Sample records for strain distribution pattern

  1. Homogenisation of the strain distribution in stretch formed parts to improve part properties

    NASA Astrophysics Data System (ADS)

    Schmitz, Roman; Winkelmann, Mike; Bailly, David; Hirt, Gerhard

    2018-05-01

    Inhomogeneous strain and sheet thickness distributions can be observed in complex sheet metal parts manufactured by stretch forming. In literature, this problem is solved by flexible clampings adapted to the part geometry. In this paper, an approach, which does not rely on extensive tooling, is presented. The strain distribution in the sheet is influenced by means of hole patterns. Holes are introduced into the sheet area between clamping and part next to areas where high strains are expected. When deforming the sheet, high strains are shifted out of the part area. In a local area around the holes, high strains concentrate perpendicular to the drawing direction. Thus, high strains in the part area are reduced and the strain distribution is homogenised. To verify this approach, an FE-model of a stretch forming process of a conical part is implemented in LS-Dyna. The model is validated by corresponding experiments. In the first step, the positioning of the holes is applied manually based on the numerically determined strain distribution and experience. In order to automate the positioning of the holes, an optimisation method is applied in a second step. The presented approach implemented in LS-OPT uses the response surface method to identify the positioning and radius of the holes homogenising the strain in a defined area of the sheet. Due to nonlinear increase of computational complexity with increasing number of holes, the maximum number of holes is set to three. With both, the manual and the automated method, hole patterns were found which allow for a relative reduction of maximum strains and for a homogenisation of the strain distribution. Comparing the manual and automated positioning of holes, the pattern determined by automated optimisation shows better results in terms of homogenising the strain distribution.

  2. Study on induced strain in direct nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenta; Iida, Tatsuya; Yasuda, Masaaki; Kawata, Hiroaki; Hirai, Yoshihiko

    2018-06-01

    The induced shear strain distribution in a polymer film is investigated by computational study in a direct nanoimprint process. The effects of the polymer thickness, mold pattern shape such as rectangular, triangular or overcut pattern shape, and the coefficient of friction between the mold and the polymer are studied by computational work. As the coefficient of friction increases, the induced shear strain increases along the mold surface. Depending on the polymer thickness, the shear strain is induced in the residual and/or pattern area. In the triangular pattern, the strain is induced in the pattern central area. The results suggest that shear stress remains in the triangular pattern area in the direct nanoimprint process. On the other hand, the rectangular pattern is suitable for suppressing the induced strain inside the pattern.

  3. Chemotactic preferences govern competition and pattern formation in simulated two-strain microbial communities.

    PubMed

    Centler, Florian; Thullner, Martin

    2015-01-01

    Substrate competition is a common mode of microbial interaction in natural environments. While growth properties play an important and well-studied role in competition, we here focus on the influence of motility. In a simulated two-strain community populating a homogeneous two-dimensional environment, strains competed for a common substrate and only differed in their chemotactic preference, either responding more sensitively to a chemoattractant excreted by themselves or responding more sensitively to substrate. Starting from homogeneous distributions, three possible behaviors were observed depending on the competitors' chemotactic preferences: (i) distributions remained homogeneous, (ii) patterns formed but dissolved at a later time point, resulting in a shifted community composition, and (iii) patterns emerged and led to the extinction of one strain. When patterns formed, the more aggregating strain populated the core of microbial aggregates where starving conditions prevailed, while the less aggregating strain populated the more productive zones at the fringe or outside aggregates, leading to a competitive advantage of the less aggregating strain. The presence of a competitor was found to modulate a strain's behavior, either suppressing or promoting aggregate formation. This observation provides a potential mechanism by which an aggregated lifestyle might evolve even if it is initially disadvantageous. Adverse effects can be avoided as a competitor hinders aggregate formation by a strain which has just acquired this ability. The presented results highlight both, the importance of microbial motility for competition and pattern formation, and the importance of the temporal evolution, or history, of microbial communities when trying to explain an observed distribution.

  4. Two dimensional Fourier transform methods for fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.; Bhat, G.

    An overview of the use of FFTs for fringe pattern analysis is presented, with emphasis on fringe patterns containing displacement information. The techniques are illustrated via analysis of the displacement and strain distributions in the direction perpendicular to the loading, in a disk under diametral compression. The experimental strain distribution is compared to the theoretical, and the agreement is found to be excellent in regions where the elasticity solution models well the actual problem.

  5. Measurement of Strain Distributions in Mouse Femora with 3D-Digital Speckle Pattern Interferometry

    PubMed Central

    Yang, Lianxiang; Zhang, Ping; Liu, Sheng; Samala, Praveen R; Su, Min; Yokota, Hiroki

    2007-01-01

    Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to external loading. Appropriate mechanical loads offer an effective means to stimulate bone remodeling and prevent bone loss. A role of in situ strain in bone is considered essential in enhancement of bone formation, and establishing a quantitative relationship between 3D strain distributions and a rate of local bone formation is important. Digital speckle pattern interferometry (DSPI) can achieve whole-field, non-contacting measurements of microscopic deformation for high-resolution determination of 3D strain distributions. However, the current system does not allow us to derive accurate strain distributions because of complex surface contours inherent to biological samples. Through development of a custom-made piezoelectric loading device as well as a new DSPI-based force calibration system, we built an advanced DSPI system and integrated local contour information to deformation data. Using a mouse femur in response to a knee loading modality as a model system, we determined 3D strain distributions and discussed effectiveness and limitations of the described system. PMID:18670581

  6. Measurement of strain distribution in cortical bone around miniscrew implants used for orthodontic anchorage using digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Agarwal, Rupali; Bhutani, Ravi; Shakher, Chandra

