and 1,3-PDO dehydrogenase regulated by the arabinose P(BAD) promoter. The genetic engineering and medium formulation approaches used here should aid in the separation of 1,3-propanediol from lactate, 2,3-butanediol, and ethanol and lead to increased production of 1,3-propanediol in Klebsiella pneumoniae.

  6. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  7. EFFECTS OF 2,4-DICHLOROPHENOL, A METABOLITE OF A GENETICALLY ENGINEERED BACTERIUM, AND 2,4-DICHLOROPHENOXYACETATE ON SOME MICROORGANISM-MEDIATED ECOLOGICAL PROCESSES IN SOIL

    EPA Science Inventory

    A genetically engineered microorganism, Pseudomonas putida PPO301 (pRO103), and the plasmidless parent strain, PPO301, were added at approximately 10 7 CFU/g of soil amended with 500 ppm of 2,4-dichlorophenoxyacete (2,4-D)(500 ug/g). he degradation of 2,4-D and the accumulation o...

  8. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding.

    PubMed

    Kwan, Charles C F; Wang, Zhirui

    2013-08-13

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability.

  9. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding

    PubMed Central

    Kwan, Charles C.F.; Wang, Zhirui

    2013-01-01

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability. PMID:28811446

  10. Investigation of Linum flavum (L.) Hairy Root Cultures for the Production of Anticancer Aryltetralin Lignans.

    PubMed

    Renouard, Sullivan; Corbin, Cyrielle; Drouet, Samantha; Medvedec, Barbara; Doussot, Joël; Colas, Cyril; Maunit, Benoit; Bhambra, Avninder S; Gontier, Eric; Jullian, Nathalie; Mesnard, François; Boitel, Michèle; Abbasi, Bilal Haider; Arroo, Randolph R J; Lainé, Eric; Hano, Christophe

    2018-03-26

    Linum flavum hairy root lines were established from hypocotyl pieces using Agrobacterium rhizogenes strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines. The influence of culture medium and various treatments (hormone, elicitation and precursor feeding) were evaluated. The highest accumulation was obtained in Gamborg B5 medium. Treatment with methyl jasmonate, and feeding using ferulic acid increased the accumulation of aryltetralin lignans. These results point to the use of hairy root culture lines of Linum flavum as potential sources for these valuable metabolites as an alternative, or as a complement to Podophyllum collected from wild stands.

  11. Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate.

    PubMed

    Radulović, Milanka D; Cvetković, Olga G; Nikolić, Snezana D; Dordević, Dragana S; Jakovljević, Dragica M; Vrvić, Miroslav M

    2008-09-01

    It was demonstrated that during the growth of Aureobasidium pullulans strain CH-1 on the acid hydrolysate of peat from the Vlasina Lake, the content of metals (Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr) decreased due to biosorption. The reduction in the metal content was found to be in the range (%): 38.2-62.2, 67.7-97.3, 0.02-62.05, 0.05-23.97, 0.16-4.24, 3.45-51.72, 1.18-35.82, 0.86-44.44, for Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr, respectively. During this process, the metals were accumulated in the biomass, while pullulan, an extracellular polysaccharide produced by Aureobasidium pullulans strain CH-1, was found not to bind the above-mentioned metals.

  12. Molecular identification of potential denitrifying bacteria and use of D-optimal mixture experimental design for the optimization of denitrification process.

    PubMed

    Ben Taheur, Fadia; Fdhila, Kais; Elabed, Hamouda; Bouguerra, Amel; Kouidhi, Bochra; Bakhrouf, Amina; Chaieb, Kamel

    2016-04-01

    Three bacterial strains (TE1, TD3 and FB2) were isolated from date palm (degla), pistachio and barley. The presence of nitrate reductase (narG) and nitrite reductase (nirS and nirK) genes in the selected strains was detected by PCR technique. Molecular identification based on 16S rDNA sequencing method was applied to identify positive strains. In addition, the D-optimal mixture experimental design was used to optimize the optimal formulation of probiotic bacteria for denitrification process. Strains harboring denitrification genes were identified as: TE1, Agrococcus sp LN828197; TD3, Cronobacter sakazakii LN828198 and FB2, Pedicoccus pentosaceus LN828199. PCR results revealed that all strains carried the nirS gene. However only C. sakazakii LN828198 and Agrococcus sp LN828197 harbored the nirK and the narG genes respectively. Moreover, the studied bacteria were able to form biofilm on abiotic surfaces with different degree. Process optimization showed that the most significant reduction of nitrate was 100% with 14.98% of COD consumption and 5.57 mg/l nitrite accumulation. Meanwhile, the response values were optimized and showed that the most optimal combination was 78.79% of C. sakazakii LN828198 (curve value), 21.21% of P. pentosaceus LN828199 (curve value) and absence (0%) of Agrococcus sp LN828197 (curve value). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Strain-Specific Induction of Endometrial Periglandular Fibrosis in Mice Exposed During Adulthood to the Endocrine Disrupting Chemical Bisphenol A

    PubMed Central

    Kendziorski, Jessica A.; Belcher, Scott M.

    2015-01-01

    The aim of this study was to compare effects of bisphenol A (BPA) on collagen accumulation in uteri of two mouse strains. Adult C57Bl/6N and CD-1 mice were exposed to dietary BPA (0.004–40 mg/kg/day) or 17α-ethinyl estradiol (0.00002–0.001 mg/kg/day) as effect control. An equine endometrosis-like phenotype with increased gland nesting and periglandular collagen accumulation was characteristic of unexposed C57Bl/6N, but not CD-1, endometrium. BPA non-monotonically increased gland nest density and periglandular collagen accumulation in both strains. Increased collagen I and III expression, decreased matrix metalloproteinase 2 (MMP2) and MMP14 expression, and increased immune response were associated with the endometrosis phenotype in the C57Bl/6N strain and the 30 ppm BPA CD-1 group. The association between the pro-collagen shift in increased collagen expression and decreased MMP2 expression and activity implies that strain differences and BPA exposure salter regulation of endometrial remodeling and contributes to increased fibrosis, a component of several human uterine diseases. PMID:26307436

  14. Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives.

    PubMed

    Cabral, Vanessa; Luo, Xuan; Junqueira, Elisabete; Costa, Sofia S; Mulhovo, Silva; Duarte, Aida; Couto, Isabel; Viveiros, Miguel; Ferreira, Maria-José U

    2015-04-15

    Six compounds (1-6), isolated from the methanol extract of the roots of the African medicinal plant Zanthoxylum capense Thunb. (Rutaceae), and seven ester derivatives (7-13) were evaluated for their antibacterial activities and modulatory effects on the MIC of antibiotics (erythromycin, oxacillin, and tetracycline) and ethidium bromide (EtBr) against a Staphylococcus aureus reference strain (ATCC 6538). Using the same model, compounds 1-13 were also assessed for their potential as efflux pump inhibitors by a fluorometric assay that measures the accumulation of the broad range efflux pump substrate EtBr. Compounds 8 and 11 were further evaluated for their antibacterial, modulatory and EtBr accumulation effects against four additional S. aureus strains, which included two clinical methicillin-resistant S. aureus (MRSA) strains. Compounds (1-13) have not shown antibacterial activity at the concentration ranges tested. When evaluated against S. aureus ATCC 6538, oxychelerythrine (1) a benzophenanthridine alkaloid, showed the highest modulatory activity enhancing the susceptibility of this strain to all the tested antibiotics from two to four-fold. Ailanthoidiol diacetate (8) and ailanthoidiol di-2-ethylbutanoate (11) were also good modulators when combined with EtBr, increasing the bacteria susceptibility by four and two-fold, respectively. In the EtBr accumulation assay, using ATCC 6538 strain, the phenylpropanoid (+)-ailanthoidiol (6) and most of its ester derivatives (8-11) exhibited higher activity than the positive control verapamil. The highest effects were found for compounds 8 and 11 that also increased the accumulation of EtBr, using S. aureus ATCC 25923 as model. Furthermore, both compounds (8, 11) were able to enhance the ciprofloxacin activity against the MRSA clinical strains tested, causing a reduction of the antibiotic MIC values from two to four-fold. The EtBr accumulation assay revealed that this modulation activity was not due to an inhibition of efflux pumps mechanism. These results suggested that Z. capense constituents may be valuable as leads for restoring antibiotic activity against MRSA strains. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Accumulation of Polyphosphate in Lactobacillus spp. and Its Involvement in Stress Resistance

    PubMed Central

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel

    2014-01-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  16. Nanostructure formation during accumulative roll bonding of commercial purity titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimi, Mohsen, E-mail: m.karimi@shahroodut.ac.ir

    2016-12-15

    In this investigation, commercial purity titanium (CP–Ti) was subjected to accumulative roll bonding (ARB) process up to 8 cycles (equivalent strain of 6.4) at the ambient temperature. Transmission electron microscopy (TEM) and X–ray diffraction line profile analysis (XRDLPA) were utilized to investigate the microstructure and grain size evolution. Both characterization techniques could clarify the non–uniform microstructure in the early stages and the uniform microstructure in the final stages of the process. The effectiveness of ARB for the fabrication of the nano–grained structure in CP–Ti was revealed. It was found that the SFE is not the only factor affecting grain refinement,more » as compared with other studies on ARB of FCC materials. Influence of other factors such as the melting temperature and the crystalline structure of the material was determined on the grain refinement. - Highlights: •Nano–grained commercial purity titanium was produced by accumulative roll bonding. •TEM and XRDLPA were used for the characterization of the microstructure. •Important factors affecting the grain size of ARBed materials were discussed.« less

  17. Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides.

    PubMed

    Zhao, Lina; Cánovas-Márquez, José T; Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2016-02-01

    Fatty acid biosynthesis in oleaginous fungi requires the supply of reducing power, NADPH, and the precursor of fatty acids, acetyl-CoA, which is generated in the cytosol being produced by ATP: citrate lyase which requires citrate to be, transported from the mitochondrion by the citrate/malate/pyruvate transporter. This transporter, which is within the mitochondrial membrane, transports cytosolic malate into the mitochondrion in exchange for mitochondrial citrate moving into the cytosol (Fig. 1). The role of malate transporter in lipid accumulation in oleaginous fungi is not fully understood, however. Therefore, the expression level of the mt gene, coding for a malate transporter, was manipulated in the oleaginous fungus Mucor circinelloides to analyze its effect on lipid accumulation. The results showed that mt overexpression increased the lipid content for about 70 % (from 13 to 22 % dry cell weight, CDW), whereas the lipid content in mt knockout mutant decreased about 27 % (from 13 to 9.5 % CDW) compared with the control strain. Furthermore, the extracellular malate concentration was decreased in the mt overexpressing strain and increased in the mt knockout strain compared with the wild-type strain. This work suggests that the malate transporter plays an important role in regulating lipid accumulation in oleaginous fungus M. circinelloides.

  18. Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification.

    PubMed

    Eroglu, Ela; Okada, Shigeru; Melis, Anastasios

    2011-08-01

    Six different strains of the green microalgae Botryococcus belonging to the A-race or B-race, accumulating alkadiene or botryococcene hydrocarbons, respectively, were compared for biomass and hydrocarbon productivities. Biomass productivity was assessed gravimetrically upon strain growth in the laboratory under defined conditions. Hydrocarbon productivities were measured by three different and independent experimental approaches, including density equilibrium of the intact cells and micro-colonies, spectrophotometric analysis of hydrocarbon extracts, and gravimetric quantitation of eluted hydrocarbons. All three hydrocarbon-quantitation methods yielded similar results for each of the strains examined. The B-race microalgae Botryococcus braunii var. Showa and Kawaguchi-1 constitutively accumulated botryococcene hydrocarbons equivalent to 30% and 20%, respectively, of their overall biomass. The A-race microalgae Botryococcus braunii, varieties Yamanaka, UTEX 2441 and UTEX LB572 constitutively accumulated alkadiene hydrocarbons ranging from 14% to 13% and 10% of their overall biomass, respectively. Botryococcus sudeticus (UTEX 2629), a morphologically different green microalga, had the lowest hydrocarbon accumulation, equal to about 3% of its overall biomass. Results validate the density equilibrium and spectrophotometric analysis methods in the quantitation of botryococcene-type hydrocarbons. These analytical advances will serve in the screening and selection of B. braunii and of other microalgae in efforts to identify those having a high hydrocarbon content for use in commercial applications.

  19. Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the white sea coastal rocks (Russia).

    PubMed

    Chekanov, Konstantin; Lobakova, Elena; Selyakh, Irina; Semenova, Larisa; Sidorov, Roman; Solovchenko, Alexei

    2014-08-15

    We report on a novel arctic strain BM1 of a carotenogenic chlorophyte from a coastal habitat with harsh environmental conditions (wide variations in solar irradiance, temperature, salinity and nutrient availability) identified as Haematococcus pluvialis Flotow. Increased (25‰) salinity exerted no adverse effect on the growth of the green BM1 cells. Under stressful conditions (high light, nitrogen and phosphorus deprivation), green vegetative cells of H. pluvialis BM1 grown in BG11 medium formed non-motile palmelloid cells and, eventually, hematocysts capable of a massive accumulation of the keto-carotenoid astaxanthin with a high nutraceutical and therapeutic potential. Routinely, astaxanthin was accumulated at the level of 4% of the cell dry weight (DW), reaching, under prolonged stress, 5.5% DW. Astaxanthin was predominantly accumulated in the form of mono- and diesters of fatty acids from C16 and C18 families. The palmelloids and hematocysts were characterized by the formation of red-colored cytoplasmic lipid droplets, increasingly large in size and number. The lipid droplets tended to merge and occupied almost the entire volume of the cell at the advanced stages of stress-induced carotenogenesis. The potential application of the new strain for the production of astaxanthin is discussed in comparison with the H. pluvialis strains currently employed in microalgal biotechnology.

  20. Screening high oleaginous Chlorella strains from different climate zones.

    PubMed

    Xu, Jin; Hu, Hanhua

    2013-09-01

    In outdoor cultivation, screening strains adapted to a wide temperature range or suitable strains for different environmental temperatures is of great importance. In this study, triacylglycerol (TAG) content of 23 oil-producing Chlorella strains from different climate zones were analyzed by thin layer chromatography. Four selected Chlorella strains (NJ-18, NJ-7, NMX35N and NMX139N) with rather high TAG content had higher total lipid content compared with Chlorella vulgaris SAG 211-11b. In particular, NJ-18 displayed the highest TAG productivity among the four high oil-producing Chlorella strains. Accumulation of TAGs in strain NMX35N changed a little from 30 to 40°C, showing a desirable characteristic of accumulating TAGs at high temperatures. Our results demonstrated that NJ-18 and NMX35N had suitable fatty acid profiles and good adaption to low and high temperatures respectively. Therefore, cultivation of the two Chlorella strains together might be a good option for economic biodiesel production during the whole seasons of the year. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Acetobacter xylinum Mutant with High Cellulose Productivity and an Ordered Structure.

    PubMed

    Watanabe, K; Tabuchi, M; Ishikawa, A; Takemura, H; Tsuchida, T; Morinaga, Y; Yoshinaga, F

    1998-01-01

    Acetobacter xylinum subsp. sucrofermentans BPR2001, a cellulose-producing bacterium, that was newly isolated from a natural source, produced large amounts of the water-soluble polysaccharide, acetan. UDP-glucose is known to be the direct precursor in the synthetic pathways of both cellulose and acetan. We attempted to breed mutant strains and succeeded in obtaining one, BPR3001A, which produced 65% more bacterial cellulose and accumulated 83% less acetan than the parent strain, BPR2001. The cellulose formed was found to be structurally ordered, with higher degrees of polymerization and crystallinity and larger crystallite size than those produced by BPR2001 and other conventional strains. Furthermore, a processed dry sheet of this cellulose exhibited a higher Young's modulus than that of the wild strain. The ordered structure of the cellulose obtained was probably due to the decreased amount of acetan which may reflect the ribbon assembly of cellulose fibrils without prevention of hydrogen bonding between microfibrils.

  2. Compatibility of a wild type and its genetically modified Sinorhizobium strain with two mycorrhizal fungi on Medicago species as affected by drought stress.

    PubMed

    Vázquez, M M.; Azcón, R; Barea, J M.

    2001-07-01

    The effect of double inoculation with two strains of Sinorhizobium meliloti [the wild type (WT) strain GR4 and its genetically modified (GM) derivative GR4(pCK3)], and two species of arbuscular mycorrhizal (AM) fungi (Glomus deserticola and Glomus intraradices) was examined in a microcosm system on three species of Medicago (M. nolana, M. rigidula, M. rotata). Two water regimes (80 and 100% water holding capacity, WHC) were assayed. The efficiency of each AM fungus increasing plant growth, nutrient content, nodulation and water-stress tolerance was related to the Sinorhizobium strains and Medicago species. This indicates selective and specific compatibilities between microsymbionts and the common host plant. Differential effects of the mycorrhizal isolates were not associated with their colonizing ability. Nodulation and mycorrhizal dependency (MD) changed in each plant genotype in accordance with the Sinorhizobium strain and AM fungi involved. Generally, Medicago sp. MD decreased under water-stress conditions even when these conditions did not affect AM colonization (%). Proline accumulation in non-mycorrhizal plant leaves was increased by water stress, except in M. rotata plants. Differences in proline accumulation in AM-colonized plants suggest that both the AM fungus and the Sinorhizobium strain were able to induce different degrees of osmotic adjustment. Mycorrhizal plants nodulated by the WT strain accumulated more proline in M. rigidula and M. rotata under water stress than non-mycorrhizal plants. Conversely, mycorrhizal plants nodulated by the GM strain accumulated less proline in response to both AM colonization and drought. These results indicated changes in the synthesis of this nitrogenous osmoregulator product associated with microbial inoculation and drought tolerance. Mycorrhizal plants nodulated by the GM Sinorhizobium strain seem to suffer less from the detrimental effect of water stress, since under water limitation relative plant growth, percentage of AM colonization, root dry weight and the highest R/S ratio remained the same. The fact that GM nodulated plants are better adapted to drought stress could be of practical interest and the management of GM microorganism inoculation may be crucial for biotechnological approaches to improving crop yield in dry environments.

  3. High-Throughput Screening for a Moderately Halophilic Phenol-Degrading Strain and Its Salt Tolerance Response

    PubMed Central

    Lu, Zhi-Yan; Guo, Xiao-Jue; Li, Hui; Huang, Zhong-Zi; Lin, Kuang-Fei; Liu, Yong-Di

    2015-01-01

    A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration) over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process. PMID:26020478

  4. rRNA and Poly-β-Hydroxybutyrate Dynamics in Bioreactors Subjected to Feast and Famine Cycles

    PubMed Central

    Frigon, Dominic; Muyzer, Gerard; van Loosdrecht, Mark; Raskin, Lutgarde

    2006-01-01

    Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-β-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage. PMID:16597926

  5. rRNA and poly-beta-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles.

    PubMed

    Frigon, Dominic; Muyzer, Gerard; van Loosdrecht, Mark; Raskin, Lutgarde

    2006-04-01

    Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-beta-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage.

  6. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol

    PubMed Central

    2012-01-01

    Background Glycerol has enhanced its biotechnological importance since it is a byproduct of biodiesel synthesis. A study of Escherichia coli physiology during growth on glycerol was performed combining transcriptional-proteomic analysis as well as kinetic and stoichiometric evaluations in the strain JM101 and certain derivatives with important inactivated genes. Results Transcriptional and proteomic analysis of metabolic central genes of strain JM101 growing on glycerol, revealed important changes not only in the synthesis of MglB, LamB and MalE proteins, but also in the overexpression of carbon scavenging genes: lamB, malE, mglB, mglC, galP and glk and some members of the RpoS regulon (pfkA, pfkB, fbaA, fbaB, pgi, poxB, acs, actP and acnA). Inactivation of rpoS had an important effect on stoichiometric parameters and growth adaptation on glycerol. The observed overexpression of poxB, pta, acs genes, glyoxylate shunt genes (aceA, aceB, glcB and glcC) and actP, suggested a possible carbon flux deviation into the PoxB, Acs and glyoxylate shunt. In this scenario acetate synthesized from pyruvate with PoxB was apparently reutilized via Acs and the glyoxylate shunt enzymes. In agreement, no acetate was detected when growing on glycerol, this strain was also capable of glycerol and acetate coutilization when growing in mineral media and derivatives carrying inactivated poxB or pckA genes, accumulated acetate. Tryptophanase A (TnaA) was synthesized at high levels and indole was produced by this enzyme, in strain JM101 growing on glycerol. Additionally, in the isogenic derivative with the inactivated tnaA gene, no indole was detected and acetate and lactate were accumulated. A high efficiency aromatic compounds production capability was detected in JM101 carrying pJLBaroGfbrtktA, when growing on glycerol, as compared to glucose. Conclusions The overexpression of several carbon scavenging, acetate metabolism genes and the absence of acetate accumulation occurred in JM101 cultures growing on glycerol. To explain these results it is proposed that in addition to the glycolytic metabolism, a gluconeogenic carbon recycling process that involves acetate is occurring simultaneously in this strain when growing on glycerol. Carbon flux from glycerol can be efficiently redirected in JM101 strain into the aromatic pathway using appropriate tools. PMID:22513097

  7. Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads

    NASA Astrophysics Data System (ADS)

    Ren, Huai-Hui; Wang, Xi-Shu

    2014-04-01

    This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

  8. Analysis of energy states where electrons and holes coexist in pseudomorphically strained InAs high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Nishio, Yui; Sato, Takato; Hirayama, Naomi; Iida, Tsutomu; Takanashi, Yoshifumi

    2016-04-01

    In strained high-electron-mobility transistors (HEMTs) with InAs as the channel, excess electrons and holes are generated in the drain region by impact ionization. In the source region, electrons are injected to recombine with accumulated holes by the Auger process. This causes the shift of the gate potential, V GS,shift, for HEMTs. For a system where electrons and holes coexist, we established a theory taking into account the nonparabolicity of the conduction band in the InAs channel. This theory enables us to rigorously determine not only the energy states and the concentration profiles for both carriers but also the V GS,shift due to an accumulation of holes. We have derived the Auger recombination theory which takes into account the Fermi-Dirac statistics and is applicable to an arbitrary shape of potential energy. The Auger recombination lifetime τA for InAs-PHEMTs was estimated as a function of the sheet hole concentration, p s, and τA was on the order of psec for p s exceeding 1012 cm-2.

  9. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast

    PubMed Central

    Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.

    2013-01-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966

  10. AoAtg26, a putative sterol glucosyltransferase, is required for autophagic degradation of peroxisomes, mitochondria, and nuclei in the filamentous fungus Aspergillus oryzae.

    PubMed

    Kikuma, Takashi; Tadokoro, Takayuki; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2017-02-01

    Autophagy is a conserved process in eukaryotic cells for degradation of cellular proteins and organelles. In filamentous fungi, autophagic degradation of organelles such as peroxisomes, mitochondria, and nuclei occurs in basal cells after the prolonged culture, but its mechanism is not well understood. Here, we functionally analyzed the filamentous fungus Aspergillus oryzae AoAtg26, an ortholog of the sterol glucosyltransferase PpAtg26 involved in pexophagy in the yeast Pichia pastoris. Deletion of Aoatg26 caused a severe decrease in conidiation and aerial hyphae formation, which is typically observed in the autophagy-deficient A. oryzae strains. In addition, cup-shaped AoAtg8-positive membrane structures were accumulated in the Aoatg26 deletion strain, indicating that autophagic process is impaired. Indeed, the Aoatg26 deletion strain was defective in the degradation of peroxisomes, mitochondria, and nuclei. Taken together, AoAtg26 plays an important role for autophagic degradation of organelles in A. oryzae, which may physiologically contribute to the differentiation in filamentous fungi.

  11. An Outbreak of Diarrhea in Mandera, Kenya, Due to Escherichia coli Serogroup O-Nontypable Strain That Had a Coding Gene for Enteroaggregative E. coli Heat-Stable Enterotoxin 1

    PubMed Central

    Ochi, Sadayuki; Shah, Mohammad; Odoyo, Erick; Bundi, Martin; Miringu, Gabriel; Guyo, Sora; Wandera, Ernest; Kathiiko, Cyrus; Kariuki, Samuel; Karama, Mohamed; Tsuji, Takao; Ichinose, Yoshio

    2017-01-01

    In an outbreak of gastroenteritis in December 2009, in Mandera, Kenya, Escherichia coli O-nontypable (ONT) strain was isolated from stool specimens of patients (18/24, 75%). The E. coli ONT organisms could not be assigned to any of the recognized diarrheagenic groups of E. coli. However, they possessed the enteroaggregative E. coli heat-stable enterotoxin-1 gene. The cell-free culture filtrates of the E. coli ONT strain isolated from the outbreak cases induced considerable amount of fluid accumulation in suckling mouse intestine, indicating production of an enterotoxic factor(s). These results identify E. coli that did not have any diarrheagenic characteristics except astA as the etiological agent of the diarrheal outbreak in Mandera. It is however considered necessary to characterize the fluid accumulation factor(s) to determine whether any novel toxins were responsible for the fluid accumulation. Moreover, it is important to study dissemination of strains producing the enterotoxic factor(s) to assess their public health significance distribution in the environment. PMID:27994101

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershkovitz, N.; Oren, A.; Cohen, Y.

    The drought-resistant cyanobacteria Phormidium autumnale, strain LPP{sub 4}, and a Chroococcidiopsis sp. accumulated trehalose, sucrose, and both trehalose and sucrose, respectively, in response to matric water stress. Accumulated sugar concentrations reached values of up to 6.2 {mu}g of trehalose per {mu}g of chlorophyll in P. autumnale, 6.9 {mu}g of sucrose per {mu}g of chlorophyll in LPP{sub 4}, and 4.1 {mu}g of sucrose and 3.2 {mu}g of trehalose per {mu}g of chlorophyll in the Chroococcidiopsis sp. The same sugars were accumulated by these cyanobacteria in similar concentrations under osmotic water stress. Cyanobacteria that did not show drought resistance (Plectonema boryanum andmore » Synechococcus strain PCC 7942) did not accumulate significant amounts of sugars when matric water stress was applied.« less

  13. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus.

    PubMed

    Shin, Kwang-Soo; Park, Hee-Soo; Kim, Young-Hwan; Yu, Jae-Hyuk

    2013-07-11

    FlbA is a regulator of G-protein signaling protein that plays a central role in attenuating heterotrimeric G-protein mediated vegetative growth signaling in Aspergillus. The deletion of flbA (∆flbA) in the opportunistic human pathogen Aspergillus fumigatus results in accelerated cell death and autolysis in submerged culture. To further investigate the effects of ∆flbA on intracellular protein levels we carried out 2-D proteome analyses of 2-day old submerged cultures of ∆flbA and wild type (WT) strains and observed 160 differentially expressed proteins. Via nano-LC-ESI-MS/MS analyses, we revealed the identity of 10 and 2 proteins exhibiting high and low level accumulation, respectively, in ∆flbA strain. Notably, the GliT protein is accumulated at about 1800-fold higher levels in ∆flbA than WT. Moreover, GliT is secreted at high levels from ∆flbA strain, whereas Sod1 (superoxide dismutase) is secreted at a higher level in WT. Northern blot analyses reveal that ∆flbA results in elevated accumulation of gliT mRNA. Consequently, ∆flbA strain exhibits enhanced tolerance to gliotoxin toxicity. Finally, ∆flbA strain displayed enhanced SOD activity and elevated resistance to menadione and paraquat. In summary, FlbA-mediated signaling control negatively affects cellular responses associated with detoxification of reactive oxygen species and of exogenous gliotoxin in A. fumigatus. Regulator of G protein Signaling (RGS) proteins play crucial roles in fundamental biological processes in filamentous fungi. FlbA is the first studied filamentous fungal RGS protein, yet much remains to be understood about its roles in the opportunistic human pathogen Aspergillus fumigatus. In the present study, we examined the effects of the deletion of flbA using comprehensive analyses of the intra- and extracellular proteomes of A. fumigatus wild type and the flbA deletion mutant. Via MS analyses, we identified 10 proteins exhibiting high level accumulation in the flbA deletion mutant and 8 proteins differentially secreted in wild type and the flbA mutant. Based on proteomic analyses, we further examined the role of FlbA and found that FlbA down-regulates gliT expression and SOD activity. Our results proposed that FlbA-mediated signaling control negatively affects cellular responses associated with detoxification of reactive oxygen species and exogenous gliotoxin in A. fumigatus. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Ratcheting in a nonlinear viscoelastic adhesive

    NASA Astrophysics Data System (ADS)

    Lemme, David; Smith, Lloyd

    2017-11-01

    Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.

  15. A model of convergent plate margins based on the recent tectonics of Shikoku, Japan

    NASA Technical Reports Server (NTRS)

    Bischke, R. E.

    1974-01-01

    A viscoelastic finite element plate tectonic model is applied to displacement data for the island of Shikoku, Japan. The flow properties and geometry of the upper portions of the earth are assumed known from geophysical evidence, and the loading characteristics are determined from the model. The nature of the forces acting on the Philippine Sea plate, particularly in the vicinity of the Nankai trough, is determined. Seismic displacement data related to the 1946 Nankaido earthquake are modeled in terms of a thick elastic plate overlying a fluidlike substratum. The sequence of preseismic and seismic displacements can be explained in terms of two independent processes operating on elastic lithospheric plates: a strain accumulation process caused by vertical downward forces acting on or within the lithosphere in the vicinity of the trench, and a strain release process caused by plate failure along a preexisting zone on weakness. This is a restatement of Reid's elastic rebound theory in terms of elastic lithospheric plates.

  16. Water pumping in mantle shear zones

    PubMed Central

    Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony

    2017-01-01

    Water plays an important role in geological processes. Providing constraints on what may influence the distribution of aqueous fluids is thus crucial to understanding how water impacts Earth's geodynamics. Here we demonstrate that ductile flow exerts a dynamic control on water-rich fluid circulation in mantle shear zones. Based on amphibole distribution and using dislocation slip-systems as a proxy for syn-tectonic water content in olivine, we highlight fluid accumulation around fine-grained layers dominated by grain-size-sensitive creep. This fluid aggregation correlates with dislocation creep-accommodated strain that localizes in water-rich layers. We also give evidence of cracking induced by fluid pressure where the highest amount of water is expected. These results emphasize long-term fluid pumping attributed to creep cavitation and associated phase nucleation during grain size reduction. Considering the ubiquitous process of grain size reduction during strain localization, our findings shed light on multiple fluid reservoirs in the crust and mantle. PMID:28593947

  17. Production of 3-hydroxypropionic acid by balancing the pathway enzymes using synthetic cassette architecture.

    PubMed

    Sankaranarayanan, Mugesh; Somasundar, Ashok; Seol, Eunhee; Chauhan, Ashish Singh; Kwon, Seongjin; Jung, Gyoo Yeol; Park, Sunghoon

    2017-10-10

    Biological 3-hydroxypropionic acid (3-HP) production from glycerol is a two-step reaction catalyzed by glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH). Recombinant strains developed for 3-HP production often suffer from the accumulation of a toxic intermediate, 3-hydroxypropionaldehyde (3-HPA). In order to avoid 3-HPA accumulation, balancing of the two enzymatic activities, in the present study, was attempted by employment of synthetic-regulatory cassettes comprising varying-strength promoters and bicistronic ribosome-binding sites (RBSs). When tested in recombinant Escherichia coli, the cassettes could precisely and differentially control the gene expression in transcription, protein expression and enzymatic activity. Five recombinant strains showing different expressions for GDHt were developed and studied for 3-HPA accumulation and 3-HP production. It was found that 3-HPA accumulation could be completely abolished when expressing ALDH at a level approximately 8-fold higher than that of GDHt. One of the strains, SP4, produced 625mM (56.4g/L) of 3-HP in a fed-batch bioreactor, though late-period production was limited by acetate accumulation. Overall, this study demonstrated the importance of pathway balancing in 3-HP production as well as the utility of the synthetic cassette architecture for precise control of bacterial gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Phyllosphere yeasts rapidly break down biodegradable plastics

    PubMed Central

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  19. Phyllosphere yeasts rapidly break down biodegradable plastics.

    PubMed

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  20. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  1. Microbial control of hydrogen sulfide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of coresmore » and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.« less

  2. Accumulation of γ‐aminobutyric acid by E nterococcus avium 9184 in scallop solution in a two‐stage fermentation strategy

    PubMed Central

    Yang, Haoyue; Hu, Linfeng; Liu, Song

    2015-01-01

    Summary In this study, a new bacterial strain having a high ability to produce γ‐aminobutyric acid (GABA) was isolated from naturally fermented scallop solution and was identified as E nterococcus avium. To the best of our knowledge, this is the first study to prove that E . avium possesses glutamate decarboxylase activity. The strain was then mutagenized with UV radiation and was designated as E . avium 9184. Scallop solution was used as the culture medium to produce GABA. A two‐stage fermentation strategy was applied to accumulate GABA. In the first stage, cell growth was regulated. Optimum conditions for cell growth were pH, 6.5; temperature, 37°C; and glucose concentration, 10 g·L−1. This produced a maximum dry cell mass of 2.10 g·L−1. In the second stage, GABA formation was regulated. GABA concentration reached 3.71 g·L−1 at 96 h pH 6.0, 37°C and initial l‐monosodium glutamate concentration of 10 g·L−1. Thus, compared with traditional one‐stage fermentation, the two‐stage fermentation significantly increased GABA accumulation. These results provide preliminary data to produce GABA using E . avium and also provide a new approach to process and utilize shellfish. PMID:26200650

  3. Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats.

    PubMed

    Berlanga, Mercedes; Montero, M T; Fernández-Borrell, Jordi; Guerrero, Ricardo

    2006-06-01

    Microbial mat ecosystems are characterized by both seasonal and diel fluctuations in several physicochemical variables, so that resident microorganisms must frequently adapt to the changing conditions of their environment. It has been pointed out that, under stress conditions, bacterial cells with higher contents of poly-hydroxyalkanoates (PHA) survive longer than those with lower PHA content. In the present study, PHA-producing strains from Ebro Delta microbial mats were selected using the Nile red dying technique and the relative accumulation of PHA was monitored during further laboratory cultivation. The number of heterotrophic isolates in trypticase soy agar (TSA) was ca. 107 colony-forming units/g microbial mat. Of these, 100 randomly chosen colonies were replicated on mineral salt agar limited in nitrogen, and Nile red was added to the medium to detect PHA. Orange fluorescence, produced upon binding of the dye to polymer granules in the cell, was detected in approximately 10% of the replicated heterotrophic isolates. The kinetics of PHA accumulation in Pseudomonas putida, and P. oleovorans were compared with those of several of the environmental isolates spectrofluorometry. PHA accumulation, measured as relative fluorescence intensity, resulted in a steady-state concentration after 48 h of incubation in all strains assayed. At 72 h, the maximum fluorescence intensity of each strain incubated with glucose and fructose was usually similar. MAT-28 strain accumulated more PHA than the other isolates. The results show that data obtained from environmental isolates can highly improve studies based on modeling-simulation programs, and that microbial mats constitute an excellent source for the isolation of PHA-producing strains with industrial applications.

  4. Strain accumulation in southern California, 1973-1980.

    USGS Publications Warehouse

    Savage, J.C.; Prescott, W.H.; Lisowski, M.; King, N.E.

    1981-01-01

    Frequent surveys of seven trilateration networks in southern California over the interval 1973-1980 suggest that a regional increment in strain may have occurred in 1978-1979. Prior to 1978 and after late 1979 the strain accumulation has been predominantly a uniaxial north-south compression. This secular trend was interrupted sometime in 1978-1979 by an increment in both north-south and east-west extension in five of the seven networks. The onset of this change appears to have occurred first in the networks farthest south. The changes occurred without any unusual seismicity within the networks, but the overall seismicity in southern California was unusually low prior to and has been unusually high since the occurrence. The average principal strain rates for the seven networks in the 1973-1980 interval are 0.17 mu strain/yr north- south contraction and 0.08 mu strain/yr east-west extension. Although the observed increment in strain could be related to unidentified systematic error in the measuring system, a careful review of the measurements and comparisons with three other measuring systems reveal no appreciable cumulative systematic error. -Authors

  5. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.

    PubMed

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-09-29

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  6. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    PubMed Central

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-01-01

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress. PMID:26426027

  7. Accumulation of Astaxanthin by a New Haematococcus pluvialis Strain BM1 from the White Sea Coastal Rocks (Russia)

    PubMed Central

    Chekanov, Konstantin; Lobakova, Elena; Selyakh, Irina; Semenova, Larisa; Sidorov, Roman; Solovchenko, Alexei

    2014-01-01

    We report on a novel arctic strain BM1 of a carotenogenic chlorophyte from a coastal habitat with harsh environmental conditions (wide variations in solar irradiance, temperature, salinity and nutrient availability) identified as Haematococcus pluvialis Flotow. Increased (25‰) salinity exerted no adverse effect on the growth of the green BM1 cells. Under stressful conditions (high light, nitrogen and phosphorus deprivation), green vegetative cells of H. pluvialis BM1 grown in BG11 medium formed non-motile palmelloid cells and, eventually, hematocysts capable of a massive accumulation of the keto-carotenoid astaxanthin with a high nutraceutical and therapeutic potential. Routinely, astaxanthin was accumulated at the level of 4% of the cell dry weight (DW), reaching, under prolonged stress, 5.5% DW. Astaxanthin was predominantly accumulated in the form of mono- and diesters of fatty acids from C16 and C18 families. The palmelloids and hematocysts were characterized by the formation of red-colored cytoplasmic lipid droplets, increasingly large in size and number. The lipid droplets tended to merge and occupied almost the entire volume of the cell at the advanced stages of stress-induced carotenogenesis. The potential application of the new strain for the production of astaxanthin is discussed in comparison with the H. pluvialis strains currently employed in microalgal biotechnology. PMID:25196836

  8. The Formation of Ganymede's Grooved Terrain: Importance of Strain Weakening

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; McKinnon, W. B.; Showman, A. P.

    2008-12-01

    Nearly two-thirds of Ganymede's surface consists of relatively bright, young, tectonically deformed terrain dubbed grooved terrain. The grooved terrain consists of sets of parallel, undulatory ridges and troughs with peak to trough amplitudes of several hundred meters and periodic spacings that range from 3 to 10~km. The low slopes and periodic spacing of the grooves suggest that they formed via unstable extension of the ice lithosphere [e.g. Fink and Fletcher 1981, LPS XII; Pappalardo et al. 1998, Icarus 135]. Application of analytical models of unstable extension to Ganymede suggest that large amplitude grooves with appropriate wavelengths can form if the lithosphere is in pervasive brittle failure and if the lithospheric thermal gradient was relatively high (~45K km-1) [Dombard and McKinnon 2001, Icarus 154]; however, numerical models of unstable extension struggle to produce topographic amplitudes consistent with Ganymede's grooves (maximum amplitudes are a factor of five less than typical large amplitude grooves) [Bland and Showman 2007, Icarus 189]. The difficulties in producing large amplitude deformation may be overcome by the inclusion of strain weakening in models of groove formation. Strain weakening effects account for a material's tendency to strain more easily as viscous and/or plastic deformation accumulates, and as strain localizes in shear zones or along faults. When included in models of terrestrial extension, such effects can increase deformation amplitudes by up to several orders of magnitude [e.g. Fredericksen and Braun 2001, EPSL 188; Behn et al. 2002, EPSL 202]. Here we present the results of simulations of Ganymede's groove formation that include various strain weakening processes. Incorporation of a simple damage rheology, in which the yield strength of the ice lithosphere decreases as plastic strain accumulates, permits a factor of three increase in the amplitude of the simulated grooves, generating topography of 200~m or more. Such groove amplitudes are consistent with the lower-end of the range of observed groove amplitudes. More sophisticated strain weakening rheologies are likely to further increase deformation amplitudes. This work is supported by NASA PG&G.

  9. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.

    PubMed

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2017-06-01

    Glycerol is used by the cosmetic, paint, automotive, food, and pharmaceutical industries and for production of explosives. Currently, glycerol is available in commercial quantities as a by-product from biodiesel production, but the purity and the cost of its purification are prohibitive. The industrial production of glycerol by glucose aerobic fermentation using osmotolerant strains of the yeasts Candida sp. and Saccharomyces cerevisiae has been described. A major drawback of the aerobic process is the high cost of production. For this reason, the development of yeast strains that effectively convert glucose to glycerol anaerobically is of great importance. Due to its ability to grow under anaerobic conditions, the yeast S. cerevisiae is an ideal system for the development of this new biotechnological platform. To increase glycerol production and accumulation from glucose, we lowered the expression of TPI1 gene coding for triose phosphate isomerase; overexpressed the fused gene consisting the GPD1 and GPP2 parts coding for glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase, respectively; overexpressed the engineered FPS1 gene that codes for aquaglyceroporin; and overexpressed the truncated gene ILV2 that codes for acetolactate synthase. The best constructed strain produced more than 20 g of glycerol/L from glucose under micro-aerobic conditions and 16 g of glycerol/L under anaerobic conditions. The increase in glycerol production led to a drop in ethanol and biomass accumulation.

  10. Engineering Ashbya gossypii strains for de novo lipid production using industrial by-products.

    PubMed

    Lozano-Martínez, Patricia; Buey, Rubén M; Ledesma-Amaro, Rodrigo; Jiménez, Alberto; Revuelta, José Luis

    2017-03-01

    Ashbya gossypii is a filamentous fungus that naturally overproduces riboflavin, and it is currently exploited for the industrial production of this vitamin. The utilization of A. gossypii for biotechnological applications presents important advantages such as the utilization of low-cost culture media, inexpensive downstream processing and a wide range of molecular tools for genetic manipulation, thus making A. gossypii a valuable biotechnological chassis for metabolic engineering. A. gossypii has been shown to accumulate high levels of lipids in oil-based culture media; however, the lipid biosynthesis capacity is rather limited when grown in sugar-based culture media. In this study, by altering the fatty acyl-CoA pool and manipulating the regulation of the main ∆9 desaturase gene, we have obtained A. gossypii strains with significantly increased (up to fourfold) de novo lipid biosynthesis using glucose as the only carbon source in the fermentation broth. Moreover, these strains were efficient biocatalysts for the conversion of carbohydrates from sugarcane molasses to biolipids, able to accumulate lipids up to 25% of its cell dry weight. Our results represent a proof of principle showing the promising potential of A. gossypii as a competitive microorganism for industrial biolipid production using cost-effective feed stocks. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    PubMed

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Biosorption Potential of Bacillus salmalaya Strain 139SI for Removal of Cr(VI) from Aqueous Solution.

    PubMed

    Dadrasnia, Arezoo; Chuan Wei, Kelvin Swee; Shahsavari, Nasser; Azirun, Mohd Sofian; Ismail, Salmah

    2015-12-03

    The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya) 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG⁰, ΔH⁰, and ΔS⁰) indicated that the mechanism of Cr(VI) adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation.

  13. Biosorption Potential of Bacillus salmalaya Strain 139SI for Removal of Cr(VI) from Aqueous Solution

    PubMed Central

    Dadrasnia, Arezoo; Chuan Wei, Kelvin Swee; Shahsavari, Nasser; Azirun, Mohd Sofian; Ismail, Salmah

    2015-01-01

    The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya) 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG0, ΔH0, and ΔS0) indicated that the mechanism of Cr(VI) adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation. PMID:26633454

  14. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Yanchuan; Shan, Xinjian; Qu, Chunyan; Zhang, Yingfeng; Song, Xiaogang; Jiang, Yu; Zhang, Guohong; Nocquet, Jean-Mathieu; Gong, Wenyu; Gan, Weijun; Wang, Chisheng

    2017-12-01

    Based on the dense GPS velocity field in the northeastern margin of the Tibetan Plateau from 1999 to 2016, we have produced the deformation and strain characteristics of the Haiyuan fault and the Liupanshan fault. Estimated long-term slip rate along the Haiyuan-Liupanshan fault zones show a gradual decrease from 6.4 ± 1.6 mm/yr at the Tuolaishan fault to 2.9 ± 1.2 mm/yr at the Southern Liupanshan fault. Left-lateral thrusting movement was inverted for the Xiangshan-Tianjingshan fault (XS-TJS), which has an average slip rate of 2.1 ± 3.4 mm/yr during the study period. We also calculated the heterogeneous distribution of interseismic coupling along the fault zones. Our result also shows the locking depth of the Tianzhu seismic gap is ∼22 km. The slip rate deficit, the seismic moment accumulation rate, and the Coulomb stress accumulation rate are high on the fault planes, whereas the second invariant of the strain rate is low at the surface. The Liupanshan fault is locked to a depth of ∼23 km, and the corresponding seismic moment accumulation rate on the fault plane is high, while the strain rate at the surface is low. The accumulated strain along the Tianzhu seismic gap and the Liupanshan fault could be balanced by earthquakes with magnitudes of Mw7.9 and Mw7.4, considering the absence of large earthquakes over the last 1000 years and 1400 years respectively. The Haiyuan segments had ruptured during 1920 Haiyuan earthquake, and the estimated locking depth for period 1999-2016 is 5-10 km. Its seismic moment accumulation rate at depth is low and the strain rate at the surface is high. Our result indicates that 70% of the strike-slip along the Haiyuan segments transforms into thrusting along the Liupanshan fault, while the remaining 30% is related to the orogeny of the Liupanshan. For slip between the Haiyuan fault and the XS-TJS, about 27-34% of the slip is partitioned on the XS-TJS.

  15. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination.

    PubMed

    Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2018-03-01

    The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

    PubMed Central

    Salgaonkar, Bhakti B.; Bragança, Judith M.

