DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy
Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less
NASA Astrophysics Data System (ADS)
Liu, Feng; Wu, Chuanhai; Xu, Xinquan; Li, Hao; Wang, Zhixiang
2018-01-01
In order to grasp the rule of the strain change of the semi-rigid asphalt pavement structure under the FWD load and provide a reliable theoretical and practical basis for the design of the pavement structure, based on the test section of Guangdong Yunluo expressway, taking FWD as the loading tool, by using the finite element analysis software ANSYS, the internal variation rules of each pavement structural layer were obtained. Based on the results of the theoretical analysis, the measured strain sensor was set up in the corresponding layer of the pavement structure, and the strain test plan was determined. Based on the analysis of the strain data obtained from several structural layers and field monitoring, the rationality of the type pavement structure and the strain test scheme were verified, so as to provide useful help for the design and the maintenance of the pavement structure.
NASA Astrophysics Data System (ADS)
Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo
2017-07-01
Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.
The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation
Wang, Wenming
2014-01-01
The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157
Dutta, Debaditya; Mahmoud, Ahmed M.; Leers, Steven A.; Kim, Kang
2013-01-01
Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump. PMID:24808628
Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici
Nirmaladevi, D.; Venkataramana, M.; Srivastava, Rakesh K.; Uppalapati, S. R.; Gupta, Vijai Kumar; Yli-Mattila, T.; Clement Tsui, K. M.; Srinivas, C.; Niranjana, S. R.; Chandra, Nayaka S.
2016-01-01
The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin. PMID:26883288
Shariati J, Vahid; Malboobi, Mohammad Ali; Tabrizi, Zeinab; Tavakol, Elahe; Owilia, Parviz; Safari, Maryam
2017-11-15
In this study, we provide a comparative genomic analysis of Pantoea agglomerans strain P5 and 10 closely related strains based on phylogenetic analyses. A next-generation shotgun strategy was implemented using the Illumina HiSeq 2500 technology followed by core- and pan-genome analysis. The genome of P. agglomerans strain P5 contains an assembly size of 5082485 bp with 55.4% G + C content. P. agglomerans consists of 2981 core and 3159 accessory genes for Coding DNA Sequences (CDSs) based on the pan-genome analysis. Strain P5 can be grouped closely with strains PG734 and 299 R using pan and core genes, respectively. All the predicted and annotated gene sequences were allocated to KEGG pathways. Accordingly, genes involved in plant growth-promoting (PGP) ability, including phosphate solubilization, IAA and siderophore production, acetoin and 2,3-butanediol synthesis and bacterial secretion, were assigned. This study provides an in-depth view of the PGP characteristics of strain P5, highlighting its potential use in agriculture as a biofertilizer.
[GENOTYPING OF THE BURKHOLDERIA MALLEI STRAINS BASED ON DIFFERENT REGION ANALYSIS].
Bondareva, O S; Savchenko, S S; Tkachenko, G A; Ledeneva, M L; Lemasova, L V; Antonov, V A
2016-01-01
Development of the genotyping methods of glanders agent is urgent due to its high pathogenicity, lack of effective preventive measures and threat of the use of Burkholderia mallei as a biological weapon. In this work we proposed a scheme for the typing of the B. mallei strains based on different region analysis (DFR). The choice of variable loci differentially presented in various strains of glanders agents was performed by analyzing annotated whole-genome sequences of the B. mallei strains. Primers and fluorescence probes were designed for 9 selected loci. The amplification conditions for different regions were optimized in two variants: with electrophoretic detection and hybridization-fluorescence detection in the strip format. The possibility of applying the DFR analysis to genetic characterization of strains was assessed in 14 B. mallei strains. The genetic profiles of the studied B. mallei strains revealed that the developed DFR-typing scheme was characterized by high discrimination power (Hunter-Gaston index value was 0.92), reproducibility, rapidity, easy interpretation, and applicability for epidemiological surveillance of glanders.
Seo, S-T; Tsuchiya, K
2004-01-01
To study the genotypic identification and characterization of the 119 Burkholderia cepacia complex (Bcc) strains recovered from clinical and environmental sources in Japan and Thailand. Based on the results of analysis by 16S rDNA RFLP generated after digestion with DdeI, the Bcc strains were differentiated into two patterns: pattern 1 (including Burkholderia vietnamiensis) and pattern 2 (including B. cepacia genomovar I, Burkholderia cenocepacia and Burkholderia stabilis). All strains belonged to pattern 2 except for one strain. In the RFLP analysis of the recA gene using HaeIII, strains were separated into eight patterns designated as A, D, E, G, H, I, J and K, of which pattern K was new. Burkholderia cepacia epidemic strain marker (BCESM) encoded by esmR [corrected] and the pyrrolnitrin biosynthetic locus encoded by prnC were present in 22 strains (18%) and 88 strains (74%) from all sources, respectively. All esmR-positive [corrected] strains belonged to B. cenocepacia, whereas most prnC-positive strains belonged to B. cepacia genomovar I. Strains derived from clinical sources were assigned to B. cepacia genomovar I, B. cenocepacia, B. stabilis and B. vietnamiensis. The majority of Bcc strains from environmental sources (77 of a total 95 strains) belonged to B. cepacia genomovar I, whereas the rest belonged to B. cenocepacia. On the basis of genomovar-specific PCR and prnC RFLP analysis, strains belonging to recA pattern K were identified as B. cepacia genomovar I. This work provides the genotypic identification of a collection of the Bcc strains from Japan and Thailand. RFLP analysis of the prnC gene promises to be a useful method for differentiating Burkholderia pyrrocinia from B. cepacia genomovar I strains.
Boesten, Rolf; Schuren, Frank; Wind, Richèle D; Knol, Jan; de Vos, Willem M
2011-09-01
A total of 20 Bifidobacterium strains were isolated from fecal samples of 4 breast- and bottle-fed infants and all were characterized as Bifidobacterium breve based on 16S rRNA gene sequence and metabolic analysis. These isolates were further characterized and compared to the type strains of B. breve and 7 other Bifidobacterium spp. by comparative genome hybridization. For this purpose, we constructed and used a DNA-based microarray containing over 2000 randomly cloned DNA fragments from B. breve type strain LMG13208. This molecular analysis revealed a high degree of genomic variation between the isolated strains and allowed the vast majority to be grouped into 4 clusters. One cluster contained a single isolate that was virtually indistinguishable from the B. breve type strain. The 3 other clusters included 19 B. breve strains that differed considerably from all type strains. Remarkably, each of the 4 clusters included strains that were isolated from a single infant, indicating that a niche adaptation may contribute to variation within the B. breve species. Based on genomic hybridization data, the new B. breve isolates were estimated to contain approximately 60-90% of the genes of the B. breve type strain, attesting to the existence of various subspecies within the species B. breve. Further bioinformatic analysis identified several hundred diagnostic clones specific to the genomic clustering of the B. breve isolates. Molecular analysis of representatives of these revealed that annotated genes from the conserved B. breve core encoded mainly housekeeping functions, while the strain-specific genes were predicted to code for functions related to life style, such as carbohydrate metabolism and transport. This is compatible with genetic adaptation of the strains to their niche, a combination of infants and diet. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Lee, Chin Mei; Sieo, Chin Chin; Cheah, Yoke-Kqueen; Abdullah, Norhani; Ho, Yin Wan
2012-02-01
Four repetitive element sequence-based polymerase chain reaction (rep-PCR) methods, namely repetitive extragenic palindromic PCR (REP-PCR), enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), polytrinucleotide (GTG)₅ -PCR and BOX-PCR, were evaluated for the molecular differentiation of 12 probiotic Lactobacillus strains previously isolated from the gastrointestinal tract of chickens and used as a multistrain probiotic. This study represents the first analysis of the comparative efficacy of these four rep-PCR methods and their combination (composite rep-PCR) in the molecular typing of Lactobacillus strains based on a discriminatory index (D). Species-specific and strain-specific profiles were observed from rep-PCR. From the numerical analysis of composite rep-PCR, BOX-PCR, (GTG)₅ -PCR, REP-PCR and ERIC-PCR, D values of 0.9118, 0.9044, 0.8897, 0.8750 and 0.8529 respectively were obtained. Composite rep-PCR analysis was the most discriminative method, with eight Lactobacillus strains, namely L. brevis ATCC 14869(T) , L. reuteri C 10, L. reuteri ATCC 23272(T) , L. gallinarum ATCC 33199(T) , L. salivarius ATCC 11741(T) , L. salivarius I 24, L. panis JCM 11053(T) and L. panis C 17, being differentiated at the strain level. Composite rep-PCR analysis is potentially a useful fingerprinting method to discriminate probiotic Lactobacillus strains isolated from the gastrointestinal tract of chickens. Copyright © 2011 Society of Chemical Industry.
Nakamura, Toshihide; Sekiyama, Yasuyo; Kikuchi, Jun
2017-01-01
In this study, we investigated the applicability of NMR-based metabolomics to discriminate strain-dependent fermentation characteristics of lactic acid bacteria (LAB), which are important microorganisms for fermented food production. To evaluate the discrimination capability, six type strains of Lactobacillus species and six additional L. brevis strains were used focusing on i) the difference between homo- and hetero-lactic fermentative species and ii) strain-dependent characteristics within L. brevis. Based on the differences in the metabolite profiles of fermented vegetable juices, non-targeted principal component analysis (PCA) clearly separated the samples into those inoculated with homo- and hetero-lactic fermentative species. The separation was primarily explained by the different levels of dominant metabolites (lactic acid, acetic acid, ethanol, and mannitol). Orthogonal partial least squares discrimination analysis, based on a regions-of-interest (ROIs) approach, revealed the contribution of low-abundance metabolites: acetoin, phenyllactic acid, p-hydroxyphenyllactic acid, glycerophosphocholine, and succinic acid for homolactic fermentation; and ornithine, tyramine, and γ-aminobutyric acid (GABA) for heterolactic fermentation. Furthermore, ROIs-based PCA of seven L. brevis strains separated their strain-dependent fermentation characteristics primarily based on their ability to utilize sucrose and citric acid, and convert glutamic acid and tyrosine into GABA and tyramine, respectively. In conclusion, NMR metabolomics successfully discriminated the fermentation characteristics of the tested strains and provided further information on metabolites responsible for these characteristics, which may impact the taste, aroma, and functional properties of fermented foods. PMID:28759594
Actinomyces timonensis sp. nov., isolated from a human clinical osteo-articular sample.
Renvoise, Aurélie; Raoult, Didier; Roux, Véronique
2010-07-01
Gram-positive, non-spore-forming rods were isolated from a human osteo-articular sample (strain 7400942(T)). Based on cellular morphology and the results of biochemical analysis, this strain was tentatively identified as a novel species of the genus Actinomyces. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that the bacterium was closely related to the type strain of Actinomyces denticolens (96.9 % 16S rRNA gene sequence similarity). A comparison of biochemical traits showed that strain 7400942(T) was distinct from A. denticolens in a number of characteristics, i.e. in contrast with A. denticolens, strain 7400942(T) was negative for nitrate reduction and for beta-galactosidase, alpha-glucosidase and alanine arylamidase activities, it was positive for acid production from N-acetylglucosamine, melezitose and glycogen, and it was negative for acid production from turanose. Matrix-assisted laser-desorption/ionization time-of-flight MS protein analysis confirmed that strain 7400942(T) represents a novel species, as scores obtained for its spectra were significant (>2.2) only with strain 7400942(T). On the basis of phenotypic data and phylogenetic inference, it is proposed that this strain should be designated Actinomyces timonensis sp. nov.; the type strain is strain 7400942(T) (=CSUR P35(T)=CCUG 55928(T)).
Kuleshov, K V; Markelov, M L; Dedkov, V G; Vodop'ianov, A S; Kermanov, A V; Pisanov, R V; Kruglikov, V D; Mazrukho, A B; Maleev, V V; Shipulin, G A
2013-01-01
Determination of origin of 2 Vibrio cholerae strains isolated on the territory of Rostov region by using full genome sequencing data. Toxigenic strain 2011 EL- 301 V. cholerae 01 El Tor Inaba No. 301 (ctxAB+, tcpA+) and nontoxigenic strain V. cholerae O1 Ogawa P- 18785 (ctxAB-, tcpA+) were studied. Sequencing was carried out on the MiSeq platform. Phylogenetic analysis of the genomes obtained was carried out based on comparison of conservative part of the studied and 54 previously sequenced genomes. 2011EL-301 strain genome was presented by 164 contigs with an average coverage of 100, N50 parameter was 132 kb, for strain P- 18785 - 159 contigs with a coverage of69, N50 - 83 kb. The contigs obtained for strain 2011 EL-301 were deposited in DDBJ/EMBL/GenBank databases with access code AJFN02000000, for strain P-18785 - ANHS00000000. 716 protein-coding orthologous genes were detected. Based on phylogenetic analysis strain P- 18785 belongs to PG-1 subgroup (a group of predecessor strains of the 7th pandemic). Strain 2011EL-301 belongs to groups of strains of the 7th pandemic and is included into the cluster with later isolates that are associated with cases of cholera in South Africa and cases of import of cholera to the USA from Pakistan. The data obtained allows to establish phylogenetic connections with V cholerae strains isolated earlier.
Sensitivity Enhancement of FBG-Based Strain Sensor.
Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian
2018-05-17
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.
Sensitivity Enhancement of FBG-Based Strain Sensor
Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Mao, Jian
2018-01-01
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments. PMID:29772826
Phylogenetic relationship of Ornithobacterium rhinotracheale strains.
DE Oca-Jimenez, Roberto Montes; Vega-Sanchez, Vicente; Morales-Erasto, Vladimir; Salgado-Miranda, Celene; Blackall, Patrick J; Soriano-Vargas, Edgardo
2018-04-10
The bacterium Ornithobacterium rhinotracheale is associated with respiratory disease in wild birds and poultry. In this study, the phylogenetic analysis of nine reference strains of O. rhinotracheale belonging to serovars A to I, and eight Mexican isolates belonging to serovar A, was performed. The analysis was extended to include available sequences from another 23 strains available in the public domain. The analysis showed that the 40 sequences formed six clusters, I to VI. All eight Mexican field isolates were placed in cluster I. One of the reference strains appears to present genetic diversity not previously recognized and was placed in a new genetic cluster. In conclusion, the phylogenetic analysis of O. rhinotracheale strains, based on the 16S rRNA gene, is a suitable tool for epidemiologic studies.
Srůtková, Dagmar; Spanova, Alena; Spano, Miroslav; Dráb, Vladimír; Schwarzer, Martin; Kozaková, Hana; Rittich, Bohuslav
2011-10-01
Bifidobacterium longum is considered to play an important role in health maintenance of the human gastrointestinal tract. Probiotic properties of bifidobacterial isolates are strictly strain-dependent and reliable methods for the identification and discrimination of this species at both subspecies and strain levels are thus required. Differentiation between B. longum ssp. longum and B. longum ssp. infantis is difficult due to high genomic similarities. In this study, four molecular-biological methods (species- and subspecies-specific PCRs, random amplified polymorphic DNA (RAPD) method using 5 primers, repetitive sequence-based (rep)-PCR with BOXA1R and (GTG)(5) primers and amplified ribosomal DNA restriction analysis (ARDRA)) and biochemical analysis, were compared for the classification of 30 B. longum strains (28 isolates and 2 collection strains) on subspecies level. Strains originally isolated from the faeces of breast-fed healthy infants (25) and healthy adults (3) showed a high degree of genetic homogeneity by PCR with subspecies-specific primers and rep-PCR. When analysed by RAPD, the strains formed many separate clusters without any potential for subspecies discrimination. These methods together with arabionose/melezitose fermentation analysis clearly differentiated only the collection strains into B. longum ssp. longum and B. longum ssp. infantis at the subspecies level. On the other hand, ARDRA analysis differentiated the strains into the B. longum/infantis subspecies using the cleavage analysis of genus-specific amplicon with just one enzyme, Sau3AI. According to our results the majority of the strains belong to the B. longum ssp. infantis (75%). Therefore we suggest ARDRA using Sau3AI restriction enzyme as the first method of choice for distinguishing between B. longum ssp. longum and B. longum ssp. infantis. Copyright © 2011 Elsevier B.V. All rights reserved.
Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Shim, Tae-Sun; Kook, Yoon-Hoh; Kim, Bum-Joon
2017-01-01
Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated.
Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Shim, Tae-Sun; Kook, Yoon-Hoh
2017-01-01
Recent multi locus sequence typing (MLST) and genome based studies indicate that lateral gene transfer (LGT) events in the rpoB gene are prevalent between Mycobacterium abscessus complex strains. To check the prevalence of the M. massiliense strains subject to rpoB LGT (Rec-mas), we applied rpoB typing (711 bp) to 106 Korean strains of M. massiliense infection that had already been identified by hsp65 sequence analysis (603 bp). The analysis indicated 6 smooth strains in M. massiliense Type I (10.0%, 6/60) genotypes but no strains in M. massiliense Type II genotypes (0%, 0/46), showing a discrepancy between the 2 typing methods. Further MLST analysis based on the partial sequencing of seven housekeeping genes, argH, cya, glpK, gnd, murC, pta and purH, as well as erm(41) PCR proved that these 6 Rec-mas strains consisted of two distinct genotypes belonging to M. massiliense and not M. abscessus. The complete rpoB sequencing analysis showed that these 6 Rec-mas strains have an identical hybrid rpoB gene, of which a 478 bp partial rpoB fragment may be laterally transferred from M. abscessus. Notably, five of the 6 Rec-mas strains showed complete identical sequences in a total of nine genes, including the seven MLST genes, hsp65, and rpoB, suggesting their clonal propagation in South Korea. In conclusion, we identified 6 M. massiliense smooth strains of 2 phylogenetically distinct genotypes with a specific hybrid rpoB gene laterally transferred from M. abscessus from Korean patients. Their clinical relevance and bacteriological traits remain to be elucidated. PMID:28604829
Sekizuka, Tsuyoshi; Yamamoto, Akihiko; Iwaki, Masaaki; Komiya, Takako; Hatakeyama, Takashi; Nakajima, Hiroshi; Takahashi, Motohide; Kuroda, Makoto; Shibayama, Keigo
2014-01-01
Genetic characterization was performed for 10 group I Clostridium botulinum strains isolated from botulism cases in Japan between 2006 and 2011. Of these, 1 was type A, 2 were type B, and 7 were type A(B) {carrying a silent bont/B [bont/(B)] gene} serotype strains, based on botulinum neurotoxin (BoNT) production. The type A strain harbored the subtype A1 BoNT gene (bont/A1), which is associated with the ha gene cluster. The type B strains carried bont/B5 or bont/B6 subtype genes. The type A(B) strains carried bont/A1 identical to that of type A(B) strain NCTC2916. However, bont/(B) genes in these strains showed single-nucleotide polymorphisms (SNPs) among strains. SNPs at 2 nucleotide positions of bont/(B) enabled classification of the type A(B) strains into 3 groups. Pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem-repeat analysis (MLVA) also provided consistent separation results. In addition, the type A(B) strains were separated into 2 lineages based on their plasmid profiles. One lineage carried a small plasmid (5.9 kb), and another harbored 21-kb plasmids. To obtain more detailed genetic information about the 10 strains, we sequenced their genomes and compared them with 13 group I C. botulinum genomes in a database using whole-genome SNP analysis. This analysis provided high-resolution strain discrimination and enabled us to generate a refined phylogenetic tree that provides effective traceability of botulism cases, as well as bioterrorism materials. In the phylogenetic tree, the subtype B6 strains, Okayama2011 and Osaka05, were distantly separated from the other strains, indicating genomic divergence of subtype B6 strains among group I strains. PMID:25192986
Analysis of the Temperature and Strain-Rate Dependences of Strain Hardening
NASA Astrophysics Data System (ADS)
Kreyca, Johannes; Kozeschnik, Ernst
2018-01-01
A classical constitutive modeling-based Ansatz for the impact of thermal activation on the stress-strain response of metallic materials is compared with the state parameter-based Kocks-Mecking model. The predicted functional dependencies suggest that, in the first approach, only the dislocation storage mechanism is a thermally activated process, whereas, in the second approach, only the mechanism of dynamic recovery is. In contradiction to each of these individual approaches, our analysis and comparison with experimental evidence shows that thermal activation contributes both to dislocation generation and annihilation.
NASA Astrophysics Data System (ADS)
Oskouie, M. Faraji; Ansari, R.; Rouhi, H.
2018-04-01
Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.
Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits.
Chen, Yi-Sheng; Wang, Li-Ting; Liao, Yu-Jou; Lan, Yi-Shan; Chang, Chi-Huan; Chang, Yu-Chung; Wu, Hui-Chung; Lo, Huei-Yin; Otoguro, Misa; Yanagida, Fujitoshi
2017-12-01
Two Gram-stain-positive, catalase-negative, rod-shaped, bacterial strains (313 T and 311) were isolated from banana fruits in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the highest similarity to both strains corresponded to the type strain of Lactobacillus nantensis (99.19 %), followed by Lactobacillus crustorum (98.99 %), Lactobacillus heilongjiangensis (98.59 %) and Lactobacillus farciminis (98.52 %). Phylogenetic analysis based on the sequences of two housekeeping genes, pheS and rpoA, revealed that these two strains were well separated from the Lactobacillus reference strains. DNA-DNA relatedness values revealed genotype separation of the two strains from the above four species. The DNA G+C content of strain 313 T was 35.5 mol%. The strains were homofermentative and mainly produced l-lactic acid from glucose. The major cellular fatty acids of strain 313 T were 18 : 1ω6c and/or 18 : 1ω7c, 16 : 0, and 19 : 1ω6c and/or 19 : 0 cyclo ω10c. Based on their physiological and genotypic characteristics, the isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillusmusae sp. nov. is proposed. The type strain is 313 T =NBRC 112868 T =BCRC 81020 T ).
Genetic and Metabolic Intraspecific Biodiversity of Ganoderma lucidum
Pawlik, Anna; Janusz, Grzegorz; Dębska, Iwona; Siwulski, Marek; Frąc, Magdalena; Rogalski, Jerzy
2015-01-01
Fourteen Ganoderma lucidum strains from different geographic regions were identified using ITS region sequencing. Based on the sequences obtained, the genomic relationship between the analyzed strains was determined. All G. lucidum strains were also genetically characterized using the AFLP technique. G. lucidum strains included in the analysis displayed an AFLP profile similarity level in the range from 9.6 to 33.9%. Biolog FF MicroPlates were applied to obtain data on utilization of 95 carbon sources and mitochondrial activity. The analysis allowed comparison of functional diversity of the fungal strains. The substrate utilization profiles for the isolates tested revealed a broad variability within the analyzed G. lucidum species and proved to be a good profiling technology for studying the diversity in fungi. Significant differences have been demonstrated in substrate richness values. Interestingly, the analysis of growth and biomass production also differentiated the strains based on the growth rate on the agar and sawdust substrate. In general, the mycelial growth on the sawdust substrate was more balanced and the fastest fungal growth was observed for GRE3 and FCL192. PMID:25815332
Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test
NASA Astrophysics Data System (ADS)
Ji, Dongmei; Zhang, Lai-Chang; Ren, Jianxing; Wang, Dexian
2015-04-01
This work focused on the interaction of creep and fatigue and cyclic strain analysis in high-chromium ferritic P92 steel based on load-controlled creep-fatigue (CF) tests and conventional creep test at 873 K. Mechanical testing shows that the cyclic load inhibits the propagation of creep damage in the P92 steel and CF interaction becomes more severe with the decrease in the holding period duration and stress ratio. These results are also verified by the analysis of cyclic strain. The fatigue lifetime reduces with the increasing of the holding period duration and it does not reduce much with the increasing stress ratio especially under the conditions of long holding period duration. The cyclic strains (i.e., the strain range and creep strain) of CF tests consist of three stages, which is the same as those for the conventional creep behavior. The microscopic fracture surface observations illustrated that two different kinds of voids are observed at the fracture surfaces and Laves phase precipitates at the bottom of the voids.
Chen, Yi-Guang; Li, Wen-Jun; Cui, Xiao-Long; Jiang, Cheng-Lin; Xu, Li-Hua
2006-10-01
One facultative alkaliphilic actinomycete strain YIM 90022 was isolated from hypersaline alkaline soil in Qinghai province, China. An almost-complete 16S rRNA gene sequence (1500 bp) for strain YIM 90022 was obtained. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 90022 was closely related to four members of the genus Nocardiopsis with 16S rRNA gene sequence similarity values of 98.8% (N. exhalans DSM 44407T), 98.5% (N. prasina DSM 43845T), 98.4% (N. metallicus DSM 44598T) and 97.8% (N. listeri DSM 40297T), but represented a distinct phylogenetic lineage. Repetitive element sequence-based PCR (rep-PCR) genomic fingerprinting was evaluated on strain YIM 90022 and its closest relatives to investigate their genetic relatedness. The analysis of the rep-PCR genomic fingerprints showed that strain YIM 90022 was distinguishable from its closest relatives. The polyphasic taxonomic data presented in this study, including its morphology, physiological and biochemical characteristics, chemotaxonomy, 16S rRNA gene sequence-based phylogenetic analysis and rep-PCR genomic fingerprinting, supported the view that strain YIM 90022 represented a potential new species of the genus Nocardiopsis. The fermentation broth of strain YIM 90022 strongly inhibited growth of cell series of gastric cancer, lung cancer, mammary cancer, melanoma cancer, renal cancer and uterus cancer. Strain YIM 90022 grew well on most tested media, producing exuberant vegetative hyphae and aerial hyphae. The vegetative hyphae are long and fragmented. Light yellow to deep brown diffusible pigments were produced on ISP 2, ISP 3 and ISP 6. Growth of the strain occurred in the pH range 6.0-12.0, with optimal pH8.5. The NaCl tolerate range was 0-15% (W/V). Cell walls contain meso-diaminopimelic acid and have no diagnostic sugars. Polar lipids are phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmethylethanolamine. Major menaquinones are MK-10 (H4, H6). The DNA G + C content is 71.5 mol %.
Nazina, T N; Shumkova, E S; Sokolova, D Sh; Babich, T L; Zhurina, M V; Xue, Yan-Fen; Osipov, G A; Poltaraus, A B; Tourova, T P
2015-01-01
The taxonomic position of hydrocarbon-oxidizing bacterial strains 263 and 32d isolated from formation water of the Daqing petroleum reservoir (PRC) was determined by polyphasic taxonomy techniques, including analysis of the 16S rRNA and the gyrB genes. The major chemotaxonomic characteristics of both strains, including the IV type cell wall, composition of cell wall fatty acids, mycolic acids, and menaquinones, agreed with those typical of Dietzia strains. The DNA G+C content of strains 263 and 32d were 67.8 and 67.6 mol%, respectively. Phylogenetic analysis of the 16S rRNA gene of strain 32d revealed 99.7% similarity to the gene of D. maris, making it possible to identify strain 32d as belonging to this species. The 16S rRNA gene sequence of strain 263 exhibited 99.7 and 99.9% similarity to those of D. natronolimnaea and D. cercidiphylli YIM65002(T), respectively. Analysis of the gyrB genes of the subterranean isolates and of a number of Dietzia type strains confirmed classiffication of strain 32d as a D. maris strain and of strain 263, as a D. natronolimnaea strain. A conclusion was made concerning higher resolving power of phylogenetic analysis of the gyrB gene compared to the 16S rRNA gene analysis in the case of determination of the species position of Dietzia isolates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkle, J.G.
In order to study effects of constraint on fracture toughness, it is important to select the right location within the crack-tip field for investigation. In 1950 Hill postulated that close to a circular notch tip the principal stress directions would be radial and circumferential, so that the plastic slip lines (maximum shear stress trajectories) would be logarithmic spirals. The resulting equation for stress normal to the notch symmetry plane, neglecting strain hardening, was identical to that for the circumferential stress near the bore of an ideally plastic thick-walled hollow cylinder under external radial tension, because the relevant geometries are identical.more » In 1969, Rice and Johnson developed a near crack-tip, plane strain, large-strain rigid-plastic analysis considering strain hardening and assuming an infinitely sharp initial crack tip. Shortly afterwards, Merkle, following Hill's suggestion, proposed an approximate analysis of the stresses and strains ahead of a blunted crack tip on the plane of symmetry, based on a circular blunted crack tip. The analysis amounted to a hollow cylinder analogy, including the effects of strain hardening. The original hollow cylinder analogy was based on small strain theory, and the calculated strain distributions did not agree well with the Rice and Johnson results very near the blunted crack tip. Therefore, the hollow cylinder analogy equations have been rederived, based on large strain theory, and the agreement with the Rice and Johnson results and other more recent numerical results is good. Calculations illustrate the effects of transverse strain on the principal stresses very close to a blunting crack tip and show that, theoretically, a singularity still exists at the tip of a blunting crack. 10 refs., 9 figs.« less
Shear, principal, and equivalent strains in equal-channel angular deformation
NASA Astrophysics Data System (ADS)
Xia, K.; Wang, J.
2001-10-01
The shear and principal strains involved in equal channel angular deformation (ECAD) were analyzed using a variety of methods. A general expression for the total shear strain calculated by integrating infinitesimal strain increments gave the same result as that from simple geometric considerations. The magnitude and direction of the accumulated principal strains were calculated based on a geometric and a matrix algebra method, respectively. For an intersecting angle of π/2, the maximum normal strain is 0.881 in the direction at π/8 (22.5 deg) from the longitudinal direction of the material in the exit channel. The direction of the maximum principal strain should be used as the direction of grain elongation. Since the principal direction of strain rotates during ECAD, the total shear strain and principal strains so calculated do not have the same meaning as those in a strain tensor. Consequently, the “equivalent” strain based on the second invariant of a strain tensor is no longer an invariant. Indeed, the equivalent strains calculated using the total shear strain and that using the total principal strains differed as the intensity of deformation increased. The method based on matrix algebra is potentially useful in mathematical analysis and computer calculation of ECAD.
[Determination of genetic bases of auxotrophy in Yersinia pestis ssp. caucasica strains].
Odinokov, G N; Eroshenko, G A; Kukleva, L M; Shavina, N Iu; Krasnov, Ia M; Kutyrev, V V
2012-04-01
Based on the results of computer analysis of nucleotide sequences in strains Yersinia pestis and Y. pseudotuberculosis recorded in the files of NCBI GenBank database, differences between genes argA, aroG, aroF, thiH, and thiG of strain Pestoides F (subspecies caucasica) were found, compared to other strains of plaque agent and pseudotuberculosis microbe. Using PCR with calculated primers and the method of sequence analysis, the structure of variable regions of these genes was studied in 96 natural Y. pestis and Y. pseudotuberculosis strains. It was shown that all examined strains of subspecies caucasica, unlike strains of plague-causing agent of other subspecies and pseudotubercolosis microbe, had identical mutations in genes argA (integration of the insertion sequence IS100), aroG (insertion of ten nucleotides), aroF (inserion of IS100), thiH (insertion of nucleotide T), and thiG (deletion of 13 nucleotides). These mutations are the reason for the absence in strains belonging to this subspecies of the ability to synthesize arginine, phenylalanine, tyrosine, and vitamin B1 (thiamine), and cause their auxotrophy for these growth factors.
Noutsios, Georgios T; Papi, Rigini M; Ekateriniadou, Loukia V; Minas, Anastasios; Kyriakidis, Dimitrios A
2012-03-01
In the present study forty-four Greek endemic strains of Br. melitensis and three reference strains were genotyped by Multi locus Variable Number Tandem Repeat (ML-VNTR) analysis based on an eight-base pair tandem repeat sequence that was revealed in eight loci of Br. melitensis genome. The forty-four strains were discriminated from the vaccine strain Rev-1 by Restriction Fragment Length Polymorphism (RFLP) and Denaturant Gradient Gel Electrophoresis (DGGE). The ML-VNTR analysis revealed that endemic, reference and vaccine strains are genetically closely related, while most of the loci tested (1, 2, 4, 5 and 7) are highly polymorphic with Hunter-Gaston Genetic Diversity Index (HGDI) values in the range of 0.939 to 0.775. Analysis of ML-VNTRs loci stability through in vitro passages proved that loci 1 and 5 are non stable. Therefore, vaccine strain can be discriminated from endemic strains by allele's clusters of loci 2, 4, 6 and 7. RFLP and DGGE were also employed to analyse omp2 gene and reveled different patterns among Rev-1 and endemic strains. In RFLP, Rev-1 revealed three fragments (282, 238 and 44 bp), while endemic strains two fragments (238 and 44 bp). As for DGGE, the electrophoretic mobility of Rev-1 is different from the endemic strains due to heterologous binding of DNA chains of omp2a and omp2b gene. Overall, our data show clearly that it is feasible to genotype endemic strains of Br. melitensis and differentiate them from vaccine strain Rev-1 with ML-VNTR, RFLP and DGGE techniques. These tools can be used for conventional investigations in brucellosis outbreaks.
Comparison of two methods for detection of strain localization in sheet forming
NASA Astrophysics Data System (ADS)
Lumelskyj, Dmytro; Lazarescu, Lucian; Banabic, Dorel; Rojek, Jerzy
2018-05-01
This paper presents a comparison of two criteria of strain localization in experimental research and numerical simulation of sheet metal forming. The first criterion is based on the analysis of the through-thickness thinning (through-thickness strain) and its first time derivative in the most strained zone. The limit strain in the second method is determined by the maximum of the strain acceleration. Experimental and numerical investigation have been carried out for the Nakajima test performed for different specimens of the DC04 grade steel sheet. The strain localization has been identified by analysis of experimental and numerical curves showing the evolution of strains and their derivatives in failure zones. The numerical and experimental limit strains calculated from both criteria have been compared with the experimental FLC evaluated according to the ISO 12004-2 norm. It has been shown that the first method predicts formability limits closer to the experimental FLC. The second criterion predicts values of strains higher than FLC determined according to ISO norm. These values are closer to the strains corresponding to the fracture limit. The results show that analysis of strain evolution allows us to determine strain localization in numerical simulation and experimental studies.
Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T
2012-01-01
Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095
Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T
2012-03-01
Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots.
de Matos, Gustavo Feitosa; Zilli, Jerri Edson; de Araújo, Jean Luiz Simões; Parma, Marcia Maria; Melo, Itamar Soares; Radl, Viviane; Baldani, José Ivo; Rouws, Luc Felicianus Marie
2017-11-01
Members of the genus Bradyrhizobium are well-known as nitrogen-fixing microsymbionts of a wide variety of leguminous species, but they have also been found in different environments, notably as endophytes in non-legumes such as sugarcane. This study presents a detailed polyphasic characterization of four Bradyrhizobium strains (type strain BR 10280 T ), previously isolated from roots of sugarcane in Brazil. 16S rRNA sequence analysis, multilocus sequence analysis (MLSA) and analysis of the 16S-23S rRNA internal transcribed spacer showed that these strains form a novel clade close to, but different from B. huanghuaihaiense strain CCBAU 23303 T . Average nucleotide identity (ANI) analyses confirmed that BR 10280 T represents a novel species. Phylogenetic analysis based on nodC gene sequences also placed the strains close to CCBAU 23303 T , but different from this latter strain, the sugarcane strains did not nodulate soybean, although they effectively nodulated Vigna unguiculata, Cajanus cajan and Macroptilium atropurpureum. Physiological traits are in agreement with the placement of the strains in the genus Bradyrhizobium as a novel species for which the name Bradyrhizobium sacchari sp. nov. is proposed.
Morphological characterization and molecular fingerprinting of Nostoc strains by multiplex RAPD.
Hillol, Chakdar; Pabbi, Sunil
2012-01-01
Morphological parameters studied for the twenty selected Nostoc strains were mostly found to be consistent with the earlier reports. But the shape of akinetes observed in this study was a little deviation from the existing descriptions and heterocyst frequency was also found to be different in different strains in spite of growing in the same nitrogen free media. Multiplex RAPD produced reproducible and completely polymorphic amplification profiles for all the strains including some strain specific unique bands which are intended to be useful for identification of those strains. At least one to a maximum of two unique bands was produced by different dual primer combinations. For ten strains out of twenty, strain specific bands were found to be generated. Cluster analysis revealed a vast heterogeneity among these Nostoc strains and no specific clustering based on geographical origin was found except a few strains. It was also observed that morphological data may not necessarily correspond to the genetic data in most of the cases. CCC92 (Nostoc muscorum) and CCC48 (Nostoc punctiforme) showed a high degree of similarity which was well supported by high bootstrap value. The level of similarity of the strains ranged from 0.15 to 0.94. Cluster analysis based on multiplex RAPD showed a good fit revealing the discriminatory power of this technique.
Improving the durability of the optical fiber sensor based on strain transfer analysis
NASA Astrophysics Data System (ADS)
Wang, Huaping; Jiang, Lizhong; Xiang, Ping
2018-05-01
To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.
Jeyaram, Kumaraswamy; Tamang, Jyoti Prakash; Capece, Angela; Romano, Patrizia
2011-11-01
Autochthonous strains of Saccharomyces cerevisiae from traditional starters used for the production of rice-based ethnic fermented beverage in North East India were examined for their genetic polymorphism using mitochondrial DNA-RFLP and electrophoretic karyotyping. Mitochondrial DNA-RFLP analysis of S. cerevisiae strains with similar technological origins from hamei starter of Manipur and marcha starter of Sikkim revealed widely separated clusters based on their geographical origin. Electrophoretic karyotyping showed high polymorphism amongst the hamei strains within similar mitochondrial DNA-RFLP cluster and one unique karyotype of marcha strain was widely distributed in the Sikkim-Himalayan region. We conceptualized the possibility of separate domestication events for hamei strains in Manipur (located in the Indo-Burma biodiversity hotspot) and marcha strains in Sikkim (located in Himalayan biodiversity hotspot), as a consequence of less homogeneity in the genomic structure between these two groups, their clear separation being based on geographical origin, but not on technological origin and low strain level diversity within each group. The molecular markers developed based on HinfI-mtDNA-RFLP profile and the chromosomal doublets in chromosome VIII position of Sikkim-Himalayan strains could be effectively used as geographical markers for authenticating the above starter strains and differentiating them from other commercial strains.
Heermann, Philipp; Hedderich, Dennis M; Paul, Matthias; Schülke, Christoph; Kroeger, Jan Robert; Baeßler, Bettina; Wichter, Thomas; Maintz, David; Waltenberger, Johannes; Heindel, Walter; Bunck, Alexander C
2014-10-07
Fibrofatty degeneration of myocardium in ARVC is associated with wall motion abnormalities. The aim of this study was to examine whether Cardiovascular Magnetic Resonance (CMR) based strain analysis using feature tracking (FT) can serve as a quantifiable measure to confirm global and regional ventricular dysfunction in ARVC patients and support the early detection of ARVC. We enrolled 20 patients with ARVC, 30 with borderline ARVC and 22 subjects with a positive family history but no clinical signs of a manifest ARVC. 10 healthy volunteers (HV) served as controls. 15 ARVC patients received genotyping for Plakophilin-2 mutation (PKP-2), of which 7 were found to be positive. Cine MR datasets of all subjects were assessed for myocardial strain using FT (TomTec Diogenes Software). Global strain and strain rate in radial, circumferential and longitudinal mode were assessed for the right and left ventricle. In addition strain analysis at a segmental level was performed for the right ventricular free wall. RV global longitudinal strain rates in ARVC (-0.68 ± 0.36 sec⁻¹) and borderline ARVC (-0.85 ± 0.36 sec⁻¹) were significantly reduced in comparison with HV (-1.38 ± 0.52 sec⁻¹, p ≤ 0.05). Furthermore, in ARVC patients RV global circumferential strain and strain rates at the basal level were significantly reduced compared with HV (strain: -5.1 ± 2.7 vs. -9.2 ± 3.6%; strain rate: -0.31 ± 0.13 sec(-1) vs. -0.61 ± 0.21 sec⁻¹). Even for patients with ARVC or borderline ARVC and normal RV ejection fraction (n=30) global longitudinal strain rate proved to be significantly reduced compared with HV (-0.9 ± 0.3 vs. -1.4 ± 0.5 sec(-1); p < 0.005). In ARVC patients with PKP-2 mutation there was a clear trend towards a more pronounced impairment in RV global longitudinal strain rate. On ROC analysis RV global longitudinal strain rate and circumferential strain rate at the basal level proved to be the best discriminators between ARVC patients and HV (AUC: 0.9 and 0.92, respectively). CMR based strain analysis using FT is an objective and useful measure for quantification of wall motion abnormalities in ARVC. It allows differentiation between manifest or borderline ARVC and HV, even if ejection fraction is still normal.
Adansonian Analysis and Deoxyribonucleic Acid Base Composition of Serratia marcescens
Colwell, R. R.; Mandel, M.
1965-01-01
Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of Serratia marcescens. J. Bacteriol. 89:454–461. 1965.—A total of 33 strains of Serratia marcescens were subjected to Adansonian analysis for which more than 200 coded features for each of the organisms were included. In addition, the base composition [expressed as moles per cent guanine + cytosine (G + C)] of the deoxyribonucleic acid (DNA) prepared from each of the strains was determined. Except for four strains which were intermediate between Serratia and the Hafnia and Aerobacter group C of Edwards and Ewing, the S. marcescens species group proved to be extremely homogeneous, and the different strains showed high affinities for each other (mean similarity, ¯S = 77%). The G + C ratio of the DNA from the Serratia strains ranged from 56.2 to 58.4% G + C. Many species names have been listed for the genus, but only a single clustering of the strains was obtained at the species level, for which the species name S. marcescens was retained. S. kiliensis, S. indica, S. plymuthica, and S. marinorubra could not be distinguished from S. marcescens; it was concluded, therefore, that there is only a single species in the genus. The variety designation kiliensis does not appear to be valid, since no subspecies clustering of strains with negative Voges-Proskauer reactions could be detected. The characteristics of the species are listed, and a description of S. marcescens is presented. PMID:14255714
On the strain energy of laminated composite plates
NASA Technical Reports Server (NTRS)
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
The present effort to obtain the asymptotically correct form of the strain energy in inhomogeneous laminated composite plates proceeds from the geometrically nonlinear elastic theory-based three-dimensional strain energy by decomposing the nonlinear three-dimensional problem into a linear, through-the-thickness analysis and a nonlinear, two-dimensional analysis analyzing plate formation. Attention is given to the case in which each lamina exhibits material symmetry about its middle surface, deriving closed-form analytical expressions for the plate elastic constants and the displacement and strain distributions through the plate's thickness. Despite the simplicity of the plate strain energy's form, there are no restrictions on the magnitudes of displacement and rotation measures.
Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains.
Bhattacharyya, Anamitra; Stilwagen, Stephanie; Ivanova, Natalia; D'Souza, Mark; Bernal, Axel; Lykidis, Athanasios; Kapatral, Vinayak; Anderson, Iain; Larsen, Niels; Los, Tamara; Reznik, Gary; Selkov, Eugene; Walunas, Theresa L; Feil, Helene; Feil, William S; Purcell, Alexander; Lassez, Jean-Louis; Hawkins, Trevor L; Haselkorn, Robert; Overbeek, Ross; Predki, Paul F; Kyrpides, Nikos C
2002-09-17
Xylella fastidiosa (Xf) causes wilt disease in plants and is responsible for major economic and crop losses globally. Owing to the public importance of this phytopathogen we embarked on a comparative analysis of the complete genome of Xf pv citrus and the partial genomes of two recently sequenced strains of this species: Xf pv almond and Xf pv oleander, which cause leaf scorch in almond and oleander plants, respectively. We report a reanalysis of the previously sequenced Xf 9a5c (CVC, citrus) strain and the two "gapped" Xf genomes revealing ORFs encoding critical functions in pathogenicity and conjugative transfer. Second, a detailed whole-genome functional comparison was based on the three sequenced Xf strains, identifying the unique genes present in each strain, in addition to those shared between strains. Third, an "in silico" cellular reconstruction of these organisms was made, based on a comparison of their core functional subsystems that led to a characterization of their conjugative transfer machinery, identification of potential differences in their adhesion mechanisms, and highlighting of the absence of a classical quorum-sensing mechanism. This study demonstrates the effectiveness of comparative analysis strategies in the interpretation of genomes that are closely related.
NASA Astrophysics Data System (ADS)
Munoz, H.; Taheri, A.; Chanda, E. K.
2016-12-01
Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.
Pettersson, B; Kodjo, A; Ronaghi, M; Uhlén, M; Tønjum, T
1998-01-01
Thirty-three strains previously classified into 11 species in the bacterial family Moraxellaceae were subjected to phylogenetic analysis based on 16S rRNA sequences. The family Moraxellaceae formed a distinct clade consisting of four phylogenetic groups as judged from branch lengths, bootstrap values and signature nucleotides. Group I contained the classical moraxellae and strains of the coccal moraxellae, previously known as Branhamella, with 16S rRNA similarity of > or = 95%. A further division of group I into five tentative clusters is discussed. Group II consisted of two strains representing Moraxella atlantae and Moraxella osloensis. These strains were only distantly related to each other (93.4%) and also to the other members of the Moraxellaceae (< or = 93%). Therefore, reasons for reclassification of these species into separate and new genera are discussed. Group III harboured strains of the genus Psychrobacter and strain 752/52 of [Moraxella] phenylpyruvica. This strain of [M.] phenylpyruvica formed an early branch from the group III line of descent. Interestingly, a distant relationship was found between Psychrobacter phenylpyruvicus strain ATCC 23333T (formerly classified as [M.] phenylpyruvica) and [M.] phenylpyruvica strain 752/52, exhibiting less than 96% nucleotide similarity between their 16S rRNA sequences. The establishment of a new genus for [M.] phenylpyruvica strain 752/52 is therefore suggested. Group IV contained only two strains of the genus Acinetobacter. Strategies for the development of diagnostic probes and distinctive sequences for 16S rRNA-based species-specific assays within group I are suggested. Although these findings add to the classificatory placements within the Moraxellaceae, analysis of a more comprehensive selection of strains is still needed to obtain a complete classification system within this family.
Genetic analysis of biodegradation of tetralin by a Sphingomonas strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernaez, M.J.; Santero, E.; Reineke, W.
Tetralin (1,2,3,4-tetrahydronaphthalene) is produced for industrial purposes from naphthalene by catalytic hydrogenation or from anthracene by cracking. A strain designated TFA which very efficiently utilizes tetralin has been isolated from the Rhine river. The strain has been identified as Sphingomonas macrogoltabidus, based on 16S rDNA sequence similarity. Genetic analysis of tetralin biodegradation has been performed by insertion mutagenesis and by physical analysis and analysis of complementation between the mutants. The genes involved in tetralin utilization are clustered in a region of 9 kb, comprising at least five genes grouped in two divergently transcribed operons.
Ogi, Miki; Yano, Yoshihiko; Chikahira, Masatsugu; Takai, Denshi; Oshibe, Tomohiro; Arashiro, Takeshi; Hanaoka, Nozomu; Fujimoto, Tsuguto; Hayashi, Yoshitake
2017-08-01
Coxsackievirus A6 (CV-A6) is an enterovirus, which is known to cause herpangina. However, since 2009 it has frequently been isolated from children with hand, foot, and mouth disease (HFMD). In Japan, CV-A6 has been linked to HFMD outbreaks in 2011 and 2013. In this study, the full-length genome sequencing of CV-A6 strains were analyzed to identify the association with clinical manifestations. Five thousand six hundred and twelve children with suspected enterovirus infection (0-17 years old) between 1999 and 2013 in Hyogo Prefecture, Japan, were enrolled. Enterovirus infection was confirmed with reverse transcriptase-PCR in 753 children (791 samples), 127 of whom (133 samples) were positive for CV-A6 based on the direct sequencing of the VP4 region. The complete genomes of CV-A6 from 22 positive patients with different clinical manifestations were investigated. A phylogenetic analysis divided these 22 strains into two clusters based on the VP1 region; cluster I contained strains collected in 1999-2009 and mostly related to herpangina, and cluster II contained strains collected in 2011-2013 and related to HFMD outbreak. Based on the full-length polyprotein analysis, the amino acid differences between the strains in cluster I and II were 97.7 ± 0.28%. Amino acid differences were detected in 17 positions within the polyprotein. Strains collected in 1999-2009 and those in 2011-2013 were separately clustered by phylogenetic analysis based on 5'UTR and 3Dpol region, as well as VP1 region. In conclusion, HFMD outbreaks by CV-A6 were recently frequent in Japan and the accumulation of genomic change might be associated with the clinical course. © 2017 Wiley Periodicals, Inc.
Nonlinear laminate analysis for metal matrix fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1981-01-01
A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angleplied laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis (NLA) is based on linear composite mechanics and a piece wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron fiber/aluminum matrix angleplied laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.
Sigma: Strain-level inference of genomes from metagenomic analysis for biosurveillance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Tae-Hyuk; Chai, Juanjuan; Pan, Chongle
Motivation: Metagenomic sequencing of clinical samples provides a promising technique for direct pathogen detection and characterization in biosurveillance. Taxonomic analysis at the strain level can be used to resolve serotypes of a pathogen in biosurveillance. Sigma was developed for strain-level identification and quantification of pathogens using their reference genomes based on metagenomic analysis. Results: Sigma provides not only accurate strain-level inferences, but also three unique capabilities: (i) Sigma quantifies the statistical uncertainty of its inferences, which includes hypothesis testing of identified genomes and confidence interval estimation of their relative abundances; (ii) Sigma enables strain variant calling by assigning metagenomic readsmore » to their most likely reference genomes; and (iii) Sigma supports parallel computing for fast analysis of large datasets. In conclusion, the algorithm performance was evaluated using simulated mock communities and fecal samples with spike-in pathogen strains. Availability and Implementation: Sigma was implemented in C++ with source codes and binaries freely available at http://sigma.omicsbio.org.« less
Sigma: Strain-level inference of genomes from metagenomic analysis for biosurveillance
Ahn, Tae-Hyuk; Chai, Juanjuan; Pan, Chongle
2014-09-29
Motivation: Metagenomic sequencing of clinical samples provides a promising technique for direct pathogen detection and characterization in biosurveillance. Taxonomic analysis at the strain level can be used to resolve serotypes of a pathogen in biosurveillance. Sigma was developed for strain-level identification and quantification of pathogens using their reference genomes based on metagenomic analysis. Results: Sigma provides not only accurate strain-level inferences, but also three unique capabilities: (i) Sigma quantifies the statistical uncertainty of its inferences, which includes hypothesis testing of identified genomes and confidence interval estimation of their relative abundances; (ii) Sigma enables strain variant calling by assigning metagenomic readsmore » to their most likely reference genomes; and (iii) Sigma supports parallel computing for fast analysis of large datasets. In conclusion, the algorithm performance was evaluated using simulated mock communities and fecal samples with spike-in pathogen strains. Availability and Implementation: Sigma was implemented in C++ with source codes and binaries freely available at http://sigma.omicsbio.org.« less
Maceira, Alicia M; Tuset-Sanchis, Luis; López-Garrido, Miguel; San Andres, Marta; López-Lereu, M Pilar; Monmeneu, Jose V; García-González, M Pilar; Higueras, Laura
2018-05-01
The measurement of myocardial deformation by strain analysis is an evolving tool to quantify regional and global myocardial function. To assess the feasibility and reproducibility of myocardial strain/strain rate measurements with magnetic resonance feature tracking (MR-FT) in healthy subjects and in patient groups. Prospective study. Sixty patients (20 hypertensives with left ventricular (LV) hypertrophy (H); 20 nonischemic dilated cardiomyopathy (D); 20 ischemic heart disease (I); as well as 20 controls (C) were included, 10 men and 10 women in each group. A 1.5T MR protocol including steady-state free precession (SSFP) cine sequences in the standard views and late enhancement sequences. LV volumes, mass, global and regional radial, circumferential, and longitudinal strain/strain rate were measured using CVI42 software. The analysis time was recorded. Intraobserver and interobserver agreement and intraclass correlation coefficients (ICC) were obtained for reproducibility assessment as well as differences according to gender and group of pertinence. Strain/strain rate analysis could be achieved in all subjects. The average analysis time was 14 ± 3 minutes. The average intraobserver ICC was excellent (ICC >0.90) for strain and good (ICC >0.75) for strain rate. Reproducibility of strain measurements was good to excellent (ICC >0.75) for all groups of subjects and both genders. Reproducibility of strain measurements was good for basal segments (ICC >0.75) and excellent for middle and apical segments (ICC >0.90). Reproducibility of strain rate measurements was moderate for basal segments (ICC >0.50) and good for middle and apical segments. MR-FT for strain/strain rate analysis is a feasible and highly reproducible technique. CVI42 FT analysis was equally feasible and reproducible in various pathologies and between genders. Better reproducibility was seen globally for middle and apical segments, which needs further clarification. 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2018;47:1415-1425. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Wei, Ding; Cong-cong, Yu; Chen-hui, Wu; Zheng-yi, Shu
2018-03-01
To analyse the strain localization behavior of geomaterials, the forward Euler schemes and the tangent modulus matrix are formulated based on the transversely isotropic yield criterion with non-coaxial flow rule developed by Lade, the program code is implemented based on the user subroutine (UMAT) of ABAQUS. The influence of the material principal direction on the strain localization and the bearing capacity of the structure are investigated and analyzed. Numerical results show the validity and performance of the proposed model in simulating the strain localization behavior of geostructures.
Madsen, Ida E H; Hannerz, Harald; Nyberg, Solja T; Magnusson Hanson, Linda L; Ahola, Kirsi; Alfredsson, Lars; Batty, G David; Bjorner, Jakob B; Borritz, Marianne; Burr, Hermann; Dragano, Nico; Ferrie, Jane E; Hamer, Mark; Jokela, Markus; Knutsson, Anders; Koskenvuo, Markku; Koskinen, Aki; Leineweber, Constanze; Nielsen, Martin L; Nordin, Maria; Oksanen, Tuula; Pejtersen, Jan H; Pentti, Jaana; Salo, Paula; Singh-Manoux, Archana; Suominen, Sakari; Theorell, Töres; Toppinen-Tanner, Salla; Vahtera, Jussi; Väänänen, Ari; Westerholm, Peter J M; Westerlund, Hugo; Fransson, Eleonor; Heikkilä, Katriina; Virtanen, Marianna; Rugulies, Reiner; Kivimäki, Mika
2013-01-01
Previous studies have shown that gainfully employed individuals with high work demands and low control at work (denoted "job strain") are at increased risk of common mental disorders, including depression. Most existing studies have, however, measured depression using self-rated symptom scales that do not necessarily correspond to clinically diagnosed depression. In addition, a meta-analysis from 2008 indicated publication bias in the field. This study protocol describes the planned design and analyses of an individual participant data meta-analysis, to examine whether job strain is associated with an increased risk of clinically diagnosed unipolar depression based on hospital treatment registers. The study will be based on data from approximately 120,000 individuals who participated in 14 studies on work environment and health in 4 European countries. The self-reported working conditions data will be merged with national registers on psychiatric hospital treatment, primarily hospital admissions. Study-specific risk estimates for the association between job strain and depression will be calculated using Cox regressions. The study-specific risk estimates will be pooled using random effects meta-analysis. The planned analyses will help clarify whether job strain is associated with an increased risk of clinically diagnosed unipolar depression. As the analysis is based on pre-planned study protocols and an individual participant data meta-analysis, the pooled risk estimates will not be influenced by selective reporting and publication bias. However, the results of the planned study may only pertain to severe cases of unipolar depression, because of the outcome measure applied.
Hayashimoto, Nobuhito; Ueno, Masami; Tkakura, Akira; Itoh, Toshio
2007-06-01
Phylogenetic analysis based on 16S rRNA sequences with sequence data of some bacterial species of Pasteurellaceae related to rodents deposited in GenBank was performed along with biochemical characterization for the 20 strains of V-factor dependent members of Pasteurellaceae derived from laboratory rats to obtain basic information and to investigate the taxonomic positions. The results of biochemical tests for all strains were identical except for three tests, the ornithine decarboxylase test, and fermentation tests of D(+) mannose and D(+) xylose. The biochemical properties of 8 of 20 strains that showed negative results for the fermentation test of D(+) xylose agreed with those of Haemophilus parainfluenzae complex. By phylogenetic analysis, the strains were divided into two clusters that agreed with the results of the fermentation test of xylose (group I: negative reaction for xylose, group II: positive reaction for xylose). The clusters were independent of other bacterial species of Pasteurellaceae tested. The sequences of the strains in group I showed 99.7-99.8% similarity and the strains in group II showed 99.3-99.7% similarity. None of the strains in group I had a close relation with Haemophilus parainfluenzae by phylogenetic analysis, although they showed the same biochemical properties. In conclusion, the strains had characteristic biochemical properties and formed two independent groups within the "rodent cluster" of Pasteurellaceae that differed in the results of the fermentation test of xylose. Therefore, they seemed to be hitherto undescribed taxa in Pasteurellaceae.
Tsuchida, Sayaka; Kitahara, Maki; Nguema, Pierre Philippe Mbehang; Norimitsu, Saeko; Fujita, Shiho; Yamagiwa, Juichi; Ngomanda, Alfred; Ohkuma, Moriya; Ushida, Kazunari
2014-12-01
Four strains of Gram-staining-positive, anaerobic rods were isolated from the faeces of western lowland gorillas (Gorilla gorilla gorilla). Three strains, KZ01(T), KZ02 and KZ03, were isolated at the Kyoto City Zoo, Japan, and one strain, GG02, was isolated in the Moukalaba-Doudou National Park, Gabon. These strains were investigated taxonomically. These strains belonged to the Lactobacillus reuteri phylogenetic group according to phylogenetic analysis based on 16S rRNA gene sequences and specific phenotypic characteristics. Phylogenetic analysis of their 16S rRNA gene sequences revealed that strains KZ01(T), KZ02, KZ03 and GG02 formed a single monophyletic cluster and had a distinct line of descent. Based on sequence similarity of the 16S rRNA gene, Lactobacillus fermentum JCM 1173(T) (96.6 %) was the closest neighbour to these novel strains, although it was clear that these strains belonged to a different species. Partial pheS sequences also supported these relationships. DNA-DNA relatedness between strain KZ01(T) and L. fermentum JCM 1173(T) was less than 22 % and the DNA G+C content of strain KZ01(T) was 50.7 mol%. The cell-wall peptidoglycan type was A4β (l-Orn-d-Asp) and the major fatty acids were C16 : 0, C18 : 1ω9c and C19 : 1 cyclo 9,10. Therefore, based on phylogenetic, phenotypic and physiological evidence, these strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus gorillae sp. nov. is proposed. The type strain is KZ01(T) ( = JCM 19575(T) = DSM 28356(T)). © 2014 IUMS.
Segmental Analysis of Cardiac Short-Axis Views Using Lagrangian Radial and Circumferential Strain.
Ma, Chi; Wang, Xiao; Varghese, Tomy
2016-11-01
Accurate description of myocardial deformation in the left ventricle is a three-dimensional problem, requiring three normal strain components along its natural axis, that is, longitudinal, radial, and circumferential strains. Although longitudinal strains are best estimated from long-axis views, radial and circumferential strains are best depicted in short-axis views. An algorithm that utilizes a polar grid for short-axis views previously developed in our laboratory for a Lagrangian description of tissue deformation is utilized for radial and circumferential displacement and strain estimation. Deformation of the myocardial wall, utilizing numerical simulations with ANSYS, and a finite-element analysis-based canine heart model were adapted as the input to a frequency-domain ultrasound simulation program to generate radiofrequency echo signals. Clinical in vivo data were also acquired from a healthy volunteer. Local displacements estimated along and perpendicular to the ultrasound beam propagation direction are then transformed into radial and circumferential displacements and strains using the polar grid based on a pre-determined centroid location. Lagrangian strain variations demonstrate good agreement with the ideal strain when compared with Eulerian results. Lagrangian radial and circumferential strain estimation results are also demonstrated for experimental data on a healthy volunteer. Lagrangian radial and circumferential strain tracking provide accurate results with the assistance of the polar grid, as demonstrated using both numerical simulations and in vivo study. © The Author(s) 2015.
Sharma, Anshul; Kaur, Jasmine; Lee, Sulhee; Park, Young-Seo
2018-06-01
In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.
USDA-ARS?s Scientific Manuscript database
A field strain of Aedes aegypti was collected from Puerto Rico (PR) in October 2008. Based on LD50 values by topical application, the PR strain was 73-fold resistant to permethrin compared to a susceptible Orlando strain. In the presence of piperonyl butoxide (PBO), the resistance of Puerto Rico str...
Perioperative Assessment of Myocardial Deformation
Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.
2014-01-01
Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to assess components of myocardial systolic and diastolic function. Myocardial deformation analysis is based on either Doppler or a non-Doppler technique, called speckle-tracking echocardiography. Myocardial deformation analysis provides quantitative measures of global and regional myocardial function for use in the perioperative care of the surgical patient. For example, coronary graft occlusion after coronary artery bypass grafting is detected by an acute reduction in strain in the affected coronary artery territory. In addition, assessment of left ventricular mechanics detects underlying myocardial pathology before abnormalities become apparent on conventional echocardiography. Certainly, patients with aortic regurgitation demonstrate reduced longitudinal strain before reduction in LVEF occurs, which allows detection of subclinical left ventricular dysfunction and predicts increased risk for heart failure and impaired myocardial function after surgical repair. In this review we describe the principles, techniques, and clinical application of myocardial deformation analysis. PMID:24557101
Nomoto, R; Kagawa, H; Yoshida, T
2008-01-01
To investigate the difference between Lancefield group C Streptococcus dysgalactiae (GCSD) strains isolated from diseased fish and animals by sequencing and phylogenetic analysis of the sodA gene. The sodA gene of Strep. dysgalactiae strains isolated from fish and animals were amplified and its nucleotide sequences were determined. Although 100% sequence identity was observed among fish GCSD strains, the determined sequences from animal isolates showed variations against fish isolate sequences. Thus, all fish GCSD strains were clearly separated from the GCSD strains of other origin by using phylogenetic tree analysis. In addition, the original primer set was designed based on the determined sequences for specifically amplify the sodA gene of fish GCSD strains. The primer set yield amplification products from only fish GCSD strains. By sequencing analysis of the sodA gene, the genetic divergence between Strep. dysgalactiae strains isolated from fish and mammals was demonstrated. Moreover, an original oligonucletide primer set, which could simply detect the genotype of fish GCSD strains was designed. This study shows that Strep. dysgalactiae isolated from diseased fish could be distinguished from conventional GCSD strains by the difference in the sequence of the sodA gene.
Mann, Rachel A.; Smits, Theo H. M.; Bühlmann, Andreas; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E.; Plummer, Kim M.; Beer, Steven V.; Luck, Joanne; Duffy, Brion; Rodoni, Brendan
2013-01-01
The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains. PMID:23409014
Mann, Rachel A; Smits, Theo H M; Bühlmann, Andreas; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Plummer, Kim M; Beer, Steven V; Luck, Joanne; Duffy, Brion; Rodoni, Brendan
2013-01-01
The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea) and a putative secondary metabolite pathway only present in Rubus-infecting strains.
Kravtsov, A L; Liapin, M N; Shmel'kova, T P; Golovko, E M; Maliukova, T A; Kostiukova, T A; Ezhov, I N
2011-01-01
Comparative analysis of Yersinia pestis strains with various biological properties by DNA content in individual cells. Virulent strain 231, avirulent strain KM 260 (12) [231], that is its isogenic (no-plasmid) derivative, and vaccine strain EV NIIEG were used. 48-hour agar cultures of the studied strains reproduced at 28 degrees C and their subcultures obtained by cultivation of the initial cultures by aeration on liquid nutrient medium from 37 degrees C were prepared. DNA of the fixed bacteria was dyed by a mixture of ethidium bromide and mitramycin, and then the bacteria were studied by using flow cytofluorimeter for the determination of rates of cells with relatively low or high DNA content in the studied bacterial populations. The degree of inhomogeneity of a bacterial population was evaluated by DNA histogram variation coefficient value. In 6 hours of growth at 37 degrees C in optically non-dense bacterial cultures a high degree of DNA content per cell inhomogeneity was established that is related to the activation of DNA replication process in bacteria. In 48 hours of growth this inhomogeneity completely disappeared in the virulent strain cultures and remained in the avirulent strain cultures of the plague pathogen. Based on the studied parameters the vaccine strain held an intermediate position. Further studies of the plague culture DNA content per cell inhomogeneity may become a base for the operative strain differentiation based on pathogenicity level (hazard) for humans, and therefore the requirements for the management of safe working conditions with this microorganism.
NASA Astrophysics Data System (ADS)
Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.
2012-07-01
The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.