    2016-05-01

    An application of digital speckle pattern interferometry (DSPI) for the measurement of deformations and strain-field distributions developed in cortical bone around orthodontic miniscrew implants inserted into the human maxilla is presented. The purpose of this study is to measure and compare the strain distribution in cortical bone/miniscrew interface of human maxilla around miniscrew implants of different diameters, different implant lengths, and implants of different commercially available companies. The technique is also used to measure tilt/rotation of canine caused due to the application of retraction springs. The proposed technique has high sensitivity and enables the observation of deformation/strain distribution. In DSPI, two specklegrams are recorded corresponding to pre- and postloading of the retraction spring. The DSPI fringe pattern is observed by subtracting these two specklegrams. Optical phase was extracted using Riesz transform and the monogenic signal from a single DSPI fringe pattern. The obtained phase is used to calculate the parameters of interest such as displacement/deformation and strain/stress. The experiment was conducted on a dry human skull fulfilling the criteria of intact dental arches and all teeth present. Eight different miniscrew implants were loaded with an insertion angulation of 45 deg in the inter-radicular region of the maxillary second premolar and molar region. The loading of miniscrew implants was done with force level (150 gf) by nickel-titanium closed-coil springs (9 mm). The obtained results from DSPI reveal that implant diameter and implant length affect the displacement and strain distribution in cortical bone layer surrounding the miniscrew implant.

  7. Molecular analyses of Erwinia amylovora strains isolated in Russia, Poland, Slovenia and Austria describing further spread of fire blight in Europe.

    PubMed

    Jock, Susanne; Wensing, Annette; Pulawska, Joanna; Drenova, Nataliya; Dreo, Tanja; Geider, Klaus

    2013-08-25

    Fire blight, a bacteriosis of apple and pear, was assayed with molecular tools to associate its origin in Russia, Slovenia and south-eastern Austria with neighboring countries. The identification of all investigated strains was confirmed by MALDI-TOF mass spectroscopy except one. Independent isolation was verified by the level of amylovoran synthesis and by the number of short sequence DNA repeats in plasmid pEA29. DNA of gently lysed E. amylovora strains from Russia, Slovenia, Austria, Hungary, Italy, Spain, Croatia, Poland, Central Europe and Iran was treated with restriction enzymes XbaI and SpeI to create typical banding patterns for PFGE analysis. The pattern Pt2 indicated that most Russian E. amylovora strains were related to strains from Turkey and Iran. Strains from Slovenia exhibited patterns Pt3 and Pt2, both present in the neighboring countries. Strains were also probed for the recently described plasmid pEI70 detected in Pt1 strains from Poland and in Pt3 strains from other countries. The distribution of pattern Pt3 suggests distribution of fire blight from Belgium and the Netherlands to Central Spain and Northern Italy and then north to Carinthia. The PFGE patterns indicate that trade of plants may have introduced fire blight into southern parts of Europe proceeded by sequential spread. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Diversity and distribution of Frankia strains symbiotic with Ceanothus in California

    Treesearch

    Brian Oakley; Malcolm North; Jerry F. Franklin; Brian P. Hedlund; James T. Staley

    2004-01-01

    Frankia strains symbiotic with Ceanothus present an interesting opportunity to study the patterns and causes of Frankia diversity and distribution within a particular host infectivity group. We intensively sampled Frankia from nodules on Ceanothus plants along an elevational gradient in the...

  9. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    PubMed

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  10. Diffraction Correlation to Reconstruct Highly Strained Particles

    NASA Astrophysics Data System (ADS)

    Brown, Douglas; Harder, Ross; Clark, Jesse; Kim, J. W.; Kiefer, Boris; Fullerton, Eric; Shpyrko, Oleg; Fohtung, Edwin

    2015-03-01

    Through the use of coherent x-ray diffraction a three-dimensional diffraction pattern of a highly strained nano-crystal can be recorded in reciprocal space by a detector. Only the intensities are recorded, resulting in a loss of the complex phase. The recorded diffraction pattern therefore requires computational processing to reconstruct the density and complex distribution of the diffracted nano-crystal. For highly strained crystals, standard methods using HIO and ER algorithms are no longer sufficient to reconstruct the diffraction pattern. Our solution is to correlate the symmetry in reciprocal space to generate an a priori shape constraint to guide the computational reconstruction of the diffraction pattern. This approach has improved the ability to accurately reconstruct highly strained nano-crystals.

  11. Left ventricular strain distribution in healthy dogs and in dogs with tachycardia-induced dilated cardiomyopathy

    PubMed Central

    2013-01-01

    Background Recently, left ventricular (LV) strain distribution pattern has been assessed in several cardiac disease states. Tachycardia-induced cardiomyopathy (TIC) is an animal model of non-ischemic cardiomyopathy well characterized in terms of global LV dysfunction but with poor understanding of regional variability in LV function. We hypothesized that TIC induces specific changes in LV strain distribution pattern. Methods Twenty five adult mongrel conscious dogs were trained to lie down calmly for echocardiography. In seven selected dogs, we implanted pacing system for TIC induction under general anesthesia. We measured LV geometry and function, strains, and torsion before and after the development of TIC in awake non-sedated state. Results In 25 healthy dogs, all three types of normal strain significantly increased from base to apex (p <0.05), while a definite and recognizable twist could be measured due to presence of shear strain. In 7 dogs with TIC, marked changes in LV mechanics occurred throughout the cardiac cycle, resulting in decrease of strain (p <0.001), twist (p <0.05), and negative peak twist rate (p <0.05). Interestingly, the relative decrease of strain due to TIC was more pronounced in the apex (p < 0.001), with the radial strain decreasing the most (p < 0.05). Conclusion TIC is accompanied by decreased systolic LV strain and twist deformation, as well as loss of early diastolic recoil. In addition, the decrease of strain was more profound in the apex. This “reverse” distribution of LV strain may help us understand LV dysfunction in the presence of nonischemic etiology. PMID:24304622