    2017-01-01

    Sugarcane bagasse (SCB), one of the major lignocellulosic agro-industrial waste products, was used as a substrate for biosynthesis of polyhydroxyalkanoates (PHA) by halophilic archaea. Among the various wild-type halophilic archaeal strains screened, Halogeometricum borinquense strain E3 showed better growth and PHA accumulation as compared to Haloferaxvolcanii strain BBK2, Haloarcula japonica strain BS2, and Halococcus salifodinae strain BK6. Growth kinetics and bioprocess parameters revealed the maximum PHA accumulated by strain E3 to be 50.4 ± 0.1 and 45.7 ± 0.19 (%) with specific productivity (qp) of 3.0 and 2.7 (mg/g/h) using NaCl synthetic medium supplemented with 25% and 50% SCB hydrolysate, respectively. PHAs synthesized by strain E3 were recovered in chloroform using a Soxhlet apparatus. Characterization of the polymer using crotonic acid assay, X-ray diffraction (XRD), differential scanning calorimeter (DSC), Fourier transform infrared (FT-IR), and proton nuclear magnetic resonance (1H-NMR) spectroscopy analysis revealed the polymer obtained from SCB hydrolysate to be a co-polymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] comprising of 13.29 mol % 3HV units. PMID:28952529

  17. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived from Commercial Baker’s Yeast

    PubMed Central

    Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki

    1999-01-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Δnth1 and Δath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Δnth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673

  18. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    PubMed

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3-hydroxybutyrate and the mcl-PHAs were composed of 3-hydroxyoctanoate and 3-hydroxyhexanoate monomers. These results demonstrated, as proof of concept, that talented strains such as P. pseudoalcaligenes might be applied in bioremediation of industrial residues containing cyanide, while concomitantly generate by-products like polyhydroxyalkanoates. A customized optimization of the target bioremediation process is required to gain benefits of this type of approaches.

  19. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation

    PubMed Central

    Sinha, Sangram; Mukherjee, Samir Kumar

    2009-01-01

    A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411

  20. A downstream box fusion allows stable accumulation of a bacterial cellulase in Chlamydomonas reinhardtii chloroplasts.

    PubMed

    Richter, Lubna V; Yang, Huijun; Yazdani, Mohammad; Hanson, Maureen R; Ahner, Beth A

    2018-01-01

    We investigated strategies to improve foreign protein accumulation in the chloroplasts of the model algae Chlamydomonas reinhardtii and tested the outcome in both standard culture conditions as well as one pertinent to algal biofuel production. The downstream box (DB) of the TetC or NPTII genes, the first 15 codons following the start codon, was N -terminally fused to the coding region of cel6A , an endoglucanase from Thermobifida fusca . We also employed a chimeric regulatory element, consisting of the 16S rRNA promoter and the atpA 5'UTR, previously reported to enhance protein expression, to regulate the expression of the TetC- cel6A gene. We further investigated the accumulation of TetC-Cel6A under N -deplete growth conditions. Both of the DB fusions improved intracellular accumulation of Cel6A in transplastomic C. reinhardtii strains though the TetC DB was much more effective than the NPTII DB. Furthermore, using the chimeric regulatory element, the TetC-Cel6A protein accumulation displayed a significant increase to 0.3% total soluble protein (TSP), whereas NPTII-Cel6A remained too low to quantify. Comparable levels of TetC- and NPTII- cel6A transcripts were observed, which suggests that factors other than transcript abundance mediate the greater TetC-Cel6A accumulation. The TetC-Cel6A accumulation was stable regardless of the growth stage, and the transplastomic strain growth rate was not altered. When transplastomic cells were suspended in N -deplete medium, cellular levels of TetC-Cel6A increased over time along with TSP, and were greater than those in cells suspended in N -replete medium. The DB fusion holds great value as a tool to enhance foreign protein accumulation in C. reinhardtii chloroplasts and its influence is related to translation or other post-transcriptional processes. Our results also suggest that transplastomic protein production can be compatible with algal biofuel production strategies. Cells displayed a consistent accumulation of recombinant protein throughout the growth phase and nitrogen starvation, a strategy used to induce lipid production in algae, led to higher cellular heterologous protein content. The latter result is contrary to what might have been expected a priori and is an important result for the development of future algal biofuel systems, which will likely require co-products for economic sustainability.

  1. Is policy well-targeted to remedy financial strain among caregivers of severely injured U.S. service members?

    PubMed

    Van Houtven, Courtney Harold; Friedemann-Sánchez, Greta; Clothier, Barbara; Levison, Deborah; Taylor, Brent C; Jensen, Agnes C; Phelan, Sean M; Griffin, Joan M

    U.S. military service members have sustained severe injuries since the start of the wars in Iraq and Afghanistan. This paper aims to determine the factors associated with financial strain of their caregivers and establish whether recent federal legislation targets caregivers experiencing financial strain. In our national survey, 62.3% of caregivers depleted assets and/or accumulated debt, and 41% of working caregivers left the labor force. If a severely injured veteran needed intensive help, the primary caregiver faced odds 4.63 times higher of leaving the labor force, and used $27,576 more in assets and/or accumulated debt compared to caregivers of veterans needing little or no assistance.

  2. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization.

    PubMed

    Li, Ya; Wang, Qi; Wang, Lu; He, Lin-Yan; Sheng, Xia-Fang

    2016-02-01

    Endophytic bacterial strain K3-2 was isolated from the roots of Sorghum sudanense (an bioenergy plant) grown in a Cu mine wasteland soils and characterized. Strain K3-2 was identified as Enterobacter sp. based on 16S rRNA gene sequence analysis. Strain K3-2 exhibited Cu resistance and produced 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), siderophores, and arginine decarboxylase. Pot experiments showed that strain K3-2 significantly increased the dry weight and root Cu accumulation of Sorghum sudanense grown in the Cu mine wasteland soils. Furthermore, increase in total Cu uptake (ranging from 49% to 95%) of the bacterial inoculated-Sorghum sudanense was observed compared to the control. Notably, most of Cu (83-86%) was accumulated in the roots of Sorghum sudanense. Furthermore, inoculation with strain K3-2 was found to significantly increase Cu bioconcentration factors and the proportions of IAA- and siderophore-producing bacteria in the root interiors and rhizosphere soils of Sorghum sudanense compared with the control. Significant decrease in the available Cu content was also observed in the rhizosphere soils of the bacterial-inoculated Sorghum sudanense. The results suggest that the endophytic bacterial strain K3-2 may be exploited for promoting Sorghum sudanense biomass production and Cu phytostabilization in the Cu mining wasteland soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222

    PubMed Central

    Olaya-Abril, Alfonso; Luque-Almagro, Víctor M; Manso, Isabel; Gates, Andrew J; Moreno-Vivián, Conrado; Richardson, David J

    2017-01-01

    Abstract Paracoccus denitrificans PD1222 accumulates short-length polyhydroxyalkanoates, poly(3-hydroxybutyrate), under nitrogen-deficient conditions. Polyhydroxybutyrate metabolism requires the 3-ketoacyl-CoA thiolase PhaA, the acetoacetyl-CoA dehydrogenase/reductase PhaB and the synthase PhaC for polymerization. Additionally, P. denitrificans PD1222 grows aerobically with nitrate as sole nitrogen source. Nitrate assimilation is controlled negatively by ammonium through the two-component NtrBC system. NtrB is a sensor kinase that autophosphorylates a histidine residue under low-nitrogen concentrations and, in turn, transfers a phosphoryl group to an aspartate residue of the response regulator NtrC protein, which acts as a transcriptional activator of the P. denitrificans PD1222 nasABGHC genes. The P. denitrificans PD1222 NtrB mutant was unable to use nitrate efficiently as nitrogen source when compared to the wild-type strain, and it also overproduced poly(3-hydroxybutyrate). Acetyl-CoA concentration in the P. denitrificans PD1222 NtrB mutant strain was higher than in the wild-type strain. The expression of the phaC gene was also increased in the NtrB mutant when compared to the wild-type strain. These results suggest that accumulation of poly(3-hydroxybutyrate) in the NtrB mutant strain of PD1222 responds to the high levels of acetyl-CoA that accumulate in the cytoplasm as consequence of its inability to efficiently use nitrate as nitrogen source. PMID:29228177

  4. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas.

    PubMed

    Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha

    2018-07-01

    Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.

  5. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Jebbar, Mohamed; Thiel, Axel; Kervarec, Nelly; Oger, Phil M

    2016-07-05

    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response.

  6. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus

    PubMed Central

    Cario, Anaïs; Jebbar, Mohamed; Thiel, Axel; Kervarec, Nelly; Oger, Phil M.

    2016-01-01

    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. PMID:27378270

  7. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.; Mittal, A.; Mohagheghi, A.

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose,more » glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.« less

  8. Characterization of Two Novel Propachlor Degradation Pathways in Two Species of Soil Bacteria

    PubMed Central

    Martin, Margarita; Mengs, Gerardo; Allende, Jose Luis; Fernandez, Javier; Alonso, Ramon; Ferrer, Estrella

    1999-01-01

    Propachlor (2-chloro-N-isopropylacetanilide) is an acetamide herbicide used in preemergence. In this study, we isolated and characterized a soil bacterium, Acinetobacter strain BEM2, that was able to utilize this herbicide as the sole and limiting carbon source. Identification of the intermediates of propachlor degradation by this strain and characterization of new metabolites in the degradation of propachlor by a previously reported strain of Pseudomonas (PEM1) support two different propachlor degradation pathways. Washed-cell suspensions of strain PEM1 with propachlor accumulated N-isopropylacetanilide, acetanilide, acetamide, and catechol. Pseudomonas strain PEM1 grew on propachlor with a generation time of 3.4 h and a Ks of 0.17 ± 0.04 mM. Acinetobacter strain BEM2 grew on propachlor with a generation time of 3.1 h and a Ks of 0.3 ± 0.07 mM. Incubations with strain BEM2 resulted in accumulation of N-isopropylacetanilide, N-isopropylaniline, isopropylamine, and catechol. Both degradative pathways were inducible, and the principal product of the carbon atoms in the propachlor ring was carbon dioxide. These results and biodegradation experiments with the identified metabolites indicate that metabolism of propachlor by Pseudomonas sp. strain PEM1 proceeds through a different pathway from metabolism by Acinetobacter sp. strain BEM2. PMID:9925619

  9. Methods of producing protoporphyrin IX and bacterial mutants therefor

    DOEpatents

    Zhou, Jizhong; Qiu, Dongru; He, Zhili; Xie, Ming

    2016-03-01

    The presently disclosed inventive concepts are directed in certain embodiments to a method of producing protoporphyrin IX by (1) cultivating a strain of Shewanella bacteria in a culture medium under conditions suitable for growth thereof, and (2) recovering the protoporphyrin IX from the culture medium. The strain of Shewanella bacteria comprises at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX. In certain embodiments of the method, the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or of shew_1140. In other embodiments, the presently disclosed inventive concepts are directed to mutant strains of Shewanella bacteria having at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX during cultivation of the bacteria. In certain embodiments the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or shew_1140.

  10. An Outbreak of Diarrhea in Mandera, Kenya, Due to Escherichia coli Serogroup O-Nontypable Strain That Had a Coding Gene for Enteroaggregative E. coli Heat-Stable Enterotoxin 1.

    PubMed

    Ochi, Sadayuki; Shah, Mohammad; Odoyo, Erick; Bundi, Martin; Miringu, Gabriel; Guyo, Sora; Wandera, Ernest; Kathiiko, Cyrus; Kariuki, Samuel; Karama, Mohamed; Tsuji, Takao; Ichinose, Yoshio

    2017-02-08

    In an outbreak of gastroenteritis in December 2009, in Mandera, Kenya, Escherichia coli O-nontypable (ONT) strain was isolated from stool specimens of patients (18/24, 75%). The E. coli ONT organisms could not be assigned to any of the recognized diarrheagenic groups of E. coli However, they possessed the enteroaggregative E. coli heat-stable enterotoxin-1 gene. The cell-free culture filtrates of the E. coli ONT strain isolated from the outbreak cases induced considerable amount of fluid accumulation in suckling mouse intestine, indicating production of an enterotoxic factor(s). These results identify E. coli that did not have any diarrheagenic characteristics except astA as the etiological agent of the diarrheal outbreak in Mandera. It is however considered necessary to characterize the fluid accumulation factor(s) to determine whether any novel toxins were responsible for the fluid accumulation. Moreover, it is important to study dissemination of strains producing the enterotoxic factor(s) to assess their public health significance distribution in the environment. © The American Society of Tropical Medicine and Hygiene.

  11. Genetically based population divergence in overwintering energy mobilization in brook charr (Salvelinus fontinalis).

    PubMed

    Crespel, Amélie; Bernatchez, Louis; Garant, Dany; Audet, Céline

    2013-03-01

    Investigating the nature of physiological traits potentially related to fitness is important towards a better understanding of how species and/or populations may respond to selective pressures imposed by contrasting environments. In northern species in particular, the ability to mobilize energy reserves to compensate for the low external energy intake during winter is crucial. However, the phenotypic and genetic bases of energy reserve accumulation and mobilization have rarely been investigated, especially pertaining to variation in strategy adopted by different populations. In the present study, we documented variation in several energy reserve variables and estimated their quantitative genetic basis to test the null hypothesis of no difference in variation at those traits among three strains of brook charr (Salvelinus fontinalis) and their reciprocal hybrids. Our results indicate that the strategy of winter energy preparation and mobilization was specific to each strain, whereby (1) domestic fish accumulated a higher amount of energy reserves before winter and kept accumulating liver glycogen during winter despite lower feeding; (2) Laval fish used liver glycogen and lipids during winter and experienced a significant decrease in condition factor; (3) Rupert fish had relatively little energy reserves accumulated at the end of fall and preferentially mobilized visceral fat during winter. Significant heritability for traits related to the accumulation and use of energy reserves was found in the domestic and Laval but not in the Rupert strain. Genetic and phenotypic correlations also varied among strains, which suggested population-specific genetic architecture underlying the expression of these traits. Hybrids showed limited evidence of non-additive effects. Overall, this study provides the first evidence of a genetically based-and likely adaptive-population-specific strategy for energy mobilization related to overwinter survival.

  12. THE SOURCE OF LIPID ACCUMULATION IN L CELLS

    PubMed Central

    Bensch, Klaus G.; King, Donald W.; Socolow, Edward L.

    1961-01-01

    Strain L cells accumulate lipid, concurrent with cessation of protein synthesis, in the stationary phase of growth from the extracellular medium and as a result of de novo synthesis. Cells which have been more severely damaged with an amino acid analogue also accumulate lipid from the extracellular medium, but synthesize very little lipid from labeled acetate. The possible roles which lipid accumulation may play in the cell are discussed. PMID:19866577

  13. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii

    PubMed Central

    Goold, Hugh Douglas; Nguyen, Hoa Mai; Kong, Fantao; Beyly-Adriano, Audrey; Légeret, Bertrand; Billon, Emmanuelle; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-01-01

    Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth. PMID:27141848

  14. Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T.; Nag, Ambarish; Yang, Shihui

    2013-11-01

    Oleaginous microalgae are capable of producing large quantities of fatty acids and triacylglycerides. As such, they are promising feedstocks for the production of biofuels and bioproducts. Genetic strain-engineering strategies offer a means to accelerate the commercialization of algal biofuels by improving the rate and total accumulation of microalgal lipids. However, the industrial potential of these organisms remains to be met, largely due to the incomplete knowledgebase surrounding the mechanisms governing the induction of algal lipid biosynthesis. Such strategies require further elucidation of genes and gene products controlling algal lipid accumulation. In this study, we have set out to examine thesemore » mechanisms and identify novel strain-engineering targets in the oleaginous microalga, Chlorella vulgaris. Comparative shotgun proteomic analyses have identified a number of novel targets, including previously unidentified transcription factors and proteins involved in cell signaling and cell cycle regulation. These results lay the foundation for strain-improvement strategies and demonstrate the power of translational proteomic analysis.« less

  15. Strain accumulation across the Coast Ranges at the latitude of San Francisco, 1994-2000

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Prescott, W.H.; Svarc, J.L.

    2004-01-01

    A 66-monument geodetic array spanning the Coast Ranges near San Francisco has been surveyed more than eight times by GIPS between late 1993 and early 2001. The measured horizontal velocities of the monuments are well represented by uniform, right-lateral, simple shear parallel to N29??W. (The local strike of the San Andreas Fault is ???N34??W. The observed areal dilatation rate of 6.9 ?? 10.0 nstrain yr-1 (quoted uncertainty is one standard deviation and extension is reckoned positive) is not significantly different from zero, which implies that the observed strain accumulation could be released by strike-slip faulting alone. Our results are consistent with the slip rates assigned by the Working Group on California Earthquake Probabilities [2003] to the principal faults (San Gregorio, San Andreas, Hayward-Rodgers Creek, Calaveras-Concord-Green Valley, and Greenville Faults) cutting across the GPS array. The vector sum of those slip rates is 39.8 ?? 2.6 mm yr-1 N29.8??W ?? 2.8??, whereas the motion across the GPS array (breadth 120 km) inferred from the uniform strain rate approximation is 38.7 ?? 1.2 mm yr-1 N29.0?? ?? 0.9?? right-lateral shear and 0.4 ?? 0.9 mm yr-1 N61??E ?? 0.9?? extension. We interpret the near coincidence of these rates and the absence of significant accumulation of areal dilatation to imply that right-lateral slip on the principal faults can release the accumulating strain; major strain release on reverse faults subparallel to the San Andreas Fault within the Coast Ranges is not required. Copyright 2004 by the American Geophysical union.

  16. Influence of tools geometry and processing conditions on behavior of a difficult-to-work Al-Mg alloy during equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Comǎneci, Radu Ioachim; Nedelcu, Dumitru; Bujoreanu, Leandru Gheorghe

    2017-10-01

    Equal channel angular pressing (ECAP) is a well-established method for grain refinement in metallic materials by large shear plastic deformation, being the most promising and effective severe plastic deformation (SPD) technique. ECAP is a discontinuous process, so the billet removal implies a new development of the procedure: the new sample pushes out the previous sample. In resuming the process the head and the tail ends of the work piece which becomes strongly distorted and receiving different amount of strain have to be removed. Due to the path difference in material flow between upper and lower region of the outlet channel, a non-uniform strain and stress distribution across the width of the workpiece leaving the plastic deformation zone (PDZ) is achieved. A successful ECAP requires surpassing two obstacles: the necessary load level which directly affects tools and a favorable stress distribution so the material withstanding the accumulated strain of repeated deformation. Under back pressure (BP), materials have shown to be able to withstand more passes. As soon as the billet passes the PDZ along the bisector plane of the two channels, the compressive mean stress changes to tensile (leading to crack initiation), while in the presence of BP, a negative (compressive) stress is applied during the process. In this paper a comparative tridimensional finite element analysis (FEA) is performed to evaluate the behavior of a difficult-to-work Al-Mg alloy depending on tools geometry and process parameters. The results in terms of load level and strain distribution show the influence of the punch geometry and BP on the material behavior.

  17. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002.

    PubMed

    Therien, Jesse B; Zadvornyy, Oleg A; Posewitz, Matthew C; Bryant, Donald A; Peters, John W

    2014-01-01

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002. Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability. The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequate to support the growth of lipid-accumulating strains of C. reinhartdii offers a potentially practical, photosynthetic alternative to providing exogenous acetate into growth media.

  18. Growth and lipid accumulation in three Chlorella strains from different regions in response to diurnal temperature fluctuations.

    PubMed

    Yang, Weinan; Zou, Shanmei; He, Meilin; Fei, Cong; Luo, Wei; Zheng, Shiyan; Chen, Bo; Wang, Changhai

    2016-02-01

    It was economically feasible to screen strains adaptive to wide temperature fluctuation for outdoor cultivation without temperature control. In this research, three Chlorella strains from arctic glacier, desert soil and temperate native lake were isolated and identified. The growth, biochemical composition, lipid content and fatty acid composition of each strain cultured under the mode of diurnal temperature fluctuations were compared. All the three Chlorella strains showed desirable abilities of accumulating lipid under diurnal temperature fluctuations and their fatty acid profiles were suitable for biodiesel production, although the growth and biochemical composition were seemed to be region-specific. The highest lipid content was at 51.83±2.49% DW, 42.80±2.97% DW and 36.13±2.27% DW under different temperature fluctuation of 11 °C, 25 °C, 7 °C, respectively. The results indicated that the three Chlorella strains could be promising biodiesel feedstock for outdoor cultivation by the cultural mode of diurnal temperature fluctuations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Influence of tryptophan and related compounds on ergot alkaloid formation in Claviceps purpurea (FR.) Tul.

    PubMed

    Erge, D; Schumann, B; Gröger, D

    1984-01-01

    L-Tryptophan did not exert any influence on peptide alkaloid formation in an ergotamine and in an ergosine-accumulating C. purpurea strain. A different picture was observed in a series of related C. purpurea strains. Tryptophan showed a slight stimulatory effect on the ergotoxine producer Pepty 695/S. A blocked mutant of it, designated as Pepty 695/ch which was able to accumulate secoclavines gave similar results. In a high-yielding elymoclavine strain Pepty 695/e, the progeny of the former one, tryptophan up to a concentration of 25 mM stimulated remarkably clavine biosynthesis. Furthermore, tryptophan could overcome the block of synthesis by inorganic phosphate. Increased specific activities of chanoclavine cyclase but not DMAT synthetase were observed in cultures of strain Pepty 695/e supplemented with tryptophan. 5-Methyltryptophan and bioisosteres of tryptophan were ineffective in alkaloid stimulation. These results are compared with those obtained with the grass ergot strain SD 58 and discussed with the relation to other induction phenomena.

  20. Significant strain accumulation between the deformation front and landward out-of-sequence thrusts in accretionary wedge of SW Taiwan revealed by cGPS and SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tsai, M. C.

    2017-12-01

    High strain accumulation across the fold-and-thrust belt in Southwestern Taiwan are revealed by the Continuous GPS (cGPS) and SAR interferometry. This high strain is generally accommodated by the major active structures in fold-and-thrust belt of western Foothills in SW Taiwan connected to the accretionary wedge in the incipient are-continent collision zone. The active structures across the high strain accumulation include the deformation front around the Tainan Tableland, the Hochiali, Hsiaokangshan, Fangshan and Chishan faults. Among these active structures, the deformation pattern revealed from cGPS and SAR interferometry suggest that the Fangshan transfer fault may be a left-lateral fault zone with thrust component accommodating the westward differential motion of thrust sheets on both side of the fault. In addition, the Chishan fault connected to the splay fault bordering the lower-slope and upper-slope of the accretionary wedge which could be the major seismogenic fault and an out-of-sequence thrust fault in SW Taiwan. The big earthquakes resulted from the reactivation of out-of-sequence thrusts have been observed along the Nankai accretionary wedge, thus the assessment of the major seismogenic structures by strain accumulation between the frontal décollement and out-of-sequence thrusts is a crucial topic. According to the background seismicity, the low seismicity and mid-crust to mantle events are observed inland and the lower- and upper- slope domain offshore SW Taiwan, which rheologically implies the upper crust of the accretionary wedge is more or less aseimic. This result may suggest that the excess fluid pressure from the accretionary wedge not only has significantly weakened the prism materials as well as major fault zone, but also makes the accretionary wedge landward extension, which is why the low seismicity is observed in SW Taiwan area. Key words: Continuous GPS, SAR interferometry, strain rate, out-of-sequence thrust.

  1. Advances in cyanobacterial polyhydroxyalkanoates production.

    PubMed

    Singh, Akhilesh Kumar; Mallick, Nirupama

    2017-11-01

    Polyhydroxyalkanoates (PHAs) have received much attention in the current scenario due to their attractive material properties, namely biodegradability, biocompatibility, thermoplasticity, hydrophobicity, piezoelectricity and stereospecificity. All these properties make them highly competitive for various industrial applications similar to non-degradable conventional plastics. In PHA biosynthesis, PHA synthase acts as a natural catalyst for PHA polymerization process using the (R)-hydroxyacyl-CoA as substrate. Cyanobacteria can accumulate PHAs under photoautotrophic and/or mixotrophic growth conditions with organic substrates such as acetate, glucose, propionate, valerate, and so on. The natural incidence of PHA accumulation by the cyanobacteria is known since 1966. Nevertheless, PHA accumulation in cyanobacteria based on the cell biomass and volumetric productivity is critically lower than the heterotrophic bacteria. Consequently, cyanobacteria are nowadays not considered for commercial production of PHAs. Thus, strain improvements by genetic modification, new cultivation and harvesting techniques, advanced photobioreactor development, efficient and sustainable downstream processes, alternate economical carbon sources and usage of various metabolic inhibitors are suggested for enhancing cyanobacterial PHA accumulation. In addition, identification of transcriptional regulators like RNA polymerase sigma factor (SigE) and a response regulator (Rre37) together with the recent major scientific breakthrough on the existence of complete Krebs cycle in cyanobacteria would be helpful in taking PHA production from cyanobacteria to a new-fangled height in near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The egasyn gene affects the processing of oligosaccharides of lysosomal beta-glucuronidase in liver.

    PubMed Central

    Swank, R T; Pfister, K; Miller, D; Chapman, V

    1986-01-01

    The accumulation of the relatively large amounts of beta-glucuronidase in microsomal fractions of normal mice depends on formation of complexes with the protein egasyn. Unexpectedly, it was found that the egasyn gene also affects the processing of beta-glucuronidase, which is segregated to lysosomes. In egasyn-positive mice lysosomal beta-glucuronidase from liver has a mean pI of 5.9 with a minor proportion at pI 5.4, whereas in egasyn-negative mice the proportion of the two lysosomal forms is reversed. Combined experiments measuring susceptibility to neuraminidase and to endoglycosidase H and specific binding to Ricinus communis lectin-agarose columns showed that the alterations in isoelectric point were associated with a decrease in complex oligosaccharides of lysosomal beta-glucuronidase in egasyn-positive mice. Since this alteration occurs not only in a congenic strain carrying the Eg0 gene but also in several other inbred strains that are homozygous for this gene, it is considered to be a genuine effect of the Eg gene rather than other genes that might regulate oligosaccharide processing. Also, the alteration is likely to be a result of direct physical interaction of the egasyn protein and lysosomal beta-glucuronidase, since a second lysosomal enzyme, beta-galactosidase, which does not form complexes with egasyn, is unaffected. The results suggest a model in which egasyn not only causes accumulation of beta-glucuronidase in the microsomal compartment but also acts upon the precursor to lysosomal beta-glucuronidase to alter its interaction with trans-Golgi-apparatus processing enzymes. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 7. Fig. 8. PMID:3101673

  3. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. Copyright © 2016. Published by Elsevier B.V.

  4. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose.

    PubMed

    Divate, Nileema R; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-11-01

    A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress.

  5. Screening of a thiamine-auxotrophic yeast for alpha-ketoglutaric acid overproduction.

    PubMed

    Zhou, Jingwen; Zhou, Haiyan; Du, Guocheng; Liu, Liming; Chen, Jian

    2010-09-01

    To obtain a thiamine-auxotrophic yeast strain that overproduces alpha-ketoglutaric acid (alpha-KG) from glycerol and to investigate nutrient effects on alpha-KG production. Yeast strain WSH-Z06, a thiamine auxotroph that gave high yields of alpha-KG from glycerol, was obtained by screening for ampicillin/kanamycin resistance and thiamine auxotrophy. The strain was identified as Yarrowia lipolytica based on physiological, chemical, and phylogenetic analysis. The ability of the strain to convert glycerol to alpha-KG was analysed by investigating the effects of nutritional factors, including thiamine, riboflavin, nitrogen sources, and calcium ion. Thiamine and calcium ion concentration had the greatest effect on alpha-KG accumulation. Under optimal conditions, a yield of 39.2 g l(-1)alpha-KG was obtained from 100 g l(-1) glycerol, with 16.84 g l(-1) pyruvate as a by-product. The current work provides a method for screening for an alpha-KG overproducer. Nutrients have a significant impact on alpha-KG production in the yeast strain presented here. The alpha-KG-overproducing yeast strain Y. lipolytica WSH-Z06 is a promising parent strain for further metabolic engineering to lower by-product accumulation and accelerate glycerol utilization.

  6. Ammonia concentration at emergence and its effects on the recovery of different species of entomopathogenic nematodes.

    PubMed

    San-Blas, Ernesto; Pirela, Deynireth; García, Dana; Portillo, Edgar

    2014-09-01

    The life cycle of entomopathogenic nematodes (EPN) occurs inside an insect cadaver and an accumulation of ammonia initiates as a consequence of the nematodes defecation. This accumulation reduces the food resources quality and creates a detrimental environment for nematodes. When a given ammonia concentration is reached, the nematodes start their emergence process, searching for a new host. In the present work, this parameter, ammonia triggering point (ATP) was measured in 7 Steinernema species/strains. The effect of different ammonia concentrations on the recovery process and their consequences in the nematodes survival were also investigated. The results indicate that ATP varies among nematode species; Steinernema glaseri showed the highest ATP of the evaluated species (1.98±2.6 mg of NH4-N*g of Galleria mellonella(-1)); whereas Steinernema riobrave presented the lowest ATP (1.16±0.1 mg of NH4-N*g of G. mellonella(-1)). On the other hand, the nematode emergence could be a repulsive response when ATP is reached. As the ammonia concentration increased the recovery percentage of Steinernema feltiae (Chile strain) dropped gradually from 79.4±11.9% in the control treatment to 0% when 1mg of NH4-N*ml of bacterial broth(-1) was added. It is possible, that emergence process could be a repulsive response of the nematodes due to ammonia concentration when is reaching the ATP. The role of ammonia inside the insect cadavers, might suggests connections with some stages of the EPN life cycle. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis

    NASA Technical Reports Server (NTRS)

    Billi, D.; Friedmann, E. I.; Hofer, K. G.; Caiola, M. G.; Ocampo-Friedmann, R.

    2000-01-01

    The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.

  8. A lignocellulosic hydrolysate-tolerant Aurantiochytrium sp. mutant strain for docosahexaenoic acid production.

    PubMed

    Qi, Feng; Zhang, Mingliang; Chen, Youwei; Jiang, Xianzhang; Lin, Jinxin; Cao, Xiao; Huang, Jianzhong

    2017-03-01

    To utilize lignocellulosic hydrolysate for docosahexaenoic acid (DHA) production, a novel mutant Aurantiochytrium sp. FN21 with strong tolerance against inhibitory lignocellulosic hydrolysate was obtained through continuous domestication processes from the parent strain Aurantiochytrium sp. FJU-512. Aurantiochytrium sp. FN21 can accumulate 21.3% and 30.7% more DHA compared to its parent strain cultured in fermentation medium and a medium with 50% (v/v) sugarcane bagasse hydrolysate (SBH), respectively. After optimization with different nitrogen sources, the highest lipid (11.84g/L) and DHA (3.15g/L) production were achieved in SBH. The results demonstrated that Aurantiochytrium sp. FN21 has the commercial applications for DHA production using lignocellulosic hydrolysate. In order to elucidate the tolerance mechanism, transcriptomic profiling of the two strains was studied. The highly up-regulated genes and corresponding cellular pathways (TCA cycle, amino acid biosynthesis, fatty acid metabolism and degradation of aromatic compounds) are considered to be associated with the hydrolysate-tolerance of Aurantiochytrium sp. FN21. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Candida famata (Debaryomyces hansenii)

    NASA Astrophysics Data System (ADS)

    Sibirny, Andriy A.; Voronovsky, Andriy Y.

    Debaryomyces hansenii (teleomorph of asporogenous strains known as Candida famata ) belongs to the group of so named ‘ flavinogenic yeasts ’ capable of riboflavin oversynthesis during starvation for iron. Some strains of C. famata belong to the most flavinogenic organisms known (accumulate 20 mg of riboflavin in 1 ml of the medium) and were used for industrial production of riboflavin in USA for long time. Many strains of D. hansenii are characterized by high salt tolerance and are used for ageing of cheeses whereas some others are able to convert xylose to xylitol, anti-caries sweetener. Transformation system has been developed for D. hansenii. It includes collection of host recipient strains, vectors with complementation and dominant markers and several transformation protocols based on protoplasting and electroporation. Besides, methods of multicopy gene insertion and insertional mutagenesis have been developed and several strong constitutive and regulatable promoters have been cloned. All structural genes of riboflavin synthesis and some regulatory genes involved in this process have been identified. Genome of D. hansenii has been sequenced in the frame of French National program ‘Genolevure’ and is opened for public access

  10. Special role of corn flour as an ideal carbon source for aerobic denitrification with minimized nitrous oxide emission.

    PubMed

    Zhu, Shuangyue; Zheng, Maosheng; Li, Can; Gui, Mengyao; Chen, Qian; Ni, Jinren

    2015-06-01

    Much effort has been made for reducing nitrous oxide (N2O) emission in wastewater treatment processes. This paper presents an interesting way to minimize N2O in aerobic denitrification by strain Pseudomonas stutzeri PCN-1 with help of corn flour as cheaper additional carbon source. Experimental results showed that maximal N2O accumulation by strain PCN-1 was only 0.02% of removed nitrogen if corn flour was used as sole carbon source, which was significantly reduced by 52.07-99.81% comparing with others such as succinate, glucose, acetate and citrate. Sustained release of reducing sugar from starch and continuous expression of nosZ coding for N2O reductase contributed to the special role of corn flour as the ideal carbon source for strain PCN-1. Further experiments in sequencing batch reactors (SBRs) demonstrated similarly efficient nitrogen removal with much less N2O emission due to synergy of the novel strain and activated sludge, which was then confirmed by quantitative PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi.

    PubMed Central

    Field, J A; de Jong, E; Feijoo Costa, G; de Bont, J A

    1992-01-01

    Eight rapid Poly R-478 dye-decolorizing isolates from The Netherlands were screened in this study for the biodegradation of polycyclic aromatic hydrocarbons (PAH) supplied at 10 mg liter(-1). Several well-known ligninolytic culture collection strains, Phanerochaete chrysosporium BKM-F-1767, Trametes versicolor Paprican 52, and Bjerkandera adusta CBS 595.78 were tested in parallel. All of the strains significantly removed anthracene, and nine of the strains significantly removed benzo(a)pyrene beyond the limited losses observed in sterile liquid and HgCl2-poisoned fungus controls. One of the new isolates, Bjerkandera sp. strain Bos 55, was the best degrader of both anthracene and benzo(a)pyrene, removing 99.2 and 83.1% of these compounds after 28 days, respectively. Half of the strains, exemplified by strains of the genera Bjerkandera and Phanerochaete, converted anthracene to anthraquinone, which was found to be a dead-end metabolite, in high yields. The extracellular fluids of selected strains were shown to be implicated in this conversion. In contrast, four Trametes strains removed anthracene without significant accumulation of the quinone. The ability of Trametes strains to degrade anthraquinone was confirmed in this study. None of the strains accumulated PAH quinones during benzo(a)pyrene degradation. Biodegradation of PAH by the various strains was highly correlated to the rate by which they decolorized Poly R-478 dye, demonstrating that ligninolytic indicators are useful in screening for promising PAH-degrading white rot fungal strains. PMID:1637159

  12. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin

    2016-11-01

    Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre-soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre-soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre-soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre-soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre-soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.

  13. Metabolic Engineering of Synechocystis sp. Strain PCC 6803 for Isobutanol Production

    PubMed Central

    Varman, Arul M.; Xiao, Yi; Pakrasi, Himadri B.

    2013-01-01

    Global warming and decreasing fossil fuel reserves have prompted great interest in the synthesis of advanced biofuels from renewable resources. In an effort to address these concerns, we performed metabolic engineering of the cyanobacterium Synechocystis sp. strain PCC 6803 to develop a strain that can synthesize isobutanol under both autotrophic and mixotrophic conditions. With the expression of two heterologous genes from the Ehrlich pathway, the engineered strain can accumulate 90 mg/liter of isobutanol from 50 mM bicarbonate in a gas-tight shaking flask. The strain does not require any inducer (i.e., isopropyl β-d-1-thiogalactopyranoside [IPTG]) or antibiotics to maintain its isobutanol production. In the presence of glucose, isobutanol synthesis is only moderately promoted (titer = 114 mg/liter). Based on isotopomer analysis, we found that, compared to the wild-type strain, the mutant significantly reduced its glucose utilization and mainly employed autotrophic metabolism for biomass growth and isobutanol production. Since isobutanol is toxic to the cells and may also be degraded photochemically by hydroxyl radicals during the cultivation process, we employed in situ removal of the isobutanol using oleyl alcohol as a solvent trap. This resulted in a final net concentration of 298 mg/liter of isobutanol under mixotrophic culture conditions. PMID:23183979

  14. Investigation of Creep Processes and Microdamages in 10Kh9V2MFBR-Sh High-Chromium Steel

    NASA Astrophysics Data System (ADS)

    Grin', E. A.; Pchelintsev, A. V.

    2018-01-01

    During the modernization and the new construction of power units at TPPs in Russia, high-chromium martensitic steels with higher heat-resistant properties than the traditional perlite steels are increasingly used as structural materials. High-chromium steels have a necessary regulatory support for their use in domestic power engineering. However, up to the present time, the issue of assessing the quality of these steels at the analysis of their state during long-term operation remains open. The article proposed is one of the first attempts to create a system of quality criteria for martensitic steels based on their microdamage parameters. Tests were carried out on the long-term strength and creep of samples from 10Kh9V2MFBR-Sh steel at high temperatures with the construction of creep curves in relative coordinates "deformation related to the deformation of fracture, current time related to time to failure." For some samples, the tests were interrupted and the metal was subjected to metallographic studies consisting of the analysis of microdamage with reference to the accumulated creep strain. It has been shown experimentally that the deformation curve of high-chromium steel differs from the analogous curve of pearlitic steel by a longer and flat section of steady creep and by a sharper transition to the third accelerated creep stage, which has a very short time period (approximately 10% of the total durability). The tendency to the increase in the microdamage of the structure of steel as the accumulated creep strain increases with time was confirmed. The beginning of transition to the final creep phase is characterized by the formation of contours of future pore chains and by the appearance of individual large pores of up to 6 μm in size, the presence of which in the microstructure of the martensitic steel indicates a very significant accumulation of creep strain, and corresponds to the predestruction stage of metal. It is necessary to continue the research to obtain quantitative indicators on the accumulation of microdamage in high-chromium steel in a conjunction with the development of a metal resource under creep conditions.

  15. [Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in Planta using strain of LBA4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene].

    PubMed

    Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V

    2014-01-01

    To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.

  16. Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities.

    PubMed Central

    Müller, M; Gorrell, T E

    1983-01-01

    Three Trichomonas vaginalis isolates with low in vivo susceptibilities to metronidazole (95% curative dose, greater than 3 X 100 mg kg-1 in subcutaneous infections in mice) were compared with strain ATCC 30001 and with four isolates exhibiting high in vivo susceptibilities (95% curative dose, less than 3 X 15 mg kg-1). Activity of pyruvate:ferredoxin oxidoreductase, anaerobic fermentation, and anaerobic intracellular accumulation of [14C]metronidazole label showed no significant isolate-dependent differences which could be correlated with drug susceptibility. The results suggest that processes providing electrons for metronidazole activation are not defective in the resistant strains. Aerobiosis, known to inhibit the antimicrobial action of metronidazole, inhibited accumulation of label more strongly in resistant isolates than in susceptible ones. No differences were detected, however, between resistant and susceptible isolates in respiration, aerobic fermentation, and the specific activity of NADH and NADPH oxidases, the main terminal oxidases of T. vaginalis. These findings suggest that the production of electrons is not diminished under aerobic conditions. The inhibitory effect of aerobic conditions on metronidazole activation, possibly due to competition for the electrons, is markedly enhanced in the resistant isolates compared to the susceptible ones. The mechanism of this effect, however, remains unknown. PMID:6607028

  17. Role of Cations in Accumulation and Release of Phosphate by Acinetobacter Strain 210A

    PubMed Central

    van Groenestijn, Johan W.; Vlekke, Gerard J. F. M.; Anink, Désirée M. E.; Deinema, Maria H.; Zehnder, Alexander J. B.

    1988-01-01

    Cells of the strictly aerobic Acinetobacter strain 210A, containing aerobically large amounts of polyphosphate (100 mg of phosphorus per g [dry weight] of biomass), released in the absence of oxygen 1.49 mmol of Pi, 0.77 meq of Mg2+, 0.48 meq of K+, 0.02 meq of Ca2+, and 0.14 meq of NH4+ per g (dry weight) of biomass. The drop in pH during this anaerobic phase was caused by the release of 1.8 protons per PO43− molecule. Cells of Acinetobacter strain 132, which do not accumulate polyphosphate aerobically, released only 0.33 mmol of Pi and 0.13 meq of Mg2+ per g (dry weight) of biomass but released K+ in amounts comparable to those released by strain 210A. Stationary-phase cultures of Acinetobacter strain 210A, in which polyphosphate could not be detected by Neisser staining, aerobically took up phosphate simultaneously with Mg2+, the most important counterion in polyphosphate. In the absence of dissolved phosphate in the medium, no Mg2+ was taken up. Cells containing polyphosphate granules were able to grow in a Mg-free medium, whereas cells without these granules were not. Mg2+ was not essential as a counterion because it could be replaced by Ca2+. The presence of small amounts of K+ was essential for polyphosphate formation in cells of strain 210A. During continuous cultivation under K+ limitation, cells of Acinetobacter strain 210A contained only 14 mg of phosphorus per g (dry weight) of biomass, whereas this element was accumulated in amounts of 59 mg/g under substrate limitation and 41 mg/g under Mg2+ limitation. For phosphate uptake in activated sludge, the presence of K+ seemed to be crucial. PMID:16347788

  18. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: Chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI).

    PubMed

    Marieschi, M; Gorbi, G; Zanni, C; Sardella, A; Torelli, A

    2015-10-01

    In photosynthetic organisms sulfate constitutes the main sulfur source for the biosynthesis of GSH and its precursor Cys. Hence, sulfur availability can modulate the capacity to cope with environmental stresses, a phenomenon known as SIR/SED (Sulfur Induced Resistance or Sulfur Enhanced Defence). Since chromate may compete for sulfate transport into the cells, in this study chromium accumulation and tolerance were investigated in relation to sulfur availability in two strains of the unicellular green alga Scenedesmus acutus with different Cr-sensitivities. Paradoxically, sulfur deprivation has been demonstrated to induce a transient increase of Cr-tolerance in both strains. Sulfur deprivation is known to enhance the sulfate uptake/assimilation pathway leading to important consequences on Cr-tolerance: (i) reduced chromate uptake due to the induction of high affinity sulfate transporters (ii) higher production of cysteine and GSH which can play a role both through the formation of unsoluble complexes and their sequestration in inert compartments. To investigate the role of the above mentioned mechanisms, Cr accumulation in total cells and in different cell compartments (cell wall, membranes, soluble and miscellaneous fractions) was analyzed in both sulfur-starved and unstarved cells. Both strains mainly accumulated chromium in the soluble fraction, but the uptake was higher in the wild-type. In this type a short period of sulfur starvation before Cr(VI) treatment lowered chromium accumulation to the level observed in the unstarved Cr-tolerant strain, in which Cr uptake seems instead less influenced by S-starvation, since no significant decrease was observed. The increase in Cr-tolerance following S-starvation seems thus to rely on different mechanisms in the two strains, suggesting the induction of a mechanism constitutively active in the Cr-tolerant strain, maybe a high affinity sulfate transporter also in the wild-type. Changes observed in the cell wall and membrane fractions suggest a strong involvement of these compartments in Cr-tolerance increase following S-starvation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  20. A study of elevated temperature testing techniques for the fatigue behavior of PMCS: Application to T650-35/AMB21

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.

    1995-01-01

    An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.

  1. Utilizing Anaerobically Digested Dairy Manure for the Cultivation of Duckweed for Biomass Production, Nutrient Assimilation, and Sugar Production

    NASA Astrophysics Data System (ADS)

    Kruger, Kevin C.

    Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0.122 d-1 of TN, 0.136 d -1 of TKN, 0.145 d-1 of TP, and 0.173d-1 of o-PO4-P. The batch efficiency of cultivation for Landoltia punctata 0128 on dilution ratio 1:27, in terms of nutrient uptake was 38% m/m in relation to the total nitrogen removed. The starch yield was measured at 30% w/w for Landoltia punctata 0128 after the nutrient starvation process. Due to its ability to reduce nutrients from AD dairy manure, accumulate biomass at a rapid growth rate, and accumulate a high yield of starch, Landoltia punctata 0128 has great potential to become a preferred choice for nutrient recovery and biomass and bioethanol production.

  2. Looking for Off-Fault Deformation and Measuring Strain Accumulation During the Past 70 years on a Portion of the Locked San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Vadman, M.; Bemis, S. P.

    2017-12-01

    Even at high tectonic rates, detection of possible off-fault plastic/aseismic deformation and variability in far-field strain accumulation requires high spatial resolution data and likely decades of measurements. Due to the influence that variability in interseismic deformation could have on the timing, size, and location of future earthquakes and the calculation of modern geodetic estimates of strain, we attempt to use historical aerial photographs to constrain deformation through time across a locked fault. Modern photo-based 3D reconstruction techniques facilitate the creation of dense point clouds from historical aerial photograph collections. We use these tools to generate a time series of high-resolution point clouds that span 10-20 km across the Carrizo Plain segment of the San Andreas fault. We chose this location due to the high tectonic rates along the San Andreas fault and lack of vegetation, which may obscure tectonic signals. We use ground control points collected with differential GPS to establish scale and georeference the aerial photograph-derived point clouds. With a locked fault assumption, point clouds can be co-registered (to one another and/or the 1.7 km wide B4 airborne lidar dataset) along the fault trace to calculate relative displacements away from the fault. We use CloudCompare to compute 3D surface displacements, which reflect the interseismic strain accumulation that occurred in the time interval between photo collections. As expected, we do not observe clear surface displacements along the primary fault trace in our comparisons of the B4 lidar data against the aerial photograph-derived point clouds. However, there may be small scale variations within the lidar swath area that represent near-fault plastic deformation. With large-scale historical photographs available for the Carrizo Plain extending back to at least the 1940s, we can potentially sample nearly half the interseismic period since the last major earthquake on this portion of this fault (1857). Where sufficient aerial photograph coverage is available, this approach has the potential to illuminate complex fault zone processes for this and other major strike-slip faults.

  3. Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5

    NASA Astrophysics Data System (ADS)

    Cai, Jinling; Wei, Ying; Zhao, Yupeng; Pan, Guanghua; Wang, Guangce

    2012-07-01

    The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.2 of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH{4/+}-N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.

  4. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli.