Liu, Minrui; Lin, Pengwu; Qi, Xing'e; Ni, Yongqing
2016-04-14
The purpose of the study was to reveal geographic region-related Acidithiobacillus spp. distribution and allopatric speciation. Phylogenetic and diversity analysis was done to expand our knowledge on microbial phylogeography, diversity-maintaining mechanisms and molecular biogeography. We amplified 16S rRNA gene and RubisCO genes to construct corresponding phylogenetic trees based on the sequence homology and analyzed genetic diversity of Acidithiobacillus spp.. Thirty-five strains were isolated from three different regions in China (Yunnan, Hubei, Xinjiang). The whole isolates were classified into five groups. Four strains were identified as A. ferrivorans, six as A. ferridurans, YNTR4-15 Leptspirillum ferrooxidans and HBDY3-31 as Leptospirillum ferrodiazotrophum. The remaining strains were identified as A. ferrooxidans. Analysis of cbbL and cbbM genes sequences of representative 26 strains indicated that cbbL gene of 19 were two copies (cbbL1 and cbbL2) and 7 possessed only cbbL1. cbbM gene was single copy. In nucleotide-based trees, cbbL1 gene sequences of strains were separated into three sequence types, and the cbbL2 was similar to cbbL1 with three types. Codon bias of RubisCO genes was not obvious in Acidithiobacillus spp.. Strains isolated from three different regions in China indicated a great genetic diversity in Acidithiobacillus spp. and their 16S rRNA/RubisCO genes sequence was of significant difference. Phylogenetic tree based on 16S rRNA genes and RubisCO genes was different in Acidithiobacillus spp..
Taki, M; Signorini, A; Oton, C J; Nannipieri, T; Di Pasquale, F
2013-10-15
We experimentally demonstrate the use of cyclic pulse coding for distributed strain and temperature measurements in hybrid Raman/Brillouin optical time-domain analysis (BOTDA) optical fiber sensors. The highly integrated proposed solution effectively addresses the strain/temperature cross-sensitivity issue affecting standard BOTDA sensors, allowing for simultaneous meter-scale strain and temperature measurements over 10 km of standard single mode fiber using a single narrowband laser source only.
Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers
NASA Astrophysics Data System (ADS)
Shingledecker, John
Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.
[Isolation and antimicrobial activities of actinomycetes from vermicompost].
Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan
2015-02-01
In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.
Voronina, O L; Kunda, M S; Dmitrenko, O A; Lunin, V G; Gintsburg, A L
2011-01-01
Development of Staphylococcus haemolyticus strain typing method based on multilocus sequencing for resolving problems of molecular epidemiology. 102 strains of coagulase negative staphylococci (CNS) isolated in hospitals of various specialization in N. Novgorod and Moscow were studied. Species identification of strain was performed by using tuf gene fragment sequencing, S. haemolyticus strain differentiation--by MLST results. eBURST approach was used for cluster analysis of MLST data; structural changes in tagatose-6-phosphate kinase were studied by using InterProScan platform and SWISS-MODEL site programs; MLST scheme gene allele variability analysis was performed by using MEGA4.0 program package. In the 102 strains sampled CNS was detected in 28 strains of the S. haemolyticus species. The MLST scheme developed for the first time for S. haemolyticus including mvaK, rphE, tphK, gtr, arcC, triA, aroE genes allowed the differentiation of the sampled strains by 11 genotypes. Strains with ST 3, 8, 6, 1, 4, 5 and 11 differed by highest epidemiologic significance. Cluster and phylogenetic analysis of the data obtained showed a high adaptive ability of the nosocomial S. haemolyticus strains. Multiresistance to antibacterial preparations was detected in the analyzed strains. The MLST method developed was effective in the differentiation of S. haemolyticus strains that circulate in hospitals and threaten both neonates and hospitalized adult patients.
Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda
2017-06-01
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
NASA Technical Reports Server (NTRS)
Rosenfeld, D.; Alterovitz, S. A.
1994-01-01
A theoretical study of the effects of the strain on the base properties of ungraded and compositional-graded n-p-n SiGe Heterojunction Bipolar Transistors (HBT) is presented. The dependencies of the transverse hole mobility and longitudinal electron mobility upon strain, composition and doping, are formulated using published Monte-Carlo data and, consequently, the base resistance and transit time are modeled and calculated. The results are compared to results obtained using common formulas that ignore these dependencies. The differences between the two sets of results are shown. The paper's conclusion is that for the design, analysis and optimization of high frequency SiGe HBTs the strain effects on the base properties cannot be ignored.
An octahedral shear strain-based measure of SNR for 3D MR elastography
NASA Astrophysics Data System (ADS)
McGarry, M. D. J.; Van Houten, E. E. W.; Perriñez, P. R.; Pattison, A. J.; Weaver, J. B.; Paulsen, K. D.
2011-07-01
A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.
Kim, Minsuk; Yi, Jeong Sang; Lakshmanan, Meiyappan; Lee, Dong-Yup; Kim, Byung-Gee
2016-03-01
In silico model-driven analysis using genome-scale model of metabolism (GEM) has been recognized as a promising method for microbial strain improvement. However, most of the current GEM-based strain design algorithms based on flux balance analysis (FBA) heavily rely on the steady-state and optimality assumptions without considering any regulatory information. Thus, their practical usage is quite limited, especially in its application to secondary metabolites overproduction. In this study, we developed a transcriptomics-based strain optimization tool (tSOT) in order to overcome such limitations by integrating transcriptomic data into GEM. Initially, we evaluated existing algorithms for integrating transcriptomic data into GEM using Streptomyces coelicolor dataset, and identified iMAT algorithm as the only and the best algorithm for characterizing the secondary metabolism of S. coelicolor. Subsequently, we developed tSOT platform where iMAT is adopted to predict the reaction states, and successfully demonstrated its applicability to secondary metabolites overproduction by designing actinorhodin (ACT), a polyketide antibiotic, overproducing strain of S. coelicolor. Mutants overexpressing tSOT targets such as ribulose 5-phosphate 3-epimerase and NADP-dependent malic enzyme showed 2 and 1.8-fold increase in ACT production, thereby validating the tSOT prediction. It is expected that tSOT can be used for solving other metabolic engineering problems which could not be addressed by current strain design algorithms, especially for the secondary metabolite overproductions. © 2015 Wiley Periodicals, Inc.
Brun, Sophie; Madrid, Hugo; Gerrits Van Den Ende, Bert; Andersen, Birgitte; Marinach-Patrice, Carine; Mazier, Dominique; De Hoog, G Sybren
2013-01-01
The genus Alternaria includes numerous phytopathogenic species, many of which are economically relevant. Traditionally, identification has been based on morphology, but is often hampered by the tendency of some strains to become sterile in culture and by the existence of species-complexes of morphologically similar taxa. This study aimed to assess if strains of four closely-related plant pathogens, i.e., accurately Alternaria dauci (ten strains), Alternaria porri (six), Alternaria solani (ten), and Alternaria tomatophila (ten) could be identified using multilocus phylogenetic analysis and Matrix-Assisted Laser Desorption Ionisation Time of Flight (MALDI-TOF) profiling of proteins. Phylogenetic analyses were performed on three loci, i.e., the internal transcribed spacer (ITS) region of rRNA, and the glyceraldehyde-3-phosphate dehydrogenase (gpd) and Alternaria major antigen (Alt a 1) genes. Phylogenetic trees based on ITS sequences did not differentiate strains of A. solani, A. tomatophila, and A. porri, but these three species formed a clade separate from strains of A. dauci. The resolution improved in trees based on gpd and Alt a 1, which distinguished strains of the four species as separate clades. However, none provided significant bootstrap support for all four species, which could only be achieved when results for the three loci were combined. MALDI-TOF-based dendrograms showed three major clusters. The first comprised all A. dauci strains, the second included five strains of A. porri and one of A. solani, and the third included all strains of A. tomatophila, as well as all but one strain of A. solani, and one strain of A. porri. Thus, this study shows the usefulness of MALDI-TOF mass spectrometry as a promising tool for identification of these four species of Alternaria which are closely-related plant pathogens. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Everest, Gareth J; Curtis, Sarah M; De Leo, Filomena; Urzì, Clara; Meyers, Paul R
2013-10-01
A novel actinobacterium, strain BC640(T), was isolated from a biofilm sample collected in 2009 in the Saint Callistus Roman catacombs. Analysis of the 16S rRNA gene sequence showed that the strain belonged to the genus Kribbella. Phylogenetic analysis using the 16S rRNA gene and concatenated gyrB, rpoB, relA, recA and atpD gene sequences showed that strain BC640(T) was most closely related to the type strains of Kribbella yunnanensis and Kribbella sandramycini. Based on gyrB genetic distance analysis, strain BC640(T) was shown to be distinct from all Kribbella type strains. DNA-DNA hybridization experiments confirmed that strain BC640(T) represents a genomic species distinct from its closest phylogenetic relatives, K. yunnanensis DSM 15499(T) (53.5±7.8 % DNA relatedness) and K. sandramycini DSM 15626(T) (33.5±5.0 %). Physiological comparisons further showed that strain BC640(T) is phenotypically distinct from the type strains of K. yunnanensis and K. sandramycini. Strain BC640(T) ( = DSM 26744(T) = NRRL B-24917(T)) is thus presented as the type strain of a novel species, for which the name Kribbella albertanoniae sp. nov. is proposed.
NASA Astrophysics Data System (ADS)
Zhao, Xiang-Feng; Shang, De-Guang; Sun, Yu-Juan; Song, Ming-Liang; Wang, Xiao-Wei
2018-01-01
The maximum shear strain and the normal strain excursion on the critical plane are regarded as the primary parameters of the crack driving force to establish a new short crack model in this paper. An equivalent strain-based intensity factor is proposed to correlate the short crack growth rate under multiaxial loading. According to the short crack model, a new method is proposed for multiaxial fatigue life prediction based on crack growth analysis. It is demonstrated that the method can be used under proportional and non-proportional loadings. The predicted results showed a good agreement with experimental lives in both high-cycle and low-cycle regions.
Li, Aiwen; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Wang, Yuhong; Tong, Lu; Jiang, Jiandong; Chen, Jianmeng
2017-05-31
The presence of nicotine and nicotinic acid (NA) in the marine environment has caused great harm to human health and the natural environment. Therefore, there is an urgent need to use efficient and economical methods to remove such pollutants from the environment. In this study, a nicotine and NA-degrading bacterium-strain JQ581-was isolated from sediment from the East China Sea and identified as a member of Pseudomonas putida based on morphology, physio-biochemical characteristics, and 16S rDNA gene analysis. The relationship between growth and nicotine/NA degradation suggested that strain JQ581 was a good candidate for applications in the bioaugmentation treatment of nicotine/NA contamination. The degradation intermediates of nicotine are pseudooxynicotine (PN) and 3-succinoyl-pyridine (SP) based on UV, high performance liquid chromatography, and liquid chromatography-mass spectrometry analyses. However, 6-hydroxy-3-succinoyl-pyridine (HSP) was not detected. NA degradation intermediates were identified as 6-hydroxynicotinic acid (6HNA). The whole genome of strain JQ581 was sequenced and analyzed. Genome sequence analysis revealed that strain JQ581 contained the gene clusters for nicotine and NA degradation. This is the first report where a marine-derived Pseudomonas strain had the ability to degrade nicotine and NA simultaneously.
NASA Astrophysics Data System (ADS)
Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan
2014-09-01
A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.
NASA Astrophysics Data System (ADS)
Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.
2018-04-01
Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.
Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René
2012-01-01
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this “framework” with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced. PMID:23001675
Jacques, Marie-Agnès; Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René
2012-12-01
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this "framework" with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.
Listeria costaricensis sp. nov.
Núñez-Montero, Kattia; Leclercq, Alexandre; Moura, Alexandra; Vales, Guillaume; Peraza, Johnny; Pizarro-Cerdá, Javier; Lecuit, Marc
2018-03-01
A bacterial strain isolated from a food processing drainage system in Costa Rica fulfilled the criteria as belonging to the genus Listeria, but could not be assigned to any of the known species. Phylogenetic analysis based on the 16S rRNA gene revealed highest sequence similarity with the type strain of Listeria floridensis (98.7 %). Phylogenetic analysis based on Listeria core genomes placed the novel taxon within the Listeria fleishmannii, L. floridensis and Listeria aquatica clade (Listeria sensu lato). Whole-genome sequence analyses based on the average nucleotide blast identity (ANI<80 %) indicated that this isolate belonged to a novel species. Results of pairwise amino acid identity (AAI>70 %) and percentage of conserved proteins (POCP>68 %) with currently known Listeria species, as well as of biochemical characterization, confirmed that the strain constituted a novel species within the genus Listeria. The name Listeria costaricensis sp. nov. is proposed for the novel species, and is represented by the type strain CLIP 2016/00682 T (=CIP 111400 T =DSM 105474 T ).
Comparative analysis of the genomes of intestinal spirochetes of human and animal origin.
Coene, M; Agliano, A M; Paques, A T; Cattani, P; Dettori, G; Sanna, A; Cocito, C
1989-01-01
The aim of the present work was to compare the genomes of 21 strains of intestinal spirochetes, which were isolated from patients suffering intestinal disorders, with those of Treponema hyodysenteriae (strain P18), the known etiological agent of swine dysentery (bloody scours), and of a nonpathogenic strain (M1) of Treponema innocens. The percent guanine-plus-cytosine value of the 23 DNAs was found to be 25.5 to 30.1, as determined by a double-labeling procedure based on nick-translation by DNA polymerase I. The genome size of two spirochetal strains, of human and porcine origin, was found to be similar (4 x 10(6) base pairs) and close to that of the reference bacterium Escherichia coli (4.2 x 10(6) base pairs). Restriction analysis showed the presence of two modified bases in spirochetal DNA. Methyladenine was present in the GATC sequence of DNA from 15 spirochetes of human origin, and methylcytosine was present in several sequences occurring in all strains. The DNA of T. hyodysenteriae displayed a 30 to 100% homology with respect to that of 21 spirochetes from humans, thus suggesting the occurrence of a genetic heterogeneity in the latter group. These data indicate that the intestinal spirochetes analyzed in the present work are related; hence there is a possibility of domestic animals being reservoirs of microorganisms pathogenic for humans. A classification of intestinal treponemes into subgroups has been proposed on the basis of restriction analysis and hybridization experiments. Images PMID:2535832
Ooka, Tadasuke; Terajima, Jun; Kusumoto, Masahiro; Iguchi, Atsushi; Kurokawa, Ken; Ogura, Yoshitoshi; Asadulghani, Md; Nakayama, Keisuke; Murase, Kazunori; Ohnishi, Makoto; Iyoda, Sunao; Watanabe, Haruo; Hayashi, Tetsuya
2009-09-01
Enterohemorrhagic Escherichia coli O157 (EHEC O157) is a food-borne pathogen that has raised worldwide public health concern. The development of simple and rapid strain-typing methods is crucial for the rapid detection and surveillance of EHEC O157 outbreaks. In the present study, we developed a multiplex PCR-based strain-typing method for EHEC O157, which is based on the variability in genomic location of IS629 among EHEC O157 strains. This method is very simple, in that the procedures are completed within 2 h, the analysis can be performed without the need for special equipment or techniques (requiring only conventional PCR and agarose gel electrophoresis systems), the results can easily be transformed into digital data, and the genes for the major virulence markers of EHEC O157 (the stx(1), stx(2), and eae genes) can be detected simultaneously. Using this method, 201 EHEC O157 strains showing different XbaI digestion patterns in pulsed-field gel electrophoresis (PFGE) analysis were classified into 127 types, and outbreak-related strains showed identical or highly similar banding patterns. Although this method is less discriminatory than PFGE, it may be useful as a primary screening tool for EHEC O157 outbreaks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, K. C.; Tran, T. M.; Langer, J. S.
The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of high-temperature deformation of aluminum and steel. Using physics-based parameters that we expect theoretically to be independent of strain rate and temperature, we are able to fit experimental stress-strain curves for three different strain rates and three different temperatures for each of these two materials. Here, our theoretical curves include yielding transitions at zero strain in agreement with experiment. We find that thermal softening effects are important even at the lowest temperatures and smallest strain rates.
Leuconostoc strains isolated from dairy products: Response against food stress conditions.
D'Angelo, Luisa; Cicotello, Joaquín; Zago, Miriam; Guglielmotti, Daniela; Quiberoni, Andrea; Suárez, Viviana
2017-09-01
A systematic study about the intrinsic resistance of 29 strains (26 autochthonous and 3 commercial ones), belonging to Leuconostoc genus, against diverse stress factors (thermal, acidic, alkaline, osmotic and oxidative) commonly present at industrial or conservation processes were evaluated. Exhaustive result processing was made by applying one-way ANOVA, Student's test (t), multivariate analysis by Principal Component Analysis (PCA) and Matrix Hierarchical Cluster Analysis. In addition, heat adaptation on 4 strains carefully selected based on previous data analysis was assayed. The strains revealed wide diversity of resistance to stress factors and, in general, a clear relationship between resistance and Leuconostoc species was established. In this sense, the highest resistance was shown by Leuconostoc lactis followed by Leuconostoc mesenteroides strains, while Leuconostoc pseudomesenteroides and Leuconostoc citreum strains revealed the lowest resistance to the stress factors applied. Heat adaptation improved thermal cell survival and resulted in a cross-resistance against the acidic factor. However, all adapted cells showed diminished their oxidative resistance. According to our knowledge, this is the first study regarding response of Leuconostoc strains against technological stress factors and could establish the basis for the selection of "more robust" strains and propose the possibility of improving their performance during industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Job Strain and Ambulatory Blood Pressure: A Meta-Analysis and Systematic Review
Dobson, Marnie; Koutsouras, George; Schnall, Peter
2013-01-01
We reviewed evidence of the relationship between job strain and ambulatory blood pressure (ABP) in 29 studies (1985–2012). We conducted a quantitative meta-analysis on 22 cross-sectional studies of a single exposure to job strain. We systematically reviewed 1 case–control study, 3 studies of cumulative exposure to job strain, and 3 longitudinal studies. Single exposure to job strain in cross-sectional studies was associated with higher work systolic and diastolic ABP. Associations were stronger in men than women and in studies of broad-based populations than those with limited occupational variance. Biases toward the null were common, suggesting that our summary results underestimated the true association. Job strain is a risk factor for blood pressure elevation. Workplace surveillance programs are needed to assess the prevalence of job strain and high ABP and to facilitate workplace cardiovascular risk reduction interventions. PMID:23327240
Chen, Qiang; Gan, Yan; Li, Zhi-Yong
2016-09-01
This study was to develop a strain analysis method to evaluate the left ventricular (LV) functions in type 2 diabetic patients with an asymptomatic LV diastolic dysfunction. Two groups (10 asymptomatic type 2 diabetic subjects and 10 control ones) were considered. All of the subjects had normal ejection fraction values but impaired diastolic functions assessed by the transmitral blood flow velocity. For each subject, based on cardiac MRI, global indexes including LV volume, LV myocardial mass, cardiac index (CI), and transmitral peak velocity, were measured, and regional indexes (i.e., LV deformation, strain and strain rate) were calculated through an image-registration technology. Most of the global indexes did not differentiate between the two groups, except for the CI, LV myocardial mass and transmitral peak velocity. While for the regional indexes, the global LV diastolic dysfunction of the diabetic indicated an increased strain (0.08 ± 0.044 vs. -0.031 ± 0.077, p = 0.001) and a reduced strain rate (1.834 ± 0.909 vs. 3.791 ± 2.394, p = 0.033) compared to the controls, moreover, the local LV diastolic dysfunction reflected by the strain and strain rate varied, and the degree of dysfunction gradually decreased from the basal level to the apical level. The results showed that the strain and strain rates are effective to capture the subtle alterations of the LV functions, and the proposed method can be used to estimate the LV myocardial function based on cardiac MRI.
Micro finite element analysis of dental implants under different loading conditions.
Marcián, Petr; Wolff, Jan; Horáčková, Ladislava; Kaiser, Jozef; Zikmund, Tomáš; Borák, Libor
2018-05-01
Osseointegration is paramount for the longevity of dental implants and is significantly influenced by biomechanical stimuli. The aim of the present study was to assess the micro-strain and displacement induced by loaded dental implants at different stages of osseointegration using finite element analysis (FEA). Computational models of two mandible segments with different trabecular densities were constructed using microCT data. Three different implant loading directions and two osseointegration stages were considered in the stress-strain analysis of the bone-implant assembly. The bony segments were analyzed using two approaches. The first approach was based on Mechanostat strain intervals and the second approach was based on tensile/compression yield strains. The results of this study revealed that bone surrounding dental implants is critically strained in cases when only a partial osseointegration is present and when an implant is loaded by buccolingual forces. In such cases, implants also encounter high stresses. Displacements of partially-osseointegrated implant are significantly larger than those of fully-osseointegrated implants. It can be concluded that the partial osseointegration is a potential risk in terms of implant longevity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Svec, P; Stegnerová, H; Durnová, E; Sedlácek, I
2004-01-01
A group of sixteen esculin-positive fluorescent pseudomonads isolated from an underground brook flowing through a cave complex was characterized by biotyping, multiple enzyme restriction fragment length polymorphism analysis of 16S rDNA (MERFLP), ribotyping and whole-cell fatty-acid methyl-esters analysis (FAME). All strains were phenotypically close to Pseudomonas fluorescens, but they revealed high biochemical variability as well as some reactions atypical for P. fluorescens species. Because identification of pseudomonads by of biochemical testing is often unclear, further techniques were employed. Fingerprints obtained by MERFLP clearly showed that all strains represent P. fluorescens species. Ribotyping separated the strains analyzed into four groups corresponding almost completely (with the exception of one strain) to the clustering based on biochemical profiles. FAME analysis grouped all the strains into one cluster together with the P. putida (biotype A, B), P. chlororaphis and P. fluorescens biotype F representatives, but differentiated them from other FAME profiles of all pseudomonads included in the standard library TSBA 40 provided by MIDI, Inc.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2000-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.
Shui, Wenqing; Xiong, Yun; Xiao, Weidi; Qi, Xianni; Zhang, Yong; Lin, Yuping; Guo, Yufeng; Zhang, Zhidan; Wang, Qinhong; Ma, Yanhe
2015-01-01
Saccharomyces cerevisiae has been intensively studied in responses to different environmental stresses such as heat shock through global omic analysis. However, the S. cerevisiae industrial strains with superior thermotolerance have not been explored in any proteomic studies for elucidating the tolerance mechanism. Recently a new diploid strain was obtained through evolutionary engineering of a parental industrial strain, and it exhibited even higher resistance to prolonged thermal stress. Herein, we performed iTRAQ-based quantitative proteomic analysis on both the parental and evolved industrial strains to further understand the mechanism of thermotolerant adaptation. Out of ∼2600 quantifiable proteins from biological quadruplicates, 193 and 204 proteins were differentially regulated in the parental and evolved strains respectively during heat-stressed growth. The proteomic response of the industrial strains cultivated under prolonged thermal stress turned out to be substantially different from that of the laboratory strain exposed to sudden heat shock. Further analysis of transcription factors underlying the proteomic perturbation also indicated the distinct regulatory mechanism of thermotolerance. Finally, a cochaperone Mdj1 and a metabolic enzyme Adh1 were selected to investigate their roles in mediating heat-stressed growth and ethanol production of yeasts. Our proteomic characterization of the industrial strain led to comprehensive understanding of the molecular basis of thermotolerance, which would facilitate future improvement in the industrially important trait of S. cerevisiae by rational engineering. PMID:25926660
Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J
2010-09-17
Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.
Bradyrhizobium cajani sp. nov. isolated from nodules of Cajanus cajan.
Araújo, Juan; Flores-Félix, José David; Igual, José M; Peix, Alvaro; González-Andrés, Fernando; Díaz-Alcántara, César Antonio; Velázquez, Encarna
2017-07-01
Two slow-growing strains, AMBPC1010T and AMBPC1011, were isolated from nodules of Cajanus cajan in the Dominican Republic. 16S rRNA gene analysis placed these strains within the genus Bradyrhizobium, being phylogenetically equidistant to several species of this genus. Analysis of the recA and atpD genes showed that the strains isolated belong to a cluster containing the strains Bradyrhizobium ottawaense OO99T, 'Bradyrhizobium americanum' CMVU44 and Bradyrhizobium daqingense CCBAU 15774T, and presented similarity values lower than 96 % for both genes with respect to the strains nodulating C. cajan. DNA-DNA hybridization analysis showed averages of 36, 40 and 39 % relatedness with respect to the representative strains of Bradyrhizobium ottawaense, 'Bradyrhizobium americanum' and Bradyrhizobium daqingense, respectively. Phenotypic characteristics also differed from those of the most closely related species of the genus Bradyrhizobium. Therefore, based on the data obtained in this study, we propose to classify the strains AMBPC1010T (=LMG 29967T=CECT 9227T) and AMBPC1011 into a novel species named Bradyrhizobium cajani sp. nov.
Doddapaneni, Harshavardhan; Yao, Jiqiang; Lin, Hong; Walker, M Andrew; Civerolo, Edwin L
2006-01-01
Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c), 54 (Dixon), 83 (Ann1) and 9 (Temecula-1). A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes have been identified as the main source of variations among strains, with individual strains showing different rates of genome evolution. Based on these genome comparisons, it appears that the Pierce's disease strain Temecula-1 genome represents the ancestral genome of the X. fastidiosa. Results of this analysis are publicly available in the form of a web database. PMID:16948851
Full field stress/strain analysis : use of Moire and TSA for wood structural assemblies
R. W. Wolfe; R. E. Rowlands; C. H. Lin
1994-01-01
Laboratory and field experiments in wood engineering often rely on different types of devices to measure strain. Each type has certain limitations and characteristics that generally dictate its applicability to wood. Some of the issues related to using traditional strain measurement devices on wood and wood-based materials are discussed in this paper.
Stolz, J.F.; Ellis, D.J.; Blum, J.S.; Ahmann, D.; Lovley, D.R.; Oremland, R.S.
1999-01-01
Two strains of dissimilatory arsenate-reducing vibrio-shaped bacteria are assigned to the genus Sulfurospirillum. These two new species, Sulfurospirillum barnesii strain SES-3(T) and Sulfurospirillum arsenophilum strain MIT-13(T), in addition to Sulfurospirillum sp. SM-5, two strains of Sulfurospirillum deleyianum, and Sulfurospirillum arcachonense, form a distinct clade within the ?? subclass of the Proteobacteria based on 16S rRNA analysis.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.
2004-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.
Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure
NASA Astrophysics Data System (ADS)
Wang, Huaping; Xiang, Ping
2016-07-01
Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.
Sphingomonas morindae sp. nov., isolated from Noni (Morinda citrifolia L.) branch.
Liu, Yang; Yao, Su; Lee, Yong-Jae; Cao, Yanhua; Zhai, Lei; Zhang, Xin; Su, Jiaojiao; Ge, Yuanyuan; Kim, Song-Gun; Cheng, Chi
2015-09-01
Two yellow bacterial strains, designated NBD5(T) and NBD8, isolated from Noni (Morinda citrifolia L.) branch were investigated using a polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, non-spore-forming, non-motile and short rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the strains were members of a novel species of the genus Sphingomonas, the seven closest neighbours being Sphingomonas oligoaromativorans SY-6(T) (96.9% similarity), Sphingomonas polyaromaticivorans B2-7(T) (95.8%), Sphingomonas yantingensis 1007(T) (94.9%), Sphingomonas sanguinis IFO 13937(T) (94.7%), Sphingomonas ginsenosidimutans Gsoil 1429(T) (94.6%), Sphingomonas wittichii RW1(T) (94.6%) and Sphingomonas formosensis CC-Nfb-2(T) (94.5%). Strains NBD5T and NBD8 had sphingoglycolipid, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine as the major polar lipids, ubiquinone 10 as the predominant respiratory quinone, and sym-homospermidine as the major polyamine. Strains NBD5(T) and NBD8 were clearly distinguished from reference type strains based on phylogenetic analysis, DNA-DNA hybridization, fatty acid composition data analysis, and comparison of a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strains NBD5(T) and NBD8 represent a novel species of the genus Sphingomonas, for which the name Sphingomonas morindae sp. nov. is proposed. The type strain is NBD5(T) ( = DSM 29151(T) = KCTC 42183(T) = CICC 10879(T)).
Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis.
Kang, Yoon-Suk; Kim, Juhyun; Shin, Hyeon-Dong; Nam, Young-Do; Bae, Jin-Woo; Jeon, Che Ok; Park, Woojun
2007-12-01
A novel bacterial strain, designated PMB02(T), was isolated from a leaf of the tree Platanus orientalis. Colonies grown on TYG agar plates were circular, pink-pigmented and slow-growing, being 0.2-1.5 mm in diameter after 3 days growth. The cells of strain PMB02(T) were Gram-negative, aerobic, motile rods that possessed oxidase and catalase activities and grew at 20-30 degrees C, pH 6-8 and in media containing less than 1 % NaCl. The major respiratory quinone was identified as Q-10. A phylogenetic analysis based on 16S rRNA gene sequence comparisons indicated that strain PMB02(T) was related to members of the genus Methylobacterium. A comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacterium aquaticum and Methylobacterium variabile, with which it showed sequence similarities of 97.7 and 97.4 %, respectively. The values for DNA-DNA hybridization between strain PMB02(T) and M. aquaticum CCM 7218(T) and M. variabile GR3(T) were less than 32 %. On the basis of the phenotypic characterization, the phylogenetic analysis and the DNA-DNA relatedness data, strain PMB02(T) is considered to represent a novel species of the genus Methylobacterium, for which the name Methylobacterium platani sp. nov. is proposed. The type strain is PMB02(T) (=KCTC 12901(T)=JCM 14648(T)).
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Freschi de Barros, Samar; De Amicis, Karine Marafigo; Alencar, Raquel; Smeesters, Pierre Robert; Trunkel, Ariel; Postól, Edilberto; Almeida Junior, João Nóbrega; Rossi, Flavia; Pignatari, Antonio Carlos Campos; Kalil, Jorge; Guilherme, Luiza
2015-08-05
Several human diseases are caused by Streptococcus pyogenes, ranging from common infections to autoimmunity. Characterization of the most prevalent strains worldwide is a useful tool for evaluating the coverage capacity of vaccines under development. In this study, a collection of S. pyogenes strains from Sao Paulo, Brazil, was analyzed to describe the diversity of strains and assess the vaccine coverage capacity of StreptInCor. Molecular epidemiology of S. pyogenes strains was performed by emm-genotyping the 229 isolates from different clinical sites, and PCR was used for superantigen profile analysis. The emm-pattern and tissue tropism for these M types were also predicted and compared based on the emm-cluster classification. The strains were fit into 12 different emm-clusters, revealing a diverse phylogenetic origin and, consequently, different mechanisms of infection and escape of the host immune system. Forty-eight emm-types were distinguished in 229 samples, and the 10 most frequently observed types accounted for 69 % of all isolates, indicating a diverse profile of circulating strains comparable to other countries under development. A similar proportion of E and A-C emm-patterns were observed, whereas pattern D was less frequent, indicating that the strains of this collection primarily had a tissue tropism for the throat. In silico analysis of the coverage capacity of StreptInCor, an M protein-conserved regionally based vaccine candidate developed by our group, had a range of 94.5 % to 59.7 %, with a mean of 71.0 % identity between the vaccine antigen and the predicted amino acid sequence of the emm-types included here. This is the first report of S. pyogenes strain characterization in Sao Paulo, one of the largest cities in the world; thus, the strain panel described here is a representative sample for vaccine coverage capacity analysis. Our results enabled evaluation of StreptInCor candidate vaccine coverage capacity against diverse M-types, indicating that the vaccine candidate likely would induce protection against the diverse strains worldwide.
Hoshino, Tomonori; Fujiwara, Taku; Kilian, Mogens
2005-12-01
The aim of this study was to evaluate molecular and phenotypic methods for the identification of nonhemolytic streptococci. A collection of 148 strains consisting of 115 clinical isolates from cases of infective endocarditis, septicemia, and meningitis and 33 reference strains, including type strains of all relevant Streptococcus species, were examined. Identification was performed by phylogenetic analysis of nucleotide sequences of four housekeeping genes, ddl, gdh, rpoB, and sodA; by PCR analysis of the glucosyltransferase (gtf) gene; and by conventional phenotypic characterization and identification using two commercial kits, Rapid ID 32 STREP and STREPTOGRAM and the associated databases. A phylogenetic tree based on concatenated sequences of the four housekeeping genes allowed unequivocal differentiation of recognized species and was used as the reference. Analysis of single gene sequences revealed deviation clustering in eight strains (5.4%) due to homologous recombination with other species. This was particularly evident in S. sanguinis and in members of the anginosus group of streptococci. The rate of correct identification of the strains by both commercial identification kits was below 50% but varied significantly between species. The most significant problems were observed with S. mitis and S. oralis and 11 Streptococcus species described since 1991. Our data indicate that identification based on multilocus sequence analysis is optimal. As a more practical alternative we recommend identification based on sodA sequences with reference to a comprehensive set of sequences that is available for downloading from our server. An analysis of the species distribution of 107 nonhemolytic streptococci from bacteremic patients showed a predominance of S. oralis and S. anginosus with various underlying infections.
Wang, Li; Yokoyama, Koji; Miyaji, Makoto; Nishimura, Kazuko
2001-01-01
We analyzed a 402-bp sequence of the mitochondrial cytochrome b gene of 34 strains of Exophiala jeanselmei and 16 strains representing 12 related species. The strains of E. jeanselmei were classified into 20 DNA types and 17 amino acid types. The differences between these strains were found in 1 to 60 nucleotides and 1 to 17 amino acids. On the basis of the identities and similarities of nucleotide and amino acid sequences, some strains were reidentified: i.e., two strains of E. jeanselmei var. hetermorpha and one strain of E. castellanii as E. dermatitidis (including the type strain), three strains of E. jeanselmei as E. jeanselmei var. lecanii-corni (including the type strain), three strains of E. jeanselmei as E. bergeri (including the type strain), seven strains of E. jeanselmei as E. pisciphila (including the type strain), seven strains of E. jeanselmei as E. jeanselmei var. jeanselmei (including the type strain), one strain of E. jeanselmei as Fonsecaea pedrosoi (including the type strain), and one strain of E. jeanselmei as E. spinifera (including the type strain). Some E. jeanselmei strains showed distinct nucleotide and amino acid sequences. The amino-acid-based UPGMA (unweighted pair group method with the arithmetic mean) tree exhibited nearly the same topology as those of the DNA-based trees obtained by neighbor joining, maximum parsimony, and maximum likelihood methods. PMID:11724862
[Entification of the Rubella virus genotype 1H in Western Siberia].
Seregin, S V; Babkin, I V; Petrova, I D; Iashina, L N; Malkova, E M; Petrov, V S
2011-01-01
Molecular epidemiological study of novel strain of Rubella virus isolated during the outbreak in Western Siberia in 2004 was described. Detailed phylogenetic analysis performed based upon entire SP-region, which encodes all three Rubella structural proteins (C, E2, and E1), was implemented. This analysis provides characterization of this strain and classifies it as 1H genotype, thereby correcting previous classification of this strain based upon shorter nucleotide sequence, only encoding E1 protein. Therefore, this study identified the genotype of the Rubella virus not previously detected in Western Siberia (and even entire Russian Federation), which highlights the importance of more extensive characterization of genetic variability of the Rubella virus, especially with regard to potential influence of vaccination on the Rubella virus mutagenesis.
NASA Astrophysics Data System (ADS)
Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui
2018-04-01
Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.
Maluping, R P; Ravelo, C; Lavilla-Pitogo, C R; Krovacek, K; Romalde, J L
2005-01-01
The main aim of the present study was to use three PCR-based techniques for the analysis of genetic variability among Vibrio parahaemolyticus strains isolated from the Philippines. Seventeen strains of V. parahaemolyticus isolated from shrimps (Penaeus monodon) and from the environments where these shrimps are being cultivated were analysed by random amplified polymorphic DNA PCR (RAPD-PCR), enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) and repetitive extragenic palindromic PCR (REP-PCR). The results of this work have demonstrated genetic variability within the V. parahaemolyticus strains that were isolated from the Philippines. In addition, RAPD, ERIC and REP-PCR are suitable rapid typing methods for V. parahaemolyticus. All three methods have good discriminative ability and can be used as a rapid means of comparing V. parahaemolyticus strains for epidemiological investigation. Based on the results of this study, we could say that REP-PCR is inferior to RAPD and ERIC-PCR owing to the fact that it is less reproducible. Moreover, the REP-PCR analysis yielded a relatively small number of products. This may suggests that the REP sequences may not be widely distributed in the V. parahaemolyticus genome. Genetic variability within V. parahaemolyticus strains isolated in the Philippines has been demonstrated. The presence of ERIC and REP sequences in the genome of this bacterial species was confirmed. The RAPD, ERIC and REP-PCR techniques are useful methods for molecular typing of V. parahaemolyticus strains. To our knowledge this is the first study of this kind carried out on V. parahaemolyticus strains isolated from the Philippines.
Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami
2015-01-01
Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653
Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami
2015-01-01
Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.
Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M
2018-02-01
The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.
2017-01-01
A novel Vibrio strain, JCM 31412T, was isolated from seawater collected from the Inland Sea (Setonaikai), Japan, and characterized as a Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, ovoid-shaped bacterium with one polar flagellum. Based on 16S rDNA gene identity, strain JCM 31412T showed a close relationship with type strains of Vibrio brasiliensis (LMG 20546T, 98.2% identity), V. harveyi (NBRC 15634T, 98.2%), V. caribbeanicus (ATCC BAA-2122T, 97.8%) and V. proteolyticus (NBRC 13287T, 97.8%). The G+C content of strain JCM 31412T DNA was 46.8%. Multi-locus sequence analysis (MLSA) of eight loci (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA; 5535bp) further clustered strain JCM 31412T in the Nereis clade, genus Vibrio. Phenotypically, strain JCM 31412T differed from the closest related Vibrio species in its utilization of melibiose and raffinose, and its lack of casein and gelatin hydrolysis. It was further differentiated based on its fatty acid composition, specifically properties of C12:03OH and summed features, which were significantly different from those of V. brasiliensis, V. nigripulchritudo and V. caribbeanicus type strains. Overall, the results of DNA-DNA hybridization, and physiological and biochemical analysis differentiated strain JCM 31412T from other described species of the genus Vibrio. Based on these polyphasic taxonomic findings, it was therefore concluded that JCM 31412T was a novel Vibrio species, for which the name Vibrio japonicus sp. nov. was proposed, with JCM 31412T (= LMG 29636T = ATCC TSD-62T) as the type strain. PMID:28231272
Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation.
Mulet, M; Gomila, M; Ramírez, A; Cardew, S; Moore, E R B; Lalucat, J; García-Valdés, E
2017-02-01
Fifty-two Pseudomonas strains that were difficult to identify at the species level in the phenotypic routine characterizations employed by clinical microbiology laboratories were selected for genotypic-based analysis. Species level identifications were done initially by partial sequencing of the DNA dependent RNA polymerase sub-unit D gene (rpoD). Two other gene sequences, for the small sub-unit ribosonal RNA (16S rRNA) and for DNA gyrase sub-unit B (gyrB) were added in a multilocus sequence analysis (MLSA) study to confirm the species identifications. These sequences were analyzed with a collection of reference sequences from the type strains of 161 Pseudomonas species within an in-house multi-locus sequence analysis database. Whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses of these strains complemented the DNA sequenced-based phylogenetic analyses and were observed to be in accordance with the results of the sequence data. Twenty-three out of 52 strains were assigned to 12 recognized species not commonly detected in clinical specimens and 29 (56 %) were considered representatives of at least ten putative new species. Most strains were distributed within the P. fluorescens and P. aeruginosa lineages. The value of rpoD sequences in species-level identifications for Pseudomonas is emphasized. The correct species identifications of clinical strains is essential for establishing the intrinsic antibiotic resistance patterns and improved treatment plans.
Tomita, Satoru; Tanaka, Naoto; Okada, Sanae
2017-03-01
The lactic acid bacterium Lactobacillus plantarum is capable of producing strain-specific structures of cell wall teichoic acid (WTA), an anionic polysaccharide found in the Gram-positive bacterial cell wall. In this study, we established a rapid, NMR-based procedure to discriminate WTA structures in this species, and applied it to 94 strains of L. plantarum. Six previously reported glycerol- and ribitol-containing WTA subtypes were successfully identified from 78 strains, suggesting that these were the dominant structures. However, the level of structural variety differed markedly among bacterial sources, possibly reflecting differences in strain-level microbial diversity. WTAs from eight strains were not identified based on NMR spectra and were classified into three groups. Structural analysis of a partial degradation product of an unidentified WTA produced by strain TUA 1496L revealed that the WTA was 1-O-β-d-glucosylglycerol. Two-dimensional NMR analysis of the polymer structure showed phosphodiester bonds between C-3 and C-6 of the glycerol and glucose residues, suggesting a polymer structure of 3,6΄-linked poly(1-O-β-d-glucosyl-sn-glycerol phosphate). This is the third WTA backbone structure in L. plantarum, following 3,6΄-linked poly(1-O-α-d-glucosyl-sn-glycerol phosphate) and 1,5-linked poly(ribitol phosphate). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lu, Xin; Soto, Marcelo A; Thévenaz, Luc
2017-07-10
A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 με, respectively. These values agree very well with the theoretically expected measurand resolutions.
Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex
Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P.; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel
2016-01-01
The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR. PMID:26915094
Toyo-Oka, L; Mahasirimongkol, S; Yanai, H; Mushiroda, T; Wattanapokayakit, S; Wichukchinda, N; Yamada, N; Smittipat, N; Juthayothin, T; Palittapongarnpim, P; Nedsuwan, S; Kantipong, P; Takahashi, A; Kubo, M; Sawanpanyalert, P; Tokunaga, K
2017-09-01
Tuberculosis (TB) occurs as a result of complex interactions between the host immune system and pathogen virulence factors. Human leukocyte antigen (HLA) class II molecules play an important role in the host immune system. However, no study has assessed the association between HLA class II genes and susceptibility to TB caused by specific strains. This study investigated the possible association of HLA class II genes with TB caused by modern and ancient Mycobacterium tuberculosis (MTB). The study included 682 patients with TB and 836 control subjects who were typed for HLA-DRB1 and HLA-DQB1 alleles. MTB strains were classified using a large sequence polymorphism typing method. Association analysis was performed using common HLA alleles and haplotypes in different MTB strains. HLA association analysis of patients infected with modern MTB strains showed significant association for HLA-DRB1*09:01 (odds ratio [OR] = 1.82; P-value = 9.88 × 10 -4 ) and HLA-DQB1*03:03 alleles (OR = 1.76; P-value = 1.31 × 10 -3 ) with susceptibility to TB. Haplotype analysis confirmed that these alleles were in strong linkage disequilibrium and did not exert an interactive effect. Thus, the results of this study showed an association between HLA class II genes and susceptibility to TB caused by modern MTB strains, suggesting the importance of strain-specific analysis to determine susceptibility genes associated with TB. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2001-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.
Furuhata, Katsunori; Banzai, Azusa U; Kawakami, Yasushi; Ishizaki, Naoto; Yoshida, Yoshihiro; Goto, Keiichi; Fukuyama, Masafumi
2011-09-01
For microbial ecological analysis, 14 strains of Methylobacterium aquaticum isolated from water samples were subjected to clustering analysis on the basis of ribotyping and RAPD-PCR tests. The ribopatterns after digestion with EcoRI obtained from 14 strains of M. aquaticum were used to divide the strains into two groups (Groups I and II) with a similarity of 55%. From the analysis of RAPD patterns using primer 208, the 14 strains were divided into 3 groups (A-C) based on a homology of 45% or greater, and from that using primer 272, there were 4 groups (A-D) based on a homology of 50% or greater. The chlorine resistance (99.9% CT values) of these isolates was also experimentally confirmed, and we attempted to define the connection between chlorine resistance and the geno-cluster. The average CT value of group I was 0.89 mg•min/l and the average of group II was 0.69 mg•min/l. No remarkable differences in the CT values for the groups were found.
Peak, K. Kealy; Duncan, Kathleen E.; Luna, Vicki A.; King, Debra S.; McCarthy, Peter J.; Cannons, Andrew C.
2011-01-01
Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA) analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S) for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition. PMID:22046187
Sharma, K; Mahajan, R; Attri, S; Goel, G
2017-05-01
The population of the Himalayan region is known to consume a variety of fermented and nonfermented foods and as a result they have been benefited in terms of overall health, because of the associated beneficial microbes. Therefore, the focus of the present study was to identify new strains of lactic acid bacteria (LAB) from dairy products such as milk (cow, goat, buffalo) and fermented products (curd and buttermilk) with properties suitable for use as probiotic cultures. A total of 75 isolates tentatively identified as LAB from 100 samples were initially screened for production of β-haemolysin as indicators of virulence which resulted in 38 isolates with no haemolytic activity. Further subtractive screening based on resistance to gastrointestinal tract barriers (acid and bile salts) resulted in the selection of the eight most promising strains. All these eight strains were resistant to pH 2·0, 1% bile concentration and pancreatin (1 mg l -1 ). Among the eight isolates, three isolates were identified as Brevibacillus thermoruber and the others as Brevibacillus aydinogluensis, Lactobacillus gastricus, L. paracasei, Enterococcus sp. Weisella confusa based on 16S rDNA region. Among these isolates, L. paracasei CD4 and L. gastricus BTM7 indicated maximum tolerance to simulated gastric environment. Both the isolates possessed highest score for cell surface hydrophobicity, cell autoaggregation, adherence to Caco-2 cell lines and antimicrobial activity against clinical isolates of Escherichia coli and Shigella sp. comparable to standard strain of Lactobacillus rhamnosus GG. Further principal component analysis and clustering analysis based on Euclidean Similarity index of probiotic characters revealed that L. paracasei strain CD4 and L. gastricus strain BTM7 were placed closest to reference strain L. rhamnosus GG and were therefore identified as most promising probiotic candidate cultures. These characteristics suggest that these strains could be excellent candidates for probiotics. Milk-based products serve as reservoir for bacterial species with probiotic attributes. © 2017 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Nguyen, Trung N.; Siegmund, Thomas; Tomar, Vikas; Kruzic, Jamie J.
2017-12-01
Size effects occur in non-uniform plastically deformed metals confined in a volume on the scale of micrometer or sub-micrometer. Such problems have been well studied using strain gradient rate-independent plasticity theories. Yet, plasticity theories describing the time-dependent behavior of metals in the presence of size effects are presently limited, and there is no consensus about how the size effects vary with strain rates or whether there is an interaction between them. This paper introduces a constitutive model which enables the analysis of complex load scenarios, including loading rate sensitivity, creep, relaxation and interactions thereof under the consideration of plastic strain gradient effects. A strain gradient viscoplasticity constitutive model based on the Kocks-Mecking theory of dislocation evolution, namely the strain gradient Kocks-Mecking (SG-KM) model, is established and allows one to capture both rate and size effects, and their interaction. A formulation of the model in the finite element analysis framework is derived. Numerical examples are presented. In a special virtual creep test with the presence of plastic strain gradients, creep rates are found to diminish with the specimen size, and are also found to depend on the loading rate in an initial ramp loading step. Stress relaxation in a solid medium containing cylindrical microvoids is predicted to increase with decreasing void radius and strain rate in a prior ramp loading step.
Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Kwon, Soon-Wo; Sa, Tong-Min
2009-01-01
A pink-pigmented, aerobic, facultatively methylotrophic bacterial strain, CBMB27T, isolated from leaf tissues of rice (Oryza sativa L. 'Dong-Jin'), was analysed using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacterium oryzae, Methylobacterium fujisawaense and Methylobacterium mesophilicum; strain CBMB27T showed sequence similarities of 98.3, 98.5 and 97.3 %, respectively, to the type strains of these three species. DNA-DNA hybridization experiments revealed low levels (<38 %) of DNA-DNA relatedness between strain CBMB27T and its closest relatives. The sequence of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) in strain CBMB27T differed from those of close relatives. The major fatty acid of the isolate was C(18 : 1)omega7c and the G+C content of the genomic DNA was 66.8 mol%. Based on the results of 16S rRNA gene sequence analysis, DNA-DNA hybridization, and physiological and biochemical characterization, which enabled the isolate to be differentiated from all recognized species of the genus Methylobacterium, it was concluded that strain CBMB27T represents a novel species in the genus Methylobacterium for which the name Methylobacterium phyllosphaerae sp. nov. is proposed (type strain CBMB27T =LMG 24361T =KACC 11716T =DSM 19779T).
Koundal, Vikas; Haq, Qazi Mohd Rizwanul; Praveen, Shelly
2011-02-01
The genome of Cucumber mosaic virus New Delhi strain (CMV-ND) from India, obtained from tomato, was completely sequenced and compared with full genome sequences of 14 known CMV strains from subgroups I and II, for their genetic diversity. Sequence analysis suggests CMV-ND shares maximum sequence identity at the nucleotide level with a CMV strain from Taiwan. Among all 15 strains of CMV, the encoded protein 2b is least conserved, whereas the coat protein (CP) is most conserved. Sequence identity values and phylogram results indicate that CMV-ND belongs to subgroup I. Based on the recombination detection program result, it appears that CMV is prone to recombination, and different RNA components of CMV-ND have evolved differently. Recombinational analysis of all 15 CMV strains detected maximum recombination breakpoints in RNA2; CP showed the least recombination sites.
Genetic assessment of strain-specific sources of lake trout recruitment in the Great Lakes
Page, Kevin S.; Scribner, Kim T.; Bennett, Kristine R.; Garzel, Laura M.; Burnham-Curtis, Mary K.
2003-01-01
Populations of wild lake trout Salvelinus namaycush have been extirpated from nearly all their historical habitats across the Great Lakes. Efforts to restore self-sustaining lake trout populations in U.S. waters have emphasized the stocking of coded-wire-tagged juveniles from six hatchery strains (Seneca Lake, Lewis Lake, Green Lake, Apostle Islands, Isle Royale, and Marquette) into vacant habitats. Strain-specific stocking success has historically been based on estimates of the survival and catch rates of coded-wire-tagged adults returning to spawning sites. However, traditional marking methods and estimates of relative strain abundance provide no means of assessing strain fitness (i.e., the realized contributions to natural recruitment) except by assuming that young-of-the-year production is proportional to adult spawner abundance. We used microsatellite genetic data collected from six hatchery strains with likelihood-based individual assignment tests (IA) and mixed-stock analysis (MSA) to identify the strain composition of young of the year recruited each year. We show that strain classifications based on IA and MSA were concordant and that the accuracy of both methods varied based on strain composition. Analyses of young-of-the-year lake trout samples from Little Traverse Bay (Lake Michigan) and Six Fathom Bank (Lake Huron) revealed that strain contributions differed significantly from estimates of the strain composition of adults returning to spawning reefs. The Seneca Lake strain contributed the majority of juveniles produced on Six Fathom Bank and more young of the year than expected within Little Traverse Bay. Microsatellite markers provided a method for accurately classifying the lake trout hatchery strains used for restoration efforts in the Great Lakes and for assessment of strain-specific reproductive success.
Reproducible analyses of microbial food for advanced life support systems
NASA Technical Reports Server (NTRS)
Petersen, Gene R.
1988-01-01
The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.
Rezzonico, Fabio; Braun-Kiewnick, Andrea; Mann, Rachel A; Rodoni, Brendan; Goesmann, Alexander; Duffy, Brion; Smits, Theo H M
2012-10-01
Comparative genomic analysis revealed differences in the lipopolysaccharide (LPS) biosynthesis gene cluster between the Rubus-infecting strain ATCC BAA-2158 and the Spiraeoideae-infecting strain CFBP 1430 of Erwinia amylovora. These differences corroborate rpoB-based phylogenetic clustering of E. amylovora into four different groups and enable the discrimination of Spiraeoideae- and Rubus-infecting strains. The structure of the differences between the two groups supports the hypothesis that adaptation to Rubus spp. took place after species separation of E. amylovora and E. pyrifoliae that contrasts with a recently proposed scenario, based on CRISPR data, in which the shift to domesticated apple would have caused an evolutionary bottleneck in the Spiraeoideae-infecting strains of E. amylovora which would be a much earlier event. In the core region of the LPS biosynthetic gene cluster, Spiraeoideae-infecting strains encode three glycosyltransferases and an LPS ligase (Spiraeoideae-type waaL), whereas Rubus-infecting strains encode two glycosyltransferases and a different LPS ligase (Rubus-type waaL). These coding domains share little to no homology at the amino acid level between Rubus- and Spiraeoideae-infecting strains, and this genotypic difference was confirmed by polymerase chain reaction analysis of the associated DNA region in 31 Rubus- and Spiraeoideae-infecting strains. The LPS biosynthesis gene cluster may thus be used as a molecular marker to distinguish between Rubus- and Spiraeoideae-infecting strains of E. amylovora using primers designed in this study. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
NASA Astrophysics Data System (ADS)
Deng, Yuangao; Xu, Gaochao; Sui, Liying
2015-07-01
A total of 26 isolates were obtained from solar salt ponds of different salinities (100, 150, 200, and 250) in Hangu Saltworks Co. Ltd., Tianjin, China. Phylogenetic analysis of 16S rRNA gene sequences indicated that five bacteria genera Halomonas, Salinicoccus, Oceanobacillus, Gracibacillus, and Salimicrobium and one archaea genera Halorubrum were present. The genus Halomonas was predominant with eight strains distributed in a salinity range of 100-200, followed by Halorubrum with six strains in salinity 250. Based on the genus and original sampling salinity, eight bacterial and two archaeal isolates were selected for further morphological, physiological, and biochemical characterization. All of the bacterial strains were moderately halophilic with the optimal salinity for growth being either 50 or 100, while two archaeal strains were extremely halophilic with an optimal growth salinity of 200. Additionally, we put forth strain SM.200-5 as a new candidate Salimicrobium species based on the phylogenic analysis of the 16S rRNA gene sequence and its biochemical characteristics when compared with known related species.
NASA Astrophysics Data System (ADS)
Zhang, Sipei; Nakatani, Alan; Griffith, William
Large Amplitude Oscillatory Shear (LAOS) testing has recently taken on renewed interest in the rheological community. It is a very useful tool to probe the viscoelastic response of materials in the non-linear regime. Much of the discussion on polymers in the LAOS field has focused on melts in or near the terminal flow regime. Here we present a LAOS study conducted on a commercial rheometer for acrylic emulsion-based pressure sensitive adhesive (PSA) films in the plateau regime. The films behaved qualitatively similar over an oscillation frequency range of 0.5-5 rad/s. From Fourier transform analysis, the fifth or even the seventh order harmonic could be observed at large applied strains. From stress decomposition analysis or Lissajous curves, inter-cycle elastic softening, or type I behavior, was observed for all films as the strain increases, while intra-cycle strain hardening occurred at strains in the LAOS regime. Overall, as acid content increases, it was found that the trend in elasticity under large applied strains agreed very well with the trend in cohesive strength of the films.
Spherical nanoindentation stress-strain analysis, Version 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan S.; Turner, David; Miller, Calvin
Nanoindentation is a tool that allows the mechanical response of a variety of materials at the nano to micron length scale to be measured. Recent advances in spherical nanoindentation techniques have allowed for a more reliable and meaningful characterization of the mechanical response from nanoindentation experiments in the form on an indentation stress-strain curve. This code base, Spin, is written in MATLAB (The Mathworks, Inc.) and based on the analysis protocols developed by S.R. Kalidindi and S. Pathak [1, 2]. The inputs include the displacement, load, harmonic contact stiffness, harmonic displacement, and harmonic load from spherical nanoindentation tests in themore » form of an Excel (Microsoft) spreadsheet. The outputs include indentation stress-strain curves and indentation properties as well their variance due to the uncertainty of the zero-point correction in the form of MATLAB data (.mat) and figures (.png). [1] S. Pathak, S.R. Kalidindi. Spherical nanoindentation stress–strain curves, Mater. Sci. Eng R-Rep 91 (2015). [2] S.R. Kalidindi, S. Pathak. Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves, Acta Materialia 56 (2008) 3523-3532.« less
Genotyping of Chromobacterium violaceum isolates by recA PCR-RFLP analysis.
Scholz, Holger Christian; Witte, Angela; Tomaso, Herbert; Al Dahouk, Sascha; Neubauer, Heinrich
2005-03-15
Intraspecies variation of Chromobacterium violaceum was examined by comparative sequence - and by restriction fragment length polymorphism analysis of the recombinase A gene (recA-PCR-RFLP). Primers deduced from the known recA gene sequence of the type strain C. violaceum ATCC 12472(T) allowed the specific amplification of a 1040bp recA fragment from each of the 13 C. violaceum strains investigated, whereas other closely related organisms tested negative. HindII-PstI-recA RFLP analysis generated from 13 representative C. violaceum strains enabled us to identify at least three different genospecies. In conclusion, analysis of the recA gene provides a rapid and robust nucleotide sequence-based approach to specifically identify and classify C. violaceum on genospecies level.
NASA Astrophysics Data System (ADS)
Wada, Daichi; Sugimoto, Yohei
2017-04-01
Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.
Metabolomic analysis of insulin resistance across different mouse strains and diets.
Stöckli, Jacqueline; Fisher-Wellman, Kelsey H; Chaudhuri, Rima; Zeng, Xiao-Yi; Fazakerley, Daniel J; Meoli, Christopher C; Thomas, Kristen C; Hoffman, Nolan J; Mangiafico, Salvatore P; Xirouchaki, Chrysovalantou E; Yang, Chieh-Hsin; Ilkayeva, Olga; Wong, Kari; Cooney, Gregory J; Andrikopoulos, Sofianos; Muoio, Deborah M; James, David E
2017-11-24
Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
SNP-Based Typing: A Useful Tool to Study Bordetella pertussis Populations
van der Heide, Han G. J.; Heuvelman, Kees J.; Kallonen, Teemu; He, Qiushui; Mertsola, Jussi; Advani, Abdolreza; Hallander, Hans O.; Janssens, Koen; Hermans, Peter W.; Mooi, Frits R.
2011-01-01
To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). In this study, a single nucleotide polymorphism (SNP) typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in the Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis. PMID:21647370
Theoretical Analysis of Novel Quasi-3D Microscopy of Cell Deformation
Qiu, Jun; Baik, Andrew D.; Lu, X. Lucas; Hillman, Elizabeth M. C.; Zhuang, Zhuo; Guo, X. Edward
2012-01-01
A novel quasi-three-dimensional (quasi-3D) microscopy technique has been developed to enable visualization of a cell under dynamic loading in two orthogonal planes simultaneously. The three-dimensional (3D) dynamics of the mechanical behavior of a cell under fluid flow can be examined at a high temporal resolution. In this study, a numerical model of a fluorescently dyed cell was created in 3D space, and the cell was subjected to uniaxial deformation or unidirectional fluid shear flow via finite element analysis (FEA). Therefore, the intracellular deformation in the simulated cells was exactly prescribed. Two-dimensional fluorescent images simulating the quasi-3D technique were created from the cell and its deformed states in 3D space using a point-spread function (PSF) and a convolution operation. These simulated original and deformed images were processed by a digital image correlation technique to calculate quasi-3D-based intracellular strains. The calculated strains were compared to the prescribed strains, thus providing a theoretical basis for the measurement of the accuracy of quasi-3D and wide-field microscopy-based intracellular strain measurements against the true 3D strains. The signal-to-noise ratio (SNR) of the simulated quasi-3D images was also modulated using additive Gaussian noise, and a minimum SNR of 12 was needed to recover the prescribed strains using digital image correlation. Our computational study demonstrated that quasi-3D strain measurements closely recovered the true 3D strains in uniform and fluid flow cellular strain states to within 5% strain error. PMID:22707985
Gardiner, Gillian E.; Heinemann, Christine; Bruce, Andrew W.; Beuerman, Dee; Reid, Gregor
2002-01-01
Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 are well-characterized probiotic strains with efficacy in the prevention and treatment of urogenital infections in women. The aim of the present study was to apply a molecular biology-based methodology for the detection of these strains and L. rhamnosus GG (a commercially available intestinal probiotic) in the human vagina in order to assess probiotic persistence at this site. Ten healthy women inserted vaginally a capsule containing either a combination of strains GR-1 and RC-14 or the GG strain for 3 consecutive nights. Vaginal swabs taken before and at various time points after probiotic insertion were analyzed, and the Lactobacillus flora was assessed by randomly amplified polymorphic DNA (RAPD) analysis. This method generated discrete DNA fingerprints for GR-1, RC-14, and GG and enabled successful detection of these strains in the vagina. Strain GR-1 and/or strain RC-14 was found to persist in the vaginal tract for up to 19 days after vaginal instillation, while L. rhamnosus GG was detectable for up to 5 days postadministration. In conclusion, the fates of probiotic L. rhamnosus and L. fermentum strains were successfully monitored in the human vagina by RAPD analysis. This technique provides molecular biology-based evidence that RC-14 and GR-1, strains selected as urogenital probiotics, persist in the human vagina and may be more suited to vaginal colonization than L. rhamnosus GG. This highlights the importance of proper selection of strains for urogenital probiotic applications. PMID:11777835
Futagami, Taiki; Kadooka, Chihiro; Ando, Yoshinori; Okutsu, Kayu; Yoshizaki, Yumiko; Setoguchi, Shinji; Takamine, Kazunori; Kawai, Mikihiko; Tamaki, Hisanori
2017-10-01
Shochu is a traditional Japanese distilled spirit. The formation of the distinguishing flavour of shochu produced in individual distilleries is attributed to putative indigenous yeast strains. In this study, we performed the first (to our knowledge) phylogenetic classification of shochu strains based on nucleotide gene sequences. We performed phylogenetic classification of 21 putative indigenous shochu yeast strains isolated from 11 distilleries. All of these strains were shown or confirmed to be Saccharomyces cerevisiae, sharing species identification with 34 known S. cerevisiae strains (including commonly used shochu, sake, ale, whisky, bakery, bioethanol and laboratory yeast strains and clinical isolate) that were tested in parallel. Our analysis used five genes that reflect genome-level phylogeny for the strain-level classification. In a first step, we demonstrated that partial regions of the ZAP1, THI7, PXL1, YRR1 and GLG1 genes were sufficient to reproduce previous sub-species classifications. In a second step, these five analysed regions from each of 25 strains (four commonly used shochu strains and the 21 putative indigenous shochu strains) were concatenated and used to generate a phylogenetic tree. Further analysis revealed that the putative indigenous shochu yeast strains form a monophyletic group that includes both the shochu yeasts and a subset of the sake group strains; this cluster is a sister group to other sake yeast strains, together comprising a sake-shochu group. Differences among shochu strains were small, suggesting that it may be possible to correlate subtle phenotypic differences among shochu flavours with specific differences in genome sequences. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Satriano, Alessandro; Heydari, Bobak; Narous, Mariam; Exner, Derek V; Mikami, Yoko; Attwood, Monica M; Tyberg, John V; Lydell, Carmen P; Howarth, Andrew G; Fine, Nowell M; White, James A
2017-12-01
Two-dimensional (2D) strain analysis is constrained by geometry-dependent reference directions of deformation (i.e. radial, circumferential, and longitudinal) following the assumption of cylindrical chamber architecture. Three-dimensional (3D) principal strain analysis may overcome such limitations by referencing intrinsic (i.e. principal) directions of deformation. This study aimed to demonstrate clinical feasibility of 3D principal strain analysis from routine 2D cine MRI with validation to strain from 2D tagged cine analysis and 3D speckle tracking echocardiography. Thirty-one patients undergoing cardiac MRI were studied. 3D strain was measured from routine, multi-planar 2D cine SSFP images using custom software designed to apply 4D deformation fields to 3D cardiac models to derive principal strain. Comparisons of strain estimates versus those by 2D tagged cine, 2D non-tagged cine (feature tracking), and 3D speckle tracking echocardiography (STE) were performed. Mean age was 51 ± 14 (36% female). Mean LV ejection fraction was 66 ± 10% (range 37-80%). 3D principal strain analysis was feasible in all subjects and showed high inter- and intra-observer reproducibility (ICC range 0.83-0.97 and 0.83-0.98, respectively-p < 0.001 for all directions). Strong correlations of minimum and maximum principal strain were respectively observed versus the following: 3D STE estimates of longitudinal (r = 0.81 and r = -0.64), circumferential (r = 0.76 and r = -0.58) and radial (r = -0.80 and r = 0.63) strain (p < 0.001 for all); 2D tagged cine estimates of longitudinal (r = 0.81 and r = -0.81), circumferential (r = 0.87 and r = -0.85), and radial (r = -0.76 and r = 0.81) strain (p < 0.0001 for all); and 2D cine (feature tracking) estimates of longitudinal (r = 0.85 and -0.83), circumferential (r = 0.88 and r = -0.87), and radial strain (r = -0.79 and r = 0.84, p < 0.0001 for all). 3D principal strain analysis is feasible using routine, multi-planar 2D cine MRI and shows high reproducibility with strong correlations to 2D conventional strain analysis and 3D STE-based analysis. Given its independence from geometry-related directions of deformation this technique may offer unique benefit for the detection and prognostication of myocardial disease, and warrants expanded investigation.
Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2002-01-01
A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.