  12. Left ventricular strain distribution in healthy dogs and in dogs with tachycardia-induced dilated cardiomyopathy.

    PubMed

    Kusunose, Kenya; Zhang, Youhua; Mazgalev, Todor N; Thomas, James D; Popović, Zoran B

    2013-12-05

    Recently, left ventricular (LV) strain distribution pattern has been assessed in several cardiac disease states. Tachycardia-induced cardiomyopathy (TIC) is an animal model of non-ischemic cardiomyopathy well characterized in terms of global LV dysfunction but with poor understanding of regional variability in LV function. We hypothesized that TIC induces specific changes in LV strain distribution pattern. Twenty five adult mongrel conscious dogs were trained to lie down calmly for echocardiography. In seven selected dogs, we implanted pacing system for TIC induction under general anesthesia. We measured LV geometry and function, strains, and torsion before and after the development of TIC in awake non-sedated state. In 25 healthy dogs, all three types of normal strain significantly increased from base to apex (p <0.05), while a definite and recognizable twist could be measured due to presence of shear strain. In 7 dogs with TIC, marked changes in LV mechanics occurred throughout the cardiac cycle, resulting in decrease of strain (p <0.001), twist (p <0.05), and negative peak twist rate (p <0.05). Interestingly, the relative decrease of strain due to TIC was more pronounced in the apex (p < 0.001), with the radial strain decreasing the most (p < 0.05). TIC is accompanied by decreased systolic LV strain and twist deformation, as well as loss of early diastolic recoil. In addition, the decrease of strain was more profound in the apex. This "reverse" distribution of LV strain may help us understand LV dysfunction in the presence of nonischemic etiology.

  13. Acid phosphatase patterns in microfilariae of Onchocerca volvulus s.l. from the Upper Orinoco Basin, Venezuela.

    PubMed

    Yarzàbal, L; Petralanda, I; Arango, M; Lobo, L; Botto, C

    1983-06-01

    The patterns of acid phosphatase in strains of Onchocerca volvulus s.l. which parasitize an Amerindian population (Yanomami) in Venezuela's Upper Orinoco Basin were examined by using the naphthol AS-TR phosphate method. The study sample consisted of 40 Yanomami inhabiting a savannah area at 950 m above sea level and 21 Yanomami residents of a tropical rainforest area at an altitude of 250 m. Stained intrauterine microfilariae, still within the egg case, exhibited a diffuse distribution of the enzyme in the early stages of embryonic development and a negative reaction at a more developed stage. Four of the five enzyme staining patterns described by Omar (1978) were found in the 3157 microfilariae examined from skin snips. Their distribution was: Type I--17.2%, Type III--0.5%, Type IV--75.6% and Type V--6.6%. No examples of Type II were observed. The results indicate that acid phosphatase patterns of the Upper Orinoco Onchocerca strain most resemble those of strains from Guatemala and Yemen, and are different from the African strains found in Upper Volta and Liberia. The relative frequency of acid phosphatase patterns was modified by cryopreservation of microfilariae.

  14. Comparative stress distribution of implant-retained mandibular ball-supported and bar-supported overlay dentures: a finite element analysis.

    PubMed

    Vafaei, Fariborz; Khoshhal, Masoumeh; Bayat-Movahed, Saeed; Ahangary, Ahmad Hassan; Firooz, Farnaz; Izady, Alireza; Rakhshan, Vahid

    2011-08-01

    Implant-retained mandibular ball-supported and bar-supported overlay dentures are the two most common treatment options for the edentulous mandible. The superior option in terms of strain distribution should be determined. The three-dimensional model of mandible (based on computerized tomography scan) and its overlying implant-retained bar-supported and ball-supported overlay dentures were simulated using SolidWorks, NURBS, and ANSYS Workbench. Loads A (60 N) and B (60 N) were exerted, respectively, in protrusive and laterotrusive motions, on second molar mesial, first molar mesial, and first premolar. The strain distribution patterns were assessed on (1) implant tissue, (2) first implant-bone, and (3) second implant-bone interfaces. Protrusive: Strain was mostly detected in the apical of the fixtures and least in the cervical when bar design was used. On the nonworking side, however, strain was higher in the cervical and lower in the apical compared with the working side implant. Laterotrusive: The strain values were closely similar in the two designs. It seems that both designs are acceptable in terms of stress distribution, although a superior pattern is associated with the application of bar design in protrusive motion.

  15. Antimicrobial susceptibility pattern of Brachyspira intermedia isolates from European layers.

    PubMed

    Verlinden, Marc; Boyen, Filip; Pasmans, Frank; Garmyn, An; Haesebrouck, Freddy; Martel, An

    2011-09-01

    A broth microdilution method was used to determine the antimicrobial susceptibility of 20 Brachyspira intermedia isolates obtained from different layer flocks in Belgium and The Netherlands between 2008 and 2010. The antimicrobial agents used were tylosin, tilmicosin, tiamulin, valnemulin, doxycycline, and lincomycin. The minimal inhibitory concentration (MIC) distribution patterns of tylosin, tilmicosin, lincomycin, and doxycycline were bimodal, demonstrating acquired resistance against doxycycline in three strains, against the macrolides in two strains, and against lincomycin in one strain. The MICs of tiamulin and valnemulin showed a monomodal distribution, but with tailing toward the higher MIC values, possibly suggesting low-level acquired resistance in six isolates. Sequencing revealed a G1058C mutation in the 16S rRNA gene in all doxycycline-resistant strains. The strain resistant to tylosin, tilmicosin, and lincomycin had an A2058T mutation in the 23S rRNA gene.