    PubMed

    Soma, Yuki; Yamaji, Taiki; Matsuda, Fumio; Hanai, Taizo

    2017-05-01

    Almost all synthetic pathways for biofuel production are designed to require endogenous metabolites in glycolysis, such as phosphoenolpyruvate, pyruvate, and acetyl-CoA. However, such metabolites are also required for bacterial cell growth. To reduce the metabolic imbalance between cell growth and target chemical production, we previously constructed a metabolic toggle switch (MTS) as a conditional flux redirection tool controlling metabolic flux of TCA cycle toward isopropanol production. This approach succeeded to improve the isopropanol production titer and yield while ensuring sufficient cell growth. However, excess accumulation of pyruvate, the precursor for acetyl-CoA synthesis, was also observed. In this study, for efficient conversation of pyruvate to acetyl-CoA (pyruvate oxidation), we designed a synthetic metabolic bypass composed of poxB and acs with the MTS for acetyl-CoA supply from the excess pyruvate. When this designed bypass was expressed at the appropriate expression level associated with the conditional metabolic flux redirection, pyruvate accumulation was prevented, and the isopropanol production titer and yield were improved. Final isopropanol production titer of strain harboring MTS with the synthetic metabolic bypass improved 4.4-fold compared with strain without metabolic flux regulation, and it was 1.3-fold higher than that of strain harboring the conventional MTS alone. Additionally, glucose consumption was also improved 1.7-fold compared with strain without metabolic flux regulation. On the other hand, introduction of the synthetic metabolic bypass alone showed no improvement in isopropanol production and glucose consumption. These results showed that the improvement in bio-production process caused by synergy between the MTS and the synthetic metabolic bypass. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: a mechanisms for chromium resistance.

    PubMed

    Pereira, M; Bartolomé, M C; Sánchez-Fortún, S

    2013-10-01

    Anthropogenic activity constantly releases heavy metals into the environment. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. While hexavalent chromium uptake in plant cells has been reported that an active process by carrying essential anions, the cation Cr(III) appears to be taken up inactively. Dictyosphaerium chlorelloides (Dc1M), an unicellular green alga is a well-studied cell biological model organism. The present study was carried out to investigate the toxic effect of chromium exposures on wild-type Cr(III)-sensitive (Dc1M(wt)) and Cr(III)-tolerant (Dc1M(Cr(III)R30)) strains of these green algae, and to determine the potential mechanism of chromium resistance. Using cell growth as endpoint to determine Cr(III)-sensitivity, the IC₅₀(₇₂) values obtained show significant differences of sensitivity between wild type and Cr(III)-tolerant cells. Scanning electron microscopy (SEM) showed significant morphological differences between both strains, such as decrease in cell size or reducing the coefficient of form; and transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization and cell wall thickening in the Cr(III)-tolerant strain with respect to the wild-type strain. Energy dispersive X-ray analysis (SEM/XEDS) revealed that Cr(III)-tolerant D. chlorelloides cells are able to accumulate considerable amounts of chromium distributed in cell wall (bioadsorption) as well as in cytoplasm, vacuoles, and chloroplast (bio-accumulation). Morphological changes of Cr(III)-tolerant D. chlorelloides cells and the presence of these electron-dense bodies in their cell structures can be understood as a Cr(III) detoxification mechanism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characterization of Amphora sp., a newly isolated diatom wild strain, potentially usable for biodiesel production.

    PubMed

    Chtourou, Haifa; Dahmen, Ines; Jebali, Ahlem; Karray, Fatma; Hassairi, Ilem; Abdelkafi, Slim; Ayadi, Habib; Sayadi, Sami; Dhouib, Abdelhafidh

    2015-07-01

    Microalgae as feedstock for biofuel production have attracted serious consideration as an important sustainable source of energy. For biodiesel production with microalgae, a series of consecutive processes should be performed as selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. The aim of this study was to investigate the growth and lipid accumulation of a new isolated marine microalgal strain by optimizing culture medium composition and applying different stressful culture conditions. Microalga CTM 20023 was isolated from the evaporating salt-ponds at Sfax, Tunisia, using serial-dilution technique from enriched cultures. Phylogenetic analysis based on SSU rDNA and rbcL-3P sequences attributed this isolate to a new species of the Amphora genus. This wild strain possesses rapid gravity sedimentation of 2.91 m h(-1), suitable for an easy and low-cost biomass harvest. The optimization of the composition of the culture medium through statistical experimental designs improved the specific growth rate of Amphora sp. from 0.149 to 0.262 day(-1) and increased its 15-day culture biomass production from 465 to 2200 mg L(-1) (dw) and its lipid content from 140 to 370 mg g(-1) (dw). Highest biomass productivity of 178 mg L(-1) day(-1) was achieved at the 10th day of culture. Highest lipid content of 530 mg g(-1) (dw) was obtained under phosphorus starvation and 64.34% of these lipids were saturated fatty acids. A first growth stage, in optimized condition, would thus offer the maximum productivity for an algal biomass feed stream, followed by second stressful stage for lipid accumulation, thus suitable for biodiesel production.

  7. Strain release along ocean transform faults

    NASA Astrophysics Data System (ADS)

    Stewart, L. M.

    A global study of the nature of seismic rupture along oceanic transform faults (TFs) is presented, and many aspects of fault behavior and Mid-Ocean Ridge processes are discussed. A classification of TF earthquakes is developed based on their relative excitation of short period body waves to long period surface waves. Since the ways in which transform faults release their accumulated strain varies, for more than 50 earthquakes occurring on 30 TFs since 1963 form the database for a comparison of rupture processes. The variation of TF rupture processes is not related to spreading rate or TF offset. A study of seismicity of the Eltanin Fracture Zone system shows that unlike many TFs, the Eltanin FZ realizes more than 90% of its slip aseismically. This identifies a major portion of plate boundary whose motion persists undetected by seismic instruments. The global variations in rupture patterns are discussed in terms of current models of fault behavior. The versatility of the asperity model accommodates the entire range of observed patterns. Variations in physical properties within TF contact zones (asperities) are documented in the petrology and geochemistry of rocks from ophiolite sections and TFs.

  8. Optimizing the Compressive Strength of Strain-Hardenable Stretch-Formed Microtruss Architectures

    NASA Astrophysics Data System (ADS)

    Yu, Bosco; Abu Samk, Khaled; Hibbard, Glenn D.

    2015-05-01

    The mechanical performance of stretch-formed microtrusses is determined by both the internal strut architecture and the accumulated plastic strain during fabrication. The current study addresses the question of optimization, by taking into consideration the interdependency between fabrication path, material properties and architecture. Low carbon steel (AISI1006) and aluminum (AA3003) material systems were investigated experimentally, with good agreement between measured values and the analytical model. The compressive performance of the microtrusses was then optimized on a minimum weight basis under design constraints such as fixed starting sheet thickness and final microtruss height by satisfying the Karush-Kuhn-Tucker condition. The optimization results were summarized as carpet plots in order to meaningfully visualize the interdependency between architecture, microstructural state, and mechanical performance, enabling material and processing path selection.

  9. The role of the Serratia marcescens SdeAB multidrug efflux pump and TolC homologue in fluoroquinolone resistance studied via gene-knockout mutagenesis.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2008-02-01

    Serratia marcescens is a prominent opportunistic nosocomial pathogen resistant to several classes of antibiotics. The major mechanism for fluoroquinolone resistance in various Gram-negative pathogens is active efflux. Our group previously identified SdeAB, a resistance-nodulation-cell division (RND) efflux pump complex, and a TolC-like outer-membrane protein (HasF), which together mediate energy-dependent fluoroquinolone efflux. In addition, a regulatory protein-encoding gene in the upstream region of sdeAB was identified (sdeR) and found to be 40 % homologous to MarA, an Escherichia coli transcriptional regulator. To provide conclusive evidence as to the role of these components in S. marcescens, sdeB, hasF and sdeR deletion mutants were constructed. Suicide vectors were created and introduced via triparental mating into S. marcescens UOC-67 (wild-type) and, for sdeB and hasF, T-861 (clinical isolate). We have analysed these genetically altered strains using minimal inhibitory concentration (MIC) assays for a wide range of compounds (fluoroquinolones, SDS, novobiocin, ethidium bromide and chloramphenicol). Intracellular accumulation of a variety of fluoroquinolones was measured fluorospectroscopically. The sdeB, hasF and sdeR knockout strains were consistently more susceptible to antibiotics than the parent strains, with the sdeB/hasF double knockout strain showing the highest susceptibility. A marked increase in fluoroquinolone (ciprofloxacin) accumulation was observed for strains deficient in either the sdeB or hasF genes when compared to the parental strains, with the highest ciprofloxacin accumulation observed for the sdeB/hasF double knockout. Antibiotic accumulation assays for the sdeB knockout mutant strains performed in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a proton-motive-force inhibitor, demonstrated that SdeAB-mediated efflux is proton-motive-force dependent. Due to the comparable susceptibility of the sdeB and the hasF individual knockouts, we conclude that S. marcescens HasF is the sole outer-membrane component of the SdeAB pump. In addition, MIC data for sdeR-deficient and overexpressing strains confirm that SdeR is an activator of sdeAB and acts to enhance the overall multidrug resistance of S. marcescens.

  10. Secondary Metabolism and Interspecific Competition Affect Accumulation of Spontaneous Mutants in the GacS-GacA Regulatory System in Pseudomonas protegens

    PubMed Central

    Yan, Qing; Lopes, Lucas D.; Shaffer, Brenda T.; Kidarsa, Teresa A.; Vining, Oliver; Philmus, Benjamin; Song, Chunxu; Stockwell, Virginia O.; Raaijmakers, Jos M.; McPhail, Kerry L.; Andreote, Fernando D.; Chang, Jeff H.

    2018-01-01

    ABSTRACT Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac− mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac− mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac− mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac− mutants: a reduced proportion of Gac− mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens, assessed by the accumulation of Gac− mutants. PMID:29339425

  11. Crustal strain accumulation on Southern Basin and Range Province faults modulated by distant plate boundary earthquakes? Evidence from geodesy, seismic imaging, and paleoseismology

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Shirzaei, M.; Broermann, J.; Spinler, J. C.; Holland, A. A.; Pearthree, P.

    2014-12-01

    GPS in Arizona reveals a change in the pattern of crustal strain accumulation in 2010 and based on viscoelastic modeling appears to be associated with the distant M7.2 El Mayor-Cucapah (EMC) earthquake in Baja California, Mexico. GPS data collected between 1999 and 2009 near the Santa Rita normal fault in SE Arizona reveal a narrow zone of crustal deformation coincident with the fault trace, delineated by W-NW facing Pleistocene fault scarps of heights 1 to 7 m. The apparent deformation zone is also seen in a preliminary InSAR interferogram. Total motion across the zone inferred using an elastic block model constrained by the pre-2010 GPS measurements is ~1 mm/yr in a sense consistent with normal fault motion. However, continuous GPS measurements throughout Arizona reveal pronounced changes in crustal velocity following the EMC earthquake, such that the relative motion across the Santa Rita fault post-2010 is negligible. Paleoseismic evidence indicates that mapped Santa Rita fault scarps were formed by two or more large magnitude (M6.7 to M7.6) surface rupturing normal-faulting earthquakes 60 to 100 kyrs ago. Seismic refraction and reflection data constrained by deep (~800 m) well log data provide evidence of progressive, possibly intermittent, displacement on the fault through time. The rate of strain accumulation observed geodetically prior to 2010, if constant over the past 60 to 100 kyrs, would imply an untenable minimum slip rate deficit of 60 to 100 m since the most recent earthquake. One explanation for the available geodetic, seismic, and paleoseismic evidence is that strain accumulation is modulated by viscoelastic relaxation associated with frequent large magnitude earthquakes in the Salton Trough region, episodically inhibiting the accumulation of elastic strain required to generate large earthquakes on the Santa Rita and possibly other faults in the Southern Basin and Range. An important question is thus for how long the postseismic velocity changes will persist relative to the recurrence interval of large Salton Trough earthquakes. Understanding the influence of far-field postseismic deformation on the southern Arizona strain rate field could have implications for other regions of diffuse intracontinental deformation in proximity to frequently rupturing large magnitude plate boundary faults.

  12. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    PubMed Central

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected acyltransferase were studied. As discussed in this paper, and in contrast to many other bacteria, streptomycetes seem to possess a complex metabolic network to synthesize lipids, whereof crucial steps are still largely unknown. This paper therefore provides insights into a range of topics, including extremophile bacteria, the physiology of lipid accumulation, and the biotechnological production of bacterial lipids. PMID:27474711

  13. Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria.

    PubMed

    Hirose, Yuu; Misawa, Naomi; Yonekawa, Chinatsu; Nagao, Nobuyoshi; Watanabe, Mai; Ikeuchi, Masahiko; Eki, Toshihiko

    2017-08-01

    Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Effect of crude and pure glycerol on biomass production and trehalose accumulation by Propionibacterium freudenreichii ssp. shermanii 1.

    PubMed

    Pawlicka-Kaczorowska, Joanna; Czaczyk, Katarzyna

    2017-01-01

    The dairy propionibacteria, which are traditionally used for the production of Swiss cheeses, are able to synthesize valuable biomolecules, e.g. B group vitamins, propionic acid, and trehalose with unique chemical and physical properties. Both, dairy propionibacteria cells and trehalose, have found many applications as attractive and effective components in food, beauty and health care products. This study confirmed the ability of several strains from the Propionibacterium genus to create trehalose from glycerol. The research aimed to investigate the effect of crude and pure glycerol on biomass production and on trehalose accumulation by Propionibacterium freudenreichii ssp. shermanii 1. The results indicated that the capacity for trehalose accumulation by Propionibacterium spp. was strain dependent. Propionibacterium freudenreichii ssp. shermanii 1 was able to grow on crude glycerol. For both, pure and crude glycerol, the highest amount of dry biomass leveled off at about 4 g/L. While the use of crude glycerol had no effect on the final concentration of biomass, it reduced the accumulation of trehalose in the cells. An increase in the concentration of carbon source (2-8%) resulted in more than a 5-fold rise in trehalose production. The highest trehalose concentration of 195.04 mg/L was obtained with cultures of the said strain supplemented to 8% with pure glycerol.

  15. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    PubMed

    Ruta, Lavinia Liliana; Lin, Ya-Fen; Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M; Farcasanu, Ileana Cornelia

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  16. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds. PMID:22214286

  17. Absorption of Radionuclides from the Fukushima Nuclear Accident by a Novel Algal Strain

    PubMed Central

    Shimura, Hiroki; Itoh, Katsuhiko; Sugiyama, Atsushi; Ichijo, Sayaka; Ichijo, Masashi; Furuya, Fumihiko; Nakamura, Yuji; Kitahara, Ken; Kobayashi, Kazuhiko; Yukawa, Yasuhiro; Kobayashi, Tetsuro

    2012-01-01

    Large quantities of radionuclides have leaked from the Fukushima Daiichi Nuclear Power Plant into the surrounding environment. Effective prevention of health hazards resulting from radiation exposure will require the development of efficient and economical methods for decontaminating radioactive wastewater and aquatic ecosystems. Here we describe the accumulation of water-soluble radionuclides released by nuclear reactors by a novel strain of alga. The newly discovered green microalgae, Parachlorella sp. binos (Binos) has a thick alginate-containing extracellular matrix and abundant chloroplasts. When this strain was cultured with radioiodine, a light-dependent uptake of radioiodine was observed. In dark conditions, radioiodine uptake was induced by addition of hydrogen superoxide. High-resolution secondary ion mass spectrometry (SIMS) showed a localization of accumulated iodine in the cytosol. This alga also exhibited highly efficient incorporation of the radioactive isotopes strontium and cesium in a light-independent manner. SIMS analysis showed that strontium was distributed in the extracellular matrix of Binos. Finally we also showed the ability of this strain to accumulate radioactive nuclides from water and soil samples collected from a heavily contaminated area in Fukushima. Our results demonstrate that Binos could be applied to the decontamination of iodine, strontium and cesium radioisotopes, which are most commonly encountered after nuclear reactor accidents. PMID:22984475

  18. Synergistic Effects of Sodium Chloride, Glucose, and Temperature on Biofilm Formation by Listeria monocytogenes Serotype 1/2a and 4b Strains ▿ † ‡

    PubMed Central

    Pan, Youwen; Breidt, Frederick; Gorski, Lisa

    2010-01-01

    Biofilm formation by Listeria monocytogenes is generally associated with its persistence in the food-processing environment. Serotype 1/2a strains make up more than 50% of the total isolates recovered from food and the environment, while serotype 4b strains are most often associated with major outbreaks of human listeriosis. Using a microplate assay with crystal violet staining, we examined biofilm formation by 18 strains of each serotype in tryptic soy broth with varying concentrations of glucose (from 0.25% to 10.0%, wt/vol), sodium chloride (from 0.5% to 7.0%, wt/vol) and ethanol (from 1% to 5.0%, vol/vol), and at different temperatures (22.5°C, 30°C, and 37°C). A synergistic effect on biofilm formation was observed for glucose, sodium chloride, and temperature. The serotype 1/2a strains generally formed higher-density biofilms than the 4b strains under most conditions tested. Interestingly, most serotype 4b strains had a higher growth rate than the 1/2a strains, suggesting that the growth rate may not be directly related to the capacity for biofilm formation. Crystal violet was found to stain both bacterial cells and biofilm matrix material. The enhancement in biofilm formation by environmental factors was apparently due to the production of extracellular polymeric substances instead of the accumulation of viable biofilm cells. PMID:20048067

  19. Production of novel antibacterial liamocins by strains of Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    Certain strains of Aureobasidium pullulans produce liamocins, heavier-than-water “oils” that accumulate in liquid cultures. Liamocins are surface active, and inhibit mammalian cancer cell lines. Recently, we discovered that liamocins have antibacterial activity with specificity against Streptococcus...

  20. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.

    PubMed

    Chen, Hailong; Wang, Zhou; Wang, Zhilai; Dou, Jie; Zhou, Changlin

    2016-04-01

    S-adenosyl-L-methionine (SAM), biosynthesized from methionine and ATP, exhibited diverse pharmaceutical applications. To enhance SAM accumulation in S. cerevisiae CGMCC 2842 (wild type), improvement of methionine and ATP availability through MET6 and SAM2 co-expression combined with sodium citrate feeding was investigated here. Feeding 6 g/L methionine at 12 h into medium was found to increase SAM accumulation by 38 % in wild type strain. Based on this result, MET6, encoding methionine synthase, was overexpressed, which caused a 59 % increase of SAM. To redirect intracellular methionine into SAM, MET6 and SAM2 (encoding methionine adenosyltransferase) were co-expressed to obtain the recombinant strain YGSPM in which the SAM accumulation was 2.34-fold of wild type strain. The data obtained showed that co-expression of MET6 and SAM2 improved intracellular methionine availability and redirected the methionine to SAM biosynthesis. To elevate intracellular ATP levels, 6 g/L sodium citrate, used as an auxiliary energy substrate, was fed into the batch fermentation medium, and an additional 19 % increase of SAM was observed after sodium citrate addition. Meanwhile, it was found that addition of sodium citrate improved the isocitrate dehydrogenase activity which was associated with the intracellular ATP levels. The results demonstrated that addition of sodium citrate improved intracellular ATP levels which promoted conversion of methionine into SAM. This study presented a feasible approach with considerable potential for developing highly SAM-productive strains based on improving methionine and ATP availability.

  1. Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review

    PubMed Central

    Ravindran, Rajeev; Jaiswal, Amit K.

    2016-01-01

    Enzymes are of great importance in the industry due to their substrate and product specificity, moderate reaction conditions, minimal by-product formation and high yield. They are important ingredients in several products and production processes. Up to 30% of the total production cost of enzymes is attributed to the raw materials costs. The food industry expels copious amounts of processing waste annually, which is mostly lignocellulosic in nature. Upon proper treatment, lignocellulose can replace conventional carbon sources in media preparations for industrial microbial processes, such as enzyme production. However, wild strains of microorganisms that produce industrially important enzymes show low yield and cannot thrive on artificial substrates. The application of recombinant DNA technology and metabolic engineering has enabled researchers to develop superior strains that can not only withstand harsh environmental conditions within a bioreactor but also ensure timely delivery of optimal results. This article gives an overview of the current complications encountered in enzyme production and how accumulating food processing waste can emerge as an environment-friendly and economically feasible solution for a choice of raw material. It also substantiates the latest techniques that have emerged in enzyme purification and recovery over the past four years. PMID:28952592

  2. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    USGS Publications Warehouse

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  3. Earthquake Potential in California-Nevada Implied by Correlation of Strain Rate and Seismicity

    NASA Astrophysics Data System (ADS)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-02-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  4. Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis

    PubMed Central

    Benham-Pyle, Blair W; Sim, Joo Yong; Hart, Kevin C; Pruitt, Beth L; Nelson, William James

    2016-01-01

    Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated transcription in mammalian MDCK epithelial cells. Under these conditions, cells accumulated in S/G2 (independent of DNA damage) but did not divide. Activating β-catenin through Casein Kinase I inhibition or Wnt3A addition increased β-catenin-mediated transcription and strain-induced accumulation of cells in S/G2. Significantly, only the combination of mechanical strain and Wnt/β-catenin activation triggered cells in S/G2 to divide. These results indicate that strain-induced Src phosphorylation of β-catenin and Wnt-dependent β-catenin stabilization synergize to increase β-catenin-mediated transcription to levels required for mitosis. Thus, local Wnt signaling may fine-tune the effects of global mechanical strain to restrict cell divisions during tissue development and homeostasis. DOI: http://dx.doi.org/10.7554/eLife.19799.001 PMID:27782880

  5. Trehalose accumulation induced during the oxidative stress response is independent of TPS1 mRNA levels in Candida albicans.

    PubMed

    Zaragoza, Oscar; González-Párraga, Pilar; Pedreño, Yolanda; Alvarez-Peral, Francisco J; Argüelles, Juan-Carlos

    2003-06-01

    Growing cells of the Candida albicans trehalose-deficient mutant tps1/tps1 were extremely sensitive to severe oxidative stress exposure (H2O2). However, their viability was not affected after saline stress or heat-shock treatments, being roughly equivalent to that of the parental strain. In wild-type cells, these adverse conditions induced the intracellular accumulation of trehalose together with activation of trehalose-6P synthase, whereas the endogenous trehalose content and the corresponding biosynthetic activity were barely detectable in the tps1/tps1 mutant. The addition of cycloheximide did not prevent the marked induction of trehalose-6P synthase activity. Furthermore, the presence of H2O2 decreased the level of TPS1 mRNA expression. Hence, the conspicuous trehalose accumulation in response to oxidative stress is not induced by increased transcription of TPS1. Our results are consistent with a specific requirement of trehalose in order to withstand a severe oxidative stress in C. albicans, and suggest that trehalose accumulation observed under these conditions is a complex process that most probably involves post-translational modifications of the trehalose synthase complex.

  6. Antibody responses to avian influenza viruses in wild birds broaden with age

    PubMed Central

    Manvell, Ruth J.; Schulenburg, Bodo; Shell, Wendy; Wikramaratna, Paul S.; Perrins, Christopher; Sheldon, Ben C.; Brown, Ian H.; Pybus, Oliver G.

    2016-01-01

    For viruses such as avian influenza, immunity within a host population can drive the emergence of new strains by selecting for viruses with novel antigens that avoid immune recognition. The accumulation of acquired immunity with age is hypothesized to affect how influenza viruses emerge and spread in species of different lifespans. Despite its importance for understanding the behaviour of avian influenza viruses, little is known about age-related accumulation of immunity in the virus's primary reservoir, wild birds. To address this, we studied the age structure of immune responses to avian influenza virus in a wild swan population (Cygnus olor), before and after the population experienced an outbreak of highly pathogenic H5N1 avian influenza in 2008. We performed haemagglutination inhibition assays on sampled sera for five avian influenza strains and show that breadth of response accumulates with age. The observed age-related distribution of antibody responses to avian influenza strains may explain the age-dependent mortality observed during the highly pathogenic H5N1 outbreak. Age structures and species lifespan are probably important determinants of viral epidemiology and virulence in birds. PMID:28003449

  7. Current strain accumulation in the hinterland of the northwest Himalaya constrained by landscape analyses, basin-wide denudation rates, and low temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Morell, Kristin D.; Sandiford, Mike; Kohn, Barry; Codilean, Alexandru; Fülöp, Réka-H.; Ahmad, Talat

    2017-11-01

    Rupture associated with the 25 April 2015 Mw 7.8 Gorkha (Nepal) earthquake highlighted our incomplete understanding of the structural architecture and seismic cycle processes that lead to Himalayan mountain building in Central Nepal. In this paper we investigate the style and kinematics of active mountain building in the Himalayan hinterland of Northwest India, approximately 400 km to the west of the hypocenter of the Nepal earthquake, via a combination of landscape metrics and long- (Ma) and short-term (ka) erosion rate estimates (from low temperature thermochronometry and basin-wide denudation rate estimates from 10Be concentrations). We focus our analysis on the area straddling the PT2, the physiographic transition between the Lesser and High Himalaya that has yielded important insights into the nature of hinterland deformation across much of the Himalaya. Our results from Northwest India reveal a distinctive PT2 that separates a Lesser Himalaya region with moderate relief (∼1000 m) and relatively slow erosion (<1 mm/yr) from a High Himalaya with extreme relief (∼2500 m), steep channels, and erosion rates that approach or exceed 1 mm/yr. The close spatial similarity in relative rates of long- and short-term erosion suggests that the gradient in rock uplift rates inferred from the landscape metrics across the PT2 has persisted in the same relative position since at least the past 1.5 Ma. We interpret these observations to suggest that strain accumulation in this hinterland region throughout at least the past 1.5 Ma has been accomplished both by crustal thickening via duplexing and overthrusting along transient emergent faults. Despite the >400 km distance between them, similar spatiotemporal patterns of erosion and deformation observed in Northwest India and Central Nepal suggest both regions experience similar styles of active strain accumulation and both are susceptible to large seismic events.

  8. Local Mechanical Response of Superelastic NiTi Shape-Memory Alloy Under Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping; Du, Hongfei

    2015-11-01

    In this paper, we focus on the local mechanical response of superelastic NiTi SMA at different temperatures under uniaxial loading. In situ DIC is applied to measure the local strain of the specimen. Based on the experimental results, two types of mechanical response, which are characterized with localized phase transformation and homogenous phase transformation, are identified, respectively. Motivated by residual strain accumulation phenomenon of the superelastic mechanical response, we conduct controlled experiments, and infer that for a given material point, all (or most) of the irreversibility is accumulated when the transformation front is traversing the material point. A robust constitutive model is established to explain the experimental phenomena and we successfully simulate the evolution of local strain that agrees closely with the experimental results.

  9. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose

    PubMed Central

    Divate, Nileema R.; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-01-01

    ABSTRACT A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress. PMID:27484300

  10. Strain of Escherichia coli with a temperature-sensitive mutation affecting ribosomal ribonucleic acid accumulation.

    PubMed Central

    Frey, T; Newlin, L L; Atherly, A G

    1975-01-01

    A mutant of Escherichia coli has been isolated that has a temperature-sensitive mutation that results in specific loss of ribosomal ribonucleic acid (RNA) synthesis and some reduction in messenger RNA synthesis. When the strain was grown in glucose medium at a restrictive temperature, RNA accumulation ceased, but both messenger RNA and protein synthesis continued for an extended time. Because carbon metabolism was slowed drastically when strain AA-157 was placed at the restrictive temperature, this phenotype can be compared with carbon depletion conditions present during diauxic lag. However, the phenotype of mutant AA-157 differs from shift-down conditions in that guanosine-3',5'-tetraphosphate levels are unaffected; therefore, a different site is affected. This mutant strain (AA-157) thus shows many characteristics similar to an aldolase mutant previously reported (Böck and Neidhardt, 1966). However, the mutation occurred in a different position on the E. coli genetic map, and furthermore, aldolase was not temperature sensitive in strain AA-157. In this paper we present a study of macromolecular biosynthesis in this mutant. PMID:1090609

  11. Temperature-induced lipocalin (TIL): a shield against stress-inducing environmental shocks in Saccharomyces cerevisiae.

    PubMed

    Berterame, Nadia Maria; Bertagnoli, Stefano; Codazzi, Vera; Porro, Danilo; Branduardi, Paola

    2017-09-01

    The yeast Saccharomyces cerevisiae is a well-established workhorse, either for recombinant or natural products, thanks to its natural traits and easily editable metabolism. However, during a bio-based industrial process it meets multiple stresses generated by operative conditions such as non-optimal temperature, pH, oxygenation and product accumulation. The development of tolerant strains is therefore indispensable for the improvement of production, yield and productivity of fermentative processes. In this regard, plants as resilient organisms are a generous source for fishing genes and/or metabolites that can help the cell factory to counteract environmental constraints. Plants possess proteins named temperature-induced lipocalins, TIL, whose levels in the cells correlates with the tolerance to sudden temperature changes and with the scavenging of reactive oxygen species. In this work, the gene encoding for the Arabidopsis thaliana TIL protein was for the first time expressed in S. cerevisiae. The recombinant strain was compared and analysed against the parental counterpart under heat shock, freezing, exposure to organic acid and oxidative agents. In all the tested conditions, TIL expression conferred a higher tolerance to the stress imposed, making this strain a promising candidate for the development of robust cell factories able to overtake the major impairments of industrial processes. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    PubMed

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  13. (13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.

    PubMed

    Zhao, Lina; Zhang, Huaiyuan; Wang, Liping; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2015-12-01

    The oleaginous fungus Mucor circinelloides is of industrial interest because it can produce high levels of polyunsaturated fatty acid γ-linolenic acid. M. circinelloides CBS 277.49 is able to accumulate less than 15% of cell dry weight as lipids, while M. circinelloides WJ11 can accumulate lipid up to 36%. In order to better understand the mechanisms behind the differential lipid accumulation in these two strains, tracer experiments with (13)C-glucose were performed with the growth of M. circinelloides and subsequent gas chromatography-mass spectrometric detection of (13)C-patterns in proteinogenic amino acids was carried out to identify the metabolic network topology and estimate intracellular fluxes. Our results showed that the high oleaginous strain WJ11 had higher flux of pentose phosphate pathway and malic enzyme, lower flux in tricarboxylic acid cycle, higher flux in glyoxylate cycle and ATP: citrate lyase, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Accumulation of radionuclides from radioactive substrata by some micromycetes.

    PubMed

    Zhdanova, N N; Redchits, T I; Zheltonozhsky, V A; Sadovnikov, L V; Gerzabek, M H; Olsson, S; Strebl, F; Mück, K

    2003-01-01

    Overgrowing (interaction) and dissolution of intact and milled hot particles by various micromycetes were studied under laboratory conditions. Hot particles used for the investigation originated from the Chernobyl accident release and atomic bomb testing sites. The micromycetes investigated were mitosporic fungi mainly isolated from the Chernobyl site and vicinity. Most of the fungal species and strains showed a tendency to grow towards the hot particle, overgrow it and dissolve it after prolonged contact. The accumulation (absorption and adsorption) of radionuclides from intact hot particles was generally more intensive for (152)Eu than for (137)Cs by a factor of about 2.6-134, while in experiments with milled samples the (152)Eu and (137)Cs accumulation was similar, except for some fungal species, which showed higher (152)Eu than (137)Cs sorption. It could be shown that the main factors influencing Cs and Eu accumulation in fungi are: fungal species and strains and the size and composition of the hot particle.

  15. Finite-strain analysis of Metavolcano-sedimentary rocks at Gabel El Mayet area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2010-09-01

    Finite strain was estimated in the metavolcano-sedimentary rocks, which surround by serpentinites of Gabel El Mayet area. Finite strain shows a relationship to nappe contacts between the metavolcano-sedimentary rocks and serpentinite and sheds light on the nature of the subhorizontal foliation typical for the Gable Mayet shear zone. We used the Rf/ ϕ and Fry methods on feldspar porphyroclasts and mafic grains from 10 metasedimentary and six metavolcanic samples in Gabel El Mayet region. Our finite-strain data show that the metavolcano-sedimentary rocks were moderately deformed and axial ratios in the XZ section range from 1.9 to 3.9. The long axes of the finite-strain ellipsoids trend W/WNW in the north and W/WSW in the south of the Gabel El Mayet shear zone. Furthermore, the short axes are subvertical to a subhorizontal foliation. The strain magnitudes increase towards the tectonic contacts between the metavolcano-sedimentary rocks and serpentinite. The data indicate oblate strain symmetry in the metavolcano-sedimentary rocks. Hence, our strain data also indicate flattening strain. We assume that the metasedimentary and metavolcanics rocks have similar deformation behaviour. The fact that finite strain accumulated during the metamorphism indicates that the nappe contacts formed during the accumulation of finite strain and thus during thrusting. We conclude that the nappe contacts formed during progressive thrusting under brittle to semi-brittle deformation conditions by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the Gabel El Mayet shear zone.

  16. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal.

    PubMed

    Rajkumar, Mani; Ma, Ying; Freitas, Helena

    2008-12-01

    A metal-resistant bacterial strain SM3 isolated from a serpentine soil in the north-east of Portugal was characterized as Bacillus weihenstephanensis based on the morphological and biochemical characteristics and on the comparative analysis of the partial 16S ribosomal DNA sequence. Bacillus weihenstephanensis SM3 showed a high degree of resistance to nickel (1500 mg l(-1)), copper (500 mg l(-1)) and zinc (700 mg l(-1)) and also to antibiotics (ampicillin, penicillin, kanamycin and streptomycin). Strain SM3 has also exhibited the capability of solubilizing phosphate and producing indole-3-acetic acid (IAA) both in the absence and in the presence of metals (Ni, Cu and Zn). A pot experiment was conducted to elucidate the effects of strain SM3 on plant growth and uptake of Ni, Cu or Zn by Helianthus annuus. Inoculation with strain SM3 increased the shoot and root biomass of H. annuus grown in both non-contaminated and contaminated soil. Furthermore, strain SM3 increased the accumulation of Cu and Zn in the root and shoot systems. A batch experiment was also conducted to assess the metal mobilization potential of strain SM3 in soil. Inoculation with this strain increased the concentrations of water soluble Ni, Cu and Zn in soil. Metal solubilization by this bacterial strain may be an important process to promote the uptake of heavy metals by plants. This study elucidates the multifarious role of strain SM3 in plant growth promotion and its metal mobilizing potential.

  17. Overexpression of the Coq8 Kinase in Saccharomyces cerevisiae coq Null Mutants Allows for Accumulation of Diagnostic Intermediates of the Coenzyme Q6 Biosynthetic Pathway*

    PubMed Central

    Xie, Letian X.; Ozeir, Mohammad; Tang, Jeniffer Y.; Chen, Jia Y.; Jaquinod, Sylvie-Kieffer; Fontecave, Marc; Clarke, Catherine F.; Pierrel, Fabien

    2012-01-01

    Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q6 biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q6 biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q6. Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q6 biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway. PMID:22593570

  18. Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway.

    PubMed

    Xie, Letian X; Ozeir, Mohammad; Tang, Jeniffer Y; Chen, Jia Y; Jaquinod, Sylvie-Kieffer; Fontecave, Marc; Clarke, Catherine F; Pierrel, Fabien

    2012-07-06

    Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q(6) biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q(6) biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q(6). Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q(6) biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway.

  19. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene.

    PubMed Central

    Flärdh, K; Axberg, T; Albertson, N H; Kjelleberg, S

    1994-01-01

    In order to evaluate the role of the stringent response in starvation adaptations of the marine Vibrio sp. strain S14, we have cloned the relA gene and generated relaxed mutants of this organism. The Vibrio relA gene was selected from a chromosomal DNA library by complementation of an Escherichia coli delta relA strain. The nucleotide sequence contains a 743-codon open reading frame that encodes a polypeptide that is identical in length and highly homologous to the E. coli RelA protein. The amino acid sequences are 64% identical, and they share some completely conserved regions. A delta relA::kan allele was generated by replacing 53% of the open reading frame with a kanamycin resistance gene. The Vibrio relA mutants displayed a relaxed control of RNA synthesis and failed to accumulate ppGpp during amino acid limitation. During carbon and energy starvation, a relA-dependent burst of ppGpp synthesis concomitant with carbon source depletion and growth arrest was observed. Also, in the absence of the relA gene, there was an accumulation of ppGpp during carbon starvation, but this was slower and smaller than that which occurred in the stringent strains, and it was preceded by a marked decrease in the [ATP]/[ADP] ratio. In both the wild-type and the relaxed strains, carbon source depletion caused an immediate decrease in the size of the GTP pool and a block of net RNA accumulation. The relA mutation did not affect long-term survival or the development of resistance against heat, ethanol, and oxidative stress during carbon starvation of Vibrio sp. strain S14. PMID:7928955

  20. Observations of strain accumulation across the San Andreas fault near Palmdale, California, with a two-color geodimeter

    USGS Publications Warehouse

    Langbein, J.O.; Linker, M.F.; McGarr, A.; Slater, L.E.

    1982-01-01

    Two-color laser ranging measurements during a 15-month period over a geodetic network spanning the San Andreas fault near Palmdale, California, indicate that the crust expands and contracts aseismically in episodes as short as 2 weeks. Shear strain parallel to the fault has accumulated monotonically since November 1980, but at a variable rate. Improvements in measurement precision and temporal resolution over those of previous geodetic studies near Palmdale have resulted in the definition of a time history of crustal deformation that is much more complex than formerly realized. Copyright ?? 1982 AAAS.

  1. Regional Characteristics of Stress State of Main Seismic Active Faults in Mid-Northern Part of Sichuan-Yunnan Block

    NASA Astrophysics Data System (ADS)

    Weiwei, W.; Yaling, W.

    2017-12-01

    We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which may be due to that the magnitude and intensity of medium-strong earthquakes are not enough to release the accumulated energy. On the other hand, when the tectonic unit blocking fault movement and its contribution to accumulation of stress play a key role, the earthquake of same magnitude will release higher stress drop.

  2. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions.

    PubMed

    Mrvčić, Jasna; Butorac, Ana; Solić, Ema; Stanzer, Damir; Bačun-Družina, Višnja; Cindrić, Mario; Stehlik-Tomas, Vesna

    2013-01-01

    Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

  3. UDP-4-Keto-6-Deoxyglucose, a Transient Antifungal Metabolite, Weakens the Fungal Cell Wall Partly by Inhibition of UDP-Galactopyranose Mutase

    PubMed Central

    Ma, Liang; Salas, Omar; Bowler, Kyle

    2017-01-01

    ABSTRACT Can accumulation of a normally transient metabolite affect fungal biology? UDP-4-keto-6-deoxyglucose (UDP-KDG) represents an intermediate stage in conversion of UDP-glucose to UDP-rhamnose. Normally, UDP-KDG is not detected in living cells, because it is quickly converted to UDP-rhamnose by the enzyme UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase (ER). We previously found that deletion of the er gene in Botrytis cinerea resulted in accumulation of UDP-KDG to levels that were toxic to the fungus due to destabilization of the cell wall. Here we show that these negative effects are at least partly due to inhibition by UDP-KDG of the enzyme UDP-galactopyranose mutase (UGM), which reversibly converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). An enzymatic activity assay showed that UDP-KDG inhibits the B. cinerea UGM enzyme with a Ki of 221.9 µM. Deletion of the ugm gene resulted in strains with weakened cell walls and phenotypes that were similar to those of the er deletion strain, which accumulates UDP-KDG. Galf residue levels were completely abolished in the Δugm strain and reduced in the Δer strain, while overexpression of the ugm gene in the background of a Δer strain restored Galf levels and alleviated the phenotypes. Collectively, our results show that the antifungal activity of UDP-KDG is due to inhibition of UGM and possibly other nucleotide sugar-modifying enzymes and that the rhamnose metabolic pathway serves as a shunt that prevents accumulation of UDP-KDG to toxic levels. These findings, together with the fact that there is no Galf in mammals, support the possibility of developing UDP-KDG or its derivatives as antifungal drugs. PMID:29162710

  4. Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing.

    PubMed

    Kadisch, Marvin; Schmid, Andreas; Bühler, Bruno

    2017-03-01

    Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U g CDW -1 ) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.

  5. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.

    PubMed

    Back, Alexandre; Rossignol, Tristan; Krier, François; Nicaud, Jean-Marc; Dhulster, Pascal

    2016-08-23

    Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L(-1). In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L(-1). Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. To our knowledge, this is the first time that the BioLector has been used to track lipid production in real time and to monitor the growth of Y. lipolytica. The present study also showed the efficacy of the BioLector in screening growing conditions and engineered strains prior to scale-up. The method described here could be applied to other oleaginous microorganisms.

  6. Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids.

    PubMed

    Zhang, Chaolei; Shen, Hongwei; Zhang, Xibin; Yu, Xue; Wang, Han; Xiao, Shan; Wang, Jihui; Zhao, Zongbao K

    2016-10-01

    To improve production of lipids and carotenoids by the oleaginous yeast Rhodosporidium toruloides by screening mutant strains. Upon physical mutagenesis of the haploid strain R. toruloides np11 with an atmospheric and room temperature plasma method followed by chemical mutagenesis with nitrosoguanidine, a mutant strain, R. toruloides XR-2, formed dark-red colonies on a screening plate. When cultivated in nitrogen-limited media, XR-2 cells grew slower but accumulated 0.23 g lipids/g cell dry wt and 0.75 mg carotenoids/g CDW. To improve its production capacity, different amino acids and vitamins were supplemented. p-Aminobenzoic acid and tryptophan had beneficial effects on cell growth. When cultivated in nitrogen-limited media in the presence of selected vitamins, XR-2 accumulated 0.41 g lipids/g CDW and 0.69 mg carotenoids/g CDW. A mutant R. toruloides strain with improved production profiles for lipids and carotenoids was obtained, indicating its potential to use combined mutagenesis for a more productive phenotype.

  7. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    NASA Astrophysics Data System (ADS)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  8. Impact of Ralstonia eutropha's poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB storage in recombinant Escherichia coli.

    PubMed

    Eggers, Jessica; Steinbüchel, Alexander

    2014-12-01

    The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Impact of Ralstonia eutropha's Poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB Storage in Recombinant Escherichia coli

    PubMed Central

    Eggers, Jessica

    2014-01-01

    The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes. PMID:25281380

  10. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    PubMed

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  12. Preferential Osmolyte Accumulation: a Mechanism of Osmotic Stress Adaptation in Diazotrophic Bacteria

    PubMed Central

    Madkour, Magdy A.; Smith, Linda Tombras; Smith, Gary M.

    1990-01-01

    A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased. PMID:16348295

  13. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    PubMed

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  14. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica

    PubMed Central

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109

  15. Characterization of the antibiotic compound no. 70 produced by Streptomyces sp. IMV-70.

    PubMed

    Trenozhnikova, Lyudmila P; Khasenova, Almagul K; Balgimbaeva, Assya S; Fedorova, Galina B; Katrukha, Genrikh S; Tokareva, Nina L; Kwa, Boo H; Azizan, Azliyati

    2012-01-01

    We describe the actinomycete strain IMV-70 isolated from the soils of Kazakhstan, which produces potent antibiotics with high levels of antibacterial activity. After the research of its morphological, chemotaxonomic, and cultural characteristics, the strain with potential to be developed further as a novel class of antibiotics with chemotherapeutics potential was identified as Streptomyces sp. IMV-70. In the process of fermentation, the strain Streptomyces spp. IMV-70 produces the antibiotic no. 70, which was isolated from the culture broth by extraction with organic solvents. Antibiotic compound no. 70 was purified and separated into individual components by HPLC, TLC, and column chromatography methods. The main component of the compound is the antibiotic 70-A, which was found to be identical to the peptolide etamycin A. Two other antibiotics 70-B and 70-C have never been described and therefore are new antibiotics. The physical-chemical and biological characteristics of these preparations were described and further researched. Determination of the optimal growth conditions to cultivate actinomycete-producer strain IMV-70 and development of methods to isolate, purify, and accumulate preparations of the new antibiotic no. 70 enable us to research further the potential of this new class of antibiotics.

  16. Characterization of the Antibiotic Compound No. 70 Produced by Streptomyces sp. IMV-70

    PubMed Central

    Trenozhnikova, Lyudmila P.; Khasenova, Almagul K.; Balgimbaeva, Assya S.; Fedorova, Galina B.; Katrukha, Genrikh S.; Tokareva, Nina L.; Kwa, Boo H.; Azizan, Azliyati

    2012-01-01

    We describe the actinomycete strain IMV-70 isolated from the soils of Kazakhstan, which produces potent antibiotics with high levels of antibacterial activity. After the research of its morphological, chemotaxonomic, and cultural characteristics, the strain with potential to be developed further as a novel class of antibiotics with chemotherapeutics potential was identified as Streptomyces sp. IMV-70. In the process of fermentation, the strain Streptomyces spp. IMV-70 produces the antibiotic no. 70, which was isolated from the culture broth by extraction with organic solvents. Antibiotic compound no. 70 was purified and separated into individual components by HPLC, TLC, and column chromatography methods. The main component of the compound is the antibiotic 70-A, which was found to be identical to the peptolide etamycin A. Two other antibiotics 70-B and 70-C have never been described and therefore are new antibiotics. The physical-chemical and biological characteristics of these preparations were described and further researched. Determination of the optimal growth conditions to cultivate actinomycete-producer strain IMV-70 and development of methods to isolate, purify, and accumulate preparations of the new antibiotic no. 70 enable us to research further the potential of this new class of antibiotics. PMID:22536145

  17. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    PubMed

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  18. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation

    PubMed Central

    Oshoma, Cyprian E.; Greetham, Darren; Louis, Edward J.; Smart, Katherine A.; Phister, Trevor G.; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid. PMID:26284784

  19. Characterization of Damage in Triaxial Braid Composites Under Tensile Loading

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.

    2009-01-01

    Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.

  20. Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412).