Han, Mee-Jung
2017-11-28
The Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for scientific research and biotechnological applications. However, omics analyses have revealed that E. coli K-12 and B exhibit notably different genotypic and phenotypic attributes, even though they were derived from the same ancestor. In a previous study, we identified a limited number of proteins from the two strains using two-dimensional gel electrophoresis and tandem mass spectrometry (MS/MS). In this study, an in-depth analysis of the physiological behavior of the E. coli K-12 and B strains at the proteomic level was performed using six-plex isobaric tandem mass tag-based quantitative MS. Additionally, the best lysis buffer for increasing the efficiency of protein extraction was selected from three tested buffers prior to the quantitative proteomic analysis. This study identifies the largest number of proteins in the two E. coli strains reported to date and is the first to show the dynamics of these proteins. Notable differences in proteins associated with key cellular properties, including some metabolic pathways, the biosynthesis and degradation of amino acids, membrane integrity, cellular tolerance, and motility, were found between the two representative strains. Compared with previous studies, these proteomic results provide a more holistic view of the overall state of E. coli cells based on a single proteomic study and reveal significant insights into why the two strains show distinct phenotypes. Additionally, the resulting data provide in-depth information that will help fine-tune processes in the future.
Shukla, Sudhir; Bhargava, Atul; Chatterjee, Avijeet; Pandey, Avinash Chandra; Mishra, Brij K
2010-01-15
Assessment of genetic diversity in a crop-breeding programme helps in the identification of diverse parental combinations to create segregating progenies with maximum genetic variability and facilitates introgression of desirable genes from diverse germplasm into the available genetic base. In the present study, 39 strains of vegetable amaranth (Amaranthus tricolor) were evaluated for eight morphological and seven quality traits for two test seasons to study the extent of genetic divergence among the strains. Multivariate analysis showed that the first four principal components contributed 67.55% of the variability. Cluster analysis grouped the strains into six clusters that displayed a wide range of diversity for most of the traits. Cluster analysis has proved to be an effective method in grouping strains that may facilitate effective management and utilisation in crop-breeding programmes. The diverse strains falling in different clusters were identified, which can be utilised in different hybridisation programmes to develop high-foliage-yielding varieties rich in nutritional components. Copyright (c) 2009 Society of Chemical Industry.
Jin, Decai; Kong, Xiao; Liu, Huijun; Wang, Xinxin; Deng, Ye; Jia, Minghong; Yu, Xiangyang
2016-06-25
A bacterial strain QH-12 isolated from activated sludge was identified as Gordonia sp. based on analysis of 16S rRNA gene sequence and was found to be capable of utilizing dibutyl phthalate (DBP) and other common phthalate esters (PAEs) as the sole carbon and energy source. The degradation kinetics of DBP under different concentrations by the strain QH-12 fit well with the modified Gompertz model (R² > 0.98). However, strain QH-12 could not utilize the major intermediate product phthalate (phthalic acid; PA) as the sole carbon and energy source, and only a little amount of PA was detected. The QH-12 genome analysis revealed the presence of putative hydrolase/esterase genes involved in PAEs-degradation but no phthalic acid catabolic gene cluster was found, suggesting that a novel degradation pathway of PAEs was present in Gordonia sp. QH-12. This information will be valuable for obtaining a more holistic understanding on diverse genetic mechanisms of PAEs-degrading Gordonia sp. strains.
A lengthy look at the daily grind: time series analysis of events, mood, stress, and satisfaction.
Fuller, Julie A; Stanton, Jeffrey M; Fisher, Gwenith G; Spitzmuller, Christiane; Russell, Steven S; Smith, Patricia C
2003-12-01
The present study investigated processes by which job stress and satisfaction unfold over time by examining the relations between daily stressful events, mood, and these variables. Using a Web-based daily survey of stressor events, perceived strain, mood, and job satisfaction completed by 14 university workers, 1,060 occasions of data were collected. Transfer function analysis, a multivariate version of time series analysis, was used to examine the data for relationships among the measured variables after factoring out the contaminating influences of serial dependency. Results revealed a contrast effect in which a stressful event associated positively with higher strain on the same day and associated negatively with strain on the following day. Perceived strain increased over the course of a semester for a majority of participants, suggesting that effects of stress build over time. Finally, the data were consistent with the notion that job satisfaction is a distal outcome that is mediated by perceived strain. ((c) 2003 APA, all rights reserved)
Genetic analysis of duck circovirus in Pekin ducks from South Korea.
Cha, S-Y; Kang, M; Cho, J-G; Jang, H-K
2013-11-01
The genetic organization of the 24 duck circovirus (DuCV) strains detected in commercial Pekin ducks from South Korea between 2011 and 2012 is described in this study. Multiple sequence alignment and phylogenetic analyses were performed on the 24 viral genome sequences as well as on 45 genome sequences available from the GenBank database. Phylogenetic analyses based on the genomic and open reading frame 2/cap sequences demonstrated that all DuCV strains belonged to genotype 1 and were designated in a subcluster under genotype 1. Analysis of the capsid protein amino acid sequences of the 24 Korean DuCV strains showed 10 substitutions compared with that of other genotype 1 strains. Our analysis showed that genotype 1 is predominant and circulating in South Korea. These present results serve as incentive to add more data to the DuCV database and provide insight to conduct further intensive study on the geographic relationships among these virus strains.
NASA Astrophysics Data System (ADS)
Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.
2016-08-01
A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.
Davis, R; Paoli, G; Mauer, L J
2012-09-01
The importance of tracking outbreaks of foodborne illness and the emergence of new virulent subtypes of foodborne pathogens have created the need for rapid and reliable sub-typing methods for Escherichia coli O157:H7. Fourier transform infrared (FT-IR) spectroscopy coupled with multivariate statistical analyses was used for sub-typing 30 strains of E. coli O157:H7 that had previously been typed by multilocus variable number tandem repeat analysis (MLVA) and pulsed field gel electrophoresis (PFGE). Hierarchical cluster analysis (HCA) and canonical variate analysis (CVA) of the FT-IR spectra resulted in the clustering of the same or similar MLVA types and separation of different MLVA types of E. coli O157:H7. The developed FT-IR method showed better discriminatory power than PFGE in sub-typing E. coli O157:H7. Results also indicated the spectral relatedness between different outbreak strains. However, the grouping of some strains was not in complete agreement with the clustering based on PFGE and MLVA. Additionally, HCA of the spectra differentiated the strains into 30 sub-clusters, indicating the high specificity and suitability of the method for strain level identification. Strains were also classified (97% correct) based on the type of Shiga toxin present using CVA of the spectra. This study demonstrated that FT-IR spectroscopy is suitable for rapid (≤16 h) and economical sub-typing of E. coli O157:H7 with comparable accuracy to MLVA typing. This is the first report of using an FT-IR-based method for sub-typing E. coli O157:H7. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples
NASA Technical Reports Server (NTRS)
Hsu, Su-Yuen; Chang, Chau-Lyan
2007-01-01
Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion
Marivirga lumbricoides sp. nov., a marine bacterium isolated from the South China Sea.
Xu, Yongle; Zhang, Rui; Li, Qipei; Liu, Keshao; Jiao, Nianzhi
2015-02-01
A novel, aerobic, heterotrophic, orange-pigmented, Gram-staining-negative, rod-shaped, gliding bacterial strain, designated JLT2000(T), was isolated from surface water of the South China Sea. The strain was oxidase- and catalase-positive. The major cellular fatty acids of strain JLT2000 T: were C12 : 0, iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 0. MK-7 was the major respiratory quinone and the major polar lipids were phosphatidylcholine and phosphatidylethanolamine. The genomic DNA G+C content of strain JLT2000(T) was 37.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JLT2000(T) formed a branch within the genus Marivirga, but was clearly separated from the two established species of this genus, Marivirga tractuosa and Marivirga sericea. The 16S rRNA gene sequence similarity of strain JLT2000(T) with the type strains of these two species was 95.8 % and 96.1 %, respectively. Strain JLT2000(T) had a shorter cell length and wider growth range in different temperatures and salinities than those of Marivirga tractuosa NBRC 15989(T) and Marivirga sericea NBRC 15983(T). In addition, strain JLT2000(T) could utilize more carbon sources and hydrolyse more polymers than Marivirga tractuosa NBRC 15989(T) and Marivirga sericea NBRC 15983(T). Based on this polyphasic analysis, strain JLT2000(T) represents a novel species of the genus Marivirga, for which the name Marivirga lumbricoides sp. nov. is proposed. The type strain is JLT2000(T) ( = JCM 18012(T) = CGMCC 1.10832(T)). © 2015 IUMS.
Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil.
Mo, Ping; Yu, Yi-Zun; Zhao, Jia-Rong; Gao, Jian
2017-03-01
An actinomycete strain, designated strain LUSFXJ T , was isolated from a soil sample obtained near the Xiangtan Manganese Mine, Central-South China and characterised using a polyphasic taxonomic approach. The 16S rRNA gene sequence-based phylogenetic analysis indicated that this strain belongs to the genus Streptomyces. The DNA-DNA relatedness between this strain and two closely related type strains, Streptomyces echinatus CGMCC 4.1642 T and Streptomyces lanatus CGMCC 4.137 T , were 28.7 ± 0.4 and 19.9 ± 2.0%, respectively, values which are far lower than the 70% threshold for the delineation of a novel prokaryotic species. The DNA G+C content of strain LUSFXJ T is 75.0 mol%. Chemotaxonomic analysis revealed that the menaquinones of strain LUSFXJ T are MK-9(H 6 ), MK-9(H 8 ), MK-9(H 2 ) and MK-8(H 8 ). The polar lipid profile of strain LUSFXJ T was found to contain diphosphatidylglycerol and an unidentified polar lipid. The major cellular fatty acids were identified as iso-C 15:0 , anteiso-C 15:0 , iso-C 16:0 , C 16:0 and Summed feature 3. Strain LUSFXJ T was found to contain meso-diaminopimelic acid as the diagnostic cell wall diamino acid and the whole cell hydrolysates were found to be rich in ribose, mannose and glucose. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, it is concluded that strain LUSFXJ T represents a novel species of the genus Streptomyces, for which the name S. xiangtanensis sp. nov. is proposed. The type strain is LUSFXJ T (=GDMCC 4.133 T = KCTC 39829 T ).
DNA homology among diverse spiroplasma strains representing several serological groups.
Lee, I M; Davis, R E
1980-11-01
Deoxyribonucleic acid (DNA) homology among 10 strains of spiroplasma associated with plants and insects was assessed by analysis of DNA-DNA hybrids with single strand specific S1 nuclease. Based on DNA homology, the spiroplasmas could be divided into three genetically distinct groups (designated I, II, and III), corresponding to three separate serogroups described previously. DNA sequence homology between the three groups was less than or equal to 5%. Based on DNA homology, group I could be divided into three subgroups (A, B, and C) that corresponded to three serological subgroups of serogroup I. Subgroup A contained Spiroplasma citri strains Maroc R8A2 and C 189; subgroup B contained strains AS 576 from honey bee and G 1 from flowers; subgroup C contained corn stunt spiroplasma strains I-747 and PU 8-17. There was 27-54% DNA sequence homology among these three subgroups. Group II contained strains 23-6 and 27-31 isolated from flowers of tulip tree (Liriodendron tulipifera L.). Group III contained strains SR 3 and SR 9, other isolates from flowers of tulip tree. Based on thermal denaturation, guanine plus cytosine contents of DNA from five type strains representing all groups and subgroups were estimated to be close to 26 mol% for group I strains, close to 25 mol% for group II strains, and close to 29 mol% for group III strains. The genome molecular weights of these five type strains were all estimated to bae about 10(9).
Gardan, Louis; Stead, David E; Dauga, Catherine; Gillis, Moniek
2003-05-01
Bacterial spot disease of lamb's lettuce [Valerianella locusta (L.) Laterr.] was first observed in fields in 1991. This new bacterial disease is localized in western France in high-technology field production of lamb's lettuce for the preparation of ready-to-use salad. Nineteen strains isolated in 1992 and 1993 from typical black leaf spots of naturally infected lamb's lettuce were characterized and compared with reference strains of Acidovorax and Delftia. The pathogenicity of the 19 strains was confirmed by artificial inoculation. Biochemical and physiological tests, fatty acid profiles, DNA-DNA hybridization and other nucleic acid-based tests were performed. A numerical taxonomic analysis of the 19 lamb's lettuce strains showed a single homogeneous phenon closely related to previously described phytopathogenic taxa of the genus Acidovorax. DNA-DNA hybridization studies showed that the lamb's lettuce strains were 91-100% related to a representative strain, strain CFBP 4730(T), and constituted a discrete DNA hybridization group, indicating that they belong to the same novel species. Results from DNA-rRNA hybridization, 16S rRNA sequence analysis and fatty acid analysis studies confirmed that this novel species belongs to the beta-subclass of the Proteobacteria and, more specifically, to the family Comamonadaceae and the genus Acidovorax. The name Acidovorax valerianellae sp. nov. is proposed for this novel taxon of phytopathogenic bacteria. The type strain is strain CFBP 4730(T) (= NCPPB 4283(T)).
Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb
Kim, Honggyu; Meng, Yifei; Klem, John F.; ...
2018-04-28
Here, we show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with our scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase inmore » strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ~1 nm, which suggest the presence of point defects.« less
Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb
NASA Astrophysics Data System (ADS)
Kim, Honggyu; Meng, Yifei; Klem, John F.; Hawkins, Samuel D.; Kim, Jin K.; Zuo, Jian-Min
2018-04-01
We show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with the scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase in strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ˜1 nm, which suggest the presence of point defects.
Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Honggyu; Meng, Yifei; Klem, John F.
Here, we show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with our scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase inmore » strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ~1 nm, which suggest the presence of point defects.« less
Laroucau, K; Lucia de Assis Santana, V; Girault, G; Martin, B; Miranda da Silveira, P P; Brasil Machado, M; Joseph, M; Wernery, R; Wernery, U; Zientara, S; Madani, N
2018-01-01
We present the first molecular characterisation based on MLVA and SNP analysis of a strain of Burkholderia mallei isolated from a mule found dead in Brazil in 2016. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of epoxy-based encapsulating materials over temperature and strain rate
NASA Astrophysics Data System (ADS)
Khan, Amnah S.; Wilgeroth, James; Balzer, Jens; Proud, William G.
2017-01-01
The highly insulating, adhesive and bonding properties of thermosetting epoxies, their ability to be injection moulded in an uncured state, as well as their presence in a wide number of composites, has resulted in their widespread use in both electrical and aerospace applications. There is thus a need to understand the compressive response of epoxies over the range of temperatures likely to be experienced within their working environment. The effects of varying strain rates and temperatures on an epoxy resin (Scotchcast 8) and an epoxy-based syntactic foam (Stycast 1090) were investigated. The samples were studied from -20 °C to +80 °C over a range of strain rates (10-4 - 10+3 s-1). Stress-strain data was obtained, with further analysis from high-speed images. Dynamic Mechanical Analysis (DMA) was also performed on the two materials. Data obtained from these experiments demonstrated key differences in the behaviour of the two materials, forming a basis for comparison with numerical simulations.
Constitutive Equation with Varying Parameters for Superplastic Flow Behavior
NASA Astrophysics Data System (ADS)
Guan, Zhiping; Ren, Mingwen; Jia, Hongjie; Zhao, Po; Ma, Pinkui
2014-03-01
In this study, constitutive equations for superplastic materials with an extra large elongation were investigated through mechanical analysis. From the view of phenomenology, firstly, some traditional empirical constitutive relations were standardized by restricting some strain paths and parameter conditions, and the coefficients in these relations were strictly given new mechanical definitions. Subsequently, a new, general constitutive equation with varying parameters was theoretically deduced based on the general mechanical equation of state. The superplastic tension test data of Zn-5%Al alloy at 340 °C under strain rates, velocities, and loads were employed for building a new constitutive equation and examining its validity. Analysis results indicated that the constitutive equation with varying parameters could characterize superplastic flow behavior in practical superplastic forming with high prediction accuracy and without any restriction of strain path or deformation condition, showing good industrial or scientific interest. On the contrary, those empirical equations have low prediction capabilities due to constant parameters and poor applicability because of the limit of special strain path or parameter conditions based on strict phenomenology.
De Groot, Anne S; Martin, William; Moise, Leonard; Guirakhoo, Farshad; Monath, Thomas
2007-11-19
T-cell epitope variability is associated with viral immune escape and may influence the outcome of vaccination against the highly variable Japanese Encephalitis Virus (JEV). We computationally analyzed the ChimeriVax-JEV vaccine envelope sequence for T helper epitopes that are conserved in 12 circulating JEV strains and discovered 75% conservation among putative epitopes. Among non-identical epitopes, only minor amino acid changes that would not significantly affect HLA-binding were present. Therefore, in most cases, circulating strain epitopes could be restricted by the same HLA and are likely to stimulate a cross-reactive T-cell response. Based on this analysis, we predict no significant abrogation of ChimeriVax-JEV-conferred protection against circulating JEV strains.
Yang, Bo Ra; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Park, Vivian Y; Kwak, Jin Young
2018-04-01
To evaluate qualitative and semiquantitative elastography for the diagnosis of intermediate suspicious thyroid nodules based on the 2015 American Thyroid Association (ATA) guidelines. Through a retrospective search of our institutional database, 746 solid thyroid nodules found on grayscale ultrasonography, strain elastography, and ultrasound-guided fine-needle aspiration between June and November 2009 were collected. Among them, 80 nodules from 80 patients with an intermediate suspicion of malignancy based on the 2015 ATA guidelines that were 10 mm or larger were recruited as the final study nodules. Elastographic findings were categorized according to the criteria of Rago et al (J Clin Endocrinol Metab 2007; 92:2917-2922) and Asteria et al (Thyroid 2008; 18:523-531), and strain ratio values were calculated and recorded. The independent 2-sample t test and χ 2 test (or Fisher exact test) were used to evaluate differences in clinical parameters between benign and malignant thyroid nodules. All variables were compared by univariate and multivariate logistic regression analyses, and odds ratios with 95% confidence intervals were calculated. Of the 80 nodules, 6 (7.5%) were malignant, and 74 (92.5%) were benign. No significant differences were observed in age, sex, nodule size, elasticity score, and strain ratio between benign and malignant nodules. No variables significantly predicted thyroid malignancy on the univariate analysis. On the multivariate logistic regression analysis, there were no independent variables associated with thyroid malignancy, including the elasticity score and strain ratio (all P > .05). Elastographic analysis using the elasticity score and strain ratio has limited ability to characterize the benignity or malignancy of thyroid nodules with an intermediate suspicion of malignancy based on the 2015 ATA guidelines. © 2017 by the American Institute of Ultrasound in Medicine.
What constitutes an Arabian Helicobacter pylori? Lessons from comparative genomics.
Kumar, Narender; Albert, M John; Al Abkal, Hanan; Siddique, Iqbal; Ahmed, Niyaz
2017-02-01
Helicobacter pylori, the human gastric pathogen, causes a variety of gastric diseases ranging from mild gastritis to gastric cancer. While the studies on H. pylori are dominated by those based on either East Asian or Western strains, information regarding H. pylori strains prevalent in the Middle East remains scarce. Therefore, we carried out whole-genome sequencing and comparative analysis of three H. pylori strains isolated from three native Arab, Kuwaiti patients. H. pylori strains were sequenced using Illumina platform. The sequence reads were filtered and draft genomes were assembled and annotated. Various pathogenicity-associated regions and phages present within the genomes were identified. Phylogenetic analysis was carried out to determine the genetic relatedness of Kuwaiti strains to various lineages of H. pylori. The core genome content and virulence-related genes were analyzed to assess the pathogenic potential. The three genomes clustered along with HpEurope strains in the phylogenetic tree comprising various H. pylori lineages. A total of 1187 genes spread among various functional classes were identified in the core genome analysis. The three genomes possessed a complete cagPAI and also retained most of the known outer membrane proteins as well as virulence-related genes. The cagA gene in all three strains consisted of an AB-C type EPIYA motif. The comparative genomic analysis of Kuwaiti H. pylori strains revealed a European ancestry and a high pathogenic potential. © 2016 John Wiley & Sons Ltd.
Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel
NASA Astrophysics Data System (ADS)
Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar
2017-12-01
In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.
Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V
2018-04-01
Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of High Cordycepin-Producing Cordyceps militaris Strains.
Kang, Naru; Lee, Hyun-Hee; Park, Inmyoung; Seo, Young-Su
2017-03-01
Cordyceps militaris , known as Dong-Chong-Xia-Cao, produces the most cordycepin among Cordyceps species and can be cultured artificially. For these reasons, C. militaris is widely used as herb or functional food in the East Asia. In this study, we developed a new strain of C. militaris that produces higher cordycepin content than parent strains through mating-based sexual reproduction. Twenty parent strains were collected and identified as C. militaris based on internal trasncrived spacer and rDNA sequences. Seven single spores of MAT 1-1 idiomorph and five single spores of MAT 1-2 idiomorph were isolated from 12 parent strains. When 35 combinations were mated on the brown rice medium with the isolated single spores, eight combinations formed a stroma with a normal perithecia and confirmed mated strains. High pressure liquid chromatography analysis showed that mated strain KSP8 produced the most cordycepin in all the media among all the tested strains. This result showed due to genetic recombination occurring during the sexual reproduction of C. militaris . The development of C. militaris strain with increased cordycepin content by this approach can help not only to generate new C. militaris strains, but also to contribute to the health food or medicine industry.
Development of High Cordycepin-Producing Cordyceps militaris Strains
Kang, Naru; Lee, Hyun-Hee; Park, Inmyoung
2017-01-01
Cordyceps militaris, known as Dong-Chong-Xia-Cao, produces the most cordycepin among Cordyceps species and can be cultured artificially. For these reasons, C. militaris is widely used as herb or functional food in the East Asia. In this study, we developed a new strain of C. militaris that produces higher cordycepin content than parent strains through mating-based sexual reproduction. Twenty parent strains were collected and identified as C. militaris based on internal trasncrived spacer and rDNA sequences. Seven single spores of MAT 1-1 idiomorph and five single spores of MAT 1-2 idiomorph were isolated from 12 parent strains. When 35 combinations were mated on the brown rice medium with the isolated single spores, eight combinations formed a stroma with a normal perithecia and confirmed mated strains. High pressure liquid chromatography analysis showed that mated strain KSP8 produced the most cordycepin in all the media among all the tested strains. This result showed due to genetic recombination occurring during the sexual reproduction of C. militaris. The development of C. militaris strain with increased cordycepin content by this approach can help not only to generate new C. militaris strains, but also to contribute to the health food or medicine industry. PMID:28435352
DeBoy, Robert T; Mongodin, Emmanuel F; Emerson, Joanne B; Nelson, Karen E
2006-04-01
In the present study, the chromosomes of two members of the Thermotogales were compared. A whole-genome alignment of Thermotoga maritima MSB8 and Thermotoga neapolitana NS-E has revealed numerous large-scale DNA rearrangements, most of which are associated with CRISPR DNA repeats and/or tRNA genes. These DNA rearrangements do not include the putative origin of DNA replication but move within the same replichore, i.e., the same replicating half of the chromosome (delimited by the replication origin and terminus). Based on cumulative GC skew analysis, both the T. maritima and T. neapolitana lineages contain one or two major inverted DNA segments. Also, based on PCR amplification and sequence analysis of the DNA joints that are associated with the major rearrangements, the overall chromosome architecture was found to be conserved at most DNA joints for other strains of T. neapolitana. Taken together, the results from this analysis suggest that the observed chromosomal rearrangements in the Thermotogales likely occurred by successive inversions after their divergence from a common ancestor and before strain diversification. Finally, sequence analysis shows that size polymorphisms in the DNA joints associated with CRISPRs can be explained by expansion and possibly contraction of the DNA repeat and spacer unit, providing a tool for discerning the relatedness of strains from different geographic locations.
Xiao, Yinghua; Wagendorp, Arjen; Moezelaar, Roy; Abee, Tjakko
2012-01-01
Of 98 suspected food-borne Clostridium perfringens isolates obtained from a nationwide survey by the Food and Consumer Product Safety Authority in The Netherlands, 59 strains were identified as C. perfringens type A. Using PCR-based techniques, the cpe gene encoding enterotoxin was detected in eight isolates, showing a chromosomal location for seven isolates and a plasmid location for one isolate. Further characterization of these strains by using (GTG)5 fingerprint repetitive sequence-based PCR analysis distinguished C. perfringens from other sulfite-reducing clostridia but did not allow for differentiation between various types of C. perfringens strains. To characterize the C. perfringens strains further, multilocus sequence typing (MLST) analysis was performed on eight housekeeping genes of both enterotoxic and non-cpe isolates, and the data were combined with a previous global survey covering strains associated with food poisoning, gas gangrene, and isolates from food or healthy individuals. This revealed that the chromosomal cpe strains (food strains and isolates from food poisoning cases) belong to a distinct cluster that is significantly distant from all the other cpe plasmid-carrying and cpe-negative strains. These results suggest that different groups of C. perfringens have undergone niche specialization and that a distinct group of food isolates has specific core genome sequences. Such findings have epidemiological and evolutionary significance. Better understanding of the origin and reservoir of enterotoxic C. perfringens may allow for improved control of this organism in foods. PMID:22865060
Temple, Brian; Kwara, Awewura; Sunesara, Imran; Mena, Leandro; Dobbs, Thomas; Henderson, Harold; Holcomb, Mike; Webb, Risa
2011-12-01
The objective of this study was to investigate risk factors associated with tuberculosis (TB) transmission that was caused by Mycobacterium tuberculosis strain MS0006 from 2004 to 2009 in Hinds County, Mississippi. DNA fingerprinting using spoligotyping, mycobacterial interspersed repetitive unit, and IS6110-based restriction fragment length polymorphism of culture-confirmed cases of TB was performed. Clinical and demographic factors associated with strain MS0006 were analyzed by univariate and multivariate analysis. Of the 144 cases of TB diagnosed during the study period, 117 were culture positive with fingerprints available. There were 48 different strains, of which 6 clustered strains were distributed among 74 patients. The MS0006 strain accounted for 46.2% of all culture-confirmed cases. Risk factors for having the MS0006 strain in a univariate analysis included homelessness, HIV co-infection, sputum smear negativity, tuberculin skin test negativity, and noninjectable drug use. Multivariate analysis identified homelessness (odds ratio 7.88, 95% confidence interval 2.90-21.35) and African American race (odds ratio 5.80, 95% confidence interval 1.37-24.55) as independent predictors of having TB caused by the MS0006 strain of M. tuberculosis. Our findings suggest that a majority of recently transmitted TB in the studied county was caused by the MS0006 strain. African American race and homelessness were significant risk factors for inclusion in the cluster. Molecular epidemiology techniques continue to provide in-depth analysis of disease transmission and play a vital role in effective contact tracing and interruption of ongoing transmission.
2010-01-01
Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602
X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC
NASA Astrophysics Data System (ADS)
Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.
2013-07-01
This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.
Zhu, Ruo-Lin; Zhang, Qi-Ya
2014-04-01
Paralichthys olivaceus rhabdovirus (PORV), which is associated with high mortality rates in flounder, was isolated in China in 2005. Here, we provide an annotated sequence record of PORV, the genome of which comprises 11,182 nucleotides and contains six genes in the order 3'-N-P-M-G-NV-L-5'. Phylogenetic analysis based on glycoprotein sequences of PORV and other rhabdoviruses showed that PORV clusters with viral haemorrhagic septicemia virus (VHSV), genus Novirhabdovirus, family Rhabdoviridae. Further phylogenetic analysis of the combined amino acid sequences of six proteins of PORV and VHSV strains showed that PORV clusters with Korean strains and is closely related to Asian strains, all of which were isolated from flounder. In a comparison in which the sequences of the six proteins were combined, PORV shared the highest identity (98.3 %) with VHSV strain KJ2008 from Korea.
Metabolomic tools for secondary metabolite discovery from marine microbial symbionts.
Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Martinez, Ignacio Juarez; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadam; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie
2014-06-05
Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.
Microbacterium horti sp. nov., a bacterium isolated from Cucurbita maxima cultivating soil.
Akter, Shahina; Park, Jae Hee; Yin, Chang Shik
2016-04-01
A novel bacterial strain THG-SL1(T) was isolated from a soil sample of Cucurbita maxima garden and was characterized by using a polyphasic approach. Cells were Gram-reaction-positive, non-motile and rod-shaped. The strain was aerobic, catalase positive and weakly positive for oxidase. Phylogenetic analysis based on 16S rRNA gene sequence analysis but it shared highest similarity with Microbacterium ginsengisoli KCTC 19189(T) (96.6 %), indicating that strain THG-SL1(T) belongs to the genus Microbacterium. The DNA G + C content of the isolate was 68.9 mol %. The major fatty acids were anteiso-C15: 0 (39.7 %), anteiso-C17: 0 (24.4 %) and iso-C16: 0 (18.5 %). The major polar lipids of strain THG-SL1(T) were phosphatidylglycerol (PG) and an unidentified glycolipid (GL). The predominant respiratory isoprenoid quinones were menaquinone-11 and menaquinone-12. The diamino acid in the cell-wall peptidoglycan was ornithine. Based on the results of polyphasic characterization, strain THG-SL1(T) represented a novel species within the genus Microbacterium, for which the name Microbacterium horti sp. nov. is proposed. The type strain is THG-SL1(T) (=KACC 18286(T)=CCTCC AB 2015117(T)).
Vibrio hippocampi sp. nov., a new species isolated from wild seahorses (Hippocampus guttulatus).
Balcázar, José Luis; Pintado, José; Planas, Miquel
2010-06-01
A Gram-negative, facultatively anaerobic, motile and slightly curved rod-shaped bacterium (BFLP-4(T)) was isolated from the faeces of wild seahorses (Hippocampus guttulatus) captured in northwest Spain (Toralla, Galicia). Strain BFLP-4(T) grew at 10-35 degrees C and pH 5-9 (optimally at 20 degrees C and pH 7.2) and at salt concentrations in the range 0-7% w/v NaCl. The G+C content of the DNA was 49.3 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain BFLP-4(T) was a member of the genus Vibrio, being most closely related to Vibrio ichthyoenteri (97.1%), Vibrio mediterranei (96.7%), Vibrio scophthalmi (96.7%) and Vibrio sinaloensis (96.6%). A phylogenetic analysis based on recA gene sequences also supported the affiliation of strain BFLP-4(T) to the genus Vibrio. Strain BFLP-4(T) could be readily differentiated from other closely related species by several phenotypic properties and fatty acid profiles. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BFLP-4(T) represents a novel species within the genus Vibrio, for which the name Vibrio hippocampi sp. nov. is proposed. The type strain is BFLP-4(T) (=DSM 22717(T)=LMG 25354(T)).
Bosi, Emanuele; Monk, Jonathan M.; Aziz, Ramy K.; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø.
2016-01-01
Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus. These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world. PMID:27286824
Disentangling the causal relationships between work-home interference and employee health.
van Hooff, Madelon L M; Geurts, Sabine A E; Taris, Toon W; Kompier, Michiel A J; Dikkers, Josje S E; Houtman, Irene L D; van den Heuvel, Floor M M
2005-02-01
The present study was designed to investigate the causal relationships between (time- and strain-based) work-home interference and employee health. The effort-recovery theory provided the theoretical basis for this study. Two-phase longitudinal data (with a 1-year time lag) were gathered from 730 Dutch police officers to test the following hypotheses with structural equation modeling: (i) work-home interference predicts health deterioration, (ii) health complaints precede increased levels of such interference, and (iii) both processes operate. The relationship between stable and changed levels of work-home interference across time and their relationships with the course of health were tested with a group-by-time analysis of variance. Four subgroups were created that differed in starting point and the development of work-home interference across time. The normal causal model, in which strain-based (but not time-based) work-home interference was longitudinally related to increased health complaints 1 year later, fit the data well and significantly better than the reversed causal model. Although the reciprocal model also provided a good fit, it was less parsimonious than the normal causal model. In addition, both an increment in (strain-based) work-home interference across time and a long-lasting experience of high (strain-based) work-home interference were associated with a deterioration in health. It was concluded that (strain-based) work-home interference acts as a precursor of health impairment and that different patterns of (strain-based) work-home interference across time are related to different health courses. Particularly long-term experience of (strain-based) work-home interference seems responsible for an accumulation of health complaints.
New Insights into the Diversity of the Genus Faecalibacterium.
Benevides, Leandro; Burman, Sriti; Martin, Rebeca; Robert, Véronique; Thomas, Muriel; Miquel, Sylvie; Chain, Florian; Sokol, Harry; Bermudez-Humaran, Luis G; Morrison, Mark; Langella, Philippe; Azevedo, Vasco A; Chatel, Jean-Marc; Soares, Siomar
2017-01-01
Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium , but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium . For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii , which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated α values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii , but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.
Jin, Lei; Zhang, Xiaojun; Sun, Xiumei; Shi, Hui; Li, Tiejun
2014-10-01
A strain, designated as FM-6, was isolated from fish. Based on the results of phenotypic, physiological characteristics, genotypic and phylogenetic analysis, strain FM-6 was finally identified as Paenibacillus sp. When albendazole was provided as the sole carbon source, strain FM-6 could grow and transform albendazole. About 82.7 % albendazole (50 mg/L) was transformed by strain FM-6 after 5 days incubation at 30 °C, 160 rpm. With HPLC-MS method, the transforming product of albendazole was researched. Based on the molecular weight and the retention time, product was identified as albendazole sulfoxide and the transforming pathway of albendazole by strain FM-6 was proposed finally. The optimum temperature and pH for the bacterium growth and albendazole transformation by strain FM-6 were both 30 °C and 7.0. Moreover, the optimum concentration of albendazole for the bacterium growth was 50 mg/L. Coupled with practical production, 50 mg/L was the optimum concentration of albendazole transformation for strain FM-6. This study highlights an important potential use of strain FM-6 for producing albendazole sulfoxide.
Brittleness of twig bases in the genus Salix: fracture mechanics and ecological relevance.
Beismann, H; Wilhelmi, H; Baillères, H; Spatz, H C; Bogenrieder, A; Speck, T
2000-03-01
The twig bases within the genus Salix were investigated. Brittleness of twig bases as defined in the literature neither correlates with Young's modulus nor with growth strains, which were measured for S. alba, S. fragilis and S. x rubens. For the species S. alba, S. appendiculata, S. eleagnos, S. fragilis, S. purpurea, S. triandra, S. viminalis, and S. x rubens, fracture surfaces of broken twigs were investigated and semiquantitatively described in terms of 'relative roughness' (ratio of rough area of fracture surface over whole area of fracture surface). The relative roughness clearly corresponds with the classification into brittle and nonbrittle species given in the literature. An attempt was made to quantify brittleness with mechanical tests. The absolute values of stress and strain do not correlate with the brittleness of the twig bases as defined by the relative roughness. However, the 'index stress' (ratio of stress at yield over stress at fracture) or the 'index strain' (ratio of strain at yield over strain at fracture), correlate well with the relative roughness. The graphic analysis of index stress against index strain reveals a straight line on which the eight species are ordered according to their brittleness. Depending on growth form and habitat, brittle twig bases of willows may function ecologically as mechanical safety mechanisms and, additionally, as a propagation mechanism.
Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae
Oshima, Kenshiro; Yoshizaki, Mariko; Kawanishi, Michiko; Nakaya, Kohei; Suzuki, Takehito; Miyauchi, Eiji; Ishii, Yasuo; Tanabe, Soichi; Murakami, Masaru; Hattori, Masahira
2011-01-01
Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish. PMID:21829716
Use of 16S-23S rRNA spacer-region (SR)-PCR for identification of intestinal clostridia.
Song, Yuli; Liu, Chengxu; Molitoris, Denise; Tomzynski, Thomas J; Mc Teague, Maureen; Read, Erik; Finegold, Sydney M
2002-12-01
The suitability of a species identification technique based on PCR analysis of 16S-23S rRNA spacer region (SR) polymorphism for human intestinal Clostridium species was evaluated. This SR-PCR based technique is highly reproducible and successfully differentiated the strains tested, which included 17 ATCC type strains of Clostridium and 152 human stool Clostridium isolates, at the species or intraspecies level. Ninety-eight of 152 stool isolates, including C. bifermentans, C. butyricum, C. cadaveris, C. orbiscindens, C. paraputrificum, C. pefringens, C. ramosum, C. scindens, C. spiroforme, C. symbiosum and C. tertium, were identified to species level by SR-PCR patterns that were identical to those of their corresponding ATCC type strains. The other 54 stool isolates distributed among ten SR-PCR patterns that are unique and possibly represent ten novel Clostridium species or subspecies. The species identification obtained by SR-PCR pattern analysis completely agreed with that obtained by 16S rRNA sequencing, and led to identification that clearly differed from that obtained by cellular fatty acid analysis for 23/152 strains (15%). These results indicate that SR-PCR provides an accurate and rapid molecular method for the identification of human intestinal Clostridium species.
Haptic Edge Detection Through Shear
NASA Astrophysics Data System (ADS)
Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent
2016-03-01
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.
Haptic Edge Detection Through Shear
Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent
2016-01-01
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals. PMID:27009331
Haptic Edge Detection Through Shear.
Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent
2016-03-24
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.
Thalassospira indica sp. nov., isolated from deep seawater.
Liu, Yang; Lai, Qiliang; Du, Juan; Sun, Fengqin; Shao, Zongze
2016-12-01
A taxonomic study using a polyphasic approach was carried out on strain PB8BT, which was isolated from the deep water of the Indian Ocean. Cells of the bacterium were Gram-stain-negative, oxidase- and catalase-positive, curved rods and motile. Growth was observed at salinities of 0-15 % and at temperatures of 10-41°C. The isolate could reduce nitrate to nitrite and degrade Tween 80, but not degrade gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PB8BT belonged to the genus Thalassospira, with the highest sequence similarity to the closely related type strain Thalassospira tepidiphila 1-1BT (99.7 %), followed by Thalassospira profundimaris WP0211T (99.6 %). Multilocus sequence analysis demonstrated low similarities of 94.1 and 93.7 % between strain PB8BT and the two reference type strains. Digital DNA-DNA hybridization values between strain PB8BT and the two above-mentioned type strains were, respectively, 56.3 and 55.3 %. The principal fatty acids of strain PB8BT were C18 : 1ω6c/C18 : 1ω7c, C19 : 0 cyclo ω8c and C16 : 0. The G+C content of the chromosomal DNA was 54.9 mol%. The quinone was determined to be Q-10 (100 %). Phosphatidylglycerol, phosphatidylethanolamine, and several unidentified phospholipids and lipids were present. Based on phenotypic and genotypic characteristics, strain PB8BT represents a novel species within the genus Thalassospira, for which the name Thalassospira indica sp. nov. is proposed. The type strain of the novel species is PB8BT (=MCCC 1A01103T=LMG 29620T).
Marked Genomic Diversity of Norovirus Genogroup I Strains in a Waterborne Outbreak
Hannoun, Charles; Larsson, Charlotte U.; Bergström, Tomas
2012-01-01
Marked norovirus (NoV) diversity was detected in patient samples from a large community outbreak of gastroenteritis with waterborne epidemiology affecting approximately 2,400 people. NoV was detected in 33 of 50 patient samples examined by group-specific real-time reverse transcription-PCR. NoV genotype I (GI) strains predominated in 31 patients, with mixed GI infections occurring in 5 of these patients. Sequence analysis of RNA-dependent polymerase-N/S capsid-coding regions (∼900 nucleotides in length) confirmed the dominance of the GI strains (n = 36). Strains of NoV GI.4 (n = 21) and GI.7 (n = 9) were identified, but six strains required full capsid amino acid analyses (530 to 550 amino acids) based on control sequencing of cloned amplicons before the virus genotype could be determined. Three strains were assigned to a new NoV GI genotype, proposed as GI.9, based on capsid amino acid analyses showing 26% dissimilarity from the established genotypes GI.1 to GI.8. Three other strains grouped in a sub-branch of GI.3 with 13 to 15% amino acid dissimilarity to GI.3 GenBank reference strains. Phylogenetic analysis (2.1 kb) of 10 representative strains confirmed these genotype clusters. Strains of NoV GII.4 (n = 1), NoV GII.6 (n = 2), sapovirus GII.2 (n = 1), rotavirus (n = 3), adenovirus (n = 1), and Campylobacter spp. (n = 2) were detected as single infections or as mixtures with NoV GI. Marked NoV GI diversity detected in patients was consistent with epidemiologic evidence of waterborne NoV infections, suggesting human fecal contamination of the water supply. Recognition of NoV diversity in a cluster of patients provided a useful warning marker of waterborne contamination in the Lilla Edet outbreak. PMID:22247153
NASA Astrophysics Data System (ADS)
Randau, C.; Brokmeier, H. G.; Gan, W. M.; Hofmann, M.; Voeller, M.; Tekouo, W.; Al-hamdany, N.; Seidl, G.; Schreyer, A.
2015-09-01
The materials science neutron diffractometer STRESS-SPEC located at FRM II is a dedicated instrument for strain and pole figure measurements. Both methods make complementary demands on sample handling. On one hand pole figure measurements need a high degree of freedom to orient small samples and on the other hand in strain investigations it is often necessary to handle large and heavy components. Therefore a robot based sample positioning system was developed, which has the capability to provide both possibilities. Based on this new robot system further developments like a full automated sample changer system for texture measurements were accomplished. Moreover this system opens the door for combined strain and texture analysis at STRESS-SPEC.
Deryabina, D G; Efremova, L V; Karimov, I F; Manukhov, I V; Gnuchikh, E Yu; Miroshnikov, S A
2016-01-01
A comparative analysis of the four commercially available and laboratory luminescent sensor strains to the toxic effect of 10 carbon-based nanomatherials (CBNs) and 10 metal nanoparticles (MNPs) was carried out in this study. The bioluminescence inhibition assays with marine Photobacterium phosphoreum and recombinant Escherichia coli strains were varied in minimal toxic concentrations and EC50 values but led to well correlated biotoxicity evaluation for the most active compounds were ranked as Cu > (MgO, CuO) > (fullerenol, graphene oxide). The novel sensor strain Bacillus subtilis EG 168-1 exhibited the highest sensitivity to CBNs and MNPs that increased significantly number of toxic compounds causing the bacterial bioluminescence inhibition effect.
StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.
Zheng, Wenning; Tan, Tze King; Paterson, Ian C; Mutha, Naresh V R; Siow, Cheuk Chuen; Tan, Shi Yang; Old, Lesley A; Jakubovics, Nicholas S; Choo, Siew Woh
2016-01-01
The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.
Candida olivae sp. nov., a novel yeast species from 'Greek-style' black olive fermentation.
Nisiotou, Aspasia A; Panagou, Efstathios Z; Nychas, George-John E
2010-05-01
Two yeast strains (FMCC Y-1(T) and FMCC Y-2) were recovered during a survey of the yeast biota associated with fermenting black olives, collected from an olive tree (Olea europaea L. cv. 'Conservolea') orchard in Central Greece. Phylogenetic analysis based on rRNA gene sequences (18S, 26S, and 5.8S-ITS) indicated that the two strains represent a separate species within the Candida membranifaciens clade, in close relation to Candida blattariae NRRL Y-27703(T). Electrophoretic karyotyping and physiological analysis support the affiliation of the two strains to a novel species as Candida olivae sp. nov. The novel strains are conspecific with two Candida sp. strains previously isolated from the Mid-Atlantic Ridge hydrothermal fields [Gadanho & Sampaio (2005). Microb Ecol 50, 408-417], indicating that Candida olivae sp. nov. may occupy diverse ecological niches. FMCC Y-1(T) (=CBS 11171(T) =ATCC MYA-4568(T)) is the type strain.
Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka
2013-03-01
Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.
Murros-Kontiainen, Anna; Johansson, Per; Niskanen, Taina; Fredriksson-Ahomaa, Maria; Korkeala, Hannu; Björkroth, Johanna
2011-10-01
The taxonomic position of three strains from water, soil and lettuce samples was studied by using a polyphasic taxonomic approach. The strains were reported to lack the virulence-encoding genes inv and virF in a previous study. Controversially, API 20 E and some other phenotypic tests suggested that the strains belong to Yersinia pseudotuberculosis, which prompted this polyphasic taxonomic study. In both the phylogenetic analyses of four housekeeping genes (glnA, gyrB, recA and HSP60) and numerical analyses of HindIII and EcoRI ribopatterns, the strains formed a separate group within the genus Yersinia. Analysis of the 16S rRNA gene sequences showed that the strains were related to Yersinia aldovae and Yersinia mollaretii, but DNA-DNA hybridization analysis differentiated them from these species. Based on the results of the phylogenetic and DNA-DNA hybridization analyses, a novel species, Yersinia pekkanenii sp. nov., is proposed. The type strain is ÅYV7.1KOH2(T) ( = DSM 22769(T) = LMG 25369(T)).
Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain.
Ma, Yuping; Wang, Xiaoyu; Nie, Xueling; Zhang, Zhan; Yang, Zongcan; Nie, Cong; Tang, Hongzhi
2016-08-01
In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.
Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A
2015-09-01
Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum.
Su, Fei; Xu, Ping
2014-01-29
Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.
Su, Fei; Xu, Ping
2014-01-01
Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species. PMID:24473268
Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe
2017-06-01
Here, we provide the dataset associated with our research article 'label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.' (Murugaiyan et al., 2017) [1]. This dataset describes liquid chromatography-mass spectrometry (LC-MS)-based protein identification and quantification of a non-infectious strain, Prototheca zopfii genotype 1 and two strains associated with severe and mild infections, respectively, P. zopfii genotype 2 and Prototheca blaschkeae . Protein identification and label-free quantification was carried out by analysing MS raw data using the MaxQuant-Andromeda software suit. The expressional level differences of the identified proteins among the strains were computed using Perseus software and the results were presented in [1]. This DiB provides the MaxQuant output file and raw data deposited in the PRIDE repository with the dataset identifier PXD005305.
Gayathri, Manickam; Shunmugam, Sumathy; Mugasundari, Arumugam Vanmathi; Rahman, Pattanathu K S M; Muralitharan, Gangatharan
2018-01-01
The efficiency of cyanobacterial strains as biodiesel feedstock varies with the dwelling habitat. Fourteen indigenous heterocystous cyanobacterial strains from rice field ecosystem were screened based on growth kinetic and fuel parameters. The highest biomass productivity was obtained in Nostoc punctiforme MBDU 621 (19.22mg/L/day) followed by Calothrix sp. MBDU 701 (13.43mg/L/day). While lipid productivity and lipid content was highest in Nostoc spongiaeforme MBDU 704 (4.45mg/L/day and 22.5%dwt) followed by Calothrix sp. MBDU 701 (1.54mg/L/day and 10.75%dwt). Among the tested strains, Nostoc spongiaeforme MBDU 704 and Nostoc punctiforme MBDU 621 were selected as promising strains for good quality biodiesel production by Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Gnat, Sebastian; Trościańczyk, Aleksandra; Adaszek, Łukasz
2017-01-01
The aim of this study was to characterize multidrug resistant E. faecalis strains from pigs of local origin and to analyse the relationship between resistance and genotypic and proteomic profiles by amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI -TOF MS). From the total pool of Enterococcus spp. isolated from 90 pigs, we selected 36 multidrug resistant E. faecalis strains, which represented three different phenotypic resistance profiles. Phenotypic resistance to tetracycline, macrolides, phenicols, and lincomycin and high-level resistance to aminoglycosides were confirmed by the occurrence of at least one corresponding resistance gene in each strain. Based on the analysis of the genotypic and phenotypic resistance of the strains tested, five distinct resistance profiles were generated. As a complement of this analysis, profiles of virulence genes were determined and these profiles corresponded to the phenotypic resistance profiles. The demonstration of resistance to a wide panel of antimicrobials by the strains tested in this study indicates the need of typing to determine the spread of resistance also at the local level. It seems that in the case of E. faecalis, type and scope of resistance strongly determines the genotypic pattern obtained with the ADSRRS-fingerprinting method. The ADSRRS-fingerprinting analysis showed consistency of the genetic profiles with the resistance profiles, while analysis of data with the use of the MALDI- TOF MS method did not demonstrate direct reproduction of the clustering pattern obtained with this method. Our observations were confirmed by statistical analysis (Simpson’s index of diversity, Rand and Wallace coefficients). Even though the MALDI -TOF MS method showed slightly higher discrimination power than ADSRRS-fingerprinting, only the latter method allowed reproduction of the clustering pattern of isolates based on phenotypic resistance and analysis of resistance and virulence genes (Wallace coefficient 1.0). This feature seems to be the most useful for epidemiological purposes and short-term analysis. PMID:28135327
X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method
NASA Astrophysics Data System (ADS)
Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo
2017-12-01
Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.
Tsuji, Masaharu; Yokota, Yuji; Kudoh, Sakae; Hoshino, Tamotsu
2015-06-01
Milk fat curdle is difficult to remove from sewage. In an attempt to identify an appropriate agent for bio-remediation of milk fat curdle, Mrakia strains were collected from the Skarvsnes ice-free area of Antarctica. A total of 27 strains were isolated and tested for their ability to decompose milk fat at temperatures ranging from 4°C to 15°C. All strains could decompose milk fat at 4°C and 10°C. Phylogenetic analysis and comparison of the decomposition ability of milk fat (DAMF) revealed that the DAMF may be useful for predicting the outcome of phylogenetic analysis based on ITS sequences. Copyright © 2015 Elsevier Inc. All rights reserved.
Grubb, Stephen C.; Maddatu, Terry P.; Bult, Carol J.; Bogue, Molly A.
2009-01-01
The Mouse Phenome Database (MPD; http://www.jax.org/phenome) is an open source, web-based repository of phenotypic and genotypic data on commonly used and genetically diverse inbred strains of mice and their derivatives. MPD is also a facility for query, analysis and in silico hypothesis testing. Currently MPD contains about 1400 phenotypic measurements contributed by research teams worldwide, including phenotypes relevant to human health such as cancer susceptibility, aging, obesity, susceptibility to infectious diseases, atherosclerosis, blood disorders and neurosensory disorders. Electronic access to centralized strain data enables investigators to select optimal strains for many systems-based research applications, including physiological studies, drug and toxicology testing, modeling disease processes and complex trait analysis. The ability to select strains for specific research applications by accessing existing phenotype data can bypass the need to (re)characterize strains, precluding major investments of time and resources. This functionality, in turn, accelerates research and leverages existing community resources. Since our last NAR reporting in 2007, MPD has added more community-contributed data covering more phenotypic domains and implemented several new tools and features, including a new interactive Tool Demo available through the MPD homepage (quick link: http://phenome.jax.org/phenome/trytools). PMID:18987003
Production of macrolide antibiotics from a cytotoxic soil Streptomyces sp. strain ZDB.
Dame, Zerihun T; Ruanpanun, Pornthip
2017-07-01
Crude extract from a culture of a soil Streptomyces sp. strain ZDB showed toxicity towards Artemia salina and antimicrobial activity against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Chlorella vulgaris, and Chlorella sorokiniana. Large scale fermentation of the strain led to the isolation of the macrolide antibiotics, bafilomycins A1 (1), B1 (2), and D (3) together with nonactic acid (4) and bostrycoidin-9-methyl ether (5). Structures of the antibiotics were determined based on spectral data analysis. We describe the isolation of the compounds and characterization of the producing strain.
Differentiation of aflatoxigenic and non-aflatoxigenic strains of Aspergilli by FT-IR spectroscopy.
Atkinson, Curtis; Pechanova, Olga; Sparks, Darrell L; Brown, Ashli; Rodriguez, Jose M
2014-01-01
Fourier transform infrared spectroscopy (FT-IR) is a well-established and widely accepted methodology to identify and differentiate diverse microbial species. In this study, FT-IR was used to differentiate 20 strains of ubiquitous and agronomically important phytopathogens of Aspergillus flavus and Aspergillus parasiticus. By analyzing their spectral profiles via principal component and cluster analysis, differentiation was achieved between the aflatoxin-producing and nonproducing strains of both fungal species. This study thus indicates that FT-IR coupled to multivariate statistics can rapidly differentiate strains of Aspergilli based on their toxigenicity.
Li, Lei; Wong, Hin-chung; Nong, Wenyan; Cheung, Man Kit; Law, Patrick Tik Wan; Kam, Kai Man; Kwan, Hoi Shan
2014-12-18
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium. Infections with the bacterium could become systemic and can be life-threatening to immunocompromised individuals. Genome sequences of a few clinical isolates of V. parahaemolyticus are currently available, but the genome dynamics across the species and virulence potential of environmental strains on a genome-scale have not been described before. Here we present genome sequences of four V. parahaemolyticus clinical strains from stool samples of patients and five environmental strains in Hong Kong. Phylogenomics analysis based on single nucleotide polymorphisms revealed a clear distinction between the clinical and environmental isolates. A new gene cluster belonging to the biofilm associated proteins of V. parahaemolyticus was found in clincial strains. In addition, a novel small genomic island frequently found among clinical isolates was reported. A few environmental strains were found harboring virulence genes and prophage elements, indicating their virulence potential. A unique biphenyl degradation pathway was also reported. A database for V. parahaemolyticus (http://kwanlab.bio.cuhk.edu.hk/vp) was constructed here as a platform to access and analyze genome sequences and annotations of the bacterium. We have performed a comparative genomics analysis of clinical and environmental strains of V. parahaemolyticus. Our analyses could facilitate understanding of the phylogenetic diversity and niche adaptation of this bacterium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Jon M.; Yang, Xiaohua; Luft, Benjamin J.
2005-04-01
The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. It has been studied extensively to help understand its pathogenicity of infection and how it can persist in different mammalian hosts. We report the proteomic analysis of the archetype B. burgdorferi B31 strain and two other strains (ND40, and JD-1) having different Borrelia pathotypes using strong cation exchange fractionation of proteolytic peptides followed by high-resolution, reversed phase capillary liquid chromatography coupled with ion trap tandem mass spectrometric (LC-MS/MS) analysis. Protein identification was facilitated by the availability of the complete B31more » genome sequence. A total of 665 Borrelia proteins were identified representing ~38 % coverage of the theoretical B31 proteome. A significant overlap was observed between the identified proteins in direct comparisons between any two strains (>72%), but distinct differences were observed among identified hypothetical and outer membrane proteins of the three strains. Such a concurrent proteomic overview of three Borrelia strains based upon only the B31 genome sequence is shown to provide significant insights into the presence or absence of specific proteins and a broad overall comparison among strains.« less
Mashima, Izumi; Liao, Yu-Chieh; Miyakawa, Hiroshi; Theodorea, Citra F; Thawboon, Boonyanit; Thaweboon, Sroisiri; Scannapieco, Frank A; Nakazawa, Futoshi
2018-04-01
A strain of a novel anaerobic, Gram-stain-negative coccus was isolated from the tongue biofilm of a Thai child. This strain was shown, at the phenotypic level and based on 16S rRNA gene sequencing, to be a member of the genus Veillonella. Comparative analysis of the 16S rRNA, dnaK and rpoB gene sequences indicated that phylogenetically the strain comprised a distinct novel branch within the genus Veillonella. The novel strain showed 99.8, 95.1 and 95.9 % similarity to partial 16S rRNA, dnaK and rpoB gene sequences, respectively, to the type strains of the two most closely related species, Veillonelladispar ATCC 17748 T and Veillonellatobetsuensis ATCC BAA-2400 T . The novel strain could be discriminated from previously reported species of the genus Veillonella based on partial dnaK and rpoB gene sequencing and average nucleotide identity values. The major acid end-product produced by this strain was acetic acid under anaerobic conditions in trypticase-yeast extract-haemin with 1 % (w/v) glucose or fructose medium. Lactate was fermented to acetic acid and propionic acid. Based on these observations, this strain represents a novel species, for which the name Veillonella infantium sp. nov. is proposed. The type strain is T11011-4 T (=JCM 31738 T =TSD-88 T ).
Strains and stressors: an analysis of touchscreen learning in genetically diverse mouse strains.
Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M; Bussey, Timothy J; Sagalyn, Erica; Williams, Robert W; Holmes, Andrew
2014-01-01
Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of "reversal learning," "motivation-related late reversal learning," "discrimination learning," "speed to respond," and "motivation during discrimination." Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks.
Xi, Xue-dong; Dong, Wei-liang; Zhang, Jun; Huang, Yan; Cui, Zhong-li
2013-07-01
A novel Gram-negative, non-spore-forming, rod-shaped strain, H1(T), was isolated from activated sludge by micromanipulation. No close relatives among cultured bacterial isolates were found; phylogenetic analysis based on 16S rRNA gene sequences revealed that strain H1(T) forms a deep single branch in the family Rhodospirillaceae. Cells of strain H1(T) were slightly curved to straight rods (1.2-1.4 × 1.5-1.7 µm) and motile by a single polar flagellum. Strain H1(T) was able to grow in the presence of 0-4 % NaCl and grew optimally at 37 °C and pH 6.0-7.0. Chemotaxonomic analysis revealed that strain H1(T) possessed Q-10 as the predominant ubiquinone and C18 : 1ω7c, C16 : 0 and C19 : 0 cyclo ω8c as the major fatty acids. The DNA G+C content of strain H1(T) was 65.1 mol%. Comparative analysis of 16S rRNA gene sequences, and phenotypic and chemotaxonomic data, indicate that strain H1(T) should represent a novel genus and species of the family Rhodospirillaceae. The name Taonella mepensis gen. nov., sp. nov. is proposed. The type strain of Taonella mepensis is H1(T) ( = CICC 10529(T) = CCTCC AB 2012861(T) = KACC 16940(T)).
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos
2002-01-01
The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.
Watanabe, Hisayuki; Hatakeyama, Makoto; Sakurai, Hiroshi; Uchimiya, Hirofumi; Sato, Toshitsugu
2008-11-01
Based on studies using laboratory strains, the efficiency of gene disruption in Aspergillus oryzae, commonly known as koji mold, is low; thus, gene disruption has rarely been applied to the breeding of koji mold. To evaluate the efficiency of gene disruption in industrial strains of A. oryzae, we produced ferrichrysin biosynthesis gene (dffA) disruptants using three different industrial strains as hosts. PCR analysis of 438 pyrithiamine-resistant transformants showed dffA gene disruption efficiency of 42.9%-64.1%, which is much higher than previously reported. Analysis of the physiological characteristics of the disruptants indicated that dffA gene disruption results in hypersensitivity to hydrogen peroxide. To investigate the industrial characteristics of dffA gene disruptants, two strains were used to make rice koji and their properties were compared to those of the host strains. No differences were found between the dffA gene disruptants and the host strains, except that the disruptants did not produce ferrichrysin. Thus, this gene disruption technique is much more effective than conventional mutagenesis for A. oryzae breeding.
Arcticibacter pallidicorallinus sp. nov. isolated from glacier ice.
Liu, Qing; Kim, Song-gun; Liu, Hong-can; Xin, Yu-hua; Zhou, Yu-guang
2014-07-01
A Gram-stain-negative, rod-shaped bacterium (strain Hh36(T)) was isolated from the No. 1 glacier in Xinjiang, north-west China. Colonies of strain Hh36(T) were pink, convex and round on PYG medium plates. Strain Hh36(T) was able to grow at 4-30 °C and pH 6.0-8.0. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Hh36(T) was related to members of the genus Arcticibacter. The major cellular fatty acids of the novel strain were iso-C15 : 0, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and iso-C17 : 0 3-OH. The G+C content of the genomic DNA was 44.0 mol%. On the basis of phenotypic characteristics and phylogenetic analysis, strain Hh36(T) is considered to represent a novel species of the genus Arcticibacter, for which the name Arcticibacter pallidicorallinus sp. nov. is proposed. The type strain is Hh36(T) ( = CGMCC 1.9313(T) = KCTC 32542(T)). © 2014 Institute of Microbiology, Chinese Academy of Sciences.
Jiao, Yin Shan; Yan, Hui; Ji, Zhao Jun; Liu, Yuan Hui; Sui, Xin Hua; Zhang, Xiao Xia; Wang, En Tao; Chen, Wen Xin; Chen, Wen Feng
2015-02-01
Two novel Gram-stain-negative strains (CCBAU 03422(T) and CCBAU 03415) isolated from root nodules of Sophora flavescens were classified phylogenetically into the genus Phyllobacterium based on the comparative analysis of 16S rRNA and atpD genes. They showed 99.8 % rRNA gene sequence similarities to Phyllobacterium brassicacearum LMG 22836(T), and strain CCBAU 03422(T) showed 91.2 and 88.6 % atpD gene sequence similarities to strains Phyllobacterium endophyticum LMG 26470(T) and Phyllobacterium brassicacearum LMG 22836(T), respectively. Strain CCBAU 03422(T) contained Q-10 as its major quinone and showed a cellular fatty acid profile, carbon source utilization and other phenotypic characteristics differing from type strains of related species. DNA-DNA relatedness (lower than 48.8 %) further confirmed the differences between the novel strains and the type strains of related species. Strain CCBAU 03422(T) could nodulate and fix nitrogen effectively on its original host plant, Sophora flavescens. Based upon the results mentioned above, a novel species named Phyllobacterium sophorae is proposed and the type strain is CCBAU 03422(T) ( = A-6-3(T) = LMG 27899(T) = HAMBI 3508(T)). © 2015 IUMS.
NASA Astrophysics Data System (ADS)
Kuzmin, Yu. O.
2017-11-01
The comparative analysis of the Earth's surface deformations measured by ground-based and satellite geodetic methods on the regional and zonal measurement scales is carried out. The displacement velocities and strain rates are compared in the active regions such as Turkmenian-Iranian zone of interaction of the Arabian and Eurasian lithospheric plates and the Kamchatka segment of the subduction of the Pacific Plate beneath the Okotsk Plate. The comparison yields a paradoxical result. With the qualitatively identical kinematics of the motion, the quantitative characteristics of the displacement velocities and rates of strain revealed by the observations using the global navigational satellite system (GNSS) are by 1-2 orders of magnitude higher than those estimated by the more accurate methods of ground-based geodesy. For resolving the revealed paradoxes, it is required to set up special studies on the joint analysis of ground-based and satellite geodetic data from the combined observation sites.
Schmid, Michael; Muri, Jonathan; Melidis, Damianos; Varadarajan, Adithi R; Somerville, Vincent; Wicki, Adrian; Moser, Aline; Bourqui, Marc; Wenzel, Claudia; Eugster-Meier, Elisabeth; Frey, Juerg E; Irmler, Stefan; Ahrens, Christian H
2018-01-01
Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences' long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus -to our knowledge-identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus . Notably, the functional Clusters of Orthologous Groups of proteins categories "cell wall/membrane biogenesis" and "defense mechanisms" were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences proved to be very useful for the analysis of natural whey starter cultures with metagenomics, as a larger percentage of the sequenced reads of these complex mixtures could be unambiguously assigned down to the strain level.
Schmid, Michael; Muri, Jonathan; Melidis, Damianos; Varadarajan, Adithi R.; Somerville, Vincent; Wicki, Adrian; Moser, Aline; Bourqui, Marc; Wenzel, Claudia; Eugster-Meier, Elisabeth; Frey, Juerg E.; Irmler, Stefan; Ahrens, Christian H.
2018-01-01
Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences' long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus—to our knowledge—identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus. Notably, the functional Clusters of Orthologous Groups of proteins categories “cell wall/membrane biogenesis” and “defense mechanisms” were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences proved to be very useful for the analysis of natural whey starter cultures with metagenomics, as a larger percentage of the sequenced reads of these complex mixtures could be unambiguously assigned down to the strain level. PMID:29441050
Bai, Dong-Mei; Zhao, Xue-Ming; Li, Xin-Gang; Xu, Shi-Min
2004-12-20
The effects of initial glucose concentration and calcium lactate concentration on the lactic acid production by the parent strain, Lactobacillus lactis BME5-18, were studied. The results of the experiments indicated that glucose and lactate repressed the cell growth and the lactic acid production by Lactobacillus lactis BME5-18. A L(+)-lactic acid overproducing strain, Lactobacillus lactis BME5-18M, was screened by mutagenizing the parent strain with ultraviolet (UV) light irradiation and selecting the high glucose and lactate calcium concentration repression resistant mutant. Starting with a concentration of 100g L(-1) glucose, the mutant produced 98.6 g L(-1) lactic acid after 60 h in flasks, 73.9% higher than that of the parent strain. The L(+)-lactic acid purity was 98.1% by weight based on the amount of total lactic acid. The culture of the parent strain could not be analyzed well by conventional metabolic flux analysis techniques, since some pyruvate were accumulated intracellularly. Therefore, a revised flux analysis method was proposed by introducing intracellular pyruvate pool. Further studies demonstrate that there is a high level of NADH oxidase activity (12.11 mmol mg(-1) min(-1)) in the parent strain. The molecular mechanisms of the strain improvement were proposed, i.e., the high level of NADH oxidase activity was eliminated and the uptake rate of glucose was increased from 82.1 C-mmol (g DW h)(-1) to 98.9 C-mmol (g DW h)(-1) by mutagenizing the parent strain with UV, and therefore the mutant strain converts mostly pyruvate to lactic acid with a higher productivity (1.76 g L(-1) h(-1)) than the parent strain (0.95 g L(-1) h(-1)).