  16. A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study.

    PubMed

    Dejardin, L M; Arnoczky, S P; Cloud, G L

    1999-05-01

    During impact, equine hooves undergo viscoelastic deformations which may result in potentially harmful strains. Previous hoof strain studies using strain gauges have been inconclusive due to arbitrary gauge placement. Photoelastic stress analysis (PSA) is a full-field technique which visually displays strains over entire loaded surfaces. This in vitro study identifies normal hoof strain patterns using PSA. Custom-made photoelastic plastic sheets were applied to the hoof surface. The hooves were axially loaded (225 kg) under level and varus/valgus conditions. Strain patterns were video-recorded through a polariscope. Strains were concentrated between middle and distal thirds of the hoof wall regardless of the loading conditions. This strain distribution appears to result from the differential expansion of the hoof wall under load. Increasing load resulted in higher strains and asymmetric loading resulted in an ipsilateral increase in strain magnitudes without altering strain locations. This study shows that PSA is a reliable method with which to evaluate hoof strains in vitro and is sensitive enough to reflect subtle load-related strain alterations.

  17. Structural control of coalbed methane production in Alabama

    USGS Publications Warehouse

    Pashin, J.C.; Groshong, R.H.

    1998-01-01

    Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.

  18. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    USGS Publications Warehouse

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  19. Earthquake Potential in California-Nevada Implied by Correlation of Strain Rate and Seismicity

    NASA Astrophysics Data System (ADS)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-02-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  20. Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal.

    PubMed

    Schuller, Dorit; Alves, Hugo; Dequin, Sylvie; Casal, Margarida

    2005-01-01

    One thousand six hundred and twenty yeast isolates were obtained from 54 spontaneous fermentations performed from grapes collected in 18 sampling sites of three vineyards (Vinho Verde Wine Region in northwest Portugal) during the 2001-2003 harvest seasons. All isolates were analyzed by mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) and a pattern profile was verified for each isolate, resulting in a total of 297 different profiles, that all belonged to the species Saccharomyces cerevisiae. The strains corresponding to seventeen profiles showed a wider temporal and geographical distribution, being characterized by a generalized pattern of sporadic presence, absence and reappearance. One strain (ACP10) showed a more regional distribution with a perennial behavior. In different fermentations ACP10 was either dominant or not, showing that the final outcome of fermentation was dependent on the specific composition of the yeast community in the must. Few of the grape samples collected before harvest initiated a spontaneous fermentation, compared to the samples collected after harvest, in a time frame of about 2 weeks. The associated strains were also much more diversified: 267 patterns among 1260 isolates compared to 30 patterns among 360 isolates in the post- and pre-harvest samples, respectively. Fermenting yeast populations have never been characterized before in this region and the present work reports the presence of commercial yeast strains used by the wineries. The present study aims at the development of strategies for the preservation of biodiversity and genetic resources as a basis for further strain development.

  1. Distribution, Detection of Enterotoxigenic Strains and Antimicrobial Drug Susceptibility Patterns of Bacteroides Fragilis Group in Diarrheic and Non-Diarrheic Feces from Brazilian Infants

    PubMed Central

    Ferreira, Débora Paula; Silva, Vânia Lúcia; Guimarães, Danielle Aparecida; Coelho, Cíntia Marques; Zauli, Danielle Alves Gomes; Farias, Luiz Macêdo; Carvalho, Maria Auxiliadora Roque; Diniz, Claudio Galuppo

    2010-01-01

    Despite the importance of gastrointestinal diseases and their global distribution, affecting millions of individuals around the world, the role and antimicrobial susceptibility patterns of anaerobic bacteria such as those in the Bacteroides fragilis group (BFG) are still unclear in young children. This study investigated the occurrence and distribution of species in the BFG and enterotoxigenic strains in the fecal microbiota of children and their antimicrobial susceptibility patterns. Diarrheic (n=110) and non-diarrheic (n=65) fecal samples from children aged 0–5 years old were evaluated. BFG strains were isolated and identified by conventional biochemical, physiological and molecular approaches. Alternatively, bacteria and enterotoxigenic strains were detected directly from feces by molecular biology. Antimicrobial drug susceptibility patterns were determined by the agar dilution method according to the guidelines for isolated bacteria. BFG was detected in 64.3% of the fecal samples (55% diarrheic and 80.4% non-diarrheic), and 4.6% were enterotoxigenic. Antimicrobial resistance was observed against ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, meropenem, ceftriaxone, clindamycin and chloramphenicol. The data show that these bacteria are prevalent in fecal microbiota at higher levels in healthy children. The molecular methodology was more effective in identifying the B. fragilis group when compared to the biochemical and physiological techniques. The observation of high resistance levels stimulates thoughts about the indiscriminate use of antimicrobial drugs in early infancy. Further quantitative studies are needed to gain a better understanding of the role of these bacteria in acute diarrhea in children. PMID:24031535

  2. Genomic Variability of Haemophilus influenzae Isolated from Mexican Children Determined by Using Enterobacterial Repetitive Intergenic Consensus Sequences and PCR

    PubMed Central

    Gomez-De-Leon, Patricia; Santos, Jose I.; Caballero, Javier; Gomez, Demostenes; Espinosa, Luz E.; Moreno, Isabel; Piñero, Daniel; Cravioto, Alejandro