    PubMed

    Hao, Junran; Wu, Weihong; Wang, Yan; Yang, Zhuojun; Liu, Yang; Lv, Yangjun; Zhai, Yanan; Yang, Jing; Liang, Zhihong; Huang, Kunlun; Xu, Wentao

    2015-05-01

    OTA-producing strain Aspergillus ochraceus induced necrotic lesions, ROS accumulation and defense responses in Arabidopsis . Primary metabolic and defense-related proteins changed in proteomics. Ascorbate-glutathione cycle and voltage-dependent anion-selective channel proteins fluctuated. Mycotoxigenic fungi, as widespread contaminants by synthesizing mycotoxins in pre-/post-harvest infected plants and even stored commercial cereals, could usually induce plant-fungi defense responses. Notably, ochratoxin A (OTA) is a nephrotoxic, hepatotoxic, teratogenic, immunotoxic and phytotoxic mycotoxin. Herein, defense responses of model system Arabidopsis thaliana detached leaves to infection of Aspergillus ochraceus 3.4412, an OTA high-producing strain, were studied from physiological, proteomic and transcriptional perspectives. During the first 72 h after inoculation (hai), the newly formed hypersensitive responses-like lesions, decreased chlorophyll content, accumulated reactive oxygen species and upregulated defense genes expressions indicated the defense response was induced in the leaves with the possible earlier motivated jasmonic acid/ethylene signaling pathways and the later salicylic acid-related pathway. Moreover, proteomics using two-dimensional gel electrophoresis 72 hai showed 16 spots with significantly changed abundance and 13 spots corresponding to 12 unique proteins were successfully identified by MALDI-TOF/TOF MS/MS. Of these, six proteins were involved in basic metabolism and four in defense-related processes, which included glutathione-S-transferase F7, voltage-dependent anion-selective channel protein 3 (VDAC-3), osmotin-like protein OSM34 and blue copper-binding protein. Verified from proteomic and/or transcriptional perspectives, it is concluded that the primary metabolic pathways were suppressed with the ascorbate-glutathione cycle fluctuated in response to A. ochraceus and the modulation of VDACs suggested the possibility of structural damage and dysfunction of mitochondria in the process. Taken together, these findings exhibited a dynamic overview of the defense responses of A. thaliana to A. ochraceus and provided a better insight into the pathogen-resistance mechanisms in plants.

  1. The Work Softening Behavior of Pure Mg Wire during Cold Drawing.

    PubMed

    Sun, Liuxia; Bai, Jing; Xue, Feng; Chu, Chenglin; Meng, Jiao

    2018-04-13

    We performed multiple-pass cold drawing for pure Mg wire which showed excellent formability (~138% accumulative true strain) at room temperature. Different from the continuous work hardening occurring during cold drawing of Mg alloy wires, for pure Mg, an initially rapid increase in hardness and strength was followed by significant work softening and finally reached a steady-state level, approximately 40~45 HV. The work softening can be attributed to the dynamic recovery and recrystallization of pure Mg at room temperature. Meanwhile, an abrupt change in texture component also was detected with the transition from work hardening to softening in the strain range of 28~34%. During the whole drawing, the strongest texture component gradually transformed from as-extruded basal to <10 1 ¯ 0> fiber (~28% accumulative true strain), and then rapidly returned to the weak basal texture.

  2. Numerical analysis of back pressure equal channel angular pressing of an Al-Mg alloy

    NASA Astrophysics Data System (ADS)

    Comăneci, R.

    2017-08-01

    Ultrafine grain size provides enhanced mechanical and/or physical properties such as strength and high ductility, superplasticity at relatively low temperatures and high strain rate and better corrosion resistance. Well-known as one of the most promising and effective structure refining method among other severe plastic deformation (SPD) techniques, equal channel angular pressing (ECAP) has been intensively investigated due to spectacular improvements in structure and therefore properties of bulk ultrafine grained/nanostructured materials. A successful ECAP requires surpassing two obstacles: the necessary load level which directly affects tools and a favourable stress distribution so the material withstanding the accumulated strain of repeated deformation. Materials could withstand more passes if a back pressure (BP) is applied. In traditional ECAP, tensile stress along the contact surface between the work piece and the upper wall of the outlet channel leads to crack initiation, while in the presence of BP, a negative (compressive) stress appears during the process balancing the tensile stress. In this study a comparative tridimensional finite element analysis (FEA) is performed to evaluate the flow of an Al-Mg alloy depending on different BP levels and process parameters. The results in terms of load level and strain distribution show the influence of BP on the material behaviour, opening opportunities for industrial applications.

  3. Active tectonics in Southern Portugal (SW Iberia) inferred from GPS data. Implications on the regional geodynamics

    NASA Astrophysics Data System (ADS)

    Cabral, João; Mendes, Virgílio Brito; Figueiredo, Paula; Silveira, António Brum da; Pagarete, Joaquim; Ribeiro, António; Dias, Ruben; Ressurreição, Ricardo

    2017-12-01

    A GPS-based crustal velocity field for the SW Portuguese territory (Algarve region, SW Iberia) was estimated from the analysis of data from a network of campaign-style GPS stations set up in the region since 1998, complemented with permanent stations, covering an overall period of 16.5 years. The GPS monitoring sites were chosen attending to the display of the regional active faults, in an attempt to detect and monitor any related crustal straining. The residual horizontal velocities relative to Eurasia unveil a relatively consistent pattern towards WNW, with magnitudes that noticeably increase from NNE to SSW. Although the obtained velocity field does not evidence a sharp velocity gradient it suggests the presence of a NW-SE trending crustal shear zone separating two domains, which may be slowly accumulating a slightly transtensional right-lateral shear strain. Based on the WNW velocity differential between the northeastern block and the southwestern block, a shear strain rate accumulation across the shear zone is estimated. This ongoing crustal deformation is taken as evidence that a nearby major active structure, the São Marcos - Quarteira fault, may be presently accumulating strain, therefore being potentially loaded for seismic rupture and the generation of a large magnitude earthquake. Further inferences are made concerning the interseismic dynamic loading of other major onshore and offshore active structures located to the west.

  4. Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate.

    PubMed

    Mackiewicz, M; Paigen, B; Naidoo, N; Pack, A I

    2008-03-14

    Electroencephalographic oscillations in the frequency range of 0.5-4 Hz, characteristic of slow-wave sleep (SWS), are often referred to as the delta oscillation or delta power. Delta power reflects sleep intensity and correlates with the homeostatic response to sleep loss. A published survey of inbred strains of mice demonstrated that the time course of accumulation of delta power varied among inbred strains, and the segregation of the rebound of delta power in BxD recombinant inbred strains identified a genomic region on chromosome 13 referred to as the delta power in SWS (or Dps1). The quantitative trait locus (QTL) contains genes that modify the accumulation of delta power after sleep deprivation. Here, we narrow the QTL using interval-specific haplotype analysis and present a comprehensive annotation of the remaining genes in the Dps1 region with sequence comparisons to identify polymorphisms within the coding and regulatory regions. We established the expression pattern of selected genes located in the Dps1 interval in sleep and wakefulness in B6 and D2 parental strains. Taken together, these steps reduced the number of potential candidate genes that may underlie the accumulation of delta power after sleep deprivation and explain the Dps1 QTL. The strongest candidate gene is Homer1a, which is supported by expression differences between sleep and wakefulness and the SNP polymorphism in the upstream regulatory regions.

  5. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    PubMed

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Phylogenetic study of recombinant strains of Potato virus Y

    USDA-ARS?s Scientific Manuscript database

    Potato virus Y (PVY) exists as a complex of strains, including a growing number of recombinants. Evolution of PVY proceeds through accumulation of mutations and more rapidly through recombination. Here, the role of recombination in PVY evolution and the origin of common PVY recombinants were studied...

  7. Phylodynamic Analysis of Clinical and Environmental Vibrio cholerae Isolates from Haiti Reveals Diversification Driven by Positive Selection

    PubMed Central

    Azarian, Taj; Ali, Afsar; Johnson, Judith A.; Mohr, David; Prosperi, Mattia; Veras, Nazle M.; Jubair, Mohammed; Strickland, Samantha L.; Rashid, Mohammad H.; Alam, Meer T.; Weppelmann, Thomas A.; Katz, Lee S.; Tarr, Cheryl L.; Colwell, Rita R.

    2014-01-01

    ABSTRACT Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. PMID:25538191

  8. Medicago sativa--Sinorhizobium meliloti Symbiosis Promotes the Bioaccumulation of Zinc in Nodulated Roots.

    PubMed

    Zribi, Kais; Nouairi, Issam; Slama, Ines; Talbi-Zribi, Ons; Mhadhbi, Haythem

    2015-01-01

    In this study we investigated effects of Zn supply on germination, growth, inorganic solutes (Zn, Ca, Fe, and Mg) partitioning and nodulation of Medicago sativa This plant was cultivated with and without Zn (2 mM). Treatments were plants without (control) and with Zn tolerant strain (S532), Zn intolerant strain (S112) and 2 mM urea nitrogen fertilisation. Results showed that M. sativa germinates at rates of 50% at 2 mM Zn. For plants given nitrogen fertilisation, Zn increased plant biomass production. When grown with symbionts, Zn supply had no effect on nodulation. Moreover, plants with S112 showed a decrease of shoot and roots biomasses. However, in symbiosis with S532, an increase of roots biomass was observed. Plants in symbiosis with S. meliloti accumulated more Zn in their roots than nitrogen fertilised plants. Zn supply results in an increase of Ca concentration in roots of fertilised nitrogen plants. However, under Zn supply, Fe concentration decreased in roots and increased in nodules of plants with S112. Zn supply showed contrasting effects on Mg concentrations for plants with nitrogen fertilisation (increase) and plants with S112 (decrease). The capacity of M. sativa to accumulate Zn in their nodulated roots encouraged its use in phytostabilisation processes.

  9. From Waste to Plastic: Synthesis of Poly(3-Hydroxypropionate) in Shimwellia blattae

    PubMed Central

    Heinrich, Daniel; Andreessen, Björn; Madkour, Mohamed H.; Al-Ghamdi, Mansour A.; Shabbaj, Ibrahim I.

    2013-01-01

    In recent years, glycerol has become an attractive carbon source for microbial processes, as it accumulates massively as a by-product of biodiesel production, also resulting in a decline of its price. A potential use of glycerol in biotechnology is the synthesis of poly(3-hydroxypropionate) [poly(3HP)], a biopolymer with promising properties which is not synthesized by any known wild-type organism. In this study, the genes for 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16 were cloned and expressed in the 1,3-propanediol producer Shimwellia blattae. In a two-step cultivation process, recombinant S. blattae cells accumulated up to 9.8% ± 0.4% (wt/wt [cell dry weight]) poly(3HP) with glycerol as the sole carbon source. Furthermore, the engineered strain tolerated the application of crude glycerol derived from biodiesel production, yielding a cell density of 4.05 g cell dry weight/liter in a 2-liter fed-batch fermentation process. PMID:23542629

  10. Long-range wind monitoring in real time with optimized coherent lidar

    NASA Astrophysics Data System (ADS)

    Dolfi-Bouteyre, Agnes; Canat, Guillaume; Lombard, Laurent; Valla, Matthieu; Durécu, Anne; Besson, Claudine

    2017-03-01

    Two important enabling technologies for pulsed coherent detection wind lidar are the laser and real-time signal processing. In particular, fiber laser is limited in peak power by nonlinear effects, such as stimulated Brillouin scattering (SBS). We report on various technologies that have been developed to mitigate SBS and increase peak power in 1.5-μm fiber lasers, such as special large mode area fiber designs or strain management. Range-resolved wind profiles up to a record range of 16 km within 0.1-s averaging time have been obtained thanks to those high-peak power fiber lasers. At long range, the lidar signal gets much weaker than the noise and special care is required to extract the Doppler peak from the spectral noise. To optimize real-time processing for weak carrier-to-noise ratio signal, we have studied various Doppler mean frequency estimators (MFE) and the influence of data accumulation on outliers occurrence. Five real-time MFEs (maximum, centroid, matched filter, maximum likelihood, and polynomial fit) have been compared in terms of error and processing time using lidar experimental data. MFE errors and data accumulation limits are established using a spectral method.

  11. From waste to plastic: synthesis of poly(3-hydroxypropionate) in Shimwellia blattae.

    PubMed

    Heinrich, Daniel; Andreessen, Björn; Madkour, Mohamed H; Al-Ghamdi, Mansour A; Shabbaj, Ibrahim I; Steinbüchel, Alexander

    2013-06-01

    In recent years, glycerol has become an attractive carbon source for microbial processes, as it accumulates massively as a by-product of biodiesel production, also resulting in a decline of its price. A potential use of glycerol in biotechnology is the synthesis of poly(3-hydroxypropionate) [poly(3HP)], a biopolymer with promising properties which is not synthesized by any known wild-type organism. In this study, the genes for 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16 were cloned and expressed in the 1,3-propanediol producer Shimwellia blattae. In a two-step cultivation process, recombinant S. blattae cells accumulated up to 9.8% ± 0.4% (wt/wt [cell dry weight]) poly(3HP) with glycerol as the sole carbon source. Furthermore, the engineered strain tolerated the application of crude glycerol derived from biodiesel production, yielding a cell density of 4.05 g cell dry weight/liter in a 2-liter fed-batch fermentation process.

  12. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi.

    PubMed

    Zhang, De-Huai; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-02-01

    Ganoderic acids (GAs) in Ganoderma lingzhi exhibit anticancer and antimetastatic activities. GA yields can be potentially improved by manipulating G. lingzhi through genetic engineering. In this study, a putative lanosterol synthase (LS) gene was cloned and overexpressed in G. lingzhi. Results showed that its overexpression (OE) increased the ganoderic acid (GA) content and the accumulation of lanosterol and ergosterol in a submerged G. lingzhi culture. The maximum contents of GA-O, GA-Mk, GA-T, GA-S, GA-Mf, and GA-Me in transgenic strains were 46.6 ± 4.8, 24.3 ± 3.5, 69.8 ± 8.2, 28.9 ± 1.4, 15.4 ± 1.2, and 26.7 ± 3.1 μg/100 mg dry weight, respectively, these values being 6.1-, 2.2-, 3.2-, 4.8-, 2.0-, and 1.9-times higher than those in wild-type strains. In addition, accumulated amounts of lanosterol and ergosterol in transgenic strains were 2.3 and 1.4-fold higher than those in the control strains, respectively. The transcription level of LS was also increased by more than five times in the presence of the G. lingzhi glyceraldehyde-3-phosphate dehydrogenase gene promoter, whereas transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A enzyme and squalene synthase did not change significantly in transgenic strains. This study demonstrated that OE of the homologous LS gene can enhance lanosterol accumulation. A large precursor supply promotes GA biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.C.R.; Boyd, D.R.; Hempenstall, F.

    The biotransformation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated by using two dioxygenase-expressing bacteria, Pseudomonas sp. strain 9816/11 and Sphingomonas yanoikuyae B8/36, under conditions which facilitate mass-transfer limited substrate oxidation. Both of these strains are mutants that accumulate cis-dihydrodiol metabolites under the reaction conditions used. The effects of the nonpolar solvent 2,2,4,4,6,8,8-heptamethylnonane (HMN) and the nonionic surfactant Triton X-100 on the rate of accumulation of these metabolites were determined. HMN increased the rate of accumulation of metabolites for both microorganisms, with both substrates. The enhancement effect was most noticeable with phenanthrene, which has a lower aqueousmore » solubility than naphthalene. Triton X-100 increased the rate of oxidation of the PAHs with strain 9816/11 with the effect being most noticeable when phenanthrene was used as a substrate. However, the surfactant inhibited the biotransformation of both naphthalene and phenanthrene with strain B8/36 under the same conditions. The observation that a nonionic surfactant could have such contrasting effects on PAH oxidation by different bacteria, which are known to be important for the degradation of these compounds in the environment, may explain why previous research on the application of the surfactants to PAH bioremediation has yielded inconclusive results. The surfactant inhibited growth of the wild-type strain S. yanoikuyae B1 on aromatic compounds but did not inhibit B8/36 dioxygenase enzyme activity in vitro.« less

  14. Simultaneous in- and out-of-plane Mitral Valve Annular Force Measurements.

    PubMed

    Skov, Søren N; Røpcke, Diana M; Telling, Kristine; Ilkjær, Christine; Tjørnild, Marcell J; Nygaard, Hans; Nielsen, Sten L; Jensen, Morten O

    2015-06-01

    Mitral valve repair with annuloplasty is often favoured over total valve replacement. In order to develop and optimize new annuloplasty ring designs, it is important to study the complex biomechanical behaviour of the valve annulus and the subvalvular apparatus with simultaneous in- and out-of-plane restraining force measurements. A new flat D-shaped mitral valve annular force transducer was developed. The transducer was mounted with strain gauges to measure strain and calibrated to provide simultaneous restraining forces in- and out of the mitral annular plane. The force transducer was implanted and evaluated in an 80 kg porcine experimental model. Accumulation of out-of-plane restraining forces, creating strain in the anterior segment were 0.7 ± 0.0 N (towards apex) and an average force accumulation of 1.5 ± 0.3 N, creating strain in the commissural segments (away from apex). The accumulations of in-plane restraining forces, creating strain on the inner side of the ring were 1.7 ± 0.2 N (away from ring center). A new mitral annular force transducer was successfully developed and evaluated in vivo. The transducer was able to measure forces simultaneously in different planes. Initial indications point towards overall agreement with previous individual force measurements in- and out-of the mitral annular plane. This can provide more detailed insight into the annular force distribution, and could potentially improve the level of evidence based mitral valve repair and support the development of future mitral annuloplasty devices.

  15. Zeaxanthin Accumulation in the Absence of a Functional Xanthophyll Cycle Protects Chlamydomonas reinhardtii from Photooxidative Stress

    PubMed Central

    Baroli, Irene; Do, An D.; Yamane, Tomoko; Niyogi, Krishna K.

    2003-01-01

    Xanthophylls participate in light harvesting and are essential in protecting the chloroplast from photooxidative damage. To investigate the roles of xanthophylls in photoprotection, we isolated and characterized extragenic suppressors of the npq1 lor1 double mutant of Chlamydomonas reinhardtii, which lacks zeaxanthin and lutein and undergoes irreversible photooxidative bleaching and cell death at moderate to high light intensities. Here, we describe three suppressor strains that carry point mutations in the coding sequence of the zeaxanthin epoxidase gene, resulting in the constitutive accumulation of zeaxanthin in a range of concentrations. The presence of zeaxanthin in these strains was sufficient to prevent photooxidative damage in the npq1 lor1 background. The size of the light-harvesting antenna in the suppressors decreased in high light in a manner that was proportional to the relative content of zeaxanthin, with the strain having the most zeaxanthin showing a severe reduction in levels of the major light-harvesting complex II proteins in high light. We show that the effect of constitutive zeaxanthin on light harvesting is not the main cause of increased photoprotection, because in the absence of zeaxanthin, a strain with a smaller light-harvesting antenna showed only minor protection against photobleaching in high light. Furthermore, the zeaxanthin-accumulating suppressors were able to tolerate higher levels of exogenous reactive oxygen than their parental strain under conditions that did not affect light harvesting. Our results are consistent with an antioxidant role of zeaxanthin in the quenching of singlet oxygen and/or free radicals in the thylakoid membrane in vivo. PMID:12671093

  16. Analysis of the relationship between the decrease in pH and accumulation of 3-phosphoglyceric acid in developing forespores of Bacillus species.

    PubMed

    Magill, N G; Cowan, A E; Leyva-Vazquez, M A; Brown, M; Koppel, D E; Setlow, P

    1996-04-01

    Analysis of the pH decrease and 3-phosphoglyceric acid (3PGA) accumulation in the forespore compartment of sporulating cells of Bacillus subtilis showed that the pH decrease of 1 to 1.2 units at approximately 4 h of sporulation preceded 3PGA accumulation, as observed previously in B. megaterium. These data, as well as analysis of the forespore pH decrease in asporogenous mutants of B. subtilis, indicated that sigma G-dependent forespore transcription, but not sigma K-dependent mother cell transcription, is required for the forespore pH decrease. Further analysis of these asporogenous mutants showed an excellent correlation between the forespore pH decrease and the forespore's accumulation of 3PGA. These latter results are consistent with our previous suggestion that the decrease in forespore pH results in greatly decreased activity of phosphoglycerate mutase in the forespore, which in turn leads to 3PGA accumulation. In further support of this suggestion, we found that (i) elevating the pH of developing forespores of B. megaterium resulted in rapid utilization of the forespore's 3PGA depot and (ii) increasing forespore levels of PGM approximately 10-fold in B. subtilis resulted in a large decrease in the spore's depot of 3PGA. The B. subtilis strain with a high phosphoglycerate mutase level sporulated, and the spores germinated and went through outgrowth normally, indicating that forespore accumulation of a large 3PGA depot is not essential for these processes.

  17. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites

    DOE PAGES

    Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola; ...

    2018-04-30

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less

  18. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.

    PubMed

    Sutter-Fella, Carolin M; Ngo, Quynh P; Cefarin, Nicola; Gardner, Kira L; Tamura, Nobumichi; Stan, Camelia V; Drisdell, Walter S; Javey, Ali; Toma, Francesca M; Sharp, Ian D

    2018-06-13

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2 ) 2 CsPb-halide (FACsPb-) and CH 3 NH 3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

  19. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less

  20. Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels

    PubMed Central

    Watase, Kei; Barrett, Curtis F.; Miyazaki, Taisuke; Ishiguro, Taro; Ishikawa, Kinya; Hu, Yuanxin; Unno, Toshinori; Sun, Yaling; Kasai, Sayumi; Watanabe, Masahiko; Gomez, Christopher M.; Mizusawa, Hidehiro; Tsien, Richard W.; Zoghbi, Huda Y.

    2008-01-01

    Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disorder caused by CAG repeat expansions within the voltage-gated calcium (CaV) 2.1 channel gene. It remains controversial whether the mutation exerts neurotoxicity by changing the function of CaV2.1 channel or through a gain-of-function mechanism associated with accumulation of the expanded polyglutamine protein. We generated three strains of knockin (KI) mice carrying normal, expanded, or hyperexpanded CAG repeat tracts in the Cacna1a locus. The mice expressing hyperexpanded polyglutamine (Sca684Q) developed progressive motor impairment and aggregation of mutant CaV2.1 channels. Electrophysiological analysis of cerebellar Purkinje cells revealed similar Ca2+ channel current density among the three KI models. Neither voltage sensitivity of activation nor inactivation was altered in the Sca684Q neurons, suggesting that expanded CAG repeat per se does not affect the intrinsic electrophysiological properties of the channels. The pathogenesis of SCA6 is apparently linked to an age-dependent process accompanied by accumulation of mutant CaV2.1 channels. PMID:18687887

  1. Interfacial relaxation analysis of InGaAs/GaAsP strain-compensated multiple quantum wells and its optical property

    NASA Astrophysics Data System (ADS)

    Dong, Hailiang; Sun, Jing; Ma, Shufang; Liang, Jian; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2018-02-01

    InGaAs/GaAsP strain-compensated multiple quantum wells were prepared by metal organic chemical vapor deposition on GaAs (100) substrates with misorientation of 15° toward [111]. In order to obtain better strain-compensated abrupt heterojunction interfaces, the compressive strain and relaxation of different quantum well and the total accumulated strain were investigated by adjusting In composition and the thickness of InxGa1-xAs well and GaAs1-yPy barrier keep constant. High resolution X-ray diffraction results indicate the crystal and interfacial structures of In0.18Ga0.82As (7 nm)/GaAs1-yPy with the least relaxation and total strain mismatch are better than others. From in-situ surface reflectivity curves, we observed the slope of reflectivity curve of multiple quantum wells increases with increasing lattice relaxation. Atomic force microscopic results show surface morphologies of three samples are Volmer-Weber mode. Indium segregation at heterointerface between well and barrier were investigated by secondary ion mass spectrometry which indicate indium diffusion width increase with the increasing total strain mismatch. Finally, a shoulder peak was observed from Gaussian fitting of photoluminescence, stemming from the lattice relaxation. These results demonstrate that the relaxation process is introduced and indium segregation length widens as the relaxation increases. The experimental results will be favorable for optimizing the epitaxial growth of InGaAs/GaAsP strain-compensated quantum wells in order to obtain high quality smooth heterointerface.

  2. Radiation resistence of microorganisms from radiation sterilization processing environments

    NASA Astrophysics Data System (ADS)

    Sabovljev, Svetlana A.; Žunić, Zora S.

    The radiation resistance of microorganisms was examined on the samples of dust collected from the radiation sterilization processing environments including assembly, storage, and sterilization plant areas. The isolation of radiation resistant strains was performed by irradiation with screening doses ranging from 10 to 35 kGy and test pieces containing 10 6 to 10 8 CFU in dried serum-broth, representing 100 to 5000 colonies of primary cultures of microorganisms from 7 different sites. In an examination of 16900 colonies of aerobic microorganisms from 3 hygienically controlled production sites and 4 uncontrolled ones, 30 strains of bacteria were isolated. Of those 15 were classified as genus Bacillus, 9 as Micrococcus and 6 as Sarcina. All of the 15 strains of Gram positive sporeforming aerobic rods exhibited an exponential decrease in the surviving fraction as a function of dose, indicating that the inactivation of spores of aerobic rods is a consequence of a single energy deposition into the target. All strains were found to be moderately resistant to radiation with D-6 values (dose required to reduce survival to 6 log cycles) between 18 and 26 kGy. All of the isolated Gram positive cocci showed inactivation curves having a shoulder, indicating that different processes are involved in the inactivation of these cells, e.g. accumulation of sublethal lesions, or final repair capacity of potential lethal lesions. Moderate radiation resistance was observed in 13 strains with D-6 values between 16 to 30 kGy. Two slow-growing, red pigmented strains tentatively classified as genus Micrococcus isolated from uncontrolled sites (human dwellings) were exceptionally resistant with D-6 more than 45 kGy. For hygienically controlled sites, Gram positive spereforming rods composed two thirds of the resistant microflora, while Gram positive cocci comprised one third. For hygienically uncontrolled sites this ratio was reversed. An assumption is made that one isolated strain has grown up from one CFU in the original microflora. In the light of the observed proportion of radiation resistant bacteria in microflora from hygienically controlled radiation sterilization processing environments, and assuming an initial contamination of 50 CFU per product unit, there is no more than one chance of a contaminated item remaining within a population of 10 7 items subjected to sterilization by exposure to a radiation dose of 25 kGy.

  3. Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India.

    PubMed

    Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S

    2012-03-01

    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.

  4. Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.).

    PubMed

    Costerousse, Benjamin; Schönholzer-Mauclaire, Laurie; Frossard, Emmanuel; Thonar, Cécile

    2018-01-01

    Soil and plant inoculation with heterotrophic zinc-solubilizing bacteria (ZSB) is considered a promising approach for increasing zinc (Zn) phytoavailability and enhancing crop growth and nutritional quality. Nevertheless, it is necessary to understand the underlying bacterial solubilization processes to predict their repeatability in inoculation strategies. Acidification via gluconic acid production remains the most reported process. In this study, wheat rhizosphere soil serial dilutions were plated on several solid microbiological media supplemented with scarcely soluble Zn oxide (ZnO), and 115 putative Zn-solubilizing isolates were directly detected based on the formation of solubilization halos around the colonies. Eight strains were selected based on their Zn solubilization efficiency and siderophore production capacity. These included one strain of Curtobacterium , two of Plantibacter , three strains of Pseudomonas , one of Stenotrophomonas , and one strain of Streptomyces In ZnO liquid solubilization assays, the presence of glucose clearly stimulated organic acid production, leading to medium acidification and ZnO solubilization. While solubilization by Streptomyces and Curtobacterium was attributed to the accumulated production of six and seven different organic acids, respectively, the other strains solubilized Zn via gluconic, malonic, and oxalic acids exclusively. In contrast, in the absence of glucose, ZnO dissolution resulted from proton extrusion (e.g., via ammonia consumption by Plantibacter strains) and complexation processes (i.e., complexation with glutamic acid in cultures of Curtobacterium ). Therefore, while gluconic acid production was described as a major Zn solubilization mechanism in the literature, this study goes beyond and shows that solubilization mechanisms vary among ZSB and are strongly affected by growth conditions. IMPORTANCE Barriers toward a better understanding of the mechanisms underlying zinc (Zn) solubilization by bacteria include the lack of methodological tools for isolation, discrimination, and identification of such organisms. Our study proposes a direct bacterial isolation procedure, which prevents the need to screen numerous bacterial candidates (for which the ability to solubilize Zn is unknown) for recovering Zn-solubilizing bacteria (ZSB). Moreover, we confirm the potential of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as a quick and accurate tool for the identification and discrimination of environmental bacterial isolates. This work also describes various Zn solubilization processes used by wheat rhizosphere bacteria, including proton extrusion and the production of different organic acids among bacterial strains. These processes were also clearly affected by growth conditions (i.e., solid versus liquid cultures and the presence and absence of glucose). Although highlighted mechanisms may have significant effects at the soil-plant interface, these should only be transposed cautiously to real ecological situations. Copyright © 2017 American Society for Microbiology.

  5. The Effect of Hot Working on Structure and Strength of a Precipitation Strengthened Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mataya, M. C.; Carr, M. J.; Krauss, G.

    1984-02-01

    The development of microstructure and strength during forging in a γ' strengthened austenitic stainless steel, JBK-75, was investigated by means of forward extrusion of cylindrical specimens. The specimens were deformed in a strain range of 0.16 to 1.0, from 800°C to 1080°C, and at approximate strain rates of 2 (press forging) and 2 × 103 s-1 (high energy rate forging), and structures examined by light and transmission microscopy. Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited an extremely wide variety of structures and properties within the range of forging pzrameters studied. Deformation at the higher strain rate via high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain rate via press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of observed microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that the γ' precipitation process is not affected by substructure and that the strengthening contributions, from substructure and precipitation, were independent and additive. Applications for these findings are discussed in terms of process design criteria.

  6. Estimating gravity changes caused by crustal strain: application to the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yin, Zhi; Xu, Caijun

    2017-08-01

    Temporal gravimetry is an efficient tool for monitoring mass transfers, but distinguishing the contribution of each process to the measured signals is challenging. Few effective methods have been developed to estimate the changes in gravity caused by crustal strain for large-scale geophysical problems. To fill this research gap, we proposed a formula that describes a negative linear correlation between changes in gravity and crustal dilatational strain. Surface observations of gravity changes and dilatational strains were simulated using PSGRN/PSCMP, which is a numerical code used to calculate the surface response to fault dislocations, and the accuracy of the formula was quantitatively verified. Four parameters are required for this formula: the crustal dilatational strain, the crustal density, the Moho depth, and a coefficient that characterizes the degree of crust-mantle coupling. To illustrate the application of this new method to a natural case study, including specifying the values of the necessary parameters, the crustal strain-caused gravity changes (CSGCs) were calculated at 1° × 1° grid nodes over the Tibetan Plateau (TP). The CSGC model shows that most of the crust of the TP is undergoing extension, which generates negative gravity signals. The magnitude of the Tibetan CSGC model is approximately 0.2 μGal yr-1, which is similar to the results obtained from numerical modelling of the crustal tectonics of the Taiwanese Orogen. To evaluate the reliability of the Tibetan CSGC model, the uncertainties in the crustal dilatational strain, crustal density, Moho depth, and crust-mantle coupling factor were evaluated and then used to estimate the CSGC uncertainty by applying the error propagation law. The CSGC model was used to analyse the mass transfers of the TP. The results suggest that a significant mass accumulation process may be occurring beneath the crust of the northern TP.

  7. A theoretical insight into H accumulation and bubble formation by applying isotropic strain on the W-H system under a fusion environment

    NASA Astrophysics Data System (ADS)

    Han, Quan-Fu; Liu, Yue-Lin; Zhang, Ying; Ding, Fang; Lu, Guang-Hong

    2018-04-01

    The solubility and bubble formation of hydrogen (H) in tungsten (W) are crucial factors for the application of W as a plasma-facing component under a fusion environment, but the data and mechanism are presently scattered, indicating some important factors might be neglected. High-energy neutron-irradiated W inevitably causes a local strain, which may change the solubility of H in W. Here, we performed first-principles calculations to predict the H solution behaviors under isotropic strain combined with temperature effect in W and found that the H solubility in interstitial lattice can be promoted/impeded by isotropic tensile/compressive strain over the temperature range 300-1800 K. The calculated H solubility presents good agreement with the experiment. Together, our previous results of anisotropic strain, except for isotropic compression, both isotropic tension and anisotropic tension/compression enhance H solution so as to reveal an important physical implication for H accumulation and bubble formation in W: strain can enhance H solubility, resulting in the preliminary nucleation of H bubble that further causes the local strain of W lattice around H bubble, which in turn improves the H solubility at the strained region that promotes continuous growth of the H bubble via a chain-reaction effect in W. This result can also interpret the H bubble formation even if no radiation damage is produced in W exposed to low-energy H plasma.

  8. Strain Localization and Weakening Processes in Viscously Deforming Rocks: Numerical Modeling Based on Laboratory Torsion Experiments

    NASA Astrophysics Data System (ADS)

    Doehmann, M.; Brune, S.; Nardini, L.; Rybacki, E.; Dresen, G.

    2017-12-01

    Strain localization is an ubiquitous process in earth materials observed over a broad range of scales in space and time. Localized deformation and the formation of shear zones and faults typically involves material softening by various processes, like shear heating and grain size reduction. Numerical modeling enables us to study the complex physical and chemical weakening processes by separating the effect of individual parameters and boundary conditions. Using simple piece-wise linear functions for the parametrization of weakening processes allows studying a system at a chosen (lower) level of complexity (e.g. Cyprych et al., 2016). In this study, we utilize a finite element model to test two weakening laws that reduce the strength of the material depending on either the I) amount of accumulated strain or II) deformational work. Our 2D Cartesian models are benchmarked to single inclusion torsion experiments performed at elevated temperatures of 900 °C and pressures of up to 400 MPa (Rybacki et al., 2014). The experiments were performed on Carrara marble samples containing a weak Solnhofen limestone inclusion at a maximum strain rate of 2.0*10-4 s-1. Our models are designed to reproduce shear deformation of a hollow cylinder equivalent to the laboratory setup, such that material leaving one side of the model in shear direction enters again on the opposite side using periodic boundary conditions. Similar to the laboratory tests, we applied constant strain rate and constant stress boundary conditions.We use our model to investigate the time-dependent distribution of stress and strain and the effect of different parameters. For instance, inclusion rotation is shown to be strongly dependent on the viscosity ratio between matrix and inclusion and stronger ductile weakening increases the localization rate while decreasing shear zone width. The most suitable weakening law for representation of ductile rock is determined by combining the results of parameter tests with the comparison of our numerical models to the torsion experiments. In the future, this law will be applied first to investigate shear zone formation and then study localization in larger scale rift models.Cyprych, D. et al. (2016). Geochem Geophys, 17(9), 3608-3628. Rybacki, E. (2014). Tectonophysics, 634, 182-197.

  9. Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel.

    PubMed

    Diaz, Maria; Del Rio, Beatriz; Sanchez-Llana, Esther; Ladero, Victor; Redruello, Begoña; Fernández, María; Martin, M Cruz; Alvarez, Miguel A

    2016-10-01

    The consumption of food containing large amounts of histamine can lead to histamine poisoning. Cheese is one of the most frequently involved foods. Histamine, one of the biogenic amines (BAs) exhibiting the highest safety risk, accumulates in food contaminated by microorganisms with histidine decarboxylase activity. The origin of these microorganisms may be very diverse with contamination likely occurring during post-ripening processing, but the microorganisms involved during this manufacturing step have never been identified. The present work reports the isolation of 21 histamine-producing Lactobacillus parabuchneri strains from a histamine-containing grated cheese. PCR revealed that every isolate carried the histidine decarboxylase gene (hdcA). Eight lineages were identified based on the results of genome PFGE restriction analysis plus endonuclease restriction profile analysis of the carried plasmids. Members of all lineages were able to form biofilms on polystyrene and stainless steel surfaces. L. parabuchneri is therefore an undesirable species in the dairy industry; the biofilms it can produce on food processing equipment represent a reservoir of histamine-producing bacteria and thus a source of contamination of post-ripening-processed cheeses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10.

    PubMed

    He, Tengxia; Xie, Deti; Li, Zhenlun; Ni, Jiupai; Sun, Quan

    2017-09-01

    The ability of Arthrobacter arilaitensis Y-10 for nitrogen removal from simulated wastewater was studied. Results showed that ammonium was the best inorganic nitrogen for strain Y-10's cell growth, which could also promote nitrate reduction. Approximately 100.0% of ammonium was removed in the nitrogen removal experiments. The nitrate removal efficiency was 73.3% with nitrate as sole nitrogen source, and then the nitrate efficiency was increased to 85.3% and 100.0% with ammonium and nitrate (both about 5 or 100mg/L) as the mixed nitrogen sources. Nitrite accumulation was observed in presence of ammonium and nitrate. When the concentration of sole nitrite nitrogen was 10.31mg/L, the nitrite removal efficiency was 100.0%. Neither ammonium nor nitrate was accumulated during the whole experimental process. All experimental results indicated that A. arilaitensis Y-10 could remove ammonium, nitrate and nitrite at 15°C from wastewater, and could also perform simultaneous nitrification and denitrification under aerobic condition. Copyright © 2017. Published by Elsevier Ltd.

  11. The effects of Pantoea sp. strain Y4-4 on alfalfa in the remediation of heavy-metal-contaminated soil, and auxiliary impacts of plant residues on the remediation of saline-alkali soils.

    PubMed

    Li, Shuhuan; Wang, Jie; Gao, Nanxiong; Liu, Lizhu; Chen, Yahua

    2017-04-01

    The plant-growth-promoting rhizobacterium (PGPR) Y4-4 was isolated from plant rhizosphere soil and identified as Pantoea sp. by 16S rRNA sequence analysis. The effects of strain Y4-4 on alfalfa grown in heavy-metals-contaminated soil was investigated using a pot experiment. In a Cu-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 22.6% and 21%, and Cu accumulation increased by 15%. In a Pb-Zn-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 23.4% and 22%, and Zn accumulation increased by 30.3%. In addition, the salt tolerance and biomass of wheat seedlings could be improved by applying strain Y4-4 mixed with plant residue as a result of the Cu-rich plant residues providing copper nutrition to wheat. This study offers an efficient PGPR with strong salt tolerance and a safe strategy for the post-treatment of plant residue.

  12. Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095.

    PubMed

    Kaewbai-Ngam, Auratai; Incharoensakdi, Aran; Monshupanee, Tanakarn

    2016-07-01

    The cellular PHB content was determined in 137 strains of cyanobacteria representing 88 species in 26 genera under six photoautotrophic nutrient conditions. One hundred and thirty-four strains were PHB producers. The PHB contents of these 134 strains were subtle under normal growth condition, but were significantly increased in 63 strains under nitrogen deprivation (-N), a higher frequency than with phosphate and/or potassium and all-nutrient deprivation. A high PHB accumulation was not associated with any particular evolutionary groups, but was strain specific. The filamentous Calothrix scytonemicola TISTR 8095 produced 356.5±63.4mg/L PHB under -N from a biomass of 1396.6±66.1mg/L, giving a PHB content of 25.4±3.5% (w/w dry weight). This PHB productivity is equivalent to the CO2 consumption of 729.2±129.8mg/L. The maximum energy conversion from solar energy to PHB obtained by C. scytonemicola TISTR 8095 was 1.42±0.30%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Glycine Betaine Importer Limits Salmonella Stress Resistance and Tissue Colonization by Reducing Trehalose Production

    PubMed Central

    Pilonieta, M. Carolina; Nagy, Toni A.; Jorgensen, Dana R.; Detweiler, Corrella S.

    2012-01-01

    SUMMARY Mechanisms by which Salmonella establish chronic infections are not well understood. Microbes respond to stress by importing or producing compatible solutes, small molecules that stabilize proteins and lipids. The Salmonella locus opuABCD (also called OpuC) encodes a predicted importer of the compatible solute glycine betaine. Under stress conditions, if glycine betaine cannot be imported, S. enterica produce the disaccharide trehalose, a highly effective compatible solute. We demonstrate that strains lacking opuABCD accumulate more trehalose under stress conditions than wild-type strains. ΔopuABCD mutant strains are more resistant to high salt, low pH and hydrogen peroxide, conditions that mimic aspects of innate immunity, in a trehalose-dependent manner. In addition, ΔopuABCD mutant strains require the trehalose production genes to out-compete wild-type strains in mice and macrophages. These data suggest that in the absence of opuABCD, trehalose accumulation increases bacterial resistance to stress in broth and mice. Thus, opuABCD reduces bacterial colonization via a mechanism that limits trehalose production. Mechanisms by which microbes limit disease may reveal novel pathways as therapeutic targets. PMID:22375627

  14. Aminogenesis control in fermented sausages manufactured with pressurized meat batter and starter culture.

    PubMed

    Latorre-Moratalla, M L; Bover-Cid, S; Aymerich, T; Marcos, B; Vidal-Carou, M C; Garriga, M

    2007-03-01

    The application of high hydrostatic pressure (200MPa) to meat batter just before sausage fermentation and the inoculation of starter culture were studied to improve the safety and quality of traditional Spanish fermented sausages (fuet and chorizo). Higher amounts of biogenic amines were formed in chorizo than in fuet. Without interfering with the ripening performance in terms of acidification, drying and proteolysis, hydrostatic pressure prevented enterobacteria growth but did not affect Gram-positive bacteria significantly. Subsequently, a strong inhibition of diamine (putrescine and cadaverine) accumulation was observed, but that of tyramine was not affected. The inoculated decarboxylase-negative strains, selected from indigenous bacteria of traditional sausages, were resistant to the HHP treatment, being able to lead the fermentation process, prevent enterococci development and significantly reduce enterobacteria counts. In sausages manufactured with either non-pressurized or pressurized meat batter, starter culture was the most protective measure against the accumulation of tyramine and both diamines.

  15. Low-phosphate-selected Auxenochlorella protothecoides redirects phosphate to essential pathways while producing more biomass

    PubMed Central

    Park, Sang-Hyuck; Kyndt, John; Chougule, Kapeel; Park, Jeong-Jin

    2018-01-01

    Despite the capacity to accumulate ~70% w/w of lipids, commercially produced unicellular green alga A. protothecoides may become compromised due to the high cost of phosphate fertilizers. To address this limitation A. protothecoides was selected for adaptation to conditions of 100× and 5× lower phosphate and peptone, respectively, compared to ‘wild-type media’. The A. protothecoides showed initial signs of adaptation by 45–50 days, and steady state growth at ~100 days. The low phosphate (P)-adapted strain produced up to ~30% greater biomass, while total lipids (~10% w/w) remained about the same, compared to the wild-type strain. Metabolomic analyses indicated that the low P-adapted produced 3.3-fold more saturated palmitic acid (16:0) and 2.2-fold less linolenic acid (18:3), compared to the wild-type strain, resulting in an ~11% increase in caloric value, from 19.5kJ/g for the wild-type strain to 21.6kJ/g for the low P-adapted strain, due to the amounts and composition of certain saturated fatty acids, compared to the wild type strain. Biochemical changes in A. protothecoides adapted to lower phosphate conditions were assessed by comparative RNA-Seq analysis, which yielded 27,279 transcripts. Among them, 2,667 and 15 genes were significantly down- and up-regulated, at >999-fold and >3-fold (adjusted p-value <0.1), respectively. The expression of genes encoding proteins involved in cellular processes such as division, growth, and membrane biosynthesis, showed a trend toward down-regulation. At the genomic level, synonymous SNPs and Indels were observed primarily in coding regions, with the 40S ribosomal subunit gene harboring substantial SNPs. Overall, the adapted strain out-performed the wild-type strain by prioritizing the use of its limited phosphate supply for essential biological processes. The low P-adapted A. protothecoides is expected to be more economical to grow over the wild-type strain, based on overall greater productivity and caloric content, while importantly, also requiring 100-fold less phosphate. PMID:29920531

  16. Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatum L.).

    PubMed

    Afzal, S; Begum, N; Zhao, H; Fang, Z; Lou, L; Cai, Q

    2017-08-01

    This study aimed to evaluate the effect of five cadmium-tolerant endophytic plant growth-promoting bacteria (PGPB) strains on the biomass and cadmium tolerance, and accumulation of the bioenergy plant switchgrass (Panicum virgatum L.) under cadmium (Cd)-contaminated conditions. Five bacterial strains (Bj05, Le14, Ps14, So02 and Bo03) that could tolerate up to 2000 μmol l -1 CdCl 2 with a high Cd-binding capacity were isolated from plants grown in Cd-contaminated soil. These strains could promote the growth of switchgrass in the presence of 20 μmol l -1 CdCl 2 . Under Cd stress, both the root and shoot length and biomass in two switchgrass cultivars, Alamo and Cave-in-Rock (CIR), increased significantly after treatment with PGPB (P ˂ 0·05). Of the five PGPB strains, Bj05 and Le14 most effectively alleviated the Cd-induced growth inhibition of Alamo plants. Interestingly, the five PGPB strains increased Cd tolerance and decreased the accumulation and translocation factor (TF) of Cd in switchgrass when grown in the presence of 20 μmol l -1 CdCl 2 . The Cd concentrations in roots and shoots of Alamo and CIR plants were significantly reduced (P ˂ 0·05) compared with noninoculated plants. By 16S rRNA sequencing, these PGPB strains were classified as Pseudomonas putida Bj05, Pseudomonas fluorescens Ps14, and Enterobacter spp. Le14, So02 and Bo03. Inoculation with PGPB protects plants from the inhibitory effects of Cd, improves plant growth and decreases Cd concentration. These observations suggest that these strains could be used to promote growth and lower the bioavailability of Cd in switchgrass. These strains are potential candidates for the development of low Cd-accumulating switchgrass, particularly in areas of Cd contamination and pollution, and could be used efficiently for the bioremediation of contaminated soil. © 2017 The Society for Applied Microbiology.