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed
Zhou, Yingchao; Xiao, Hong; Wu, Jianfei; Zha, Lingfeng; Zhou, Mengchen; Li, Qianqian; Wang, Mengru; Shi, Shumei; Li, Yanze; Lyu, Liangkun; Wang, Qing; Tu, Xin; Lu, Qiulun
2018-01-01
Diabetes mellitus (DM) has been demonstrated to have a strong association with heart failure. Conventional echocardiographic analysis cannot sensitively monitor cardiac dysfunction in type I diabetic Akita hearts, but the phenotype of heart failure is observed in molecular levels during the early stages. Male Akita (Ins2WT/C96Y) mice were monitored with echocardiographic imaging at various ages, and then with conventional echocardiographic analysis and speckle-tracking based strain analyses. With speckle-tracking based strain analyses, diabetic Akita mice showed changes in average global radial strain at the age of 12 weeks, as well as decreased longitudinal strain. These changes occurred in the early stage and remained throughout the progression of diabetic cardiomyopathy in Akita mice. Speckle-tracking showed that the detailed and precise changes of cardiac deformation in the progression of diabetic cardiomyopathy in the genetic type I diabetic Akita mice were uncoupled. We monitored early-stage changes in the heart of diabetic Akita mice. We utilize this technique to elucidate the underlying mechanism for heart failure in Akita genetic type I diabetic mice. It will further advance the assessment of cardiac abnormalities, as well as the discovery of new drug treatments using Akita genetic type I diabetic mice. © 2018 The Author(s). Published by S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed.
Directional pair distribution function for diffraction line profile analysis of atomistic models
Leonardi, Alberto; Leoni, Matteo; Scardi, Paolo
2013-01-01
The concept of the directional pair distribution function is proposed to describe line broadening effects in powder patterns calculated from atomistic models of nano-polycrystalline microstructures. The approach provides at the same time a description of the size effect for domains of any shape and a detailed explanation of the strain effect caused by the local atomic displacement. The latter is discussed in terms of different strain types, also accounting for strain field anisotropy and grain boundary effects. The results can in addition be directly read in terms of traditional line profile analysis, such as that based on the Warren–Averbach method. PMID:23396818
Singh, Prashant; Singh, Satya Shila; Elster, Josef; Mishra, Arun Kumar
2013-06-01
In order to assess phylogeny, population genetics, and approximation of future course of cyanobacterial evolution based on nifH gene sequences, 41 heterocystous cyanobacterial strains collected from all over India have been used in the present study. NifH gene sequence analysis data confirm that the heterocystous cyanobacteria are monophyletic while the stigonematales show polyphyletic origin with grave intermixing. Further, analysis of nifH gene sequence data using intricate mathematical extrapolations revealed that the nucleotide diversity and recombination frequency is much greater in Nostocales than the Stigonematales. Similarly, DNA divergence studies showed significant values of divergence with greater gene conversion tracts in the unbranched (Nostocales) than the branched (Stigonematales) strains. Our data strongly support the origin of true branching cyanobacterial strains from the unbranched strains.
Gorgé, Olivier; Lopez, Stéphanie; Hilaire, Valérie; Lisanti, Olivier; Ramisse, Vincent; Vergnaud, Gilles
2008-01-01
The Shigella genus has historically been separated into four species, based on biochemical assays. The classification within each species relies on serotyping. Recently, genome sequencing and DNA assays, in particular the multilocus sequence typing (MLST) approach, greatly improved the current knowledge of the origin and phylogenetic evolution of Shigella spp. The Shigella and Escherichia genera are now considered to belong to a unique genomospecies. Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) provides valuable polymorphic markers for genotyping and performing phylogenetic analyses of highly homogeneous bacterial pathogens. Here, we assess the capability of MLVA for Shigella typing. Thirty-two potentially polymorphic VNTRs were selected by analyzing in silico five Shigella genomic sequences and subsequently evaluated. Eventually, a panel of 15 VNTRs was selected (i.e., MLVA15 analysis). MLVA15 analysis of 78 strains or genome sequences of Shigella spp. and 11 strains or genome sequences of Escherichia coli distinguished 83 genotypes. Shigella population cluster analysis gave consistent results compared to MLST. MLVA15 analysis showed capabilities for E. coli typing, providing classification among pathogenic and nonpathogenic E. coli strains included in the study. The resulting data can be queried on our genotyping webpage (http://mlva.u-psud.fr). The MLVA15 assay is rapid, highly discriminatory, and reproducible for Shigella and Escherichia strains, suggesting that it could significantly contribute to epidemiological trace-back analysis of Shigella infections and pathogenic Escherichia outbreaks. Typing was performed on strains obtained mostly from collections. Further studies should include strains of much more diverse origins, including all pathogenic E. coli types. PMID:18216214
Ma, Chi; Varghese, Tomy
2012-04-01
Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.
Rindi, Laura; Medici, Chiara; Bimbi, Nicola; Buzzigoli, Andrea; Lari, Nicoletta; Garzelli, Carlo
2014-01-01
A sample of 260 Mycobacterium tuberculosis strains assigned to the Euro-American family was studied to identify phylogenetically informative genomic regions of difference (RD). Mutually exclusive deletions of regions RD115, RD122, RD174, RD182, RD183, RD193, RD219, RD726 and RD761 were found in 202 strains; the RDRio deletion was detected exclusively among the RD174-deleted strains. Although certain deletions were found more frequently in certain spoligotype families (i.e., deletion RD115 in T and LAM, RD174 in LAM, RD182 in Haarlem, RD219 in T and RD726 in the “Cameroon” family), the RD-defined sublineages did not specifically match with spoligotype-defined families, thus arguing against the use of spoligotyping for establishing exact phylogenetic relationships between strains. Notably, when tested for katG463/gyrA95 polymorphism, all the RD-defined sublineages belonged to Principal Genotypic Group (PGG) 2, except sublineage RD219 exclusively belonging to PGG3; the 58 Euro-American strains with no deletion were of either PGG2 or 3. A representative sample of 197 isolates was then analyzed by standard 15-locus MIRU-VNTR typing, a suitable approach to independently assess genetic relationships among the strains. Analysis of the MIRU-VNTR typing results by using a minimum spanning tree (MST) and a classical dendrogram showed groupings that were largely concordant with those obtained by RD-based analysis. Isolates of a given RD profile show, in addition to closely related MIRU-VNTR profiles, related spoligotype profiles that can serve as a basis for better spoligotype-based classification. PMID:25197794
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane strain elements as well as three different generalized plane strain type approaches were performed. The computed deflections, skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with lamination length. For more accurate predictions, however, a three-dimensional analysis is required.
Cryobacterium flavum sp. nov. and Cryobacterium luteum sp. nov., isolated from glacier ice.
Liu, Qing; Liu, Hongcan; Wen, Ying; Zhou, Yuguang; Xin, Yuhua
2012-06-01
Gram-positive, rod-shaped bacteria, strains Hh8(T), Hh15(T) and Hh40-2, were isolated from the No. 1 glacier in Xinjiang, north-west China. Colonies of strain Hh8(T) were orange-yellow, convex and round on PYG plates. Strain Hh8(T) grew at 0-19 °C and pH 5.5-10.5. Colonies of strain Hh15(T), which was able to grow at 0-20 °C and pH 5.5-12, were lemon yellow, convex and round on PYG plates. Phylogenetic analysis based on 16S rRNA gene sequences showed that these three strains were related to members of the genus Cryobacterium. The major cellular fatty acids of the novel strains were anteiso-C(15:0), iso-C(16:0), iso-C(15:0) and anteiso-C(15:1) A. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, two novel species, Cryobacterium flavum sp. nov. (type strain Hh8(T) = CGMCC 1.11215(T) = NBRC 107879(T)) and Cryobacterium luteum sp. nov. (type strain Hh15(T) = CGMCC 1.11210(T) = NBRC 107880(T)), are proposed.
Enterococcus Xinjiangensis sp. nov., Isolated from Yogurt of Xinjiang, China.
Ren, Xiaopu; Li, Mingyang; Guo, Dongqi
2016-09-01
A Gram-strain-positive bacterial strain 48(T) was isolated from traditional yogurt in Xinjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, polymerase α subunit (rpoA) gene sequence analysis, determination of DNA G+C content, DNA-DNA hybridization with the type strain of Enterococcus ratti and analysis of phenotypic features. Strain 48(T) accounted for 96.1, 95.8, 95.8, and 95.7 % with Enterococcus faecium CGMCC 1.2136(T), Enterococcus hirae ATCC 9790(T), Enterococcus durans CECT 411(T), and E. ratti ATCC 700914(T) in the 16S rRNA gene sequence similarities, respectively. The sequence of rpoA gene showed similarities of 99.0, 96.0, 96.0, and 96 % with that of E. faecium ATCC 19434(T), Enterococcus villorum LMG12287, E. hirae ATCC 9790(T), and E. durans ATCC 19432(T), respectively. Based upon of polyphasic characterization data obtained in the study, a novel species, Enterococcus xinjiangensis sp. nov., was proposed and the type strain was 48(T)(=CCTCC AB 2014041(T) = JCM 30200(T)).
Predicting employees' well-being using work-family conflict and job strain models.
Karimi, Leila; Karimi, Hamidreza; Nouri, Aboulghassem
2011-04-01
The present study examined the effects of two models of work–family conflict (WFC) and job-strain on the job-related and context-free well-being of employees. The participants of the study consisted of Iranian employees from a variety of organizations. The effects of three dimensions of the job-strain model and six forms of WFC on affective well-being were assessed. The results of hierarchical multiple regression analysis revealed that the number of working hours, strain-based work interfering with family life (WIF) along with job characteristic variables (i.e. supervisory support, job demands and job control) all make a significant contribution to the prediction of job-related well-being. On the other hand, strain-based WIF and family interfering with work (FIW) significantly predicted context-free well-being. Implications are drawn and recommendations made regarding future research and interventions in the workplace.
Candida ficus sp. nov., a novel yeast species from the gut of Apriona germari larvae.
Hui, Feng-Li; Niu, Qiu-Hong; Ke, Tao; Liu, Zheng
2012-11-01
A novel yeast species is described based on three strains from the gut of wood-boring larvae collected in a tree trunk of Ficus carica cultivated in parks near Nanyang, central China. Phylogenetic analysis based on sequences of the D1/D2 domains of the large subunit rRNA gene showed that these strains occurred in a separate clade that was genetically distinct from all known ascomycetous yeasts. In terms of pairwise sequence divergence, the novel strains differed by 15.3% divergence from the type strain of Pichia terricola, and by 15.8% divergence from the type strains of Pichia exigua and Candida rugopelliculosa in the D1/D2 domains. All three are ascomycetous yeasts in the Pichia clade. Unlike P. terricola, P. exigua and C. rugopelliculosa, the novel isolates did not ferment glucose. The name Candida ficus sp. nov. is proposed to accommodate these highly divergent organisms, with STN-8(T) (=CICC 1980(T)=CBS 12638(T)) as the type strain.
Lactobacillus allii sp. nov. isolated from scallion kimchi.
Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon
2017-12-01
A novel strain of lactic acid bacteria, WiKim39 T , was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39 T belonged to the genus Lactobacillus, and shared 97.1-98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39 T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39 T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39 T (=KCTC 21077 T =JCM 31938 T ).
Lactobacillus allii sp. nov. isolated from scallion kimchi
Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon
2017-01-01
A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1–98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T). PMID:29043955
Bales, Patrick M; Renke, Emilija Miljkovic; May, Sarah L; Shen, Yang; Nelson, Daniel C
2013-01-01
In bacterial biofilms, high molecular weight, secreted exopolysaccharides can serve as a scaffold to which additional carbohydrates, proteins, lipids, and nucleic acids adhere, forming the matrix of the developing biofilm. Here we report methods to extract and purify high molecular weight (>15 kDa) exopolysaccharides from biofilms of eight human pathogens, including species of Staphylcococcus, Klebsiella, Acinetobacter, Pseudomonas, and a toxigenic strain of Escherichia coli O157:H7. Glycosyl composition analysis indicated a high total mannose content across all strains with P. aeruginosa and A. baumannii exopolysaccharides comprised of 80-90% mannose, K. pneumoniae and S. epidermidis strains containing 40-50% mannose, and E. coli with ∼10% mannose. Galactose and glucose were also present in all eight strains, usually as the second and third most abundant carbohydrates. N-acetyl-glucosamine and galacturonic acid were found in 6 of 8 strains, while arabinose, fucose, rhamnose, and xylose were found in 5 of 8 strains. For linkage analysis, 33 distinct residue-linkage combinations were detected with the most abundant being mannose-linked moieties, in line with the composition analysis. The exopolysaccharides of two P. aeruginosa strains analyzed were consistent with the Psl carbohydrate, but not Pel or alginate. The S. epidermidis strain had a composition rich in mannose and glucose, which is consistent with the previously described slime associated antigen (SAA) and the extracellular slime substance (ESS), respectively, but no polysaccharide intracellular adhesion (PIA) was detected. The high molecular weight exopolysaccharides from E. coli, K. pneumoniae, and A. baumannii appear to be novel, based on composition and/or ratio analysis of carbohydrates.
2012-01-01
Background The genome of Mycobacterium avium subspecies paratuberculosis (MAP) is remarkably homogeneous among the genomes of bovine, human and wildlife isolates. However, previous work in our laboratories with the bovine K-10 strain has revealed substantial differences compared to sheep isolates. To systematically characterize all genomic differences that may be associated with the specific hosts, we sequenced the genomes of three U.S. sheep isolates and also obtained an optical map. Results Our analysis of one of the isolates, MAP S397, revealed a genome 4.8 Mb in size with 4,700 open reading frames (ORFs). Comparative analysis of the MAP S397 isolate showed it acquired approximately 10 large sequence regions that are shared with the human M. avium subsp. hominissuis strain 104 and lost 2 large regions that are present in the bovine strain. In addition, optical mapping defined the presence of 7 large inversions between the bovine and ovine genomes (~ 2.36 Mb). Whole-genome sequencing of 2 additional sheep strains of MAP (JTC1074 and JTC7565) further confirmed genomic homogeneity of the sheep isolates despite the presence of polymorphisms on the nucleotide level. Conclusions Comparative sequence analysis employed here provided a better understanding of the host association, evolution of members of the M. avium complex and could help in deciphering the phenotypic differences observed among sheep and cattle strains of MAP. A similar approach based on whole-genome sequencing combined with optical mapping could be employed to examine closely related pathogens. We propose an evolutionary scenario for M. avium complex strains based on these genome sequences. PMID:22409516
Santoro, Maricel V.; Bogino, Pablo C.; Nocelli, Natalia; Cappellari, Lorena del Rosario; Giordano, Walter F.; Banchio, Erika
2016-01-01
Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present. PMID:27486441
[Screening and optimization of cholesterol conversion strain].
Fan, Dan; Xiong, Bingjian; Pang, Cuiping; Zhu, Xiangdong
2014-10-04
Bacterial strain SE-1 capable of transforming cholesterol was isolated from soil and characterized. The transformation products were identified. Fermentation conditions were optimized for conversion. Cholesterol was used as sole carbon source to isolate strain SE-1. Morphology, physiological and biochemical characteristics of strain SE-1 were studied. 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Fermentation supernatants were extracted with chloroform, the transformation products were analyzed by silica gel thin layer chromatography and Sephadex LH20. Their structures were identified by 1H-NMR and 13C-NMR. Fermentation medium including carbon and nitrogen, methods of adding substrates and fermentation conditions for Strain SE-1 were optimized. Strain SE-1 was a Gram-negative bacterium, exhibiting the highest homologs to Burkholderia cepacia based on the physiological analysis. The sequence analysis of 16S rRNA gene of SE-1 strain and comparison with related Burkholderia show that SE-1 strain was very close to B. cepacia (Genbank No. U96927). The similarity was 99%. The result of silica gel thin layer chromatography shows that strain SE-1 transformed cholesterol to two products, 7beta-hydroxycholesterol and the minor product was 7-oxocholesterol. The optimum culture conditions were: molasses 5%, (NH4 )2SO4 0.3%, 4% of inoculation, pH 7.5 and 36 degrees C. Under the optimum culture condition, the conversion rate reached 34.4% when concentration of cholesterol-Tween 80 was 1 g/L. Cholesterol 7beta-hydroxylation conversion rate under optimal conditions was improved by 20.8%. Strain SE-1 isolated from soil is capable of converting cholesterol at lab-scale.
Levy, Philip T.; Sanchez, Aura; Machefsky, Aliza; Fowler, Susan; Holland, Mark R.; Singh, Gautam K.
2014-01-01
Background Establishment of the range of normal values and associated variations of two-dimensional speckle-tracking echocardiography (2DSTE) derived right ventricular (RV) strain is a prerequisite for its routine clinical application in children. The objectives of this study were to perform a meta-analysis of normal ranges of RV longitudinal strain measurements derived by 2DSTE in children and identify confounders that may contribute to differences in reported measures. Methods A systematic review was launched in PubMed, Embase, Scopus, Cochrane, and ClinicTrials.gov. Search hedges were created to cover the concepts of pediatrics, speckle-tracking echocardiography, and right heart ventricle. Two investigators independently identified and included studies if they reported the 2DSTE derived RV strain measures: RV peak global longitudinal strain (pGLS), systolic strain rate (pGLSRs), early diastolic strain rate (pGLSRe), late diastolic strain rate (pGLSRa), or segmental longitudinal strain at the apical, mid, and basal ventricular levels in healthy children. Quality and reporting of the studies were assessed. The weighted mean was estimated by using random-effects with 95% confidence intervals (CI), heterogeneity was assessed by the Cochran's Q statistic and the inconsistency index (I2), and publication bias was evaluated using funnel plots and the Egger test. Effects of demographic, clinical, equipment, and software variables were assessed in a meta-regression. Results The search identified 226 children from 10 studies. The reported normal mean values of pGLS among the studies varied from −20.80% to −34.10% (mean, −29.03%, 95%CI, −31.52% to −26.54%), pGLSRs varied from −1.30 to −2.40 1/sec (mean, −1.88, 95%CI, −2.10 to −1.59), pGLSRe ranged from 1.7 to 2.69 1/sec (mean, 2.34, 95%CI, 2.00 to 2.67) and pGLSRa ranged from 1.00 to 1.30 1/sec (mean, 1.18, 95% CI, 1.04 to 1.33). A significant base-to-apex segmental strain gradient (p <0.05) was observed in the right ventricular free wall. There was significant between-study heterogeneity and inconsistency (I2>88% and p<0.01 for each strain measure), which was not explained by age, gender, body surface area, heart rate, frame rate, tissue tracking methodology, equipment, or software. The meta-regression showed that these effects were not significant determinants of variations among normal ranges of strain values. There was no evidence of publication bias (Egger test, p=0.59). Conclusions This study is the first to define normal values of two-dimensional speckle tracking echocardiographic (2DSTE) derived right ventricle strain in children on the basis of a meta-analysis. The normal mean value in children for RV global strain is −29.03% (95% CI, −31.52% to −26.54%). The normal mean value for RV global systolic strain rate is −1.88 1/sec (95% CI, −2.10 to −1.59). RV segmental strain has a stable base-to-apex gradient that highlights the dominance of deep longitudinal layers of the RV that are aligned base to apex. Variations among different normal ranges do not appear to be dependent on differences in demographic, clinical, or equipment parameters in this meta-analysis. All of the eligible studies used equipment and software from one manufacturer, General Electric (GE). PMID:24582163
Tampakaki, Anastasia P; Fotiadis, Christos T; Ntatsi, Georgia; Savvas, Dimitrios
2017-04-01
Cowpea (Vigna unguiculata) is a promiscuous grain legume, capable of establishing efficient symbiosis with diverse symbiotic bacteria, mainly slow-growing rhizobial species belonging to the genus Bradyrhizobium. Although much research has been done on cowpea-nodulating bacteria in various countries around the world, little is known about the genetic and symbiotic diversity of indigenous cowpea rhizobia in European soils. In the present study, the genetic and symbiotic diversity of indigenous rhizobia isolated from field-grown cowpea nodules in three geographically different Greek regions were studied. Forty-five authenticated strains were subjected to a polyphasic approach. ERIC-PCR based fingerprinting analysis grouped the isolates into seven groups and representative strains of each group were further analyzed. The analysis of the rrs gene showed that the strains belong to different species of the genus Bradyrhizobium. The analysis of the 16S-23S IGS region showed that the strains from each geographic region were characterized by distinct IGS types which may represent novel phylogenetic lineages, closely related to the type species of Bradyrhizobium pachyrhizi, Bradyrhizobium ferriligni and Bradyrhizobium liaoningense. MLSA analysis of three housekeeping genes (recA, glnII, and gyrB) showed the close relatedness of our strains with B. pachyrhizi PAC48 T and B. liaoningense USDA 3622 T and confirmed that the B. liaoningense-related isolate VUEP21 may constitute a novel species within Bradyrhizobium. Moreover, symbiotic gene phylogenies, based on nodC and nifH genes, showed that the B. pachyrhizi-related isolates belonged to symbiovar vignae, whereas the B. liaoningense-related isolates may represent a novel symbiovar. Copyright © 2017 Elsevier GmbH. All rights reserved.
Actinomyces liubingyangii sp. nov. isolated from the vulture Gypaetus barbatus.
Meng, Xiangli; Lu, Shan; Lai, Xin-He; Wang, Yiting; Wen, Yumeng; Jin, Dong; Yang, Jing; Xu, Jianguo
2017-06-01
Two strains (VUL4_1T and VUL4_2) of Gram-staining-positive, catalase-negative, non-spore-forming short rods were isolated from rectal swabs of Old World vultures (Gypaetus barbatus) in the Tibet-Qinghai Plateau, China. Analysis of morphological characteristics and biochemical tests indicated that the two strains closely resembled each other but were distinct from other species of the genus Actinomyces previously described. Based on the results of 16S rRNA gene sequence comparison and genome analysis, strains were determined to be members of the genus Actinomyces, closely related to the type strains of Actinomyces marimammalium (96.4 % 16S rRNA gene sequence similarity), Actinomyceshongkongensis (92.4 %), Actinomyceshordeovulneris (92.3 %) and Actinomycesnasicola (92.2 %), respectively. Optimal growth conditions were 37 °C, pH 6-7, with 1 % (w/v) NaCl. Strain VUL4_1T contained C18 : 1ω9c and C16 : 0 as the major cellular fatty acids and diphosphatidylglycerol as the major component of the polar lipids. The genomic DNA G+C content of VUL4_1T was 54.9 mol%. Strain VUL4_1T showed less than 70 % DNA-DNA relatedness with other species of the genus Actinomyces, further supporting strain VUL4_1T as a representative of a novel species. Based on the phenotypic data and phylogenetic inference, a novel species, Actinomyces liubingyangii sp. nov., is proposed with VUL4_1T (=CGMCC 4.7370T=DSM 104050T) as the type strain.
Demirel, Adnan; Baykara, Murat; Koca, Tuba Tülay; Berk, Ejder
2018-06-01
Ultrasound elastography (UE) is a new ultrasound-based imaging technique that provides information about elasticity and stiffness of tissues. This cross-sectional study aimed to identify the diagnostic importance of UE in supraspinatus impingement syndrome. Forty-one subjects, aged 38-70 years, were included in the study. UE was used to determine the elasticity of the supraspinatus muscle. The strain ratio was calculated as the evaluation criteria to measure the elasticity of the muscle. High strain ratio indicated low elasticity. The measurements were made by the blinded radiologist while the patients sat with their shoulder in a neutral position. The diagnostic value of the strain ratio was evaluated using the receiver operating characteristic (ROC) analysis. The mean strain value of the supraspinatus muscle on the intact and pathological shoulders determined by UE was 0.74 ± 0.33 and 0.31 ± 0.24, respectively. A low strain ratio value in the supraspinatus muscle on the side with impingement syndrome was measured. When the test variable was evaluated as "strain ratio" according to ROC curve analysis, it was found to be above the reference line [0.849 (> 0.5)] (P = 0.00). When the cutoff value was selected as 0.495, the sensitivity and specificity were found to be 75.6 and 78% (the strain ratio value > 0.495), respectively. Measurement of strain ratio with UE can be used as a noninvasive, inexpensive, and practical diagnostic test for the shoulder impingement disease.
Chiou, H-Y; Huang, Y-L; Deng, M-C; Chang, C-Y; Jeng, C-R; Tsai, P-S; Yang, C; Pang, V F; Chang, H-W
2017-02-01
New variants of porcine epidemic diarrhoea virus (PEDV), which emerged in Taiwan in late 2013, have caused a high morbidity and mortality in neonatal piglets. To investigate the molecular characteristics of the spike (S) gene of the emerging Taiwan PEDV strains for a better understanding of the genetic diversity and relationship among the Taiwan new variants and the global PEDVs, full-length S genes of PEDVs from nine 1-7 day-old piglets from three pig farms in the central and southern Taiwan were sequenced and analysed. The result of phylogenetic analysis of the S gene showed that all the Taiwan PEDV strains were closely related to the non-S INDEL strains from US, Canada and China, suggesting a common ancestor for these strains. As compared with the historic PEDVs and CV777-based vaccine strains, the nine Taiwan PEDV variants shared almost the same genetic signatures as the global non-S INDEL strains, including a series of insertions, deletions and mutations in the amino terminal as well as identical mutations in the neutralizing epitopes of the S gene. The high similarity of the S protein among the Taiwan and the globally emerged non-S INDEL PEDV strains suggests that the Taiwan new variants may share similar pathogenesis and immunogenicity as the global outbreak variants. The development of a novel vaccine based on the Taiwan or the global non-S INDEL strains may be contributive to the control of the current global porcine epidemic diarrhoea outbreaks. © 2015 Blackwell Verlag GmbH.
Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer
Thiem, S.M.; Krumme, M.L.; Smith, R.L.; Tiedje, J.M.
1994-01-01
A PCR primer set and an internal probe that are specific for Pseudomonas sp. strain B13, a 3-chlorobenzoate-metabolizing strain, were developed. Using this primer set and probe, we were able to detect Pseudomonas sp. strain B13 DNA sequences in DNA extracted from aquifer samples 14.5 months after Pseudomonas sp. strain B13 had been injected into a sand and gravel aquifer. This primer set and probe were also used to analyze isolates from 3-chlorobenzoate enrichments of the aquifer samples by Southern blot analysis. Hybridization of Southern blots with the Pseudomonas sp. strain B13-specific probe and a catabolic probe in conjunction with restriction fragment length polymorphism (RFLP) analysis of ribosome genes was used to determine that viable Pseudomonas sp. strain B13 persisted in this environment. We isolated a new 3-chlorobenzoate-degrading strain from one of these enrichment cultures. The B13-specific probe does not hybridize to DNA from this isolate. The new strain could be the result of gene exchange between Pseudomonas sp. strain B13 and an indigenous bacterium. This speculation is based on an RFLP pattern of ribosome genes that differs from that of Pseudomonas sp. strain B13, the fact that identically sized restriction fragments hybridized to the catabolic gene probe, and the absence of any enrichable 3-chlorobenzoate-degrading strains in the aquifer prior to inoculation.
Micrococcus lactis sp. nov., isolated from dairy industry waste.
Chittpurna; Singh, Pradip K; Verma, Dipti; Pinnaka, Anil Kumar; Mayilraj, Shanmugam; Korpole, Suresh
2011-12-01
A Gram-positive, yellow-pigmented, actinobacterial strain, DW152(T), was isolated from a dairy industry effluent treatment plant. 16S rRNA gene sequence analysis indicated that strain DW152(T) exhibited low similarity with many species with validly published names belonging to the genera Micrococcus and Arthrobacter. However, phenotypic properties including chemotaxonomic markers affiliated strain DW152(T) to the genus Micrococcus. Strain DW152(T) had ai-C(15:0) and i-C(15:0) as major cellular fatty acids, and MK-8(H(2)) as the major menaquinone. The cell-wall peptidoglycan of strain DW152(T) had l-lysine as the diagnostic amino acid and the type was A4α. The DNA G+C content of strain DW152(T) was 68.0 mol%. In 16S rRNA gene sequence analysis, strain DW152(T) exhibited significant similarity with Micrococcus terreus NBRC 104258(T), but the mean value of DNA-DNA relatedness between these strains was only 42.3%. Moreover, strain DW152(T) differed in biochemical and chemotaxonomic characteristics from M. terreus and other species of the genus Micrococcus. Based on the above differences, we conclude that strain DW152(T) should be treated as a novel species of the genus Micrococcus, for which the name Micrococcus lactis sp. nov. is proposed. The type strain of Micrococcus lactis sp. nov. is DW152(T) (=MTCC10523(T) =DSM 23694(T)).
Stress and strain analysis from dynamic loads of mechanical hand using finite element method
NASA Astrophysics Data System (ADS)
Hasanuddin, Iskandar; Husaini; Syahril Anwar, M.; Yudha, B. Z. Sandy; Akhyar, Hasan
2018-05-01
This research discusses the distribution of stress and strain due to the dynamic loads of mechanical hand. The stress and strain that occur on mechanical hand are the main concern for comparing the value of finite element analysis (FEA) and calculating for its material properties. The stress and strain analysis are done with a loading condition. The given loading condition is dynamic. The loading input condition in the simulation of using hydraulic hand dynamometer is from the grip strength measurement of ten samples. The form of the given loading to the mechanical hand is the increment value with a maximum of 708 N/m2 within 1 minute. The amount of maximum stress (von Mises) simulation is 1.731 x 105 Pa, and the amount of maximum strain is 7.441 x 10-7. The amount of maximum reaction force is 5.864 x 10-2 N, while the amount of maximum displacement that occurs on the distal part is 1.223 x 10 m. Based on the analysis, the maximum stress and strain were found both to occur at the extension part. The result of this study has shown that the stress and strain still occur far below from the yield strength and the shear strength from the material AISI 1010. It can be concluded that the mechanical hand is durable for the given loading and can hold an object with a minimum diameter of 45 mm.
Wang, Qi; Zhao, Xiao-Juan; Wang, Zi-Wei; Liu, Li; Wei, Yong-Xin; Han, Xiao; Zeng, Jing; Liao, Wan-Jin
2017-08-01
Rapid and precise identification of Cronobacter species is important for foodborne pathogen detection, however, commercial biochemical methods can only identify Cronobacter strains to genus level in most cases. To evaluate the power of mass spectrometry based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) for Cronobacter species identification, 51 Cronobacter strains (eight reference and 43 wild strains) were identified by both MALDI-TOF MS and 16S rRNA gene sequencing. Biotyper RTC provided by Bruker identified all eight reference and 43 wild strains as Cronobacter species, which demonstrated the power of MALDI-TOF MS to identify Cronobacter strains to genus level. However, using the Bruker's database (6903 main spectra products) and Biotyper software, the MALDI-TOF MS analysis could not identify the investigated strains to species level. When MALDI-TOF MS analysis was performed using the combined in-house Cronobacter database and Bruker's database, bin setting, and unweighted pair group method with arithmetic mean (UPGMA) clustering, all the 51 strains were clearly identified into six Cronobacter species and the identification accuracy increased from 60% to 100%. We demonstrated that MALDI-TOF MS was reliable and easy-to-use for Cronobacter species identification and highlighted the importance of establishing a reliable database and improving the current data analysis methods by integrating the bin setting and UPGMA clustering. Copyright © 2017. Published by Elsevier B.V.
Genomics-enabled analysis of the emergent disease cotton bacterial blight
Phillips, Anne Z.; Burke, Jillian; Bunn, J. Imani; Allen, Tom W.; Wheeler, Terry
2017-01-01
Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars. PMID:28910288
Bethge, Matthias; Borngräber, Yvonne
2015-03-18
Under conditions of gender-specific division of paid employment and unpaid childcare and housework, rising employment of women increases the likelihood that they will be faced with work-family conflicts. As recent research indicates, such conflicts might also contribute to musculoskeletal disorders. However, research in patient samples is needed to clarify how important these conflicts are for relevant health-related measures of functioning (e.g., work ability). We therefore examined, in a sample of women with chronic musculoskeletal disorders, the indirect and direct associations between the indicators of work-family conflicts and self-reported work ability as well as whether the direct effects remained significant after adjustment for covariates. A cross-sectional questionnaire-based study was conducted. Participants were recruited from five rehabilitation centers. Work-family conflicts were assessed by four scales referring to time- and strain-based work interference with family (WIF) and family interference with work (FIW). Self-reported work ability was measured by the Work Ability Index. A confirmatory factor analysis was performed to approve the anticipated four-factor structure of the work-family conflict measure. Direct and indirect associations between work-family conflict indicators and self-reported work ability were examined by path model analysis. Multivariate regression models were performed to calculate adjusted estimators of the direct effects of strain-based WIF and FIW on work ability. The study included 351 employed women. The confirmatory factor analysis provided support for the anticipated four-factor structure of the work-family conflict measure. The path model analysis identified direct effects of both strain-based scales on self-reported work ability. The time-based scales were indirectly associated with work ability via the strain-based scales. Adjusted regression analyses showed that a five-point increase in strain-based WIF or FIW was associated with a four- and two-point decrease in self-reported work ability, respectively. The standardized regression coefficients were β = 0.35 and β = 0.12. Our findings indicate that work-family conflicts are associated with poor work ability in female patients with chronic musculoskeletal disorders. However, longitudinal research is needed to establish a causal relationship. Better compatibility of work and family life might be an environmental facilitator of better rehabilitation outcomes in female patients with musculoskeletal disorders.
Genetic Diversity of Crimean Congo Hemorrhagic Fever Virus Strains from Iran
Chinikar, Sadegh; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Nowotny, Norbert; Fooks, Anthony R.; Shah-Hosseini, Nariman
2016-01-01
Background: Crimean Congo hemorrhagic fever virus (CCHFV) is a member of the Bunyaviridae family and Nairovirus genus. It has a negative-sense, single stranded RNA genome approximately 19.2 kb, containing the Small, Medium, and Large segments. CCHFVs are relatively divergent in their genome sequence and grouped in seven distinct clades based on S-segment sequence analysis and six clades based on M-segment sequences. Our aim was to obtain new insights into the molecular epidemiology of CCHFV in Iran. Methods: We analyzed partial and complete nucleotide sequences of the S and M segments derived from 50 Iranian patients. The extracted RNA was amplified using one-step RT-PCR and then sequenced. The sequences were analyzed using Mega5 software. Results: Phylogenetic analysis of partial S segment sequences demonstrated that clade IV-(Asia 1), clade IV-(Asia 2) and clade V-(Europe) accounted for 80 %, 4 % and 14 % of the circulating genomic variants of CCHFV in Iran respectively. However, one of the Iranian strains (Iran-Kerman/22) was associated with none of other sequences and formed a new clade (VII). The phylogenetic analysis of complete S-segment nucleotide sequences from selected Iranian CCHFV strains complemented with representative strains from GenBank revealed similar topology as partial sequences with eight major clusters. A partial M segment phylogeny positioned the Iranian strains in either association with clade III (Asia-Africa) or clade V (Europe). Conclusion: The phylogenetic analysis revealed subtle links between distant geographic locations, which we propose might originate either from international livestock trade or from long-distance carriage of CCHFV by infected ticks via bird migration. PMID:27308271
Yu, Xiumei; Cloutier, Sylvie; Tambong, James T.
2014-01-01
Sixteen strains of symbiotic bacteria from root nodules of Glycine max grown in Ottawa, Canada, were previously characterized and placed in a novel group within the genus Bradyrhizobium. To verify their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences that were 99.79 % similar to the closest relative, Bradyrhizobium liaoningense LMG 18230T. Phylogenetic analysis of concatenated atpD, glnII, recA, gyrB, rpoB and dnaK genes divided the 16 strains into three multilocus sequence types that were placed in a highly supported lineage distinct from named species of the genus Bradyrhizobium consistent with results of DNA–DNA hybridization. Based on analysis of symbiosis gene sequences (nodC and nifH), all novel strains were placed in a phylogenetic group with five species of the genus Bradyrhizobium that nodulate soybeans. The combination of phenotypic characteristics from several tests including carbon and nitrogen source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain OO99T elicits effective nodules on Glycine max, Glycine soja and Macroptilium atropurpureum, partially effective nodules on Desmodium canadense and Vigna unguiculata, and ineffective nodules on Amphicarpaea bracteata and Phaseolus vulgaris. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium ottawaense sp. nov. is proposed, with OO99T ( = LMG 26739T = HAMBI 3284T) as the type strain. The DNA G+C content is 62.6 mol%. PMID:24969302
Vijayabharathi, Rajendran; Bruheim, Per; Andreassen, Trygve; Raja, Duraisamy Senthil; Devi, Palanisamy Bruntha; Sathyabama, Sathyaseelan; Priyadarisini, Venkatesan Brindha
2011-12-01
A new actinomycete strain, isolated from humus soils in the Western Ghats, was found to be an efficient pigment producer. The strain, designated AAA5, was identified as a putative Streptomyces aurantiacus strain based on cultural properties, morphology, carbon source utilization, and analysis of the 16S rRNA gene. The strain produced a reddish-brown pigmented compound during the secondary metabolites phase. A yellow compound was derived from the extracted pigment and was identified as the quinone-related antibiotic resistomycin based on ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, liquid chromatography and mass spectroscopy, and nuclear magnetic resonance analyses. The AAA5 strain was found to produce large quantities of resistomycin (52.5 mg/L). It showed potent cytotoxic activity against cell lines viz. HepG2 (hepatic carcinoma) and HeLa (cervical carcinoma) in vitro, with growth inhibition (GI(50)) of 0.006 and 0.005 μg/ml, respectively. The strain also exhibited broad antimicrobial activities against both Gram-positive and Gram-negative bacteria. Therefore, AAA5 may have great potential as an industrial resistomycin-producing strain.
[Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].
Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V
2014-01-01
Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.
Sun, Mingjun; Jing, Zhigang; Di, Dongdong; Yan, Hao; Zhang, Zhicheng; Xu, Quangang; Zhang, Xiyue; Wang, Xun; Ni, Bo; Sun, Xiangxiang; Yan, Chengxu; Yang, Zhen; Tian, Lili; Li, Jinping; Fan, Weixing
2017-01-01
Brucellosis is a worldwide zoonotic disease caused by Brucella spp. In China, brucellosis is recognized as a reemerging disease mainly caused by Brucella melitensis specie. To better understand the currently endemic B. melitensis strains in China, three Brucella genotyping methods were applied to 110 B. melitensis strains obtained in past several years. By MLVA genotyping, five MLVA-8 genotypes were identified, among which genotypes 42 (1-5-3-13-2-2-3-2) was recognized as the predominant genotype, while genotype 63 (1-5-3-13-2-3-3-2) and a novel genotype of 1-5-3-13-2-4-3-2 were second frequently observed. MLVA-16 discerned a total of 57 MLVA-16 genotypes among these Brucella strains, with 41 genotypes being firstly detected and the other 16 genotypes being previously reported. By BruMLSA21 typing, six sequence types (STs) were identified, among them ST8 is the most frequently seen in China while the other five STs were firstly detected and designated as ST137, ST138, ST139, ST140, and ST141 by international multilocus sequence typing database. Whole-genome sequence (WGS)-single-nucleotide polymorphism (SNP)-based typing and phylogenetic analysis resolved Chinese B. melitensis strains into five clusters, reflecting the existence of multiple lineages among these Chinese B. melitensis strains. In phylogeny, Chinese lineages are more closely related to strains collected from East Mediterranean and Middle East countries, such as Turkey, Kuwait, and Iraq. In the next few years, MLVA typing will certainly remain an important epidemiological tool for Brucella infection analysis, as it displays a high discriminatory ability and achieves result largely in agreement with WGS-SNP-based typing. However, WGS-SNP-based typing is found to be the most powerful and reliable method in discerning Brucella strains and will be popular used in the future.
Strain-Based Design Methodology of Large Diameter Grade X80 Linepipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lower, Mark D.
2014-04-01
Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel. Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because theirmore » use allows pipeline operators to reduce the overall cost of pipeline construction and increase pipeline throughput by increasing the operating pressure. The design trend for new pipelines in areas prone to ground movement has evolved over the last 10 years from a stress-based design approach to a strain-based design (SBD) approach to further realize the cost benefits from using higher strength linepipe steels. This report presents an overview of SBD for pipelines subjected to large longitudinal strain and high internal pressure with emphasis on the tensile strain capacity of high-strength microalloyed linepipe steel. The technical basis for this report involved engineering analysis and examination of the mechanical behavior of Grade X80 linepipe steel in both the longitudinal and circumferential directions. Testing was conducted to assess effects on material processing including as-rolled, expanded, and heat treatment processing intended to simulate coating application. Elastic-plastic and low-cycle fatigue analyses were also performed with varying internal pressures. Proposed SBD models discussed in this report are based on classical plasticity theory and account for material anisotropy, triaxial strain, and microstructural damage effects developed from test data. The results are intended to enhance SBD and analysis methods for producing safe and cost effective pipelines capable of accommodating large plastic strains in seismically active arctic areas.« less
NASA Astrophysics Data System (ADS)
Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham
2018-01-01
Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a 99% of confidence.
Crispi, Fàtima; Sepulveda-Swatson, Eduardo; Cruz-Lemini, Monica; Rojas-Benavente, Juan; Garcia-Posada, Raul; Dominguez, Jesus Maria; Sitges, Marta; Bijnens, Bart; Gratacós, Eduard
2012-01-01
Assessment of cardiac function in the fetal heart is challenging because of its small size and high heart rate, restricted physical access to the fetus, and impossibility of fetal ECG recording. We aimed to standardize the acquisition and postprocessing of fetal echocardiography for deformation analysis and to assess its feasibility, reproducibility, and correlation for longitudinal strain and strain rate measurements by tissue Doppler imaging (TDI) and 2D speckle tracking (2D-strain) during pregnancy. Echocardiography was performed in 56 fetuses. 2D and color TDI in apical or basal four-chamber views were recorded for subsequent analysis. Caution was taken to achieve a frame rate >70 Hz for speckle tracking and >150 Hz for TDI analysis. For each acquisition, 7.5 s of noncompressed data were stored in cine loop format and analyzed offline. Since fetal ECG information is by definition not available, aortic valve closure was marked from aortic flow and the onset of each cardiac cycle was manually indicated in the 2D images. Sample volume length was standardized at the minimum size. Two observers measured the left and right ventricular peak systolic longitudinal strain and strain-rate. Strain and strain rate measurements were feasible in 93% of the TDI and 2D-strain acquisitions. The mean time spent on analyzing TDI images was 18 min, with an intraclass agreement coefficient of 0.86 (95% CI 0.77-0.92), 0.83 (95% CI 0.72-0.90), 0.96 (95% CI 0.93-0.98), and 0.86 (95% CI 0.76-0.92) for basal left and right free wall peak systolic strain and strain rate, respectively. Agreement between observers using tissue Doppler also showed high reliability. The mean time spent for 2D-strain analysis was 15 min, with an intraclass agreement coefficient of 0.97 (95% CI 0.95-0.98), 0.94 (95% CI 0.89-0.96), 0.96 (95% CI 0.93-0.98), and 0.84 (95% CI 0.73-0.90) for basal left and right free wall peak systolic strain and strain rate, respectively. Agreement between observers also showed a high reliability that was similar for TDI and 2D-strain. There was a weak correlation between TDI and 2D-strain measurements. A standard protocol with fixed acquisition and processing settings, including manual indication of the timing events of the cardiac cycle to correct for the lack of ECG, was feasible and reproducible for the evaluation of longitudinal ventricular strain and strain rate of the fetal heart by TDI as well as 2D-strain analysis. However, both techniques are not interchangeable as the correlation between them is relatively poor. Copyright © 2012 S. Karger AG, Basel.
Isolation and analysis of lipase-overproducing mutants of Serratia marcescens.
Kawai, E; Akatsuka, H; Sakurai, N; Idei, A; Matsumae, H; Shibatani, T; Komatsubara, S; Omori, K
2001-01-01
We have isolated a lipase-overproducing mutant, GE14, from Serratia marcescens 8000 after three rounds of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutant GE14 produced 95 kU/ml of extracellular lipase in the lipase medium, which was about threefold higher than that of produced by the original strain 8000. Enzymatic characteristics including specific activity of purified lipases from culture supernatants of GE14 and 8000 were almost same. The lipase gene (lipA) of GE14 contained two base substitutions; one in the promoter region and another in the N-terminal region of the lipA gene without an amino acid substitution. Promoter analysis using lipA-lacZ fusion plasmids revealed that these substitutions were responsible for the increase in the lipA expression level, independently. In contrast, no base substitution was found in the genes encoding the lipase secretion device, the Lip system. In addition, the genes coding for metalloprotease and the cell surface layer protein which are both secreted through the Lip system and associated with extracellular lipase production, also contained no base substitution. The strain GE14 carrying a high-copy-number lipA plasmid produced a larger amount of the extracellular lipase than the recombinant strains of 8000 and other mutants also did, indicating that GE14 was not only a lipase-overproducing strain, but also an advantageous host strain for overproducing the lipase by a recombinant DNA technique. These results suggest that the lipase-overproducing mutant GE14 and its recombinant strains are promising candidates for the industrial production of the S. marcescens lipase.
Molecular analysis of an oyster-related norovirus outbreak.
Nenonen, Nancy P; Hannoun, Charles; Olsson, Margareta B; Bergström, Tomas
2009-06-01
Contaminated raw oysters were implicated in a severe outbreak of norovirus (NoV) gastroenteritis affecting 30 restaurant guests. To define the outbreak source by using molecular methods to characterize NoV strains detected in patient and oyster samples. Molecular epidemiological studies based on nucleotide sequencing and phylogenetic analyses of patient and oyster NoV strains, and comparison to background dataset. NoV genotype (G) I.1 was detected in the one patient stool analyzed by in-house TaqMan real time RT-PCR and classical nested RT-PCR targeting NoV RNA-dependent polymerase (RdRp, 285 nt), and by nested RT-PCR targeting RdRp-capsid-poly(A)-3' (3085 nt). Patient strain showed >or=99% similarity (285 nt) with three NoV strains detected in two of five oysters examined by classical nested RT-PCR (RdRp). A third oyster tested positive for NoV GII.3. Phylogenetic analysis showed clustering of patient and oyster strains related to this outbreak with GI.1 strains from previous local outbreaks, and mussel studies. Sequence data revealed >or=99% similarity (285 nt) between NoV GI.1 strains detected in patient stool and suspect oysters, linking the contaminated oysters to the outbreak. Identification of human NoV GI and GII strains in oysters indicated contamination of human fecal origin, presumably from inappropriate storage in the harbor. Comparative long-fragment analysis of the patient strain revealed 99% similarity (3085 nt) with NoV GI.1 strains detected in previous outbreaks and environmental mussel studies from West Sweden, 87% with M87661 (Norwalk68) and 96% with L23828 (SRSV-KY-89/89/J). These results indicated considerable genomic stability of NoV GI.1 strains over time.
Prevotella timonensis sp. nov., isolated from a human breast abscess.
Glazunova, Olga O; Launay, Thierry; Raoult, Didier; Roux, Véronique
2007-04-01
Gram-negative anaerobic rods were isolated from a human breast abscess. Based on genotypic and phenotypic characteristics, the novel strain belonged to the genus Prevotella. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that it was closely related to Prevotella buccalis (94 % 16S rRNA gene sequence similarity), Prevotella salivae (90 %) and Prevotella oris (89.1 %). The major cellular fatty acid was C(14 : 0) (19.5 %). The new isolate represents a novel species in the genus Prevotella, for which the name Prevotella timonensis sp. nov. is proposed. The type strain is strain 4401737(T) (=CIP 108522(T)=CCUG 50105(T)).
Koton, Yael; Gordon, Michal; Chalifa-Caspi, Vered; Bisharat, Naiel
2014-01-01
In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59 and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C) and environmental (E), all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins) were present in all human pathogenic strains (both biotype 3 and non-biotype 3) and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS) proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and formed a genetically distinct group within the E-cluster. The unique epidemiological circumstances facilitated disease outbreak and brought this genotype to the attention of the scientific community.
2011-01-01
In order to effectively identify the vaccine and field strains of Canine distemper virus (CDV), a new differential diagnostic test has been developed based on reverse transcription-polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP). We selected an 829 bp fragment of the nucleoprotein (N) gene of CDV. By RFLP analysis using BamHI, field isolates were distinguishable from the vaccine strains. Two fragments were obtained from the vaccine strains by RT-PCR-RFLP analysis while three were observed in the field strains. An 829 nucleotide region of the CDV N gene was analyzed in 19 CDV field strains isolated from minks, raccoon dogs and foxes in China between 2005 and 2007. The results suggest this method is precise, accurate and efficient. It was also determined that three different genotypes exist in CDV field strains in fur animal herds of the north of China, most of which belong to Asian type. Mutated field strains, JSY06-R1, JSY06-R2 and JDH07-F1 also exist in Northern China, but are most closely related to the standard virulent strain A75/17, designated in Arctic and America-2 genetype in the present study, respectively. PMID:21352564
Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper.
Oh, Eom-Ji; Bae, Chungyun; Lee, Han-Beoyl; Hwang, In Sun; Lee, Hyok-In; Yea, Mi Chi; Yim, Kyu-Ock; Lee, Seungdon; Heu, Sunggi; Cha, Jae-Soon; Oh, Chang-Sik
2016-10-01
Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).
Li, Peng; Wang, Dechen; Yan, Jinli; Zhou, Jianuan; Deng, Yinyue; Jiang, Zide; Cao, Bihao; He, Zifu; Zhang, Lianhui
2016-01-01
Ralstonia solanacearum species complex is a devastating group of phytopathogens with an unusually wide host range and broad geographical distribution. R. solanacearum isolates may differ considerably in various properties including host range and pathogenicity, but the underlying genetic bases remain vague. Here, we conducted the genome sequencing of strain EP1 isolated from Guangdong Province of China, which belongs to phylotype I and is highly virulent to a range of solanaceous crops. Its complete genome contains a 3.95-Mb chromosome and a 2.05-Mb mega-plasmid, which is considerably bigger than reported genomes of other R. solanacearum strains. Both the chromosome and the mega-plasmid have essential house-keeping genes and many virulence genes. Comparative analysis of strain EP1 with other 3 phylotype I and 3 phylotype II, III, IV strains unveiled substantial genome rearrangements, insertions and deletions. Genome sequences are relatively conserved among the 4 phylotype I strains, but more divergent among strains of different phylotypes. Moreover, the strains exhibited considerable variations in their key virulence genes, including those encoding secretion systems and type III effectors. Our results provide valuable information for further elucidation of the genetic basis of diversified virulences and host range of R. solanacearum species. PMID:27833603
Fatigue crack identification method based on strain amplitude changing
NASA Astrophysics Data System (ADS)
Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang
2017-09-01
Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.
Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L
2013-09-01
An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. © 2013 The Society for Applied Microbiology.
Calibration and analysis of genome-based models for microbial ecology.
Louca, Stilianos; Doebeli, Michael
2015-10-16
Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda
2017-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.
Morimoto, Hiroshi; Furuta, Nobuo; Kono, Mitsue; Kabeya, Mayumi
2017-08-23
To examine the stress-buffering effect of coping strategies on the adverse effects of interrole conflict on the mental health of employed family caregivers, and clarify the moderating role of attentional control on this stress-buffering effect. Data were drawn from a two-wave longitudinal online survey of employed Japanese family caregivers of people with dementia (263 males, 116 females; age 51.54 ± 9.07 years). We assessed interrole conflict, coping strategies, attentional control, mental health variables (psychological strain and quality of life), and confounding factors. Hierarchical regression analyses controlled for sociodemographic factors found formal support seeking had a stress-buffering effect for strain- and behavior-based caregiving interfering with work (CIW) only on psychological strain, and was moderated by attentional control. Single slope analysis showed higher CIW was related to higher psychological strain in those with greater use of formal support seeking and lower attentional control, but not in those with higher attentional control. Greater use of formal support seeking weakens the adverse effects of strain- and behavior-based CIW on psychological strain in people with high attentional control. Attentional control is a key factor in the stress-buffering effect of formal support seeking on strain- and behavior-based CIW.
Pathak, Ashish; Chauhan, Ashvini; Ewida, Ayman Y.I.; Stothard, Paul
2016-01-01
We recently isolated Micrococcus sp. strain 2385 from Ochlockonee River, Florida and demonstrated potent biodegradative activity against two commonly used pesticides- alachlor [(2-chloro-2`,6`-diethylphenyl-N (methoxymethyl)acetanilide)] and endosulfan [(6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,3,4-benzo(e)di-oxathiepin-3-oxide], respectively. To further identify the repertoire of metabolic functions possessed by strain 2385, a draft genome sequence was obtained, assembled, annotated and analyzed. The genome sequence of Micrococcus sp. strain 2385 consisted of 1,460,461,440 bases which assembled into 175 contigs with an N50 contig length of 50,109 bases and a coverage of 600x. The genome size of this strain was estimated at 2,431,226 base pairs with a G+C content of 72.8 and a total number of 2,268 putative genes. RAST annotated a total of 340 subsystems in the genome of strain 2385 along with the presence of 2,177 coding sequences. A genome wide survey indicated that that strain 2385 harbors a plethora of genes to degrade other pollutants including caprolactam, PAHs (such as naphthalene), styrene, toluene and several chloroaromatic compounds. PMID:27672405
Pathak, Ashish; Chauhan, Ashvini; Ewida, Ayman Y I; Stothard, Paul
2016-01-01
We recently isolated Micrococcus sp. strain 2385 from Ochlockonee River, Florida and demonstrated potent biodegradative activity against two commonly used pesticides- alachlor [(2-chloro-2`,6`-diethylphenyl-N (methoxymethyl)acetanilide)] and endosulfan [(6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,3,4-benzo(e)di-oxathiepin-3-oxide], respectively. To further identify the repertoire of metabolic functions possessed by strain 2385, a draft genome sequence was obtained, assembled, annotated and analyzed. The genome sequence of Micrococcus sp. strain 2385 consisted of 1,460,461,440 bases which assembled into 175 contigs with an N50 contig length of 50,109 bases and a coverage of 600x. The genome size of this strain was estimated at 2,431,226 base pairs with a G+C content of 72.8 and a total number of 2,268 putative genes. RAST annotated a total of 340 subsystems in the genome of strain 2385 along with the presence of 2,177 coding sequences. A genome wide survey indicated that that strain 2385 harbors a plethora of genes to degrade other pollutants including caprolactam, PAHs (such as naphthalene), styrene, toluene and several chloroaromatic compounds.
Liu, Chao; Pei, Li; Li, Zhuoxuan; Ning, Tigang; Yu, Shaowei; Kang, Zexin
2013-05-10
Fourier mode coupling theory was first employed in the spectral analysis of several nonuniform fiber Bragg grating (FBG)-based acousto-optic modulators (NU-FBG-AOMs) with the effects of Gaussian-apodization (GA), phase shift (PS), and linear chirp (LC). Because of the accuracy and simplicity of the algorithm applied in this model, the modulation performances of these modulators can be acquired effectively and efficiently. Based on the model, the reflected spectra of these modulators were simulated under various acoustic frequencies and acoustically induced strains. The simulation results of the GA-FBG-AOM and PS-FBG-AOM showed that the wavelength spacing between the primary reflection peak and the secondary reflection peak is proportional to the acoustic frequency, and the reflectivity of reflection peaks depends on the acoustically induced strains. But for the LC-FBG-AOM, the wavelength spacing between the neighboring reflection peaks increased linearly and inversely with the acoustic frequency, and the extinction ratio of each peak relates to the acoustically induced strain. These numerical analysis results, which were effectively used in the designs and fabrications of these NU-FBG-AOMs, can broaden the AOM-based application scope and shed light on the performance optimization of optical wavelength-division multiplex system.
Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.
2018-03-01
The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.
Accurate interlaminar stress recovery from finite element analysis
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Riggs, H. Ronald
1994-01-01
The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.
Scholz, Christian F. P.; Poulsen, Knud
2012-01-01
The close phylogenetic relationship of the important pathogen Streptococcus pneumoniae and several species of commensal streptococci, particularly Streptococcus mitis and Streptococcus pseudopneumoniae, and the recently demonstrated sharing of genes and phenotypic traits previously considered specific for S. pneumoniae hamper the exact identification of S. pneumoniae. Based on sequence analysis of 16S rRNA genes of a collection of 634 streptococcal strains, identified by multilocus sequence analysis, we detected a cytosine at position 203 present in all 440 strains of S. pneumoniae but replaced by an adenosine residue in all strains representing other species of mitis group streptococci. The S. pneumoniae-specific sequence signature could be demonstrated by sequence analysis or indirectly by restriction endonuclease digestion of a PCR amplicon covering the site. The S. pneumoniae-specific signature offers an inexpensive means for validation of the identity of clinical isolates and should be used as an integrated marker in the annotation procedure employed in 16S rRNA-based molecular studies of complex human microbiotas. This may avoid frequent misidentifications such as those we demonstrate to have occurred in previous reports and in reference sequence databases. PMID:22442329
Corsini, Anna; Colombo, Milena; Muyzer, Gerard; Cavalca, Lucia
2015-09-01
A heterotrophic arsenite-oxidizing bacterium, strain 2WW, was isolated from a biofilter treating arsenic-rich groundwater. Comparative analysis of 16S rRNA gene sequences showed that it was closely related (98.7 %) to the alphaproteobacterium Aliihoeflea aesturari strain N8(T). However, it was physiologically different by its ability to grow at relatively low substrate concentrations, low temperatures and by its ability to oxidize arsenite. Here we describe the physiological features of strain 2WW and compare these to its most closely related relative, A. aestuari strain N8(T). In addition, we tested its efficiency to remove arsenic from groundwater in combination with Pf-ferritin. Strain 2WW oxidized arsenite to arsenate between pH 5.0 and 8.0, and from 4 to 30 °C. When the strain was used in combination with a Pf-ferritin-based material for arsenic removal from natural groundwater, the removal efficiency was significantly higher (73 %) than for Pf-ferritin alone (64 %). These results showed that arsenite oxidation by strain 2WW combined with Pf-ferritin-based material has a potential in arsenic removal from contaminated groundwater.
Ueki, Atsuko; Shibuya, Toru; Kaku, Nobuo; Ueki, Katsuji
2015-01-01
A strictly anaerobic bacterial strain (WN037(T)) was isolated from a methanogenic reactor. Cells were Gram-positive rods. Strain WN037(T) was asaccharolytic. The strain fermented L-lysine in the presence of B-vitamin mixture or vitamin B12 and produced acetate and butyrate. L-arginine and casamino acids poorly supported the growth. Strain WN037(T) used neither other amino acids nor organic acids examined. The strain had C18:1 ω7c, C16:0 and C18:1 ω7c DMA as the predominant cellular fatty acids. The genomic DNA G + C content was 44.2 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence placed strain WN037(T) in the family Eubacteriaceae in the class Clostridia. The closest relative was Eubacterium pyruvativorans (sequence similarity, 92.8 %). Based on the comprehensive analyses, the novel genus and species, Aminocella lysinolytica gen. nov., sp. nov. was proposed to accommodate the strain. The type strain is WN037(T) (= JCM 19863(T) = DSM 28287(T)).
Rapid identification of oral Actinomyces species cultivated from subgingival biofilm by MALDI-TOF-MS
Stingu, Catalina S.; Borgmann, Toralf; Rodloff, Arne C.; Vielkind, Paul; Jentsch, Holger; Schellenberger, Wolfgang; Eschrich, Klaus
2015-01-01
Background Actinomyces are a common part of the residential flora of the human intestinal tract, genitourinary system and skin. Isolation and identification of Actinomyces by conventional methods is often difficult and time consuming. In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has become a rapid and simple method to identify bacteria. Objective The present study evaluated a new in-house algorithm using MALDI-TOF-MS for rapid identification of different species of oral Actinomyces cultivated from subgingival biofilm. Design Eleven reference strains and 674 clinical strains were used in this study. All the strains were preliminarily identified using biochemical methods and then subjected to MALDI-TOF-MS analysis using both similarity-based analysis and classification methods (support vector machine [SVM]). The genotype of the reference strains and of 232 clinical strains was identified by sequence analysis of the 16S ribosomal RNA (rRNA). Results The sequence analysis of the 16S rRNA gene of all references strains confirmed their previous identification. The MALDI-TOF-MS spectra obtained from the reference strains and the other clinical strains undoubtedly identified as Actinomyces by 16S rRNA sequencing were used to create the mass spectra reference database. Already a visual inspection of the mass spectra of different species reveals both similarities and differences. However, the differences between them are not large enough to allow a reliable differentiation by similarity analysis. Therefore, classification methods were applied as an alternative approach for differentiation and identification of Actinomyces at the species level. A cross-validation of the reference database representing 14 Actinomyces species yielded correct results for all species which were represented by more than two strains in the database. Conclusions Our results suggest that a combination of MALDI-TOF-MS with powerful classification algorithms, such as SVMs, provide a useful tool for the differentiation and identification of oral Actinomyces. PMID:25597306
Job strain in relation to body mass index: pooled analysis of 160 000 adults from 13 cohort studies.
Nyberg, S T; Heikkilä, K; Fransson, E I; Alfredsson, L; De Bacquer, D; Bjorner, J B; Bonenfant, S; Borritz, M; Burr, H; Casini, A; Clays, E; Dragano, N; Erbel, R; Geuskens, G A; Goldberg, M; Hooftman, W E; Houtman, I L; Jöckel, K-H; Kittel, F; Knutsson, A; Koskenvuo, M; Leineweber, C; Lunau, T; Madsen, I E H; Hanson, L L Magnusson; Marmot, M G; Nielsen, M L; Nordin, M; Oksanen, T; Pentti, J; Rugulies, R; Siegrist, J; Suominen, S; Vahtera, J; Virtanen, M; Westerholm, P; Westerlund, H; Zins, M; Ferrie, J E; Theorell, T; Steptoe, A; Hamer, M; Singh-Manoux, A; Batty, G D; Kivimäki, M
2012-07-01
Evidence of an association between job strain and obesity is inconsistent, mostly limited to small-scale studies, and does not distinguish between categories of underweight or obesity subclasses. To examine the association between job strain and body mass index (BMI) in a large adult population. We performed a pooled cross-sectional analysis based on individual-level data from 13 European studies resulting in a total of 161 746 participants (49% men, mean age, 43.7 years). Longitudinal analysis with a median follow-up of 4 years was possible for four cohort studies (n = 42 222). A total of 86 429 participants were of normal weight (BMI 18.5-24.9 kg m(-2) ), 2149 were underweight (BMI < 18.5 kg m(-2) ), 56 572 overweight (BMI 25.0-29.9 kg m(-2) ) and 13 523 class I (BMI 30-34.9 kg m(-2) ) and 3073 classes II/III (BMI ≥ 35 kg m(-2) ) obese. In addition, 27 010 (17%) participants reported job strain. In cross-sectional analyses, we found increased odds of job strain amongst underweight [odds ratio 1.12, 95% confidence interval (CI) 1.00-1.25], obese class I (odds ratio 1.07, 95% CI 1.02-1.12) and obese classes II/III participants (odds ratio 1.14, 95% CI 1.01-1.28) as compared with participants of normal weight. In longitudinal analysis, both weight gain and weight loss were related to the onset of job strain during follow-up. In an analysis of European data, we found both weight gain and weight loss to be associated with the onset of job strain, consistent with a 'U'-shaped cross-sectional association between job strain and BMI. These associations were relatively modest; therefore, it is unlikely that intervention to reduce job strain would be effective in combating obesity at a population level. © 2011 The Association for the Publication of the Journal of Internal Medicine.
Ibrahim, El-Sayed H; Stojanovska, Jadranka; Hassanein, Azza; Duvernoy, Claire; Croisille, Pierre; Pop-Busui, Rodica; Swanson, Scott D
2018-05-16
Cardiac MRI tagging is a valuable technique for evaluating regional heart function. Currently, there are a number of different techniques for analyzing the tagged images. Specifically, k-space-based analysis techniques showed to be much faster than image-based techniques, where harmonic-phase (HARP) and sine-wave modeling (SinMod) stand as two famous techniques of the former group, which are frequently used in clinical studies. In this study, we compared HARP and SinMod and studied inter-observer variability between the two techniques for evaluating myocardial strain and apical-to-base torsion in numerical phantom, nine healthy controls, and thirty diabetic patients. Based on the ground-truth numerical phantom measurements (strain = -20% and rotation angle = -4.4°), HARP and SinMod resulted in overestimation (in absolute value terms) of strain by 1% and 5% (strain values), and of rotation angle by 0.4° and 2.0°, respectively. For the in-vivo results, global strain and torsion ranges were -10.6 to -35.3% and 1.8-12.7°/cm in patients, and -17.8 to -32.7% and 1.8-12.3°/cm in volunteers. On average, SinMod overestimated strain measurements by 5.7% and 5.9% (strain values) in the patients and volunteers, respectively, compared to HARP, and overestimated torsion measurements by 2.9°/cm and 2.5°/cm in the patients and volunteers, respectively, compared to HARP. Location-wise, the ranges for basal, mid-ventricular, and apical strain in patients (volunteers) were -8.4 to -31.5% (-11.6 to -33.3%), -6.3 to -37.2% (-17.8 to -33.3%), and -5.2 to -38.4% (-20.0 to -33.2%), respectively. SinMod overestimated strain in the basal, mid-ventricular, and apical slices by 4.7% (5.7%), 5.9% (5.5%), and 8.9% (6.8%), respectively, compared to HARP in the patients (volunteers). Nevertheless, there existed good correlation between the HARP and SinMod measurements. Finally, there were no significant strain or torsion measurement differences between patients and volunteers. There existed good inter-observer agreement, as all measurement differences lied within the Bland-Altman ± 2 standard-deviation (SD) difference limits. In conclusion, despite the consistency of the results by either HARP or SinMod and acceptable agreement of the generated strain and torsion patterns by both techniques, SinMod systematically overestimated the measurements compared to HARP. Under current operating conditions, the measurements from HARP and SinMod cannot be used interchangeably. Copyright © 2017. Published by Elsevier Inc.