    2000-01-01

    Genomic fingerprints from 92 capsulated and noncapsulated strains of Haemophilus influenzae from Mexican children with different diseases and healthy carriers were generated by PCR using the enterobacterial repetitive intergenic consensus (ERIC) sequences. A cluster analysis by the unweighted pair-group method with arithmetic averages based on the overall similarity as estimated from the characteristics of the genomic fingerprints, was conducted to group the strains. A total of 69 fingerprint patterns were detected in the H. influenzae strains. Isolates from patients with different diseases were represented by a variety of patterns, which clustered into two major groups. Of the 37 strains isolated from cases of meningitis, 24 shared patterns and were clustered into five groups within a similarity level of 1.0. One fragment of 1.25 kb was common to all meningitis strains. H. influenzae strains from healthy carriers presented fingerprint patterns different from those found in strains from sick children. Isolates from healthy individuals were more variable and were distributed differently from those from patients. The results show that ERIC-PCR provides a powerful tool for the determination of the distinctive pathogenicity potentials of H. influenzae strains and encourage its use for molecular epidemiology investigations. PMID:10878033

  3. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of understanding the properties of the thin film sensor and how it may be advanced toward structural sensing applications.

  4. Seasonal and habitat-related distribution pattern of Synechococcus genotypes in Lake Constance.

    PubMed

    Becker, Sven; Richl, Petra; Ernst, Anneliese

    2007-10-01

    The abundance and distribution of Synechococcus spp. in the autotrophic picoplankton of Lake Constance, were followed in the pelagic and littoral habitat by qPCR over 2 years. One genotype, represented by isolated phycoerythrin-rich strain BO 8807, showed a seasonal distribution pattern in both habitats. Before a stable thermal stratification, the maximum of both the Synechococcus population and genotype BO 8807 occurred at 15 or 20 m water depth in the pelagic habitat. During the summer stratification, when the absolute abundance of all Synechococcus spp. was highest above 15 m, the absolute and relative abundance of genotype BO 8807 was maximal at 20 m. These results indicate that Synechococcus spp. or single genotypes are present in deep maxima in Lake Constance. The in situ dynamics of genotype BO 8807 is consistent with the observation that isolated strain BO 8807 requires higher phosphate concentrations for maximum growth rates than a strain from the same phylogenetic cluster that dominates the pelagic summer population. In contrast to these findings, low genome numbers of phycocyanin-rich genotype BO 8805 were found temporarily only in both the littoral and pelagic plankton. Microscopy revealed that PC-rich cells in general occurred preferentially in the littoral habitat. We discuss our results with respect to the versatility of picocyanobacteria of the evolutionary lineage VI of cyanobacteria, and a habitat-related distribution pattern of Synechococcus genotypes.

  5. Divergent and nonuniform gene expression patterns in mouse brain

    PubMed Central

    Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.

    2010-01-01

    Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311

  6. Ontogenetic relationships between in vivo strain environment, bone histomorphometry and growth in the goat radius

    PubMed Central

    Main, Russell P

    2007-01-01

    Vertebrate long bone form, at both the gross and the microstructural level, is the result of many interrelated influences. One factor that is considered to have a significant effect on bone form is the mechanical environment experienced by the bone during growth. The work presented here examines the possible relationships between in vivo bone strains, bone geometry and histomorphology in the radii of three age/size groups of domestic goats. In vivo bone strain data were collected from the radii of galloping goats, and the regional cortical distribution of peak axial strain magnitudes, radial and circumferential strain gradients, and longitudinal strain rates related to regional patterns in cortical growth, porosity, remodelling and collagen fibre orientation. Although porosity and remodelling decreased and increased with age, respectively, these features showed no significant regional differences and did not correspond to regional patterns in the mechanical environment. Thicker regions of the radius's cortex were significantly related to high strain levels and higher rates of periosteal, but not endosteal, growth. However, cortical growth and strain environment were not significantly related. Collagen fibre orientation varied regionally, with a higher percentage of transverse fibres in the caudal region of the radius and primarily longitudinal fibres elsewhere, and, although consistent through growth, also did not generally correspond to regional strain patterns. Although strain magnitudes increased during ontogeny and regional strain patterns were variable over the course of a stride, mean regional strain patterns were generally consistent with growth, suggesting that regional growth patterns and histomorphology, in combination with external loads, may play some role in producing a relatively ‘predictable’ strain environment within the radius. It is further hypothesized that the absence of correlation between regional histomorphometric patterns and the measured strain environments is the result of the variable mechanical environment. However, the potential effects of other physiological and mechanical factors, such as skeletal metabolism and adjacent muscle insertions, that can influence the gross and microstructural morphology of the radius during ontogeny, cannot be ignored. PMID:17331177

  7. Segregation of genes from donor strain during the production of recombinant congenic strains.

    PubMed

    van Zutphen, L F; Den Bieman, M; Lankhorst, A; Demant, P

    1991-07-01

    Recombinant congenic strains (RCS) constitute a set of inbred strains which are designed to dissect the genetic control of multigenic traits, such as tumour susceptibility or disease resistance. Each RCS contains a small fraction of the genome of a common donor strain, while the majority of genes stem from a common background strain. We tested at two stages of the inbreeding process in 20 RCS, derived from BALB/cHeA and STS/A, to see whether alleles from the STS/A donor strain are distributed over the RCS in a ratio as would theoretically be expected. Four marker genes (Pep-3; Pgm-1; Gpi-1 and Es-3) located at 4 different chromosomes were selected and the allelic distribution was tested after 3-4 and after 12 generations of inbreeding. The data obtained do not significantly deviate from the expected pattern, thus supporting the validity of the concept of RCS.

  8. [Genotypic variability and persistence of Legionella pulsed-field gel electrophoresis patterns in 16 cooling towers in Shanghai, China].