  17. Ambient pH Controls Glycogen Levels by Regulating Glycogen Synthase Gene Expression in Neurospora crassa. New Insights into the pH Signaling Pathway

    PubMed Central

    Cupertino, Fernanda Barbosa; Freitas, Fernanda Zanolli; de Paula, Renato Magalhães; Bertolini, Maria Célia

    2012-01-01

    Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational levels. The existence of a DNA motif for the Aspergillus nidulans pH responsive transcription factor PacC in the promoter of the gene encoding glycogen synthase (gsn) in Neurospora crassa prompted us to investigate whether this transcription factor regulates glycogen accumulation. Transcription factors such as PacC in A. nidulans and Rim101p in Saccharomyces cerevisiae play a role in the signaling pathway that mediates adaptation to ambient pH by inducing the expression of alkaline genes and repressing acidic genes. We showed here that at pH 7.8 pacC was over-expressed and gsn was down-regulated in wild-type N. crassa coinciding with low glycogen accumulation. In the pacCKO strain the glycogen levels and gsn expression at alkaline pH were, respectively, similar to and higher than the wild-type strain at normal pH (5.8). These results characterize gsn as an acidic gene and suggest a regulatory role for PACC in gsn expression. The truncated recombinant protein, containing the DNA-binding domain specifically bound to a gsn DNA fragment containing the PacC motif. DNA-protein complexes were observed with extracts from cells grown at normal and alkaline pH and confirmed by ChIP-PCR analysis. The PACC present in these extracts showed equal molecular mass, indicating that the protein is already processed at normal pH, in contrast to A. nidulans. Together, these results show that the pH signaling pathway controls glycogen accumulation by regulating gsn expression and suggest the existence of a different mechanism for PACC activation in N. crassa. PMID:22952943

  18. Oxygen-­dependent regulation of bacterial lipid production

    DOE PAGES

    Lemmer, Kimberly C.; Dohnalkova, Alice C.; Noguera, Daniel R.; ...

    2015-05-02

    Understanding the mechanisms of lipid accumulation in microorganisms is important for several reasons. In addition to providing insight into assembly of biological membranes, lipid accumulation has important applications in the production of renewable fuels and chemicals. The photosynthetic bacterium Rhodobacter sphaeroides is an attractive organism to study lipid accumulation, as it has the somewhat unique ability to increase membrane production at low O₂ tensions. Under these conditions, R. sphaeroides develops invaginations of the cytoplasmic membrane to increase its membrane surface area for housing of the membrane-bound components of its photosynthetic apparatus. Here we use fatty acid levels as a reportermore » of membrane lipid content. We show that, under low-O₂ and anaerobic conditions, the total fatty acid content per cell increases 3-fold. We also find that the increases in the amount of fatty acid and photosynthetic pigment per cell are correlated as O₂ tensions or light intensity are changed. To ask if lipid and pigment accumulation were genetically separable, we analyzed strains with mutations in known photosynthetic regulatory pathways. While a strain lacking AppA failed to induce photosynthetic pigment-protein complex accumulation, it increased fatty acid content under low O2 conditions. We also found that an intact PrrBA pathway is required for low O2-induced fatty acid accumulation. In conclusion, our findings suggest a previously unknown role of R. sphaeroides transcriptional regulators in increasing fatty acid and phospholipid accumulation in response to decreased O₂ tension.« less

  19. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase

    PubMed Central

    Rensing, Christopher; Mitra, Bharati; Rosen, Barry P.

    1997-01-01

    The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA∷kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid. PMID:9405611

  20. Strain-specific spleen remodelling in Plasmodium yoelii infections in Balb/c mice facilitates adherence and spleen macrophage-clearance escape

    PubMed Central

    Martin-Jaular, Lorena; Ferrer, Mireia; Calvo, Maria; Rosanas-Urgell, Anna; Kalko, Susana; Graewe, Stefanie; Soria, Guadalupe; Cortadellas, Núria; Ordi, Jaume; Planas, Anna; Burns, James; Heussler, Volker; del Portillo, Hernando A

    2011-01-01

    Knowledge of the dynamic features of the processes driven by malaria parasites in the spleen is lacking. To gain insight into the function and structure of the spleen in malaria, we have implemented intravital microscopy and magnetic resonance imaging of the mouse spleen in experimental infections with non-lethal (17X) and lethal (17XL) Plasmodium yoelii strains. Noticeably, there was higher parasite accumulation, reduced motility, loss of directionality, increased residence time and altered magnetic resonance only in the spleens of mice infected with 17X. Moreover, these differences were associated with the formation of a strain-specific induced spleen tissue barrier of fibroblastic origin, with red pulp macrophage-clearance evasion and with adherence of infected red blood cells to this barrier. Our data suggest that in this reticulocyte-prone non-lethal rodent malaria model, passage through the spleen is different from what is known in other Plasmodium species and open new avenues for functional/structural studies of this lymphoid organ in malaria. PMID:20923452

  1. Heterologous expression of xylanase enzymes in lipogenic yeast Yarrowia lipolytica

    DOE PAGES

    Wang, Wei; Wei, Hui; Alahuhta, Markus; ...

    2014-12-02

    In order to develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an abilitymore » to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. Finally, the successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.« less

  2. Inactivation of Mre11 does not affect VSG gene duplication mediated by homologous recombination in Trypanosoma brucei.

    PubMed

    Robinson, Nicholas P; McCulloch, Richard; Conway, Colin; Browitt, Alison; Barry, J David

    2002-07-19

    We demonstrate, by gene deletion analysis, that Mre11 has a critical role in maintaining genomic integrity in Trypanosoma brucei. mre11(-/-) null mutant strains exhibited retarded growth but no delay or disruption of cell cycle progression. They showed also a weak hyporecombination phenotype and the accumulation of gross chromosomal rearrangements, which did not involve sequence translocation, telomere loss, or formation of new telomeres. The trypanosome mre11(-/-) strains were hypersensitive to phleomycin, a mutagen causing DNA double strand breaks (DSBs) but, in contrast to mre11(-/-) null mutants in other organisms and T. brucei rad51(-/-) null mutants, displayed no hypersensitivity to methyl methanesulfonate, which causes point mutations and DSBs. Mre11 therefore is important for the repair of chromosomal damage and DSBs in trypanosomes, although in this organism the intersection of repair pathways appears to differ from that in other organisms. Mre11 inactivation appears not to affect VSG gene switching during antigenic variation of a laboratory strain, which is perhaps surprising given the importance of homologous recombination during this process.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Alahuhta, Markus

    In order to develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an abilitymore » to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. Finally, the successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.« less

  4. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material.

    PubMed

    Getachew, Anteneh; Woldesenbet, Fantahun

    2016-12-12

    Polyhydroxybutyrates (PHBs) are macromolecules synthesized by bacteria. They are inclusion bodies accumulated as reserve materials when the bacteria grow under different stress conditions. Because of their fast degradability under natural environmental conditions, PHBs are selected as alternatives for production of biodegradable plastics. The aim of this work was to isolate potential PHB producing bacteria, evaluate PHB production using agro-residues as carbon sources. Among fifty bacterial strains isolated from different localities, ten PHB accumulating strains were selected and compared for their ability to accumulate PHB granules inside their cells. Isolate Arba Minch Waste Water (AWW) identified as Bacillus spp was found to be the best producer. The optimum pH, temperature, and incubation period for best PHB production by the isolate were 7, 37 °C, and 48 h respectively at 150 rpm. PHB production was best with glucose as carbon source and peptone as nitrogen source. The strain was able to accumulate 55.6, 51.6, 37.4 and 25% PHB when pretreated sugar cane bagasse, corn cob, teff straw (Eragrostis tef) and banana peel were used as carbon sources respectively. Fourier transform-infrared authentication results of the extracted and purified PHB identified its functional units as C-H, CH 2 , C=O and C-O groups. UV-Vis spectrophotometric analysis and biodegradability test confirmed the similarity of the extract with standard PHB and its suitability for bioplastic production. The isolated Bacillus sp can be used for feasible production of PHB using agro-residues especially sugarcane bagasse which can reduce the production cost in addition to reducing the disposal problem of these substrates. The yield of PHB can further be boosted by optimization of production parameters as substrates.

  5. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    PubMed

    Franken, Jaco; Brandt, Bianca A; Tai, Siew L; Bauer, Florian F

    2013-01-01

    Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.

  6. Metabolism of dimethylphthalate by Micrococcus sp. strain 12B.

    PubMed Central

    Eaton, R W; Ribbons, D W

    1982-01-01

    During growth of Micrococcus sp. strain 12B with dimethylphthalate, 4-carboxy-2-hydroxymuconate lactone (CHML, X) and 3,4-dihydroxyphthalate-2-methyl ester (XI) were isolated from culture filtrates. CHML is the lactone of intermediate 4-carboxy-2-hydroxymuconate (IX). Accumulation of XI which is not a substrate for 3,4-dihydroxyphthalate-2-decarboxylase in strain 12B afforded an easy access to the preparation of 3,4-dihydroxyphthalate. PMID:7085569

  7. Modeling Firn Compaction in Dynamic Regions

    NASA Astrophysics Data System (ADS)

    Horlings, Annika N.; Christianson, Knut; Waddington, Edwin D.; Stevens, C. Max; Holschuh, Nicholas

    2017-04-01

    Firn compaction remains the largest source of uncertainty in assessments of ice-sheet mass balance from repeat altimetry measurements due to our limited understanding of the physical processes responsible for the transformation of snow into ice. In addition to the lack of a comprehensive, physically-based constitutive relationship that describes firn compaction, dynamic thinning is an important process in some regions, but is generally neglected in firn-compaction models due to their one-dimensional nature. Here, we report on preliminary results incorporating dynamic strain thinning into firn compaction models. Using a Lagrangian (material-following) reference frame, we first compact each firn element using a standard 1-D firn-compaction model without longitudinal strain. Then, we stretch each firn parcel at each time step by applying a prescribed longitudinal strain rate in the absence of further density changes; this produces additional vertical thinning. To assess variations among firn models, we compare results from eight firn densification models currently included in the UW Community Firn Model. We focus on the Northeast Greenland Ice Stream due to the high extensile strain rates (10-3 yr-1 or higher) in the ice stream's shear margins and the extensive firn-density data in this area from seismic measurements and shallow firn/ice cores. For temperatures and accumulation rates typical for northeast Greenland, our preliminary results indicate up to an 18-meter decrease in bubble close-off depth in the shear margins compared to nearby areas either inside or outside the ice stream, which compares favorably to field data. Further work includes incorporating physically-based constitutive relations and applying these improved models to other dynamic regions, such as the Amundsen Sea Embayment, where dynamic strain thinning has accelerated in recent decades.

  8. [Medical supports for the diagnosis of infectious diseases; the role and responsibilities of clinical pathologist and microbiology technologist. Acute purulent meningitis; the position of the technologists in microbiology laboratory].

    PubMed

    Misawa, Shigeki

    2002-07-01

    The features and limitations of microbiology processes for the diagnosis of bacterial meningitis were summarized. Requests for physicians were also emphasized. The microbiology laboratory should be responsible for providing highly reliable and concordant data with a variety of clinical settings. Technologists in a microbiology laboratory should perform following subjects: i) Direct smear examination: Presumptive identification by the observers with abundant experience and sufficient training. ii) Rapid bacterial antigen detection tests: Active utilize alone in combination with the direct microscopy. iii) Culture: Cost effective utilize for appropriate media and culture condition based on the bacteriological statistics. Report with bacteriological interpretations and with additional proper comments, if necessary. iv) Antimicrobial susceptibility tests: Determination of penicillin resistance among the strains of penicillin-resistant or-intermediate Streptococcus pneumoniae (PI or PRSP) should be confirmed by MIC procedures; Detection of beta-lactamase producing Haemophilus influenzae (BLP) could detect by beta-lactamase tests, but not clearly identify for beta-lactamase-negative ampicillin-resistant isolates (BLNAR). In addition, a laboratory should provide appropriate information by using the accumulated routine clinical microbiology data, which may help to physicians in selecting an empiric therapy and to the microbiology technologists in processing the routine microbiology. In recent status, the most common organisms isolated from patients with bacterial meningitis continue to be S. pneumoniae and H. influenzae. Among S. pneumoniae strains, penicillin-intermediate(PISP) and--resistant(PRSP) strains had exceeded 50%, and the strains of beta-lactamase producing H. influenzae (BLP) had decreased with less than 10% and beta-lactamase negative ampicillin-resistant strains (BLNAR) have increasing. To providing rapid and accurate results, a laboratory should require the clinical information, including patient's age, major presenting symptoms, and receive antimicrobials prior to specimen collection.

  9. Texture studies of hot compressed near alpha titanium alloy (IMI 834) at 1000°C with different strain rates

    NASA Astrophysics Data System (ADS)

    Kodli, B. K.; Saxena, K. K.; Dey, S. R.; Pancholi, V.; Bhattacharjee, A.

    2015-04-01

    IMI 834 Titanium alloy is a near alpha (hcp) titanium alloy used for high temperature applications with the service temperature up to 600°C. Generally, this alloy is widely used in gas turbine engine applications such as low pressure compressor discs. For these applications, good fatigue and creep properties are required, which have been noticed better in a bimodal microstructure, containing 15-20% volume fraction of primary alpha grains (αp) and remaining bcc beta (β) grains transformed secondary alpha laths (αs). The bimodal microstructure is achieved during processing of IMI 834 in the high temperature α+β region. The major issue of bimodal IMI 834 during utilization is its poor dwell fatigue life time caused by textured macrozones. Textured macrozone is the spatial accumulation of similar oriented grains in the microstructure generated during hot processing in the high temperature α+β region. Textured macrozone can be mitigated by controlling the hot deformation with certain strain rate under stable plastic conditions having β grains undergoing dynamic recrystallization. Hence, a comprehensive study is required to understand the deformation behavior of α and β grains at different strain rates in that region. Hot compression tests up to 5°% strain of the samples are performed with five different strain rates i.e. 10-3 s-1, 10-2 s-1, 10-1 s-1, 1 s-1 and 10 s-1 at 1000°C using Gleeble 3800. The resultant bimodal microstructure and the texture studies of primary alpha grains (αp) and secondary alpha laths (αs) are carried out using scanning electron microscopy (SEM)-electron back scattered diffraction (EBSD) method.

  10. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  11. Diffusion-coupled cohesive interface simulations of stress corrosion intergranular cracking in polycrystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Chao; Gao, Yanfei; Wang, Yanli

    To study the stress corrosion intergranular cracking mechanism, a diffusion-coupled cohesive zone model (CZM) is proposed for the simulation of the stress-assisted diffusional process along grain boundaries and the mechanical response of grain boundary sliding and separation. This simulation methodology considers the synergistic effects of impurity diffusion driven by pressure gradient and degradation of grain boundary strength by impurity concentration. The diffusion-coupled CZM is combined with crystal plasticity finite element model (CPFEM) to simulate intergranular fracture of polycrystalline material under corrosive environment. Significant heterogeneity of the stress field and extensive impurity accumulation is observed at grain boundaries and junction points.more » Deformation mechanism maps are constructed with respect to the grain boundary degradation factor and applied strain rate, which dictate the transition from internal to near-surface intergranular fracture modes under various strain amplitudes and grain sizes.« less

  12. Isolation and Characterization of a Shewanella Phage–Host System from the Gut of the Tunicate, Ciona intestinalis

    PubMed Central

    Leigh, Brittany; Karrer, Charlotte; Cannon, John P.; Breitbart, Mya; Dishaw, Larry J.

    2017-01-01

    Outnumbering all other biological entities on earth, bacteriophages (phages) play critical roles in structuring microbial communities through bacterial infection and subsequent lysis, as well as through horizontal gene transfer. While numerous studies have examined the effects of phages on free-living bacterial cells, much less is known regarding the role of phage infection in host-associated biofilms, which help to stabilize adherent microbial communities. Here we report the cultivation and characterization of a novel strain of Shewanella fidelis from the gut of the marine tunicate Ciona intestinalis, inducible prophages from the S. fidelis genome, and a strain-specific lytic phage recovered from surrounding seawater. In vitro biofilm assays demonstrated that lytic phage infection affects biofilm formation in a process likely influenced by the accumulation and integration of the extracellular DNA released during cell lysis, similar to the mechanism that has been previously shown for prophage induction. PMID:28327522

  13. Bauschinger Effect and Back Stress in Gradient Cu-Ge Alloy

    NASA Astrophysics Data System (ADS)

    Hu, Xianzhi; Jin, Shenbao; Zhou, Hao; Yin, Zhe; Yang, Jian; Gong, Yulan; Zhu, Yuntian; Sha, Gang; Zhu, Xinkun

    2017-09-01

    Using surface mechanical attrition treatment (SMAT), a gradient structure composed of two gradient structure (GS) layers and a coarse grain (CG) layer was generated from a Cu-5.7 wt pct Ge alloy, significantly improving the yield strength of the sample. Unloading-reloading tests showed an unusual Bauschinger effect in these GS samples. The back stresses caused by the accumulated geometrically necessary dislocations (GNDs) on the GS/CG border increased with increasing strain. As found by electron backscatter diffraction (EBSD), the GNDs are mainly distributed in the gradient structured layer, and the density of the GNDs increase with increasing SMAT time. The effect of the back stress increased with increasing SMAT processing time due to the increase in the strain gradient. The pronounced Bauschinger effect in a GS sample can improve the resistance to forward plastic flow and finally contributes to the high strength of GS samples.

  14. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918

    PubMed Central

    2012-01-01

    Background The H1N1 influenza A virus has been circulating in the human population for over 95 years, first manifesting itself in the pandemic of 1917–1918. Initial mortality was extremely high, but dropped exponentially over time. Influenza viruses have high mutation rates, and H1N1 has undergone significant genetic changes since 1918. The exact nature of H1N1 mutation accumulation over time has not been fully explored. Methods We have made a comprehensive historical analysis of mutational changes within H1N1 by examining over 4100 fully-sequenced H1N1 genomes. This has allowed us to examine the genetic changes arising within H1N1 from 1918 to the present. Results We document multiple extinction events, including the previously known extinction of the human H1N1 lineage in the 1950s, and an apparent second extinction of the human H1N1 lineage in 2009. These extinctions appear to be due to a continuous accumulation of mutations. At the time of its disappearance in 2009, the human H1N1 lineage had accumulated over 1400 point mutations (more than 10% of the genome), including approximately 330 non-synonymous changes (7.4% of all codons). The accumulation of both point mutations and non-synonymous amino acid changes occurred at constant rates (μ = 14.4 and 2.4 new mutations/year, respectively), and mutations accumulated uniformly across the entire influenza genome. We observed a continuous erosion over time of codon-specificity in H1N1, including a shift away from host (human, swine, and bird [duck]) codon preference patterns. Conclusions While there have been numerous adaptations within the H1N1 genome, most of the genetic changes we document here appear to be non-adaptive, and much of the change appears to be degenerative. We suggest H1N1 has been undergoing natural genetic attenuation, and that significant attenuation may even occur during a single pandemic. This process may play a role in natural pandemic cessation and has apparently contributed to the exponential decline in mortality rates over time, as seen in all major human influenza strains. These findings may be relevant to the development of strategies for managing influenza pandemics and strain evolution. PMID:23062055

  15. Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16

    PubMed Central

    Juengert, Janina R.; Borisova, Marina; Wolz, Christiane; Brigham, Christopher J.; Sinskey, Anthony J.

    2017-01-01

    ABSTRACT In this study, we constructed a set of Ralstonia eutropha H16 strains with single, double, or triple deletions of the (p)ppGpp synthase/hydrolase (spoT1), (p)ppGpp synthase (spoT2), and/or polyhydroxybutyrate (PHB) depolymerase (phaZa1 or phaZa3) gene, and we determined the impact on the levels of (p)ppGpp and on accumulated PHB. Mutants with deletions of both the spoT1 and spoT2 genes were unable to synthesize detectable amounts of (p)ppGpp and accumulated only minor amounts of PHB, due to PhaZa1-mediated depolymerization of PHB. In contrast, unusually high levels of PHB were found in strains in which the (p)ppGpp concentration was increased by the overexpression of (p)ppGpp synthase (SpoT2) and the absence of (p)ppGpp hydrolase. Determination of (p)ppGpp levels in wild-type R. eutropha under different growth conditions and induction of the stringent response by amino acid analogs showed that the concentrations of (p)ppGpp during the growth phase determine the amount of PHB remaining in later growth phases by influencing the efficiency of the PHB mobilization system in stationary growth. The data reported for a previously constructed ΔspoT2 strain (C. J. Brigham, D. R. Speth, C. Rha, and A. J. Sinskey, Appl Environ Microbiol 78:8033–8044, 2012, https://doi.org/10.1128/AEM.01693-12) were identified as due to an experimental error in strain construction, and our results are in contrast to the previous indication that the spoT2 gene product is essential for PHB accumulation in R. eutropha. IMPORTANCE Polyhydroxybutyrate (PHB) is an important intracellular carbon and energy storage compound in many prokaryotes and helps cells survive periods of starvation and other stress conditions. Research activities in several laboratories over the past 3 decades have shown that both PHB synthase and PHB depolymerase are constitutively expressed in most PHB-accumulating bacteria, such as Ralstonia eutropha. This implies that PHB synthase and depolymerase activities must be well regulated in order to avoid a futile cycle of simultaneous PHB synthesis and PHB degradation (mobilization). Previous reports suggested that the stringent response in Rhizobium etli and R. eutropha is involved in the regulation of PHB metabolism. However, the levels of (p)ppGpp and the influence of those levels on PHB accumulation and PHB mobilization have not yet been determined for any PHB-accumulating species. In this study, we optimized a (p)ppGpp extraction procedure and a high-performance liquid chromatography–mass spectrometry (HPLC-MS)-based detection method for the quantification of (p)ppGpp in R. eutropha. This enabled us to study the relationship between the concentrations of (p)ppGpp and the accumulated levels of PHB in the wild type and in several constructed mutant strains. We show that overproduction of the alarmone (p)ppGpp correlated with reduced growth and massive overproduction of PHB. In contrast, in the absence of (p)ppGpp, mobilization of PHB was dramatically enhanced. PMID:28455332

  16. Sealing glass-ceramics with near-linear thermal strain, part III: Stress modeling of strain and strain rate matched glass-ceramic to metal seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steve; Elisberg, Brenton; Calderone, James

    Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less

  17. Sealing glass-ceramics with near-linear thermal strain, part III: Stress modeling of strain and strain rate matched glass-ceramic to metal seals

    DOE PAGES

    Dai, Steve; Elisberg, Brenton; Calderone, James; ...

    2017-04-21

    Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less

  18. Global analysis of translation termination in E. coli.

    PubMed

    Baggett, Natalie E; Zhang, Yan; Gross, Carol A

    2017-03-01

    Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins.

  19. Functional analysis RaZIP1 transporter of the ZIP family from the ectomycorrhizal Zn-accumulating Russula atropurpurea.

    PubMed

    Leonhardt, Tereza; Sácký, Jan; Kotrba, Pavel

    2018-04-01

    A search of R. atropurpurea transcriptome for sequences encoding the transporters of the Zrt-, Irt-like Protein (ZIP) family, which are in eukaryotes integral to Zn supply into cytoplasm, allowed the identification of RaZIP1 cDNA with a predicted product belonging to ZIP I subfamily; it was subjected to functional studies in mutant Saccharomyces cerevisiae strains. The expression of RaZIP1, but not RaZIP1 H208A or RaZIP1 H232A mutants lacking conserved-among-ZIPs transmembrane histidyls, complemented Zn uptake deficiency in zrt1Δzrt2Δ yeasts. RaZIP1 substantially increased cellular Zn uptake in this strain and added to Zn sensitivity in zrc1Δcot1Δ mutant. The Fe uptake deficiency in ftr1Δ strain was not rescued and Mn uptake was insufficient for toxicity in Mn-sensitive pmr1Δ yeasts. By contrast, RaZIP1 increased Cd sensitivity in yap1Δ strain and conferred Cd transport activity in yeasts, albeit with substantially lower efficiency compared to Zn transport. In metal uptake assays, the accumulation of Zn in zrt1Δzrt2Δ strain remained unaffected by Cd, Fe, and Mn present in 20-fold molar excess over Zn. Immunofluorescence microscopy detected functional hemagglutinin-tagged HA::RaZIP1 on the yeast cell protoplast periphery. Altogether, these data indicate that RaZIP1 is a high-affinity plasma membrane transporter specialized in Zn uptake, and improve the understanding of the cellular and molecular biology of Zn in R. atropurpurea that is known for its ability to accumulate remarkably high concentrations of Zn.

  20. Deviation of the neurosporaxanthin pathway towards beta-carotene biosynthesis in Fusarium fujikuroi by a point mutation in the phytoene desaturase gene.

    PubMed

    Prado-Cabrero, Alfonso; Schaub, Patrick; Díaz-Sánchez, Violeta; Estrada, Alejandro F; Al-Babili, Salim; Avalos, Javier

    2009-08-01

    Carotenoids are widespread terpenoid pigments with applications in the food and feed industries. Upon illumination, the gibberellin-producing fungus Fusarium fujikuroi (Gibberella fujikuroi mating population C) develops an orange pigmentation caused by an accumulation of the carboxylic apocarotenoid neurosporaxanthin. The synthesis of this xanthophyll includes five desaturation steps presumed to be catalysed by the carB-encoded phytoene desaturase. In this study, we identified a yellow mutant (SF21) by mutagenesis of a carotenoid-overproducing strain. HPLC analyses indicated a specific impairment in the ability of SF21-CarB to perform the fifth desaturation, as implied by the accumulation of gamma-carotene and beta-carotene, which arise through four-step desaturation. Sequencing of the SF21 carB allele revealed a single mutation resulting in an exchange of a residue conserved in other five-step desaturases. Targeted carB allele replacement proved that this single mutation is the cause of the SF21 carotenoid pattern. In support, expression of SF21 CarB in engineered carotene-producing Escherichia coli strains demonstrated its reduced ability to catalyse the fifth desaturation step on both monocyclic and acyclic substrates. Further mutagenesis of SF21 led to the isolation of two mutants, SF73 and SF98, showing low desaturase activities, which mediated only two desaturation steps, resulting in accumulation of the intermediate zeta-carotene at low levels. Both strains contained an additional mutation affecting a CarB domain tentatively associated with carotenoid binding. SF21 exhibited higher carotenoid amounts than its precursor strain or the SF73 and SF98 mutants, although carotenogenic mRNA levels were similar in the four strains.

  1. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains.

    PubMed

    Wu, Guanxun; Gao, Zhengquan; Du, Huanmin; Lin, Bin; Yan, Yuchen; Li, Guoqiang; Guo, Yanyun; Fu, Shenggui; Wei, Gongxiang; Wang, Miaomiao; Cui, Meng; Meng, Chunxiao

    2018-03-27

    Sustainable renewable energy is being hotly debated globally because the continued use of finite fossil fuels is now widely recognized as being unsustainable. Microalgae potentially offer great opportunities for resolving this challenge. Abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) are involved in regulating many physiological properties and have been widely used in higher plants. To test if phytohormones have an impact on accumulating lipid for microalgae, ABA, JA and SA were used to induce two Chlorella strains in the present study. The results showed 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L JA, led strain C. vulgaris ZF strain to produce a 45%, 42% and 49% lipid content that was 1.8-, 1.7- and 2.0-fold that of controls, respectively. For FACHB 31 (number 31 of the Freshwater Algae Culture Collection at the Institute of Hydrobiology, Chinese Academy of Sciences), the addition of 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L, JA produced 33%, 30% and 38% lipid content, which was 1.8-, 1.6- and 2.1-fold that of controls, respectively. As for lipid productivity, 1.0 mg/L ABA increased the lipid productivity of C. vulgaris ZF strain and FACHB-31 by 123% and 44%; 10 mg/L SA enhanced lipid productivity by 100% and 33%; the best elicitor, 0.5 mg/L JA, augmented lipid productivity by 127% and 75% compared to that of controls, respectively. The results above suggest that the three phytohormones at physiological concentrations play crucial roles in inducing lipid accumulation in Chlorella.

  2. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat.

    PubMed

    Zhu, Xuezhu; Wang, Wanqing; Crowley, David E; Sun, Kai; Hao, Shupeng; Waigi, Michael Gatheru; Gao, Yanzheng

    2017-03-01

    This research was conducted to isolate polycyclic aromatic hydrocarbon-degrading (PAH-degrading) endophytic bacteria and investigate their potential in protecting plants against PAH contamination. Pyrene-degrading endophytic bacteria were isolated from plants grown in PAH-contaminated soil. Among these endophytic bacteria, strain PW7 (Serratia sp.) isolated from Plantago asiatica was selected to investigate the suppression of pyrene accumulation in Triticum aestivum L. In the in vitro tests, strain PW7 degraded 51.2% of the pyrene in the media within 14 days. The optimal biodegradation conditions were pH 7.0, 30 °C, and MS medium supplemented with additional glucose, maltose, sucrose, and peptones. In the in vivo tests, strain PW7 successfully colonized the roots and shoots of inoculated (E + ) wheat plants, and its colonization decreased pyrene accumulation and pyrene transportation from roots to shoots. Remarkably, the concentration of pyrene in shoots decreased much more than that in roots, suggesting that strain PW7 has the potential for protecting wheat against pyrene contamination and mitigating the threat of pyrene to human health via food consumption.

  3. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol.

    PubMed

    Feng, Xiaoyu; Walker, Terry H; Bridges, William C; Thornton, Charles; Gopalakrishnan, Karthik

    2014-08-01

    Biomass and lipid accumulation of heterotrophic microalgae Chlorella protothecoides by supplying mixed waste substrate of brewer fermentation and crude glycerol were investigated. The biomass concentrations of the old and the new C. protothecoides strains on day 6 reached 14.07 and 12.73 g/L, respectively, which were comparable to those in basal medium with supplement of glucose and yeast extract (BM-GY) (14.47 g/L for old strains and 11.43 g/L for new strains) (P>0.05). Approximately 81.5% of total organic carbon and 65.1% of total nitrogen in the mixed waste were effectively removed. The accumulated lipid productivities of the old and the new C. protothecoides strains in BM-GY were 2.07 and 1.61 g/L/day, respectively, whereas in the mixed waste, lipid productivities could reach 2.12 and 1.81 g/L/day, respectively. Our result highlights a new approach of mixing carbon-rich and nitrogen-rich wastes as economical and practical alternative substrates for biofuel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Utilization of biodiesel by-product as substrate for high-production of β-farnesene via relatively balanced mevalonate pathway in Escherichia coli.

    PubMed

    You, Shengping; Yin, Qingdian; Zhang, Jianye; Zhang, Chengyu; Qi, Wei; Gao, Lan; Tao, Zhiping; Su, Rongxin; He, Zhimin

    2017-11-01

    Farnesene has been identified as suitable jet fuel substitutes and metabolic engineering for microbial production of farnesene is an alternative and attractive route. In this study, due to accumulation of toxic intermediate isopentenyl pyrophosphate (IPP), an engineered Escherichia coli strain harboring heterologous mevalonate pathway produced only 4.11mg/L β-farnesene. Through higher-level expression of isopentenyl diphosphate isomerase and farnesyl diphosphate synthase to minimize the accumulated IPP, another engineered strain with relatively balanced mevalonate pathway was constructed and had the highest production of β-farnesene to date (8.74g/L) by Escherichia coli in a lab bioreactor. Furthermore, this is the first report on utilization of biodiesel by-product (simple purification) as substrate for high-production of β-farnesene by the engineered strain optimized and β-farnesene concentration reached 2.83g/L in a lab bioreactor. Therefore, the engineered strain optimized could be used as a platform host for high-production of other terpenoids using biodiesel by-product as substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria

    PubMed Central

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  6. Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase.

    PubMed

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2014-05-15

    The production of ethyl alcohol by fermentation represents the largest scale application of Saccharomyces cerevisiae in industrial biotechnology. Increased worldwide demand for fuel bioethanol is anticipated over the next decade and will exceed 200 billion liters from further expansions. Our working hypothesis was that the drop in ATP level in S. cerevisiae cells during alcoholic fermentation should lead to an increase in ethanol production (yield and productivity) with a greater amount of the utilized glucose converted to ethanol. Our approach to achieve this goal is to decrease the intracellular ATP level via increasing the unspecific alkaline phosphatase activity. Intact and truncated versions of the S. cerevisiae PHO8 gene coding for vacuolar or cytosolic forms of alkaline phosphatase were fused with the alcohol dehydrogenase gene (ADH1) promoter. The constructed expression cassettes used for transformation vectors also contained the dominant selective marker kanMX4 and S. cerevisiae δ-sequence to facilitate multicopy integration to the genome. Laboratory and industrial ethanol producing strains BY4742 and AS400 overexpressing vacuolar form of alkaline phosphatase were characterized by a slightly lowered intracellular ATP level and biomass accumulation and by an increase in ethanol productivity (13% and 7%) when compared to the parental strains. The strains expressing truncated cytosolic form of alkaline phosphatase showed a prolonged lag-phase, reduced biomass accumulation and a strong defect in ethanol production. Overexpression of vacuolar alkaline phosphatase leads to an increased ethanol yield in S. cerevisiae.

  7. Influence of nutritional and physicochemical variables on PHB production from raw glycerol obtained from a Colombian biodiesel plant by a wild-type Bacillus megaterium strain.

    PubMed

    Moreno, Paalo; Yañez, Camilo; Cardozo, Nilo Sérgio Medeiros; Escalante, Humberto; Combariza, Marianny Y; Guzman, Carolina

    2015-12-25

    Biodegradable polymers are currently viable alternatives to traditional synthetic polymers. For instance, polyhydroxybutyrate (PHB) is intracellularly produced and accumulated by Bacillus species, among others. This study reports several wild-type Bacillus strains with the ability to accumulate PHB using raw glycerol from biodiesel production as the sole carbon source. Out of 15 strains from different sources, B. megaterium B2 was selected as the most promising strain for further statistical optimization of the medium composition. Plackett-Burman and central composite designs were used to establish key variables and optimal culture conditions for PHB production using both 250-mL shake flasks and a 7.5-L bioreactor. Temperature and concentrations of glycerol and Na2HPO4 are the experimental variables with the most significant influence on PHB production by B2. After 14 hours of fermentation in shake flasks with optimized medium, B2 produced 0.43 g/L of PHB with a 34% accumulation in the cells. In contrast, under the same conditions, a maximum PHB concentration of 1.20 g/L in the bioreactor was reached at 11 hours. These values correspond to a 48% and 314% increase in PHB production compared to the initial culture conditions. These results suggest the potential of B2 as a PHB producer using raw glycerol, which is an inexpensive, abundant and readily available carbon source. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Assessment of surface relief and short cracks under cyclic creep in a type 316LN austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.

    2015-12-01

    Formation of surface relief and short cracks under cyclic creep (stress-controlled fatigue) in type 316LN stainless steel was studied at temperatures ranging from ambient to 923 K using scanning electron microscopy technique. The surface topography and crack distribution behaviour under cyclic creep were found to be strong functions of testing temperature due to the difference in strain accumulation. At 823 K, surface relief mainly consisted of fine slip markings due to negligible accumulation of strain as a consequence of dynamic strain ageing (DSA) which led to an increase in the cyclic life. Persistent slip markings (PSM) with distinct extrusions containing minute cracks were seen to prevail in the temperature range 873-923 K, indicating a higher slip activity causing higher strain accumulation in the absence of DSA. Besides, a large number of secondary cracks (both transgranular and intergranular) which were partially accentuated by severe oxidation, were observed. Extensive cavitation-induced grain boundary cracking took place at 923 K, which coalesced with PSM-induced transgranular cracks resulting in failure dominated by creep that in turn led to a drastic reduction in cyclic life. Investigations on the influence of stress rate were also carried out which underlined the presence of DSA at 823 K. At 923 K, lowering the stress rate caused further strengthening of the contribution from creep damage marked by a shift in the damage mechanism from cyclic slip to diffusion.

  9. Disentangling the causal relationships between work-home interference and employee health.

    PubMed

    van Hooff, Madelon L M; Geurts, Sabine A E; Taris, Toon W; Kompier, Michiel A J; Dikkers, Josje S E; Houtman, Irene L D; van den Heuvel, Floor M M

    2005-02-01

    The present study was designed to investigate the causal relationships between (time- and strain-based) work-home interference and employee health. The effort-recovery theory provided the theoretical basis for this study. Two-phase longitudinal data (with a 1-year time lag) were gathered from 730 Dutch police officers to test the following hypotheses with structural equation modeling: (i) work-home interference predicts health deterioration, (ii) health complaints precede increased levels of such interference, and (iii) both processes operate. The relationship between stable and changed levels of work-home interference across time and their relationships with the course of health were tested with a group-by-time analysis of variance. Four subgroups were created that differed in starting point and the development of work-home interference across time. The normal causal model, in which strain-based (but not time-based) work-home interference was longitudinally related to increased health complaints 1 year later, fit the data well and significantly better than the reversed causal model. Although the reciprocal model also provided a good fit, it was less parsimonious than the normal causal model. In addition, both an increment in (strain-based) work-home interference across time and a long-lasting experience of high (strain-based) work-home interference were associated with a deterioration in health. It was concluded that (strain-based) work-home interference acts as a precursor of health impairment and that different patterns of (strain-based) work-home interference across time are related to different health courses. Particularly long-term experience of (strain-based) work-home interference seems responsible for an accumulation of health complaints.

  10. Evaluation of GE-167 Silicone Rubber (RTV) For Possible Service As A Moisture-Barrier For Certain Strain Gage Applications

    NASA Technical Reports Server (NTRS)

    Hare, David A.; Moore, Thomas C., Sr.

    2000-01-01

    The Langley Research Center uses strain gages in a wide variety of demanding test environments. Strain gage installations, depending on the testing scenario, may see high temperatures, cryogenic temperature, moisture accumulation, mechanical abuse, or any combination of these conditions. At Langley, there is often a need to provide protection for strain gages against moisture and mechanical abuse, especially when large-scale, harsh environment testing is to be encountered. This technical memorandum discusses the evaluation of a room temperature curing silicone rubber sealant manufactured by the General Electric Company for consideration as a moisture-barrier for certain strain gage installations.

  11. ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa

    PubMed Central

    Jones, Christopher J.; Newsom, David; Kelly, Benjamin; Irie, Yasuhiko; Jennings, Laura K.; Xu, Binjie; Limoli, Dominique H.; Harrison, Joe J.; Parsek, Matthew R.; White, Peter; Wozniak, Daniel J.

    2014-01-01

    The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for AmrZ regulation of biofilm formation and chronicity. PMID:24603766

  12. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined method employing long-term continuous fermentation of acid-production processes. PMID:24533663

  13. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.

    PubMed

    Slininger, Patricia J; Dien, Bruce S; Kurtzman, Cletus P; Moser, Bryan R; Bakota, Erica L; Thompson, Stephanie R; O'Bryan, Patricia J; Cotta, Michael A; Balan, Venkatesh; Jin, Mingjie; Sousa, Leonardo da Costa; Dale, Bruce E

    2016-08-01

    Oleaginous yeasts can convert sugars to lipids with fatty acid profiles similar to those of vegetable oils, making them attractive for production of biodiesel. Lignocellulosic biomass is an attractive source of sugars for yeast lipid production because it is abundant, potentially low cost, and renewable. However, lignocellulosic hydrolyzates are laden with byproducts which inhibit microbial growth and metabolism. With the goal of identifying oleaginous yeast strains able to convert plant biomass to lipids, we screened 32 strains from the ARS Culture Collection, Peoria, IL to identify four robust strains able to produce high lipid concentrations from both acid and base-pretreated biomass. The screening was arranged in two tiers using undetoxified enzyme hydrolyzates of ammonia fiber expansion (AFEX)-pretreated cornstover as the primary screening medium and acid-pretreated switch grass as the secondary screening medium applied to strains passing the primary screen. Hydrolyzates were prepared at ∼18-20% solids loading to provide ∼110 g/L sugars at ∼56:39:5 mass ratio glucose:xylose:arabinose. A two stage process boosting the molar C:N ratio from 60 to well above 400 in undetoxified switchgrass hydrolyzate was optimized with respect to nitrogen source, C:N, and carbon loading. Using this process three strains were able to consume acetic acid and nearly all available sugars to accumulate 50-65% of cell biomass as lipid (w/w), to produce 25-30 g/L lipid at 0.12-0.22 g/L/h and 0.13-0.15 g/g or 39-45% of the theoretical yield at pH 6 and 7, a performance unprecedented in lignocellulosic hydrolyzates. Three of the top strains have not previously been reported for the bioconversion of lignocellulose to lipids. The successful identification and development of top-performing lipid-producing yeast in lignocellulose hydrolyzates is expected to advance the economic feasibility of high quality biodiesel and jet fuels from renewable biomass, expanding the market potential for lignocellulose-derived fuels beyond ethanol for automobiles to the entire U.S. transportation market. Biotechnol. Bioeng. 2016;113: 1676-1690. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch.

    PubMed

    Zhou, Xiang; Lu, Xi-Hong; Li, Xue-Hu; Xin, Zhi-Jun; Xie, Jia-Rong; Zhao, Mei-Rong; Wang, Liang; Du, Wen-Yue; Liang, Jian-Ping

    2014-02-18

    Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined method employing long-term continuous fermentation of acid-production processes.

  15. Satellite Monitoring of Accumulation of Strain in the Earth's Crust Related to Seismic and Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.

    2009-12-01

    Our studies have shown that the strain energy accumulation deep in the Earth’s crust that precedes seismic and volcanic activity can be detected by applying a lineament extraction technique to the high-resolution multispectral satellite images. A lineament is a straight or a somewhat curved feature in a satellite image, which it is possible to detect by a special processing of images based on directional filtering and or Hough transform. We analyzed tens of earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, using ASTER/TERRA multispectral satellite images for detection and analysis of changes in the system of lineaments previous to a strong earthquake. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changed significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion. The results obtained made it possible to include this research as a part of scientific program of Chilean Remote Sensing Satellite mission to be launched in 2010.

  16. Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr (III) and Cr (VI) and the influence of riboflavin on Cr tolerance.

    PubMed

    Ksheminska, Helena; Jaglarz, Anita; Fedorovych, Daria; Babyak, Lyubov; Yanovych, Dmytro; Kaszycki, Pawel; Koloczek, Henryk

    2003-01-01

    A comparative study has been made on the sensitivity of the yeast Pichia guilliermondii to Cr (III) and Cr (VI) as well as on the Cr uptake potential at growth-inhibitory concentrations of chromium. The strains used in the study were either isolated from natural sources or obtained from a laboratory strain collection. The results show that most of the natural strains were more tolerant to chromium and were able to grow in the presence of 5 mM Cr (III) or 0.5 mM Cr (VI), that is at concentrations which substantially inhibited the growth of laboratory strains. The cellular Cr content after treatment was similar for both strain types and ranged from 1.2-4.0 mg/g d.w. and 0.4-0.9 mg/g d.w., for Cr (III) and Cr (VI) forms, respectively, however, in one case of a natural strain it reached the value of 10 mg Cr (III)/g dry mass. Natural-source strains were grouped into four groups based on the yeasts' differential response to Cr (III) and Cr (VI). Hexavalent Cr-resistant mutants of a P. giuilliermondii laboratory strain, which revealed markedly changed capabilities of chromium accumulation, were obtained by means of UV-induced mutagenesis. Cr (VI) treatment triggered oversynthesis of riboflavin and the addition of exogenous riboflavin increased P. guilliermondii resistance to both Cr (III) and Cr (VI). Electrophoretic protein profiles revealed the induction and/or suppression of several proteins in response to toxic Cr (VI) levels.

  17. [Contribution of blue-green pigments to hemolytic activity of Pseudomonas aeruginosa cultural fluid].

    PubMed

    Pyzh, A É; Nikandrov, V N

    2011-01-01

    To assess the contribution of blue-green pigments of Pseudomonas aeruginosa to hemolytic activity of its cultural fluid. MATERIALS AND METHODS. Eight hospital strains and reference strain ATCC 15442 were used. Growth dynamics of strains as well as features of accumulation of hemolytic and phospholipase activity were studied. Purified samples of pyoverdin and pyocyanin were extracted by gel-chromatography and chloroform extraction methods. Hemolytic and lecitinase activities of the samples as well as effect of active oxygen scavengers and chelating agents on these activities were studied. Dynamics of accumulation of hemolytic activity significantly differed from that of phospholipase activity when strains were grown in liquid medium. Chromatographic separation of the pigments from cultural fluid supernatants sharply reduced its hemolytic activity. Purified samples of pyoverdin and pyocyanin were capable to lyse erythrocytes and chicken egg lecitin. These characteristics of the pigments were inhibited by nitroblue tetrazolium and sensitive to chelating agents. Conclusion. Pyoverdin and pyocyanin of pathogenic strains of P. aeruginosa are capable to lyse erythrocytes and suspension of purified chicken egg lecitin, they contribute to total hemolytic activity of pathogenic strains of Pseudomonas, which is not determined only by phospholipase C produced by microorganism. Lytic activity of the pigments is blocked by nitroblue tetrazolium and susceptible to some chelating agents. Apparently, this activity is mediated by superoxide radical and determined by presence of metals with transient valence in pigments' molecules.

  18. Dislocation based controlling of kinematic hardening contribution to simulate primary and secondary stages of uniaxial ratcheting

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.

    2017-07-01

    The primary and secondary stages of the uniaxial ratcheting curve for the C-Mn steel SA333 have been investigated. Stress controlled uniaxial ratcheting experiments were conducted with different mean stresses and stress amplitudes to obtain curves showing the evolution of ratcheting strain with number of cycles. In stage-I of the ratcheting curve, a large accumulation of ratcheting strain occurs, but at a decreasing rate. In contrast, in stage-II a smaller accumulation of ratcheting strain is found and the ratcheting rate becomes almost constant. Transmission electron microscope observations reveal that no specific dislocation structures are developed during the early stages of ratcheting. Rather, compared with the case of low cycle fatigue, it is observed that sub-cell formation is delayed in the case of ratcheting. The increase in dislocation density as a result of the ratcheting strain is obtained using the Orowan equation. The ratcheting strain is obtained from the shift of the plastic strain memory surface. The dislocation rearrangement is incorporated in a functional form of dislocation density, which is used to calibrate the parameters of a kinematic hardening law. The observations are formulated in a material model, plugged into the ABAQUS finite element (FE) platform as a user material subroutine. Finally the FE-simulated ratcheting curves are compared with the experimental curves.

  19. Quantification of carotid artery plaque stability with multiple region of interest based ultrasound strain indices and relationship with cognition

    NASA Astrophysics Data System (ADS)

    Meshram, N. H.; Varghese, T.; Mitchell, C. C.; Jackson, D. C.; Wilbrand, S. M.; Hermann, B. P.; Dempsey, R. J.