Hewson, Kylie; Noormohammadi, Amir H; Devlin, Joanne M; Mardani, Karim; Ignjatovic, Jagoda
2009-01-01
Infectious bronchitis virus (IBV) is a coronavirus that causes upper respiratory, renal and/or reproductive diseases with high morbidity in poultry. Classification of IBV is important for implementation of vaccination strategies to control the disease in commercial poultry. Currently, the lengthy process of sequence analysis of the IBV S1 gene is considered the gold standard for IBV strain identification, with a high nucleotide identity (e.g. > or =95%) indicating related strains. However, this gene has a high propensity to mutate and/or undergo recombination, and alone it may not be reliable for strain identification. A real-time polymerase chain reaction (RT-PCR) combined with high-resolution melt (HRM) curve analysis was developed based on the 3'UTR of IBV for rapid detection and classification of IBV from commercial poultry. HRM curves generated from 230 to 435-bp PCR products of several IBV strains were subjected to further analysis using a mathematical model also developed during this study. It was shown that a combination of HRM curve analysis and the mathematical model could reliably group 189 out of 190 comparisons of pairs of IBV strains in accordance with their 3'UTR and S1 gene identities. The newly developed RT-PCR/HRM curve analysis model could detect and rapidly identify novel and vaccine-related IBV strains, as confirmed by S1 gene and 3'UTR nucleotide sequences. This model is a rapid, reliable, accurate and non-subjective system for detection of IBVs in poultry flocks.
Kopecká, J; Němec, M; Matoulková, D
2016-06-01
Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique. © 2016 The Society for Applied Microbiology.
Lippolis, Vincenzo; Ferrara, Massimo; Cervellieri, Salvatore; Damascelli, Anna; Epifani, Filomena; Pascale, Michelangelo; Perrone, Giancarlo
2016-02-02
The availability of rapid diagnostic methods for monitoring ochratoxigenic species during the seasoning processes for dry-cured meats is crucial and constitutes a key stage in order to prevent the risk of ochratoxin A (OTA) contamination. A rapid, easy-to-perform and non-invasive method using an electronic nose (e-nose) based on metal oxide semiconductors (MOS) was developed to discriminate dry-cured meat samples in two classes based on the fungal contamination: class P (samples contaminated by OTA-producing Penicillium strains) and class NP (samples contaminated by OTA non-producing Penicillium strains). Two OTA-producing strains of Penicillium nordicum and two OTA non-producing strains of Penicillium nalgiovense and Penicillium salamii, were tested. The feasibility of this approach was initially evaluated by e-nose analysis of 480 samples of both Yeast extract sucrose (YES) and meat-based agar media inoculated with the tested Penicillium strains and incubated up to 14 days. The high recognition percentages (higher than 82%) obtained by Discriminant Function Analysis (DFA), either in calibration and cross-validation (leave-more-out approach), for both YES and meat-based samples demonstrated the validity of the used approach. The e-nose method was subsequently developed and validated for the analysis of dry-cured meat samples. A total of 240 e-nose analyses were carried out using inoculated sausages, seasoned by a laboratory-scale process and sampled at 5, 7, 10 and 14 days. DFA provided calibration models that permitted discrimination of dry-cured meat samples after only 5 days of seasoning with mean recognition percentages in calibration and cross-validation of 98 and 88%, respectively. A further validation of the developed e-nose method was performed using 60 dry-cured meat samples produced by an industrial-scale seasoning process showing a total recognition percentage of 73%. The pattern of volatile compounds of dry-cured meat samples was identified and characterized by a developed HS-SPME/GC-MS method. Seven volatile compounds (2-methyl-1-butanol, octane, 1R-α-pinene, d-limonene, undecane, tetradecanal, 9-(Z)-octadecenoic acid methyl ester) allowed discrimination between dry-cured meat samples of classes P and NP. These results demonstrate that MOS-based electronic nose can be a useful tool for a rapid screening in preventing OTA contamination in the cured meat supply chain. Copyright © 2015 Elsevier B.V. All rights reserved.
Mahmoud, Mahmoud Fawzy; Alrumman, Sulaiman Abdullah; Hesham, Abd El-Latif
2016-01-01
Nowadays,most of the pathogenic bacteria become resistant to antibiotics. Therefore,the pharmaceutical properties of the natural plant extracts have become of interest to researchers as alternative antimicrobial agents. In this study,antibacterial activities of extract gained from Acacia etbaica, Acacia laeta, Acacia origena and Acacia pycnantha have been evaluated against isolated pathogenic bacteria (Strains MFM-01, MFM-10 and AH-09) using agar well diffusion methods.The bacterial strains were isolated from infected individuals,and their exact identification was detected on the basis of 16S rRNA gene amplification and sequence determination. Alignment results and the comparison of 16 SrRN A gene sequences of the isolates to 16 SrRN A gene sequences available in Gen Bank data base as well as the phylogenetic analysis confirmed the accurate position of the isolates as Klebsiella oxytoca strain MFM-01, Staphylococcus aureus strain MFM-10 and Klebsiella pneumoniae strain AH-09. Except for cold water, all tested solvents (Chloroform, petroleum ether, methanol, diethyl ether, and acetone) showed variation in their activity against studied bacteria. GC-MS analysis of ethanol extracts showed that four investigated Acacia species have different phyto components. Eight important pharmaceutical components were found in the legume of Acacia etbaica, seven in the legume of Acacia laeta, fifteen in the legume of Acacia origena and nine in the leaves of Acacia pycnantha. A dendrogram was constructed based on chemical composition, revealed that Acacia laeta is more closely related to Acacia etbaica forming on eclade, whereas Acacia origena less similar to other species. Our results demonstrated that, investigated plants and chemical compounds present could be used as promising antibacterial agents.
Park, Jin Hwan; Lee, Kwang Ho; Kim, Tae Yong; Lee, Sang Yup
2007-01-01
The l-valine production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement based on transcriptome analysis and gene knockout simulation of the in silico genome-scale metabolic network. Feedback inhibition of acetohydroxy acid synthase isoenzyme III by l-valine was removed by site-directed mutagenesis, and the native promoter containing the transcriptional attenuator leader regions of the ilvGMEDA and ilvBN operon was replaced with the tac promoter. The ilvA, leuA, and panB genes were deleted to make more precursors available for l-valine biosynthesis. This engineered Val strain harboring a plasmid overexpressing the ilvBN genes produced 1.31 g/liter l-valine. Comparative transcriptome profiling was performed during batch fermentation of the engineered and control strains. Among the down-regulated genes, the lrp and ygaZH genes, which encode a global regulator Lrp and l-valine exporter, respectively, were overexpressed. Amplification of the lrp, ygaZH, and lrp-ygaZH genes led to the enhanced production of l-valine by 21.6%, 47.1%, and 113%, respectively. Further improvement was achieved by using in silico gene knockout simulation, which identified the aceF, mdh, and pfkA genes as knockout targets. The VAMF strain (Val ΔaceF Δmdh ΔpfkA) overexpressing the ilvBN, ilvCED, ygaZH, and lrp genes was able to produce 7.55 g/liter l-valine from 20 g/liter glucose in batch culture, resulting in a high yield of 0.378 g of l-valine per gram of glucose. These results suggest that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification, transcriptome profiling, and systems-level in silico analysis. PMID:17463081
Wang, Hualei; Jin, Hongli; Li, Qian; Zhao, Guoxing; Cheng, Nan; Feng, Na; Zheng, Xuexing; Wang, Jianzhong; Zhao, Yongkun; Li, Ling; Cao, Zengguo; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu
2016-02-01
Canine parvovirus (CPV) can cause severe disease in animals and continuously generates new variant and recombinant strains in dogs that have a strong impact on sanitation. It is therefore necessary to investigate epidemic CPV strains to improve our understanding of CPV transmission and epidemic behavior. However, most studies have focused on the analysis of VP2, and therefore, information about recombination and relationships between strains is still lacking. Here, 14 strains of CPV were isolated from domestic dogs suspected of hosting CPV between 2013 and 2014 in China. The complete NS1 and VP2 genes were sequenced and analyzed. The results suggest that the new CPV-2a and new CPV-2b types are the prevalent strains in China. In addition to a few mutations (residues 19, 544, 545, 572 and 583 of NS1 and residues 267, 370, 377 and 440 of VP2) that were preserved during transmission, new mutations (residues 60, 630 of NS1, and residues 21, 310 of VP2) were found in the isolated strains. A phylogenetic tree based on VP2 sequences illustrated that the new CPV-2a and new CPV-2b strains from China form single clusters that are distinct from lineages from other countries. Moreover, recombination between the new CPV-2a and new CPV-2b types was also identified in the isolated strains. Due to differences in selection pressures or recombination, there were a small number of inconsistencies between the phylogenetic trees for VP2 and NS1, which indicated that phylogenetic relationships based on VP2 might not be representative of those based on NS1. The data indicated that mutations and recombination are constantly occurring along with the spread of CPV in China.
Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter
2016-01-01
Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG 68415T). Furthermore, we present emended descriptions of the species Burkholderia sordidicola, Burkholderia zhejiangensis and Burkholderia grimmiae. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and gyrB gene sequences determined in this study are LT158612-LT158624 and LT158625-LT158641, respectively. PMID:27375597
NASA Astrophysics Data System (ADS)
Michie, W. C.; Culshaw, Brian; Roberts, Scott S. J.; Davidson, Roger
1991-12-01
A technique based upon the differential sensitivities of dual mode and polarimetric sensing schemes is shown to be capable of resolving simultaneously temperature and strain variations to within 20 micro-epsilon and 1 K over a strain and temperature excursion of 2 micro-epsilon and 45 K. The technique is evaluated experimentally over an 80 cm sensing length of unembedded optical fiber and in an 8 ply unidirectional carbon/epoxide laminate subject to temperature and strain cycling. A comparative analysis of the performance of the embedded and the unembedded fiber sensors is presented.
Segmental Analysis of Cardiac Short-Axis Views Using Lagrangian Radial and Circumferential Strain
Ma, Chi; Wang, Xiao; Varghese, Tomy
2016-01-01
Accurate description of myocardial deformation in the left ventricle is a three-dimensional problem, requiring three normal strain components along its natural axis, that is, longitudinal, radial, and circumferential strains. Although longitudinal strains are best estimated from long-axis views, radial and circumferential strains are best depicted in short-axis views. An algorithm that utilizes a polar grid for short-axis views previously developed in our laboratory for a Lagrangian description of tissue deformation is utilized for radial and circumferential displacement and strain estimation. Deformation of the myocardial wall, utilizing numerical simulations with ANSYS, and a finite-element analysis–based canine heart model were adapted as the input to a frequency-domain ultrasound simulation program to generate radiofrequency echo signals. Clinical in vivo data were also acquired from a healthy volunteer. Local displacements estimated along and perpendicular to the ultrasound beam propagation direction are then transformed into radial and circumferential displacements and strains using the polar grid based on a pre-determined centroid location. Lagrangian strain variations demonstrate good agreement with the ideal strain when compared with Eulerian results. Lagrangian radial and circumferential strain estimation results are also demonstrated for experimental data on a healthy volunteer. Lagrangian radial and circumferential strain tracking provide accurate results with the assistance of the polar grid, as demonstrated using both numerical simulations and in vivo study. PMID:26578642
Three-dimensional analysis of a postbuckled embedded delamination
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1988-01-01
Delamination growth caused by local buckling of a delaminated group of plies was investigated. Delamination growth was assumed to be governed by the strain energy release rates, G(1), G(2) and G(3). The strain energy release rates were calculated using a geometrically nonlinear three-dimensional finite element analysis. The program is described and several checks of the analysis are discussed. Based on a limited parametric study, the following conclusions were reached: (1) the problem is definitely mixed mode (in some cases G(1) is larger than G(2), for other cases the opposite is true); (2) in general, there is a large gradient in the strain energy release rates along the delamination front; (3) the locations of maximum G(1) and G(2) depend on the delamination shape and the applied strain; (4) the mode 3 component was negligible for all cases considered; and (5) the analysis predicted that parts of the delamination would overlap. The results presented did not impose contact constraints to prevent overlapping. Further work is needed to determine the effects of allowing the overlapping.
Lagatolla, Cristina; Skerlavaj, Silvia; Dolzani, Lucilla; Tonin, Enrico A; Monti Bragadin, Carlo; Bosco, Marco; Rizzo, Roberto; Giglio, Luisella; Cescutti, Paola
2002-03-19
Eleven strains of Burkholderia cepacia were isolated directly from clinical specimens: 10 from sputum of cystic fibrosis patients, and one from a vaginal swab. They were biochemically identified using API20NE and confirmed by a PCR-based assay. The genomovar characterisation obtained by specific PCR amplification revealed seven strains belonging to genomovar I, three belonging to genomovar IIIA and one belonging to genomovar IV. All isolates were also typed by ribotyping and random amplification of polymorphic DNA analysis. Some of the characterised strains were examined for the ability to produce exopolysaccharides, with the aim of correlating the genomovar with the exopolysaccharide structure. The polysaccharides were analysed by means of methylation analysis and 1H-NMR spectroscopy in order to determine structural similarities. It was shown that different strains are capable of producing chemically different polysaccharides.
Libkind, Diego; Sampaio, José Paulo; van Broock, Maria
2010-09-01
A basidiomycetous yeast, strain CRUB 1032(T), which formed salmon-pink colonies, was isolated from glacial meltwater in Patagonia, Argentina. Morphological, physiological and biochemical characterization indicated that this strain belonged to the genus Rhodotorula. Molecular taxonomic analysis based on the 26S rDNA D1/D2 domain and internal transcribed spacer region sequences showed that strain CRUB 1032(T) represents an undescribed yeast species, for which the name Rhodotorula meli sp. nov. is proposed (type strain is CRUB 1032(T)=CBS 10797(T)=JCM 15319(T)). Phylogenetic analysis showed that Rhodotorula lamellibrachii was the closest known species, which, together with R. meli, formed a separate cluster related to the Sakaguchia clade within the Cystobasidiomycetes. Additional Patagonian yeast isolates of the class Cystobasidiomycetes are also investigated in the present work.
Systematic exploration of essential yeast gene function with temperature-sensitive mutants
Li, Zhijian; Vizeacoumar, Franco J; Bahr, Sondra; Li, Jingjing; Warringer, Jonas; Vizeacoumar, Frederick S; Min, Renqiang; VanderSluis, Benjamin; Bellay, Jeremy; DeVit, Michael; Fleming, James A; Stephens, Andrew; Haase, Julian; Lin, Zhen-Yuan; Baryshnikova, Anastasia; Lu, Hong; Yan, Zhun; Jin, Ke; Barker, Sarah; Datti, Alessandro; Giaever, Guri; Nislow, Corey; Bulawa, Chris; Myers, Chad L; Costanzo, Michael; Gingras, Anne-Claude; Zhang, Zhaolei; Blomberg, Anders; Bloom, Kerry; Andrews, Brenda; Boone, Charles
2012-01-01
Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (~45%) of the 1,101 essential yeast genes, with ~30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes. PMID:21441928
NASA Astrophysics Data System (ADS)
Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.
2018-05-01
This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.
Pang, Changlong; Li, Ang; Cui, Di; Yang, Jixian; Ma, Fang; Guo, Haijuan
2016-02-20
Klebsiella pneumoniae J1 is a Gram-negative strain, which belongs to a protein-based microbial flocculant-producing bacterium. However, little genetic information is known about this species. Here we carried out a whole-genome sequence analysis of this strain and report the complete genome sequence of this organism and its genetic basis for carbohydrate metabolism, capsule biosynthesis and transport system. Copyright © 2016 Elsevier B.V. All rights reserved.
Molecular evidence of Burkholderia pseudomallei genotypes based on geographical distribution.
Zulkefli, Noorfatin Jihan; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Chong, Chun Wie; Thong, Kwai Lin; Ponnampalavanar, Sasheela; Vadivelu, Jamuna; Teh, Cindy Shuan Ju
2016-01-01
Background. Central intermediary metabolism (CIM) in bacteria is defined as a set of metabolic biochemical reactions within a cell, which is essential for the cell to survive in response to environmental perturbations. The genes associated with CIM are commonly found in both pathogenic and non-pathogenic strains. As these genes are involved in vital metabolic processes of bacteria, we explored the efficiency of the genes in genotypic characterization of Burkholderia pseudomallei isolates, compared with the established pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) schemes. Methods. Nine previously sequenced B. pseudomallei isolates from Malaysia were characterized by PFGE, MLST and CIM genes. The isolates were later compared to the other 39 B. pseudomallei strains, retrieved from GenBank using both MLST and sequence analysis of CIM genes. UniFrac and hierachical clustering analyses were performed using the results generated by both MLST and sequence analysis of CIM genes. Results. Genetic relatedness of nine Malaysian B. pseudomallei isolates and the other 39 strains was investigated. The nine Malaysian isolates were subtyped into six PFGE profiles, four MLST profiles and five sequence types based on CIM genes alignment. All methods demonstrated the clonality of OB and CB as well as CMS and THE. However, PFGE showed less than 70% similarity between a pair of morphology variants, OS and OB. In contrast, OS was identical to the soil isolate, MARAN. To have a better understanding of the genetic diversity of B. pseudomallei worldwide, we further aligned the sequences of genes used in MLST and genes associated with CIM for the nine Malaysian isolates and 39 B. pseudomallei strains from NCBI database. Overall, based on the CIM genes, the strains were subtyped into 33 profiles where majority of the strains from Asian countries were clustered together. On the other hand, MLST resolved the isolates into 31 profiles which formed three clusters. Hierarchical clustering using UniFrac distance suggested that the isolates from Australia were genetically distinct from the Asian isolates. Nevertheless, statistical significant differences were detected between isolates from Malaysia, Thailand and Australia. Discussion. Overall, PFGE showed higher discriminative power in clustering the nine Malaysian B. pseudomallei isolates and indicated its suitability for localized epidemiological study. Compared to MLST, CIM genes showed higher resolution in distinguishing those non-related strains and better clustering of strains from different geographical regions. A closer genetic relatedness of Malaysian isolates with all Asian strains in comparison to Australian strains was observed. This finding was supported by UniFrac analysis which resulted in geographical segregation between Australia and the Asian countries.
Schmidt-Chanasit, Jonas; Bialonski, Alexandra; Heinemann, Patrick; Ulrich, Rainer G; Günther, Stephan; Rabenau, Holger F; Doerr, Hans Wilhelm
2010-07-01
Recently two different herpes simplex virus type 2 (HSV-2) clades (A and B) were described on DNA sequence data of the glycoprotein E (gE), G (gG) and I (gI) genes. To type the circulating HSV-2 wild-type strains in Germany by a novel approach and to monitor potential changes in the molecular epidemiology between 1997 and 2008. A total of 64 clinical HSV-2 isolates were analyzed by a novel approach using the DNA sequences of the complete open reading frames of glycoprotein B (gB) and gG. Recombination analysis of the gB and gG gene sequences was performed to reveal intragenic recombinants. Based on the phylogenetic analysis of the gB coding DNA sequence 8 of 64 (12%) isolates were classified as clade A strains and 56 of 64 (88%) isolates were classified as clade B strains. Analysis of the gG coding DNA sequence classified 4 (6%) isolates as clade A strains and 60 (94%) isolates as clade B strains. In comparison, the 8 isolates classified as clade A strains using the gB sequence data were classified as clade B strains when using the gG coding DNA sequence, suggesting intergenic recombination events. Intragenic recombination events were not detected. The first molecular survey of clinical HSV-2 isolates from Germany demonstrated the circulation of clade A and B strains and of intergenic recombinants over a period of 12 years. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Montero-Calasanz, Maria del Carmen; Göker, Markus; Broughton, William J; Cattaneo, Arlette; Favet, Jocelyne; Pötter, Gabriele; Rohde, Manfred; Spröer, Cathrin; Schumann, Peter; Klenk, Hans-Peter; Gorbushina, Anna A
2013-05-01
Three novel Gram-positive, aerobic, actinobacterial strains, CF5/2(T), CF5/1 and CF7/1, were isolated in 2007 during environmental screening of arid desert soil in the Sahara desert, Chad. Results from riboprinting, MALDI-TOF protein spectra and 16S rRNA sequence analysis confirmed that all three strains belonged to the same species. Phylogenetic analysis of 16S rRNA sequences with the strains' closest relatives indicated that they represented a distinct species. The three novel strains also shared a number of physiological and biochemical characteristics distinct from previously named Geodermatophilus species. The novel strains' peptidoglycan contained meso-diaminopimelic acid; their main phospholipids were phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and a small amount of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone. The major cellular fatty acids were the branched-chain saturated acids iso-C16:0 and iso-C15:0. Galactose was detected as diagnostic sugar. Based on these chemotaxonomic results, 16S rRNA gene sequence analysis and DNA-DNA hybridization between strain CF5/2(T) and the type strains of Geodermatophilus saharensis, Geodermatophilus arenarius, Geodermatophilus nigrescens, Geodermatophilus telluris and Geodermatophilus siccatus, the isolates CF5/2(T), CF5/1 and CF7/1 are proposed to represent a novel species, Geodermatophilus tzadiensis, with type strain CF5/2(T)=DSM 45416=MTCC 11411 and two reference strains, CF5/1 (DSM 45415) and CF7/1 (DSM 45420). Copyright © 2013 Elsevier GmbH. All rights reserved.
Amro, Ahmad; Mentis, Andreas; Pratlong, Francine; Dedet, Jean-Pierre; Votypka, Jan; Volf, Petr; Ozensoy Toz, Seray; Kuhls, Katrin; Schönian, Gabriele; Soteriadou, Ketty
2012-01-01
Background New foci of human CL caused by strains of the Leishmania donovani (L. donovani) complex have been recently described in Cyprus and the Çukurova region in Turkey (L. infantum) situated 150 km north of Cyprus. Cypriot strains were typed by Multilocus Enzyme Electrophoresis (MLEE) using the Montpellier (MON) system as L. donovani zymodeme MON-37. However, multilocus microsatellite typing (MLMT) has shown that this zymodeme is paraphyletic; composed of distantly related genetic subgroups of different geographical origin. Consequently the origin of the Cypriot strains remained enigmatic. Methodology/Principal Findings The Cypriot strains were compared with a set of Turkish isolates obtained from a CL patient and sand fly vectors in south-east Turkey (Çukurova region; CUK strains) and from a VL patient in the south-west (Kuşadasi; EP59 strain). These Turkish strains were initially analyzed using the K26-PCR assay that discriminates MON-1 strains by their amplicon size. In line with previous DNA-based data, the strains were inferred to the L. donovani complex and characterized as non MON-1. For these strains MLEE typing revealed two novel zymodemes; L. donovani MON-309 (CUK strains) and MON-308 (EP59). A population genetic analysis of the Turkish isolates was performed using 14 hyper-variable microsatellite loci. The genotypic profiles of 68 previously analyzed L. donovani complex strains from major endemic regions were included for comparison. Population structures were inferred by combination of Bayesian model-based and distance-based approaches. MLMT placed the Turkish and Cypriot strains in a subclade of a newly discovered, genetically distinct L. infantum monophyletic group, suggesting that the Cypriot strains may originate from Turkey. Conclusion The discovery of a genetically distinct L. infantum monophyletic group in the south-eastern Mediterranean stresses the importance of species genetic characterization towards better understanding, monitoring and controlling the spread of leishmaniasis in this region. PMID:22348162
Palmer, Allison; Painter, Joseph; Hassler, Hayley; Richards, Vincent P; Bruce, Terri; Morrison, Shatavia; Brown, Ellen; Kozak-Muiznieks, Natalia A; Lucas, Claressa; McNealy, Tamara L
2016-10-01
A novel Legionella species was identified based on sequencing, cellular fatty acid analysis, biochemical reactions, and biofilm characterization. Strain D5610 was originally isolated from the bronchial wash of a patient in Ohio, USA. The bacteria were gram-negative, rod-shaped, and exhibited green fluorescence under long wave UV light. Phylogenetic analysis and fatty acid composition revealed a distinct separation within the genus. The strain grows between 26-45°C and forms biofilms equivalent to L. pneumophila Philadelphia 1. These characteristics suggest that this isolate is a novel Legionella species, for which the name Legionella clemsonensis sp nov. is proposed. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
Alam, Nuhu; Shim, Mi Ja; Lee, Min Woong; Shin, Pyeong Gyun; Yoo, Young Bok; Lee, Tae Soo
2009-09-01
The molecular phylogeny in nine different commercial cultivated strains of Pleurotus nebrodensis was studied based on their internal transcribed spacer (ITS) region and RAPD. In the sequence of ITS region of selected strains, it was revealed that the total length ranged from 592 to 614 bp. The size of ITS1 and ITS2 regions varied among the strains from 219 to 228 bp and 211 to 229 bp, respectively. The sequence of ITS2 was more variable than ITS1 and the region of 5.8S sequences were identical. Phylogenetic tree of the ITS region sequences indicated that selected strains were classified into five clusters. The reciprocal homologies of the ITS region sequences ranged from 99 to 100%. The strains were also analyzed by RAPD with 20 arbitrary primers. Twelve primers were efficient to applying amplification of the genomic DNA. The sizes of the polymorphic fragments obtained were in the range of 200 to 2000 bp. RAPD and ITS analysis techniques were able to detect genetic variation among the tested strains. Experimental results suggested that IUM-1381, IUM-3914, IUM-1495 and AY-581431 strains were genetically very similar. Therefore, all IUM and NCBI gene bank strains of P. nebrodensis were genetically same with some variations.
Lim, Seong Mi; Yoon, Mi-Young; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Shin, Teak Soo; Park, Hae Woong; Yu, Nan Hee; Kim, Young Ho; Kim, Jin-Cheol
2017-10-01
The aim of this study was to identify volatile and agar-diffusible antifungal metabolites produced by Bacillus sp. G341 with strong antifungal activity against various phytopathogenic fungi. Strain G341 isolated from four-year-old roots of Korean ginseng with rot symptoms was identified as Bacillus velezensis based on 16S rDNA and gyrA sequences. Strain G341 inhibited mycelial growth of all phytopathogenic fungi tested. In vivo experiment results revealed that n -butanol extract of fermentation broth effectively controlled the development of rice sheath blight, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew, and red pepper anthracnose. Two antifungal compounds were isolated from strain G341 and identified as bacillomycin L and fengycin A by MS/MS analysis. Moreover, volatile compounds emitted from strain G341 were found to be able to inhibit mycelial growth of various phytopathogenic fungi. Based on volatile compound profiles of strain G341 obtained through headspace collection and analysis on GC-MS, dimethylsulfoxide, 1-butanol, and 3-hydroxy-2-butanone (acetoin) were identified. Taken together, these results suggest that B. valezensis G341 can be used as a biocontrol agent for various plant diseases caused by phytopathogenic fungi.
Colwellia chukchiensis sp. nov., a psychrotolerant bacterium isolated from the Arctic Ocean.
Yu, Yong; Li, Hui-Rong; Zeng, Yin-Xin
2011-04-01
A novel psychrotolerant bacterial strain, BCw111(T), was isolated from seawater samples from the Chukchi Sea in the Arctic Ocean. Cells of strain BCw111(T) were Gram-negative, motile, facultatively anaerobic, curved rods and were able to grow at 0-30 °C (optimum 23-25 °C). Strain BCw111(T) had Q-8 as the major respiratory quinone and contained iso-C(15 : 0) 2-OH and/or C(16 : 1)ω7c (28.13 %), C(16 : 0) (13.28 %) and C(17 : 1) (12.90 %) as the major cellular fatty acids. The genomic DNA G+C content was 41.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BCw11(T) formed a distinct lineage within the genus Colwellia and exhibited the highest 16S rRNA gene sequence similarity with Colwellia polaris 537(T) (97.8 %) and Colwellia aestuarii SMK-10(T) (97.1 %). Based on phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness, a novel species, Colwellia chukchiensis sp. nov., is proposed. The type strain is BCw111(T) ( = CGMCC 1.9127(T) = LMG 25329(T) = DSM 22576(T)).
Sridhara Rao, Duggi V; Sankarasubramanian, Ramachandran; Muraleedharan, Kuttanellore; Mehrtens, Thorsten; Rosenauer, Andreas; Banerjee, Dipankar
2014-08-01
In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the In x Ga1-x As channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the In x Ga1-x As layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the In x Ga1-x As channel layer was pseudomorphically grown leading to tetragonal strain along the [001] growth direction and that the average indium content (x) in the epilayer is ~0.12. We found consistency in the results obtained using various methods of analysis.
Phylogenetic analysis of the alfalfa weevil complex (Coleoptera: Curculionidae) in North America.
Böttger, Jorge A Achata; Bundy, C Scott; Oesterle, Naomi; Hanson, Stephen F
2013-02-01
The Eastern, Western, and Egyptian strains of alfalfa weevil are pests introduced to North America on three separate occasions, now they share partially overlapping geographic ranges, covering most of the continental United States. Behavior, susceptibility to parasites, and subtle morphological differences separate the strains. The difficulty in differentiating among these strains morphologically has led to the application of molecular phylogeny approaches including restriction fragment-length polymorphism characterization and sequencing of mitochondrial genes. While valuable for strain identification, this approach cannot identify interstrain hybrids because mitochondrial markers are maternally inherited. The work reported here extends previous findings by comparing over 7 Kb of sequence from two mitochondrial and four nuclear loci to increase the resolution of molecular phylogeny for these weevils. The related clover leaf weevil, also an occasional pest of alfalfa, was included in the analysis because the molecular phylogeny of this weevil has not been examined to date. Analysis of nuclear loci indicate that the clover weevil is a distinct species. Furthermore, while the three alfalfa weevil strains are separable based on mitochondrial sequence data they cannot be separated using nuclearloci suggesting that they are all recently diverged members of the same species. These data refine the relationships among these strains and may find application in design of better control strategies.
Stamford, Tania Lucia Montenegro; Stamford, Thayza Christina Montenegro; Stamford, Newton Pereira; Santos, Carolina Etienne Rosália Silva; de Lyra, Maria do Carmo Catanho Pereira; Ha-Park, Yong; Bae, Jin-Won; Araújo, Janete Magali
2007-12-01
An endophytic actinomycete isolated from tubers of yam beam (Pachyrhizus erosus L. Urban) was classified as a novel species nominated Kitasatospora recifensis based in phenotypic and genotypic analysis (16S rDNA gene sequence). Monosporic culture using specific ISP2 media revealed three interspecies, which were identified by DNA southern hybridization (Wild strain 13817 W, Aerial Mycelium strain 13817 AM and Vegetative Mycelium strain 13817 VM). The strains were tested for the production of amylolitic enzymes in alternative media. Maximum yields for both enzymes were observed in starch-casein. Higher α-amylase was obtained with strain 13817 W in starch-urea, and amyloglucosidase with strain 13817 AM in starch-ammonium that are economic sources and may be important for industrial purposes. Type strain (DAUFPE 13817(T) = KCTC 9972(T )= DSM 44943(T)).
Lacey, Jake A; Allnutt, Theodore R; Vezina, Ben; Van, Thi Thu Hao; Stent, Thomas; Han, Xiaoyan; Rood, Julian I; Wade, Ben; Keyburn, Anthony L; Seemann, Torsten; Chen, Honglei; Haring, Volker; Johanesen, Priscilla A; Lyras, Dena; Moore, Robert J
2018-05-22
Clostridium perfringens causes a range of diseases in animals and humans including necrotic enteritis in chickens and food poisoning and gas gangrene in humans. Necrotic enteritis is of concern in commercial chicken production due to the cost of the implementation of infection control measures and to productivity losses. This study has focused on the genomic analysis of a range of chicken-derived C. perfringens isolates, from around the world and from different years. The genomes were sequenced and compared with 20 genomes available from public databases, which were from a diverse collection of isolates from chickens, other animals, and humans. We used a distance based phylogeny that was constructed based on gene content rather than sequence identity. Similarity between strains was defined as the number of genes that they have in common divided by their total number of genes. In this type of phylogenetic analysis, evolutionary distance can be interpreted in terms of evolutionary events such as acquisition and loss of genes, whereas the underlying properties (the gene content) can be interpreted in terms of function. We also compared these methods to the sequence-based phylogeny of the core genome. Distinct pathogenic clades of necrotic enteritis-causing C. perfringens were identified. They were characterised by variable regions encoded on the chromosome, with predicted roles in capsule production, adhesion, inhibition of related strains, phage integration, and metabolism. Some strains have almost identical genomes, even though they were isolated from different geographic regions at various times, while other highly distant genomes appear to result in similar outcomes with regard to virulence and pathogenesis. The high level of diversity in chicken isolates suggests there is no reliable factor that defines a chicken strain of C. perfringens, however, disease-causing strains can be defined by the presence of netB-encoding plasmids. This study reveals that horizontal gene transfer appears to play a significant role in genetic variation of the C. perfringens chromosome as well as the plasmid content within strains.
Xu, Kai Wei; Zou, Lan; Penttinen, Petri; Wang, Ke; Heng, Nan Nan; Zhang, Xiao Ping; Chen, Qiang; Zhao, Ke; Chen, Yuan Xue
2015-10-01
A total of 54 rhizobial strains were isolated from faba bean root nodules in 21 counties of Sichuan hilly areas in China, and their symbiotic effectiveness, genetic diversity and phylogeny were assessed. Only six strains increased the shoot dry mass of the host plant significantly (P ≤ 0.05). Based on the cluster analysis of combined 16S rDNA and intergenic spacer region (IGS) PCR-RFLP, the strains were divided into 31 genotypes in 11 groups, indicating a high degree of genetic diversity among the strains. The sequence analysis of three housekeeping genes (atpD, glnII and recA) and 16S rDNA indicated that the strains represented two R. leguminosarum, two Rhizobium spp., R. mesosinicum, Agrobacterium sp. and A. tumefaciens. The strains representing four Rhizobium species were divided into two distinct nodC and nifH genotypes. However, the phylogeny of housekeeping genes and symbiotic genes was not congruent, implying that the strains had been shaped by vertical evolution of the housekeeping genes and lateral evolution of the symbiotic genes. Copyright © 2015 Elsevier GmbH. All rights reserved.
Cryobacterium levicorallinum sp. nov., a psychrophilic bacterium isolated from glacier ice.
Liu, Qing; Liu, Hongcan; Zhang, Jianli; Zhou, Yuguang; Xin, Yuhua
2013-08-01
In this study, two psychrophilic bacterial strains were isolated from the China No. 1 glacier in Xinjiang, north-west China. Cells were Gram-positive rods. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strains belonged to the genus Cryobacterium. Phylogenetic analysis showed that they clustered together and are most closely related to Cryobacterium luteum CGMCC 1.11210(T), Cryobacterium flavum CGMCC 1.11215(T), Cryobacterium psychrophilum CGMCC 1.4292(T), Cryobacterium psychrotolerans CGMCC 1.5382(T) and Cryobacterium roopkundense CGMCC 1.10672(T). The major cellular fatty acids of the novel strains were anteiso-C15 : 0, anteiso-C15 : 1 A, iso-C16 : 0 and iso-C15 : 0. Both strains contained diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid in the cell membrane. The results of DNA-DNA hybridization and physiological tests allowed the genotypic and phenotypic differentiation of strains Hh34(T) and Hh28 from related species. However, their high DNA-DNA relatedness showed that they belong to the same novel species. Strain Hh34(T) (= NBRC 107883(T) = CGMCC 1.11211(T)) was selected as the type strain to represent this novel species, for which the name Cryobacterium levicorallinum sp. nov. is proposed.
Killer, Jiří; Skřivanová, Eva; Hochel, Igor; Marounek, Milan
2015-06-01
Cronobacter spp. are bacterial pathogens that affect children and immunocompromised adults. In this study, we used multilocus sequence typing (MLST) to determine sequence types (STs) in 11 Cronobacter spp. strains isolated from retail foods, 29 strains from dust samples obtained from vacuum cleaners, and 4 clinical isolates. Using biochemical tests, species-specific polymerase chain reaction, and MLST analysis, 36 strains were identified as Cronobacter sakazakii, and 6 were identified as Cronobacter malonaticus. In addition, one strain that originated from retail food and one from a dust sample from a vacuum cleaner were identified on the basis of MLST analysis as Cronobacter dublinensis and Cronobacter turicensis, respectively. Cronobacter spp. strains isolated from the retail foods were assigned to eight different MLST sequence types, seven of which were newly identified. The strains isolated from the dust samples were assigned to 7 known STs and 14 unknown STs. Three clinical isolates and one household dust isolate were assigned to ST4, which is the predominant ST associated with neonatal meningitis. One clinical isolate was classified based on MLST analysis as Cronobacter malonaticus and belonged to an as-yet-unknown ST. Three strains isolated from the household dust samples were assigned to ST1, which is another clinically significant ST. It can be concluded that Cronobacter spp. strains of different origin are genetically quite variable. The recovery of C. sakazakii strains belonging to ST1 and ST4 from the dust samples suggests the possibility that contamination could occur during food preparation. All of the novel STs and alleles for C. sakazakii, C. malonaticus, C. dublinensis, and C. turicensis determined in this study were deposited in the Cronobacter MLST database available online ( http://pubmlst.org/cronobacter/).
Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T
2014-01-01
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804
Seismic and Aseismic Slip on the Cascadia Megathrust
NASA Astrophysics Data System (ADS)
Michel, S. G. R. M.; Gualandi, A.; Avouac, J. P.
2017-12-01
Our understanding of the dynamics governing aseismic and seismic slip hinges on our ability to image the time evolution of fault slip during and in between earthquakes and transients. Such kinematic descriptions are also pivotal to assess seismic hazard as, on the long term, elastic strain accumulating around a fault should be balanced by elastic strain released by seismic slip and aseismic transients. In this presentation, we will discuss how such kinematic descriptions can be obtained from the analysis and modelling of geodetic time series. We will use inversion methods based on Independent Component Analysis (ICA) decomposition of the time series to extract and model the aseismic slip (afterslip and slow slip events). We will show that this approach is very effective to identify, and filter out, non-tectonic sources of geodetic strain such as the strain due to surface loads, which can be estimated using gravimetric measurements from GRACE, and thermal strain. We will discuss in particular the application to the Cascadia subduction zone.
Measurement of stress-strain behaviour of human hair fibres using optical techniques.
Lee, J; Kwon, H J
2013-06-01
Many studies have presented stress-strain relationship of human hair, but most of them have been based on an engineering stress-strain curve, which is not a true representation of stress-strain behaviour. In this study, a more accurate 'true' stress-strain curve of human hair was determined by applying optical techniques to the images of the hair deformed under tension. This was achieved by applying digital image cross-correlation (DIC) to 10× magnified images of hair fibres taken under increasing tension to estimate the strain increments. True strain was calculated by summation of the strain increments according to the theoretical definition of 'true' strain. The variation in diameter with the increase in longitudinal elongation was also measured from the 40× magnified images to estimate the Poisson's ratio and true stress. By combining the true strain and the true stress, a true stress-strain curve could be determined, which demonstrated much higher stress values than the conventional engineering stress-strain curve at the same degree of deformation. Four regions were identified in the true stress-strain relationship and empirical constitutive equations were proposed for each region. Theoretical analysis on the necking condition using the constitutive equations provided the insight into the failure mechanism of human hair. This analysis indicated that local thinning caused by necking does not occur in the hair fibres, but, rather, relatively uniform deformation takes place until final failure (fracture) eventually occurs. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Parker, Craig T.; Huynh, Steven; Quiñones, Beatriz; Harris, Linda J.; Mandrell, Robert E.
2010-01-01
In 2000 to 2001, 2003 to 2004, and 2005 to 2006, three outbreaks of Salmonella enterica serovar Enteritidis were linked with the consumption of raw almonds. The S. Enteritidis strains from these outbreaks had rare phage types (PT), PT30 and PT9c. Clinical and environmental S. Enteritidis strains were subjected to pulsed-field gel electrophoresis (PFGE), multilocus variable-number tandem repeat analysis (MLVA), and DNA microarray-based comparative genomic indexing (CGI) to evaluate their genetic relatedness. All three methods differentiated these S. Enteritidis strains in a manner that correlated with PT. The CGI analysis confirmed that the majority of the differences between the S. Enteritidis PT9c and PT30 strains corresponded to bacteriophage-related genes present in the sequenced genomes of S. Enteritidis PT4 and S. enterica serovar Typhimurium LT2. However, PFGE, MLVA, and CGI failed to discriminate between S. Enteritidis PT30 strains related to outbreaks from unrelated clinical strains or between strains separated by up to 5 years. However, metabolic fingerprinting demonstrated that S. Enteritidis PT4, PT8, PT13a, and clinical PT30 strains metabolized l-aspartic acid, l-glutamic acid, l-proline, l-alanine, and d-alanine amino acids more efficiently than S. Enteritidis PT30 strains isolated from orchards. These data indicate that S. Enteritidis PT9c and 30 strains are highly related genetically and that PT30 orchard strains differ from clinical PT30 strains metabolically, possibly due to fitness adaptations. PMID:20363782
Schachner, Anna; Marek, Ana; Grafl, Beatrice; Hess, Michael
2016-04-15
Forty-eight fowl aviadenoviruses (FAdVs) isolated from recent IBH outbreaks across Europe were investigated, by utilizing for the first time the two major adenoviral antigenic domains, hexon loop-1 and fiber, for compound molecular characterization of IBH-associated FAdVs. Successful target gene amplification, following virus isolation in cell culture or from FTA-card samples, demonstrated presence of FAdVs in all cases indicative for IBH. Based on hexon loop-1 analysis, 31 European field isolates exhibited highest nucleotide identity (>97.2%) to reference strains FAdV-2 or -11 representing FAdV-D, while 16 and one European isolates shared >96.0% nucleotide identity with FAdV-8a and -8b, or FAdV-7, the prototype strains representing FAdV-E. These results extend recognition of specific FAdV-D and FAdV-E affiliate genotypes as causative agents of IBH to the European continent. In all isolates, species specificity determined by fiber gene analysis correlated with hexon-based typing. A threshold of 72.0% intraspecies nucleotide identity between fibers from investigated prototype and field strains corresponded with demarcation criteria proposed for hexon, suggesting fiber-based analysis as a complementary tool for molecular FAdV typing. A limited number of strains exhibited inconsistencies between hexon and fiber subclustering, indicating potential constraints for single-gene based typing of those FAdVs. Within FAdV-D, field isolate fibers shared a high degree of nucleotide (>96.7%) and aa (>95.8%) identity, while FAdV-E field isolate fibers displayed greater nucleotide divergence of up to 22.6%, resulting in lower aa identities of >81.7%. Furthermore, comparison with FAdVs from IBH outbreaks outside Europe revealed close genetic relationship in the fiber, independent of the strains' geographic origin. Copyright © 2016 Elsevier B.V. All rights reserved.
Qi, Haishan; Lv, Mengmeng; Song, Kejing; Wen, Jianping
2017-05-01
Herein, the hyper-producing strain for ascomycin was engineered based on 13 C-labeling experiments and elementary flux modes analysis (EFMA). First, the metabolism of non-model organism Streptomyces hygroscopicus var. ascomyceticus SA68 was investigated and an updated network model was reconstructed using 13 C- metabolic flux analysis. Based on the precise model, EFMA was further employed to predict genetic targets for higher ascomycin production. Chorismatase (FkbO) and pyruvate carboxylase (Pyc) were predicted as the promising overexpression and deletion targets, respectively. The corresponding mutant TD-FkbO and TD-ΔPyc exhibited the consistency effects between model prediction and experimental results. Finally, the combined genetic manipulations were performed, achieving a high-yield ascomycin engineering strain TD-ΔPyc-FkbO with production up to 610 mg/L, 84.8% improvement compared with the parent strain SA68. These results manifested that the integration of 13 C-labeling experiments and in silico pathway analysis could serve as a promising concept to enhance ascomycin production, as well as other valuable products. Biotechnol. Bioeng. 2017;114: 1036-1044. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Shamseldin, Abdelaal; Carro, Lorena; Peix, Alvaro; Velázquez, Encarna; Moawad, Hassan; Sadowsky, Michael J
2016-06-01
In the present work we analyzed the taxonomic status of several Rhizobium strains isolated from Trifolium alexandrinum L. nodules in Egypt. The 16S rRNA genes of these strains were identical to those of Rhizobium bangladeshense BLR175(T) and Rhizobium binae BLR195(T). However, the analyses of recA and atpD genes split the strains into two clusters. Cluster II strains are identified as R. bangladeshense with >98% similarity values in both genes. The cluster I strains are phylogenetically related to Rhizobium etli CFN42(T) and R. bangladeshense BLR175(T), but with less than 94% similarity values in recA and atpD genes. DNA-DNA hybridization analysis showed 42% and 48% average relatedness between the strain 1010(T) from cluster I with respect to R. bangladeshense BLR175(T) and R. etli CFN42(T), respectively. Phenotypic characteristics of cluster I strains also differed from those of their closest related Rhizobium species. Analysis of the nodC gene showed that the strains belong to two groups within the symbiovar trifolii which was identified in Egypt linked to the species R. bangladeshense. Based on the genotypic and phenotypic characteristics, the group I strains belong to a new species for which the name Rhizobium aegyptiacum sp. nov. (sv. trifolii) is proposed, with strain 1010(T) being designated as the type strain (= USDA 7124(T)=LMG 29296(T)=CECT 9098(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.
Shen, Xia; Li, Yu; Zhao, Zhe; Han, Yi-Fan; Zhang, Wen-Wu; Yu, Xiao-Yun; Zhang, Chong-Ya; Sun, Cong; Wu, Min
2018-04-01
A Gram-stain negative, aerobic, motile and ovoid- to rod-shaped bacteria strain, designated XC0140 T , was isolated from soil samples near the sewage treatment tank of a chemical factory in Zhejiang Province, China, and subjected to polyphasic taxonomic investigation. Strain XC0140 T grew at 10-37 °C and pH 6.0-9.0 (optimum, 35 °C and pH 7.5) and with 0-17% (w/v) NaCl (optimum, 1%). According to phylogenetic analysis based on 16S rRNA gene sequences, strain XC0140 T was assigned to the genus Pararhizobium with high 16S rRNA gene sequence similarity of 95.97% to "Pararhizobium helanshanense CCNWQTX14 T" , followed by Pararhizobium sphaerophysae CCNWGS0238 T (95.95%). Chemotaxonomic analysis showed that strain XC0140 T contains ubiquinone-10 as the predominant respiratory quinone and possessed summed feature 8 (comprising C 18: 1 ω7c and/or ω6c), 11-methyl C 18:1 ω7c, C 18: 0 and C 16: 0 as predominant forms of fatty acids. The polar lipids of strain XC0140 T consisted of seven phospholipids (PL), two aminolipids (AL), one glycolipid (GL) and three unidentified lipids (L1, L2 and L3). The DNA G+C content was 62.7 mol%. Based on the polyphasic taxonomic characterization, strain XC0140 T is considered to represent a novel species of the genus Pararhizobium, for which the name Pararhizobium haloflavum sp. nov. is proposed. (type strain XC0140 T = MCCC 1K03228 T = KCTC 52582 T ).
Sultanpuram, Vishnuvardhan Reddy; Mothe, Thirumala; Chintalapati, Sasikala; Chintalapati, Venkata Ramana
2016-01-01
A novel bacterial strain, designated S5T, was isolated from Pingaleshwar beach, in India. Cells were Gram-stain-positive, rod-shaped, non-motile and non-endospore-forming. Based on 16S rRNA gene sequence analysis, the strain was identified as belonging to the class Firmibacteria and was related most closely to Amphibacillus fermentum DSM 13869T (97.6 % sequence similarity). However, it shared only 93.1 % 16S rRNA gene sequence similarity with Amphibacillus xylanus NBRC 15112T, the type species of the genus, indicating that strain S5T might not be a member of the genus Amphibacillus. The DNA-DNA relatedness between strain S5T and Amphibacillus fermentum DSM 13869T was 39 %. The cell-wall peptidoglycan contained meso-diaminopimelic acid. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol and two phospholipids. Isoprenoid quinones were absent from strain S5T. Fatty acid analysis revealed that anteiso-C15 : 0, C16 : 0 and iso-C15 : 0 were the predominant fatty acids present. The results of phylogenetic, chemotaxonomic and biochemical tests allowed the clear differentiation of strain S5T, which is considered to represent a novel species of a new genus in the family Bacillaceae, for which the name Pelagirhabdus alkalitolerans gen. nov., sp. nov. is proposed. The type strain of Pelagirhabdus alkalitolerans is S5T ( = KCTC 33632T = CGMCC 1.15177T). Based on the present study, it is also suggested to transfer Amphibacillus fermentum to this new genus, as Pelagirhabdus fermentum comb. nov. The type strain of Pelagirhabdus fermentum is Z-7984T = (DSM 13869T = UNIQEM 210T).
Lu, Huibin; Xing, Peng; Phurbu, Dorji; Tang, Qian; Wu, Qinglong
2018-05-11
A Gram-stain negative, alkaliphilic and halotolerant bacterium, designated CCL18 T , was isolated from Lake Cuochuolong on the Tibetan Plateau. The strain was aerobic, short rod-shaped, catalase- and oxidase-positive, and motile by means of several polar flagella. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain CCL18 T belongs to the genus Pelagibacterium, with its two closest neighbours being Pelagibacterium halotolerans B2 T (96.6 %, 16S rRNA gene sequence similarity) and Pelagibacterium luteolum 1_C16_27 T (96.1 %). The predominant respiratory quinone of strain CCL18 T was Q-10, with Q-9 as a minor component. The major fatty acids were C18 : 1ω6c/C18 : 1ω7c (60.4 %), C19 : 0cyclo ω8c (8.1 %) and C18 : 0 (6.8 %). The polar lipids included phosphatidylglycerol, diphosphatidylglycerol, seven kinds of unidentified lipids and three kinds of glycolipids. The DNA G+C content was 60.1 mol%. DNA-DNA hybridization showed 35.2 % relatedness between strain CCL18 T and P. halotolerans B2 T and 24.6 % relatedness to P. luteolum 1_C16_27 T . Based on phylogenetic analysis, DNA-DNA hybridization and a range of physiological and biochemical characteristics, strain CCL18 T was clearly distinguishable from the other strains of the genus Pelagibacterium. It was evident that strain CCL18 T could be classified as a novel species of the genus Pelagibacterium, for which the name Pelagibacterium montanilacus sp. nov. is proposed. The type strain is CCL18 T (=CGMCC 1.16231 T =KCTC 62030 T ).
Ma, Zhaoxu; Zhao, Shanshan; Cao, Tingting; Liu, Chongxi; Huang, Ying; Gao, Yuhang; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing
2016-12-01
A novel actinobacterium, designated strain NEAU-QY3T, was isolated from the leaves of Sonchus oleraceus L. and examined using a polyphasic taxonomic approach. The organism formed single spores with smooth surface on substrate mycelia. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the strain had a close association with the genus Verrucosispora and shared the highest sequence similarity with Verrucosispora qiuiae RtIII47T (99.17 %), an association that was supported by a bootstrap value of 94 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. The strain also showed high 16S rRNA gene sequence similarities to Xiangella phaseoli NEAU-J5T (98.78 %), Jishengella endophytica 202201T (98.51 %), Micromonospora eburnea LK2-10T (98.28 %), Verrucosispora lutea YIM 013T (98.23 %) and Salinispora pacifica CNR-114T (98.23 %). Furthermore, phylogenetic analysis based on the gyrB gene sequences supported the conclusion that strain NEAU-QY3T should be assigned to the genus Verrucosispora. However, the DNA-DNA hybridization relatedness values between strain NEAU-QY3T and V. qiuiae RtIII47T and V. lutea YIM 013T were below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA-DNA hybridization results, strain NEAU-QY3T was readily distinguished from its most closely related strains and classified as a new species, for which the name Verrucosispora sonchi sp. nov. is proposed. The type strain is NEAU-QY3T (=CGMCC 4.7312T=DSM 101530T).
Degefu, Tulu; Wolde-Meskel, Endalkachew; Rasche, Frank
2018-01-01
Vigna unguiculata, Vigna radiata and Arachis hypogaea growing in Ethiopia are nodulated by a genetically diverse group of Bradyrhizobium strains. To determine the genetic identity and symbiotic effectiveness of these bacteria, a collection of 36 test strains originating from the root nodules of the three hosts was investigated using multilocus sequence analyses (MLSA) of core genes including 16S rRNA, recA, glnII, gyrB, atpD and dnaK. Sequence analysis of nodA and nifH genes along with tests for symbiotic effectiveness using δ 15 N analysis were also carried out. The phylogenetic trees derived from the MLSA grouped most test strains into four well-supported distinct positions designated as genospecies I-IV. The maximum likelihood (ML) tree that was constructed based on the nodA gene sequences separated the entire test strains into two lineages, where the majority of the test strains were clustered on one of a well-supported large branch that comprise Bradyrhizobium species from the tropics. This clearly suggested the monophyletic origin of the nodA genes within the bradyrhizobia of tropical origin. The δ 15 N-based symbiotic effectiveness test of seven selected strains revealed that strains GN100 (δ 15 N=0.73) and GN102 (δ 15 N=0.79) were highly effective nitrogen fixers when inoculated to cowpea, thus can be considered as inoculants in cowpea production. It was concluded that Ethiopian soils are a hotspot for rhizobial diversity. This calls for further research to unravel as yet unknown bradyrhizobia nodulating legume host species growing in the country. In this respect, prospective research should also address the mechanisms of symbiotic specificity that could lead to high nitrogen fixation in target legumes.
Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea.
Jung, Seo-Youn; Oh, Tae-Kwang; Yoon, Jung-Hoon
2006-01-01
A novel Colwellia-like bacterial strain, SMK-10T, was isolated from a tidal flat sediment in Korea and subjected to a polyphasic taxonomic analysis. Cells of strain SMK-10T were Gram-negative, motile, greyish yellow-pigmented, curved rods. Optimal growth occurred at 25-30 degrees C and in the presence of 2-3 % (w/v) NaCl. Strain SMK-10T contained Q-8 as the predominant ubiquinone and C(16 : 1)omega7c and/or iso-C(15 : 0) 2-OH, C(17 : 1), C(15 : 1) and iso-C(16 : 0) as major fatty acids. The DNA G+C content was 39.3 mol%. Phylogenetic trees based on 16S rRNA gene sequence analysis showed that strain SMK-10T belonged to the genus Colwellia. 16S rRNA gene sequence similarity values (94.7-96.7 %) to the type strains of all other Colwellia species and various differential phenotypic properties were sufficient to distinguish strain SMK-10T from recognized Colwellia species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain SMK-10T (= KCTC 12480T = DSM 17314T) is classified as the type strain of a novel Colwellia species, for which the name Colwellia aestuarii sp. nov. is proposed.
Veress, Alexander I.; Klein, Gregory; Gullberg, Grant T.
2013-01-01
Tmore » he objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PE image datasets. wo normal human male subjects were sequentially imaged with PE and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PE images and HARP based strain analyses of the MRI images. Coefficient of determination R 2 values were computed for the comparison of circumferential and radial strain predictions produced by each methodology. here was good correspondence between the methodologies, with R 2 values of 0.78 for the radial strains of both hearts and from an R 2 = 0.81 and R 2 = 0.83 for the circumferential strains. he strain predictions were not statistically different ( P ≤ 0.01 ) . A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure. his study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.« less
Schouls, Leo M.; van der Heide, Han G. J.; Vauterin, Luc; Vauterin, Paul; Mooi, Frits R.
2004-01-01
Bordetella pertussis, the causative agent of whooping cough, has remained endemic in The Netherlands despite extensive nationwide vaccination since 1953. In the 1990s, several epidemic periods have resulted in many cases of pertussis. We have proposed that strain variation has played a major role in the upsurges of this disease in The Netherlands. Therefore, molecular characterization of strains is important in identifying the causes of pertussis epidemiology. For this reason, we have developed a multiple-locus variable-number tandem repeat analysis (MLVA) typing system for B. pertussis. By combining the MLVA profile with the allelic profile based on multiple-antigen sequence typing, we were able to further differentiate strains. The relationships between the various genotypes were visualized by constructing a minimum spanning tree. MLVA of Dutch strains of B. pertussis revealed that the genotypes of the strains isolated in the prevaccination period were diverse and clearly distinct from the strains isolated in the 1990s. Furthermore, there was a decrease in diversity in the strains from the late 1990s, with a remarkable clonal expansion that coincided with the epidemic periods. Using this genotyping, we have been able to show that B. pertussis is much more dynamic than expected. PMID:15292152
de Gier, Camilla; Kirkham, Lea-Ann S.
2015-01-01
Nonhemolytic variants of Haemophilus haemolyticus are difficult to differentiate from Haemophilus influenzae despite a wide difference in pathogenic potential. A previous investigation characterized a challenging set of 60 clinical strains using multiple PCRs for marker genes and described strains that could not be unequivocally identified as either species. We have analyzed the same set of strains by multilocus sequence analysis (MLSA) and near-full-length 16S rRNA gene sequencing. MLSA unambiguously allocated all study strains to either of the two species, while identification by 16S rRNA sequence was inconclusive for three strains. Notably, the two methods yielded conflicting identifications for two strains. Most of the “fuzzy species” strains were identified as H. influenzae that had undergone complete deletion of the fucose operon. Such strains, which are untypeable by the H. influenzae multilocus sequence type (MLST) scheme, have sporadically been reported and predominantly belong to a single branch of H. influenzae MLSA phylogenetic group II. We also found evidence of interspecies recombination between H. influenzae and H. haemolyticus within the 16S rRNA genes. Establishing an accurate method for rapid and inexpensive identification of H. influenzae is important for disease surveillance and treatment. PMID:26378279
Ogura, Kohei; Watanabe, Shinya; Kirikae, Teruo; Miyoshi-Akiyama, Tohru
2017-01-01
Epidemiologic typing of Streptococcus pyogenes (GAS) is frequently based on the genotype of the emm gene, which encodes M/Emm protein. In this study, the complete genome sequence of GAS emm3 strain M3-b, isolated from a patient with streptococcal toxic shock syndrome (STSS), was determined. This strain exhibited 99% identity with other complete genome sequences of emm3 strains MGAS315, SSI-1, and STAB902. The complete genomes of five additional strains isolated from Japanese patients with and without STSS were also sequences. Maximum-likelihood phylogenetic analysis showed that strains M3-b, M3-e, and SSI-1, all which were isolated from STSS patients, were relatively close.
Development of new strains and related SCAR markers for an edible mushroom, Hypsizygus marmoreus.
Lee, Chang Y; Park, Jeong-Eun; Lee, Jia; Kim, Jong-Kuk; Ro, Hyeon-Su
2012-02-01
New fast-growing and less bitter varieties of Hypsizygus marmoreus were developed by crossing monokaryotic mycelia from a commercial strain (Hm1-1) and a wild strain (Hm3-10). Six of the better tasting new strains with a shorter cultivation period were selected from 400 crosses in a large-scale cultivation experiment. We attempted to develop sequence characterized amplified region (SCAR) markers to identify the new strain from other commercial strains. For the SCAR markers, we conducted molecular genetic analysis on a wild strain and the eight most cultivated H. marmoreus strains collected from various areas in East Asia by randomly amplified polymorphic DNA. Ten unique DNA bands for a commercial Hm1-1 strain and the Hm3-10 strain were extracted and their sequences were determined. Primer sets were designed based on the determined sequences. PCR reactions with the primer sets revealed that four primer sets successfully discriminated the new strains from other commercial strains and are thus suitable for commercial purposes. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Molecular epidemiology of Plum pox virus in Japan.
Maejima, Kensaku; Himeno, Misako; Komatsu, Ken; Takinami, Yusuke; Hashimoto, Masayoshi; Takahashi, Shuichiro; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou
2011-05-01
For a molecular epidemiological study based on complete genome sequences, 37 Plum pox virus (PPV) isolates were collected from the Kanto region in Japan. Pair-wise analyses revealed that all 37 Japanese isolates belong to the PPV-D strain, with low genetic diversity (less than 0.8%). In phylogenetic analysis of the PPV-D strain based on complete nucleotide sequences, the relationships of the PPV-D strain were reconstructed with high resolution: at the global level, the American, Canadian, and Japanese isolates formed their own distinct monophyletic clusters, suggesting that the routes of viral entry into these countries were independent; at the local level, the actual transmission histories of PPV were precisely reconstructed with high bootstrap support. This is the first description of the molecular epidemiology of PPV based on complete genome sequences.
Finite Element Analysis (FEA) in Design and Production.
ERIC Educational Resources Information Center
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
Li, Si-Fa; Tang, Shou-Jie; Cai, Wan-Qi
2010-04-01
The NEW GIFT Nile tilapia (Oreochromis niloticus niloticus L.) is a nationally certificated new strain selected over 14 years and 9 generations from the base strain of GIFT Nile tilapia, introduced in 1994. This new variety has been extended in most of areas of China. The management of genetically improved strains, including the genetic markers for identification is needed urgently. RAPD analysis was conducted and their conversion to SCAR markers was developed. From NEW GIFT Nile tilapia, two strain-specific RAPD bands, S(304 )(624 bp ) and S(36 )(568 bp ) were identified. The strain-specific RAPD bands were gel-purified, cloned, and sequenced. Locus-specific primers were then designed to amplify the strain-specific bands. PCR amplification was conducted to test the variations in allele frequencies of two converted SCAR markers among the NEW GIFT Nile tilapia and its base strains, as well as 7 additional farmed strains worldwide. The frequency of SCAR marker I (553 bp) was 85.7% in NEW GIFT Nile tilapia, but 16.7% in the base strain. The frequency of SCAR marker II (558 bp) was 91.4% in NEW GIFT Nile tilapia, but 0% - 70% in the 7 other strains. In order to confirm the utility of these two markers, an examination was conducted for a wild population from Egypt, resulted the frequency of SCAR I and II was 10% and 70%, respectively, much lower than that of New GIFT strain. The increase in allele frequency of these two SCAR markers suggests that these markers might be genetically linked to the quantitative trait loci (QTL) underlining the performance traits by long term selection, and indicate the bright potential of SCAR marker technology for tracking generations during selection progress and for distinguishing among genetically improved strain and other strains.
Thalassospira australica sp. nov. isolated from sea water.
Ivanova, Elena P; López-Pérez, Mario; Webb, Hayden K; Ng, Hooi Jun; Dang, Thi Hoang Yen; Zhukova, Natalia V; Mikhailov, Valery V; Crawford, Russell J; Rodriguez-Valera, Francisco
2016-08-01
Two Gram-negative, non-pigmented, motile bacteria were isolated from a sea water sample collected at St. Kilda Beach, Port Philip Bay, Victoria, Australia. The two strains were found to grow between 4 and 40 °C, pH 5-10 and tolerate up to 10 % NaCl. A phylogenetic study, based on a 16S rRNA gene sequence analysis indicated that strains NP 3b2(T) and H 94 belong to the genus Thalassospira. The sequence similarity of the 16S rRNA gene between the two new isolates is 99.8 % and between these strains and all validly named Thalassospira species was found to be in the range of 95-99.4 %. The DNA-DNA relatedness between the two strains was found to be 80.2 %, while relatedness with other validly named species of the genus Thalassospira was between 53 and 65 %. The average nucleotide identity (ANI) and the in silico genome-to-genome distance (GGD) between the two bacteria and T. profundimaris WP0211(T), T. xiamenensis M-5(T), 'T. permensis' NBRC 106175(T) and T. lucentensis QMT2(T) was 76-82 % and 21-25 %, respectively. The results of phylogenetic and genomic analysis, together with physiological and biochemical properties, indicated that the two strains represent a new species of the genus Thalassospira. Based on these data, a new species, Thalassospira australica, is proposed with strain NP 3b2(T) (=KMM 6365(T) = JCM 31222(T)) as the type strain.