    PubMed

    Chen, Ming-liang; Wang, Gang-yi; Chen, Min; Zhou, Hai-jian; Shao, Zhu-jun; Zhang, Xi; Wu, Fan

    2010-07-01

    To investigate the genotypic characteristics and persistence of Legionella pulsed-field gel electrophoresis (PFGE) patterns in 16 air-conditioner cooling towers in six different public sites of Shanghai. From May to October, continuous sampling was operated once per month in 2007. Legionella strains isolated from the 16 cooling towers were confirmed by serological and latex agglutination. PFGE was applied for the fingerprinting of the isolates, while the cluster results of PFGE were analyzed by BioNumerics software. 131 strains of Legionella were isolated, including L. pneumophila, L. bozemanae, L. micdadei and L. anisa. 52 distinguishable PFGE patterns were differentiated among the 16 cooling towers, with 37 patterns were owned by just one cooling tower, which was not shared with other cooling towers, while 15 patterns were shared by more than 2 cooling towers. All the cooling towers had ≥ 2 PFGE patterns, while in 13 cooling towers the same PFGE patterns were recovered during the six months. From June to October of 2007, 18 strains of Legionella belonging to the PFGE pattern of LPAs.SH0078 were isolated continuously from 6 cooling towers. This study demonstrated great genotypic diversity and complexity of Legionella in cooling towers. Persistence of the PFGE patterns was observed in 81.25% of the cooling towers. The PFGE pattern of LPAs. SH0078 was distributed widely, suggesting it might be the dominate strain in Shanghai.

  9. Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy.

    PubMed

    Müller, Knut; Rosenauer, Andreas; Schowalter, Marco; Zweck, Josef; Fritz, Rafael; Volz, Kerstin

    2012-10-01

    This article deals with the measurement of strain in semiconductor heterostructures from convergent beam electron diffraction patterns. In particular, three different algorithms in the field of (circular) pattern recognition are presented that are able to detect diffracted disc positions accurately, from which the strain in growth direction is calculated. Although the three approaches are very different as one is based on edge detection, one on rotational averages, and one on cross correlation with masks, it is found that identical strain profiles result for an In x Ga1-x N y As1-y /GaAs heterostructure consisting of five compressively and tensile strained layers. We achieve a precision of strain measurements of 7-9·10-4 and a spatial resolution of 0.5-0.7 nm over the whole width of the layer stack which was 350 nm. Being already very applicable to strain measurements in contemporary nanostructures, we additionally suggest future hardware and software designs optimized for fast and direct acquisition of strain distributions, motivated by the present studies.

  10. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    USGS Publications Warehouse

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  11. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients.

    PubMed

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-04-01

    Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.

  12. Directional pair distribution function for diffraction line profile analysis of atomistic models

    PubMed Central

    Leonardi, Alberto; Leoni, Matteo; Scardi, Paolo

    2013-01-01

    The concept of the directional pair distribution function is proposed to describe line broadening effects in powder patterns calculated from atomistic models of nano-polycrystalline microstructures. The approach provides at the same time a description of the size effect for domains of any shape and a detailed explanation of the strain effect caused by the local atomic displacement. The latter is discussed in terms of different strain types, also accounting for strain field anisotropy and grain boundary effects. The results can in addition be directly read in terms of traditional line profile analysis, such as that based on the Warren–Averbach method. PMID:23396818

  13. Using Gamma and Quantile Regressions to Explore the Association between Job Strain and Adiposity in the ELSA-Brasil Study: Does Gender Matter?

    PubMed

    Fonseca, Maria de Jesus Mendes da; Juvanhol, Leidjaira Lopes; Rotenberg, Lúcia; Nobre, Aline Araújo; Griep, Rosane Härter; Alves, Márcia Guimarães de Mello; Cardoso, Letícia de Oliveira; Giatti, Luana; Nunes, Maria Angélica; Aquino, Estela M L; Chor, Dóra

    2017-11-17

    This paper explores the association between job strain and adiposity, using two statistical analysis approaches and considering the role of gender. The research evaluated 11,960 active baseline participants (2008-2010) in the ELSA-Brasil study. Job strain was evaluated through a demand-control questionnaire, while body mass index (BMI) and waist circumference (WC) were evaluated in continuous form. The associations were estimated using gamma regression models with an identity link function. Quantile regression models were also estimated from the final set of co-variables established by gamma regression. The relationship that was found varied by analytical approach and gender. Among the women, no association was observed between job strain and adiposity in the fitted gamma models. In the quantile models, a pattern of increasing effects of high strain was observed at higher BMI and WC distribution quantiles. Among the men, high strain was associated with adiposity in the gamma regression models. However, when quantile regression was used, that association was found not to be homogeneous across outcome distributions. In addition, in the quantile models an association was observed between active jobs and BMI. Our results point to an association between job strain and adiposity, which follows a heterogeneous pattern. Modelling strategies can produce different results and should, accordingly, be used to complement one another.

  14. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions

    NASA Astrophysics Data System (ADS)

    Zhang, Chendong; Li, Ming-Yang; Tersoff, Jerry; Han, Yimo; Su, Yushan; Li, Lain-Jong; Muller, David A.; Shih, Chih-Kang

    2018-02-01

    Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.

  15. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition.

    PubMed

    Bollani, M; Chrastina, D; Fedorov, A; Sordan, R; Picco, A; Bonera, E

    2010-11-26

    Si(1-x)Ge(x) islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si(1-x)Ge(x) islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s(-1)) and low temperature (650 °C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  16. Longitudinally Jointed Edge-wise Compression Honeycomb Composite Sandwich Coupon Testing and FE Analysis: Three Methods of Strain Measurement, and Comparison

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn; hide

    2013-01-01

    Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.