    2017-08-01

    Vulnerability and instability in carotid artery plaque has been assessed based on strain variations using noninvasive ultrasound imaging. We previously demonstrated that carotid plaques with higher strain indices in a region of interest (ROI) correlated to patients with lower cognition, probably due to cerebrovascular emboli arising from these unstable plaques. This work attempts to characterize the strain distribution throughout the entire plaque region instead of being restricted to a single localized ROI. Multiple ROIs are selected within the entire plaque region, based on thresholds determined by the maximum and average strains in the entire plaque, enabling generation of additional relevant strain indices. Ultrasound strain imaging of carotid plaques, was performed on 60 human patients using an 18L6 transducer coupled to a Siemens Acuson S2000 system to acquire radiofrequency data over several cardiac cycles. Patients also underwent a battery of neuropsychological tests under a protocol based on National Institute of Neurological Disorders and Stroke and Canadian Stroke Network guidelines. Correlation of strain indices with composite cognitive index of executive function revealed a negative association relating high strain to poor cognition. Patients grouped into high and low cognition groups were then classified using these additional strain indices. One of our newer indices, namely the average L  -  1 norm with plaque (AL1NWP) presented with significantly improved correlation with executive function when compared to our previously reported maximum accumulated strain indices. An optimal combination of three of the new indices generated classifiers of patient cognition with an area under the curve (AUC) of 0.880, 0.921 and 0.905 for all (n  =  60), symptomatic (n  =  33) and asymptomatic patients (n  =  27) whereas classifiers using maximum accumulated strain indices alone provided AUC values of 0.817, 0.815 and 0.813 respectively.

  20. Quantification of carotid artery plaque stability with multiple region of interest based ultrasound strain indices and relationship with cognition.

    PubMed

    Meshram, N H; Varghese, T; Mitchell, C C; Jackson, D C; Wilbrand, S M; Hermann, B P; Dempsey, R J

    2017-07-17

    Vulnerability and instability in carotid artery plaque has been assessed based on strain variations using noninvasive ultrasound imaging. We previously demonstrated that carotid plaques with higher strain indices in a region of interest (ROI) correlated to patients with lower cognition, probably due to cerebrovascular emboli arising from these unstable plaques. This work attempts to characterize the strain distribution throughout the entire plaque region instead of being restricted to a single localized ROI. Multiple ROIs are selected within the entire plaque region, based on thresholds determined by the maximum and average strains in the entire plaque, enabling generation of additional relevant strain indices. Ultrasound strain imaging of carotid plaques, was performed on 60 human patients using an 18L6 transducer coupled to a Siemens Acuson S2000 system to acquire radiofrequency data over several cardiac cycles. Patients also underwent a battery of neuropsychological tests under a protocol based on National Institute of Neurological Disorders and Stroke and Canadian Stroke Network guidelines. Correlation of strain indices with composite cognitive index of executive function revealed a negative association relating high strain to poor cognition. Patients grouped into high and low cognition groups were then classified using these additional strain indices. One of our newer indices, namely the average L  -  1 norm with plaque (AL1NWP) presented with significantly improved correlation with executive function when compared to our previously reported maximum accumulated strain indices. An optimal combination of three of the new indices generated classifiers of patient cognition with an area under the curve (AUC) of 0.880, 0.921 and 0.905 for all (n  =  60), symptomatic (n  =  33) and asymptomatic patients (n  =  27) whereas classifiers using maximum accumulated strain indices alone provided AUC values of 0.817, 0.815 and 0.813 respectively.

  1. Differential growth of U and M type infectious haematopoietic necrosis virus in a rainbow trout–derived cell line, RTG-2

    USGS Publications Warehouse

    Kurath, Gael; Purcell, Maureen K.; Wargo, Andrew; Park, Jeong Woo; Moon, Chang Hoon

    2010-01-01

    Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout–derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.

  2. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.

    PubMed

    Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J

    2014-08-20

    Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates.

  3. [Isolation, Identification and Characteristic Analysis of an Oil-producing Chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent].

    PubMed

    Yang, Chuang; Wang, Wen-guo; Ma, Dan-wei; Tang, Xiao-yu; Hu, Qi-chun

    2015-07-01

    A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.

  4. The Microstructure Evolution and Deformation Behavior of AZ80 During Gradient Increment Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Ren, Lingbao; Quan, Gaofeng; Boehlert, Carl J.; Zhou, Mingyang; Guo, Yangyang; Fan, Lingling

    2018-06-01

    Cyclic loading-unloading uniaxial tension experiments were conducted at temperatures ranging between 293 K and 623 K and a strain rate of 10-3 s-1 to study the cyclic accumulated plastic deformation (CAP) behavior of extruded AZ80. The 673 K/4-h heat treatment to the as-extruded AZ80 led to a noticeable decrease in yield strength which was associated with both dissolution of the β-Mg17Al12 phase and growth of the matrix grain size. The critical number of cycles needed to soften the material (N c) decreased from 5 to 4 when the cyclic strain amplitude (ɛ a) increased from 3.3 to 5.0 pct for the as-extruded AZ80. The average cyclic hardening rate (Θ) increased from 11 to 23 MPa/cycle after heat treatment, and this was attributed to the more pronounced twinning process in the coarse-grained microstructure. During the 293 K to 473 K CAP deformation, the increasing accumulated cyclic tension strain may have accelerated the propagation of secondary twinning leading to the Lüders-like post-yield softening. Twinning was prevalent at low temperature (293 K to 473 K) in the ɛ a = 3.0 pct CAP deformation for the heat-treated alloy, and twin-assisted precipitation occurred during the 523 K CAP deformation, which implied that the high diffusivity in the twin boundary accelerated the heterogeneous nucleation of precipitates. The preferred cracking locations changed from twin boundaries to grain boundaries when the CAP deformation temperature increased from 473 K to 523 K. As for the 623 K CAP deformation, cavities initiated at the grain boundaries, and the volume fraction of the cracks/cavities increased from 0.01 to 0.05 with increasing temperature.

  5. Characterizing the roles of Cryphonectria parasitica RNA-dependent RNA polymerase-like genes in antiviral defense, viral recombination and transposon transcript accumulation.

    PubMed

    Zhang, Dong-Xiu; Spiering, Martin J; Nuss, Donald L

    2014-01-01

    An inducible RNA-silencing pathway, involving a single Dicer protein, DCL2, and a single Argonaute protein, AGL2, was recently shown to serve as an effective antiviral defense response in the chestnut blight fungus Cryphonectria parasitica. Eukaryotic RNA-dependent RNA polymerases (RdRPs) are frequently involved in transcriptional and posttranscriptional gene silencing and antiviral defense. We report here the identification and characterization of four RdRP genes (rdr1-4) in the C. parasitica genome. Sequence relationships with other eukaryotic RdRPs indicated that RDR1 and RDR2 were closely related to QDE-1, an RdRP involved in RNA silencing ("quelling") in Neurospora crassa, whereas RDR3 was more closely related to the meiotic silencing gene SAD-1 in N. crassa. The RdRP domain of RDR4, related to N. crassa RRP-3 of unknown function, was truncated and showed evidence of alternative splicing. Similar to reports for dcl2 and agl2, the expression levels for rdr3 and rdr4 increased after hypovirus CHV-1/EP713 infection, while expression levels of rdr1 and rdr2 were unchanged. The virus-responsive induction patterns for rdr3 and rdr4 were altered in the Δdcl2 and Δagl2 strains, suggesting some level of interaction between rdr3 and rdr4 and the dcl2/agl2 silencing pathway. Single rdr gene knockouts Δrdr1-4, double knockouts Δrdr1/2, Δrdr2/3, Δrdr1/3, and a triple knockout, Δrdr1/2/3, were generated and evaluated for effects on fungal phenotype, the antiviral defense response, viral RNA recombination activity and transposon expression. None of the single or multiple rdr knockout strains displayed any phenotypic differences from the parental strains with or without viral infection or any significant changes in viral RNA accumulation or recombination activity or transposon RNA accumulation, indicating no detectable contribution by the C. parasitica rdr genes to these processes.

  6. Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria

    PubMed Central

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A.; Pakrasi, Himadri B.

    2011-01-01

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. PMID:21972240

  7. Production of ultrafine grained aluminum by cyclic severe plastic deformation at ambient temperature

    NASA Astrophysics Data System (ADS)

    Bereczki, P.; Szombathelyi, V.; Krallics, G.

    2014-08-01

    In the present study the possibilities of grain refinement was investigated by applying large-scale of cyclic plastic deformation to aluminum at ambient temperature. The specimens are processed by multiaxial forging, which is one of the severe plastic deformation techniques. The aim of the experiments with the aluminum alloy 6082M was the determination of the equivalent stress and strain by multiaxial forging and the investigation of evolution of mechanical properties in relation with the accumulated deformation in the specimen. The mechanical properties of raw material was determined by plane strain compression test as well as by hardness measurements. The forming experiments were carried out on Gleeble 3800 physical simulator with MaxStrain System. The mechanical properties of the forged specimens were investigated by micro hardness measurements and tensile tests. A mechanical model, based on the principle of virtual velocities was developed to calculate the flow curves using the measured dimensional changes of the specimen and the measured force. With respect to the evolution of these curves, the cyclic growth of the flow stress can be observed at every characteristic points of the calculated flow curves. In accordance with this tendency, the evolution of the hardness along the middle cross section of the deformed volume has also a nonmonotonous characteristic and the magnitudes of these values are much smaller than by the specimen after plane strain compression test. This difference between the flow stresses respect to the monotonic and non-monotonic deformation can be also observed. The formed microstructure, after a 10-passes multiaxial forging process, consists of mainly equiaxial grains in the submicron grain scale.

  8. Microstructural Characteristic of the Al-Fe-Cu Alloy During High-Speed Repetitive Continuous Extrusion Forming

    NASA Astrophysics Data System (ADS)

    Hu, Jiamin; Teng, Jie; Ji, Xiankun; Kong, Xiangxin; Jiang, Fulin; Zhang, Hui

    2016-11-01

    High-speed repetitive continuous extrusion forming process (R-Conform process) was performed on the Al-Fe-Cu alloy. The microstructural evolution and mechanical properties were studied by x-ray diffraction, electron backscatter diffraction, transmission electron microscopy and tensile testing. The results show that a significant improvement of tensile ductility concurs with a considerable loss of tensile strength before four passes, after that the process on mechanical properties variation tends to be steady, indicating an accelerated mechanical softening occurs when comparing to low-speed R-Conform process. Microstructure characterization indicates that the accumulated strain promotes the transformation of low angle boundaries to high angle boundaries, thus leading to the acceleration of continuous dynamic recrystallization process, and the precipitates are broken, spheroidized and homogeneously distribute in Al matrix as increasing R-Conform passes. Massive microshear bands are observed after initial passes of R-Conform process, which may promote continuous dynamic recrystallization and further grain refinement during high-speed R-Conform process.

  9. Strain rates, stress markers and earthquake clustering (Invited)

    NASA Astrophysics Data System (ADS)

    Fry, B.; Gerstenberger, M.; Abercrombie, R. E.; Reyners, M.; Eberhart-Phillips, D. M.

    2013-12-01

    The 2010-present Canterbury earthquakes comprise a well-recorded sequence in a relatively low strain-rate shallow crustal region. We present new scientific results to test the hypothesis that: Earthquake sequences in low-strain rate areas experience high stress drop events, low-post seismic relaxation, and accentuated seismic clustering. This hypothesis is based on a physical description of the aftershock process in which the spatial distribution of stress accumulation and stress transfer are controlled by fault strength and orientation. Following large crustal earthquakes, time dependent forecasts are often developed by fitting parameters defined by Omori's aftershock decay law. In high-strain rate areas, simple forecast models utilizing a single p-value fit observed aftershock sequences well. In low-strain rate areas such as Canterbury, assumptions of simple Omori decay may not be sufficient to capture the clustering (sub-sequence) nature exhibited by the punctuated rise in activity following significant child events. In Canterbury, the moment release is more clustered than in more typical Omori sequences. The individual earthquakes in these clusters also exhibit somewhat higher stress drops than in the average crustal sequence in high-strain rate regions, suggesting the earthquakes occur on strong Andersonian-oriented faults, possibly juvenile or well-healed . We use the spectral ratio procedure outlined in (Viegas et al., 2010) to determine corner frequencies and Madariaga stress-drop values for over 800 events in the sequence. Furthermore, we will discuss the relevance of tomographic results of Reyners and Eberhart-Phillips (2013) documenting post-seismic stress-driven fluid processes following the three largest events in the sequence as well as anisotropic patterns in surface wave tomography (Fry et al., 2013). These tomographic studies are both compatible with the hypothesis, providing strong evidence for the presence of widespread and hydrated regional upper crustal cracking parallel to sub-parallel to the dominant transverse failure plane in the sequence. Joint interpretation of the three separate datasets provide a positive first attempt at testing our fundamental hypothesis.

  10. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.

    PubMed

    Liu, Lina; Chen, Sheng; Wu, Jing

    2017-10-01

    Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.

  11. The NOTCH3 score: a pre-clinical CADASIL biomarker in a novel human genomic NOTCH3 transgenic mouse model with early progressive vascular NOTCH3 accumulation.

    PubMed

    Rutten, Julie W; Klever, Roselin R; Hegeman, Ingrid M; Poole, Dana S; Dauwerse, Hans G; Broos, Ludo A M; Breukel, Cor; Aartsma-Rus, Annemieke M; Verbeek, J Sjef; van der Weerd, Louise; van Duinen, Sjoerd G; van den Maagdenberg, Arn M J M; Lesnik Oberstein, Saskia A J

    2015-12-29

    CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a hereditary small vessel disease caused by mutations in the NOTCH3 gene, leading to toxic NOTCH3 protein accumulation in the small- to medium sized arterioles. The accumulation is systemic but most pronounced in the brain vasculature where it leads to clinical symptoms of recurrent stroke and dementia. There is no therapy for CADASIL, and therapeutic development is hampered by a lack of feasible clinical outcome measures and biomarkers, both in mouse models and in CADASIL patients. To facilitate pre-clinical therapeutic interventions for CADASIL, we aimed to develop a novel, translational CADASIL mouse model. We generated transgenic mice in which we overexpressed the full length human NOTCH3 gene from a genomic construct with the archetypal c.544C > T, p.Arg182Cys mutation. The four mutant strains we generated have respective human NOTCH3 RNA expression levels of 100, 150, 200 and 350 % relative to endogenous mouse Notch3 RNA expression. Immunohistochemistry on brain sections shows characteristic vascular human NOTCH3 accumulation in all four mutant strains, with human NOTCH3 RNA expression levels correlating with age at onset and progression of NOTCH3 accumulation. This finding was the basis for developing the 'NOTCH3 score', a quantitative measure for the NOTCH3 accumulation load. This score proved to be a robust and sensitive method to assess the progression of NOTCH3 accumulation, and a feasible biomarker for pre-clinical therapeutic testing. This novel, translational CADASIL mouse model is a suitable model for pre-clinical testing of therapeutic strategies aimed at delaying or reversing NOTCH3 accumulation, using the NOTCH3 score as a biomarker.

  12. Mechanical deformation model of the western United States instantaneous strain-rate field

    USGS Publications Warehouse

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF system is systematically underpredicted by models which account only for relaxation from known large earthquakes. This strongly suggests that in addition to viscoelastic-cycle effects, steady deep slip in the lower lithosphere is needed to explain the observed strain-rate field. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  13. Cell Surface Display of Four Types of Solanum nigrum Metallothionein on Saccharomyces cerevisiae for Biosorption of Cadmium.

    PubMed

    Wei, Qinguo; Zhang, Honghai; Guo, Dongge; Ma, Shisheng

    2016-05-28

    We displayed four types of Solanum nigrum metallothionein (SMT) for the first time on the surface of Saccharomyces cerevisiae using an α-agglutinin-based display system. The SMT genes were amplified by RT-PCR. The plasmid pYES2 was used to construct the expression vector. Transformed yeast strains were confirmed by PCR amplification and custom sequencing. Surface-expressed metallothioneins were indirectly indicated by the enhanced cadmium sorption capacity. Flame atomic absorption spectrophotometry was used to examine the concentration of Cd(2+) in this study. The transformed yeast strains showed much higher resistance ability to Cd(2+) compared with the control. Strikingly, their Cd(2+) accumulation was almost twice as much as that of the wild-type yeast cells. Furthermore, surface-engineered yeast strains could effectively adsorb ultra-trace cadmium and accumulate Cd(2+) under a wide range of pH levels, from 3 to 7, without disturbing the Cu(2+) and Hg(2+). Four types of surfaceengineered Saccharomyces cerevisiae strains were constructed and they could be used to purify Cd(2+)-contaminated water and adsorb ultra-trace cadmium effectively. The surface-engineered Saccharomyces cerevisiae strains would be useful tools for the bioremediation and biosorption of environmental cadmium contaminants.

  14. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-09-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  15. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity.

    PubMed

    Tavernier, Virginie; Cadiou, Sandrine; Pageau, Karine; Laugé, Richard; Reisdorf-Cren, Michèle; Langin, Thierry; Masclaux-Daubresse, Céline

    2007-01-01

    Nitrogen plays an essential role in the nutrient relationship between plants and pathogens. Some studies report that the nitrogen-mobilizing plant metabolism that occurs during abiotic and biotic stress could be a 'slash-and-burn' defence strategy. In order to study nitrogen recycling and mobilization in host plants during pathogen attack and invasion, the Colletotrichum lindemuthianum/Phaseolus vulgaris interaction was used as a model. C. lindemuthianum is a hemibiotroph that causes anthracnose disease on P. vulgaris. Non-pathogenic mutants and the pathogenic wild-type strain were used to compare their effects on plant metabolism. The deleterious effects of infection were monitored by measuring changes in chlorophyll, protein, and amino acid concentrations. It was shown that amino acid composition changed depending on the plant-fungus interaction and that glutamine accumulated mainly in the leaves infected by the pathogenic strain. Glutamine accumulation correlated with the accumulation of cytosolic glutamine synthetase (GS1 alpha) mRNA. The most striking result was that the GS1 alpha gene was induced in all the fungus-infected leaves, independent of the strain used for inoculation, and that GS1 alpha expression paralleled the PAL3 and CHS defence gene expression. It is concluded that a role of GS1 alpha in plant defence has to be considered.

  16. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy.

    PubMed

    Fukuda, Shin-Ya; Iwamoto, Koji; Atsumi, Mika; Yokoyama, Akiko; Nakayama, Takeshi; Ishida, Ken-Ichiro; Inouye, Isao; Shiraiwa, Yoshihiro

    2014-01-01

    The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 10¹⁷ Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.

  17. A Genetic Selection For Neurospora crassa Mutants Altered in Their Light Regulation of Transcription

    PubMed Central

    Navarro-Sampedro, Laura; Yanofsky, Charles; Corrochano, Luis M.

    2008-01-01

    Transcription of the Neurospora crassa gene con-10 is induced during conidiation and following exposure of vegetative mycelia to light, but light activation is transient due to photoadaptation. We describe mutational analyses of photoadaptation using a N. crassa strain bearing a translational fusion of con-10, including its regulatory region, to a selectable bacterial gene conferring hygromycin resistance (hph). Growth of this strain was sensitive to hygromycin, upon continuous culture in the light. Five mutants were isolated that were resistant to hygromycin when cultured under constant light. Three mutant strains displayed elevated, sustained accumulation of con-10∷hph mRNA during continued light exposure, suggesting that they bear mutations that reduce or eliminate the presumed light-dependent repression mechanism that blocks con-10 transcription upon prolonged illumination. These mutations altered photoadaptation for only a specific group of genes (con-10 and con-6), suggesting that regulation of photoadaptation is relatively gene specific. The mutations increased light-dependent mRNA accumulation for genes al-1, al-2, and al-3, each required for carotenoid biosynthesis, resulting in a threefold increase in carotenoid accumulation following continuous light exposure. Identification of the altered gene or genes in these mutants may reveal novel proteins that participate in light regulation of gene transcription in fungi. PMID:18202366

  18. Cultivar-Dependent Transcript Accumulation in Wheat Roots Colonized by Pseudomonas fluorescens Q8r1-96 Wild Type and Mutant Strains

    USDA-ARS?s Scientific Manuscript database

    In Triticum aestivum L. (wheat), the root-colonizing bacterium Pseudomonas fluorescens strain Q8r1-96 produces the antifungal metabolite 2,4-diacetylphloroglucinol (DAPG), suppresses damage caused by soilborne root pathogens, and modulates multiple stress or defense pathways in wheat roots. To test...

  19. Plate Boundary Observatory Strainmeter Recordings of The M6.0 August 24, 2014 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Kathleen; Mencin, David; Phillips, David; Mattioli, Glen; Meertens, Charles

    2015-04-01

    The 2014 Mw6.0 South Napa earthquake nucleated at 11 km depth near the West Napa fault, one of a complex system of sub-parallel major right lateral faults north of San Francisco that together accommodate much of the relative motion between the Pacific and North American tectonic plates. The South Napa event was the largest to have shaken the San Francisco Bay Area (SFBA) in almost 25 years. A major goal of the NSF-funded EarthScope Plate Boundary Observatory (PBO), installed and maintained by UNAVCO, was to enable researchers to study the interaction between the faults that form a plate boundary zone, and in particular, to investigate the role that aseismic transients contribute to strain accumulation and release. To realize this goal, PBO includes borehole tensor strainmeters (BSMs) installed in several targeted regions, including on to the north and east of San Francisco. Two PBO BSMs have been operating in the SFBA since 2008: B057, north of San Francisco and 30 km from the epicenter, and B054, 3 km from the Hayward Fault and 40 km from the epicenter. We find the coseismic strains recorded by B057 are close to those predicted using elastic half-space dislocation theory and the seismically determined focal mechanism, while a more complicated variable slip model may be required for observations from B054. Months after the event, B057 continued to record a significant postseismic signal. In this presentation we document the coseismic signals recorded by the PBO BSMs and characterize the temporal behavior of the postseismic signal at B057. The PBO network includes over 1100 GPS, 75 BSMs, 79 seismometers and arrays of tiltmeters, pore pressure sensors and meteorological instrumentation. UNAVCO generates an Earthscope Level 2 processed strain time-series combined into areal and shear strains for the PBO BSM network; the raw data are available from the IRIS DMC in mSEED format. For events of interest, such as the South Napa earthquake, UNAVCO generates a 1-sps processed strain time series that also includes tilt data, pore pressure and high-rate meteorological measurements if available. Site information, data quality measurements, current strain plots and strain time-series for all PBO strain instruments can be obtained from the UNAVCO PBO web page (http://www.unavco.org/data/strain-seismic/strain-seismic.html).

  20. Void initiation from interfacial debonding of spherical silicon particles inside a silicon-copper nanocomposite: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Chen, Zengtao

    2017-02-01

    Silicon particles with diameters from 1.9 nm to 30 nm are embedded in a face-centered-cubic copper matrix to form nanocomposite specimens for simulation. The interfacial debonding of silicon particles from the copper matrix and the subsequent growth of nucleated voids are studied via molecular dynamics (MD). The MD results are examined from several different perspectives. The overall mechanical performance is monitored by the average stress-strain response and the accumulated porosity. The ‘relatively farthest-traveled’ atoms are identified to characterize the onset of interfacial debonding. The relative displacement field is plotted to illustrate both subsequent interfacial debonding and the growth of a nucleated void facilitated by a dislocation network. Our results indicate that the initiation of interfacial debonding is due to the accumulated surface stress if the matrix is initially dislocation-free. However, pre-existing dislocations can make a considerable difference. In either case, the dislocation emission also contributes to the subsequent debonding process. As for the size effect, the debonding of relatively larger particles causes a drop in the stress-strain curve. The volume fraction of second-phase particles is found to be more influential than the size of the simulation box on the onset of interfacial debonding. The volume fraction of second-phase particles also affects the shape of the nucleated void and, therefore, influences the stress response of the composite.

  1. Pleiotropic Alterations in Lipid Metabolism in Yeast sac1 Mutants: Relationship to “Bypass Sec14p” and Inositol Auxotrophy

    PubMed Central

    Rivas, Marcos P.; Kearns, Brian G.; Xie, Zhigang; Guo, Shuling; Sekar, M. Chandra; Hosaka, Kohei; Kagiwada, Satoshi; York, John D.; Bankaitis, Vytas A.

    1999-01-01

    SacIp dysfunction results in bypass of the requirement for phosphatidylinositol transfer protein (Sec14p) function in yeast Golgi processes. This effect is accompanied by alterations in inositol phospholipid metabolism and inositol auxotrophy. Elucidation of how sac1 mutants effect “bypass Sec14p” will provide insights into Sec14p function in vivo. We now report that, in addition to a dramatic accumulation of phosphatidylinositol-4-phosphate, sac1 mutants also exhibit a specific acceleration of phosphatidylcholine biosynthesis via the CDP-choline pathway. This phosphatidylcholine metabolic phenotype is sensitive to the two physiological challenges that abolish bypass Sec14p in sac1 strains; i.e. phospholipase D inactivation and expression of bacterial diacylglycerol (DAG) kinase. Moreover, we demonstrate that accumulation of phosphatidylinositol-4-phosphate in sac1 mutants is insufficient to effect bypass Sec14p. These data support a model in which phospholipase D activity contributes to generation of DAG that, in turn, effects bypass Sec14p. A significant fate for this DAG is consumption by the CDP-choline pathway. Finally, we determine that CDP-choline pathway activity contributes to the inositol auxotrophy of sac1 strains in a novel manner that does not involve obvious defects in transcriptional expression of the INO1 gene. PMID:10397762

  2. Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Rahimian, Mehdi; Ketabchi, Mostafa; Parvin, Nader; Yaghinali, Parisa; Carreño, Fernando

    2016-10-01

    The strengthening mechanisms in nanostructured Al/SiCp composite deformed to high strain by a novel severe plastic deformation process, accumulative press bonding (APB), were investigated. The composite exhibited yield strength of 148 MPa which was 5 and 1.5 times higher than that of raw aluminum (29 MPa) and aluminum-APB (95 MPa) alloys, respectively. A remarkable increase was also observed in the ultimate tensile strength of Al/SiCp-APB composite, 222 MPa, which was 2.5 and 1.2 times greater than the obtained values for raw aluminum (88 MPa) and aluminum-APB (180 MPa) alloys, respectively. Analytical models well described the contribution of various strengthening mechanisms. The contributions of grain boundary, strain hardening, thermal mismatch, Orowan, elastic mismatch, and load-bearing strengthening mechanisms to the overall strength of the Al/SiCp microcomposite were 64.9, 49, 6.8, 2.4, 5.4, and 1.5 MPa, respectively. Whereas Orowan strengthening mechanism was considered as the most dominating strengthening mechanism in Al/SiCp nanocomposites, it was negligible for strengthening the microcomposite. Al/SiCp nanocomposite showed good agreement with quadratic summation model; however, experimental results exhibited good accordance with arithmetic and compounding summation models in the microcomposite. While average grain size of the composite reached 380 nm, it was less than 100 nm in the vicinity of SiC particles as a result of particle-stimulated nucleation mechanism.

  3. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor.

    PubMed

    Wu, Qun; Chen, Liangqiang; Xu, Yan

    2013-09-02

    Yeasts are the most important group of microorganisms contributing to liquor quality in the solid-state fermentation process of Chinese Maotai-flavor liquor. There occurred a complex yeast community structure during this process, including stages of Daqu (the starter) making, stacking fermentation on the ground and liquor fermentation in the pits. In the Daqu making stage, few yeast strains accumulated. However, the stacking fermentation stage accumulated nine yeast species with different physio-biochemical characteristics. But only four species kept dominant until liquor fermentation, which were Zygosaccharomyces bailii, Saccharomyces cerevisiae, Pichia membranifaciens, and Schizosaccharomyces pombe, implying their important functions in liquor making. The four species tended to inhabit in different locations of the stack and pits during stacking and liquor fermentation, due to the condition heterogeneity of the solid-state fermentation, including the different fermentation temperature profiles and oxygen density in different locations. Moreover, yeast population was much larger in the upper layer than that in the middle and bottom layers in liquor fermentation, which was in accordance with the profile of reducing sugar consumption and ethanol production. This was a systematical investigation of yeast community structure dynamics in the Maotai-flavor liquor fermentation process. It would be of help to understand the fermentative mechanism in solid-state fermentation for Maotai-flavor liquor. © 2013.

  4. Profiling of Genes Related to Cross Protection and Competition for NbTOM1 by HLSV and TMV

    PubMed Central

    Wen, Yi; Lim, Grace Xiao-Yun; Wong, Sek-Man

    2013-01-01

    Cross protection is the phenomenon through which a mild strain virus suppresses symptoms induced by a closely related severe strain virus in infected plants. Hibiscus latent Singapore virus (HLSV) and Tobacco mosaic virus (TMV) are species within the genus tobamovirus. HLSV can protect Nicotiana benthamiana against TMV-U1 strain, resulting in mild symptoms instead of severe systemic necrosis. The mechanism of cross protection between HLSV and TMV is unknown. In the past, some researchers suggest that the protecting virus strain might occupy virus-specific replication sites within a cell leaving no room for the challenge virus. Quantitative real-time RT-PCR was performed to detect viral RNA levels during cross protection. HLSV accumulation increased in cross protected plants compared with that of single HLSV infected plants, while TMV decreased in cross protected plants. This suggests that there is a competition for host factors between HLSV and TMV for replication. To investigate the mechanism under the cross protection between HLSV and TMV, microarray analysis was conducted to examine the transcriptional levels of global host genes during cross protection, using Tobacco Gene Expression Microarray, 4x44 k slides. The transcriptional level of some host genes corresponded to accumulation level of TMV. Some host genes were up-regulated only by HLSV. Tobamovirus multiplication gene 1 (TOM1), essential for tobamovirus multiplication, was involved in competition for replication by HLSV and TMV during cross protection. Both HLSV and TMV accumulation decreased when NbTOM1 was silenced. A large quantity of HLSV resulted in decreased TMV accumulation in HLSV+TMV (100:1) co-infection. These results indicate that host genes involved in the plant defense response and virus multiplication are up-regulated by challenge virus TMV but not by protecting virus HLSV during cross protection. PMID:24023899

  5. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  6. Project Hotspot: Linear accumulation rates of late Cenozoic basalt at Kimama, Idaho, and implications for crustal strain and subsidence rates of the central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.

    2013-12-01

    Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal contraction. An even faster tectonic rate is likely, given the evidence for decreasing surface elevation through time. We propose that tectonic subsidence was a necessary condition for maintaining basalt eruption over such a long duration -- it would inhibit the growth of a topographic plateau and maintain an appropriate level of neutral buoyancy for the periodically ascending mantle-derived magma

  7. Accumulation of peptidyl tRNA is lethal to Escherichia coli.

    PubMed Central

    Menninger, J R

    1979-01-01

    A mutant strain of Escherichia coli with temperature-sensitive peptidyl-tRNA hydrolase grows at 30 degrees C but, when shifted to 40 degrees C, dies at rates affected by physiological, pharmacological, and genetical perturbations. The rate of killing correlates with the relative accumulation of peptidyl-tRNA, suggesting that it is responsible for the death of the cells. PMID:368041

  8. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    PubMed

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  9. Immobilization of Ochrobactrum tritici As5 on PTFE thin films for arsenite biofiltration.

    PubMed

    Branco, Rita; Sousa, Tânia; Piedade, Ana P; Morais, Paula V

    2016-03-01

    Ochrobactrum tritici SCII24T bacteria is an environmental strain with high capacity to resist to arsenic (As) toxicity, which makes it able to grow in the presence of As(III). The inactivation of the two functional arsenite efflux pumps, ArsB and ACR3_1, resulted in the mutant O. tritici As5 exhibiting a high accumulation of arsenite. This work describes a method for the immobilization of the mutant cells O. tritici As5, on a commercial polymeric net after sputtered modified by the deposition of poly(tetrafluoroethylene) (PTFE) thin films, and demonstrates the capacity of immobilized cells to accumulate arsenic from solutions. Six different set of deposition parameters for PTFE thin films were developed and tested in vitro regarding their ability to immobilize the bacterial cells. The surface that exhibited a mild zeta potential value, hydrophobic characteristics, the lowest surface free energy but with a high polar component and the appropriate ratio of chemical reactive groups allowed cells to proliferate and to grow as a biofilm. These immobilized cells maintained their ability to accumulate the surrounding arsenite, making it a great arsenic biofilter to be used in bioremediation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae].

    PubMed

    Lv, Ye; Xiao, Dongguang; He, Dongqin; Guo, Xuewu

    2008-10-01

    Accumulation of trehalose is critical in improving the stress tolerance of Saccharomyces cerevisiae. Two enzymes are capable of hydrolyzing trehalose: a neutral trehalase (NTH1) and an acidic trehalase (ATH1). We constructed trehalase disruption mutants to provide a basis for future commercial application. To retain the accumulation of trehalose in yeast cell, we constructed diploid homozygous neutral trehalase mutants (Deltanth1), acid trehalase mutants (Deltaath1) and double mutants (Deltaath1Deltanth1) by using gene disruption. We tested mutants'trehalose content and their tolerance to freezing, heat, high-sugar and ethanol concentrations. These trehalase disruption mutants were further confirmed by PCR amplification and southern blot. All mutant strains accumulated higher levels of cellular trehalose and grew to a higher cell density than the isogenic parent strain. In addition, the levels of trehalose in these mutants correlated with increased tolerance to freezing, heat, high-sugar and ethanol concentration. The improved tolerance of trehalase mutants may make them useful in commercial applications, including baking and brewing protein.

  11. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress.

    PubMed

    Liu, Jidong; Zhu, Yibo; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2013-07-01

    In the present study, we investigated the mode of cell response induced by D-limonene in Saccharomyces cerevisiae. D-limonene treatment was found to be accompanied by intracellular accumulation of reactive oxygen species (ROS). Since ROS impair cell membranes, an engineered strain with enhanced membrane biosynthesis exhibited a higher tolerance to D-limonene. Subsequent addition of an ROS scavenger significantly reduced the ROS level and alleviated cell growth inhibition. Thus, D-limonene-induced ROS accumulation plays an important role in cell death in S. cerevisiae. In D-limonene-treated S. cerevisiae strains, higher levels of antioxidants, antioxidant enzymes, and nicotinamide adenine dinucleotide phosphate (NADPH) were synthesized. Quantitative real-time PCR results also verified that D-limonene treatment triggered upregulation of genes involved in the antioxidant system and the regeneration of NADPH at the transcription level in S. cerevisiae. These data indicate that D-limonene treatment results in intracellular ROS accumulation, an important factor in cell death, and several antioxidant mechanisms in S. cerevisiae were enhanced in response to D-limonene treatment.

  12. Simulation of fatigue fracture of TiNi shape memory alloy samples at cyclic loading in pseudoelastic state

    NASA Astrophysics Data System (ADS)

    Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Khvorov, Aleksandr A.

    2018-05-01

    Microstructural simulation of mechanical behavior of shape memory alloy samples at cyclic loading in the pseudoelastic state has been carried out. Evolution of the oriented and scattered deformation defects leading to damage accumulation and resulting in the fatigue fracture has been taken into account. Simulations were performed for the regime of loading imitating that for endovascular stents: preliminary straining, unloading, deformation up to some mean level of the strain and subsequent mechanical cycling at specified strain amplitude. Dependence of the fatigue life on the loading parameters (pre-strain, mean and amplitude values of strain) has been obtained. The results show a good agreement with available experimental data.

  13. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine.

    PubMed

    Li, Yang; Zhu, Xujun; Zhang, Xueyu; Fu, Jing; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2016-06-03

    Genome streamlining has emerged as an effective strategy to boost the production efficiency of bio-based products. Many efforts have been made to construct desirable chassis cells by reducing the genome size of microbes. It has been reported that the genome-reduced Bacillus subtilis strain MBG874 showed clear advantages for the production of several heterologous enzymes including alkaline cellulase and protease. In addition to enzymes, B. subtilis is also used for the production of chemicals. To our best knowledge, it is still unknown whether genome reduction could be used to optimize the production of chemicals such as nucleoside products. In this study, we constructed a series of genome-reduced strains by deleting non-essential regions in the chromosome of B. subtilis 168. These strains with genome reductions ranging in size from 581.9 to 814.4 kb displayed markedly decreased growth rates, sporulation ratios, transformation efficiencies and maintenance coefficients, as well as increased cell yields. We re-engineered the genome-reduced strains to produce guanosine and thymidine, respectively. The strain BSK814G2, in which purA was knocked out, and prs, purF and guaB were co-overexpressed, produced 115.2 mg/L of guanosine, which was 4.4-fold higher compared to the control strain constructed by introducing the same gene modifications into the parental strain. We also constructed a thymidine producer by deleting the tdk gene and overexpressing the prs, ushA, thyA, dut, and ndk genes from Escherichia coli in strain BSK756, and the resulting strain BSK756T3 accumulated 151.2 mg/L thymidine, showing a 5.2-fold increase compared to the corresponding control strain. Genome-scale genetic manipulation has a variety of effects on the physiological characteristics and cell metabolism of B. subtilis. By introducing specific gene modifications related to guanosine and thymidine accumulation, respectively, we demonstrated that genome-reduced strains had greatly improved properties compared to the wild-type strain as chassis cells for the production of these two products. These strains also have great potential for the production of other nucleosides and similar derived chemicals.

  14. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.

    PubMed

    Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S

    2018-01-12

    Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain. This strain represents a xylose fermenting yeast specifically tailored to GVL produced hydrolysates.

  15. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2

    PubMed Central

    Naheed, Nighat; Jamil, Nazia

    2014-01-01

    Contaminated environments have a large number of bacteria which can accumulate PHA as their energy reserves. Out of 54 isolated bacterial strains from three groups of contaminated sites 48 were found PHA positive. The sites were grouped on the basis of the type of carbon sources i.e. sugars, fatty acids and much diverse type. Strains MFD5, MFD11, UML3, USL2, SEL2, SEL3, SEL10 and PFW1 produced 69.9 ± 0.29, 75.27 ± 0.45, 65.43 ± 0.1, 72.54 ± 0.27, 76.61 ± 0.28, 61.81 ± 0.05, 71.16 ± 0.09 and 74.92 ± 0.5 percent of PHA to their constant cell weight (CCW) respectively in PHA detection media supplemented with 2% glucose. Molasses, whey, crumbs hydrolysate and palm oil were checked as inexpensive carbon sources. Molasses alone could supply the required nutrients for growth and PHA production. Strain SEL2 produced 47.36 ± 0.45% PHA using 2% molasses at 37 °C and pH 7.0. Upon production optimization the best accumulation (80.95 ± 0.01%) was observed in PHA detection media with 0.2% nitrogen source, 3% molasses, pH 5.0 and 37 °C by the strain SEL2. The overall effect of the presence of increased molasses concentration in the media was positive it increased the accumulation period till 72 h. Enterobacter sp. SEL2 (JF901810) is first time being reported for PHA production. PMID:25242924

  16. Reconciling Pre- and Co-Seismic Deformation at Megathrusts: Tohoku Informing Cascadia

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Govers, R. M.

    2013-12-01

    One of the outstanding goals of earthquake science is to effectively anticipate the earthquake characteristics of a future event - magnitude, rupture area, slip history - through the judicious application of models that use observations of inter-earthquake deformation and the history of earthquakes along that plate boundary segment. The series of great earthquakes over the past decade since the 2004 Mw 9.2 Sumatra earthquake have demonstrated both the sobering reality that our current models of subduction zone earthquake genesis are insufficient but more positively have provided a wealth of data and observations that can be used to develop improved framework models of the lithospheric behavior through the earthquake cycle in subduction zones. Some of the issues that recent observations raise are straightforward, while others imply aspects of the subduction process that have not been previously considered important. Based on observations of a range of great earthquakes since 2004, and with a particular focus on the 2011 Mw 9.0 Tohoku event we can identify a suite of key issues that include: (1) Patterns of inter-seismic deformation (strain accumulation) are not simply the converse of the co-seismic elastic strain release. (2) Deformation of the slab during the earthquake cycle is a common occurrence and its role in buffering upper-plate deformation is a key consideration in the potential tsunamigenic character of a subduction system. (3) Rates of pre-earthquake deformation (e.g. observed upper-plate GPS displacements) and inferred slip deficit accumulation on the megathrust are inconsistent with co-seismic displacements/fault slip and recurrence intervals. (4) Patterns of megathrust locked patches, degrees of coupling and other parameterizations that are used to define earthquake potential have only a loose agreement with the actual patterns of slip and moment release seen in the ensuing great earthquake. Simple elastic models do provide a general agreement between processes along the megathrust and observations regionally - i.e. with such models (e.g. Okada-type solutions) we find reasonable agreement among geodetic and seismologic models. In assessing sensitivities in our preliminary modeling, we find that depending on the strength and rheologic considerations in the model, similar patterns of displacement in the upper plate in the typical observing zones (on-shore, ~ 100+ km from trench) can have significantly different displacement effects in the vicinity of the earthquake rupture and trench - the areas most critical to tsunamigenesis and assessing earthquake magnitude. Also although it is perhaps reassuring to see that there is general agreement between the seismologically determined finite fault models (FFM) and the observed surface deformation; this information after-the-fact does not tell us why the slip deficit accumulated as it did. Here we report on improved (numerical) models of the strain accumulation and release cycle in megathrust zones that better incorporate variations in rheology, the effects of plate boundary character (pre- and co-seismic), and the relationships between pre-earthquakes observed deformation and co-seismic rupture characteristics.

  17. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara

    PubMed Central

    Jordan, Ingo; Lohr, Verena; Genzel, Yvonne; Reichl, Udo; Sandig, Volker

    2013-01-01

    The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain. PMID:27694766

  18. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara.

    PubMed

    Jordan, Ingo; Lohr, Verena; Genzel, Yvonne; Reichl, Udo; Sandig, Volker

    2013-11-01

    The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain.

  19. Strain Anomalies during an Earthquake Sequence in the South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Arnadottir, T.; Haines, A. J.; Geirsson, H.; Hreinsdottir, S.

    2017-12-01

    The South Iceland Seismic Zone (SISZ) accommodates E-W translation due to oblique spreading between the North American/Hreppar microplate and Eurasian plate, in South Iceland. Strain is released in the SISZ during earthquake sequences that last days to years, at average intervals of 80-100 years. The SISZ is currently in the midst of an earthquake sequence that started with two M6.5 earthquakes in June 2000, and continued with two M6 earthquakes in May 2008. Estimates of geometric strain accumulation, and seismic strain release in these events indicate that they released at most only half of the strain accumulated since the last earthquake cycle in 1896-1912. Annual GPS campaigns and continuous measurements during 2001-2015 were used to calculate station velocities and strain rates from a new method using the vertical derivatives of horizontal stress (VDoHS). This new method allows higher resolution of strain rates than other (older) approaches, as the strain rates are estimated by integrating VDoHS rates obtained by inversion rather than differentiating interpolated GPS velocities. Estimating the strain rates for eight 1-2 year intervals indicates temporal and spatial variation of strain rates in the SISZ. In addition to earthquake faulting, the strain rates in the SISZ are influenced by anthropogenic signals due to geothermal exploitation, and magma movements in neighboring volcanoes - Hekla and Eyjafjallajökull. Subtle signals of post-seismic strain rate changes are seen following the June 2000 M6.5 main shocks, but interestingly, much larger strain rate variations are observed after the two May 2008 M6 main shocks. A prominent strain anomaly is evident in the epicentral area prior to the May 2008 earthquake sequence. The strain signal persists over at least 4 years in the epicentral area, leading up to the M6 main shocks. The strain is primarily extension in ESE-WNW direction (sub-parallel to the direction of plate spreading), but overall shear across the N-S faults that subsequently ruptured, increases with time. The pre-2008 strain anomaly and large post-2008 strain variations are enigmatic, but may signify crustal fluids and/or differences in rheology and crustal thickness between the 2000 and 2008 epicentral areas.

  20. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM.

    PubMed

    Shi, Zhuang; Zhang, Yu; Zhou, Jiti; Chen, Mingxiang; Wang, Xiaojun

    2013-11-01

    The bacterium isolated from sea sludge Paracoccus versutus LYM was characterized with the ability of aerobic denitrification. Strain LYM performs perfect activity in aerobically converting over 95% NO3(-)-N (approximate 400mg L(-1)) to gaseous products via nitrite with maximum reduction rate 33 mg NO3(-)-N L(-1) h(-1). Besides characteristic of aerobic denitrification, strain LYM was confirmed in terms of the ability to be heterotrophic nitrification and aerobic denitrification (HNAD) with few accumulations of intermediates. After the nitrogen balance and enzyme assays, the putative nitrogen pathway of HNAD could be NH4(+) → NH2OH → NO2(-)→ NO3(-), then NO3(-) was denitrified to gaseous products via nitrite. N2 was sole denitrification product without any detection of N2O by gas chromatography. Strain LYM could also simultaneously remove ammonium and additional nitrate. Meanwhile, the accumulated nitrite had inhibitory effect on ammonium reduction rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Isolation and characterization of bacterium producing lipid from short-chain fatty acids.

    PubMed

    Okamura, Yoshiko; Nakai, Shota; Ohkawachi, Masahiko; Suemitsu, Masahiro; Takahashi, Hirokazu; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Nakashimada, Yutaka; Matsumoto, Mitsufumi

    2016-02-01

    Anaerobic fermentation generates propionic acid, which inhibits microbial growth and accumulates in wastewater containing increased amounts of organic matter. We therefore isolated a propionic acid-assimilating bacterium that could produce triacylglycerol, for use in wastewater treatment. Nitratireductor sp. strain OM-1 can proliferate in medium containing propionic, acetic, butyric, and valeric acids as well as glycerol, and produces triacylglycerol when both propionic and acetic acids or glycerol are present. In composite model wastewater containing acetic acid, propionic acid and glycerol, this strain shows an even higher conversion rate, suggesting that it is suitable for wastewater treatment. Further, nitrogen depletion in medium containing an acetic-propionic acid mixture resulted in the production of the light oil 2-butenoic acid 1-methylethyl ester, but not triacylglycerol. Collectively, our data indicate that strain OM-1 has the potential to reduce accumulation of activated sludge in wastewater treatment and may contribute to the production of biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Genomewide characterisation of the genetic diversity of carotenogenesis in bacteria of the order Sphingomonadales.