Lu, Shan; Jin, Dong; Wu, Shusheng; Yang, Jing; Lan, Ruiting; Bai, Xiangning; Liu, Sha; Meng, Qiong; Yuan, Xuejiao; Zhou, Juan; Pu, Ji; Chen, Qiang; Dai, Hang; Hu, Yuanyuan; Xiong, Yanwen; Ye, Changyun; Xu, Jianguo
2016-01-01
Escherichia coli is both of a widespread harmless gut commensal and a versatile pathogen of humans. Domestic animals are a well-known reservoir for pathogenic E. coli. However, studies of E. coli populations from wild animals that have been separated from human activities had been very limited. Here we obtained 580 isolates from intestinal contents of 116 wild Marmot Marmota himalayana from Qinghai–Tibet plateau, China, with five isolates per animal. We selected 125 (hereinafter referred to as strains) from the 580 isolates for genome sequencing, based on unique pulse field gel electrophoresis patterns and at least one isolate per animal. Whole genome sequence analysis revealed that all 125 strains carried at least one and the majority (79.2%) carried multiple virulence genes based on the analysis of 22 selected virulence genes. In particular, the majority of the strains carried virulence genes from different pathovars as potential 'hybrid pathogens'. The alleles of eight virulence genes from the Marmot E. coli were found to have diverged earlier than all known alleles from human and other animal E. coli. Phylogenetic analysis of the 125 Marmot E. coli genomes and 355 genomes selected from 1622 human and other E. coli strains identified two new phylogroups, G and H, both of which diverged earlier than the other phylogroups. Eight of the 12 well-known pathogenic E. coli lineages were found to share a most recent common ancestor with one or more Marmot E. coli strains. Our results suggested that the intestinal E. coli of the Marmots contained a diverse virulence gene pool and is potentially pathogenic to humans. These findings provided a new understanding of the evolutionary origin of pathogenic E. coli. PMID:27924811
Lu, Shan; Jin, Dong; Wu, Shusheng; Yang, Jing; Lan, Ruiting; Bai, Xiangning; Liu, Sha; Meng, Qiong; Yuan, Xuejiao; Zhou, Juan; Pu, Ji; Chen, Qiang; Dai, Hang; Hu, Yuanyuan; Xiong, Yanwen; Ye, Changyun; Xu, Jianguo
2016-12-07
Escherichia coli is both of a widespread harmless gut commensal and a versatile pathogen of humans. Domestic animals are a well-known reservoir for pathogenic E. coli. However, studies of E. coli populations from wild animals that have been separated from human activities had been very limited. Here we obtained 580 isolates from intestinal contents of 116 wild Marmot Marmota himalayana from Qinghai-Tibet plateau, China, with five isolates per animal. We selected 125 (hereinafter referred to as strains) from the 580 isolates for genome sequencing, based on unique pulse field gel electrophoresis patterns and at least one isolate per animal. Whole genome sequence analysis revealed that all 125 strains carried at least one and the majority (79.2%) carried multiple virulence genes based on the analysis of 22 selected virulence genes. In particular, the majority of the strains carried virulence genes from different pathovars as potential 'hybrid pathogens'. The alleles of eight virulence genes from the Marmot E. coli were found to have diverged earlier than all known alleles from human and other animal E. coli. Phylogenetic analysis of the 125 Marmot E. coli genomes and 355 genomes selected from 1622 human and other E. coli strains identified two new phylogroups, G and H, both of which diverged earlier than the other phylogroups. Eight of the 12 well-known pathogenic E. coli lineages were found to share a most recent common ancestor with one or more Marmot E. coli strains. Our results suggested that the intestinal E. coli of the Marmots contained a diverse virulence gene pool and is potentially pathogenic to humans. These findings provided a new understanding of the evolutionary origin of pathogenic E. coli.
Tamura, Miki; Kawasaki, Hiroko; Sugiyama, Junta
1999-02-01
We examined the identity of Aspergillus penicillioides, the typical xerophilic and strictly anamorphic species, using an integrated analysis of the genotypic and phenotypic characters. Our experimental methods on two genotypic characters, i.e., DNA base composition using the HPLC method and DNA relatedness using the nitrocellulose filter hybridization technique between A. flavus, A. oryzae, and their close relations revealed a good agreement with the values by buoyant density (for DNA base composition) and spectrophotometric determination (for DNA relatedness) reported by Kurtzman et al. in 1986. On the basis of these comparisons, we examined DNA base composition and DNA relatedness of six selected strains of A. penicillioides, including IFO 8155 (originally described as A. vitricola), one strain of A. restrictus, and the respective strains from Eurotium amstelodami, E. repens, and E. rubrum. As a result, five strains within A. penicillioides, including the neotype strain NRRL 4548, had G+C contents of 46 to 49 mol%, whereas IFO 8155 had 50 mol%. A. restrictus had 52 mol%, and three Eurotium species ranged from 46 to 49 mol%. The DNA relatedness between A. penicillioides (five strains), except for IFO 8155, exhibited values greater than 70%, but the DNA complementarity between four strains and IFO 8155 in A. penicillioides revealed values of less than 40%. DNA relatedness values between three species of Eurotium were 65 to 72%. We determined 18S, 5.8S, and ITS rDNA sequences as other genotypic characters from A. penicillioides (six strains), A. restrictus, and related teleomorphic species of Eurotium. In three phylogenetic trees inferred from these sequences, five strains of A. penicillioides, including the neotype strain, were closely related to each other, whereas IFO 8155 was distantly related and grouped with other xerophilic species. Our results have suggested that A. penicillioides typified by NRRL 4548 and A. penicillioides IFO 8155 (ex holotype of A. vitricola) are not conspecific. The enzyme patterns as a genotypic character and general morphology and conidial ornamentation types as phenotypic characters supported this conclusion. Therefore the name A. vitricola Ohtsuki, typified by the holotype strain IFO 8155, should be revived. Evolutionary affinities among Aspergillus species and related teleomorphs, including the xerophilic taxa, are discussed.
Genetic characterization of Italian field strains of Schmallenberg virus based on N and NSs genes.
Izzo, Francesca; Cosseddu, Gian Mario; Polci, Andrea; Iapaolo, Federica; Pinoni, Chiara; Capobianco Dondona, Andrea; Valleriani, Fabrizia; Monaco, Federica
2016-08-01
Following its first identification in Germany in 2011, the Schmallenberg virus (SBV) has rapidly spread to many other European countries. Despite the wide dissemination, the molecular characterization of the circulating strains is limited to German, Belgian, Dutch, and Swiss viruses. To fill this gap, partial genetic characterization of 15 Italian field strains was performed, based on S segment genes. Samples were collected in 2012 in two different regions where outbreaks occurred during distinct epidemic seasons. The comparative sequence analysis demonstrated a high molecular stability of the circulating viruses; nevertheless, we identified several variants of the N and NSs proteins not described in other SBV isolates circulating in Europe.
Validation Tests of Fiber Optic Strain-Based Operational Shape and Load Measurements
NASA Technical Reports Server (NTRS)
Bakalyar, John A.; Jutte, Christine
2012-01-01
Aircraft design has been progressing toward reduced structural weight to improve fuel efficiency, increase performance, and reduce cost. Lightweight aircraft structures are more flexible than conventional designs and require new design considerations. Intelligent sensing allows for enhanced control and monitoring of aircraft, which enables increased structurally efficiency. The NASA Dryden Flight Research Center (DFRC) has developed an instrumentation system and analysis techniques that combine to make distributed structural measurements practical for lightweight vehicles. Dryden's Fiber Optic Strain Sensing (FOSS) technology enables a multitude of lightweight, distributed surface strain measurements. The analysis techniques, referred to as the Displacement Transfer Functions (DTF) and Load Transfer Functions (LTF), use surface strain values to calculate structural deflections and operational loads. The combined system is useful for real-time monitoring of aeroelastic structures, along with many other applications. This paper describes how the capabilities of the measurement system were demonstrated using subscale test articles that represent simple aircraft structures. Empirical FOSS strain data were used within the DTF to calculate the displacement of the article and within the LTF to calculate bending moments due to loads acting on the article. The results of the tests, accuracy of the measurements, and a sensitivity analysis are presented.
Typing methods for the plague pathogen, Yersinia pestis.
Lindler, Luther E
2009-01-01
Phenotypic and genotypic methodologies have been used to differentiate the etiological agent of plague, Yersinia pestis. Historically, phenotypic methods were used to place isolates into one of three biovars based on nitrate reduction and glycerol fermentation. Classification of Y. pestis into genetic subtypes is problematic due to the relative monomorphic nature of the pathogen. Resolution into groups is dependent on the number and types of loci used in the analysis. The last 5-10 years of research and analysis in the field of Y. pestis genotyping have resulted in a recognition by Western scientists that two basic types of Y. pestis exist. One type, considered to be classic strains that are able to cause human plague transmitted by the normal flea vector, is termed epidemic strains. The other type does not typically cause human infections by normal routes of infection, but is virulent for rodents and is termed endemic strains. Previous classification schemes used outside the Western hemisphere referred to these latter strains as Pestoides varieties of Y. pestis. Recent molecular analysis has definitely shown that both endemic and epidemic strains arose independently from a common Yersinia pseudotuberculosis ancestor. Currently, 11 major groups of Y. pestis are defined globally.
Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains
Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew
2014-01-01
Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and “motivation during discrimination.” Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks. PMID:24586288
Smith, J K; Parry, J D; Day, J G; Smith, R J
1998-10-01
The use of primers based on the Hip1 sequence as a typing technique for cyanobacteria has been investigated. The discovery of short repetitive sequence structures in bacterial DNA during the last decade has led to the development of PCR-based methods for typing, i.e., distinguishing and identifying, bacterial species and strains. An octameric palindromic sequence known as Hip1 has been shown to be present in the chromosomal DNA of many species of cyanobacteria as a highly repetitious interspersed sequence. PCR primers were constructed that extended the Hip1 sequence at the 3' end by two bases. Five of the 16 possible extended primers were tested. Each of the five primers produced a different set of products when used to prime PCR from cyanobacterial genomic DNA. Each primer produced a distinct set of products for each of the 15 cyanobacterial species tested. The ability of Hip1-based PCR to resolve taxonomic differences was assessed by analysis of independent isolates of Anabaena flos-aquae and Nostoc ellipsosporum obtained from the CCAP (Culture Collection of Algae and Protozoa, IFE, Cumbria, UK). A PCR-based RFLP analysis of products amplified from the 23S-16S rDNA intergenic region was used to characterize the isolates and to compare with the Hip1 typing data. The RFLP and Hip1 typing yielded similar results and both techniques were able to distinguish different strains. On the basis of these results it is suggested that the Hip1 PCR technique may assist in distinguishing cyanobacterial species and strains.
Novel method for measuring a dense 3D strain map of robotic flapping wings
NASA Astrophysics Data System (ADS)
Li, Beiwen; Zhang, Song
2018-04-01
Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.
Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321
2011-01-01
durable structures are: (a) FSW is 111being used in a serial production of aluminum alloy -based 112ferryboat deck structures in Finland; (b) Al-Mg- Si -based...and strain-hardened/stabilized Al-Mg-Mn alloy ) are characterized by a relatively large statistical scatter. This scatter is closely related to the...associated with friction stir-welded (FSW) joints of AA5083-H321 (a solid-solution-strengthened and strain-hardened/stabilized Al-Mg-Mn alloy ) are
Burall, Laurel S.; Grim, Christopher J.; Mammel, Mark K.; ...
2016-03-07
In an effort to build a comprehensive genomic approach to food safety challenges, the FDA has implemented a whole genome sequencing effort, GenomeTrakr, which involves the sequencing and analysis of genomes of foodborne pathogens. As a part of this effort, we routinely sequence whole genomes of Listeria monocytogenes (Lm) isolates associated with human listeriosis outbreaks, as well as those isolated through other sources. To rapidly establish genetic relatedness of these genomes, we evaluated tetranucleotide frequency analysis via the JSpecies program to provide a cursory analysis of strain relatedness. The JSpecies tetranucleotide (tetra) analysis plots standardized (z-score) tetramer word frequencies ofmore » two strains against each other and uses linear regression analysis to determine similarity (r 2). This tool was able to validate the close relationships between outbreak related strains from four different outbreaks. Included in this study was the analysis of Lm strains isolated during the recent caramel apple outbreak and stone fruit incident in 2014. We identified that many of the isolates from these two outbreaks shared a common 4b variant (4bV) serotype, also designated as IVb-v1, using a qPCR protocol developed in our laboratory. The 4bV serotype is characterized by the presence of a 6.3 Kb DNA segment normally found in serotype 1/2a, 3a, 1/2c and 3c strains but not in serotype 4b or 1/2b strains. We decided to compare these strains at a genomic level using the JSpecies Tetra tool. Specifically, we compared several 4bV and 4b isolates and identified a high level of similarity between the stone fruit and apple 4bV strains, but not the 4b strains co-identified in the caramel apple outbreak or other 4b or 4bV strains in our collection. This finding was further substantiated by a SNP-based analysis. Additionally, we were able to identify close relatedness between isolates from clinical cases from 1993–1994 and a single case from 2011 as well as links between two isolates from over 30 years ago. The identification of these potential links shows that JSpecies Tetra analysis can be a useful tool in rapidly assessing genetic relatedness of Lm isolates during outbreak investigations and for comparing historical isolates. In conclusion, our analyses led to the identification of a highly related clonal group involved in two separate outbreaks, stone fruit and caramel apple, and suggests the possibility of a new genotype that may be better adapted for certain foods and/or environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burall, Laurel S.; Grim, Christopher J.; Mammel, Mark K.
In an effort to build a comprehensive genomic approach to food safety challenges, the FDA has implemented a whole genome sequencing effort, GenomeTrakr, which involves the sequencing and analysis of genomes of foodborne pathogens. As a part of this effort, we routinely sequence whole genomes of Listeria monocytogenes (Lm) isolates associated with human listeriosis outbreaks, as well as those isolated through other sources. To rapidly establish genetic relatedness of these genomes, we evaluated tetranucleotide frequency analysis via the JSpecies program to provide a cursory analysis of strain relatedness. The JSpecies tetranucleotide (tetra) analysis plots standardized (z-score) tetramer word frequencies ofmore » two strains against each other and uses linear regression analysis to determine similarity (r 2). This tool was able to validate the close relationships between outbreak related strains from four different outbreaks. Included in this study was the analysis of Lm strains isolated during the recent caramel apple outbreak and stone fruit incident in 2014. We identified that many of the isolates from these two outbreaks shared a common 4b variant (4bV) serotype, also designated as IVb-v1, using a qPCR protocol developed in our laboratory. The 4bV serotype is characterized by the presence of a 6.3 Kb DNA segment normally found in serotype 1/2a, 3a, 1/2c and 3c strains but not in serotype 4b or 1/2b strains. We decided to compare these strains at a genomic level using the JSpecies Tetra tool. Specifically, we compared several 4bV and 4b isolates and identified a high level of similarity between the stone fruit and apple 4bV strains, but not the 4b strains co-identified in the caramel apple outbreak or other 4b or 4bV strains in our collection. This finding was further substantiated by a SNP-based analysis. Additionally, we were able to identify close relatedness between isolates from clinical cases from 1993–1994 and a single case from 2011 as well as links between two isolates from over 30 years ago. The identification of these potential links shows that JSpecies Tetra analysis can be a useful tool in rapidly assessing genetic relatedness of Lm isolates during outbreak investigations and for comparing historical isolates. In conclusion, our analyses led to the identification of a highly related clonal group involved in two separate outbreaks, stone fruit and caramel apple, and suggests the possibility of a new genotype that may be better adapted for certain foods and/or environment.« less
Mezzetti, Francesco; Fay, Justin C.; Giudici, Paolo
2017-01-01
Glutathione (GSH) production during wine fermentation is a desirable trait as it can limit must and wine oxidation and protect various aromatic compounds. UMCC 2581 is a Saccharomyces cerevisiae wine strain with enhanced GSH content at the end of wine fermentation. This strain was previously derived by selection for molybdate resistance following a sexual cycle of UMCC 855 using an evolution-based strategy. In this study, we examined genetic and gene expression changes associated with the derivation of UMCC 2581. For genetic analysis we sporulated the diploid UMCC 855 parental strain and found four phenotype classes of segregants related to molybdate resistance, demonstrating the presence of segregating variation from the parental strain. Using bulk segregant analysis we mapped molybdate traits to two loci. By sequencing both the parental and evolved strain genomes we identified candidate mutations within the two regions as well as an extra copy of chromosome 1 in UMCC 2581. Combining the mapped loci with gene expression profiles of the evolved and parental strains we identified a number of candidate genes with genetic and/or gene expression changes that could underlie molybdate resistance and increased GSH levels. Our results provide insight into the genetic basis of GSH production relevant to winemaking and highlight the value of enhancing wine strains using existing variation present in wine strains. PMID:28683117
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Trowbridge, D.
2001-01-01
A critical issue in the micromechanics-based analysis of composite structures becomes the availability of a computationally efficient homogenization technique: one that is 1) Capable of handling the sophisticated, physically based, viscoelastoplastic constitutive and life models for each constituent; 2) Able to generate accurate displacement and stress fields at both the macro and the micro levels; 3) Compatible with the finite element method. The Generalized Method of Cells (GMC) developed by Paley and Aboudi is one such micromechanical model that has been shown to predict accurately the overall macro behavior of various types of composites given the required constituent properties. Specifically, the method provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that make up the material. Furthermore, expressions relating the internal stress and strain fields in the individual constituents in terms of the macroscopically applied stresses and strains are available through strain or stress concentration matrices. These expressions make possible the investigation of failure processes at the microscopic level at each step of an applied load history.
Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle.
Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng
2013-11-01
A Gram-stain-positive bacterial strain, S4-3(T), was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain S4-3(T) showed 97.9-98.7 % 16S rRNA gene sequence similarities, 84.4-94.1 % pheS gene sequence similarities and 94.4-96.9 % rpoA gene sequence similarities to the type strains of Lactobacillus nantensis, Lactobacillus mindensis, Lactobacillus crustorum, Lactobacillus futsaii, Lactobacillus farciminis and Lactobacillus kimchiensis. dnaK gene sequence similarities between S4-3(T) and Lactobacillus nantensis LMG 23510(T), Lactobacillus mindensis LMG 21932(T), Lactobacillus crustorum LMG 23699(T), Lactobacillus futsaii JCM 17355(T) and Lactobacillus farciminis LMG 9200(T) were 95.4, 91.5, 90.4, 91.7 and 93.1 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus heilongjiangensis sp. nov., is proposed and the type strain is S4-3(T) ( = LMG 26166(T) = NCIMB 14701(T)).
Streptomyces ziwulingensis sp. nov., isolated from grassland soil.
Lin, Yan Bing; Wang, Xin Ye; Wang, Ting Ting; An, Shao Shan; Shi, Peng; Wei, Ge Hong
2013-04-01
A novel actinobacterium, designated strain F22(T), was isolated from grassland soil collected from the Ziwuling area on the Loess Plateau, China. The novel strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F22(T) belonged to the genus Streptomyces, being most closely related to Streptomyces resistomycificus NBRC 12814(T) (98.28 % sequence similarity), Streptomyces ciscaucasicus NBRC 12872(T) (98.14 %), Streptomyces chartreusis NBRC 12753(T) (98.14 %) and Streptomyces canus NRRL B-1989(T) (98.14 %). In DNA-DNA hybridizations and comparisons of morphological and phenotypic data, strain F22(T) could be distinguished from all of its closest phylogenetic relatives. Strain F22(T) exhibited antibacterial and antifungal activity, especially against Staphylococcus aureus, Bacillus subtilis and Cylindrocarpon destructans. Based on the DNA-DNA hybridization data and morphological, phenotypic and phylogenetic evidence, strain F22(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces ziwulingensis sp. nov. is proposed. The type strain is F22(T) ( = CCNWFX 0001(T) = JCM 18081(T) = ACCC41875(T)).
Nediani, Miriam T.; García, Luis; Saavedra, Lucila; Martínez, Sandra; López Alzogaray, Soledad; Fadda, Silvina
2017-01-01
Quality and safety are important challenges in traditional fermented sausage technology. Consequently, the development of a tailored starter culture based on indigenous microbiota constitutes an interesting alternative. In the present study, spontaneously fermented goat meat sausages were created and analyzed using a physicochemical and microbiological approach. Thereafter 170 lactic acid bacteria (LAB) strains were isolated and preliminary characterized by phenotypic assays. The hygienic and technological properties, and growth and fermentative potential of isolates using a goat-meat-based culture medium were evaluated. All strains proved to have bioprotective features due to their acidogenic metabolism. Almost all grew optimally in meat environments. LAB isolates presented proteolytic activity against meat proteins and enriched amino acid contents of the goat-meat-based model. The most efficient strains were four different Lactobacillus sakei isolates, as identified by genotyping and RAPD analysis. L. sakei strains are proposed as optimal candidates to improve the production of fermented goat meat sausages, creating a new added-value fermented product. PMID:28513575
Gomila, Margarita; Busquets, Antonio; Mulet, Magdalena; García-Valdés, Elena; Lalucat, Jorge
2017-01-01
The Pseudomonas syringae phylogenetic group comprises 15 recognized bacterial species and more than 60 pathovars. The classification and identification of strains is relevant for practical reasons but also for understanding the epidemiology and ecology of this group of plant pathogenic bacteria. Genome-based taxonomic analyses have been introduced recently to clarify the taxonomy of the whole genus. A set of 139 draft and complete genome sequences of strains belonging to all species of the P. syringae group available in public databases were analyzed, together with the genomes of closely related species used as outgroups. Comparative genomics based on the genome sequences of the species type strains in the group allowed the delineation of phylogenomic species and demonstrated that a high proportion of strains included in the study are misclassified. Furthermore, representatives of at least 7 putative novel species were detected. It was also confirmed that P. ficuserectae, P. meliae , and P. savastanoi are later synonyms of P. amygdali and that " P. coronafaciens " should be revived as a nomenspecies.
Nediani, Miriam T; García, Luis; Saavedra, Lucila; Martínez, Sandra; López Alzogaray, Soledad; Fadda, Silvina
2017-05-17
Quality and safety are important challenges in traditional fermented sausage technology. Consequently, the development of a tailored starter culture based on indigenous microbiota constitutes an interesting alternative. In the present study, spontaneously fermented goat meat sausages were created and analyzed using a physicochemical and microbiological approach. Thereafter 170 lactic acid bacteria (LAB) strains were isolated and preliminary characterized by phenotypic assays. The hygienic and technological properties, and growth and fermentative potential of isolates using a goat-meat-based culture medium were evaluated. All strains proved to have bioprotective features due to their acidogenic metabolism. Almost all grew optimally in meat environments. LAB isolates presented proteolytic activity against meat proteins and enriched amino acid contents of the goat-meat-based model. The most efficient strains were four different Lactobacillus sakei isolates, as identified by genotyping and RAPD analysis. L. sakei strains are proposed as optimal candidates to improve the production of fermented goat meat sausages, creating a new added-value fermented product.
Kolar, Milan; Sauer, Pavel; Faber, Edgar; Kohoutova, Jarmila; Stosová, Tatana; Sedlackova, Michaela; Chroma, Magdalena; Koukalova, Dagmar; Indrak, Karel
2009-01-01
The aim of the study was to determine the prevalence of Pseudomonas aeruginosa and Klebsiella pneumoniae strains in patients with acute leukemias, to assess their clinical significance, and to define the sources and ways of their spread using genetic analysis. Thirty-four patients were investigated during the observed period. Twenty-one strains of Pseudomonas aeruginosa and 35 strains of Klebsiella pneumoniae were isolated from patient samples. In the case of Pseudomonas aeruginosa, 47.6% of strains were identified as pathogens and caused infection. By contrast, only 4 isolates (11.4%) of Klebsiella pneumoniae could be regarded as etiological agents of bacterial infection. Based on the obtained results, Klebsiella pneumoniae strains are assumed to be of mostly endogenous origin. In the case of Pseudomonas aeruginosa strains, the proportion of identical strains detected in various patients was higher and exogenous sources were more significant. In addition, our results confirmed the ability of Pseudomonas aeruginosa strains to survive on a particular site in the hospital for a longer time.
Dolz, Roser; Valle, Rosa; Perera, Carmen L.; Bertran, Kateri; Frías, Maria T.; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J.
2013-01-01
Background Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Methodology/Principal Findings Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. Conclusions/Significance To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide. PMID:23805195
Alfonso-Morales, Abdulahi; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J
2013-01-01
Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.
Takahashi, Hajime; Ohshima, Chihiro; Nakagawa, Miku; Thanatsang, Krittaporn; Phraephaisarn, Chirapiphat; Chaturongkasumrit, Yuphakhun; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon
2014-01-01
Listeria innocua is an important hygiene indicator bacterium in food industries because it behaves similar to Listeria monocytogenes, which is pathogenic to humans. PFGE is often used to characterize bacterial strains and to track contamination source. However, because PFGE is an expensive, complicated, time-consuming protocol, and poses difficulty in data sharing, development of a new typing method is necessary. MLVA is a technique that identifies bacterial strains on the basis of the number of tandem repeats present in the genome varies depending on the strains. MLVA has gained attention due to its high reproducibility and ease of data sharing. In this study, we developed a MLVA protocol to assess L. innocua and evaluated it by tracking the contamination source of L. innocua in an actual food manufacturing factory by typing the bacterial strains isolated from the factory. Three VNTR regions of the L. innocua genome were chosen for use in the MLVA. The number of repeat units in each VNTR region was calculated based on the results of PCR product analysis using capillary electrophoresis (CE). The calculated number of repetitions was compared with the results of the gene sequence analysis to demonstrate the accuracy of the CE repeat number analysis. The developed technique was evaluated using 60 L. innocua strains isolated from a food factory. These 60 strains were classified into 11 patterns using MLVA. Many of the strains were classified into ST-6, revealing that this MLVA strain type can contaminate each manufacturing process in the factory. The MLVA protocol developed in this study for L. innocua allowed rapid and easy analysis through the use of CE. This technique was found to be very useful in hygiene control in factories because it allowed us to track contamination sources and provided information regarding whether the bacteria were present in the factories.
Abriouel, Hikmate; Lerma, Leyre Lavilla; Casado Muñoz, María del Carmen; Montoro, Beatriz Pérez; Kabisch, Jan; Pichner, Rohtraud; Cho, Gyu-Sung; Neve, Horst; Fusco, Vincenzina; Franz, Charles M. A. P.; Gálvez, Antonio; Benomar, Nabil
2015-01-01
Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database. Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins, and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screening unreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential. PMID:26579103
James, Stephen A; Carvajal Barriga, Enrique Javier; Barahona, Patricia Portero; Cross, Kathryn; Bond, Christopher J; Roberts, Ian N
2013-01-01
In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004(T)) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolívar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand. The species name of Candida ecuadorensis sp. nov. is proposed to accommodate these strains, with strain CLQCA 20-004(T) (=CBS 12653(T) = NCYC 3782(T)) designated as the type strain.
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying
2018-01-01
Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.
Deformation behavior of TC6 alloy in isothermal forging
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Li, Miaoquan; Zhu, Dasong; Xiong, Aiming
2005-10-01
Isothermal compression of the TC6 alloy was carried out in a Thermecmaster-Z (Wuhan Iron and Steel Corporation, P.R. China) simulator at deformation temperatures of 800˜1040 °C, strain rates of 0.001˜50.0 s-1, and maximum height reduction of 50%. The deformation behavior of the TC6 alloy in isothermal forging was characterized based on stress-strain behavior and kinetic analysis. The activation energy of deformation obtained in the isothermal forging of the TC6 alloy was 267.49 kJ/mol in the β phase region and 472.76 kJ/mol in the α+β phase region. The processing map was constructed based on the dynamic materials model, and the optimal deformation parameters were obtained. Constitutive equations describing the flow stress as a function of strain rate, strain, and deformation temperature were proposed for the isothermal forging of the TC6 alloy, and a good agreement between the predicted and experimental stress-strain curves was achieved.
Cesiribacter roseus sp. nov., a pink-pigmented bacterium isolated from desert sand.
Liu, Ming; Qi, Huan; Luo, Xuesong; Dai, Jun; Peng, Fang; Fang, Chengxiang
2012-01-01
A pink-pigmented, Gram-negative, rod-shaped, motile, strictly aerobic bacterium, designated strain 311(T), was isolated from desert sand in Xinjiang, China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 311(T) was related closely to Cesiribacter andamanensis AMV16(T) (94.6% similarity). The DNA G+C content of strain 311(T) was 47.1 mol% and the major respiratory quinone was menaquinone 7 (MK-7). The main cellular fatty acids were C(16:1)ω5c (29.9%), iso-C(15:0) (21.9%), iso-C(17:0) 3-OH (13.3%) and summed feature 4 (iso-C(17:1) I and/or anteiso-C(17:1) B; 13.0%). Based on phenotypic and chemotaxonomic data and phylogenetic analysis, strain 311(T) is considered to represent a novel species of the genus Cesiribacter, for which the name Cesiribacter roseus sp. nov. is proposed. The type strain is 311(T) (=CCTCC AB 207142(T) =KACC 15456(T)).
Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2
Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar
2014-01-01
A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027
Phylogeny of the Defined Murine Microbiota: Altered Schaedler Flora
Dewhirst, Floyd E.; Chien, Chih-Ching; Paster, Bruce J.; Ericson, Rebecca L.; Orcutt, Roger P.; Schauer, David B.; Fox, James G.
1999-01-01
The “altered Schaedler flora” (ASF) was developed for colonizing germfree rodents with a standardized microbiota. The purpose of this study was to identify each of the eight ASF strains by 16S rRNA sequence analysis. Three strains were previously identified as Lactobacillus acidophilus (strain ASF 360), Lactobacillus salivarius (strain ASF 361), and Bacteroides distasonis (strain ASF 519) based on phenotypic criteria. 16S rRNA analysis indicated that each of the strains differed from its presumptive identity. The 16S rRNA sequence of strain ASF 361 is essentially identical to the 16S rRNA sequences of the type strains of Lactobacillus murinis and Lactobacillus animalis (both isolated from mice), and all of these strains probably belong to a single species. Strain ASF 360 is a novel lactobacillus that clusters with L. acidophilus and Lactobacillus lactis. Strain ASF 519 falls into an unnamed genus containing [Bacteroides] distasonis, [Bacteroides] merdae, [Bacteroides] forsythus, and CDC group DF-3. This unnamed genus is in the Cytophaga-Flavobacterium-Bacteroides phylum and is most closely related to the genus Porphyromonas. The spiral-shaped strain, strain ASF 457, is in the Flexistipes phylum and exhibits sequence identity with rodent isolates of Robertson. The remaining four ASF strains, which are extremely oxygen-sensitive fusiform bacteria, group phylogenetically with the low-G+C-content gram-positive bacteria (Firmicutes, Bacillus-Clostridium group). ASF 356, ASF 492, and ASF 502 fall into Clostridium cluster XIV of Collins et al. Morphologically, ASF 492 resembles members of this cluster, Roseburia cecicola, and Eubacterium plexicaudatum. The 16S rRNA sequence of ASF 492 is identical to that of E. plexicaudatum. Since the type strain and other viable original isolates of E. plexicaudatum have been lost, strain ASF 492 is a candidate for a neotype strain. Strain ASF 500 branches deeply in the low-G+C-content gram-positive phylogenetic tree but is not closely related to any organisms whose 16S rRNA sequences are currently in the GenBank database. The 16S rRNA sequence information determined in the present study should allow rapid identification of ASF strains and should permit detailed analysis of the interactions of ASF organisms during development of intestinal disease in mice that are coinfected with a variety of pathogenic microorganisms. PMID:10427008
Gomberg, Joan S.; Agnew, Duncan Carr
1996-01-01
The dynamic strains associated with seismic waves may play a significant role in earthquake triggering, hydrological and magmatic changes, earthquake damage, and ground failure. We determine how accurately dynamic strains may be estimated from seismometer data and elastic-wave theory by comparing such estimated strains with strains measured on a three-component long-base strainmeter system at Pin??on Flat, California. We quantify the uncertainties and errors through cross-spectral analysis of data from three regional earthquakes (the M0 = 4 ?? 1017 N-m St. George, Utah; M0 = 4 ?? 1017 N-m Little Skull Mountain, Nevada; and M0 = 1 ?? 1019 N-m Northridge, California, events at distances of 470, 345, and 206 km, respectively). Our analysis indicates that in most cases the phase of the estimated strain matches that of the observed strain quite well (to within the uncertainties, which are about ?? 0.1 to ?? 0.2 cycles). However, the amplitudes are often systematically off, at levels exceeding the uncertainties (about 20%); in one case, the predicted strain amplitudes are nearly twice those observed. We also observe significant ?????? strains (?? = tangential direction), which should be zero theoretically; in the worst case, the rms ?????? strain exceeds the other nonzero components. These nonzero ?????? strains cannot be caused by deviations of the surface-wave propagation paths from the expected azimuth or by departures from the plane-wave approximation. We believe that distortion of the strain field by topography or material heterogeneities give rise to these complexities.
Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae
NASA Astrophysics Data System (ADS)
Ge, Mengyu; Li, Bin; Wang, Li; Tao, Zhongyun; Mao, Shengfeng; Wang, Yangli; Xie, Guanlin; Sun, Guochang
2014-12-01
Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains are closely related phenotypically and genetically, which make it difficult to differentiate between the two pathovars based on phenotypic and DNA-based methods. In this study, a fast and accurate method was developed based on the differences in MALDI-TOF MS and FTIR spectra between the two pathovars. MALDI-TOF MS analysis revealed that 9 and 10 peaks are specific to Xoo and Xoc, respectively, which can be used as biomarkers to identify and differentiate the two closely related pathovars. Furthermore, FTIR analysis showed that there is a significant difference in both the band frequencies and absorption intensity of various functional groups between the two pathovars. In particular, the 6 peaks at 3433, 2867, 1273, 1065, 983 and 951 cm-1 were specific to the Xoo strains, while one peak at 1572 cm-1 was specific to the Xoc strains. Overall, this study gives the first attempt to identify and differentiate the two pathovars of X. oryzae based on mass and FTIR spectra, which will be helpful for the early detection and prevention of the two rice diseases caused by both X. oryzae pathovars.
Alam, Jawed; Maiti, Sankar; Ghosh, Prachetash; De, Ronita; Chowdhury, Abhijit; Das, Suryasnata; Macaden, Ragini; Devarbhavi, Harshad; Ramamurthy, T; Mukhopadhyay, Asish K
2012-09-01
A novel virulence factor, duodenal ulcer-promoting gene A (dupA), in Helicobacter pylori has been found to be associated with disease in certain populations but not in others. This study analysed a South-east Indian population as part of the debate about the relevance of dupA for the prediction of clinical outcomes. A total of 140 H. pylori strains isolated from duodenal ulcer (DU) (n = 83) and non-ulcer dyspepsia (NUD) patients (n = 57) were screened by PCR and dot-blot hybridization to determine the presence of the ORFs jhp0917 and jhp0918. Part of jhp0917-jhp0918 was sequenced to search for the C/T insertion that characterizes dupA and the levels of dupA transcripts were also assessed. The PCR and dot-blot results indicated the presence of jhp0917 and jhp0918 in 37.3 % (31/83) and 12.2 % (7/57) of H. pylori strains isolated from DU and NUD patients, respectively. Sequencing analysis showed insertion of a C at nt 1386 in the 3' region of jhp0917, forming the dupA gene in 35 strains. RT-PCR analysis detected the dupA transcript in 28 of these 35 strains. The expression level of the dupA transcript varied from strain to strain, as shown by real-time PCR. The results demonstrated that analysis based on PCR only for dupA may produce an erroneous interpretation. The prevalence of dupA was significantly greater among strains isolated from patients with DU than from patients with NUD in this population (P = 0.001, odds ratio = 4.26, confidence interval = 1.60-11.74). Based on these findings, dupA can be considered a biomarker for DU patients in India. The reported discrepancies for this putative virulence marker in different populations may be due to the genome plasticity of H. pylori.
Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach
Tannock, Gerald W; Wilson, Charlotte M; Loach, Diane; Cook, Gregory M; Eason, Jocelyn; O'Toole, Paul W; Holtrop, Grietje; Lawley, Blair
2012-01-01
Phylogenetic analysis of gut communities of vertebrates is advanced, but the relationships, especially at the trophic level, between commensals that share gut habitats of monogastric animals have not been investigated to any extent. Lactobacillus reuteri strain 100–23 and Lactobacillus johnsonii strain 100–33 cohabit in the forestomach of mice. According to the niche exclusion principle, this should not be possible because both strains can utilise the two main fermentable carbohydrates present in the stomach digesta: glucose and maltose. We show, based on gene transcription analysis, in vitro physiological assays, and in vivo experiments that the two strains can co-exist in the forestomach habitat because 100–23 grows more rapidly using maltose, whereas 100–33 preferentially utilises glucose. Mutation of the maltose phosphorylase gene (malA) of strain 100–23 prevented its growth on maltose-containing culture medium, and resulted in the numerical dominance of 100–33 in the forestomach. The fundamental niche of L. reuteri 100–23 in the mouse forestomach can be defined in terms of ‘glucose and maltose trophism'. However, its realised niche when L. johnsonii 100–33 is present is ‘maltose trophism'. Hence, nutritional adaptations provide niche differentiation that assists cohabitation by the two strains through resource partitioning in the mouse forestomach. This real life, trophic phenomenon conforms to a mathematical model based on in vitro bacterial doubling times, in vitro transport rates, and concentrations of maltose and glucose in mouse stomach digesta. PMID:22094343
Vibrio aphrogenes sp. nov., in the Rumoiensis clade isolated from a seaweed.
Tanaka, Mami; Endo, Shoko; Kotake, Fumihito; Al-Saari, Nurhidayu; Amin, A K M Rohul; Feng, Gao; Mino, Sayaka; Doi, Hidetaka; Ogura, Yoshitoshi; Hayashi, Tetsuya; Suda, Wataru; Hattori, Masahira; Yumoto, Isao; Sawabe, Toko; Sawabe, Tomoo; Araki, Toshiyoshi
2017-01-01
A novel strain Vibrio aphrogenes sp. nov. strain CA-1004T isolated from the surface of seaweed collected on the coast of Mie Prefecture in 1994 [1] was characterized using polyphasic taxonomy including multilocus sequence analysis (MLSA) and a genome based comparison. Both phylogenetic analyses on the basis of 16S rRNA gene sequences and MLSA based on eight protein-coding genes (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA) showed the strain could be placed in the Rumoiensis clade in the genus Vibrio. Sequence similarities of the 16S rRNA gene and the multilocus genes against the Rumoiensis clade members, V. rumoiensis, V. algivorus, V. casei, and V. litoralis, were low enough to propose V. aphrogenes sp. nov. strain CA-1004T as a separate species. The experimental DNA-DNA hybridization data also revealed that the strain CA-1004T was separate from four known Rumoiensis clade species. The G+C content of the V. aphrogenes strain was determined as 42.1% based on the genome sequence. Major traits of the strain were non-motile, halophilic, fermentative, alginolytic, and gas production. A total of 27 traits (motility, growth temperature range, amylase, alginase and lipase productions, and assimilation of 19 carbon compounds) distinguished the strain from the other species in the Rumoiensis clade. The name V. aphrogenes sp. nov. is proposed for this species in the Rumoiensis clade, with CA-1004T as the type strain (JCM 31643T = DSM 103759T).
Micromonospora halotolerans sp. nov., isolated from the rhizosphere of a Pisum sativum plant.
Carro, Lorena; Pukall, Rüdiger; Spröer, Cathrin; Kroppenstedt, Reiner M; Trujillo, Martha E
2013-06-01
A filamentous actinomycete strain designated CR18(T) was isolated on humic acid agar from the rhizosphere of a Pisum sativum plant collected in Spain. This isolate was observed to grow optimally at 28 °C, pH 7.0 and in the presence of 5 % NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence indicated a close relationship with the type strains of Micromonospora chersina and Micromonospora endolithica. A further analysis based on a concatenated DNA sequence stretch of 4,523 bp that included partial sequences of the atpD, gyrB, recA, rpoB and 16S rRNA genes clearly differentiated the new strain from recognized Micromonospora species compared. DNA-DNA hybridization studies further supported the taxonomic position of strain CR18(T) as a novel genomic species. Chemotaxonomic analyses which included whole cell sugars, polar lipids, fatty acid profiles and menaquinone composition confirmed the affiliation of the new strain to the genus Micromonospora and also highlighted differences at the species level. These studies were finally complemented with an array of physiological tests to help differentiate between the new strain and its phylogenetic neighbours. Consequently, strain CR18(T) (= CECT 7890(T) = DSM 45598(T)) is proposed as the type strain of a novel species, Micromonospora halotolerans sp. nov.
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Abdul-Aziz, Ali; Woike, Mark R.; Fralick, Gustave C.
2015-01-01
The modern turbine engine operates in a harsh environment at high speeds and is repeatedly exposed to combined high mechanical and thermal loads. The cumulative effects of these external forces lead to high stresses and strains on the engine components, such as the rotating turbine disks, which may eventually lead to a catastrophic failure if left undetected. The operating environment makes it difficult to use conventional strain gauges, therefore, non-contact strain measurement techniques is of interest to NASA and the turbine engine community. This presentation describes one such approach; the use of cross correlation analysis to measure strain experienced by the engine turbine disk with the goal of assessing potential faults and damage.
NASA Astrophysics Data System (ADS)
Ning, X.; Murayama, H.; Kageyama, K.; Uzawa, K.; Wada, D.
2012-04-01
In this research, longitudinal strain and peel stress in adhesive-bonded single-lap joint of carbon fiber reinforced plastics (CFRP) were measured and estimated by embedded fiber Bragg grating (FBG) sensor. Two unidirectional CFRP substrates were bonded by epoxy to form a single-lap configuration. The distributed strain measurement system is used. It is based on optical frequency domain reflectometry (OFDR), which can provide measurement at an arbitrary position along FBG sensors with the high spatial resolution. The longitudinal strain was measured based on Bragg grating effect and the peel stress was estimated based on birefringence effect. Special manufacturing procedure was developed to ensure the embedded location of FBG sensor. A portion of the FBG sensor was embedded into one of CFRP adherends along fiber direction and another portion was kept free for temperature compensation. Photomicrograph of cross-section of specimen was taken to verify the sensor was embedded into proper location after adherend curing. The residual strain was monitored during specimen curing and adhesive joint bonding process. Tensile tests were carried out and longitudinal strain and peel stress of the bondline are measured and estimated by the embedded FBG sensor. A two-dimensional geometrically nonlinear finite element analysis was performed by ANSYS to evaluate the measurement precision.
In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories
Maia, Paulo; Rocha, Miguel
2015-01-01
SUMMARY Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed. PMID:26609052
2013-01-01
Background S. erythraea is a Gram-positive filamentous bacterium used for the industrial-scale production of erythromycin A which is of high clinical importance. In this work, we sequenced the whole genome of a high-producing strain (E3) obtained by random mutagenesis and screening from the wild-type strain NRRL23338, and examined time-series expression profiles of both E3 and NRRL23338. Based on the genomic data and transcriptpmic data of these two strains, we carried out comparative analysis of high-producing strain and wild-type strain at both the genomic level and the transcriptomic level. Results We observed a large number of genetic variants including 60 insertions, 46 deletions and 584 single nucleotide variations (SNV) in E3 in comparison with NRRL23338, and the analysis of time series transcriptomic data indicated that the genes involved in erythromycin biosynthesis and feeder pathways were significantly up-regulated during the 60 hours time-course. According to our data, BldD, a previously identified ery cluster regulator, did not show any positive correlations with the expression of ery cluster, suggesting the existence of alternative regulation mechanisms of erythromycin synthesis in S. erythraea. Several potential regulators were then proposed by integration analysis of genomic and transcriptomic data. Conclusion This is a demonstration of the functional comparative genomics between an industrial S. erythraea strain and the wild-type strain. These findings help to understand the global regulation mechanisms of erythromycin biosynthesis in S. erythraea, providing useful clues for genetic and metabolic engineering in the future. PMID:23902230
Whiley, David M; Jacob, Kevin; Nakos, Jennifer; Bletchly, Cheryl; Nimmo, Graeme R; Nissen, Michael D; Sloots, Theo P
2012-06-01
Numerous real-time PCR assays have been described for detection of the influenza A H275Y alteration. However, the performance of these methods can be undermined by sequence variation in the regions flanking the codon of interest. This is a problem encountered more broadly in microbial diagnostics. In this study, we developed a modification of hybridization probe-based melting curve analysis, whereby primers are used to mask proximal mutations in the sequence targets of hybridization probes, so as to limit the potential for sequence variation to interfere with typing. The approach was applied to the H275Y alteration of the influenza A (H1N1) 2009 strain, as well as a Neisseria gonorrhoeae mutation associated with antimicrobial resistance. Assay performances were assessed using influenza A and N. gonorrhoeae strains characterized by DNA sequencing. The modified hybridization probe-based approach proved successful in limiting the effects of proximal mutations, with the results of melting curve analyses being 100% consistent with the results of DNA sequencing for all influenza A and N. gonorrhoeae strains tested. Notably, these included influenza A and N. gonorrhoeae strains exhibiting additional mutations in hybridization probe targets. Of particular interest was that the H275Y assay correctly typed influenza A strains harbouring a T822C nucleotide substitution, previously shown to interfere with H275Y typing methods. Overall our modified hybridization probe-based approach provides a simple means of circumventing problems caused by sequence variation, and offers improved detection of the influenza A H275Y alteration and potentially other resistance mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Anne-Catherine; Meier-Kolthoff, Jan P.; Overmars, Lex
Thioalkalivibrio is a genus of obligate chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria. Their habitat are soda lakes which are dual extreme environments with a pH range from 9.5 to 11 and salt concentrations up to saturation. More than 100 strains of this genus have been isolated from various soda lakes all over the world, but only ten species have been effectively described yet. Therefore, the assignment of the remaining strains to either existing or novel species is important and will further elucidate their genomic diversity as well as give a better general understanding of this genus. Recently, the genomes of 76 Thioalkalivibriomore » strains were sequenced. On these, we applied different methods including (i) 16S rRNA gene sequence analysis, (ii) Multilocus Sequence Analysis (MLSA) based on eight housekeeping genes, (iii) Average Nucleotide Identity based on BLAST (ANI b) and MUMmer (ANI m ), (iv) Tetranucleotide frequency correlation coefficients (TETRA), (v) digital DNA:DNA hybridization (dDDH) as well as (vi) nucleotide- and amino acid-based Genome BLAST Distance Phylogeny (GBDP) analyses. We detected a high genomic diversity by revealing 15 new "genomic" species and 16 new "genomic" subspecies in addition to the ten already described species. Phylogenetic and phylogenomic analyses showed that the genus is not monophyletic, because four strains were clearly separated from the other Thioalkalivibrio by type strains from other genera. Therefore, it is recommended to classify the latter group as a novel genus. The biogeographic distribution of Thioalkalivibrio suggested that the different "genomic" species can be classified as candidate disjunct or candidate endemic species. This study is a detailed genome-based classification and identification of members within the genus Thioalkalivibrio. However, future phenotypical and chemotaxonomical studies will be needed for a full species description of this genus.« less
Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio
Ahn, Anne-Catherine; Meier-Kolthoff, Jan P.; Overmars, Lex; ...
2017-03-10
Thioalkalivibrio is a genus of obligate chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria. Their habitat are soda lakes which are dual extreme environments with a pH range from 9.5 to 11 and salt concentrations up to saturation. More than 100 strains of this genus have been isolated from various soda lakes all over the world, but only ten species have been effectively described yet. Therefore, the assignment of the remaining strains to either existing or novel species is important and will further elucidate their genomic diversity as well as give a better general understanding of this genus. Recently, the genomes of 76 Thioalkalivibriomore » strains were sequenced. On these, we applied different methods including (i) 16S rRNA gene sequence analysis, (ii) Multilocus Sequence Analysis (MLSA) based on eight housekeeping genes, (iii) Average Nucleotide Identity based on BLAST (ANI b) and MUMmer (ANI m ), (iv) Tetranucleotide frequency correlation coefficients (TETRA), (v) digital DNA:DNA hybridization (dDDH) as well as (vi) nucleotide- and amino acid-based Genome BLAST Distance Phylogeny (GBDP) analyses. We detected a high genomic diversity by revealing 15 new "genomic" species and 16 new "genomic" subspecies in addition to the ten already described species. Phylogenetic and phylogenomic analyses showed that the genus is not monophyletic, because four strains were clearly separated from the other Thioalkalivibrio by type strains from other genera. Therefore, it is recommended to classify the latter group as a novel genus. The biogeographic distribution of Thioalkalivibrio suggested that the different "genomic" species can be classified as candidate disjunct or candidate endemic species. This study is a detailed genome-based classification and identification of members within the genus Thioalkalivibrio. However, future phenotypical and chemotaxonomical studies will be needed for a full species description of this genus.« less
Secretome analysis of diarrhea-inducing strains of Escherichia coli
Nirujogi, Raja Sekhar; Muthusamy, Babylakshmi; Kim, Min-Sik; Sathe, Gajanan J.; Lakshmi, P.T.V.; Kovbasnjuk, Olga N.; Prasad, T.S. Keshava; Wade, Mary; Jabbour, Rabih E.
2017-01-01
Secreted proteins constitute a major part of virulence factors that are responsible for pathogenesis caused by Gram-negative bacteria. Enterohemorrhagic Escherichia coli, O157:H7, is the major pathogen often causing outbreaks. However, studies have reported that the significant outbreaks caused by non-O157:H7 E. coli strains, also known as “Big-Six” serogroup strains, are increasing. There is no systematic study describing differential secreted proteins from these non-O157:H7 E. coli strains. In this study, we carried out MS-based differential secretome analysis using tandem mass tags labeling strategy of non-O157:H7 E. coli strains, O103, O111, O121, O145, O26, and O45. We identified 1241 proteins, of which 565 proteins were predicted to be secreted. We also found that 68 proteins were enriched in type III secretion system and several of them were differentially expressed across the strains. Additionally, we identified several strain-specific secreted proteins that could be used for developing potential markers for the identification and strain-level differentiation. To our knowledge, this study is the first comparative proteomic study on secretome of E. coli Big-Six serogroup and the several of these strain-specific secreted proteins can be further studied to develop potential markers for identification and strain-level differentiation. Moreover, the results of this study can be utilized in several applications, including food safety, diagnostics of E. coli outbreaks, and detection and identification of bio threats in biodefense. PMID:28070933
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khansur, Neamul H.; Daniels, John E.; Hinterstein, Manuel
2015-12-14
The microscopic contributions to the electric-field-induced macroscopic strain in a morphotropic 0.93(Bi{sub 1/2}Na{sub 1/2}TiO{sub 3})−0.07(BaTiO{sub 3}) with a mixed rhombohedral and tetragonal structure have been quantified using full pattern Rietveld refinement of in situ high-energy x-ray diffraction data. The analysis methodology allows a quantification of all strain mechanisms for each phase in a morphotropic composition and is applicable to use in a wide variety of piezoelectric compositions. It is shown that during the poling of this material 24%, 44%, and 32% of the total macroscopic strain is generated from lattice strain, domain switching, and phase transformation strains, respectively. The resultsmore » also suggest that the tetragonal phase contributes the most to extrinsic domain switching strain, whereas the lattice strain primarily stems from the rhombohedral phase. The analysis also suggests that almost 32% of the total strain is lost or is a one-time effect due to the irreversible nature of the electric-field-induced phase transformation in the current composition. This information is relevant to on-going compositional development strategies to harness the electric-field-induced phase transformation strain of (Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-based lead-free piezoelectric materials for actuator applications.« less
Chryseomicrobium imtechense gen. nov., sp. nov., a new member of the family Planococcaceae.
Arora, Pankaj Kumar; Chauhan, Archana; Pant, Bhawana; Korpole, Suresh; Mayilraj, Shanmugam; Jain, Rakesh Kumar
2011-08-01
A Gram-stain-positive, rod-shaped, yellow, non-motile, non-spore-forming, strictly aerobic bacterial strain, designated MW 10(T), was isolated from seawater of the Bay of Bengal, India, and was subjected to a polyphasic taxonomic study. Analysis of the 16S rRNA gene sequence revealed that strain MW 10(T) showed highest similarity to the type strains of Psychrobacillus psychrodurans (96.15 %) and Psychrobacillus psychrotolerans (96.01 %) and showed less than 96 % similarity to members of the genera Paenisporosarcina, Planococcus, Sporosarcina and Planomicrobium. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain MW 10(T) formed a clade separate from members of closely related genera. The morphological, physiological and chemotaxonomic characteristics of strain MW 10(T) differed from those of members of closely related genera. The major fatty acid in strain MW 10(T) was iso-C(15 : 0) and the menaquinones were MK-7 (48.4 %), MK-8 (32.3 %), MK-7(H(2)) (13.7 %) and MK-6 (5.6 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unknown phospholipid, an unknown lipid and an unknown glycolipid. The cell-wall peptidoglycan type was l-Lys-d-Asp. The genomic DNA G+C content (53.4 mol%) of strain MW 10(T) was significantly different from those of members of closely related genera. On the basis of its morphological, physiological and chemotaxonomic characteristics as well as our phylogenetic analysis, we conclude that strain MW 10(T) is a member of a novel genus and species, for which the name Chryseomicrobium imtechense gen. nov., sp. nov., is proposed. The type strain of Chryseomicrobium imtechense is MW 10(T) ( = MTCC 10098(T) = JCM 16573(T)).
Dunlap, Paul V.; Ast, Jennifer C.
2005-01-01
Bacteria forming light-organ symbiosis with deep-sea chlorophthalmid fishes (Aulopiformes: Chlorophthalmidae) are considered to belong to the species Photobacterium phosphoreum. The identification of these bacteria as P. phosphoreum, however, was based exclusively on phenotypic traits, which may not discriminate between phenetically similar but evolutionarily distinct luminous bacteria. Therefore, to test the species identification of chlorophthalmid symbionts, we carried out a genomotypic (repetitive element palindromic PCR genomic profiling) and phylogenetic analysis on strains isolated from the perirectal light organ of Chlorophthalmus albatrossis. Sequence analysis of the 16S rRNA gene of 10 strains from 5 fish specimens placed these bacteria in a cluster related to but phylogenetically distinct from the type strain of P. phosphoreum, ATCC 11040T, and the type strain of Photobacterium iliopiscarium, ATCC 51760T. Analysis of gyrB resolved the C. albatrossis strains as a strongly supported clade distinct from P. phosphoreum and P. iliopiscarium. Genomic profiling of 109 strains from the 5 C. albatrossis specimens revealed a high level of similarity among strains but allowed identification of genomotypically different types from each fish. Representatives of each type were then analyzed phylogenetically, using sequence of the luxABFE genes. As with gyrB, analysis of luxABFE resolved the C. albatrossis strains as a robustly supported clade distinct from P. phosphoreum. Furthermore, other strains of luminous bacteria reported as P. phosphoreum, i.e., NCIMB 844, from the skin of Merluccius capensis (Merlucciidae), NZ-11D, from the light organ of Nezumia aequalis (Macrouridae), and pjapo.1.1, from the light organ of Physiculus japonicus (Moridae), grouped phylogenetically by gyrB and luxABFE with the C. albatrossis strains, not with ATCC 11040T. These results demonstrate that luminous bacteria symbiotic with C. albatrossis, together with certain other strains of luminous bacteria, form a clade, designated the kishitanii clade, that is related to but evolutionarily distinct from P. phosphoreum. Members of the kishitanii clade may constitute the major or sole bioluminescent symbiont of several families of deep-sea luminous fishes. PMID:15691950
Dunlap, Paul V; Ast, Jennifer C
2005-02-01
Bacteria forming light-organ symbiosis with deep-sea chlorophthalmid fishes (Aulopiformes: Chlorophthalmidae) are considered to belong to the species Photobacterium phosphoreum. The identification of these bacteria as P. phosphoreum, however, was based exclusively on phenotypic traits, which may not discriminate between phenetically similar but evolutionarily distinct luminous bacteria. Therefore, to test the species identification of chlorophthalmid symbionts, we carried out a genomotypic (repetitive element palindromic PCR genomic profiling) and phylogenetic analysis on strains isolated from the perirectal light organ of Chlorophthalmus albatrossis. Sequence analysis of the 16S rRNA gene of 10 strains from 5 fish specimens placed these bacteria in a cluster related to but phylogenetically distinct from the type strain of P. phosphoreum, ATCC 11040(T), and the type strain of Photobacterium iliopiscarium, ATCC 51760(T). Analysis of gyrB resolved the C. albatrossis strains as a strongly supported clade distinct from P. phosphoreum and P. iliopiscarium. Genomic profiling of 109 strains from the 5 C. albatrossis specimens revealed a high level of similarity among strains but allowed identification of genomotypically different types from each fish. Representatives of each type were then analyzed phylogenetically, using sequence of the luxABFE genes. As with gyrB, analysis of luxABFE resolved the C. albatrossis strains as a robustly supported clade distinct from P. phosphoreum. Furthermore, other strains of luminous bacteria reported as P. phosphoreum, i.e., NCIMB 844, from the skin of Merluccius capensis (Merlucciidae), NZ-11D, from the light organ of Nezumia aequalis (Macrouridae), and pjapo.1.1, from the light organ of Physiculus japonicus (Moridae), grouped phylogenetically by gyrB and luxABFE with the C. albatrossis strains, not with ATCC 11040(T). These results demonstrate that luminous bacteria symbiotic with C. albatrossis, together with certain other strains of luminous bacteria, form a clade, designated the kishitanii clade, that is related to but evolutionarily distinct from P. phosphoreum. Members of the kishitanii clade may constitute the major or sole bioluminescent symbiont of several families of deep-sea luminous fishes.
Feng, Le; Lu, Xinxin; Yu, Yonghui; Wang, Tao; Luo, Shengdong; Sun, Zhihui; Duan, Qing; Wang, Ningli; Song, Lihua
2017-01-01
Trachoma, the leading infectious cause of blindness worldwide, is an ancient human disease. Its existence in China can be traced back to as early as the twenty-seventh century BC. In modern China, the overall prevalence of trachoma has dramatically reduced, but trachoma is still endemic in many areas of the country. Here, we report that 26 (8%) of 322 students from two rural boarding schools of Qinghai province, west China, were identified as having ocular C. trachomatis infection; and 15 ocular C. trachomatis strains were isolated from these trachoma patients. Chlamydiae in 37 clinical samples were genotyped as type B based on ompA gene analyses. Three ompA variants with one or two in-between SNP differences in the second or fourth variable domain were found. C. trachomatis strains QH111L and QH111R were from the same patient's left and right conjunctival swabs, respectively, but their ompA genes have a non-synonymous base difference in the second variable domain. Moreover, this SNP only exists in this single sample, suggesting QH111L is a newly emerged ompA variant. Interestingly, chromosomal phylogeny analysis found QH111L clusters between a branch of two type B strains and a branch of both A and C strains, but is significantly divergent from both branches. Comparative chromosome analysis found that compared to sequences of reference B/TZ1A828/OT strain, 12 of 22 QH111L's chromosomal genes exhibiting more than nine SNPs have the best homology with reciprocal genes of UGT strains while 9 of 22 genes are closest to those of type C strains. Consistent with findings of UGT-type genetic features in the chromosome, the QH111L plasmid appears to be intermediate between UGT and classical ocular plasmids due to the existence of UGT-type SNPs in the QH111L plasmid. Moreover, the QH111L strain has a unique evolutionarily older cytotoxin region compared to cytotoxin regions of other C. trachomatis strains. The genome analyses suggest that the QH111L strain is derived from recombinations between UGT and classical ocular ancestors. This is the first study of culture and characterization of ocular C. trachomatis in Qinghai Tibetan areas. PMID:28119858
Analysis and interpretation of diffraction data from complex, anisotropic materials
NASA Astrophysics Data System (ADS)
Tutuncu, Goknur
Most materials are elastically anisotropic and exhibit additional anisotropy beyond elastic deformation. For instance, in ferroelectric materials the main inelastic deformation mode is via domains, which are highly anisotropic crystallographic features. To quantify this anisotropy of ferroelectrics, advanced X-ray and neutron diffraction methods were employed. Extensive sets of data were collected from tetragonal BaTiO3, PZT and other ferroelectric ceramics. Data analysis was challenging due to the complex constitutive behavior of these materials. To quantify the elastic strain and texture evolution in ferroelectrics under loading, a number of data analysis techniques such as the single peak and Rietveld methods were used and their advantages and disadvantages compared. It was observed that the single peak analysis fails at low peak intensities especially after domain switching while the Rietveld method does not account for lattice strain anisotropy although it overcomes the low intensity problem via whole pattern analysis. To better account for strain anisotropy the constant stress (Reuss) approximation was employed within the Rietveld method and new formulations to estimate lattice strain were proposed. Along the way, new approaches for handling highly anisotropic lattice strain data were also developed and applied. All of the ceramics studied exhibited significant changes in their crystallographic texture after loading indicating non-180° domain switching. For a full interpretation of domain switching the spherical harmonics method was employed in Rietveld. A procedure for simultaneous refinement of multiple data sets was established for a complete texture analysis. To further interpret diffraction data, a solid mechanics model based on the self-consistent approach was used in calculating lattice strain and texture evolution during the loading of a polycrystalline ferroelectric. The model estimates both the macroscopic average response of a specimen and its hkl-dependent lattice strains for different reflections. It also tracks the number of grains (or domains) contributing to each reflection and allows for domain switching. The agreement between the model and experimental data was found to be satisfactory.
Nakamura, Sayaka; Sato, Hiroaki; Tanaka, Reiko; Kusuya, Yoko; Takahashi, Hiroki; Yaguchi, Takashi
2017-04-26
Accurate identification of Aspergillus species is a very important subject. Mass spectral fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is generally employed for the rapid identification of fungal isolates. However, the results are based on simple mass spectral pattern-matching, with no peak assignment and no taxonomic input. We propose here a ribosomal subunit protein (RSP) typing technique using MALDI-TOF MS for the identification and discrimination of Aspergillus species. The results are concluded to be phylogenetic in that they reflect the molecular evolution of housekeeping RSPs. The amino acid sequences of RSPs of genome-sequenced strains of Aspergillus species were first verified and compared to compile a reliable biomarker list for the identification of Aspergillus species. In this process, we revealed that many amino acid sequences of RSPs (about 10-60%, depending on strain) registered in the public protein databases needed to be corrected or newly added. The verified RSPs were allocated to RSP types based on their mass. Peak assignments of RSPs of each sample strain as observed by MALDI-TOF MS were then performed to set RSP type profiles, which were then further processed by means of cluster analysis. The resulting dendrogram based on RSP types showed a relatively good concordance with the tree based on β-tubulin gene sequences. RSP typing was able to further discriminate the strains belonging to Aspergillus section Fumigati. The RSP typing method could be applied to identify Aspergillus species, even for species within section Fumigati. The discrimination power of RSP typing appears to be comparable to conventional β-tubulin gene analysis. This method would therefore be suitable for species identification and discrimination at the strain to species level. Because RSP typing can characterize the strains within section Fumigati, this method has potential as a powerful and reliable tool in the field of clinical microbiology.
Heylen, Elisabeth; Zeller, Mark; Ciarlet, Max; Lawrence, Jody; Steele, Duncan; Van Ranst, Marc; Matthijnssens, Jelle
2015-10-06
RotaTeqTM is a pentavalent rotavirus vaccine based on a bovine rotavirus genetic backbone in vitro reassorted with human outer capsid genes. During clinical trials of RotaTeqTM in Sub-Saharan Africa, the vaccine efficacy over a 2-year follow-up was lower against the genotypes contained in the vaccine than against the heterotypic G8P[6] and G8P[1] rotavirus strains of which the former is highly prevalent in Africa. Complete genome analyses of 43 complete rotavirus genomes collected during phase III clinical trials of RotaTeqTM in Sub-Saharan Africa, were conducted to gain insight into the high level of cross-protection afforded by RotaTeqTM against these G8 strains. Phylogenetic analysis revealed the presence of a high number of bovine rotavirus gene segments in these human G8 strains. In addition, we performed an in depth analysis on the individual amino acid level which showed that G8 rotaviruses were more similar to the RotaTeqTM vaccine than non-G8 strains. Because RotaTeqTM possesses a bovine genetic backbone, the high vaccine efficacy against G8 strains might be partially explained by the fact that all these strains contain a complete or partial bovine-like backbone. Altogether, this study supports the hypothesis that gene segments other than VP7 and VP4 play a role in vaccine-induced immunity.
Al-Abadi, Shaikha Y; Al-Sadi, Abdullah M; Dickinson, Matthew; Al-Hammadi, Mohammed S; Al-Shariqi, Rashid; Al-Yahyai, Rashid A; Kazerooni, Elham A; Bertaccini, Assunta
2016-01-01
Witches' broom disease of lime (WBDL) is a serious phytoplasma disease of acid lime in Oman, the UAE and Iran. Despite efforts to study it, no systemic study attempted to characterize the relationship among the associated phytoplasma, ' Candidatus Phytoplasma aurantifolia', from the three countries. This study utilized sequences of the 16S rRNA, imp and secA genes to characterize 57 strains collected from Oman (38), the UAE (9) and Iran (10). Phylogenetic analysis based on the 16S rRNA gene showed that the 57 strains shared 98.5-100 % nucleotide similarity to each other and to strains of ' Ca . P. aurantifolia' available in GenBank. The level of genetic diversity was low based on the 16S rRNA (0-0.011), imp (0-0.002) and secA genes (0-0.015). The presence of low level of diversity among phytoplasma strains from Oman, the UAE and Iran can be explained by the movement of infected lime seedlings from one country to another through trading and exchange of infected plants. The study discusses implication of the findings on WBDL spread and management.
Quantitative Analyses of the Modes of Deformation in Engineering Thermoplastics
NASA Astrophysics Data System (ADS)
Landes, B. G.; Bubeck, R. A.; Scott, R. L.; Heaney, M. D.