  17. Strain distribution in the lumbar vertebrae under different loading configurations.

    PubMed

    Cristofolini, Luca; Brandolini, Nicola; Danesi, Valentina; Juszczyk, Mateusz M; Erani, Paolo; Viceconti, Marco

    2013-10-01

    The stress/strain distribution in the human vertebrae has seldom been measured, and only for a limited number of loading scenarios, at few locations on the bone surface. This in vitro study aimed at measuring how strain varies on the surface of the lumbar vertebral body and how such strain pattern depends on the loading conditions. Eight cadaveric specimens were instrumented with eight triaxial strain gauges each to measure the magnitude and direction of principal strains in the vertebral body. Each vertebra was tested in a three adjacent vertebrae segment fashion. The loading configurations included a compressive force aligned with the vertebral body but also tilted (15°) in each direction in the frontal and sagittal planes, a traction force, and torsion (both directions). Each loading configuration was tested six times on each specimen. The strain magnitude varied significantly between strain measurement locations. The strain distribution varied significantly when different loading conditions were applied (compression vs. torsion vs. traction). The strain distribution when the compressive force was tilted by 15° was also significantly different from the axial compression. Strains were minimal when the compressive force was applied coaxial with the vertebral body, compared with all other loading configurations. Also, strain was significantly more uniform for the axial compression, compared with all other loading configurations. Principal strains were aligned within 19° to the axis of the vertebral body for axial-compression and axial-traction. Conversely, when the applied force was tilted by 15°, the direction of principal strain varied by a much larger angle (15° to 28°). This is the first time, to our knowledge, that the strain distribution in the vertebral body is measured for such a variety of loading configurations and a large number of strain sensors. The present findings suggest that the structure of the vertebral body is optimized to sustain compressive forces, whereas even a small tilt angle makes the vertebral structure work under suboptimal conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Biomechanical analysis comparing natural and alloplastic temporomandibular joint replacement using a finite element model.

    PubMed

    Mesnard, Michel; Ramos, Antonio; Ballu, Alex; Morlier, Julien; Cid, M; Simoes, J A

    2011-04-01

    Prosthetic materials and bone present quite different mechanical properties. Consequently, mandible reconstruction with metallic materials (or a mandible condyle implant) modifies the physiologic behavior of the mandible (stress, strain patterns, and condyle displacements). The changing of bone strain distribution results in an adaptation of the temporomandibular joint, including articular contacts. Using a validated finite element model, the natural mandible strains and condyle displacements were evaluated. Modifications of strains and displacements were then assessed for 2 different temporomandibular joint implants. Because materials and geometry play important key roles, mechanical properties of cortical bone were taken into account in models used in finite element analysis. The finite element model allowed verification of the worst loading configuration of the mandibular condyle. Replacing the natural condyle by 1 of the 2 tested implants, the results also show the importance of the implant geometry concerning biomechanical mandibular behavior. The implant geometry and stiffness influenced mainly strain distribution. The different forces applied to the mandible by the elevator muscles, teeth, and joint loads indicate that the finite element model is a relevant tool to optimize implant geometry or, in a subsequent study, to choose a more suitable distribution of the screws. Bone screws (number and position) have a significant influence on mandibular behavior and on implant stress pattern. Stress concentration and implant fracture must be avoided. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Nondestructive evaluation of turbine blades vibrating in resonant modes

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Ahmadshahi, Mansour A.

    1991-12-01

    The paper presents the analysis of the strain distribution of turbine blades. The holographic moire technique is used in conjunction with computer analysis of the fringes. The application of computer fringe analysis technique reduces the number of holograms to be recorded to two. Stroboscopic illumination is used to record the patterns. Strains and stresses are computed.

  20. [Electrophoretic patterns of cell wall protein as a criterion for the identification and classification of Corynebacteria].

    PubMed

    Mykhal's'kyĭ, L O; Furtat, I M; Dem'ianenko, F P; Kostiuchyk, A A

    2001-01-01

    Electrophoretic patterns of cell wall protein of three industrial strains, that were used for production of lysin, and eight collection strains from the genus Corynevacterium were studied to analyze their similarity as well as to estimate an opportunity of using this parameter as an additional criterion for identification and classification of corynebacteria. Similarity coefficient of cell wall overall and main protein electrophoretic patterns were determined by a specially created computer program. Electrophoretic analysis showed that every specie had an individual protein profile. There were determined biopolymers common for the specie, genus and individual among the overall majors and minors. The obtained results showed, that the patterns of main proteins were more conservative and informative in comparison with those ones of overall proteins. The definition of similarity coefficient by the main protein patterns has correlated with the protein profile characteristics of every analyzed strain, and it managed to distribute them into the separate groups. The similarity coefficient of preparations by the main protein patterns allows to separate one specie or a strain from another, and that gives us a chance to claim that this parameter could be used as an additional criterion for differentiation and referring the corynebacteria to a certain taxonomic group.

  1. Monitoring the Wall Mechanics During Stent Deployment in a Vessel

    PubMed Central

    Steinert, Brian D.; Zhao, Shijia; Gu, Linxia

    2012-01-01

    Clinical trials have reported different restenosis rates for various stent designs1. It is speculated that stent-induced strain concentrations on the arterial wall lead to tissue injury, which initiates restenosis2-7. This hypothesis needs further investigations including better quantifications of non-uniform strain distribution on the artery following stent implantation. A non-contact surface strain measurement method for the stented artery is presented in this work. ARAMIS stereo optical surface strain measurement system uses two optical high speed cameras to capture the motion of each reference point, and resolve three dimensional strains over the deforming surface8,9. As a mesh stent is deployed into a latex vessel with a random contrasting pattern sprayed or drawn on its outer surface, the surface strain is recorded at every instant of the deformation. The calculated strain distributions can then be used to understand the local lesion response, validate the computational models, and formulate hypotheses for further in vivo study. PMID:22588353