    PubMed

    Siddaramappa, Shivakumara; Viswanathan, Vandana; Thiyagarajan, Saravanamuthu; Narjala, Anushree

    2018-04-05

    The order Sphingomonadales is a taxon of bacteria with a variety of physiological features and carotenoid pigments. Some of the coloured strains within this order are known to be aerobic anoxygenic phototrophs that contain characteristic photosynthesis gene clusters (PGCs). Previous work has shown that majority of the ORFs putatively involved in the biosynthesis of C40 carotenoids are located outside the PGCs in these strains. The main purpose of this study was to understand the genetic basis for the various colour/carotenoid phenotypes of the strains of Sphingomonadales. Comparative analyses of the genomes of 41 strains of this order revealed that there were different patterns of clustering of carotenoid biosynthesis (crt) ORFs, with four ORF clusters being the most common. The analyses also revealed that co-occurrence of crtY and crtI is an evolutionarily conserved feature in Sphingomonadales and other carotenogenic bacteria. The comparisons facilitated the categorisation of bacteria of this order into four groups based on the presence of different crt ORFs. Yellow coloured strains most likely accumulate nostoxanthin, and contain six ORFs (group I: crtE, crtB, crtI, crtY, crtZ, crtG). Orange coloured strains may produce adonixanthin, astaxanthin, canthaxanthin and erythroxanthin, and contain seven ORFs (group II: crtE, crtB, crtI, crtY, crtZ, crtG, crtW). Red coloured strains may accumulate astaxanthin, and contain six ORFs (group III: crtE, crtB, crtI, crtY, crtZ, crtW). Non-pigmented strains may contain a smaller subset of crt ORFs, and thus fail to produce any carotenoids (group IV). The functions of many of these ORFs remain to be characterised.

  3. Genomewide characterisation of the genetic diversity of carotenogenesis in bacteria of the order Sphingomonadales

    PubMed Central

    Siddaramappa, Shivakumara; Viswanathan, Vandana; Thiyagarajan, Saravanamuthu; Narjala, Anushree

    2018-01-01

    The order Sphingomonadales is a taxon of bacteria with a variety of physiological features and carotenoid pigments. Some of the coloured strains within this order are known to be aerobic anoxygenic phototrophs that contain characteristic photosynthesis gene clusters (PGCs). Previous work has shown that majority of the ORFs putatively involved in the biosynthesis of C40 carotenoids are located outside the PGCs in these strains. The main purpose of this study was to understand the genetic basis for the various colour/carotenoid phenotypes of the strains of Sphingomonadales. Comparative analyses of the genomes of 41 strains of this order revealed that there were different patterns of clustering of carotenoid biosynthesis (crt) ORFs, with four ORF clusters being the most common. The analyses also revealed that co-occurrence of crtY and crtI is an evolutionarily conserved feature in Sphingomonadales and other carotenogenic bacteria. The comparisons facilitated the categorisation of bacteria of this order into four groups based on the presence of different crt ORFs. Yellow coloured strains most likely accumulate nostoxanthin, and contain six ORFs (group I: crtE, crtB, crtI, crtY, crtZ, crtG). Orange coloured strains may produce adonixanthin, astaxanthin, canthaxanthin and erythroxanthin, and contain seven ORFs (group II: crtE, crtB, crtI, crtY, crtZ, crtG, crtW). Red coloured strains may accumulate astaxanthin, and contain six ORFs (group III: crtE, crtB, crtI, crtY, crtZ, crtW). Non-pigmented strains may contain a smaller subset of crt ORFs, and thus fail to produce any carotenoids (group IV). The functions of many of these ORFs remain to be characterised. PMID:29620507

  4. Excessive by-product formation: A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains.

    PubMed

    Milne, N; Wahl, S A; van Maris, A J A; Pronk, J T; Daran, J M

    2016-12-01

    It is theoretically possible to engineer Saccharomyces cerevisiae strains in which isobutanol is the predominant catabolic product and high-yielding isobutanol-producing strains are already reported by industry. Conversely, isobutanol yields of engineered S. cerevisiae strains reported in the scientific literature typically remain far below 10% of the theoretical maximum. This study explores possible reasons for these suboptimal yields by a mass-balancing approach. A cytosolically located, cofactor-balanced isobutanol pathway, consisting of a mosaic of bacterial enzymes whose in vivo functionality was confirmed by complementation of null mutations in branched-chain amino acid metabolism, was expressed in S. cerevisiae . Product formation by the engineered strain was analysed in shake flasks and bioreactors. In aerobic cultures, the pathway intermediate isobutyraldehyde was oxidized to isobutyrate rather than reduced to isobutanol. Moreover, significant concentrations of the pathway intermediates 2,3-dihydroxyisovalerate and α-ketoisovalerate, as well as diacetyl and acetoin, accumulated extracellularly. While the engineered strain could not grow anaerobically, micro-aerobic cultivation resulted in isobutanol formation at a yield of 0.018±0.003 mol/mol glucose. Simultaneously, 2,3-butanediol was produced at a yield of 0.649±0.067 mol/mol glucose. These results identify massive accumulation of pathway intermediates, as well as overflow metabolites derived from acetolactate, as an important, previously underestimated contributor to the suboptimal yields of 'academic' isobutanol strains. The observed patterns of by-product formation is consistent with the notion that in vivo activity of the iron-sulphur-cluster-requiring enzyme dihydroxyacid dehydratase is a key bottleneck in the present and previously described 'academic' isobutanol-producing yeast strains.

  5. Saccharification of Cellulose by Recombinant Rhodococcus opacus PD630 Strains

    PubMed Central

    Hetzler, Stephan; Bröker, Daniel

    2013-01-01

    The noncellulolytic actinomycete Rhodococcus opacus strain PD630 is the model oleaginous prokaryote with regard to the accumulation and biosynthesis of lipids, which serve as carbon and energy storage compounds and can account for as much as 87% of the dry mass of the cell in this strain. In order to establish cellulose degradation in R. opacus PD630, we engineered strains that episomally expressed six different cellulase genes from Cellulomonas fimi ATCC 484 (cenABC, cex, cbhA) and Thermobifida fusca DSM43792 (cel6A), thereby enabling R. opacus PD630 to degrade cellulosic substrates to cellobiose. Of all the enzymes tested, five exhibited a cellulase activity toward carboxymethyl cellulose (CMC) and/or microcrystalline cellulose (MCC) as high as 0.313 ± 0.01 U · ml−1, but recombinant strains also hydrolyzed cotton, birch cellulose, copy paper, and wheat straw. Cocultivations of recombinant strains expressing different cellulase genes with MCC as the substrate were carried out to identify an appropriate set of cellulases for efficient hydrolysis of cellulose by R. opacus. Based on these experiments, the multicellulase gene expression plasmid pCellulose was constructed, which enabled R. opacus PD630 to hydrolyze as much as 9.3% ± 0.6% (wt/vol) of the cellulose provided. For the direct production of lipids from birch cellulose, a two-step cocultivation experiment was carried out. In the first step, 20% (wt/vol) of the substrate was hydrolyzed by recombinant strains expressing the whole set of cellulase genes. The second step was performed by a recombinant cellobiose-utilizing strain of R. opacus PD630, which accumulated 15.1% (wt/wt) fatty acids from the cellobiose formed in the first step. PMID:23793636

  6. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.

    PubMed

    Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M

    2009-09-01

    A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time 98 % H(2)S was achieved under steady-state conditions, over the pH range of 0.44-7.30. Despite the accumulation of acidity and SO(4) (2-) (up to 97 g/L), the system operated without inhibition.

  7. The Bibenzyl Canniprene Inhibits the Production of Pro-Inflammatory Eicosanoids and Selectively Accumulates in Some Cannabis sativa Strains.

    PubMed

    Allegrone, Gianna; Pollastro, Federica; Magagnini, Gianmaria; Taglialatela-Scafati, Orazio; Seegers, Julia; Koeberle, Andreas; Werz, Oliver; Appendino, Giovanni

    2017-03-24

    Canniprene (1), an isoprenylated bibenzyl unique to Cannabis sativa, can be vaporized and therefore potentially inhaled from marijuana. Canniprene (1) potently inhibited the production of inflammatory eicosanoids via the 5-lipoxygenase pathway (IC 50 0.4 μM) and also affected the generation of prostaglandins via the cyclooxygenase/microsomal prostaglandin E 2 synthase pathway (IC 50 10 μM), while the related spiranoid bibenzyls cannabispiranol (2) and cannabispirenone (3) were almost inactive in these bioassays. The concentration of canniprene (1) was investigated in the leaves of 160 strains of C. sativa, showing wide variations, from traces to >0.2%, but no correlation was found between its accumulation and a specific phytocannabinoid profile.

  8. Strain H2-419-4 of Haematococcus pluvialis induced by ethyl methanesulphonate and ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Sun, Yanhong; Liu, Jianguo; Zhang, Xiaoli; Lin, Wei

    2008-05-01

    Two strains H2-410 and H2-419 were obtained from the chemically mutated survivors of wild Haematococcus pluvialis 2 by using ethyl methanesulphonate (EMS). Strains H2-410 and H2-419 showed a fast cell growth with 13% and 20% increase in biomass compared to wild type, respectively. Then H2-419-4, a fast cell growth and high astaxanthin accumulation strain, was obtained by exposing the strain H2-419 to ultraviolet radiation (UV) further. The total biomass, the astaxanthin content per cell, astaxanthin production of H2-419-4 showed 68%, 28%, and 120% increase compared to wild H. pluvialis 2, respectively. HPLC (High Performance Liquid Chromatography) data showed also an obvious proportional variation of different carotenoid compositions in the extracts of H2-419-4 and the wild type, although no peak of carotenoids appeared or disappeared. Therefore, the main compositions in strain H2-419-4, like its wild one, were free of astaxanthin, monoester, and diester of astaxanthin. The asexual reproduction in survivors after exposed to UV was not synchronous, and different from the normal synchronous asexual reproduction as the mother cells were motile instead of non-motile. Interestingly, some survivors from UV irradiation produced many mini-spores (or gamete?), the spores moved away from the mother cell gradually 4 or 5 days later. This is quite similar to sexual reproduction described by Elliot in 1934. However, whether this was sexual reproduction remains questionable, as no mating process has been observed.

  9. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    PubMed

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Characterization of key triacylglycerol biosynthesis processes in rhodococci

    DOE PAGES

    Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi; ...

    2016-04-29

    In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less

  11. Characterization of key triacylglycerol biosynthesis processes in rhodococci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amara, Sawsan; Seghezzi, Nicolas; Otani, Hiroshi

    In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less

  12. Role Strain among Dual Position Physical Educators and Athletic Trainers Working in the High School Setting

    ERIC Educational Resources Information Center

    Pitney, William A.; Stuart, Moira E.; Parker, Jenny

    2008-01-01

    Many physical education teachers are hired with the expectation that they fulfill an extra-curricular role. Those who are dual position physical educators and athletic trainers may be exposed to many accumulating occupational pressures. The purpose of this mixed methods study, therefore, was to identify the extent to which role strain permeates…

  13. Draft Genome Sequence of the Tyramine Producer Enterococcus durans Strain IPLA 655

    PubMed Central

    Ladero, Victor; Linares, Daniel M.; del Rio, Beatriz; Fernandez, Maria; Martin, M. Cruz

    2013-01-01

    We here report a 3.059-Mbp draft assembly for the genome of Enterococcus durans strain IPLA 655. This dairy isolate provides a model for studying the regulation of the biosynthesis of tyramine (a toxic compound). These results should aid our understanding of tyramine production and allow tyramine accumulation in food to be reduced. PMID:23682153

  14. Unraveling the Amycolatopsis tucumanensis copper-resistome.

    PubMed

    Dávila Costa, José Sebastián; Kothe, Erika; Abate, Carlos Mauricio; Amoroso, María Julia

    2012-10-01

    Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches. Two dimensional gel electrophoresis revealed that proteins of the central metabolism, energy production, transcriptional regulators, two-component system, antioxidants and protective metabolites increased their abundance upon copper-stress conditions. Transcriptome analysis revealed that in presence of copper, superoxide dismutase, alkyl hydroperoxide reductase and mycothiol reductase genes were markedly induced in expression. The oxidative damage of protein and lipid from A. tucumanensis was negligible compared with that observed in the copper-sensitive strain Amycolatopsis eurytherma. Thus, we provide evidence that A. tucumamensis shows a high adaptation towards copper, the sum of which is proposed as the copper-resistome. This adaptation allows the strain to accumulate copper and survive this stress; besides, it constitutes the first report in which the copper-resistome of a strain of the genus Amycolatopsis with bioremediation potential has been evaluated.

  15. Nuclear export of the small ribosomal subunit requires the Ran–GTPase cycle and certain nucleoporins

    PubMed Central

    Moy, Terence I.; Silver, Pamela A.

    1999-01-01

    After their assembly in the nucleolus, ribosomal subunits are exported from the nucleus to the cytoplasm. After export, the 20S rRNA in the small ribosomal subunit is cleaved to yield 18S rRNA and the small 5′ ITS1 fragment. The 5′ ITS1 RNA is normally degraded by the cytoplasmic Xrn1 exonuclease, but in strains lacking XRN1, the 5′ ITS1 fragment accumulates in the cytoplasm. Using the cytoplasmic localization of the 5′ ITS1 fragment as an indicator for the export of the small ribosomal subunit, we have identified genes that are required for ribosome export. Ribosome export is dependent on the Ran–GTPase as mutations in Ran or its regulators caused 5′ ITS1 to accumulate in the nucleoplasm. Mutations in the genes encoding the nucleoporin Nup82 and in the NES exporter Xpo1/Crm1 also caused the nucleoplasmic accumulation of 5′ ITS1. Mutants in a subset of nucleoporins and in the nuclear transport factors Srp1, Kap95, Pse1, Cse1, and Mtr10 accumulate the 5′ ITS1 in the nucleolus and affect ribosome assembly. In contrast, we did not detect nuclear accumulation of 5′ ITS1 in 28 yeast strains that have mutations in other genes affecting nuclear trafficking. PMID:10465789

  16. Accumulation of Dissolved DMSP by Marine Bacteria and its Degradation Via Bacterivory

    NASA Technical Reports Server (NTRS)

    Wolfe, Gordon V.

    1996-01-01

    Several bacterial isolates enriched from seawater using complex media were able to accumulate dimethylsulfoniopropionate (DMSP) from media into cells over several hours without degrading it. Uptake only occurred in metabolically active cells, and was repressed in some strains by the presence of additional carbon sources. Accumulation was also more rapid in osmotically-stressed cells, suggesting DMSP is used as an osmotic solute. Uptake could be blocked by inhibitors of active transport systems (2,4-dinitrophenol, azide, arsenate) and of protein synthesis (chloramphenicol). Some structural analogs such as glycine betaine and S-methyl methionine also blocked DMSP uptake, suggesting that the availability of alternate organic osmolytes may influence DMSP uptake. Stresses such as freezing, heating, or osmotic down shock resulted in partial release of DMSP back to the medium. One strain which contained a DMSP-lyase was also able to accumulate DMSP, and DMS was only produced in the absence of alternate carbon sources. Bacteria containing DMSP were prepared as prey for bacterivorous ciliates and flagellates, to examine the fate of the DMSP during grazing. In all cases, predators metabolized the DMSP in bacteria. In some cases, DMS was produced, but it is not clear if this was due to the predators or to associated bacteria in the non-axenic grazer cultures. Bacterivores may influence DMSP cycling by either modulating populations of DMSP-metabolizing bacteria, or by metabolizing DMSP accumulated by bacterial prey.

  17. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  18. Purification and properties of recombinant exopolyphosphatase PPN1 and effects of its overexpression on polyphosphate in Saccharomyces cerevisiae.

    PubMed

    Andreeva, Nadeshda; Trilisenko, Ludmila; Kulakovskaya, Tatiana; Dumina, Maria; Eldarov, Michail

    2015-01-01

    Inorganic polyphosphate performs many regulatory functions in living cells. The yeast exopolyphosphatase PPN1 is an enzyme with multiple cellular localization and probably variable functions. The Saccharomyces cerevisiae strain with overexpressed PPN1 was constructed for large-scale production of the enzyme and for studying the effect of overproduction on polyphosphate metabolism. The ΔPPN1 strain was transformed by the vector containing this gene under a strong constitutive promoter of glycerol aldehyde-triphosphate dehydrogenase of S. cerevisiae. Exopolyphosphatase activity in the transformant increased 28- and 11-fold compared to the ΔPPN1 and parent strains, respectively. The content of acid-soluble polyphosphate decreased ∼6-fold and the content of acid-insoluble polyphosphate decreased ∼2.5-fold in the cells of the transformant compared to the ΔPPN1 strain. The recombinant enzyme was purified. The substrate specificity, cation requirement, and inhibition by heparin were found to be similar to native PPN1. The molecular mass of a subunit (∼33 kD) and the amino acid sequence of the recombinant enzyme were the same as in mature PPN1. The recombinant enzyme was localized mainly in the cytoplasm (40%) and vacuoles (20%). The overproducer strain had no growths defects under phosphate deficiency or phosphate excess. In contrast to the parent strains accumulating polyphosphate, the transformant accumulated orthophosphate under phosphate surplus. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Finite strain analysis of metavolcanics and metapyroclastics in gold-bearing shear zone of the Dungash area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2014-11-01

    The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures, which are attributed to various deformational stages of the Neoproterozoic basement rocks. Field geology, finite strain and microstructural analyses were carried out and the relation-ships between the lithological contacts and major/minor structures have been studied. The R f/ϕ and Fry methods were applied on the metavolcano-sedimentary and metapyroclastic samples from 5 quartz veins samples, 7 metavolcanics samples, 3 metasedimentary samples and 4 metapyroclastic samples in Dungash area. Finite-strain data show that a low to moderate range of deformation of the metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.70 to 4.80 for the R f/ϕ method and from 1.65 to 4.50 for the Fry method. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, the contact between principal rock units is sheared in the Dungash area under brittle to semi-ductile deformation conditions. In this case, the accumulated finite strain is associated with the deformation during thrusting to assemble nappe structure. It indicates that the sheared contacts have been formed during the accumulation of finite strain.

  20. Physiological-biochemical properties and the ability to synthesize polyhydroxyalkanoates of the glucose-utilizing strain of the hydrogen bacterium Ralstonia eutropha B8562.

    PubMed

    Volova, T G; Trusova, M Y; Kalacheva, G S; Kozhevnicov, I V

    2006-11-01

    Physiological-biochemical, genetic, and cultural properties of the glucose-utilizing mutant strain Ralstonia eutropha B8562 have been compared with those of its parent strain R. eutropha B5786. It has been shown that growth characteristics of the strain cultured on glucose as the sole carbon and energy source are comparable with those of the parent strain. Strain B8562 is characterized by high polyhydroxyalkanoate (PHA) yields on different carbon sources (CO(2), fructose, and glucose). PHA accumulation in the strain batch cultured on glucose under nitrogen deficiency reaches 90 %. The major monomer in the PHA is beta-hydroxybutyric acid (more than 99 mol %); the identified minor components are beta-hydroxyvaleric acid (0.25-0.72 mol %) and beta-hydroxyhexanoic acid (0.08-1.5 mol %). The strain is a promising PHA producer on available sugar-containing media with glucose.

  1. Engineering a Synthetic Microbial Consortium for Comprehensive Conversion of Algae Biomass into Terpenes for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weihua; Wu, Benjamin Chiau-Pin; Davis, Ryan Wesley

    Recent strategies for algae-based biofuels have primarily focused on biodiesel production by exploiting high algal lipid yields under nutrient stress conditions. However, under conditions supporting robust algal biomass accumulation, carbohydrate and proteins typically comprise up to ~80% of the ash-free dry weight of algae biomass. Therefore, comprehensive utilization of algal biomass for production of multipurpose intermediate- to high-value bio-based products will promote scale-up of algae production and processing to commodity volumes. Terpenes are hydrocarbon and hydrocarbon-like (C:O>10:1) compounds with high energy density, and are therefore potentially promising candidates for the next generation of value added bio-based chemicals and “drop-in” replacementsmore » for petroleum-based fuels. In this study, we demonstrated the feasibility of bioconversion of proteins into sesquiterpene compounds as well as comprehensive bioconversion of algal carbohydrates and proteins into biofuels. To achieve this, the mevalonate pathway was reconstructed into an E. coli chassis with six different terpene synthases (TSs). Strains containing the various TSs produced a spectrum of sesquiterpene compounds in minimal medium containing amino acids as the sole carbon source. The sesquiterpene production was optimized through three different regulation strategies using chamigrene synthase as an example. The highest total terpene titer reached 166 mg/L, and was achieved by applying a strategy to minimize mevalonate accumulation in vivo. The highest yields of total terpene were produced under reduced IPTG induction levels (0.25 mM), reduced induction temperature (25°C), and elevated substrate concentration (20 g/L amino acid mixture). A synthetic bioconversion consortium consisting of two engineering E. coli strains (DH1-TS and YH40-TS) with reconstructed terpene biosynthetic pathways was designed for comprehensive single-pot conversion of algal carbohydrates and proteins to sesquiterpenes. The consortium yielded the highest total terpene yields (187 mg/L) at an inoculum ratio 2:1 of strain YH40-TS: DH1-TS, corresponding to 31 mg fuel/g algae biomass ash free dry weight. This study therefore demonstrates a feasible process for comprehensive algal biofuel production.« less

  2. Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain

    PubMed Central

    2016-01-01

    ABSTRACT A chemolithoautotrophic strain of the family Beggiatoaceae, Beggiatoa sp. strain 35Flor, was found to oxidize molecular hydrogen when grown in a medium with diffusional gradients of oxygen, sulfide, and hydrogen. Microsensor profiles and rate measurements suggested that the strain oxidized hydrogen aerobically when oxygen was available, while hydrogen consumption under anoxic conditions was presumably driven by sulfur respiration. Beggiatoa sp. 35Flor reached significantly higher biomass in hydrogen-supplemented oxygen-sulfide gradient media, but hydrogen did not support growth of the strain in the absence of reduced sulfur compounds. Nevertheless, hydrogen oxidation can provide Beggiatoa sp. 35Flor with energy for maintenance and assimilatory purposes and may support the disposal of internally stored sulfur to prevent physical damage resulting from excessive sulfur accumulation. Our knowledge about the exposure of natural populations of Beggiatoaceae to hydrogen is very limited, but significant amounts of hydrogen could be provided by nitrogen fixation, fermentation, and geochemical processes in several of their typical habitats such as photosynthetic microbial mats and submarine sites of hydrothermal fluid flow. IMPORTANCE Reduced sulfur compounds are certainly the main electron donors for chemolithoautotrophic Beggiatoaceae, but the traditional focus on this topic has left other possible inorganic electron donors largely unexplored. In this paper, we provide evidence that hydrogen oxidation has the potential to strengthen the ecophysiological plasticity of Beggiatoaceae in several ways. Moreover, we show that hydrogen oxidation by members of this family can significantly influence biogeochemical gradients and therefore should be considered in environmental studies. PMID:26896131

  3. Earthquakes and strain in subhorizontal slabs

    NASA Astrophysics Data System (ADS)

    Brudzinski, Michael R.; Chen, Wang-Ping

    2005-08-01

    Using an extensive database of fault plane solutions and precise locations of hypocenters, we show that the classic patterns of downdip extension (DDE) or downdip compression (DDC) in subduction zones deteriorate when the dip of the slab is less than about 20°. This result is depth-independent, demonstrated by both intermediate-focus (depths from 70 to 300 km) and deep-focus (depths greater than 300 km) earthquakes. The absence of pattern in seismic strain in subhorizontal slabs also occurs locally over scales of about 10 km, as evident from a detailed analysis of a large (Mw 7.1) earthquake sequence beneath Fiji. Following the paradigm that a uniform strain of DDE/DDC results from sinking of the cold, dense slab as it encounters resistance from the highly viscous mantle at depth, breakdown of DDE/DDC in subhorizontal slabs reflects waning negative buoyancy ("slab pull") in the downdip direction. Our results place a constraint on the magnitude of slab pull that is required to dominate over localized sources of stress and to align seismic strain release in dipping slabs. Under the condition of a vanishing slab pull, eliminating the only obvious source of regional stress, the abundance of earthquakes in subhorizontal slabs indicates that a locally variable source of stress is both necessary and sufficient to sustain the accumulation of elastic strain required to generate intermediate- and deep-focus seismicity. Evidence is growing that the process of seismogenesis under high pressures, including localized sources of stress, is tied to the presence of petrologic anomalies.

  4. Secondary Metabolism and Interspecific Competition Affect Accumulation of Spontaneous Mutants in the GacS-GacA Regulatory System in Pseudomonas protegens.

    PubMed

    Yan, Qing; Lopes, Lucas D; Shaffer, Brenda T; Kidarsa, Teresa A; Vining, Oliver; Philmus, Benjamin; Song, Chunxu; Stockwell, Virginia O; Raaijmakers, Jos M; McPhail, Kerry L; Andreote, Fernando D; Chang, Jeff H; Loper, Joyce E

    2018-01-16

    Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac - mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac - mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac - mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac - mutants: a reduced proportion of Gac - mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens , assessed by the accumulation of Gac - mutants. IMPORTANCE Many microorganisms produce antibiotics, which contribute to ecologic fitness in natural environments where microbes constantly compete for resources with other organisms. However, biosynthesis of antibiotics is costly due to the metabolic burdens of the antibiotic-producing microorganism. Our results provide an example of the fitness trade-off associated with antibiotic production. Under noncompetitive conditions, antibiotic biosynthesis led to accumulation of spontaneous mutants lacking a master regulator of antibiotic production. However, relatively few of these spontaneous mutants accumulated when a competitor was present. Results from this work provide information on the evolution of antibiotic biosynthesis and provide a framework for their discovery and regulation.

  5. Multilateral approach on enhancing economic viability of lipid production from microalgae: A review.

    PubMed

    Shin, Ye Sol; Choi, Hong Il; Choi, Jin Won; Lee, Jeong Seop; Sung, Young Joon; Sim, Sang Jun

    2018-06-01

    Microalgae have been rising as a feedstock for biofuel in response to the energy crisis. Due to a high lipid content, composed of fatty acids favorable for the biodiesel production, microalgae are still being investigated as an alternative to biodiesel. Environmental factors and process conditions can alternate the quality and the quantity of lipid produced by microalgae, which can be critical for the overall production of biodiesel. To maximize both the lipid content and the biomass productivity, it is necessary to start with robust algal strains and optimal physio-chemical properties of the culture environment in combination with a novel culture system. These accumulative approaches for cost reduction can take algal process one step closer in achieving the economic feasibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Increasing rock-avalanche frequency correlates with increasing seismic moment release in New Zealand's Southern Alps

    NASA Astrophysics Data System (ADS)

    McSaveney, Mauri; Cox, Simon; Hancox, Graham

    2015-04-01

    The occurrence rate of large, spontaneous rock avalanches in New Zealand's Southern Alps has increasing over the last 50 years. The rate has been about 20 events per decade for the last 10 years, whereas for the period 1976-1999, it was 4 per decade. Allen et al. 2011 and Allen and Huggel, 2013 link the increase to alpine permafrost decay due to anthropogenic global warming, similar to the increased occurrence rate in the European Alps which is attributed to this cause. We however suggest a different primary cause, linking the increase to tectonic strain, which has been shown to also affect valley-bottom hot springs in the region. The altitudes from which these landslides have fallen are coincident with the region's topographically protruding slopes which favour stress concentration and failure, and many, but not all, failures have been from already highly fractured rock masses, for which an explanation of the fracturing is called for. Also, the earliest documented spontaneous rock avalanche in the Southern Alps occurred in 1873 and fell from a similar altitude on the same face of the same mountain as the most recent event in 2014. Cox et al. (2014) shows that valley-bottom hot springs in the Southern Alps respond to distant strong earthquakes in a manner suggesting weak local ground deformation and increased bedrock permeability. We suggest that the surrounding slopes respond to the same stimuli. We find that the observed occurrence-rate increase has occurred simultaneously with a seismic-moment-release increase in New Zealand, which follows the trend of global seismic moment release. It may also be associated with the accumulating slope deformations since about 1717 AD, when a great earthquake triggered much slope collapse in the region. In support of this link, Barff (1873) which reports the 1873 landslide from Aoraki/Mount Cook, also reports a seemingly associated but unexplained shift of hot springs in the area. The timing of both coincides with a distant series of moderate earthquakes west of North Island, New Zealand, which was felt widely in North Island. The New Zealand seismological record is complete enough since 1969 for earthquake magnitudes ≥4.0 to enable determination of seismic moment release. We applied an exponential distance attenuation to the accumulating moment release with an empirical decay constant of 2093 km to obtain closely matching trends between our two data sets. Such a relatively slow decay with distance may imply that ong-wavelength surface waves are affecting the slopes. On the other hand, the increasing landslide frequency sometimes leads the increasing seismic moment, suggesting that the two may be driven by a third process such as accumulating regional crustal strain in the South Pacific. An earthquake of M>8.0 occurred over 290 years ago (ca. 1717 AD) on the Alpine fault with no major release of regional crustal strain there since that time. This earthquake is expected to have triggered widespread landsliding in the central Southern Alps. Since that regional release of elastic crustal strain, the underlying rock mass of the S. Alps has been accumulating elastic strain beneath a relatively thin skin of semi-detached, brittle and closely jointed rock. The estimated mean recurrence time of ruptures on the Alpine fault is about 330 years, and so, the expected misfits between the deforming intact rock and the overlying dilated granular masses of potential landslides can be expected to be approaching average levels not present since before 1717 AD. Perhaps this is the reason why more of the semi-detached masses are completing the detachment process and falling off. We do not discount an additional link with permafrost decay, which is a mechanism with potential to lower the cohesion in granular rock masses in the permafrost zone of the higher Southern Alps. But permafrost decay does not create granular rock masses.

  7. Mutation Breeding of β-carotene Producing Strain B. trispora by Low Energy Ion Implantation

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Yu, Long

    2009-02-01

    Ion beam bioengineering technology as a new mutation approach has been widely used in the biological breeding field. In this paper the application of low energy nitrogen ion implantation in the β-carotene producing strain, Blakeslea trispora(-) was investigated. The effects of different fermentation conditions on β-carotene production by a high yield strain were examined. Results showed that two β-carotene high yielding strains B.trispora(-) BH3-701 and BH3-728 were screened out and the averaged production of β-carotene was raised by 178.7% and 164.6% respectively after five passages in the shaking flasks. Compared with the original strain, the highest yield strain BH3-701 was potent in accumulating β-carotene, especially in the later stage, and greatly increased production efficiency.

  8. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles.

    PubMed

    Tugarova, Anna V; Vetchinkina, Elena P; Loshchinina, Ekaterina A; Burov, Andrei M; Nikitina, Valentina E; Kamnev, Alexander A

    2014-10-01

    The ability to reduce selenite (SeO(3)(2-)) ions with the formation of selenium nanoparticles was demonstrated in Azospirillum brasilense for the first time. The influence of selenite ions on the growth of A. brasilense Sp7 and Sp245, two widely studied wild-type strains, was investigated. Growth of cultures on both liquid and solid (2 % agar) media in the presence of SeO(3)(2-) was found to be accompanied by the appearance of the typical red colouration. By means of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and X-ray fluorescence analysis (XFA), intracellular accumulation of elementary selenium in the form of nanoparticles (50 to 400 nm in diameter) was demonstrated for both strains. The proposed mechanism of selenite-to-selenium (0) reduction could involve SeO(3)(2-) in the denitrification process, which has been well studied in azospirilla, rather than a selenite detoxification strategy. The results obtained point to the possibility of using Azospirillum strains as endophytic or rhizospheric bacteria to assist phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of A. brasilense to synthesise selenium nanoparticles may be of interest to nanobiotechnology for "green synthesis" of bioavailable amorphous red selenium nanostructures.

  9. Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil.

    PubMed

    Chong, Teik Min; Yin, Wai-Fong; Chen, Jian-Woon; Mondy, Samuel; Grandclément, Catherine; Faure, Denis; Dessaux, Yves; Chan, Kok-Gan

    2016-12-01

    Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.

  10. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing.

    PubMed

    Sun, Xiaowen; Wu, Hefang; Zhao, Genhai; Li, Zhemin; Wu, Xihua; Liu, Hui; Zheng, Zhiming

    2018-04-02

    The mycelial morphology of Aspergillus niger, a major filamentous fungus used for citric acid production, is important for citric acid synthesis during submerged fermentation. To investigate the involvement of the chitin synthase gene, chsC, in morphogenesis and citric acid production in A. niger, an RNAi system was constructed to silence chsC and the morphological mutants were screened after transformation. The compactness of the mycelial pellets was obviously reduced in the morphological mutants, with lower proportion of dispersed mycelia. These morphological changes have caused a decrease in viscosity and subsequent improvement in oxygen and mass transfer efficiency, which may be conducive for citric acid accumulation. All the transformants exhibited improvements in citric acid production; in particular, chsC-3 showed 42.6% higher production than the original strain in the shake flask. Moreover, the high-yield strain chsC-3 exhibited excellent citric acid production potential in the scale-up process.The citric acid yield and the conversion rate of glucose of chsC-3 were both improved by 3.6%, when compared with that of the original strain in the stirred tank bioreactor.

  11. Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions.

    PubMed

    Heux, Stéphanie; Sablayrolles, Jean-Marie; Cachon, Rémy; Dequin, Sylvie

    2006-09-01

    We recently showed that expressing an H(2)O-NADH oxidase in Saccharomyces cerevisiae drastically reduces the intracellular NADH concentration and substantially alters the distribution of metabolic fluxes in the cell. Although the engineered strain produces a reduced amount of ethanol, a high level of acetaldehyde accumulates early in the process (1 g/liter), impairing growth and fermentation performance. To overcome these undesirable effects, we carried out a comprehensive analysis of the impact of oxygen on the metabolic network of the same NADH oxidase-expressing strain. While reducing the oxygen transfer rate led to a gradual recovery of the growth and fermentation performance, its impact on the ethanol yield was negligible. In contrast, supplying oxygen only during the stationary phase resulted in a 7% reduction in the ethanol yield, but without affecting growth and fermentation. This approach thus represents an effective strategy for producing wine with reduced levels of alcohol. Importantly, our data also point to a significant role for NAD(+) reoxidation in controlling the glycolytic flux, indicating that engineered yeast strains expressing an NADH oxidase can be used as a powerful tool for gaining insight into redox metabolism in yeast.

  12. Plastic strain arrangement in copper single crystals in sliding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less

  13. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit.

    PubMed

    Fialko, Yuri; Sandwell, David; Simons, Mark; Rosen, Paul

    2005-05-19

    Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4-5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the 'shallow slip deficit' model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4-10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.

  14. Identification of significant medium components that affect docosahexaenoic acid production by Schizochytrium sp. SW1

    NASA Astrophysics Data System (ADS)

    Manikan, Vidyah; Hamid, Aidil A.

    2013-11-01

    Central composite design (CCD) was employed to investigate the significance of glucose, yeast extract, MSG and sea salt in affecting the amount of docosahexaenoic acid (DHA) accumulated by a locally isolated strain of Schizochytrium. Design Expert software was used to construct a set of experiments where each medium component mentioned above was varied over three levels. Cultivation was carried out in 250mL flasks containing 50mL of medium, incubated at 30°C with 200 rpm agitation for 96 hours. ANOVA was conducted to identify the influential factors and the level of their significance where factors that scored a probability value of less than 0.05 were considered significant. The level of influence for each independent variable was also interpreted using perturbation whereas pattern of interaction between the factors were interpreted using interaction plots. This experiment revealed that yeast extract and monosodium glutamate have significant influence on DHA accumulation process by Schizochytrium sp. SW1.

  15. Transcriptome differences between enrofloxacin-resistant and enrofloxacin-susceptible strains of Aeromonas hydrophila.

    PubMed

    Zhu, Fengjiao; Yang, Zongying; Zhang, Yiliu; Hu, Kun; Fang, Wenhong

    2017-01-01

    Enrofloxacin is the most commonly used antibiotic to control diseases in aquatic animals caused by A. hydrophila. This study conducted de novo transcriptome sequencing and compared the global transcriptomes of enrofloxacin-resistant and enrofloxacin-susceptible strains. We got a total of 4,714 unigenes were assembled. Of these, 4,122 were annotated. A total of 3,280 unigenes were assigned to GO, 3,388 unigenes were classified into Cluster of Orthologous Groups of proteins (COG) using BLAST and BLAST2GO software, and 2,568 were mapped onto pathways using the Kyoto Encyclopedia of Gene and Genomes Pathway database. Furthermore, 218 unigenes were deemed to be DEGs. After enrofloxacin treatment, 135 genes were upregulated and 83 genes were downregulated. The GO terms biological process (126 genes) and metabolic process (136 genes) were the most enriched, and the terms for protein folding, response to stress, and SOS response were also significantly enriched. This study identified enrofloxacin treatment affects multiple biological functions of A. hydrophila. Enrofloxacin resistance in A. hydrophila is closely related to the reduction of intracellular drug accumulation caused by ABC transporters and increased expression of topoisomerase IV.

  16. Transcriptome differences between enrofloxacin-resistant and enrofloxacin-susceptible strains of Aeromonas hydrophila

    PubMed Central

    Yang, Zongying; Zhang, Yiliu; Hu, Kun; Fang, Wenhong

    2017-01-01

    Enrofloxacin is the most commonly used antibiotic to control diseases in aquatic animals caused by A. hydrophila. This study conducted de novo transcriptome sequencing and compared the global transcriptomes of enrofloxacin-resistant and enrofloxacin-susceptible strains. We got a total of 4,714 unigenes were assembled. Of these, 4,122 were annotated. A total of 3,280 unigenes were assigned to GO, 3,388 unigenes were classified into Cluster of Orthologous Groups of proteins (COG) using BLAST and BLAST2GO software, and 2,568 were mapped onto pathways using the Kyoto Encyclopedia of Gene and Genomes Pathway database. Furthermore, 218 unigenes were deemed to be DEGs. After enrofloxacin treatment, 135 genes were upregulated and 83 genes were downregulated. The GO terms biological process (126 genes) and metabolic process (136 genes) were the most enriched, and the terms for protein folding, response to stress, and SOS response were also significantly enriched. This study identified enrofloxacin treatment affects multiple biological functions of A. hydrophila. Enrofloxacin resistance in A. hydrophila is closely related to the reduction of intracellular drug accumulation caused by ABC transporters and increased expression of topoisomerase IV. PMID:28708867

  17. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion

    PubMed Central

    Wu, Wenqian; Song, Min; Ni, Song; Wang, Jingshi; Liu, Yong; Liu, Bin; Liao, Xiaozhou

    2017-01-01

    An equiatomic FeCoCrNi high-entropy alloy with a face-centered cubic structure was fabricated by a powder metallurgy route, and then processed by high-pressure torsion. Detailed microscopy investigations revealed that grain refinement from coarse grains to nanocrystalline grains occurred mainly via concurrent nanoband (NB) subdivision and deformation twinning. NB–NB, twin–NB and twin–twin interactions contributed to the deformation process. The twin–twin interactions resulted in severe lattice distortion and accumulation of high densities of dislocations in the interaction areas. With increasing strain, NB subdivision and interactions between primary twins and inclined secondary stacking faults (SFs)/nanotwins occurred. Secondary nanotwins divided the primary twins into many equiaxed parts, leading to further grain refinement. The interactions between secondary SFs/nanotwins associated with the presence of Shockley partials and primary twins also transformed the primary twin boundaries into incoherent high-angle grain boundaries. PMID:28429759

  18. Elucidation of the Flavonoid Catabolism Pathway in Pseudomonas putida PML2 by Comparative Metabolic Profiling

    PubMed Central

    Pillai, Bhinu V. S.; Swarup, Sanjay

    2002-01-01

    Flavonoids are 15-carbon plant secondary metabolites exuded in the rhizosphere that hosts several flavonoid-degrading bacteria. We studied flavonoid catabolism in a plant growth-promoting rhizobacterial strain of Pseudomonas by using a combination of biochemical and genetic approaches. Transposants carrying mini-Tn5gfp insertions were screened for flavonoid auxotrophy, and these mutant strains were found to be unable to grow in the flavonols naringenin and quercetin, while their growth in glycerol was comparable to that of the parental strain. In order to understand flavonoid catabolism, culture supernatants, whole-cell fractions, cell lysate, and cell debris of the wild-type and mutant strains were analyzed. Intermediates that accumulated intracellularly and those secreted in the medium were identified by a combination of reversed-phase high-pressure liquid chromatography and electrospray ionization-mass spectrometry. Structures of four key intermediates were confirmed by one-dimensional nuclear magnetic resonance spectroscopy. Comparative metabolic profiling of the compounds in the wild-type and mutant strains allowed us to understand the degradation events and to identify six metabolic intermediates. The first step in the pathway involves 3,3′-didehydroxylation, followed by hydrolysis and cleavage of the C-ring, leading via subsequent oxidations to the formation of protocatechuate. This is the first report on quercetin dehydroxylation in aerobic conditions leading to naringenin accumulation. PMID:11772620

  19. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain.

    PubMed

    Zhao, Weijun; Hang, Baojian; Zhu, Xiangcheng; Wang, Ri; Shen, Minjie; Huang, Lei; Xu, Zhinan

    2016-10-20

    S-Adenosyl-l-methionine (SAM) is an important metabolite having prominent roles in treating various diseases. In order to improve the production of SAM, the regulation of three metabolic pathways involved in SAM biosynthesis were investigated in an industrial yeast strain ZJU001. GLC3 encoded glycogen-branching enzyme (GBE), SPE2 encoded SAM decarboxylase, as well as ERG4 and ERG6 encoded key enzymes in ergosterol biosynthesis, were knocked out in ZJU001 accordingly. The results indicated that blocking of either glycogen pathway or SAM decarboxylation pathway could improve the SAM accumulation significantly in ZJU001, while single disruption of either ERG4 or ERG6 gene had no obvious effect on SAM production. Moreover, the double mutant ZJU001-GS with deletion of both GLC3 and SPE2 genes was also constructed, which showed further improvement of SAM accumulation. Finally, SAM2 was overexpressed in ZJU001-GS to give the best SAM-producing recombinant strain ZJU001-GS-SAM2, in which 12.47g/L SAM was produced by following our developed pseudo-exponential fed-batch cultivation strategy, about 81.0% increase comparing to its parent strain ZJU001. The present work laid a solid base for large-scale SAM production with the industrial Saccharomyces cerevisiae strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes.

    PubMed

    Sánchez-Castro, Iván; Amador-García, Ahinara; Moreno-Romero, Cristina; López-Fernández, Margarita; Phrommavanh, Vannapha; Nos, Jeremy; Descostes, Michael; Merroun, Mohamed L

    2017-01-01

    The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cellular pharmacodynamics of the novel biaryloxazolidinone radezolid: studies with infected phagocytic and nonphagocytic cells, using Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, and Legionella pneumophila.

    PubMed

    Lemaire, Sandrine; Kosowska-Shick, Klaudia; Appelbaum, Peter C; Verween, Gunther; Tulkens, Paul M; Van Bambeke, Françoise

    2010-06-01

    Radezolid is a novel biaryloxazolidinone in clinical development which shows improved activity, including against linezolid-resistant strains. In a companion paper (29), we showed that radezolid accumulates about 11-fold in phagocytic cells, with approximately 60% of the drug localized in the cytosol and approximately 40% in the lysosomes of the cells. The present study examines its activity against (i) bacteria infecting human THP-1 macrophages and located in different subcellular compartments (Listeria monocytogenes, cytosol; Legionella pneumophila, vacuoles; Staphylococcus aureus and Staphylococcus epidermidis, mainly phagolysosomal), (ii) strains of S. aureus with clinically relevant mechanisms of resistance, and (iii) isogenic linezolid-susceptible and -resistant S. aureus strains infecting a series of phagocytic and nonphagocytic cells. Radezolid accumulated to similar levels ( approximately 10-fold) in all cell types (human keratinocytes, endothelial cells, bronchial epithelial cells, osteoblasts, macrophages, and rat embryo fibroblasts). At equivalent weight concentrations, radezolid proved consistently 10-fold more potent than linezolid in all these models, irrespective of the bacterial species and resistance phenotype or of the cell type infected. This results from its higher intrinsic activity and higher cellular accumulation. Time kill curves showed that radezolid's activity was more rapid than that of linezolid both in broth and in infected macrophages. These data suggest the potential interest of radezolid for recurrent or persistent infections where intracellular foci play a determinant role.

  2. Himalayan Strain Accumulation 100 ka Timescales

    NASA Astrophysics Data System (ADS)

    Cannon, J. M.; Murphy, M. A.; Liu, Y.

    2015-12-01

    Crustal scale fault systems and tectonostratigraphic units in the Himalaya can be traced for 2500 km along strike. However regional studies have shown that there is variability in the location and rate of strain accumulation which appears to be driven by Main Himalayan Thrust (MHT) geometry and convergence obliquity. GPS illuminates the modern interseismic strain rate and the historical record of great earthquakes elucidates variations in strain accumulation over 103 years. To connect these patterns with the 106 year structural and thermochronometric geologic record we examine normalized river channel steepness (ksn), a proxy for rock uplift rate, which develops over 104 - 105 years. Here we present a ksn map of the Himalaya and compare it with bedrock geology, precipitation, the historic earthquake record, GPS, seismicity, and seismotectonic models. Our map shows significant along strike changes in the magnitude of channel steepness, the areal extent of swaths of high ksn channels, and their location with respect to the range front. Differences include the juxtaposition of two narrow (30 - 40 km) range parallel belts of high ksn in west Nepal and Bhutan coincident with MHT duplexes and belts of microseismcity, with a single broad (70 km) swath of high ksn and microseismicity in central and eastern Nepal. Separating west and central Nepal a band of low ksn crosses the range coincident with the West Nepal Fault (WNF) and the lowest rate of microseismicity in Nepal. To the west the orogen is obliquely convergent and has less high ksn channels, while the orthogonally convergent region to the east contains the highest concentration of oversteepened channels in the Himalaya supporting the idea that the WNF is a strain partitioning boundary. The syntaxes are characterized by locally high channel steepness surrounded by low to moderate ksn channels consistent with the hypothesis that rapid exhumation within the syntaxes is sustained by an influx of lower crust.