1998-03-01
Synchrotron-based real-time small-angle X-ray scattering (RTSAXS) studies have been performed on rubber-toughened engineering thermoplastics with amorphous and semi-crystalline matrices. Scattering patterns are measured at successive time intervals of 3 ms were analyzed to determine the plastic strain due to crazing. Simultaneous measurements of the absorption of the primary beam by the sample permits the total plastic strain to be concurrently computed. The plastic strain due to other deformation mechanisms (e.g., particle cavitation and macroscopic shear yield can be determined from the difference between the total and craze-derived plastic strains. The contribution from macroscopic shear deformation can be determined from video-based optical data measured simultaneously with the X-ray data. These types of time-resolved experiments result in the generation of prodigious quantities of data, the analysis of which can considerably delay the determination of key results. A newly developed software package that runs in WINDOWSa 95 permits the rapid analysis of the relative contributions of the deformation modes from these time-resolved experiments. Examples of using these techniques on ABS-type and QUESTRAa syndiotactic polystyrene type engineering resins will be given.
Conrads, Georg; Citron, Diane M; Tyrrell, Kerin L; Horz, Hans-Peter; Goldstein, Ellie J C
2005-03-01
The 16S-23S rRNA gene internal transcribed spacer (ITS) regions of 11 reference strains of Porphyromonas species, together with Bacteroides distasonis and Tannerella forsythensis, were analysed to examine interspecies relationships. Compared with the phylogenetic tree generated using 16S rRNA gene sequences, the resolution of the ITS sequence-based tree was higher, but species positioning and clustering were similar with both approaches. The recent separation of Porphyromonas gulae and Porphyromonas gingivalis into distinct species was confirmed by the ITS data. In addition, analysis of the ITS sequences of 24 clinical isolates of Porphyromonas asaccharolytica plus the type strain ATCC 25260(T) divided the sequences into two clusters, of which one was alpha-fucosidase-positive (like the type strain) while the other was alpha-fucosidase-negative. The latter resembled the previously studied unusual extra-oral isolates of 'Porphyromonas endodontalis-like organisms' (PELOs) which could therefore be called 'Porphyromonas asaccharolytica-like organisms' (PALOs), based on the genetic identification. Moreover, the proposal of alpha-fucosidase-negative P. asaccharolytica strains as a new species should also be considered.
A Fatigue Life Prediction Method Based on Strain Intensity Factor
Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing
2017-01-01
In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = −1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic loading condition. PMID:28773049
Liu, Qing; Xin, Yu-Hua; Chen, Xiu-Ling; Liu, Hong-Can; Zhou, Yu-Guang; Chen, Wen-Xin
2018-04-01
A psychrophilic, Gram-stain-positive, rod-shaped bacterium, designated strain Hh31 T , was isolated from Xinjiang No. 1 Glacier in China. Strain Hh31 T was catalase-positive, oxidase-negative and able to grow at between 0-18 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Hh31 T belonged to the genus Cryobacterium and was most closely related to the type strains of Cryobacterium levicorallinum, Cryobacterium luteum and Cryobacterium flavum. DNA-DNA hybridization, calculation of average nucleotide identity and digital DNA-DNA hybridization revealed that strain Hh31 T was distinct from its closest phylogenetic neighbours. The major cellular fatty acids of strain Hh31 T were anteiso-C15 : 0, anteiso-C15 : 1, iso-C15:0, iso-C16 : 0 and anteiso-C17 : 0. The predominant menaquinones of strain Hh31 T were MK-9 and MK-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid, one unidentified glycolipid and another unidentified lipid. Physiological tests such as carbon source utilization, showed phenotypic differentiation of strain Hh31 T from the closest related phylogenetic neighbours. Based on a polyphasic approach, a novel species, Cryobacterium aureum sp. nov., is proposed, with Hh31 T (=NBRC 107882 T =CGMCC 1.11213 T ) as the type strain.
Rychli, Kathrin; Grunert, Tom; Ciolacu, Luminita; Zaiser, Andreas; Razzazi-Fazeli, Ebrahim; Schmitz-Esser, Stephan; Ehling-Schulz, Monika; Wagner, Martin
2016-02-02
The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the surface virulence associated protein SvpA. Furthermore proteins involved in cell wall modification, such as the lipoteichonic acid primase LtaP and the N-acetylmuramoyl-l-alanine amidase (Lmo2591) are more abundant in EGDe than in the persistent strains and could indirectly contribute to virulence. In conclusion this study provides information about a set of proteins that could potentially support survival of L. monocytogenes in abiotic niches in food processing environments. Based on these data, a more detailed analysis of the role of the identified proteins under stresses mimicking conditions in food producing environment is essential for further elucidate the mechanism of the phenomenon of persistence of L. monocytogenes. Copyright © 2015 Elsevier B.V. All rights reserved.
Production of haemolysins by strains of the Actinobacillus minor/"porcitonsillarum" complex.
Arya, Gitanjali; Niven, Donald F
2010-03-24
Actinobacillus minor and "Actinobacillus porcitonsillarum" are distinguished by their haemolytic activities, the latter organism being haemolytic and the former, non-haemolytic. Analysis of a whole genome shotgun sequence, however, revealed that A. minor strain 202, like "A. porcitonsillarum", possesses a haemolysin-encoding apxII operon. The purpose of this study was therefore to investigate haemolysin production by this organism and also by three additional members of the A. minor/"porcitonsillarum" complex, strains 33PN and 7ATS and A. minor strain NM305(T). Primers based on sequences within the apxII genes of strain 202 allowed the amplification of appropriately sized fragments from DNA from strain 33PN suggesting that this organism also possesses an apxII operon. Analysis of a whole genome shotgun sequence failed to reveal any trace of an apxII operon in strain NM305(T) and attempts to amplify apxII genes from DNA from strain 7ATS also failed. Strains 202 and 33PN, and surprisingly, the type strain of A. minor and strain 7ATS, were all found to be haemolysin-positive as growth media from cultures of these organisms could promote the lysis of erythrocytes in suspension. The erythrocyte specificities of the haemolysins produced by strains 202 and 33PN indicated that the haemolytic activities exhibited by these organisms were due to ApxII. In keeping with the apparent lack of apxII genes in strains NM305(T) and 7ATS, the haemolysins produced by these organisms were not erythrocyte-specific and with both organisms, haemolytic activity appeared to be due to a combination of heat-stable and heat-labile components. The identities of these components, however, remain unknown. Copyright 2009 Elsevier B.V. All rights reserved.
Lentzea soli sp. nov., an actinomycete isolated from soil.
Li, Dongmei; Zheng, Weiwei; Zhao, Junwei; Han, Liyuan; Zhao, Xueli; Jiang, Hao; Wang, Xiangjing; Xiang, Wensheng
2018-05-01
A novel actinobacterium, designated strain NEAU-LZC 7 T , was isolated from soil collected from Mount Song and characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain NEAU-LZC 7 T belonged to the genus Lentzea, with highest sequence similarity to Lentzea violacea JCM 10975 T (98.1 %). Morphological and chemotaxonomic characteristics of the strain also supported its assignment to the genus Lentzea. However, DNA-DNA relatedness, physiological and biochemical data showed that strain NEAU-LZC 7 T could be distinguished from its closest relative. Therefore, strain NEAU-LZC 7 T represents a novel species of the genus Lentzea, for which the name Lentzea soli sp. nov. is proposed, with NEAU-LZC 7 T (=CCTCC AA 2017027 T =JCM 32384 T ) as the type strain.
X-ray Topographic Methods and Application to Analysis of Electronic Materials
NASA Technical Reports Server (NTRS)
Mayo, W. E.; Liu, H. Y.; Chaudhuri, J.
1984-01-01
Three supplementary X-ray techniques new to semiconductor applications are discussed. These are the Computer Aided Rocking Curve Analyzer, the Divergent Beam Method and a new method based on enhanced X-ray flourescence. The first method is used for quantitative mapping of an elastic or plastic strain field while the other two methods are used only to measure elastic strains. The divergent beam method is used for measuring the full strain tensor while the microfluorescence method is useful for monitoring strain uniformity. These methods are discussed in detail and examples of their application is presented. Among these are determination of the full strain ellipsoid in state-of-the-art liquid phase epitaxy deposited III-V epitaxial films; mapping of the plastic strain concentrations in tensile deformed Si; and quantitative determination of damage in V3Si due to ion implantation.
NASA Astrophysics Data System (ADS)
Managheb, S. A. M.; Ziaei-Rad, S.; Tikani, R.
2018-05-01
The coupling between polarization and strain gradients is called flexoelectricity. This phenomenon exists in all dielectrics with any symmetry. In this paper, energy harvesting from a Timoshenko beam is studied by considering the flexoelectric and strain gradient effects. General governing equations and related boundary conditions are derived using Hamilton's principle. The flexoelectric effects are defined by gradients of normal and shear strains which lead to a more general model. The developed model also covers the classical Timoshenko beam theory by ignoring the flexoelectric effect. Based on the developed model, flexoelectricity effect on dielectric beams and energy harvesting from cantilever beam under harmonic base excitation is investigated. A parametric study was conducted to evaluate the effects of flexoelectric coefficients, strain gradient constants, base acceleration and the attaching tip mass on the energy harvested from a cantilever Timoshenko beam. Results show that the flexoelectricity has a significant effect on the energy harvester performance, especially in submicron and nano scales. In addition, this effect makes the beam to behave softer than before and also it changes the harvester first resonance frequency. The present study provides guidance for flexoelectric nano-beam analysis and a method to evaluate the performance of energy harvester in nano-dielectric devices.
Masseret, Estelle; Grzebyk, Daniel; Nagai, Satoshi; Genovesi, Benjamin; Lasserre, Bernard; Laabir, Mohamed; Collos, Yves; Vaquer, André; Berrebi, Patrick
2009-01-01
Since 1998, blooms of Alexandrium catenella associated with paralytic shellfish poisoning have been repeatedly reported for Thau Lagoon (French Mediterranean coast). Based on data obtained for rRNA gene markers, it has been suggested that the strains involved could be closely related to the Japanese temperate Asian ribotype of the temperate Asian clade. In order to gain more insight into the origin of these organisms, we carried out a genetic analysis of 61 Mediterranean and 23 Japanese strains using both ribosomal and microsatellite markers. Whereas the phylogeny based on ribosomal markers tended to confirm the previous findings, the analysis of microsatellite sequences revealed an unexpected distinction between the French and Japanese populations. This analysis also highlighted great intraspecific diversity that was not detected with the classical rRNA gene markers. The Japanese strains are divided into two differentiated A. catenella lineages: the Sea of Japan lineage and the east coast lineage, which includes populations from the Inland Sea and the Pacific Ocean. A. catenella strains isolated from Thau Lagoon belong to another lineage. These findings indicate that microsatellite markers are probably better suited to investigations of the population genetics of this species that is distributed worldwide. Finally, application of the population genetics concepts available for macroorganisms could support new paradigms for speciation and migration in phytoplankton assemblages. PMID:19201972
Beres, Stephen B; Sylva, Gail L; Sturdevant, Daniel E; Granville, Chanel N; Liu, Mengyao; Ricklefs, Stacy M; Whitney, Adeline R; Parkins, Larye D; Hoe, Nancy P; Adams, Gerald J; Low, Donald E; DeLeo, Frank R; McGeer, Allison; Musser, James M
2004-08-10
Molecular factors that contribute to the emergence of new virulent bacterial subclones and epidemics are poorly understood. We hypothesized that analysis of a population-based strain sample of serotype M3 group A Streptococcus (GAS) recovered from patients with invasive infection by using genome-wide investigative methods would provide new insight into this fundamental infectious disease problem. Serotype M3 GAS strains (n = 255) cultured from patients in Ontario, Canada, over 11 years and representing two distinct infection peaks were studied. Genetic diversity was indexed by pulsed-field gel electrophoresis, DNA-DNA microarray, whole-genome PCR scanning, prophage genotyping, targeted gene sequencing, and single-nucleotide polymorphism genotyping. All variation in gene content was attributable to acquisition or loss of prophages, a molecular process that generated unique combinations of proven or putative virulence genes. Distinct serotype M3 genotypes experienced rapid population expansion and caused infections that differed significantly in character and severity. Molecular genetic analysis, combined with immunologic studies, implicated a 4-aa duplication in the extreme N terminus of M protein as a factor contributing to an epidemic wave of serotype M3 invasive infections. This finding has implications for GAS vaccine research. Genome-wide analysis of population-based strain samples cultured from clinically well defined patients is crucial for understanding the molecular events underlying bacterial epidemics.
Baeßler, Bettina; Schaarschmidt, Frank; Dick, Anastasia; Michels, Guido; Maintz, David; Bunck, Alexander C
2016-01-01
The present study aims to evaluate the diagnostic value of cardiac magnetic resonance (CMR) feature tracking (FT) derived strain-analysis of both ventricles in patients with acute myocarditis (ACM) in order to improve its currently still challenging non-invasive diagnosis. CMR cine data of 31 patients with clinically suspected ACM and confirmation of diagnosis by CMR according to the Lake Louise criteria as well as 14 patients with clinically diagnosed ACM but inconspicuous CMR were retrospectively analyzed. 20 healthy volunteers (HV) served as a control. Analysis of global longitudinal, circumferential and radial strain and strain rate of both ventricles was performed in one long-axis and three short-axis slices using a dedicated FT-software (TomTec Imaging Systems). Patients with ACM showed significantly reduced LV longitudinal strain (-12.7 ± 6.5 vs. -16.8 ± 5.9%, p=0.021) and LV circumferential strain (LVCirStrain; -22.9 ± 5.7 vs. -27.8 ± 4.4 %, p<0.001) compared to HV. Conversely, they showed improved basal RV circumferential strain rate (BasalRVCirSR; -0.70 ± 0.23 vs. -0.47 ± 0.31s(-1), p=0.009). In ACM patients with preserved EF, BasalRVCirSR was significantly increased compared to HV while LV strain was not significantly different between both groups. In multinominal logistic regression analysis, LVCirStrain and BasalRVCirSR proved to be the best independent predictors of ACM with preserved EF. A combined cut-off of -0.53s(-1) for BasalRVCirSR and of -29.0% for LVCirStrain allowed a classification of ACM patients with preserved EF with a sensitivity of 89% and a specificity of 80%. Also patients with clinical ACM but inconspicuous CMR showed a significantly improved BasalRVCirSR and a cut-off of -0.77s(-1) allowed a classification of ACM patients with a sensitivity of 70% and a specificity of 90%, while all other CMR parameters were normal. The defined cut-offs for LVCirStrain and BasalRVCirSR allow a prediction of ACM with high sensitivity and specificity, even in patients with preserved EF and in patients with otherwise completely inconspicuous CMR. Our results point to a discriminative power especially of RV strain analysis in the CMR-based diagnosis of ACM. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yoshimi, Akira; Sano, Motoaki; Inaba, Azusa; Kokubun, Yuko; Fujioka, Tomonori; Mizutani, Osamu; Hagiwara, Daisuke; Fujikawa, Takashi; Nishimura, Marie; Yano, Shigekazu; Kasahara, Shin; Shimizu, Kiminori; Yamaguchi, Masashi; Kawakami, Kazuyoshi; Abe, Keietsu
2013-01-01
Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and 13C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species. PMID:23365684
Ziemons, Sandra; Koutsantas, Katerina; Becker, Kordula; Dahlmann, Tim; Kück, Ulrich
2017-02-16
Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.
Onset of Plasticity via Relaxation Analysis (OPRA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Amit; Wheeler, Robert; Shyam, Amit
In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objectivemore » observation of the very onset of plastic flow. Lastly, our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jingli; Chen, Cun; Wang, Gang
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Onset of Plasticity via Relaxation Analysis (OPRA)
Pandey, Amit; Wheeler, Robert; Shyam, Amit; ...
2016-03-17
In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objectivemore » observation of the very onset of plastic flow. Lastly, our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load.« less
NASA Astrophysics Data System (ADS)
Sarjito; Desrina; Haditomo, AHC; Budi Prayitno, S.
2018-05-01
Bacterial disease is a problem in mud crab culture in Pemalang, Indonesia. The purpose of this study was to find out the bacteria associated with bacterial diseases on mud crab based on the molecular approach. Exploratory methods were conducted in this reserach. Twenty two bacteria (SJP 01 – SJP 22) were isolated from carapace and gills and hepathopancreas of moribound mud crab with TCBS and TSA medium. Based on rep PCR, five isolates (SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11) were choosen for further investigation. Result from 16S rDNA sequence analysis, SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11 were closely related to Exiguobacterium sp. ZJ2505 (99%), V. harveyi strain NCIMB1280 (98%), V. alginolyticus strain ATCC 17749(98%.), B. marisflavi strain TF-11 (97%) and E. aestuarii strain TF-16 (99%) respectively.
Tube Bulge Process : Theoretical Analysis and Finite Element Simulations
NASA Astrophysics Data System (ADS)
Velasco, Raphael; Boudeau, Nathalie
2007-05-01
This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain. Finally, the influence of geometrical parameters deviations on flow stress curve is observed using analytical model: deviations of the tube outer diameter, its initial thickness and the bulge height measurement are taken into account to obtain a resulting error on plastic strain and von Mises stress.
Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane
2008-01-01
Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671
NASA Astrophysics Data System (ADS)
Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan; Zhang, Yingrong
2018-07-01
We investigate the transverse free vibration behaviour of axially moving nanobeams based on the nonlocal strain gradient theory. Considering the geometrical nonlinearity, which takes the form of von Kármán strains, the coupled plane motion equations and related boundary conditions of a new size-dependent beam model of Euler-Bernoulli type are developed using the generalized Hamilton principle. Using the simply supported axially moving nanobeams as an example, the complex modal analysis method is adopted to solve the governing equation; then, the effect of the order of modal truncation on the natural frequencies is discussed. Subsequently, the roles of the nonlocal parameter, material characteristic parameter, axial speed, stiffness and axial support rigidity parameter on the free vibration are comprehensively addressed. The material characteristic parameter induces the stiffness hardening of nanobeams, while the nonlocal parameter induces stiffness softening. In addition, the roles of small-scale parameters on the flutter critical velocity and stability are explained.
Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda
2016-01-01
This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230
Yoshikawa, Katsunori; Toya, Yoshihiro; Shimizu, Hiroshi
2017-05-01
Synechocystis sp. PCC 6803 is an attractive host for bio-ethanol production due to its ability to directly convert atmospheric carbon dioxide into ethanol using photosystems. To enhance ethanol production in Synechocystis sp. PCC 6803, metabolic engineering was performed based on in silico simulations, using the genome-scale metabolic model. Comprehensive reaction knockout simulations by flux balance analysis predicted that the knockout of NAD(P)H dehydrogenase enhanced ethanol production under photoautotrophic conditions, where ammonium is the nitrogen source. This deletion inhibits the re-oxidation of NAD(P)H, which is generated by ferredoxin-NADP + reductase and imposes re-oxidation in the ethanol synthesis pathway. The effect of deleting the ndhF1 gene, which encodes NADH dehydrogenase subunit 5, on ethanol production was experimentally evaluated using ethanol-producing strains of Synechocystis sp. PCC 6803. The ethanol titer of the ethanol-producing ∆ndhF1 strain increased by 145%, compared with that of the control strain.
Unrean, Pornkamol
2017-04-01
We have previously developed a dynamic flux balance analysis of Saccharomyces cerevisiae for elucidation of genome-wide flux response to furfural perturbation (Unrean and Franzen, Biotechnol J 10(8):1248-1258, 2015). Herein, the dynamic flux distributions were analyzed by flux control analysis to identify target overexpressed genes for improved yeast robustness against furfural. The flux control coefficient (FCC) identified overexpressing isocitrate dehydrogenase (IDH1), a rate-controlling flux for ethanol fermentation, and dicarboxylate carrier (DIC1), a limiting flux for cell growth, as keys of furfural-resistance phenotype. Consistent with the model prediction, strain characterization showed 1.2- and 2.0-fold improvement in ethanol synthesis and furfural detoxification rates, respectively, by IDH1 overexpressed mutant compared to the control. DIC1 overexpressed mutant grew at 1.3-fold faster and reduced furfural at 1.4-fold faster than the control under the furfural challenge. This study hence demonstrated the FCC-based approach as an effective tool for guiding the design of robust yeast strains.
Lin, Shin-Ping; Huang, Yin-Hsuan; Hsu, Kai-Di; Lai, Ying-Jang; Chen, Yu-Kuo; Cheng, Kuan-Chen
2016-10-20
A bacterial cellulose (BC) producing strain isolated from fermented fruit juice was identified as Komagataeibacter intermedius (K. intermedius) FST213-1 by 16s rDNA sequencing analysis and biochemical characteristics test. K. intermedius FST213-1 can produce BC within pH 4-9 and exhibit maximum BC production (1.2g/L) at pH 8 in short-term (4-day) cultivation. Results of Fourier transform infrared spectroscopy, X-ray diffraction, water content, thermogravimetric analysis and mechanical property indicated that BC produced from K. intermedius FST213-1 exhibits higher water content ability (99.5%), lower thermostability (315°C), lower crystallinity (79.3%) and similar mechanical properties in comparison with the specimen from model BC producer, Gluconacetobacter xylinus 23769. Based on these analyses, the novel based-resistant strain K. intermedius FST213-1 can efficiently produce BC, which can be applied for industrial manufacturing with potential features. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Meraj, Md.; Dutta, Krishna; Bhardwaj, Ravindra; Yedla, Natraj; Karthik, V.; Pal, Snehanshu
2017-11-01
Molecular dynamics (MD) simulation-based studies of tensile test and structural evolution of Cu-5 at.% Zr alloy under asymmetric cyclic loading (i.e., ratcheting behavior) considering various stress ratios such as - 0.2, - 0.4 and - 0.6 for different temperatures, viz.≈ 100, 300 and 500 K have been performed using embedded atom model Finnis-Sinclair potential. According to obtained stress-strain response from MD calculation, Cu-5 at.% Zr alloy specimen is pristine in nature as sudden drop in stress just after yield stress and subsequent elastic type deformation are observed for this alloy. Predicted ratcheting strain by MD simulation for Cu-5 at.% Zr alloy varies from 4.5 to 5%. Significant increase in ratcheting strain has been observed with the increase in temperature. Slight reduction in crystallinity is identified at the middle of the each loading cycle from the performed radial distribution function analysis and cluster analysis.
Prevotella jejuni sp. nov., isolated from the small intestine of a child with coeliac disease.
Hedberg, Maria E; Israelsson, Anne; Moore, Edward R B; Svensson-Stadler, Liselott; Wai, Sun Nyunt; Pietz, Grzegorz; Sandström, Olof; Hernell, Olle; Hammarström, Marie-Louise; Hammarström, Sten
2013-11-01
Five obligately anaerobic, Gram-stain-negative, saccharolytic and proteolytic, non-spore-forming bacilli (strains CD3 : 27, CD3 : 28(T), CD3 : 33, CD3 : 32 and CD3 : 34) are described. All five strains were isolated from the small intestine of a female child with coeliac disease. Cells of the five strains were short rods or coccoid cells with longer filamentous forms seen sporadically. The organisms produced acetic acid and succinic acid as major metabolic end products. Phylogenetic analysis based on comparative 16S rRNA gene sequence analysis revealed close relationships between CD3 : 27, CD3 : 28(T) and CD3 : 33, between CD3 : 32 and Prevotella histicola CCUG 55407(T), and between CD3 : 34 and Prevotella melaninogenica CCUG 4944B(T). Strains CD3 : 27, CD3 : 28(T) and CD3 : 33 were clearly different from all recognized species within the genus Prevotella and related most closely to but distinct from P. melaninogenica. Based on 16S rRNA, RNA polymerase β-subunit (rpoB) and 60 kDa chaperonin protein subunit (cpn60) gene sequencing, and phenotypic, chemical and biochemical properties, strains CD3 : 27, CD3 : 28(T) and CD3 : 33 are considered to represent a novel species within the genus Prevotella, for which the name Prevotella jejuni sp. nov. is proposed. Strain CD3 : 28(T) ( = CCUG 60371(T) = DSM 26989(T)) is the type strain of the proposed novel species. All five strains were able to form homologous aggregates, in which tube-like structures were connecting individual bacteria cells. The five strains were able to bind to human intestinal carcinoma cell lines at 37 °C.
Prevotella jejuni sp. nov., isolated from the small intestine of a child with coeliac disease
Israelsson, Anne; Moore, Edward R. B.; Svensson-Stadler, Liselott; Wai, Sun Nyunt; Pietz, Grzegorz; Sandström, Olof; Hernell, Olle; Hammarström, Marie-Louise
2013-01-01
Five obligately anaerobic, Gram-stain-negative, saccharolytic and proteolytic, non-spore-forming bacilli (strains CD3 : 27, CD3 : 28T, CD3 : 33, CD3 : 32 and CD3 : 34) are described. All five strains were isolated from the small intestine of a female child with coeliac disease. Cells of the five strains were short rods or coccoid cells with longer filamentous forms seen sporadically. The organisms produced acetic acid and succinic acid as major metabolic end products. Phylogenetic analysis based on comparative 16S rRNA gene sequence analysis revealed close relationships between CD3 : 27, CD3 : 28T and CD3 : 33, between CD3 : 32 and Prevotella histicola CCUG 55407T, and between CD3 : 34 and Prevotella melaninogenica CCUG 4944BT. Strains CD3 : 27, CD3 : 28T and CD3 : 33 were clearly different from all recognized species within the genus Prevotella and related most closely to but distinct from P. melaninogenica. Based on 16S rRNA, RNA polymerase β-subunit (rpoB) and 60 kDa chaperonin protein subunit (cpn60) gene sequencing, and phenotypic, chemical and biochemical properties, strains CD3 : 27, CD3 : 28T and CD3 : 33 are considered to represent a novel species within the genus Prevotella, for which the name Prevotella jejuni sp. nov. is proposed. Strain CD3 : 28T ( = CCUG 60371T = DSM 26989T) is the type strain of the proposed novel species. All five strains were able to form homologous aggregates, in which tube-like structures were connecting individual bacteria cells. The five strains were able to bind to human intestinal carcinoma cell lines at 37 °C. PMID:23793857
Development of Michelson interferometer based spatial phase-shift digital shearography
NASA Astrophysics Data System (ADS)
Xie, Xin
Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.
Myroides indicus sp. nov., isolated from garden soil.
Ram, Hari; Kumar, Alok; Thomas, Lebin; Dastager, Syed G; Mawlankar, Rahul; Singh, Ved Pal
2015-11-01
A novel aerobic, non-motile, rod-shaped, catalase- and oxidase-positive bacterial strain, designated UKS3T, was isolated from garden soil, and subjected to polyphasic taxonomic analysis. Strain UKS3T formed whitish, viscous colonies on nutrient agar and was Gram-staining negative. Phylogenetic analysis, based on 16S rRNA gene sequence, showed that maximum pairwise similarity occurs with representatives of the genus Myroides. The most closely related species include Myroides marinus JS-08T (92.7 % sequence similarity), Myroides phaeus MY15T (92.7 %), Myroides odoratus DSM 2801T (91.5 %) and Myroides odoratimimus CCUG 39352T (91.4 %). Strain UKS3T contained menaquinone-6 (MK-6) as the major respiratory quinone and iso-C15 : 0 (40.2 %), anteiso-C15 : 0 (9.4 %) and iso-C17 : 0 3-OH (8.5 %) as major fatty acids. Phosphatidylethanolamine, phospholipids and three aminolipids were the major polar lipids. The DNA G+C content of strain UKS3T was 36.8 ± 2.0 mol%. On the basis of phenotypic, chemotaxonomic and molecular analysis, strain UKS3T represents a novel species of the genus Myroides, for which the name Myroides indicus sp. nov., is proposed. The type strain is UKS3T ( = DSM 28213T = NCIM 5555T ).
Liang, J M; Xayamongkhon, H; Broz, K; Dong, Y; McCormick, S P; Abramova, S; Ward, T J; Ma, Z H; Kistler, H C
2014-12-01
Fusarium graminearum sensu stricto causes Fusarium head blight (FHB) in wheat and barley, and contaminates grains with several trichothecene mycotoxins, causing destructive yield losses and economic impact in the United States. Recently, a F. graminearum strain collected from Minnesota (MN) was determined to produce a novel trichothecene toxin, called NX-2. In order to determine the spatial and temporal dynamics of NX-2 producing strains in MN, North Dakota (ND) and South Dakota (SD), a total of 463 F. graminearum strains were collected from three sampling periods, 1999-2000, 2006-2007 and 2011-2013. A PCR-RFLP based diagnostic test was developed and validated for NX-2 producing strains based on polymorphisms in the Tri1 gene. Trichothecene biosynthesis gene (Tri gene)-based polymerase chain reaction (PCR) assays and ten PCR-restriction fragment length polymorphism (RFLP) markers were used to genotype all strains. NX-2 strains were detected in each sampling period but with a very low overall frequency (2.8%) and were mainly collected near the borders of MN, ND and SD. Strains with the 3ADON chemotype were relatively infrequent in 1999-2000 (4.5%) but increased to 29.4% in 2006-2007 and 17.2% in 2011-2013. The distribution of 3ADON producing strains also expanded from a few border counties between ND and MN in 1999-2000, southward toward the border between SD and MN in 2006-2007 and westward in 2011-2013. Genetic differentiation between 2006-2007 and 2011-2013 populations (3%) was much lower than that between 1999-2000 and 2006-2007 (22%) or 1999-2000 and 2011-2013 (20%) suggesting that most change to population genetic structure of F. graminearum occurred between 1999-2000 and 2006-2007. This change was associated with the emergence of a new population consisting largely of individuals with a 3ADON chemotype. A Bayesian clustering analysis suggested that NX-2 chemotype strains are part of a previously described Upper Midwestern population. However, these analyses also suggest that the NX-2 isolates could represent a distinct population, but that interpretations of population assignment are influenced by the small number of NX-2 strains available for analysis. Published by Elsevier Inc.
[RAPD analysis of Aspergilli and its application in brewing industry].
Pan, Li; Wang, Bin; Guo, Yong
2007-06-01
Phylogenetic analysis of sixteen Aspergilli was done by RAPD technology, using Aspergillus oryzae AS3.951, Aspergillus flavus GIM3.18 and Aspergillus sojae AS3.495 as controls. First, genome DNA of the sixteen test strains were prepared by improved extraction method, and their quality was verified by electrophoresis and spectrophotometry. They displayed an identical band (approximately 20 kb) in agarose gel electrophoresis, which conformed to the fact that these strains all belong to Aspergillus. OD260/OD280 of the prepared DNA ranged from 1.80 to 1.90, illustrating that they were good enough to be used as templates in the following RAPD-PCR experiment. Then, three appropriate primers (Primerl, Primer2, Primer5) for RAPD-PCR were screened from nine random primers, and repetitive experiments demonstrated that the RAPD-PCR polymorphic patterns of the sixteen test strains based on these three primers were stable. There were usually 8-14 bands in their RADP-PCR patterns, where the number of the main bands was 4-9 and the secondary bands were abundant. There were totally 181 bands in their RAPD-PCR patterns, where the percentage of polymorphic bands reached to 40.9% (74 bands). The similarity coefficient between the strains was calculated based on their RAPD-PCR patterns, ranging from 8.0% to 96.6%. All these data suggests that the genetic polymorphism of the strains is abundant and they have evident genetic differentiation. The phylogenetic tree of the sixteen test strains was reconstructed according to their RAPD-PCR patterns with Primer1, Primer2 and Primer5. It basically corresponded to traditional morphological taxonomy, demonstrating that the application of RAPD molecular marker in the phylogenetic analysis of these Aspergilli is feasible. Besides, the aflatoxin-producing strains (GIM3.17, CICC2219, CICC2357, CICC2390, CICC2402, CICC2404) could be easily discriminated by RAPD molecular marker, whereas it is difficult to distinguish them by conventional morphological taxonomy. Consequently, RAPD molecular marker provides a novel clue to discriminating aflatoxin-producing strains in brewing industry.
Urmersbach, Sara; Alter, Thomas; Koralage, Madura Sanjeevani Gonsal; Sperling, Lisa; Gerdts, Gunnar; Messelhäusser, Ute; Huehn, Stephan
2014-03-08
Vibrio parahaemolyticus is frequently isolated from environmental and seafood samples and associated with gastroenteritis outbreakes in American, European, Asian and African countries. To distinguish between different lineages of V. parahaemolyticus various genotyping techniques have been used, incl. multilocus sequence typing (MLST). Even though some studies have already applied MLST analysis to characterize V. parahaemolyticus strain sets, these studies have been restricted to specific geographical areas (e.g. U.S. coast, Thailand and Peru), have focused exclusively on pandemic or non-pandemic pathogenic isolates or have been based on a limited strain number. To generate a global picture of V. parahaemolyticus genotype distribution, a collection of 130 environmental and seafood related V. parahaemolyticus isolates of different geographical origins (Sri Lanka, Ecuador, North Sea and Baltic Sea as well as German retail) was subjected to MLST analysis after modification of gyrB and recA PCRs. The V. parahaemolyticus population was composed of 82 unique Sequence Types (STs), of which 68 (82.9%) were new to the pubMLST database. After translating the in-frame nucleotide sequences into amino acid sequences, less diversity was detectable: a total of 31 different peptide Sequence Types (pSTs) with 19 (61.3%) new pSTs were generated from the analyzed isolates. Most STs did not show a global dissemination, but some were supra-regionally distributed and clusters of STs were dependent on geographical origin. On peptide level no general clustering of strains from specific geographical regions was observed, thereby the most common pSTs were found on all continents (Asia, South America and Europe) and rare pSTs were restricted to distinct countries or even geographical regions. One lineage of pSTs associated only with strains from North and Baltic Sea strains was identified. Our study reveals a high genetic diversity in the analyzed V. parahaemolyticus strain set as well as for geographical strain subsets, with a high proportion of newly discovered alleles and STs. Differences between the subsets were identified. Our data support the postulated population structure of V. parahaemolyticus which follows the 'epidemic' model of clonal expansion. Application of peptide based AA-MLST allowed the identification of reliable relationships between strains.
Sekizuka, Tsuyoshi; Mizuno, Tamaki; Takemura, Taichiro; Yamashiro, Tetsu; Chowdhury, Goutam; Pazhani, Gururaja P.; Mukhopadhyay, Asish K.; Ramamurthy, Thandavarayan; Miyoshi, Shin-ichi; Kuroda, Makoto; Shinoda, Sumio; Ohnishi, Makoto
2017-01-01
Cholera is an acute diarrheal disease and a major public health problem in many developing countries in Asia, Africa, and Latin America. Since the Bay of Bengal is considered the epicenter for the seventh cholera pandemic, it is important to understand the genetic dynamism of Vibrio cholerae from Kolkata, as a representative of the Bengal region. We analyzed whole genome sequence data of V. cholerae O1 isolated from cholera patients in Kolkata, India, from 2007 to 2014 and identified the heterogeneous genomic region in these strains. In addition, we carried out a phylogenetic analysis based on the whole genome single nucleotide polymorphisms to determine the genetic lineage of strains in Kolkata. This analysis revealed the heterogeneity of the Vibrio seventh pandemic island (VSP)-II in Kolkata strains. The ctxB genotype was also heterogeneous and was highly related to VSP-II types. In addition, phylogenetic analysis revealed the shifts in predominant strains in Kolkata. Two distinct lineages, 1 and 2, were found between 2007 and 2010. However, the proportion changed markedly in 2010 and lineage 2 strains were predominant thereafter. Lineage 2 can be divided into four sublineages, I, II, III and IV. The results of this study indicate that lineages 1 and 2-I were concurrently prevalent between 2007 and 2009, and lineage 2-III observed in 2010, followed by the predominance of lineage 2-IV in 2011 and continued until 2014. Our findings demonstrate that the epidemic of cholera in Kolkata was caused by several distinct strains that have been constantly changing within the genetic lineages of V. cholerae O1 in recent years. PMID:28192431
Imamura, Daisuke; Morita, Masatomo; Sekizuka, Tsuyoshi; Mizuno, Tamaki; Takemura, Taichiro; Yamashiro, Tetsu; Chowdhury, Goutam; Pazhani, Gururaja P; Mukhopadhyay, Asish K; Ramamurthy, Thandavarayan; Miyoshi, Shin-Ichi; Kuroda, Makoto; Shinoda, Sumio; Ohnishi, Makoto
2017-02-01
Cholera is an acute diarrheal disease and a major public health problem in many developing countries in Asia, Africa, and Latin America. Since the Bay of Bengal is considered the epicenter for the seventh cholera pandemic, it is important to understand the genetic dynamism of Vibrio cholerae from Kolkata, as a representative of the Bengal region. We analyzed whole genome sequence data of V. cholerae O1 isolated from cholera patients in Kolkata, India, from 2007 to 2014 and identified the heterogeneous genomic region in these strains. In addition, we carried out a phylogenetic analysis based on the whole genome single nucleotide polymorphisms to determine the genetic lineage of strains in Kolkata. This analysis revealed the heterogeneity of the Vibrio seventh pandemic island (VSP)-II in Kolkata strains. The ctxB genotype was also heterogeneous and was highly related to VSP-II types. In addition, phylogenetic analysis revealed the shifts in predominant strains in Kolkata. Two distinct lineages, 1 and 2, were found between 2007 and 2010. However, the proportion changed markedly in 2010 and lineage 2 strains were predominant thereafter. Lineage 2 can be divided into four sublineages, I, II, III and IV. The results of this study indicate that lineages 1 and 2-I were concurrently prevalent between 2007 and 2009, and lineage 2-III observed in 2010, followed by the predominance of lineage 2-IV in 2011 and continued until 2014. Our findings demonstrate that the epidemic of cholera in Kolkata was caused by several distinct strains that have been constantly changing within the genetic lineages of V. cholerae O1 in recent years.
Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.; Cubero, Jaime
2017-01-01
Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the acquisition of pathogenicity and host specificity in X. arboricola. Finally, based in the genomic differences observed between the virulent and the non-virulent strains isolated from Prunus, a sensitive and specific real-time PCR protocol was designed to detect and identify Xap strains. This method avoids miss-identifications due to atypical strains of X. arboricola that can cohabit Prunus. PMID:28450852
Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium.
Zhao, Baisuo; Wang, Hui; Li, Ruirui; Mao, Xinwei
2010-05-01
A polycyclic aromatic hydrocarbon-degrading marine bacterium, designated strain P-4(T), was isolated from oil-polluted saline soil in Xianhe, Shangdong Province, China. Strain P-4(T) was Gram-negative-staining with curved to spiral rod-shaped cells and grew optimally with 3-6 % (w/v) NaCl and at 30 degrees C. The predominant fatty acids were C(18 : 1)omega7c (35.0 %), C(16 : 0) (25.0 %), C(16 : 1)omega7c (17.9 %), C(14 : 0) (6.2 %) and C(17 : 0) cyclo (5.2 %). The major respiratory quinone was Q-9 and the genomic DNA G+C content was 61.2+/-1.0 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain P-4(T) belonged to the genus Thalassospira of the class Alphaproteobacteria. DNA-DNA hybridization with Thalassospira xiamenensis DSM 17429(T) showed relatedness of 36.0 %, and lower values were obtained with respect to other Thalassospira species. Based on physiological and biochemical tests and 16S rRNA gene sequence analysis as well as DNA-DNA relatedness, strain P-4(T) should be placed in the genus Thalassospira within a novel species. The name Thalassospira xianhensis sp. nov. is proposed, with P-4(T) (=CGMCC 1.6849(T) =JCM 14850(T)) as the type strain.
Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen
2014-01-01
The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage. PMID:24379048
Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen
2013-12-27
The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage.
Rong, Li; Guo, Xinqiang; Chen, Kai; Zhu, Jianchun; Li, Shunpeng; Jiang, Jiandong
2009-11-01
Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. Strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. Strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a nondetectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2- dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism.
Voronina, Olga L.; Kunda, Marina S.; Aksenova, Ekaterina I.; Ryzhova, Natalia N.; Semenov, Andrey N.; Petrov, Evgeny M.; Didenko, Lubov V.; Lunin, Vladimir G.; Ananyina, Yuliya V.; Gintsburg, Alexandr L.
2014-01-01
Background and Aim. Leptospira, the causal agent of leptospirosis, has been isolated from the environment, patients, and wide spectrum of animals in Russia. However, the genetic diversity of Leptospira in natural and anthropurgic foci was not clearly defined. Methods. The recent MLST scheme was used for the analysis of seven pathogenic species. 454 pyrosequencing technology was the base of the whole genome sequencing (WGS). Results. The most wide spread and prevalent Leptospira species in Russia were L. interrogans, L. kirschneri, and L. borgpetersenii. Five STs, common for Russian strains: 37, 17, 199, 110, and 146, were identified as having a longtime and ubiquitous distribution in various geographic areas. Unexpected properties were revealed for the environmental Leptospira strain Bairam-Ali. WGS of this strain genome suggested that it combined the features of the pathogenic and nonpathogenic strains and may be a reservoir of the natural resistance genes. Results of the comparative analysis of rrs and rpoB genes and MLST loci for different Leptospira species strains and phenotypic and serological properties of the strain Bairam-Ali suggested that it represented separate Leptospira species. Conclusions. Thus, the natural and anthropurgic foci supported ubiquitous Leptospira species and the pool of genes important for bacterial adaptivity to various conditions. PMID:25276806
Tak, Nisha; Awasthi, Esha; Bissa, Garima; Meghwal, Raju Ram; James, Euan K; Sprent, Janet S; Gehlot, Hukam S
2016-12-01
Phylogenetically diverse Ensifer strains associated with five species of Tephrosia growing in alkaline soils of semi-arid regions of the Thar Desert were characterized using multi locus sequence analysis. Based on 16S rRNA and four protein-coding housekeeping gene (recA, atpD, glnII and dnaK) sequences, the Tephrosia-Ensifer strains were genetically different from the type strains of Ensifer saheli, Ensifer kostiensis, Ensifer terangae (African origin) and Ensifer psoraleae (Asiatic origin). One strain, Ensifer sp. TL4, showed maximum similarity (99%) to Ensifer adhaerens LMG 20216 T and formed a separate lineage close to it. Phylogenetic incongruence between sym and housekeeping genes was observed. The monophyletic origin of symbiotic genes from Asia in the Tephrosia-Ensifer strains from the Thar Desert suggests that they might have been acquired from a common ancestor and horizontally transferred. These novel strains are promiscuous, cross-nodulating some papilionoid crop species, mimosoid trees and the caesalpinioid Chamaecrista pumila. This study improves understanding of the distribution of Ensifer in unexplored and threatened alkaline arid regions of the Thar Desert and how this relates to other similar regions in the world. Copyright © 2016 Elsevier GmbH. All rights reserved.
FY16 Status Report on Development of Integrated EPP and SMT Design Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetter, R. I.; Sham, T. -L.; Wang, Y.
2016-08-01
The goal of the Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach is to incorporate a Simplified Model Test (SMT) data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The EPP methodology is based on the idea that creep damage and strain accumulation can be bounded by a properly chosen “pseudo” yield strength used in an elastic-perfectly plastic analysis, thus avoiding the need for stress classification. The originalmore » SMT approach is based on the use of elastic analysis. The experimental data, cycles to failure, is correlated using the elastically calculated strain range in the test specimen and the corresponding component strain is also calculated elastically. The advantage of this approach is that it is no longer necessary to use the damage interaction, or D-diagram, because the damage due to the combined effects of creep and fatigue are accounted in the test data by means of a specimen that is designed to replicate or bound the stress and strain redistribution that occurs in actual components when loaded in the creep regime. The reference approach to combining the two methodologies and the corresponding uncertainties and validation plans are presented. Results from recent key feature tests are discussed to illustrate the applicability of the EPP methodology and the behavior of materials at elevated temperature when undergoing stress and strain redistribution due to plasticity and creep.« less
MULTIPLE-LOCUS VARIABLE-NUMBER TANDEM REPEAT ANALYSIS OF BRUCELLA ISOLATES FROM THAILAND.
Kumkrong, Khurawan; Chankate, Phanita; Tonyoung, Wittawat; Intarapuk, Apiradee; Kerdsin, Anusak; Kalambaheti, Thareerat
2017-01-01
Brucellosis-induced abortion can result in significant economic loss to farm animals. Brucellosis can be transmitted to humans during slaughter of infected animals or via consumption of contaminated food products. Strain identification of Brucella isolates can reveal the route of transmission. Brucella strains were isolated from vaginal swabs of farm animal, cow milk and from human blood cultures. Multiplex PCR was used to identify Brucella species, and owing to high DNA homology among Brucella isolates, multiple-locus variable-number tandem repeat analysis (MLVA) based on the number of tandem repeats at 16 different genomic loci was used for strain identification. Multiplex PCR categorized the isolates into B. abortus (n = 7), B. melitensis (n = 37), B. suis (n = 3), and 5 of unknown Brucella spp. MLVA-16 clustering analysis differentiated the strains into various genotypes, with Brucella isolates from the same geographic region being closely related, and revealed that the Thai isolates were phylogenetically distinct from those in other countries, including within the Southeast Asian region. Thus, MLVA-16 typing has utility in epidemiological studies.
NASA Astrophysics Data System (ADS)
Mattei, G.; Ahluwalia, A.
2018-04-01
We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.
Specific identification of Bacillus anthracis strains
NASA Astrophysics Data System (ADS)
Krishnamurthy, Thaiya; Deshpande, Samir; Hewel, Johannes; Liu, Hongbin; Wick, Charles H.; Yates, John R., III
2007-01-01
Accurate identification of human pathogens is the initial vital step in treating the civilian terrorism victims and military personnel afflicted in biological threat situations. We have applied a powerful multi-dimensional protein identification technology (MudPIT) along with newly generated software termed Profiler to identify the sequences of specific proteins observed for few strains of Bacillus anthracis, a human pathogen. Software termed Profiler was created to initially screen the MudPIT data of B. anthracis strains and establish the observed proteins specific for its strains. A database was also generated using Profiler containing marker proteins of B. anthracis and its strains, which in turn could be used for detecting the organism and its corresponding strains in samples. Analysis of the unknowns by our methodology, combining MudPIT and Profiler, led to the accurate identification of the anthracis strains present in samples. Thus, a new approach for the identification of B. anthracis strains in unknown samples, based on the molecular mass and sequences of marker proteins, has been ascertained.
Whiteduck-Léveillée, Kerri; Whiteduck-Léveillée, Jenni; Cloutier, Michel; Tambong, James T; Xu, Renlin; Topp, Edward; Arts, Michael T; Chao, Jerry; Adam, Zaky; Lévesque, C André; Lapen, David R; Villemur, Richard; Khan, Izhar U H
2016-03-01
A study on the taxonomic classification of Arcobacter species was performed on the cultures isolated from various fecal sources where an Arcobacter strain AF1078(T) from human waste septic tank near Ottawa, Ontario, Canada was characterized using a polyphasic approach. Genetic investigations including 16S rRNA, atpA, cpn60, gyrA, gyrB and rpoB gene sequences of strain AF1078(T) are unique in comparison with other arcobacters. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is most closely related to Arcobacter lanthieri and Arcobacter cibarius. Analyses of atpA, cpn60, gyrA, gyrB and rpoB gene sequences suggested that strain AF1078(T) formed a phylogenetic lineage independent of other species in the genus. Whole-genome sequence, DNA-DNA hybridization, fatty acid profile and phenotypic analysis further supported the conclusion that strain AF1078(T) represents a novel Arcobacter species, for which the name Arcobacter faecis sp. nov. is proposed, with type strain AF1078(T) (=LMG 28519(T); CCUG 66484(T)). Crown Copyright © 2015. Published by Elsevier GmbH. All rights reserved.
Psikal, I; Smíd, B; Rodák, L; Valícek, L; Bendová, J
2003-08-01
Atypical form of myxomatosis, which caused non-lethal and clinically mild disease in domestic rabbits 1 month after immunization with a commercially available vaccine MXT, is described. The isolated myxoma virus designated as Litovel 2 (Li-2) did not induce systemic disease following subcutaneous and intradermal applications in susceptible experimental rabbits but led to the immune response demonstrated by ELISA. No severe disease was induced in those Li-2 inoculated rabbits by challenge with the virulent strains Lausanne (Lu) or Sanar (SA), while the control animals showed nodular form of myxomatosis with lethal course of the illness. Restriction fragment length polymorphism (RFLP) of genomic DNA with KpnI and BamHI endonucleases was used for genetic characterization of the Li-2 isolate, the vaccine strain MXT and both virulent strains Lu and SA, respectively. In general, RFLP analysis has shown to be informative for inferring genetic relatedness between myxoma viruses. Based on restriction endonuclease DNA fragment size distribution, it was evident that the pathogenic strain SA is genetically related to the reference strain Lu and the isolate Li-2 is more related, but not identical, to the vaccination strain MXT.
Zhao, Junwei; Shi, Linlin; Li, Wenchao; Wang, Jiabin; Wang, Han; Tian, Yuanyuan; Xiang, Wensheng; Wang, Xiangjing
2018-02-01
Two novel actinomycete isolates, designated strains NEAU-A4 T and NEAU-A3, were isolated from rhizosphere soil of wheat (Triticumaestivum L.) and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics of the two strains coincided with those of the genus Streptomyces. The 16S rRNA gene sequence analysis showed that the two isolates exhibited 99.6 % 16S rRNA gene sequence similarity with each other and that they were most closely related to Streptomyces violaceorectus DSM 40279 T (98.8, 99.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains clustered together and formed a separate subclade. Furthermore, a combination of DNA-DNA hybridization results and some physiological and biochemical properties demonstrated that the two strains could be distinguished from its closest relative. Therefore, it is proposed that strains NEAU-A4 T and NEAU-A3 should be classified as representatives of a novel species of the genus Streptomyces, for which the name Streptomycestritici sp. nov. is proposed. The type strain is NEAU-A4 T (=CGMCC 4.7393 T =DSM 104540 T ).
Genetic Separation of Listeria monocytogenes Causing Central Nervous System Infections in Animals
Aguilar-Bultet, Lisandra; Nicholson, Pamela; Rychener, Lorenz; Dreyer, Margaux; Gözel, Bulent; Origgi, Francesco C.; Oevermann, Anna; Frey, Joachim; Falquet, Laurent
2018-01-01
Listeria monocytogenes is a foodborne pathogen that causes abortion, septicemia, gastroenteritis and central nervous system (CNS) infections in ruminants and humans. L. monocytogenes strains mainly belong to two distinct phylogenetic groups, named lineages I and II. In general, clinical cases in humans and animals, in particular CNS infections, are caused by lineage I strains, while most of the environmental and food strains belong to lineage II. Little is known about why lineage I is more virulent than lineage II, even though various molecular factors and mechanisms associated with pathogenesis are known. In this study, we have used a variety of whole genome sequence analyses and comparative genomic tools in order to find characteristics that distinguish lineage I from lineage II strains and CNS infection strains from non-CNS strains. We analyzed 225 strains and identified single nucleotide variants between lineages I and II, as well as differences in the gene content. Using a novel approach based on Reads Per Kilobase per Million Mapped (RPKM), we identified 167 genes predominantly absent in lineage II but present in lineage I. These genes are mostly encoding for membrane-associated proteins. Additionally, we found 77 genes that are largely absent in the non-CNS associated strains, while 39 genes are especially lacking in our defined “non-clinical” group. Based on the RPKM analysis and the metadata linked to the L. monocytogenes strains, we identified 6 genes potentially associated with CNS cases, which include a transcriptional regulator, an ABC transporter and a non-coding RNA. Although there is not a clear separation between pathogenic and non-pathogenic strains based on phylogenetic lineages, the presence of the genes identified in our study reveals potential pathogenesis traits in ruminant L. monocytogenes strains. Ultimately, the differences that we have found in our study will help steer future studies in understanding the virulence mechanisms of the most pathogenic L. monocytogenes strains. PMID:29459888
Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F
2015-02-01
Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing protocol, resulting in a SNP profile matching the profile for the strain BB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Oenococcus oeni in Chilean Red Wines: Technological and Genomic Characterization
Romero, Jaime; Ilabaca, Carolina; Ruiz, Mauricio; Jara, Carla
2018-01-01
The presence and load of species of LAB at the end of the malolactic fermentation (MLF) were investigated in 16 wineries from the different Chilean valleys (Limarí, Casablanca, Maipo, Rapel, and Maule Valleys) during 2012 and 2013, using PCR-RFLP and qPCR. Oenococcus oeni was observed in 80% of the samples collected. Dominance of O. oeni was reflected in the bacterial load (O. oeni/total bacteria) measured by qPCR, corresponding to >85% in most of the samples. A total of 178 LAB isolates were identified after sequencing molecular markers, 95 of them corresponded to O. oeni. Further genetic analyses were performed using MLST (7 genes) including 10 commercial strains; the results indicated that commercial strains were grouped together, while autochthonous strains distributed among different genetic clusters. To pre-select some autochthonous O. oeni, these isolates were also characterized based on technological tests such as ethanol tolerance (12 and 15%), SO2 resistance (0 and 80 mg l−1), and pH (3.1 and 3.6) and malic acid transformation (1.5 and 4 g l−1). For comparison purposes, commercial strain VP41 was also tested. Based on their technological performance, only 3 isolates were selected for further examination (genome analysis) and they were able to reduce malic acid concentration, to grow at low pH 3.1, 15% ethanol and 80 mg l−1 SO2. The genome analyses of three selected isolates were examined and compared to PSU-1 and VP41 strains to study their potential contribution to the organoleptic properties of the final product. The presence and homology of genes potentially related to aromatic profile were compared among those strains. The results indicated high conservation of malolactic enzyme (>99%) and the absence of some genes related to odor such as phenolic acid decarboxylase, in autochthonous strains. Genomic analysis also revealed that these strains shared 470 genes with VP41 and PSU-1 and that autochthonous strains harbor an interesting number of unique genes (>21). Altogether these results reveal the presence of local strains distinguishable from commercial strains at the genetic/genomic level and also having genomic traits that enforce their potential use as starter cultures. PMID:29491847
Yokoyama, Eiji; Uchimura, Masako
2007-11-01
Ninety-five enterohemorrhagic Escherichia coli serovar O157 strains, including 30 strains isolated from 13 intrafamily outbreaks and 14 strains isolated from 3 mass outbreaks, were studied by pulsed-field gel electrophoresis (PFGE) and variable number of tandem repeats (VNTR) typing, and the resulting data were subjected to cluster analysis. Cluster analysis of the VNTR typing data revealed that 57 (60.0%) of 95 strains, including all epidemiologically linked strains, formed clusters with at least 95% similarity. Cluster analysis of the PFGE patterns revealed that 67 (70.5%) of 95 strains, including all but 1 of the epidemiologically linked strains, formed clusters with 90% similarity. The number of epidemiologically unlinked strains forming clusters was significantly less by VNTR cluster analysis than by PFGE cluster analysis. The congruence value between PFGE and VNTR cluster analysis was low and did not show an obvious correlation. With two-step cluster analysis, the number of clustered epidemiologically unlinked strains by PFGE cluster analysis that were divided by subsequent VNTR cluster analysis was significantly higher than the number by VNTR cluster analysis that were divided by subsequent PFGE cluster analysis. These results indicate that VNTR cluster analysis is more efficient than PFGE cluster analysis as an epidemiological tool to trace the transmission of enterohemorrhagic E. coli O157.
Characterization of P fimbriae on O1, O7, O75, rough, and nontypable strains of Escherichia coli.
Pere, A; Selander, R K; Korhonen, T K
1988-01-01
P fimbriae of 37 uropathogenic Escherichia coli O1:K1, O7:K1, O22, O75, rough:K1, and nontypable strains were characterized by immunoprecipitation with 14 fimbria-specific rabbit antisera. The fimbrial composition of these strains, as reflected by the apparent molecular weights of the fimbrial peptides, was correlated with the O serogroup of the strains, but serological cross-reactivity of P fimbriae of different E. coli serogroups was frequently observed. The genetic clonal relationships of the strains were analyzed by determining the electrophoretic types, based on 18 chromosomally encoded enzymes. Among the O1:K1 strains, the same P-fimbrial variants occurred on strains that were either closely related or very distinct in their electrophoretic types, indicating that the P fimbriae have evolved in association with the O and K antigens. In contrast, certain O7:K1 and R:K1 strains as well as some O22 and O75 strains were genotypically identical and shared similar P-fimbrial variants, which differed serologically from those of other E. coli serogroups. Our results show that, despite the structural variability seen in electrophoretic analysis of P fimbriae of different serogroups, many P-fimbrial variants share common antigenic determinants that are recognized by rabbit antisera. Based on immunoprecipitation analyses, three anti-P-fimbria sera have now been identified that react with P fimbriae of 82 of 84 uropathogenic E. coli strains characterized in Finland. Images PMID:2895742
Ouwerkerk, Janneke P; Aalvink, Steven; Belzer, Clara; de Vos, Willem M
2016-11-01
A Gram-stain-negative, non-motile, strictly anaerobic, oval-shaped, non-spore-forming bacterium (strain PytT) was isolated from reticulated python faeces. Strain PytT was capable of using mucin as sole carbon, energy and nitrogen source. Cells could grow singly, in pairs, and were also found to aggregate. Scanning electron microscopy revealed the presence of filamentous structures connecting individual bacterial cells. Strain PytT could grow on a limited number of single sugars, including N-acetylglucosamine, N-acetylgalactosamine, glucose, lactose and galactose, but only when a plentiful protein source was provided. Phylogenetic analysis based on 16S rRNA gene sequencing showed strain PytT to belong to the Verrucomicrobiae class I, family Akkermansiaceae, genus Akkermansia, with Akkermansia muciniphila MucT as the closest relative (94.4 % sequence similarity). DNA-DNA hybridization revealed low relatedness of 28.3 % with A. muciniphila MucT. The G+C content of DNA from strain PytT was 58.2 mol%. The average nucleotide identity (ANI) of the genome of strain PytT compared to the genome of strain MucT was 79.7 %. Chemotaxonomic data supported the affiliation of strain PytT to the genus Akkermansia. Based on phenotypic, phylogenetic and genetic characteristics, strain PytT represents a novel species of the genus Akkermansia, for which the name Akkermansia glycaniphila sp. nov. is proposed. The type strain is PytT (=DSM 100705T=CIP 110913T).
Lacinutrix chionocetis sp. nov., isolated from gut of a red snow crab.
Kim, Hyangmi; Yoon, Sang-Chul; Choi, Kwang-Ho; Kim, Sung-Tae; Lee, Jae-Bong; Kim, Dong-Sun; Le Han, Ho; Bae, Kyung Sook; Park, Doo-Sang
2017-05-01
A Gram-negative, aerobic, non-motile, rod-shaped bacterial strain, designated MAB-07 T , was isolated from the gut of a red snow crab. The novel strain grew optimally at 20 °C, pH 7.0-8.0, and in the presence of 3% (w/v) NaCl. A phylogenetic analysis based on the 16S rRNA gene sequence indicated that the strain MAB-07 T belongs to the type strains of species of the genus Lacinutrix. Strain MAB-07 T exhibited 16S rRNA gene sequence similarity values of 95.5-97.8% with the type strains of species of the genus Lacinutrix. The predominant cellular fatty acids of strain MAB-07 T were iso-C 15:1 G (27.5%) and iso-C 15:0 (21.7%). The major respiratory quinine was identified as MK-6. The polar lipids consisted of phosphatidylethanolamine, four unidentified aminolipids, and two unidentified lipids. The genomic DNA G + C content was determined to be 33.3%, and its DNA-DNA relatedness values with the type strains of L. venerupis, L. mariniflava, L. jangbogonensis, L. algicola, and Olleya aquimaris were 28-32%. Based on the data from this polyphasic taxonomic study, strain MAB-07 T is considered to represent a novel species of the genus Lacinutrix, for which the name L. chionocetis sp. nov. is proposed. The type strain is MAB-07 T (=KCTC 42767 T = JCM 30988 T ).
Salvetti, Elisa; Orrù, Luigi; Capozzi, Vittorio; Martina, Alessia; Lamontanara, Antonella; Keller, David; Cash, Howard; Felis, Giovanna E; Cattivelli, Luigi; Torriani, Sandra; Spano, Giuseppe
2016-05-01
Probiotics are microorganisms that confer beneficial effects on the host; nevertheless, before being allowed for human consumption, their safety must be verified with accurate protocols. In the genomic era, such procedures should take into account the genomic-based approaches. This study aims at assessing the safety traits of Bacillus coagulans GBI-30, 6086 integrating the most updated genomics-based procedures and conventional phenotypic assays. Special attention was paid to putative virulence factors (VF), antibiotic resistance (AR) genes and genes encoding enzymes responsible for harmful metabolites (i.e. biogenic amines, BAs). This probiotic strain was phenotypically resistant to streptomycin and kanamycin, although the genome analysis suggested that the AR-related genes were not easily transferrable to other bacteria, and no other genes with potential safety risks, such as those related to VF or BA production, were retrieved. Furthermore, no unstable elements that could potentially lead to genomic rearrangements were detected. Moreover, a workflow is proposed to allow the proper taxonomic identification of a microbial strain and the accurate evaluation of risk-related gene traits, combining whole genome sequencing analysis with updated bioinformatics tools and standard phenotypic assays. The workflow presented can be generalized as a guideline for the safety investigation of novel probiotic strains to help stakeholders (from scientists to manufacturers and consumers) to meet regulatory requirements and avoid misleading information.
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Lagoudas, D. C.
2009-10-01
The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.
Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management
NASA Technical Reports Server (NTRS)
Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.
2016-01-01
A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.
Carrara, Silvia; Di Leo, Milena; Grizzi, Fabio; Correale, Loredana; Rahal, Daoud; Anderloni, Andrea; Auriemma, Francesco; Fugazza, Alessandro; Preatoni, Paoletta; Maselli, Roberta; Hassan, Cesare; Finati, Elena; Mangiavillano, Benedetto; Repici, Alessandro
2018-06-01
EUS elastography is useful in characterizing solid pancreatic lesions (SPLs), and fractal analysis-based technology has been used to evaluate geometric complexity in oncology. The aim of this study was to evaluate EUS elastography (strain ratio) and fractal analysis for the characterization of SPLs. Consecutive patients with SPLs were prospectively enrolled between December 2015 and February 2017. Elastographic evaluation included parenchymal strain ratio (pSR) and wall strain ratio (wSR) and was performed with a new compact US processor. Elastographic images were analyzed using a computer program to determine the 3-dimensional histogram fractal dimension. A composite cytology/histology/clinical reference standard was used to assess sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating curve. Overall, 102 SPLs from 100 patients were studied. At final diagnosis, 69 (68%) were malignant and 33 benign. At elastography, both pSR and wSR appeared to be significantly higher in malignant as compared with benign SPLs (pSR, 24.5 vs 6.4 [P < .001]; wSR, 56.6 vs 15.3 [P < .001]). When the best cut-off levels of pSR and wSR at 9.10 and 16.2, respectively, were used, sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating curve were 88.4%, 78.8%, 89.7%, 76.9%, and 86.7% and 91.3%, 69.7%, 86.5%, 80%, and 85.7%, respectively. Fractal analysis showed a significant statistical difference (P = .0087) between the mean surface fractal dimension of malignant lesions (D = 2.66 ± .01) versus neuroendocrine tumor (D = 2.73 ± .03) and a statistical difference for all 3 channels red, green, and blue (P < .0001). EUS elastography with pSR and fractal-based analysis are useful in characterizing SPLs. (Clinical trial registration number: NCT02855151.). Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Rademaker, Jan L. W.; Herbet, Hélène; Starrenburg, Marjo J. C.; Naser, Sabri M.; Gevers, Dirk; Kelly, William J.; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E. T.
2007-01-01
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene. PMID:17890345
Rademaker, Jan L W; Herbet, Hélène; Starrenburg, Marjo J C; Naser, Sabri M; Gevers, Dirk; Kelly, William J; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E T
2007-11-01
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.
Influence of solder joint length to the mechanical aspect during the thermal stress analysis
NASA Astrophysics Data System (ADS)
Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che
2017-09-01
Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.
Pancer, Katarzyna
2013-01-01
Many factors affect the risk of Legionella infection, such as the design, construction and maintenance of water distribution systems, the presence of individuals who may be exposed and their vulnerability to infection, and the degree of water system colonization and properties of Legionella strains. For epidemiological investigations, two properties of the Legionella strains are usually determined: serotyping and genotyping (sequence-based typing, SBT). In Poland, data regarding legionellosis are fragmentary, despite the fact that this has been a notifiable disease since 2002. The number of reported cases is very low; moreover, the main method of diagnosis is serological examination (delayed diagnosis and cheaper methods), and only single cases of LD were confirmed by culture of bacteria. Therefore, after 10 years of mandatory reporting of the Legionella spp. infection in Poland, the real epidemiological situation is still unknown; however, risk assessment should be carried out, especially in hospitals. In the presented study, comparison of the sequence types of 111 isolated L. pneumophila strains (from hospital water systems) with those present in the EWGLI SBT data was undertaken for complex risk analysis as a complementary element. In total, strains of L. pneumophila belonging to 12 out of 19 STs determined in the presented study were previously reported to the EWGLI SBT database (ST1, ST42, ST59, ST81, ST87, ST114, ST152, ST191, ST371, ST421, ST461, ST520). Among these strains, only 7 STs were previously reported in the amount of ≥10 (mainly ST1, ST42, ST81). Analysis of EWGLI data were carried out and, proportionally, the highest percentage of hospital-acquired strains (clinical and environmental) was found for ST 81, ST421 and ST152, but the largest number was for ST1. Based on the EWGLI data and the presented results, it was found that persistent colonization of HWS of 3 hospitals by strains belonging to ST42, ST1, ST87 indicated an increased risk of legionellosis, especially ST42.