  3. Global analysis of translation termination in E. coli

    PubMed Central

    Baggett, Natalie E.

    2017-01-01

    Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. PMID:28301469

  4. The influence of rock strength on erosion processes and river morphology in central Arizona: the accumulation of damage from macro-abrasion

    NASA Astrophysics Data System (ADS)

    Larimer, J. E.; Yanites, B.

    2017-12-01

    River morphology reflects the interaction between the driving forces of erosion and the resisting properties of bedrock that limit erosion. Changes in energy dissipation at the riverbed are indicated by differences in channel geometry. To erode at the same rate, stronger rocks require more energy, and thus, an adjustment in river slope or width is necessary to accomplish this work. Therefore, morphological changes should reflect differences in the rock strength properties most relevant to the dominant erosion process. We investigate this hypothesis by comparing river morphology and rock-strength properties of reaches subject to different processes. Streams in Prescott National Forest, AZ expose bedrock through a variety of lithologies, which provides a natural testing ground. Measurements include channel geometry, surface P-wave velocity, fracture spacing, and bedload grain size distribution of 150 individual reaches, as well as 260 tensile and compressive-strength tests and P-wave velocity of cores up to depths of 20 cm. Based on observations, we infer that fluvial erosion processes in this region generally fall into three domains: (1) grain by grain abrasion, (2) progressive failure by damage accumulation due to bedload impacts or `macro-abrasion', and (3) `plucking' of jointed rocks. We focus analyses on the accumulation of damage from sub-critical stresses that weakens the surface of the bedrock, potentially leading to macroscopic fractures, fatigue, and rock failure. This plays a dual role facilitating the ease with which abrasion removes material and increasing the rate of production of pluck-able particles. We estimate the `damage potential' of saltating bedload using water discharge time-series, sediment transport models and grain size distribution. To determine the resistance to damage accumulation among different rocks, we measure the evolution of damage in core samples under uniaxial loading using strain energy and inherent flaw theory. Preliminary results suggest that tensile strength is a good predictor of channel morphology in abrasion dominated reaches, morphology is better predicted through a damage perspective in macro-abrasion dominated reaches, and reduction in P-wave velocity near the surface correlates with damage susceptibility.

  5. Slip distribution, strain accumulation and aseismic slip on the Chaman Fault system

    NASA Astrophysics Data System (ADS)

    Amelug, F.

    2015-12-01

    The Chaman fault system is a transcurrent fault system developed due to the oblique convergence of the India and Eurasia plates in the western boundary of the India plate. To evaluate the contemporary rates of strain accumulation along and across the Chaman Fault system, we use 2003-2011 Envisat SAR imagery and InSAR time-series methods to obtain a ground velocity field in radar line-of-sight (LOS) direction. We correct the InSAR data for different sources of systematic biases including the phase unwrapping errors, local oscillator drift, topographic residuals and stratified tropospheric delay and evaluate the uncertainty due to the residual delay using time-series of MODIS observations of precipitable water vapor. The InSAR velocity field and modeling demonstrates the distribution of deformation across the Chaman fault system. In the central Chaman fault system, the InSAR velocity shows clear strain localization on the Chaman and Ghazaband faults and modeling suggests a total slip rate of ~24 mm/yr distributed on the two faults with rates of 8 and 16 mm/yr, respectively corresponding to the 80% of the total ~3 cm/yr plate motion between India and Eurasia at these latitudes and consistent with the kinematic models which have predicted a slip rate of ~17-24 mm/yr for the Chaman Fault. In the northern Chaman fault system (north of 30.5N), ~6 mm/yr of the relative plate motion is accommodated across Chaman fault. North of 30.5 N where the topographic expression of the Ghazaband fault vanishes, its slip does not transfer to the Chaman fault but rather distributes among different faults in the Kirthar range and Sulaiman lobe. Observed surface creep on the southern Chaman fault between Nushki and north of City of Chaman, indicates that the fault is partially locked, consistent with the recorded M<7 earthquakes in last century on this segment. The Chaman fault between north of the City of Chaman to North of Kabul, does not show an increase in the rate of strain accumulation. However, lack of seismicity on this segment, presents a significant hazard on Kabul. The high rate of strain accumulation on the Ghazaband fault and lack of evidence for the rupture of the fault during the 1935 Quetta earthquake, present a growing earthquake hazard to the Balochistan and the populated areas such as the city of Quetta.

  6. Interactions between accumulation of trace elements and major nutrients in Salix caprea after inoculation with rhizosphere microorganisms

    PubMed Central

    De Maria, Susanna; Rivelli, Anna Rita; Kuffner, Melanie; Sessitsch, Angela; Wenzel, Walter W.; Gorfer, Markus; Strauss, Joseph; Puschenreiter, Markus

    2015-01-01

    Although the beneficial effects on growth and trace element accumulation in Salix inoculated with microbes are well known, little information is available on the interactions among trace elements and major nutrients. The main purpose of this study was to assess the effect of inoculation with rhizobacteria Agromyces sp. AR33, Streptomyces sp. AR17, and the combination of each of them with the fungus Cadophora finlandica PRF15 on biomass production and the accumulation of selected trace elements and major nutrients (Cd, Zn, Fe, Ca, K and Mg) in Salix caprea grown on a moderately polluted soil. Dry matter production was significantly enhanced only upon inoculation with Agromyces AR33. Microbial treatments differently affected the accumulation of Zn and Cd in plants. Both the inoculation with Streptomyces AR17 and the co-inoculation of C. finlandica with Agromyces AR33 were most efficient in enhancing the accumulation of Zn and Cd in leaves. These two treatments showed also a higher translocation factor from roots to the leaves for both Cd and Zn. Concentrations of major nutrients in shoots were generally increased in the treatments with the fungus compared to those without, except for K in plants inoculated with bacterial strain Streptomyces AR17. Co-inoculation of C. finlandica plus Agromyces AR33 resulted in a better accumulation of both Zn and Cd and Ca, K and Mg in shoots. This study suggests that the phytoextraction of Zn and Cd can be improved by inoculation with selected microbial strains. PMID:21612812

  7. Use of an ELISA-based stability assay to examine host genotype, PrP**Sc stability, and incubation time relationships in U.S. livestock prion strains

    USDA-ARS?s Scientific Manuscript database

    Transmissible spongiform encephalopathies (TSEs) are caused by the misfolding of the cellular prion protein (PrP**C) into a disease-associated version (PrP**Sc) that accumulates in certain tissues, leading to pathological changes in the brain and eventual death. Different strains of TSEs have been d...

  8. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.

    PubMed

    Duponnois, R; Kisa, M; Assigbetse, K; Prin, Y; Thioulouse, J; Issartel, M; Moulin, P; Lepage, M

    2006-11-01

    Cd-tolerant bacterial strains of fluorescent pseudomonads, mostly belonging to Pseudomonas monteillii, were isolated from termite mound soil (Macrotermes subhyalinus, a litter-forager and fungus-growing termite), in a Sudanese shrubby savanna, Burkina Faso. Such large mounds appeared as sites of great bacterial diversity and could be considered as hot spots of metal-tolerant fluorescent pseudomonads. Microbial isolates were inoculated to Sorghum plants (S. bicolor) in glasshouse experiments with soil amended with CdCl(2) (560 mg Cd kg(-1) soil). Microbial functional diversity was assessed at the end of the experiment by measurement of in situ patterns of catabolic potentials. All the bacteria isolates significantly improved the shoot and total biomass of sorghum plants compared to the control. Results concerning root biomass were not significant with some strains. Arbuscular mycorrhiza (AM) was greatly reduced by CdCl(2) amendment, and fluorescent pseudomonad inoculation significantly increased AM colonisation in the contaminated soil. The bacterial inoculation significantly improved Cd uptake by sorghum plants. Measurement of catabolic potentials on 16 substrates showed that the microbial communities were different according to the soil amendment. Soils samples inoculated with pseudomonad strains presented a higher use of ketoglutaric and hydroxybutiric acids, as opposed to fumaric acid in soil samples not inoculated. It is suggested that fluorescent pseudomonads could act indirectly in such metabolic processes by involving a lower rate of degradation of citric acid, in line with the effect of small organic acid on phytoextraction of heavy metals from soil. This is a first contribution to bioremediation of metal-contaminated sites with soil-to-plant transfer, using termite built structures. Further data are required on the efficiency of the bacterial strains isolated and on the processes involved.

  9. Factors Affecting Nuclear Export of the 60S Ribosomal Subunit In Vivo

    PubMed Central

    Stage-Zimmermann, Tracy; Schmidt, Ute; Silver, Pamela A.

    2000-01-01

    In Saccharomyces cerevisiae, the 60S ribosomal subunit assembles in the nucleolus and then is exported to the cytoplasm, where it joins the 40S subunit for translation. Export of the 60S subunit from the nucleus is known to be an energy-dependent and factor-mediated process, but very little is known about the specifics of its transport. To begin to address this problem, an assay was developed to follow the localization of the 60S ribosomal subunit in S. cerevisiae. Ribosomal protein L11b (Rpl11b), one of the ∼45 ribosomal proteins of the 60S subunit, was tagged at its carboxyl terminus with the green fluorescent protein (GFP) to enable visualization of the 60S subunit in living cells. A panel of mutant yeast strains was screened for their accumulation of Rpl11b–GFP in the nucleus as an indicator of their involvement in ribosome synthesis and/or transport. This panel included conditional alleles of several rRNA-processing factors, nucleoporins, general transport factors, and karyopherins. As predicted, conditional alleles of rRNA-processing factors that affect 60S ribosomal subunit assembly accumulated Rpl11b–GFP in the nucleus. In addition, several of the nucleoporin mutants as well as a few of the karyopherin and transport factor mutants also mislocalized Rpl11b–GFP. In particular, deletion of the previously uncharacterized karyopherin KAP120 caused accumulation of Rpl11b–GFP in the nucleus, whereas ribosomal protein import was not impaired. Together, these data further define the requirements for ribosomal subunit export and suggest a biological function for KAP120. PMID:11071906

  10. Shear, principal, and equivalent strains in equal-channel angular deformation

    NASA Astrophysics Data System (ADS)

    Xia, K.; Wang, J.

    2001-10-01

    The shear and principal strains involved in equal channel angular deformation (ECAD) were analyzed using a variety of methods. A general expression for the total shear strain calculated by integrating infinitesimal strain increments gave the same result as that from simple geometric considerations. The magnitude and direction of the accumulated principal strains were calculated based on a geometric and a matrix algebra method, respectively. For an intersecting angle of π/2, the maximum normal strain is 0.881 in the direction at π/8 (22.5 deg) from the longitudinal direction of the material in the exit channel. The direction of the maximum principal strain should be used as the direction of grain elongation. Since the principal direction of strain rotates during ECAD, the total shear strain and principal strains so calculated do not have the same meaning as those in a strain tensor. Consequently, the “equivalent” strain based on the second invariant of a strain tensor is no longer an invariant. Indeed, the equivalent strains calculated using the total shear strain and that using the total principal strains differed as the intensity of deformation increased. The method based on matrix algebra is potentially useful in mathematical analysis and computer calculation of ECAD.

  11. Transcriptome analysis of trichothecene-induced gene expression in barley.

    PubMed

    Boddu, Jayanand; Cho, Seungho; Muehlbauer, Gary J

    2007-11-01

    Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.

  12. Backup Expression of the PhaP2 Phasin Compensates for phaP1 Deletion in Herbaspirillum seropedicae, Maintaining Fitness and PHB Accumulation

    PubMed Central

    Alves, Luis P. S.; Teixeira, Cícero S.; Tirapelle, Evandro F.; Donatti, Lucélia; Tadra-Sfeir, Michelle Z.; Steffens, Maria B. R.; de Souza, Emanuel M.; de Oliveira Pedrosa, Fabio; Chubatsu, Leda S.; Müller-Santos, Marcelo

    2016-01-01

    Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria. PMID:27242754

  13. Backup Expression of the PhaP2 Phasin Compensates for phaP1 Deletion in Herbaspirillum seropedicae, Maintaining Fitness and PHB Accumulation.

    PubMed

    Alves, Luis P S; Teixeira, Cícero S; Tirapelle, Evandro F; Donatti, Lucélia; Tadra-Sfeir, Michelle Z; Steffens, Maria B R; de Souza, Emanuel M; de Oliveira Pedrosa, Fabio; Chubatsu, Leda S; Müller-Santos, Marcelo

    2016-01-01

    Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria.

  14. New approaches for improving the production of the 1st and 2nd generation ethanol by yeast.

    PubMed

    Kurylenko, Olena; Semkiv, Marta; Ruchala, Justyna; Hryniv, Orest; Kshanovska, Barbara; Abbas, Charles; Dmytruk, Kostyantyn; Sibirny, Andriy

    2016-01-01

    Increase in the production of 1st generation ethanol from glucose is possible by the reduction in the production of ethanol co-products, especially biomass. We have developed a method to reduce biomass accumulation of Saccharomyces cerevisiae by the manipulation of the intracellular ATP level due to overexpression of genes of alkaline phosphatase, apyrase or enzymes involved in futile cycles. The strains constructed accumulated up to 10% more ethanol on a cornmeal hydrolysate medium. Similar increase in ethanol accumulation was observed in the mutants resistant to the toxic inhibitors of glycolysis like 3-bromopyruvate and others. Substantial increase in fuel ethanol production will be obtained by the development of new strains of yeasts that ferment sugars of the abundant lignocellulosic feedstocks, especially xylose, a pentose sugar. We have found that xylose can be fermented under elevated temperatures by the thermotolerant yeast, Hansenula polymorpha. We combined protein engineering of the gene coding for xylose reductase (XYL1) along with overexpression of the other two genes responsible for xylose metabolism in yeast (XYL2, XYL3) and the deletion of the global transcriptional activator CAT8, with the selection of mutants defective in utilizing ethanol as a carbon source using the anticancer drug, 3-bromopyruvate. Resulted strains accumulated 20-25 times more ethanol from xylose at the elevated temperature of 45°C with up to 12.5 g L(-1) produced. Increase in ethanol yield and productivity from xylose was also achieved by overexpression of genes coding for the peroxisomal enzymes: transketolase (DAS1) and transaldolase (TAL2), and deletion of the ATG13 gene.

  15. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum.

    PubMed

    Zhu, Qinjian; Zhang, Xiaomei; Luo, Yuchang; Guo, Wen; Xu, Guoqiang; Shi, Jinsong; Xu, Zhenghong

    2015-02-01

    The direct fermentative production of L-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low L-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing L-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both L-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products L-alanine and L-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards L-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as L-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the L-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of L-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of L-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve L-serine productivity.

  16. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Production of ethanol from thin stillage by metabolically engineered Escherichia coli.

    PubMed

    Gonzalez, Ramon; Campbell, Paul; Wong, Matthew

    2010-03-01

    Thin stillage is a by-product generated in large amounts during the production of ethanol that is rich in carbon sources like glycerol, glucose and maltose. Unfortunately, the fermentation of thin stillage results in a mixture of organic acids and ethanol and minimum utilization of glycerol, the latter a compound that can represent up to 80% of the available substrates in this stream. We report here the efficient production of ethanol from thin stillage by a metabolically engineered strain of Escherichia coli. Simultaneous utilization of glycerol and sugars was achieved by overexpressing either the fermentative or the respiratory glycerol-utilization pathway. However, amplification of the fermentative pathway (encoded by gldA and dhaKLM) led to more efficient consumption of glycerol and promoted the synthesis of reduced products, including ethanol. A previously constructed strain, EH05, containing mutations that prevented the accumulation of competing by-products (i.e. lactate, acetate, and succinate) and overexpressing the fermentative pathway for glycerol utilization [i.e. strain EH05 (pZSKLMgldA)], efficiently converted thin stillage supplemented with only mineral salts to ethanol at yields close to 85% of the theoretical maximum. Ethanol accounted for about 90% (w/w) of the product mixture. These results, along with the comparable performance of strain EH05 (pZSKLMgldA) in 0.5 and 5 l fermenters, indicate a great potential for the adoption of this process by the biofuels industry.

  18. Carbon dioxide sequestration by chemolithotrophic oleaginous bacteria for production and optimization of polyhydroxyalkanoate.

    PubMed

    Kumar, Manish; Gupta, Asmita; Thakur, Indu Shekhar

    2016-08-01

    The present work involved screening of a previously reported carbon concentrating oleaginous bacterial strain Serratia sp. ISTD04 for production of PHA and optimization of process parameters for enhanced PHA and biomass generation. The selected bacterial strain was screened for PHA production based on Nile red staining followed by visualization under fluorescence microscope. Spectrofluorometric measurement of Nile red fluorescence of the bacterial culture was also done. Confirmatory analysis of PHA accumulation by GC-MS revealed the presence of 3-hydroxyvalerate. Detection of characteristic peaks in the FT-IR spectrum further confirmed the production of PHA by the bacterium. Response Surface Methodology was used for optimization of pH and carbon sources' concentrations for higher PHA production. There was almost a 2 fold increase in the production of PHA following optimization as compared to un-optimized condition. The study thus establishes the production of PHA by Serratia sp. ISTD04. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Bacterial Interactions with CdSe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Holden, P.; Nadeau, J. L.; Kumar, A.; Clarke, S.; Priester, J. H.; Stucky, G. D.

    2007-12-01

    Cadmium selenide quantum dots (QDs) are semiconductor nanoparticles that are manufactured for biomedical imaging, photovoltaics, and other applications. While metallic nanoparticles can be made biotically by bacteria and fungi, and thus occur in nature, the fate of either natural or engineered QDs and relationships to nanoparticle size, conjugate and biotic conditions are mostly unknown. Working with several different bacterial strains and QDs of different sizes and conjugate chemistries, including QDs synthesized by a Fusarium fungal strain, we show that QDs can enter cells through specfic receptor-mediated processes, that QDs are broken down by bacteria during cell association, and that toxicity to cells is much like that imposed by Cd(II) ions. The mechanisms of entry and toxicity are not fully understood, but preliminary evidence suggests that electron transfer between cells and QDs occurs. Also, cell membranes are compromised, indicating oxidative stress is occurring. Results with planktonic and biofilm bacteria are similar, but differently, biofilms tend to accumulate Cd(II) associated with QD treatments.

  20. Molecular genetics of Streptococcus thermophilus.

    PubMed

    Mercenier, A

    1990-09-01

    The metabolism and genetics of Streptococcus thermophilus (presently Streptococcus salivarius ssp. thermophilus) have only been investigated recently despite its widespread use in milk fermentation processes. The development of recombinant DNA technology has allowed impressive progress to be made in the knowledge of thermophilic dairy streptococci. In particular, it has permitted a careful analysis of phenotypically altered variants which were derived from a mother strain by plasmid or chromosomal DNA reorganization. While natural phage defense mechanisms of S. thermophilus remain poorly documented, information on the bacteriophages responsible for fermentation failures has accumulated. The lysogenic state of two S. thermophilus strains has also been demonstrated for the first time. Gene transfer techniques for this species have been established and improved to the point that targeted manipulation of their chromosomal determinants is now feasible. Cloning and expression vectors have been constructed, and a few heterologous genes were successfully expressed in S. thermophilus. The first homologous genes, involved in carbohydrate utilization, have been cloned and sequenced, shedding some light on the molecular organization of key metabolic steps.

  1. New insights on the seismic hazard in the Balkans inferred from GPS

    NASA Astrophysics Data System (ADS)

    D'Agostino, Nicola; Métois, Marianne; Avallone, Antonio; Chamot-Rooke, Nicolas

    2014-05-01

    The Balkans region sits at the transition between stable Eurasia and highly straining continental Eastern Mediterranean, resulting in a widespread seismicity and high seismic hazard. Because of intensive human and economic development over the last decades, the vulnerability has increased in the region faster than the progress in seismic hazard assessments. Opposite to the relatively good understanding of the seismicity in plate boundaries contexts, the seismic hazard is poorly known in the regions of distributed continental deformation like the Balkan region and is often underestimated (England and Jackson, 2011). Current seismic hazard assessments are based on the historical and instrumental catalogues. However, the completeness interval of the historical data bases may be below the average recurrence of individual seismogenic structures. In addition, relatively sparse seismological networks in the region and limited cross-border seismic data exchanges cast doubts in seismotectonic interpretation and challenge our understanding of seismic and geodynamic processes. This results in a inhomogeneous knowledge of the seismic hazard of the region to date. Geodetic measurements have the capability to contribute to seismic hazard by mapping the field of current active deformation and translating it into estimates of the seismogenic potential. With simple assumptions, measurements of crustal deformation can be translated in estimates of the average frequency and magnitude of the largest events and assessments of the aseismic deformation. GPS networks in the Balkans have been growing during the last few years mainly for civilian application (e.g. Cadastral plan, telecommunications), but opening new opportunities to quantify the present-day rates of crustal deformation. Here we present the initial results of GEOSAB (Geodetic Estimate of Strain Accumulation over Balkans), an AXA-Research-Fund supported project devoted to the estimation of crustal deformation and the associated seismic hazard of the Balkan region. We processed all the currently available data acquired on these new networks using the precise point positioning strategy of the Gipsy-Oasis software (Bertiger et al. 2010) and the daily ITF2008 transformation parameters (x-files) from JPL. Daily coordinates are obtained in a Eurasia-fix reference frame obtained using the strategy developed by Blewitt et al. (2012). Here we present this new velocity field combined with previously published data sets covering the Balkan Peninsula. This unusually dense picture of the current deformation, in particular in Slovenia and Serbia, enables us to derive a continuous map of the strain rate over the region using the approach of Haines and Holt (1993). We then derive the seismogenic potential of the region combining the geodetic strain rate and the available regional CMT moment tensor solutions. These maps bring new insights on areas of significant strain accumulation over the Balkan Peninsula and are a first step to better assess seismic hazard there.

  2. Infectious Bovine Viral Diarrhea Virus (Strain NADL) RNA from Stable cDNA Clones: a Cellular Insert Determines NS3 Production and Viral Cytopathogenicity

    PubMed Central

    Mendez, Ernesto; Ruggli, Nicolas; Collett, Marc S.; Rice, Charles M.

    1998-01-01

    Bovine viral diarrhea virus (BVDV), strain NADL, was originally isolated from an animal with fatal mucosal disease. This isolate is cytopathic in cell culture and produces two forms of NS3-containing proteins: uncleaved NS2-3 and mature NS3. For BVDV NADL, the production of NS3, a characteristic of cytopathic BVDV strains, is believed to be a consequence of an in-frame insertion of a 270-nucleotide cellular mRNA sequence (called cIns) in the NS2 coding region. In this study, we constructed a stable full-length cDNA copy of BVDV NADL in a low-copy-number plasmid vector. As assayed by transfection of MDBK cells, uncapped RNAs transcribed from this template were highly infectious (>105 PFU/μg). The recovered virus was similar in plaque morphology, growth properties, polyprotein processing, and cytopathogenicity to the BVDV NADL parent. Deletion of cIns abolished processing at the NS2/NS3 site and produced a virus that was no longer cytopathic for MDBK cells. This deletion did not affect the efficiency of infectious virus production or viral protein production, but it reduced the level of virus-specific RNA synthesis and accumulation. Thus, cIns not only modulates NS3 production but also upregulates RNA replication relative to an isogenic noncytopathic derivative lacking the insert. These results raise the possibility of a linkage between enhanced BVDV NADL RNA replication and virus-induced cytopathogenicity. PMID:9573238

  3. Mechanisms of basal ice formation in polar glaciers: An evaluation of the apron entrainment model

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Sean; Webb, Nicola; Mager, Sarah; MacDonell, Shelley; Lorrain, Regi; Samyn, Denis

    2008-06-01

    Previous studies of polar glaciers have argued that basal ice can form when these glaciers override and entrain ice marginal aprons that accumulate adjacent to steep ice cliffs. To test this idea, we have studied the morphology, structure, composition, and deformation of the apron and basal ice at the terminus of Victoria Upper Glacier in the McMurdo dry valleys, which are located on the western coast of the Ross Sea at 77°S in southern Victoria Land, Antarctica. Our results show that the apron has two structural elements: an inner element that consists of strongly foliated ice that has a steep up-glacier dip, and an outer element that lacks a consistent foliation and has a down-glacier, slope-parallel dip. Although strain measurements show that the entire apron is deforming, the inner element is characterized by high strain rates, whereas relatively low rates of strain characterize the outer part of the apron. Co-isotopic analyses of the ice, together with analysis of solute chemistry and sedimentary characteristics, show that the apron is compositionally different from the basal ice. Our observations show that aprons may become deformed and partially entrained by advancing glaciers. However, such an ice marginal process does not provide a satisfactory explanation for the origin of basal ice observed at the ice margin. Our interpretation of the origin of basal ice is that it is formed by subglacial processes, which are likely to include deformation and entrainment of subglacial permafrost.

  4. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    PubMed

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  5. Characterization of a Bacillus amyloliquefaciens strain for reduction of citrulline accumulation during soy sauce fermentation.

    PubMed

    Zhang, Jiran; Du, Guocheng; Chen, Jian; Fang, Fang

    2016-10-01

    To reduce the amount of citrulline produced by arginine-consuming bacteria in the moromi mash during soy sauce production. Bacillus amyloliquefaciens JY06, a salt-tolerant strain with high arginine consumption ability and low citrulline accumulation capacity, was isolated from moromi mash. The concentration of citrulline was decreased from 26.8 to 5.1 mM and ethyl carbamate in soy sauce, after sterilization, decreased from 97 to 17 μg kg(-1) when B. amyloliquefaciens JY06 was added during fermentation. The aroma of the sauce was improved by increasing the ester content. B. amyloliquefaciens JY06 is a beneficial bacterium that can be used in soy sauce fermentation to eliminate ethyl carbonate and enhance the flavor of the sauce.

  6. Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.

    PubMed Central

    Monticello, D J; Bakker, D; Schell, M; Finnerty, W R

    1985-01-01

    Plasmid-borne Tn5 insertion mutants of a Pseudomonas species which accumulated 2,5-dihydroxybenzoate (gentisate) following growth on 2-hydroxybenzoate (salicylate) were obtained from a pool of mutants that were unable to grow on naphthalene. One such mutant was characterized further. The ability of this mutant to oxidize gentisate was 100-fold less than the ability of a Nah+ Sal+ strain harboring the unmutagenized plasmid, although both strains oxidized and grew on salicylate. These bacteria were presumably able to metabolize salicylate via catechol, since they possessed an inducible, plasmid-encoded catechol 2,3-dioxygenase. Our results suggest that there is an alternate, plasmid-encoded route of salicylate degradation via gentisate and that some plasmid-associated relationship between this pathway and naphthalene oxidation exists. PMID:2988437

  7. Use of QuakeSim and UAVSAR for Earthquake Damage Mitigation and Response

    NASA Technical Reports Server (NTRS)

    Donnellan, A.; Parker, J. W.; Bawden, G.; Hensley, S.

    2009-01-01

    Spaceborne, airborne, and modeling and simulation techniques are being applied to earthquake risk assessment and response for mitigation from this natural disaster. QuakeSim is a web-based portal for modeling interseismic strain accumulation using paleoseismic and crustal deformation data. The models are used for understanding strain accumulation and release from earthquakes as well as stress transfer to neighboring faults. Simulations of the fault system can be used for understanding the likelihood and patterns of earthquakes as well as the likelihood of large aftershocks from events. UAVSAR is an airborne L-band InSAR system for collecting crustal deformation data. QuakeSim, UAVSAR, and DESDynI (following launch) can be used for monitoring earthquakes, the associated rupture and damage, and postseismic motions for prediction of aftershock locations.

  8. Optimization of cyanophycin production in recombinant strains of Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical experimental design.

    PubMed

    Diniz, Simone Cardoso; Voss, Ingo; Steinbüchel, Alexander

    2006-03-05

    Elementary mode analysis was applied to simulate conditions for cyanophycin (CGP) biosynthesis and to optimize its production in bacteria. The conclusions from these simulations were confirmed by experiments with recombinant strains of the wild types and polyhydroxyalkanoate (PHA)-negative mutants of Ralstonia eutropha and Pseudomonas putida expressing CGP synthetase genes (cphA) of Synechocystis sp. strain PCC6308 or Anabaena sp. strain PCC7120. In particular, the effects of suitable precursor substrates and of oxygen supply as well as of the capability to accumulate PHA in addition to CGP biosynthesis were investigated. Since CGP consists of the amino acids aspartate and arginine, the tricarboxylic acid cycle (TCC), which provides intermediates for biosynthesis of these amino acids, seems to be important. Excretion of intermediates of the TCC upon cultivation at restricted oxygen supply and conversion of fumarate mainly to malate and to only little succinate in the absence of oxygen indicated that TCC intermediates for arginine and aspartate biosynthesis were provided by the oxidative or reductive parts of the TCC, respectively. The following important conclusions were made from the experiments and the simulations: (i) external arginine additionally supplied to the medium, (ii) oxygen limitation, and (iii) absence of PHA accumulation exerted positive effects on CGP accumulation. These conclusions were utilized to obtain CGP contents in the cells of as high as 17.9% (w x w(-1)) during cultivation of the investigated bacteria at the 30-L scale using mineral salts medium. Such high CGP contents were previously not obtained with these bacteria at a 30-L scale, even if complex media were used.

  9. Diethylene glycol-induced toxicities show marked threshold dose response in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landry, Greg M., E-mail: Landry.Greg@mayo.edu; Dunning, Cody L., E-mail: cdunni@lsuhsc.edu; Abreo, Fleurette, E-mail: fabreo@lsuhsc.edu

    Diethylene glycol (DEG) exposure poses risks to human health because of widespread industrial use and accidental exposures from contaminated products. To enhance the understanding of the mechanistic role of metabolites in DEG toxicity, this study used a dose response paradigm to determine a rat model that would best mimic DEG exposure in humans. Wistar and Fischer-344 (F-344) rats were treated by oral gavage with 0, 2, 5, or 10 g/kg DEG and blood, kidney and liver tissues were collected at 48 h. Both rat strains treated with 10 g/kg DEG had equivalent degrees of metabolic acidosis, renal toxicity (increased BUNmore » and creatinine and cortical necrosis) and liver toxicity (increased serum enzyme levels, centrilobular necrosis and severe glycogen depletion). There was no liver or kidney toxicity at the lower DEG doses (2 and 5 g/kg) regardless of strain, demonstrating a steep threshold dose response. Kidney diglycolic acid (DGA), the presumed nephrotoxic metabolite of DEG, was markedly elevated in both rat strains administered 10 g/kg DEG, but no DGA was present at 2 or 5 g/kg, asserting its necessary role in DEG-induced toxicity. These results indicate that mechanistically in order to produce toxicity, metabolism to and significant target organ accumulation of DGA are required and that both strains would be useful for DEG risk assessments. - Highlights: • DEG produces a steep threshold dose response for kidney injury in rats. • Wistar and F-344 rats do not differ in response to DEG-induced renal injury. • The dose response for renal injury closely mirrors that for renal DGA accumulation. • Results demonstrate the importance of DGA accumulation in producing kidney injury.« less

  10. A novel malic enzyme gene, Mime2, from Mortierella isabellina M6-22 contributes to lipid accumulation.

    PubMed

    Li, Shan; Li, Lingyan; Xiong, Xiangfeng; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2018-05-18

    This study was aimed at cloning and characterizing a novel malic enzyme (ME) gene of Mortierella isabellina M6-22 and identifying its relation with lipid accumulation. Mime2 was cloned from strain M6-22. Plasmid pET32aMIME2 was constructed to express ME of MIME2 in Escherichia coli BL21. After purification, the optimal pH and temperature of MIME2, as well as K m and V max for NADP + were determined. The effects of EDTA or metal ions (Mn 2+ , Mg 2+ , Co 2+ , Cu 2+ , Ca 2+ , or Zn 2+ ) on the enzymatic activity of MIME2 were evaluated. Besides, plasmid pRHMIME2 was created to express MIME2 in Rhodosporidium kratochvilovae YM25235, and its cell lipid content was measured by the acid-heating method. The optimal pH and temperature of MIME2 are 5.8 and 30 °C, respectively. The act ivity of MIME2 was significantly increased by Mg 2+ , Ca 2+ , or Mn 2+ at 0.5 mM but inhibited by Cu 2+ or Zn 2+ (p < 0.05). The optimal enzymatic activity of MIME2 is 177.46 U/mg, and the K m and V max for NADP + are 0.703 mM and 156.25 μg/min, respectively. Besides, Mime2 transformation significantly increased the cell lipid content in strain YM25235 (3.15 ± 0.24 vs. 2.17 ± 0.31 g/L, p < 0.01). The novel ME gene Mime2 isolated from strain M6-22 contributes to lipid accumulation in strain YM25235.

  11. Microscopic and Spectroscopic Analyses of Chlorhexidine Tolerance in Delftia acidovorans Biofilms

    PubMed Central

    Rema, Tara; Lawrence, John R.; Dynes, James J.; Hitchcock, Adam P.

    2014-01-01

    The physicochemical responses of Delftia acidovorans biofilms exposed to the commonly used antimicrobial chlorhexidine (CHX) were examined in this study. A CHX-sensitive mutant (MIC, 1.0 μg ml−1) was derived from a CHX-tolerant (MIC, 15.0 μg ml−1) D. acidovorans parent strain using transposon mutagenesis. D. acidovorans mutant (MT51) and wild-type (WT15) strain biofilms were cultivated in flow cells and then treated with CHX at sub-MIC and inhibitory concentrations and examined by confocal laser scanning microscopy (CLSM), scanning transmission X-ray microscopy (STXM), and infrared (IR) spectroscopy. Specific morphological, structural, and chemical compositional differences between the CHX-treated and -untreated biofilms of both strains were observed. Apart from architectural differences, CLSM revealed a negative effect of CHX on biofilm thickness in the CHX-sensitive MT51 biofilms relative to those of the WT15 strain. STXM analyses showed that the WT15 biofilms contained two morphochemical cell variants, whereas only one type was detected in the MT51 biofilms. The cells in the MT51 biofilms bioaccumulated CHX to a similar extent as one of the cell types found in the WT15 biofilms, whereas the other cell type in the WT15 biofilms did not bioaccumulate CHX. STXM and IR spectral analyses revealed that CHX-sensitive MT51 cells accumulated the highest levels of CHX. Pretreating biofilms with EDTA promoted the accumulation of CHX in all cells. Thus, it is suggested that a subpopulation of cells that do not accumulate CHX appear to be responsible for greater CHX resistance in D. acidovorans WT15 biofilm in conjunction with the possible involvement of bacterial membrane stability. PMID:25022584

  12. Mutational Analysis of a Role for Salicylic Acid in Iron Metabolism of Mycobacterium smegmatis

    PubMed Central

    Adilakshmi, Tadepalli; Ayling, Peter D.; Ratledge, Colin

    2000-01-01

    The role of salicylic acid in iron metabolism was examined in two wild-type strains (mc2155 and NCIMB 8548) and three mutant strains (mc21292 [lacking exochelin], SM3 [lacking iron-dependent repressor protein IdeR] and S99 [a salicylate-requiring auxotroph derived in this study]) of Mycobacterium smegmatis. Synthesis of salicylate in SM3 was derepressed even in the presence of iron, as was synthesis of the siderophores exochelin, mycobactin, and carboxymycobactin. S99 was dependent on salicylate for growth and failed to grow with the three ferrisiderophores, suggesting that salicylate fulfills an additional function(s) other than being a precursor of mycobactin and carboxymycobactin. Salicylic acid at 100 μg/ml repressed the formation of a 29-kDa cell envelope protein (putative exochelin receptor protein) in S99 grown both iron deficiently and iron sufficiently. In contrast, synthesis of this protein was affected only under iron-limited conditions in the parent strain, mc2155, and remained unaltered in SM3, suggesting an interaction between the IdeR protein and salicylate. Thus, salicylate may also function as a signal molecule for recognition of cellular iron status. Growth of all strains and mutants with p-aminosalicylate (PAS) at 100 μg/ml increased salicylate accumulation between three- and eightfold under both iron-limited and iron-sufficient growth conditions and decreased mycobactin accumulation by 40 to 80% but increased carboxymycobactin accumulation by 50 to 55%. Thus, although PAS inhibited salicylate conversion to mycobactin, presumptively by blocking salicylate AMP kinase, PAS also interferes with the additional functions of salicylate, as its effect was heightened in S99 when the salicylate concentration was minimal. PMID:10629169

  13. Design and Study of Efflux Function of EGFP Fused MexAB-OprM Membrane Transporter in Pseudomonas aeruginosa Using Fluorescence Spectroscopy

    PubMed Central

    Ding, Feng; Lee, Kerry J.; Vahedi-Faridi, Ardeschir; Yoneyama, Hiroshi; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2014-01-01

    Multidrug membrane transporters (efflux pumps) can selectively extrude a variety of structurally and functionally diverse substrates (e.g., chemotoxics, antibiotics), leading to multidrug resistance (MDR) and ineffective treatment of a wide variety of diseases. In this study, we have designed and constructed fusion gene (egfp-mexB) of N-terminal mexB with C-terminal egfp, inserted it into a plasmid vector (pMMB67EH), and successfully expressed it in ΔMexB (MexB deletion) strain of Pseudomonas aeruginosa to create a new strain that expresses MexA-(EGFP-MexB)-OprM. We characterized the fusion gene using gel electrophoresis and DNA sequencing, and determined their expression in live cells by measuring the fluorescence of EGFP in single live cells using fluorescence microscopy. Efflux function of the new strain was studied by measuring its accumulation kinetics of ethidium bromide (EtBr, a pump substrate) using fluorescence spectroscopy, which was compared with the cells (WT, ΔMexM, ΔABM, and nalB1) with various expression levels of MexAB-OprM. The new strain shows 6-fold lower accumulation rates of EtBr (15 μM) than ΔABM, 4-fold lower than ΔMexB, but only 1.1-fold higher than WT. As EtBr concentration increases to 40 μM, the new strain has nearly the same accumulation rate of EtBr as ΔMexB, but 1.4-fold higher than WT. We observed the nearly same level of inhibitory effect of CCCP (carbonyl cyanide-m-chlorophenylhydrazone) on the efflux of EtBr by the new strain and WT. Antibiotic susceptibility study shows that the minimum inhibitory concentrations (MICs) of aztreonam (AZT) and chloramphenicol (CP) for the new strain are 6-fold or 3-fold lower than WT, respectively, and 2-fold higher than those of ΔMexB. Taken together, the results suggest that the fusion protein partially retains the efflux function of MexAB-OprM. Modeled structure of the fusion protein shows that the position and orientation of the N-terminal fused EGFP domain may either partially block the translocation pore or restrict the movement of the individual pump domains, which leads to partially restrict efflux activity. PMID:24781334

  14. An Analysis of Strain Accumulation in the Western Part of Black Sea Region in Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, I.; Avsar, N. B.; Deniz, R.; Mekik, C.; Kutoglu, S.

    2014-12-01

    Turkish National Horizontal Control Network (TNHCN) based on the European Datum 1950 (ED50) was used as the principal geodetic network until 2005 in Turkey. Since 2005, Turkish Large Scale Map and Map Information Production Regulation have required that that all the densification points have been produced within the same datum of Turkish National Fundamental GPS Network (TNFGN) put into practise in 2002 and based on International Terrestrial Reference Frame (ITRF). Hence, the common points were produced in both European Datum 1950 (ED50), and TNFGN.It is known that the geological and geophysical information about the network area can be obtained by the evaluation of the coordinate and scale variations in a geodetic network. For one such evaluation, the coordinate variations and velocities of network points, and also the strains are investigated. However, the principal problem in derivation of velocities arises from two different datums. In this context, the computation of velocities using the coordinate data of the ED50 and TNFGN is not accurate and reliable. Likewise, the analysis of strain from the coordinate differences is not reliable. However, due to the fact that the scale of a geodetic network is independent from datum, the strains can be derived from scale variations accurately and reliably.In this study, a test area limited 39.5°-42.0° northern latitudes and 31.0°-37.0° eastern longitudes was chosen. The benchmarks in this test area are composed of 30 geodetic control points derived with the aim of cadastral and engineering applications. We used data mining to investigate the common benchmarks in both reference systems for this area. Accordingly, the ED50 and TNFGN coordinates refer 1954 and 2005, respectively. Thus, it has been investigated the strain accumulation of 51 years in this region. It should be also noted that since 1954, the earthquakes have not registered greater than magnitude 6.0 in the test area. It is a considerable situation for this evaluation. The finite element analysis is used in order to derive the strain accumulation and rates in the test area (Figure 1). The results have been indicated that the minimum and maximum strains are 17μs and 3041μs, respectively.

  15. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  16. Intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions

    PubMed Central

    Wilson, Daniel C; Carella, Philip; Cameron, Robin K

    2014-01-01

    The phytohormone salicylic acid (SA) plays an important role in several disease resistance responses. During the Age-Related Resistance (ARR) response that occurs in mature Arabidopsis responding to Pseudomonas syringae pv tomato (Pst), SA accumulates in the intercellular space where it may act as an antimicrobial agent. Recently we measured intracellular and intercellular SA levels in young, ARR-incompetent plants responding to virulent and avirulent strains of Pst to determine if intercellular SA accumulation is a component of additional defense responses to Pst. In young plants virulent Pst suppressed both intra- and intercellular SA accumulation in a coronatine-dependent manner. In contrast, high levels of intra- and intercellular SA accumulated in response to avirulent Pst. Our results support the idea that SA accumulation in the intercellular space is an important component of multiple defense responses. Future research will include understanding how mature plants counteract the effects of coronatine during the ARR response. PMID:25763618

  17. Cloning and sequencing of the histidine decarboxylase genes of gram-negative, histamine-producing bacteria and their application in detection and identification of these organisms in fish.

    PubMed

    Takahashi, Hajime; Kimura, Bon; Yoshikawa, Miwako; Fujii, Tateo

    2003-05-01

    The use of molecular tools for early and rapid detection of gram-negative histamine-producing bacteria is important for preventing the accumulation of histamine in fish products. To date, no molecular detection or identification system for gram-negative histamine-producing bacteria has been developed. A molecular method that allows the rapid detection of gram-negative histamine producers by PCR and simultaneous differentiation by single-strand conformation polymorphism (SSCP) analysis using the amplification product of the histidine decarboxylase genes (hdc) was developed. A collection of 37 strains of histamine-producing bacteria (8 reference strains from culture collections and 29 isolates from fish) and 470 strains of non-histamine-producing bacteria isolated from fish were tested. Histamine production of bacteria was determined by paper chromatography and confirmed by high-performance liquid chromatography. Among 37 strains of histamine-producing bacteria, all histidine-decarboxylating gram-negative bacteria produced a PCR product, except for a strain of Citrobacter braakii. In contrast, none of the non-histamine-producing strains (470 strains) produced an amplification product. Specificity of the amplification was further confirmed by sequencing the 0.7-kbp amplification product. A phylogenetic tree of the isolates constructed using newly determined sequences of partial hdc was similar to the phylogenetic tree generated from 16S ribosomal DNA sequences. Histamine accumulation occurred when PCR amplification of hdc was positive in all of fish samples tested and the presence of powerful histamine producers was confirmed by subsequent SSCP identification. The potential application of the PCR-SSCP method as a rapid monitoring tool is discussed.

  18. Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae.

    PubMed

    Amigoni, Loredana; Martegani, Enzo; Colombo, Sonia

    2013-01-01

    We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in the hxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis in S. cerevisiae. In particular, cells lacking HXK2 and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion of HXK2 causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.

  19. Chronic or accidental exposure of oysters to norovirus: is there any difference in contamination?

    PubMed

    Ventrone, Iole; Schaeffer, Julien; Ollivier, Joanna; Parnaudeau, Sylvain; Pepe, Tiziana; Le Pendu, Jacques; Le Guyader, Françoise S

    2013-03-01

    Bivalve molluscan shellfish such as oysters may be contaminated by human pathogens. Currently, the primary pathogens associated with shellfish-related outbreaks are noroviruses. This study was conducted to improve understanding of oyster bioaccumulation when oysters were exposed to daily contamination or one accidental contamination event, i.e., different modes of contamination. Oysters were contaminated with two representative strains of norovirus (GI.1 and GII.3) and then analyzed with real-time reverse transcription PCR. Exposure to a repeated virus dose for 9 days (mimicking a growing area subjected to frequent sewage contamination) led to an additive accumulation that was not significantly different from that obtained when the same total dose of virus was added all at once (as may happen after accidental sewage discharge). Similarly, bioaccumulation tests performed with mixed strains revealed additive accumulation of both viruses. Depuration may not be efficient for eliminating viruses; therefore, to prevent contaminated shellfish from being put onto the market, continuous sanitary monitoring must be considered. All climatic events or sewage failures occurring in production areas must be recorded, because repeated low-dose exposure or abrupt events may lead to similar levels of accumulation. This study contributes to an understanding of norovirus accumulation in oysters and provides suggestions for risk management strategies.

  20. Snow Densification and Recent Accumulation Along the iSTAR Traverse, Pine Island Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Morris, E. M.; Mulvaney, R.; Arthern, R. J.; Davies, D.; Gurney, R. J.; Lambert, P.; De Rydt, J.; Smith, A. M.; Tuckwell, R. J.; Winstrup, M.

    2017-12-01

    Neutron probe measurements of snow density from 22 sites in the Pine Island Glacier basin have been used to determine mean annual accumulation using an automatic annual layer identification routine. A mean density profile which can be used to convert radar two-way travel times to depth has been derived, and the effect of annual fluctuations in density on estimates of the depth of radar reflectors is shown to be insignificant, except very near the surface. Vertical densification rates have been derived from the neutron probe density profiles and from deeper firn core density profiles available at 9 of the sites. These rates are consistent with the rates predicted by the Herron and Langway model for stage 1 densification (by grain-boundary sliding, grain growth and intracrystalline deformation) and stage 2 densification (predominantly by sintering), except in a transition zone extending from ≈8 to ≈13 m from the surface in which 10-14% of the compaction occurs. Profiles of volumetric strain rate at each site show that in this transition zone the rates are consistent with the Arthern densification model. Comparison of the vertical densification rates and volumetric strain rates indicates that the expected relation to mean annual accumulation breaks down at high accumulation rates even when corrections are made for horizontal ice velocity divergence.

Top