Ramírez-Bahena, Martha Helena; Peix, Alvaro; Rivas, Raúl; Camacho, María; Rodríguez-Navarro, Dulce N; Mateos, Pedro F; Martínez-Molina, Eustoquio; Willems, Anne; Velázquez, Encarna
2009-08-01
Several strains isolated from the legume Pachyrhizus erosus were characterized on the basis of diverse genetic, phenotypic and symbiotic approaches. These novel strains formed two groups closely related to Bradyrhizobium elkanii according to their 16S rRNA gene sequences. Strains PAC48T and PAC68T, designated as the type strains of these two groups, presented 99.8 and 99.1% similarity, respectively, in their 16S rRNA gene sequences with respect to B. elkanii USDA 76T. In spite of these high similarity values, the analysis of additional phylogenetic markers such as atpD and glnII genes and the 16S-23S intergenic spacer (ITS) showed that strains PAC48T and PAC68T represented two separate novel species of the genus Bradyrhizobium with B. elkanii as their closest relative. Phenotypic differences among the novel strains isolated from Pachyrhizus and B. elkanii were found regarding the assimilation of carbon sources and antibiotic resistance. All these differences were congruent with DNA-DNA hybridization analysis which revealed 21% genetic relatedness between strains PAC48T and PAC68T and 46% and 25%, respectively, between these strains and B. elkanii LMG 6134T. The nodD and nifH genes of strains PAC48T and PAC68T were phylogenetically divergent from those of bradyrhizobia species that nodulate soybean. Soybean was not nodulated by the novel Pachyrhizus isolates. Based on the genotypic and phenotypic data obtained in this study, the new strains represent two novel species for which the names Bradyrhizobium pachyrhizi sp. nov. (type strain PAC48T=LMG 24246T=CECT 7396T) and Bradyrhizobium jicamae sp. nov. (type strain PAC68T=LMG 24556T=CECT 7395T) are proposed.
Castillo, Daniel; Pérez-Reytor, Diliana; Plaza, Nicolás; Ramírez-Araya, Sebastián; Blondel, Carlos J.; Corsini, Gino; Bastías, Roberto; Loyola, David E.; Jaña, Víctor; Pavez, Leonardo; García, Katherine
2018-01-01
Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. As reported in other countries, after the rise and fall of the pandemic strain in Chile, other post-pandemic strains have been associated with clinical cases, including strains lacking the major toxins TDH and TRH. Since the presence or absence of tdh and trh genes has been used for diagnostic purposes and as a proxy of the virulence of V. parahaemolyticus isolates, the understanding of virulence in V. parahaemolyticus strains lacking toxins is essential to detect these strains present in water and marine products to avoid possible food-borne infection. In this study, we characterized the genome of four environmental and two clinical non-toxigenic strains (tdh-, trh-, and T3SS2-). Using whole-genome sequencing, phylogenetic, and comparative genome analysis, we identified the core and pan-genome of V. parahaemolyticus of strains of southern Chile. The phylogenetic tree based on the core genome showed low genetic diversity but the analysis of the pan-genome revealed that all strains harbored genomic islands carrying diverse virulence and fitness factors or prophage-like elements that encode toxins like Zot and RTX. Interestingly, the three strains carrying Zot-like toxin have a different sequence, although the alignment showed some conserved areas with the zot sequence found in V. cholerae. In addition, we identified an unexpected diversity in the genetic architecture of the T3SS1 gene cluster and the presence of the T3SS2 gene cluster in a non-pandemic environmental strain. Our study sheds light on the diversity of V. parahaemolyticus strains from the southern Pacific which increases our current knowledge regarding the global diversity of this organism. PMID:29472910
Chandramuki, Akepati; Khanna, Neelam; Shashkina, Elena; Kurepina, Natalia; Mathema, Barun; Kreiswirth, Barry N; Venkataswamy, Manjunatha M
2017-01-01
Specific genotypes of Mycobacterium tuberculosis (MTB) have been reported to cause outbreaks of pulmonary tuberculosis (TB) in geographical areas that are endemic to TB. However, since there is little epidemiological evidence on the association of particular genotypes that cause tuberculous meningitis (TBM), we sought to investigate the association of specific MTB strains with infection of the central nervous system (CNS). We carried out a genetic characterisation of 89 MTB isolates from TBM patients at a Southern Indian tertiary neurocare centre and compared the genotypes with strains of pulmonary TB isolated from Indian immigrants in New York City. We applied the standard methods of genotyping of MTB, namely, IS6110-based restriction fragment length polymorphism and spoligotyping for strain identification, along with principal genetic grouping and single-nucleotide polymorphism cluster analysis. The analysis revealed a high-level of diversity amongst the strain population. The genotypes of the isolates from TBM patients paralleled the pulmonary TB strain population recovered from the Indian immigrants in NYC. We conclude that there is no apparent association between genotypes of MTB and propensity to infect CNS tissue.
NASA Astrophysics Data System (ADS)
Huan, Huiting; Mandelis, Andreas; Liu, Lixian
2018-04-01
Determining and keeping track of a material's mechanical performance is very important for safety in the aerospace industry. The mechanical strength of alloy materials is precisely quantified in terms of its stress-strain relation. It has been proven that frequency-domain photothermoacoustic (FD-PTA) techniques are effective methods for characterizing the stress-strain relation of metallic alloys. PTA methodologies include photothermal (PT) diffusion and laser thermoelastic photoacoustic ultrasound (PAUS) generation which must be separately discussed because the relevant frequency ranges and signal detection principles are widely different. In this paper, a detailed theoretical analysis of the connection between thermoelastic parameters and stress/strain tensor is presented with respect to FD-PTA nondestructive testing. Based on the theoretical model, a finite element method (FEM) was further implemented to simulate the PT and PAUS signals at very different frequency ranges as an important analysis tool of experimental data. The change in the stress-strain relation has an impact on both thermal and elastic properties, verified by FEM and results/signals from both PT and PAUS experiments.
Aeromicrobium ginsengisoli sp. nov., isolated from a ginseng field.
Kim, Myung Kyum; Park, Min-Ju; Im, Wan-Taek; Yang, Deok-Chun
2008-09-01
Strain Gsoil 098(T), a Gram-positive, non-spore-forming, non-motile coccus, was isolated from soil from a ginseng field in South Korea and characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Gsoil 098(T) belongs to the family Nocardioidaceae, and the highest degrees of sequence similarity were found with Aeromicrobium marinum T2(T) (99.0%), A. panaciterrae Gsoil 161(T) (98.9%), A. alkaliterrae KSL-107(T) (98.4%), A. fastidiosum KCTC 9576(T) (98.1%) and A. erythreum NRRL B-3381(T) (97.5%). Chemotaxonomic analysis revealed that strain Gsoil 098(T) possesses menaquinone MK-9(H(4)) and predominant fatty acids C(16 : 0), 10-methyl C(18:0) and C(18:0). DNA-DNA hybridization results and physiological and biochemical tests clearly demonstrated that strain Gsoil 098(T) represents a distinct species. Based on these data, Gsoil 098(T) (=KCTC 19207(T) =JCM 14732(T) =GBS 39(T)) should be classified as the type strain of a novel Aeromicrobium species, for which the name Aeromicrobium ginsengisoli sp. nov. is proposed.
Zhang, Yongguang; Liu, Qing; Wang, Hongfei; Zhang, Daofeng; Chen, Jiyue; Zhang, Yuanming; Li, Wenjun
2014-02-04
In order to analyze the biodiversity of cultivable facultative-alkaliphilic actinobacteria and the enzymes they produced. Total 10 soil samples were collected from saline-alkaline environments of Fukang, Xinjiang province. Facultative-alkaliphilic actinobacteria strains were isolated and identified by 16S rRNA gene sequence analysis. Enzymes including amylase, proteinase, xylanase, and cellulase were detected. Total 116 facultative-alkaliphilic actinobacterial strains and 4 alkali-tolerant actinobacterial strains were isolated from the samples, and those strains were distributed within 22 genera in 13 families and 8 orders of actinobacteria based on their 16S rRNA gene sequence analysis. The ratio of non-predominant Streptomyces and Nocardiopsis strains were 53.3%. The positive rates of amylase, proteinase, xylanase and cellulase were 35.8, 37.6, 28.3 and 17.5%, respectively. Diverse facultative-alkaliphilic actinobacteria were discovered from saline-alkaline environments of Fukang. Facultative-alkaliphilic actinobacteria are a potential source for enzymes. The study would facilitate the knowledge of the diversity of facultative-alkaliphilic actinobacteria, and provide the technical basis for exploration of facultative-alkaliphilic actinobacteria resources.
Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres
NASA Astrophysics Data System (ADS)
Zhang, Yin; Chen, Chen; Liang, C. Y.; Liu, Z. W.; Li, Y. S.; Che, Renchao
2015-10-01
Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed.Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed. Electronic supplementary information (ESI) available: Crystal structure pattern; calculated DOS diagram. See DOI: 10.1039/c5nr05528h
Mulet, Magdalena; Sánchez, David; Rodríguez, Ana C; Nogales, Balbina; Bosch, Rafael; Busquets, Antonio; Gomila, Margarita; Lalucat, Jorge; García-Valdés, Elena
2018-04-11
Strains V113 T , V92 and V120 have been isolated from sand samples taken at the Atlantic intertidal shore in Galicia, Spain, after the Prestige oil spill. A preliminary analysis of the 16S rRNA and the partial rpoD gene sequences indicated that these strains belonged to the Pseudomonas genus, but they were distinct from any known Pseudomonas species. They were extensively characterized by a polyphasic taxonomic approach and phylogenetic data that confirmed that these strains belonged to the Pseudomonas pertucinogena group. Phylogenetic analysis of 16S rRNA, gyrB and rpoD gene sequences showed that the three strains were 99% similar and were closely related to members of the P. pertucinogena group, with less than 94% similarity to strains of established species; Pseudomonas pachastrellae was the closest relative. The Average Nucleotide Index based on blast values was 89.0% between V113 T and the P. pachastrellae type strain, below the accepted species level (95%). The predominant cellular fatty acid contents and whole cell protein profiles determined by MALDI-TOF mass spectrometry also differentiated the studied strains from known Pseudomonas species. We therefore conclude that strains V113 T , V92 and V120 represent a novel species of Pseudomonas, for which the name Pseudomonas gallaeciensis is proposed; the type strain is V113 T (=CCUG 67583 T =LMG 29038 T ). Copyright © 2018 Elsevier GmbH. All rights reserved.
de Souza, Anderson Proust Gonçalves; Vicente, Maristela de Araújo; Klein, Raphael Contelli; Fietto, Luciano Gomes; Coutrim, Maurício Xavier; de Cássia Franco Afonso, Robson José; Araújo, Leandro Dias; da Silva, Paulo Henrique Alves; Bouillet, Leoneide Erica Maduro; Castro, Ieso Miranda; Brandão, Rogelio Lopes
2012-02-01
In this work, we have used classical genetics techniques to find improved starter strains to produce cachaça with superior sensorial quality. Our strategy included the selection of yeast strains resistant to 5,5',5″-trifluor-D: ,L: -leucine (TLF) and cerulenin, since these strains produce higher levels of higher alcohols and esters than parental strains. However, no clear relationship was observed when levels of flavoring compounds were compared with the levels expression of the genes (BAT1, BAT2, ATF2, EEB1 genes) involved with the biosynthesis of flavoring compounds. Furthermore, we determined the stability of phenotypes considered as the best indicators of the quality of the cachaça for a parental strain and its segregants. By applying the principal component analysis, a cluster of segregants, showing a high number of characteristics similar to the parental strain, was recognized. One segregant, that was resistant to TLF and cerulenin, also showed growth stability after six consecutive replications on plates containing high concentrations of sugar and ethanol. "Cachaça" produced at laboratory scale using a parental strain and this segregant showed a higher level of flavoring compounds. Both strains predominated in an open fermentative process through seven cycles, as was shown by mitochondrial restriction fragment length polymorphisms analysis. Based on the physical chemical composition of the obtained products, the results demonstrate the usefulness of the developed strategies for the selection of yeast strains to be used as starters in "cachaça" production.
Host Genetic and Environmental Effects on Mouse Cecum Microbiota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana A
2012-01-01
The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived frommore » a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.« less
Li, Pan; Lin, Weifeng; Liu, Xiong; Li, Sha; Luo, Lixin; Lin, Wei-Tie
2016-09-01
A Gram-stain-negative, rod-shaped, motile, endospore-forming, facultatively anaerobic bacterium, designated strain L14T, was isolated from the traditional acetic acid fermentation culture of Chinese cereal vinegars. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain L14T was affiliated to the genus Paenibacillus, most closely related to Paenibacillus motobuensis MC10T with 97.8 % similarity. Chemotaxonomic characterization supported the allocation of the strain to the genus Paenibacillus. The polar lipid profile of strain L14T contained the major compounds diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The predominant menaquinone was MK-7, and the major fatty acid components were anteiso-C15 : 0, iso-C15 : 0 and C16 : 0. The DNA G+C content of strain L14T was 49.9 mol%. The DNA-DNA relatedness value between strain L14T and P. motobuensis MC10T was 51.2 %. The results of physiological and biochemical tests allowed phenotypic differentiation of strain L14T from closely related species. On the basis of phenotypic and chemotaxonomic analyses, phylogenetic analysis and DNA-DNA relatedness values, strain L14T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus aceti sp. nov. is proposed. The type strain is L14T (=CGMCC 1.15420T=JCM 31170T).
Wang, Jianye; Ling, Jueyi; Wang, Zhixian; Huang, Yu; Zhu, Jianzhong; Zhu, Guoqiang
2017-11-09
Muscovy duck parvovirus (MDPV) and Goose parvovirus (GPV) are important etiological agents for Muscovy duck parvoviral disease and Derzsy's disease, respectively; both of which can cause substantial economic losses in waterfowl industry. In contrast to GPV, the complete genomic sequence data of MDPV isolates are still limited and their phylogenetic relationships largely remain unknown. In this study, the entire genome of a pathogenic MDPV strain ZW, which was isolated from a deceased Muscovy duckling in 2006 in China, was cloned, sequenced, and compared with that of other classical MDPV and GPV strains. The genome of strain ZW comprises of 5071 nucleotides; this genome was shorter than that of the pathogenic MDPV strain YY (5075 nt). All the four deleted nucleotides produced in strain ZW are located at the base-pairing positions in the palindromic stem of inverted terminal repeats (ITR) without influencing the formation of a hairpin structure. Recombination analysis revealed that strain ZW originated from genetic recombination between the classical MDPV and GPV strain. The YY strain of MDPV acts as the major parent, whereas the virulent strains YZ99-6 and B and the vaccine strain SYG61v of GPV act as the minor parents in varying degrees. Two recombination sites were detected in strain ZW, with the small recombination site surrounding the P9 promoter, and the large recombination site situated in the middle of the VP3 gene. The SYG61V strain is a vaccine strain used for preventing goose parvoviral disease. This strain was found to be solely involved in the recombination event detected in the P9 promoter region. Phylogenetic analyses between strain ZW and other classical strains of MDPV and GPV were performed. The results supported the in silico recombination analysis conclusion. MDPV Strain ZW is a novel recombinant parvovirus, and the bulk of its genome originates from the classical MDPV strain. Two virulent strains and a vaccine strain of GPV were involved in the recombination process in varying degrees.
Dashper, Stuart G; Mitchell, Helen L; Seers, Christine A; Gladman, Simon L; Seemann, Torsten; Bulach, Dieter M; Chandry, P Scott; Cross, Keith J; Cleal, Steven M; Reynolds, Eric C
2017-01-01
Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (Kgp cat I and Kgp cat II) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors.
NASA Astrophysics Data System (ADS)
Denisova, Yu. L.; Bazylev, N. B.; Rubnikovich, S. P.; Fomin, N. A.
2013-07-01
We have investigated the formation and dynamics of speckle biofi elds formed by hard biotissues of the oral cavity irradiated with low-intensity radiation. We present experimental methods for diagnosing the stressed-strained state of the maxillodental system and orthodontic and orthopedic structures based on speckle technologies and crosscorrelation analysis of speckle biofi elds.
Shear at Twin Domain Boundaries in YBa2Cu3O7-x
NASA Astrophysics Data System (ADS)
Caldwell, W. A.; Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Geballe, T. H.; Koster, G.; Batterman, B. W.; Patel, J. R.
2004-05-01
The microstructure and strain state of twin domains in YBa2Cu3O7-x are discussed based upon synchrotron white-beam x-ray microdiffraction measurements. Intensity variations of the fourfold twin splitting of Laue diffraction peaks are used to determine the twin domain structure. Strain analysis shows that interfaces between neighboring twin domains are strained in shear, whereas the interior of these domains are regions of low strain. These measurements are consistent with the orientation relationships of twin boundaries within and across domains and show that basal plane shear stresses can exceed 100MPa where twin domains meet. Our results support stress field pinning of magnetic flux vortices by twin domain boundaries.
Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL
NASA Astrophysics Data System (ADS)
Sapra, Gaurav; Sharma, Preetika
2017-07-01
The design and performance of piezoresistive MEMS-based MWCNT/epoxy composite strain sensor using COMSOL Multiphysics Toolbox has been investigated. The proposed sensor design comprises su-8 based U-shaped cantilever beam with MWCNT/epoxy composite film as an active sensing element. A point load in microscale has been applied at the tip of the cantilever beam to observe its deflection in the proposed design. Analytical simulations have been performed to optimize various design parameters of the proposed sensor, which will be helpful at the time of fabrication.
Bastardo, A; Bohle, H; Ravelo, C; Toranzo, A E; Romalde, J L
2011-02-22
We investigated 11 strains of Yersinia ruckeri, the causative agent of enteric redmouth disease (ERM), that had been isolated from Atlantic salmon Salmo salar L. farmed in Chile and previously vaccinated against ERM. Phylogenetic analysis of the 16S rRNA gene sequences confirmed the identification of the salmon isolates as Y. ruckeri. A comparative analysis of the biochemical characteristics was made by means of traditional and commercial miniaturised methods. All studied isolates were motile and Tween 80 positive, and were identified as biotype 1. In addition, drug susceptibility tests determined high sensitivity to sulphamethoxazole/trimethroprim, oxytetracycline, ampicillin and enrofloxacin in all isolates. Serological assays showed the presence of O1a, O1b and O2b serotypes, with a predominance of the O1b serotype in 9 strains. Analysis of the lipopolysaccharide profiles and the correspondent immunoblot confirmed these results. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of the outer membrane proteins revealed that all Chilean strains had profiles with a molecular weight range between 34 and 55 kDa, with 3 distinct groups based on differences in the major bands. Genotyping analyses by enterobacterial repetitive intergenic consensus (ERIC-) and repetitive extragenic palindromic (REP-)PCR techniques clearly indicated intraspecific genetic diversity among Chilean Y. ruckeri strains.
Long-term prediction of creep strains of mineral wool slabs under constant compressive stress
NASA Astrophysics Data System (ADS)
Gnip, Ivan; Vaitkus, Saulius; Keršulis, Vladislovas; Vėjelis, Sigitas
2012-02-01
The results obtained in determining the creep strain of mineral wool slabs under compressive stress, used for insulating flat roofs and facades, cast-in-place floors, curtain and external basement walls, as well as for sound insulation of floors, are presented. The creep strain tests were conducted under a compressive stress of σ c =0.35 σ 10%. Interval forecasting of creep strain was made by extrapolating the creep behaviour and approximated in accordance with EN 1606 by a power equation and reduced to a linear form using logarithms. This was performed for a lead time of 10 years. The extension of the range of the confidence interval due to discount of the prediction data, i.e. a decrease in their informativity was allowed for by an additional coefficient. Analysis of the experimental data obtained from the tests having 65 and 122 days duration showed that the prediction of creep strains for 10 years can be made based on data obtained in experiments with durations shorter than the 122 days as specified by EN 13162. Interval prediction of creep strains (with a confidence probability of 90%) was based on using the mean square deviation of the actual direct observations of creep strains in logarithmic form to have the linear trend in a retrospective area.
Sulaiman, Irshad M.; Tang, Kevin; Osborne, John; Sammons, Scott; Wohlhueter, Robert M.
2007-01-01
We developed a set of seven resequencing GeneChips, based on the complete genome sequences of 24 strains of smallpox virus (variola virus), for rapid characterization of this human-pathogenic virus. Each GeneChip was designed to analyze a divergent segment of approximately 30,000 bases of the smallpox virus genome. This study includes the hybridization results of 14 smallpox virus strains. Of the 14 smallpox virus strains hybridized, only 7 had sequence information included in the design of the smallpox virus resequencing GeneChips; similar information for the remaining strains was not tiled as a reference in these GeneChips. By use of variola virus-specific primers and long-range PCR, 22 overlapping amplicons were amplified to cover nearly the complete genome and hybridized with the smallpox virus resequencing GeneChip set. These GeneChips were successful in generating nucleotide sequences for all 14 of the smallpox virus strains hybridized. Analysis of the data indicated that the GeneChip resequencing by hybridization was fast and reproducible and that the smallpox virus resequencing GeneChips could differentiate the 14 smallpox virus strains characterized. This study also suggests that high-density resequencing GeneChips have potential biodefense applications and may be used as an alternate tool for rapid identification of smallpox virus in the future. PMID:17182757
Masand, Meeta; Sivakala, Kunjukrishnan Kamalakshi; Menghani, Ekta; Thinesh, Thangathurai; Anandham, Rangasamy; Sharma, Gaurav; Sivakumar, Natesan; Jebakumar, Solomon R. D.; Jose, Polpass Arul
2018-01-01
Acquisition of Actinobacteria, especially Streptomyces from previously underexplored habitats and the exploration of their biosynthetic potential have gained much attention in the rejuvenated antibiotics search programs. Herein, we isolated some Streptomyces strains, from an arid region of the Great Indian Thar Desert, which possess an ability to produce novel bioactive compounds. Twenty-one morphologically distinctive strains differing in their aerial and substrate mycelium were isolated by employing a stamping method. Among them, 12 strains were identified by a two-level antimicrobial screening method, exerting antimicrobial effects against a panel of indicator strains including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus species. Based on their potent antimicrobial activity, four isolates were further explored by 16S rRNA gene-based identification, genetic screening, and metabolomic analysis; and it was found that these strains belong to the genus Streptomyces. The selected strains were found to have polyketide synthase and non-ribosomal peptide synthetase systems. In addition, extracellular metabolomic screening revealed that the isolates produced analogs of doxorubicinol, pyrromycin, erythromycin, and 6-13 other putative novel metabolites. These results demonstrate the significance of Streptomyces inhabiting the arid region of Thar Desert, suggesting that similar arid environments can be considered as the reservoirs of novel Streptomyces strains that could have biotechnological significance. PMID:29720968
Stephen, Kate E; Homrighausen, Darren; DePalma, Glen; Nakatsu, Cindy H; Irudayaraj, Joseph
2012-09-21
Surface enhanced Raman spectroscopy (SERS) is a rapid and highly sensitive spectroscopic technique that has the potential to measure chemical changes in bacterial cell surface in response to environmental changes. The objective of this study was to determine whether SERS had sufficient resolution to differentiate closely related bacteria within a genus grown on solid and liquid medium, and a single Arthrobacter strain grown in multiple chromate concentrations. Fourteen closely related Arthrobacter strains, based on their 16S rRNA gene sequences, were used in this study. After performing principal component analysis in conjunction with Linear Discriminant Analysis, we used a novel, adapted cross-validation method, which more faithfully models the classification of spectra. All fourteen strains could be classified with up to 97% accuracy. The hierarchical trees comparing SERS spectra from the liquid and solid media datasets were different. Additionally, hierarchical trees created from the Raman data were different from those obtained using 16S rRNA gene sequences (a phylogenetic measure). A single bacterial strain grown on solid media culture with three different chromate levels also showed significant spectral distinction at discrete points identified by the new Elastic Net regularized regression method demonstrating the ability of SERS to detect environmentally induced changes in cell surface composition. This study demonstrates that SERS is effective in distinguishing between a large number of very closely related Arthrobacter strains and could be a valuable tool for rapid monitoring and characterization of phenotypic variations in a single population in response to environmental conditions.
Carro, Lorena; Spröer, Cathrin; Alonso, Pilar; Trujillo, Martha E
2012-03-01
It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species. Copyright © 2011 Elsevier GmbH. All rights reserved.
Role strain among male RNs in the critical care setting: Perceptions of an unfriendly workplace.
Carte, Nicholas S; Williams, Collette
2017-12-01
Traditionally, nursing has been a female-dominated profession. Men employed as registered nurses have been in the minority and little is known about the experiences of this demographic. The purpose of this descriptive, quantitative study was to understand the relationship between the variables of demographics and causes of role strain among male nurses in critical care settings. The Sherrod Role Strain Scale assesses role strain within the context of role conflict, role overload, role ambiguity and role incongruity. Data analysis of the results included descriptive and inferential statistics. Inferential statistics involved the use of repeated measures ANOVA testing for significant difference in the causes of role strain between male nurses employed in critical care settings and a post hoc comparison of specific demographic data using multivariate analyses of variance (MANOVAs). Data from 37 male nurses in critical care settings from the northeast of the United States were used to calculate descriptive statistics standard deviation, mean of the data analysis and results of the repeated ANOVA and the post hoc secondary MANOVA analysis. The descriptive data showed that all participants worked full-time. There was an even split from those participants who worked day shift (46%) vs. night shift (43%), most the participants indicated they had 15 years or more experience as an registered nurse (54%). Significant findings of this study include two causes of role strain in male nurses employed in critical care settings which are: role ambiguity and role overload based on ethnicity. Consistent with previous research findings, the results of this study suggest that male registered nurses employed in critical care settings do experience role strain. The two main causes of role strain in male nurses are role ambiguity and role overload. Copyright © 2017. Published by Elsevier Ltd.
Quaglino, Fabio; Kube, Michael; Jawhari, Maan; Abou-Jawdah, Yusuf; Siewert, Christin; Choueiri, Elia; Sobh, Hana; Casati, Paola; Tedeschi, Rosemarie; Lova, Marina Molino; Alma, Alberto; Bianco, Piero Attilio
2015-07-30
Almond witches'-broom (AlmWB), a devastating disease of almond, peach and nectarine in Lebanon, is associated with 'Candidatus Phytoplasma phoenicium'. In the present study, we generated a draft genome sequence of 'Ca. P. phoenicium' strain SA213, representative of phytoplasma strain populations from different host plants, and determined the genetic diversity among phytoplasma strain populations by phylogenetic analyses of 16S rRNA, groEL, tufB and inmp gene sequences. Sequence-based typing and phylogenetic analysis of the gene inmp, coding an integral membrane protein, distinguished AlmWB-associated phytoplasma strains originating from diverse host plants, whereas their 16S rRNA, tufB and groEL genes shared 100 % sequence identity. Moreover, dN/dS analysis indicated positive selection acting on inmp gene. Additionally, the analysis of 'Ca. P. phoenicium' draft genome revealed the presence of integral membrane proteins and effector-like proteins and potential candidates for interaction with hosts. One of the integral membrane proteins was predicted as BI-1, an inhibitor of apoptosis-promoting Bax factor. Bioinformatics analyses revealed the presence of putative BI-1 in draft and complete genomes of other 'Ca. Phytoplasma' species. The genetic diversity within 'Ca. P. phoenicium' strain populations in Lebanon suggested that AlmWB disease could be associated with phytoplasma strains derived from the adaptation of an original strain to diverse hosts. Moreover, the identification of a putative inhibitor of apoptosis-promoting Bax factor (BI-1) in 'Ca. P. phoenicium' draft genome and within genomes of other 'Ca. Phytoplasma' species suggested its potential role as a phytoplasma fitness-increasing factor by modification of the host-defense response.
Forgetta, Vincenzo; Oughton, Matthew T.; Marquis, Pascale; Brukner, Ivan; Blanchette, Ruth; Haub, Kevin; Magrini, Vince; Mardis, Elaine R.; Gerding, Dale N.; Loo, Vivian G.; Miller, Mark A.; Mulvey, Michael R.; Rupnik, Maja; Dascal, Andre; Dewar, Ken
2011-01-01
Clostridium difficile is a common cause of infectious diarrhea in hospitalized patients. A severe and increased incidence of C. difficile infection (CDI) is associated predominantly with the NAP1 strain; however, the existence of other severe-disease-associated (SDA) strains and the extensive genetic diversity across C. difficile complicate reliable detection and diagnosis. Comparative genome analysis of 14 sequenced genomes, including those of a subset of NAP1 isolates, allowed the assessment of genetic diversity within and between strain types to identify DNA markers that are associated with severe disease. Comparative genome analysis of 14 isolates, including five publicly available strains, revealed that C. difficile has a core genome of 3.4 Mb, comprising ∼3,000 genes. Analysis of the core genome identified candidate DNA markers that were subsequently evaluated using a multistrain panel of 177 isolates, representing more than 50 pulsovars and 8 toxinotypes. A subset of 117 isolates from the panel had associated patient data that allowed assessment of an association between the DNA markers and severe CDI. We identified 20 candidate DNA markers for species-wide detection and 10,683 single nucleotide polymorphisms (SNPs) associated with the predominant SDA strain (NAP1). A species-wide detection candidate marker, the sspA gene, was found to be the same across 177 sequenced isolates and lacked significant similarity to those of other species. Candidate SNPs in genes CD1269 and CD1265 were found to associate more closely with disease severity than currently used diagnostic markers, as they were also present in the toxin A-negative and B-positive (A-B+) strain types. The genetic markers identified illustrate the potential of comparative genomics for the discovery of diagnostic DNA-based targets that are species specific or associated with multiple SDA strains. PMID:21508155
Strain Analysis of Stretched Tourmaline Crystals Using ImageJ, Microsoft Excel and PowerPoint
NASA Astrophysics Data System (ADS)
Bosbyshell, H.
2012-12-01
This poster describes an undergraduate structural geology lab exercise utilizing the Mohr's circle diagram for finite strain, constructed using measurements obtained from stretched tourmaline crystals. A small building housing HVAC equipment at the south end of West Chester University's Recitation Hall (itself made of serpentinite) is constructed of early-Cambrian Chickies Quartzite. Stretched tourmaline crystals, with segments joined by fibrous quartz, are visible on many surfaces (presumably originally bedding). While the original orientation of any stone is unknown, these rocks provide an opportunity for a short field exercise during a two-hour lab period and a great base for conducting strain analysis. It is always fun to ask how many in the class have ever noticed the tourmaline (few have). Students take photos using their cell phones or cameras. Since strain is a ratio the absolute size of the tourmaline crystals is immaterial. Nonetheless, this is a good opportunity to remind students of the importance of including a scale in their photographs. The photos are opened in ImageJ and the line tool is used to determine the original and final lengths of selected crystals. Students calculate strain parameters using Microsoft Excel. Then, we use Adobe Illustrator or the drafting capabilities of Microsoft PowerPoint 2010 to follow Ramsay and Huber's techniques using a Mohr's circle construction to determine the finite strain ellipse. If a stretching direction can be estimated, elongation of two crystals is all that is required to determine the strain ratio. If no stretching direction is apparent, three crystals are required for a more complicated analysis that allows for determination of the stretching direction, as well as the strain ratio.
Dutta, Debasree; Gachhui, Ratan
2007-02-01
A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as L-alanine, L-cysteine and L-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2-27.77 % DNA-DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).
Providencia thailandensis sp. nov., isolated from seafood processing wastewater.
Khunthongpan, Suwannee; Sumpavapol, Punnanee; Tanasupawat, Somboon; Benjakul, Soottawat; H-Kittikun, Aran
2013-01-01
The bacterial strain C1112(T) was isolated from seafood processing wastewater collected from a treatment pond of the seafood factory in Songkhla Province, Thailand. Phylogenetic analysis based on concatenated sequences from the 16S rRNA gene and five housekeeping genes, fusA, lepA, leuS, gyrB and ileS respectively showed that the strain C1112(T) belonged to the genus Providencia, and share 91.75% similarity with P. stuartii DSM 4539(T). DNA-DNA hybridization between the strain C1112(T) and P. stuartii KCTC 2568(T) was 48.1% relatedness. Moreover, some results from biochemical properties indicated that the strain C1112(T) was distinguished from the phylogenetically closest relatives. The major fatty acids of the strain C1112(T) were C16:0, iso-C15:0, C14:0 and C17:0 cyclo and the DNA G+C content was 41 mol%. Based on the genotypic and phenotypic considerations, it should be classified as a novel species of the genus Providencia for which the name Providencia thailandensis sp. nov. is proposed. The type strain is C1112(T) (= KCTC 23281(T) =NBRC 106720(T)).
Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C B; Lakshmipriya, Thangavel; Tang, Thean-Hock
2015-01-01
Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.
Cryptococcus cyanovorans sp. nov., a basidiomycetous yeast isolated from cyanide-contaminated soil.
Motaung, Thabiso E; Albertyn, Jacobus; Kock, Johan L F; Pohl, Carolina H
2012-05-01
Eighteen yeast strains were isolated and identified from cyanide-contaminated soil in South Africa. According to sequence-based analyses using the D1/D2 region of the large ribosomal subunit and ITS region, three of these strains were found to be identical and represent a novel species. Phylogenetic analysis based on the combined dataset of the D1/D2 and ITS regions revealed a grouping with Cryptococcus curvatus, representing a defined clade (Curvatus) in the order Trichosporonales. The three strains were demarcated from Cryptococcus curvatus by standard physiological tests such as assimilation of lactose, xylitol, 5-keto-D-gluconate, succinate and citrate as well as growth on media containing 10 % (w/v) NaCl and 5 % (w/v) glucose. In addition, it was established that these strains could utilize up to 10 mM NaCN as sole carbon source on solid media and as sole nitrogen source in liquid media. On the basis of these findings, it is suggested that the three strains represent a novel species for which the name Cryptococcus cyanovorans sp. nov. is given (type strain CBS 11948(T) = NRRL Y-48730(T)).
Zhou, X W; Su, K Q; Zhang, Y M
2015-02-02
Ganoderma mushroom is one of the most prescribed traditional medicines and has been used for centuries, particularly in China, Japan, Korea, and other Asian countries. In this study, different strains of Ganoderma spp and the genetic relationships of the closely related strains were identified and investigated based on the V4-V6 region of mitochondrial small subunit ribosomal DNA of the Ganoderma species. The sizes of the mitochondrial ribosomal DNA regions from different Ganoderma species showed 2 types of sequences, 2.0 or 0.5 kb. A phylogenetic tree was constructed, which revealed a high level of genetic diversity in Ganoderma species. Ganoderma lucidum G05 and G. eupense G09 strains were clustered into a G. resinaceum group. Ganoderma spp G29 and G22 strains were clustered into a G. lucidum group. However, Ganoderma spp G19, G20, and G21 strains were clustered into a single group, the G. lucidum AF214475, G. sinense, G. strum G17, G. strum G36, and G. sinense G10 strains contained an intron and were clustered into other groups.
Nakano, Miyo; Miyazawa, Hirofumi; Kawano, Yasushi; Kawagishi, Mika; Torii, Keizo; Hasegawa, Tadao; Iinuma, Yoshitsugu; Ohta, Michio
2002-01-01
Neonatal toxic shock syndrome-like exanthematous disease (NTED) is a new entity of methicillin-resistant Staphylococcus aureus (MRSA) infection. Most of NTED cases reported previously in the literature were sporadic ones. In the present report, we describe an outbreak of NTED that occurred in a neonatal intensive care unit (NICU) between April, 1999 and April, 2000 in Japan. All MRSA strains isolated from 14 patients (6 NTED, 2 infections and 6 colonizations) in this outbreak belonged to the group of coagulase II and produced toxic shock syndrome toxin 1 (TSST-1). Of these, 14 strains produced staphylococcal enterotoxin C (SEC). No other superantigenic toxins were produced by these strains. The pulsed field gel electrophoresis (PFGE) patterns of genomic DNA digested with SmaI were indistinguishable each other due to no band shifting in all of the 13 strains except for strain O-21 and M56. Strain M56 was different from the dominant type in the positions of only 2 bands, whereas the pattern of strain O-21 had no similarity with the other pattern, suggesting that this outbreak was associated with the spread of a unique MRSA strain in the NICU. Two-dimensional electrophoresis (2-DE) analysis of exoproteins revealed that the patterns of these 14 strains were very indistinguishable to each other, and that these strains produced very large amounts of TSST-1 and SEC3 subtype superantigens, as measured with computer-assisted image analysis of the intensity of 2-DE spots. The 2-DE gel of O-21 showed the different pattern from the others. These results as well as the profiles of toxin production also supported the conclusion drawn from PFGE analysis. Based on these results, the involvement of TSST-1 and SEC3 in the pathogenesis of NTED is discussed.
Tambong, James T; Xu, Renlin; Bromfield, Eden S P
2017-04-01
The bacterial strain 2-92T, isolated from a field plot under long-term (>40 years) mineral fertilization, exhibited in vitro antagonistic properties against fungal pathogens. A polyphasic approach was undertaken to verify its taxonomic status. Strain 2-92T was Gram-reaction-negative, aerobic, non-spore-forming, motile by one or more flagella, and oxidase-, catalase- and urease-positive. The optimal growth temperature of strain 2-92T was 30 °C. 16S rRNA gene sequence analysis demonstrated that the strain is related to species of the genus Pseudomonas. Phylogenetic analysis of six housekeeping genes (dnaA, gyrB, recA, recF, rpoB and rpoD) revealed that strain 2-92T clustered as a distinct and well separated lineage with Pseudomonassimiae as the most closely related species. Polar lipid and fatty acid compositions corroborated the taxonomic position of strain 2-92T in the genus Pseudomonas. Phenotypic characteristics from carbon utilization tests could be used to differentiate strain 2-92T from closely related species of the genus Pseudomonas. DNA-DNA hybridization values (wet laboratory and genome-based) and average nucleotide identity data confirmed that this strain represents a novel species. On the basis of phenotypic and genotypic characteristics, it is concluded that this strain represents a separate novel species for which the name Pseudomonas canadensis sp. nov. is proposed, with type strain 2-92T (=LMG 28499T=DOAB 798T). The DNA G+C content is 60.30 mol%.
Isolation and characterization of ethanol tolerant yeast strains
Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha
2013-01-01
Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092
O-Thong, Sompong; Khongkliang, Peerawat; Mamimin, Chonticha; Singkhala, Apinya; Prasertsan, Poonsuk; Birkeland, Nils-Kåre
2017-06-01
Thermoanaerobacterium sp. strain PSU-2 was isolated from thermophilic hydrogen producing reactor and subjected to draft genome sequencing on 454 pyrosequencing and annotated on RAST. The draft genome sequence of strain PSU-2 contains 2,552,497 bases with an estimated G + C content of 35.2%, 2555 CDS, 8 rRNAs and 57 tRNAs. The strain had a number of genes responsible for carbohydrates metabolic, amino acids and derivatives, and protein metabolism of 17.7%, 14.39% and 9.81%, respectively. Strain PSU-2 also had gene responsible for hydrogen biosynthesis as well as the genes related to Ni-Fe hydrogenase. Comparative genomic analysis indicates strain PSU-2 shares about 94% genome sequence similarity with Thermoanaerobacterium xylanolyticum LX-11. The nucleotide sequence of this draft genome was deposited into DDBJ/ENA/GenBank under the accession MSQD00000000.
Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang
2018-02-20
We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.
Endosulfan Degradation by Selected Strains of Plant Growth Promoting Rhizobacteria.
Rani, Rupa; Kumar, Vipin
2017-07-01
Sixty endosulfan tolerant bacterial strains were isolated from pesticide stressed agricultural soils. Five most tolerant strains were tested for plant growth promoting (PGP) activities and endosulfan degradation under different optimizing conditions in broth and soil. The strains PRB101 and PRB77 were the most efficient in terms of endosulfan degradation and PGP activities and showed solubilization indexes of 3.3 and 3.1 mm, indole acetic acid production of 71 and 68 μg mL -1 , siderophore zones of 13 mm each at the recommended dosage, respectively. Hydrogen cyanide and ammonia production remained unaffected in the presence of endosulfan. PRB101 and PRB77 strains were able to degrade 74% and 70% of endosulfan in broth and 67% and 63% in soil, respectively. Based on 16S rDNA analysis, the strains PRB101 and PRB77 exhibited 99% homology with Bacillus sp. KF984414 and Bacillus sp. LN849696, respectively.
Lasserre, Moira; Fresia, Pablo; Greif, Gonzalo; Iraola, Gregorio; Castro-Ramos, Miguel; Juambeltz, Arturo; Nuñez, Álvaro; Naya, Hugo; Robello, Carlos; Berná, Luisa
2018-01-02
Bovine tuberculosis (bTB) poses serious risks to animal welfare and economy, as well as to public health as a zoonosis. Its etiological agent, Mycobacterium bovis, belongs to the Mycobacterium tuberculosis complex (MTBC), a group of genetically monomorphic organisms featured by a remarkably high overall nucleotide identity (99.9%). Indeed, this characteristic is of major concern for correct typing and determination of strain-specific traits based on sequence diversity. Due to its historical economic dependence on cattle production, Uruguay is deeply affected by the prevailing incidence of Mycobacterium bovis. With the world's highest number of cattle per human, and its intensive cattle production, Uruguay represents a particularly suited setting to evaluate genomic variability among isolates, and the diversity traits associated to this pathogen. We compared 186 genomes from MTBC strains isolated worldwide, and found a highly structured population in M. bovis. The analysis of 23 new M. bovis genomes, belonging to strains isolated in Uruguay evidenced three groups present in the country. Despite presenting an expected highly conserved genomic structure and sequence, these strains segregate into a clustered manner within the worldwide phylogeny. Analysis of the non-pe/ppe differential areas against a reference genome defined four main sources of variability, namely: regions of difference (RD), variable genes, duplications and novel genes. RDs and variant analysis segregated the strains into clusters that are concordant with their spoligotype identities. Due to its high homoplasy rate, spoligotyping failed to reflect the true genomic diversity among worldwide representative strains, however, it remains a good indicator for closely related populations. This study introduces a comprehensive population structure analysis of worldwide M. bovis isolates. The incorporation and analysis of 23 novel Uruguayan M. bovis genomes, sheds light onto the genomic diversity of this pathogen, evidencing the existence of greater genetic variability among strains than previously contemplated.
Li, Baisheng; Yang, Xingfen; Tan, Hailing; Ke, Bixia; He, Dongmei; Wang, Haiyan; Chen, Qiuxia; Ke, Changwen; Zhang, Yonghui
2018-02-02
Salmonella enterica serovar Weltevreden is the most common non-typhoid Salmonella found in South and Southeast Asia. It causes zoonoses worldwide through the consumption of contaminated foods and seafood, and is considered as an important food-borne pathogen in China, especially in the Southern coastal area. We compared the whole genomes of 44 S. Weltevreden strains isolated from human stool and contaminated food samples from Southern Coastal China, in order to investigate their phylogenetic relationships and establish their genetic relatedness to known international strains. ResFinder analysis of the draft genomes of isolated strains detected antimicrobial resistance (AMR) genes in only eight isolates, equivalent to minimum inhibitory concentration assay, and only a few isolates showed resistance to tetracycline, ciprofloxacin or ampicillin. In silico MLST analysis revealed that 43 out of 44 S. Weltevreden strains belonged to sequence type 365 (CC205), the most common sequence type of the serovars. Phylogenetic analysis of the 44 domestic and 26 international isolates suggested that the population of S. Weltevreden could be segregated into six phylogenetic clusters. Cluster I included two strains from food and strains of the "Island Cluster", indicating potential inter-transmission between different countries and regions through foods. The predominant S. Weltevreden isolates obtained from the samples from Southern coastal China were found to be phylogenetically related to strains from Southern East Asia, and formed clusters II-VI. The study has demonstrated that WGS-based analysis may be used to improve our understanding of the epidemiology of this bacterium as part of a food-borne disease surveillance program. The methods used are also more widely applicable to other geographical regions and areas and could therefore be useful for improving our understanding of the international spread of S. Weltevreden on a global scale. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon
1990-01-01
A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.
Diversity and bioactivity of actinomycetes from marine sediments of the Yellow Sea
NASA Astrophysics Data System (ADS)
Zhang, Shumin; Ye, Liang; Tang, Xuexi
2012-03-01
Among the 116 actinomycetes collected from marine sediments of the Yellow Sea, 56 grew slowly and appeared after 2-3 weeks of incubation. Among the 56 strains, only 3 required seawater (SW) for growth, and 21 grew well in the medium prepared with SW rather than distilled water (DW), while the remaining 32 grew well either with SW or with DW. Six representatives with different morphological characteristics, including 1 SW-requiring strain and 5 well-growing with SW strains, were selected for phylogenetic analysis based on 16S rRNA gene. Two strains belong to Micrococcaceae and Nocardiopsaceae respectively. The other 4 strains belong to the family of Streptomycetaceae. In the analyzed 6 strains, one was related to Nocardiopsis spp. and the other three were related to Streptomyces spp., representing new taxa. Bioactivity testing of fermentation products from 3 SW-requiring strains and 21 well-growing with SW strains revealed that 17 strains possessed remarkable activities against gram-positive pathogen or/and tumor cells, suggesting that they were prolific resources for natural drug discovery.
Pei, Haisheng; Chen, Zhou; Tan, Xiaoyan; Hu, Jing; Yang, Bin; Sun, Junshe
2017-01-01
Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1–3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the Ganoderma industry. PMID:28056060
Zhang, Xiuqing; Xu, Zhangyang; Pei, Haisheng; Chen, Zhou; Tan, Xiaoyan; Hu, Jing; Yang, Bin; Sun, Junshe
2017-01-01
Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1-3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the Ganoderma industry.
Checinska Sielaff, Aleksandra; Kumar, Rajendran Mathan; Pal, Deepika; Mayilraj, Shanmugam; Venkateswaran, Kasthuri
2017-04-01
A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ISSFR-015T, was isolated from a high-efficiency particulate arrestance filter in the International Space Station and was characterized by polyphasic taxonomy. A comparative analysis of the 16S rRNA gene sequence (1494 bp) of strain ISSFR-015T showed highest similarity to Solibacillus isronensis B3W22T (98.9 %), followed by Solibacillus silvestris HR3-23T (98.6 %) and Bacillus cecembensis PN5T (96.7 %). DNA-DNA hybridization analysis revealed that the DNA relatedness values of strain ISSFR-015T with other closely related species were in the range of 41-47 % [S. silvestrisMTCC 10789T (47 %), S. isronensis MTCC 7902T (41 %) and B. cecembensis MTCC 9127T (43 %)]. The DNA G+C content of strain ISSFR-015T was 45.4 mol%. The major fatty acids were iso-C15 : 0 (45.2 %) and C17 : 1ω10c (12.1 %). The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and one unknown phospholipid. The isoprenoid quinones present in strain ISSFR-015T were MK-7 (86.8 %), MK-6 (11.6 %) and MK-8 (1.0 %). The peptidoglycan type of the cell wall was A4α l-Lys-d-Glu. Based on the phylogenetic analysis, strain ISSFR-015T belongs to the genus Solibacillus. The polyphasic taxonomic data, including low DNA-DNA hybridization values, and the chemotaxonomic analysis confirmed that strain ISSFR-015T represents a novel species, for which the name Solibacillus kalamii sp. nov. is proposed. The type strain for this proposed species is ISSFR-015T (=NRRL B-65388T=DSM 101595T).
Whole Genomic Analysis of Human G12P[6] and G12P[8] Rotavirus Strains that Have Emerged in Myanmar
Ide, Tomihiko; Komoto, Satoshi; Higo-Moriguchi, Kyoko; Htun, Khaing Win; Myint, Yi Yi; Myat, Theingi Win; Thant, Kyaw Zin; Thu, Hlaing Myat; Win, Mo Mo; Oo, Htun Naing; Htut, Than; Wakuda, Mitsutaka; Dennis, Francis Ekow; Haga, Kei; Fujii, Yoshiki; Katayama, Kazuhiko; Rahman, Shofiqur; Nguyen, Sa Van; Umeda, Kouji; Oguma, Keiji; Tsuji, Takao; Taniguchi, Koki
2015-01-01
G12 rotaviruses are emerging rotavirus strains causing severe diarrhea in infants and young children worldwide. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed. In this study, we sequenced and characterized the complete genomes of six G12 strains (RVA/Human-tc/MMR/A14/2011/G12P[8], RVA/Human-tc/MMR/A23/2011/G12P[6], RVA/Human-tc/MMR/A25/2011/G12P[8], RVA/Human-tc/MMR/P02/2011/G12P[8], RVA/Human-tc/MMR/P39/2011/G12P[8], and RVA/Human-tc/MMR/P43/2011/G12P[8]) detected in six stool samples from children with acute gastroenteritis in Myanmar. On whole genomic analysis, all six Myanmarese G12 strains were found to have a Wa-like genetic backbone: G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strains A14, A25, P02, P39, and P43, and G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strain A23. Phylogenetic analysis showed that most genes of the six strains examined in this study were genetically related to globally circulating human G1, G3, G9, and G12 strains. Of note is that the NSP4 gene of strain A23 exhibited the closest relationship with the cognate genes of human-like bovine strains as well as human strains, suggesting the occurrence of reassortment between human and bovine strains. Furthermore, strains A14, A25, P02, P39, and P43 were very closely related to one another in all the 11 gene segments, indicating derivation of the five strains from a common origin. On the other hand, strain A23 consistently formed distinct clusters as to all the 11 gene segments, indicating a distinct origin of strain A23 from that of strains A14, A25, P02, P39, and P43. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Myanmar. Our observations will provide important insights into the evolutionary dynamics of spreading G12 rotaviruses in Asia. PMID:25938434
Xie, Liji; Xie, Zhixun; Huang, Li; Wang, Sheng; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Luo, Sisi
2017-11-01
Sequence analysis of duck plague virus (DPV) revealed that there was a 528bp (B fragment) deletion within the UL2 gene of DPV attenuated vaccine strain in comparison with field virulent strains. The finding of gene deletion provides a potential differentiation test between DPV virulent strain and attenuated strain based on their UL2 gene sizes. Thus we developed a polymerase chain reaction (PCR) assay targeting to the DPV UL2 gene for simultaneous detection of DPV virulent strain and attenuated strain, 827bp for virulent strain and 299bp for attenuated strain. This newly developed PCR for DPV was highly sensitive and specific. It detected as low as 100fg of DNA on both DPV virulent and attenuated strains, no same size bands were amplified from other duck viruses including duck paramyxovirus, duck tembusu virus, duck circovirus, Muscovy duck parvovirus, duck hepatitis virus type I, avian influenza virus and gosling plague virus. Therefore, this PCR assay can be used for the rapid, sensitive and specific detection of DPV virulent and attenuated strains affecting ducks. Copyright © 2017. Published by Elsevier B.V.
Frederiksen, Kristine; Rosenquist, Hanne; Jørgensen, Kirsten; Wilcks, Andrea
2006-01-01
A total of 128 Bacillus cereus-like strains isolated from fresh fruits and vegetables for sale in retail shops in Denmark were characterized. Of these strains, 39% (50/128) were classified as Bacillus thuringiensis on the basis of their content of cry genes determined by PCR or crystal proteins visualized by microscopy. Random amplified polymorphic DNA analysis and plasmid profiling indicated that 23 of the 50 B. thuringiensis strains were of the same subtype as B. thuringiensis strains used as commercial bioinsecticides. Fourteen isolates were indistinguishable from B. thuringiensis subsp. kurstaki HD1 present in the products Dipel, Biobit, and Foray, and nine isolates grouped with B. thuringiensis subsp. aizawai present in Turex. The commercial strains were primarily isolated from samples of tomatoes, cucumbers, and peppers. A multiplex PCR method was developed to simultaneously detect all three genes in the enterotoxin hemolysin BL (HBL) and the nonhemolytic enterotoxin (NHE), respectively. This revealed that the frequency of these enterotoxin genes was higher among the strains indistinguishable from the commercial strains than among the other B. thuringiensis and B. cereus-like strains isolated from fruits and vegetables. The same was seen for a third enterotoxin, CytK. In conclusion, the present study strongly indicates that residues of B. thuringiensis-based insecticides can be found on fresh fruits and vegetables and that these are potentially enterotoxigenic. PMID:16672488
Silva, Gustavo M; Souza, Ricardo M; Yan, Lichun; Júnior, Rui S; Medeiros, Flavio H V; Walcott, Ron R
2016-12-01
Bacterial fruit blotch (BFB), caused by the seedborne bacterium Acidovorax citrulli, is an economically important threat to cucurbitaceous crops worldwide. Since the first report of BFB in Brazil in 1990, outbreaks have occurred sporadically on watermelon and, more frequently, on melon, resulting in significant yield losses. At present, the genetic diversity and the population structure of A. citrulli strains in Brazil remain unclear. A collection of 74 A. citrulli strains isolated from naturally infected tissues of different cucurbit hosts in Brazil between 2000 and 2014 and 18 A. citrulli reference strains from other countries were compared by pulsed-field gel electrophoresis (PFGE), multilocus sequence analysis (MLSA) of housekeeping and virulence-associated genes, and pathogenicity tests on seedlings of different cucurbit species. The Brazilian population comprised predominantly group I strains (98%), regardless of the year of isolation, geographical region, or host. Whole-genome restriction digestion and PFGE analysis revealed that three unique and previously unreported A. citrulli haplotypes (assigned as haplotypes B22, B23, and B24) occurred in Brazil. The greatest diversity of A. citrulli (four haplotypes) was found among strains collected from the northeastern region of Brazil, which accounts for more than 90% of the country's melon production. MLSA clearly distinguished A. citrulli strains into two well-supported clades, in agreement with observations based on PFGE analysis. Five Brazilian A. citrulli strains, representing different group I haplotypes, were moderately aggressive on watermelon seedlings compared with four group II strains that were highly aggressive. In contrast, no significant differences in BFB severity were observed between group I and II A. citrulli strains on melon and squash seedlings. Finally, we observed a differential effect of temperature on in vitro growth of representative group I and II A. citrulli haplotypes. Specifically, of 18 group II strains tested, all grew at 40 and 41°C, whereas only 3 of 15 group I strains (haplotypes B8[P], B3[K], and B15) grew at 40°C. Three strains representing haplotype B8(P) were the only group I strains that grew at 41°C. These results contribute to a better understanding of the genetic diversity of A. citrulli associated with BFB outbreaks in Brazil, and reinforce the efficiency of MLSA and PFGE analysis for assessing population structure. This study also provides the first evidence to suggest that temperature might be a driver in the ecological adaptation of A. citrulli populations.
Arguedas-Villa, Carolina; Kovacevic, Jovana; Allen, Kevin J; Stephan, Roger; Tasara, Taurai
2014-06-01
Sixty-two strains of Listeria monocytogenes isolated in Canada and Switzerland were investigated. Comparison based on molecular genotypes confirmed that strains in these two countries are genetically diverse. Interestingly strains from both countries displayed similar range of cold growth phenotypic profiles. Based on cold growth lag phase duration periods displayed in BHI at 4 °C, the strains were similarly divided into groups of fast, intermediate and slow cold adaptors. Overall Swiss strains had faster exponential cold growth rates compared to Canadian strains. However gene expression analysis revealed no significant differences between fast and slow cold adapting strains in the ability to induce nine cold adaptation genes (lmo0501, cspA, cspD, gbuA, lmo0688, pgpH, sigB, sigH and sigL) in response to cold stress exposure. Neither was the presence of Stress survival islet 1 (SSI-1) analysed by PCR associated with enhanced cold adaptation. Phylogeny based on the sigL gene subdivided strains from these two countries into two major and one minor cluster. Fast cold adaptors were more frequently in one of the major clusters (cluster A), whereas slow cold adaptors were mainly in the other (cluster B). Genetic differences between these two major clusters are associated with various amino acid substitutions in the predicted SigL proteins. Compared to the EGDe type strain and most slow cold adaptors, most fast cold adaptors exhibited five identical amino acid substitutions (M90L, S203A/S203T, S304N, S315N, and I383T) in their SigL proteins. We hypothesize that these amino acid changes might be associated with SigL protein structural and functional changes that may promote differences in cold growth behaviour between L. monocytogenes strains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brachybacterium hainanense sp. nov., isolated from noni (Morinda citrifolia L.) branch.
Liu, Yang; Zhai, Lei; Yao, Su; Cao, Yanhua; Cao, Yu; Zhang, Xin; Su, Jiaojiao; Ge, Yuanyuan; Zhao, Ran; Cheng, Chi
2015-11-01
A Gram-stain-positive bacterial strain, designated as NR2T, isolated from noni (Morinda citrifolia L.) branch was investigated using a polyphasic taxonomic approach. The cells were small coccoid to ovoid, non-spore-forming and motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was a representative of a member of the genus Brachybacterium, to which the most closely related neighbours were Brachybacterium squillarum M-6-3T (97.90 % similarity), Brachybacterium faecium DSM 4810T (97.50 %), Brachybacterium sacelli LMG 20345T (97.41 %), Brachybacterium phenoliresistens phenol-AT (97.36 %), Brachybacterium nesterenkovii DSM 9573T (97.36 %) and Brachybacterium rhamnosum LMG 19848T (97.32 %). The polar lipid profile of strain NR2T consisted of diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipids and unknown glycolipids. The predominant respiratory quinone was MK-8, with MK-9 and MK-7 as minor components. The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. Strain NR2T was clearly distinguishable from the type strains of related species on the basis of phylogenetic analysis, DNA-DNA hybridization, fatty acid composition data analysis and a range of physiological and comparison of biochemical characteristics. It is evident from the genotypic and phenotypic data that strain NR2T represents a novel species of the genus Brachybacterium, for which the name Brachybacterium hainanense sp. nov. is proposed. The type strain is NR2T ( = DSM 29535T = CICC 10874T).
Johansson, Anna H; Bejai, Sarosh; Niazi, Adnan; Manzoor, Shahid; Bongcam-Rudloff, Erik; Meijer, Johan
2014-12-01
Certain strains of Bacillus amyloliquefaciens can colonize plants and improve growth and stress management. In order to study these effects, bacterial growth dynamics on plants and in the rhizosphere are of interest calling for specific analytical tools. For that purpose, quantitative real-time PCR (qPCR) assays were developed in order to differentiate among three closely related B. amyloliquefaciens subsp. plantarum strains (UCMB5033, UCMB5036, UCMB5113) and to determine their levels with high accuracy. Oligonucleotide primers were designed for strain unique gene sequences and used for SYBR green based qPCR analysis. Standard curves covered a wide linear range (10(6)) of DNA amounts with the lowest detection level at 50 fg. Post-reaction melting curve analysis showed only a single product. Accurate threshold cycles were obtained, even in the presence of high excess of related Bacillus strains and total bacterial DNA from soil. Analysis of Bacillus colonisation after seed treatment of two oilseed rape cultivars (Oase and Ritz) grown on agar support showed a time dependent effect but that the bacteria mostly were found on root tissues and little on green tissues. The colonisation on plants grown in soil varied among the Bacillus strains where Oase seemed to house more bacteria than Ritz. Applied as a mixture, all three Bacillus strains co-existed on the roots of plants grown in soil. The qPCR assay in combination with other techniques will be a powerful tool to study plant interactions of these B. amyloliquefaciens biocontrol agents to further understand the requirements for successful interactions and improvement of plant properties.
Noar, Jesse D; Buckley, Daniel H
2009-08-01
Strain 1a22T, a nitrogen-fixing bacterium, was isolated from soil associated with the rhizosphere of a perennial grass growing in a fallow agricultural field in Ithaca, New York, USA. Analysis of the 16S rRNA gene sequence placed the strain in the Rubrivivax-Roseateles-Leptothrix-Azohydromonas-Aquincola-Ideonella branch of the Betaproteobacteria and the closest characterized relative was the type strain of Ideonella dechloratans (97.7% 16S rRNA sequence similarity). Cells of strain 1a22T were Gram-negative, motile, straight rods, which formed polyhydroxybutyrate-like granules and were positive for oxidase and weakly positive for catalase. Cells were chemo-organotrophic, unable to grow by reduction of chlorate or nitrate and grew exclusively through aerobic respiration. Growth with mannitol on N-free solid media caused the strain to produce copious amounts of slime. The G+C content of the genomic DNA was 67.4 mol%. The major cellular fatty acids were C16:1 cis-9 and C16:0 and cells contained significant amounts of the hydroxy fatty acids C10:0 3-OH, C12:0 2-OH and C12:0 3-OH. Based on DNA-DNA hybridization studies, 16S rRNA gene sequence analysis, fatty acid analysis, and morphological and physiological characteristics, strain 1a22T represents a novel species in the genus Ideonella, for which the name Ideonella azotifigens sp. nov. is proposed. The type strain of Ideonella azotifigens is 1a22T (=JCM 15503T=DSM 21438T).
Toro, Magaly; Retamal, Patricio; Ayers, Sherry; Barreto, Marlen; Allard, Marc; Brown, Eric W; Gonzalez-Escalona, Narjol
2016-10-15
Salmonella enterica subsp. enterica serotype Enteritidis is a major cause of human salmonellosis worldwide; however, little is known about the genetic relationships between S Enteritidis clinical strains and S Enteritidis strains from other sources in Chile. We compared the whole genomes of 30 S Enteritidis strains isolated from gulls, domestic chicken eggs, and humans in Chile, to investigate their phylogenetic relationships and to establish their relatedness to international strains. Core genome multilocus sequence typing (cgMLST) analysis showed that only 246/4,065 shared loci differed among these Chilean strains, separating them into two clusters (I and II), with cluster II being further divided into five subclusters. One subcluster (subcluster 2) contained strains from all surveyed sources that differed at 1 to 18 loci (of 4,065 loci) with 1 to 18 single-nucleotide polymorphisms (SNPs), suggesting interspecies transmission of S Enteritidis in Chile. Moreover, clusters were formed by strains that were distant geographically, which could imply that gulls might be spreading the pathogen throughout the country. Our cgMLST analysis, using other S Enteritidis genomes available in the National Center for Biotechnology Information (NCBI) database, showed that S Enteritidis strains from Chile and the United States belonged to different lineages, which suggests that S Enteritidis regional markers might exist and could be used for trace-back investigations. This study highlights the importance of gulls in the spread of Salmonella Enteritidis in Chile. We revealed a close genetic relationship between some human and gull S Enteritidis strains (with as few as 2 of 4,065 genes being different), and we also found that gull strains were present in clusters formed by strains isolated from other sources or distant locations. Together with previously published evidence, this suggests that gulls might be spreading this pathogen between different regions in Chile and that some of those strains have been transmitted to humans. Moreover, we discovered that Chilean S Enteritidis strains clustered separately from most of S Enteritidis strains isolated throughout the world (in the GenBank database) and thus it might be possible to distinguish the geographical origins of strains based on specific genomic features. This could be useful for trace-back investigations of foodborne illnesses throughout the world. Copyright © 2016 Toro et al.
Ayers, Sherry; Barreto, Marlen; Allard, Marc; Brown, Eric W.
2016-01-01
ABSTRACT Salmonella enterica subsp. enterica serotype Enteritidis is a major cause of human salmonellosis worldwide; however, little is known about the genetic relationships between S. Enteritidis clinical strains and S. Enteritidis strains from other sources in Chile. We compared the whole genomes of 30 S. Enteritidis strains isolated from gulls, domestic chicken eggs, and humans in Chile, to investigate their phylogenetic relationships and to establish their relatedness to international strains. Core genome multilocus sequence typing (cgMLST) analysis showed that only 246/4,065 shared loci differed among these Chilean strains, separating them into two clusters (I and II), with cluster II being further divided into five subclusters. One subcluster (subcluster 2) contained strains from all surveyed sources that differed at 1 to 18 loci (of 4,065 loci) with 1 to 18 single-nucleotide polymorphisms (SNPs), suggesting interspecies transmission of S. Enteritidis in Chile. Moreover, clusters were formed by strains that were distant geographically, which could imply that gulls might be spreading the pathogen throughout the country. Our cgMLST analysis, using other S. Enteritidis genomes available in the National Center for Biotechnology Information (NCBI) database, showed that S. Enteritidis strains from Chile and the United States belonged to different lineages, which suggests that S. Enteritidis regional markers might exist and could be used for trace-back investigations. IMPORTANCE This study highlights the importance of gulls in the spread of Salmonella Enteritidis in Chile. We revealed a close genetic relationship between some human and gull S. Enteritidis strains (with as few as 2 of 4,065 genes being different), and we also found that gull strains were present in clusters formed by strains isolated from other sources or distant locations. Together with previously published evidence, this suggests that gulls might be spreading this pathogen between different regions in Chile and that some of those strains have been transmitted to humans. Moreover, we discovered that Chilean S. Enteritidis strains clustered separately from most of S. Enteritidis strains isolated throughout the world (in the GenBank database) and thus it might be possible to distinguish the geographical origins of strains based on specific genomic features. This could be useful for trace-back investigations of foodborne illnesses throughout the world. PMID:27520817