  2. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  3. Modeling of Magnetoelastic Nanostructures with a Fully-coupled Mechanical-Micromagnetic Model and Its Applications

    NASA Astrophysics Data System (ADS)

    Liang, Cheng-Yen

    Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. In this dissertation, a fully-coupled finite element micromagnetic method is developed. The method deals with the micromagnetics, elastodynamics, and piezoelectric effects. The dynamics of magnetization, non-uniform strain distribution, and electric fields are iteratively solved. This more sophisticated modeling technique is critical for guiding the design process of the nanoscale strain-mediated multiferroic elements such as those needed in multiferroic systems. In this dissertation, we will study magnetic property changes (e.g., hysteresis, coercive field, and spin states) due to strain effects in nanostructures. in addition, a multiferroic memory device is studied. The electric-field-driven magnetization switching by applying voltage on patterned electrodes simulation in a nickel memory device is shown in this work. The deterministic control law for the magnetization switching in a nanoring with electric field applied to the patterned electrodes is investigated. Using the patterned electrodes, we show that strain-induced anisotropy is able to be controlled, which changes the magnetization deterministically in a nano-ring.

  4. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    NASA Astrophysics Data System (ADS)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can overcome this challenge and provides a displacement measurement resolution of 116 nm and a strain resolution of 0.04% over a gage length of 300 µm. Similarly, the ability to capture inhomogeneities is demonstrated by mapping strain around a thru-hole. The robustness of the technique is also evaluated, where no appreciable change in strain measurement is observed despite the significant variations imposed on the measurement mesh. The proposed approach introduces critical improvements for the determination of displacement and strain gradients in elastomers regarding the real-time nature of strain mapping with a microscale spatial resolution.

  5. Distributional patterns of fall armyworm parasitoids in a corn field and pasture field in Florida

    USDA-ARS?s Scientific Manuscript database

    An assessment of parasitoids and their selective patterns among Spodoptera frugiperda corn and rice host strains was performed from August 2008-August 2010 in a corn crop and a grass pasture in northern Florida under different seasonal conditions (spring and fall). Sentinel larvae from our laborator...

  6. Strain distribution across magmatic margins during the breakup stage: Seismicity patterns in the Afar rift zone

    NASA Astrophysics Data System (ADS)

    Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.

    2008-12-01

    Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.

  7. Longitudinally Jointed Edge-Wise Compression HoneyComb Composite Sandwich Coupon Testing And Fe Analysis: Three Methods of Strain Measurement, And Comparison

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; Rahim, Nur Aida Abul; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex

    2013-01-01

    Three distinct strain measurement methods (i.e., foil resistance strain gages, fiber optic strain sensors, and a three-dimensional digital image photogrammetry that gives full field strain and displacement measurements) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The foil resistance strain gages and fiber optic strain sensors were bonded on the specimen at locations with nearly the same analytically predicted strain values, and as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the three-dimensional digital image photogrammetric system are relevant. The test article was loaded to failure (at 167 kN), at the compressive strain value of 10,000 micro epsilon. As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the foil resistance strain gages and the three-dimensional digital image photogrammetric data, and comprehensive comparisons are made with FEA predictions.

  8. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    NASA Astrophysics Data System (ADS)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  9. Panoramic Measurement and Analysis of Strain Distribution in the Human ACL Using a Photoelastic Coating Method

    NASA Astrophysics Data System (ADS)

    Hirokawa, Shunji; Yamamoto, Kouji; Kawada, Takashi

    Large and highly variable deformations of the ACL cannot be adequately quantified by one-dimensional and/or localized measurements. Since the complex anatomy of the ACL makes uniform loading of all fiber bundles almost impossible, strains on specific portions being tested are considerably altered during knee movement. To observe the ACL's entire surface, we propose a photoelastic coating method. A simulator jig was used to allow a natural motion of the knee whose medial and lateral femoral bone parts were removed in order to expose the ACL for observation. The simulator jig with the knee was mounted on a universal stand which allows tilt and swivel rotations, so that the exposed ACL might be viewed from any direction. Measurements were performed on the strain distributions over the ACL at various knee angles. The panoramic images of the photoelastic fringe patterns yielded significant results. Special attention was paid for insight into the relation between strain distribution and the directions of fiber run.

  10. In vitro susceptibility of Helicobacter pullorum strains to different antimicrobial agents.

    PubMed

    Ceelen, Liesbeth; Decostere, Annemie; Devriese, Luc A; Ducatelle, Richard; Haesebrouck, Freddy

    2005-01-01

    The in vitro activity of 13 antimicrobial agents against 23 Helicobacter pullorum strains from poultry (21) and human (two) origin, and one human H. canadensis strain was tested by the agar dilution method. With the H. pullorum strains, monomodal distributions of Minimum Inhibitory Concentrations (MICs) were seen with lincomycin, doxycycline, gentamicin, tobramycin, erythromycin, tylosin, metronidazole, and enrofloxacin in concentration ranges considered as indicating susceptibility in other bacteria. The normal susceptibility level for nalidixic acid was situated at or slightly above the MIC breakpoints proposed for Campylobacteriaceae. Ampicillin, ceftriaxone, and sulphamethoxazole-trimethoprim showed poor activity against H. pullorum. For the H. canadensis strain, a similar susceptibility pattern was seen, except for nalidixic acid and enrofloxacin, whose MIC of >512 and 8 microg/ml, respectively, indicated resistance of this agent. With spectinomycin, a bimodal distribution of the MICs was noted for the tested strains; eight H. pullorum isolates originating from one flock showed acquired resistance (MIC>512 microg/ml).

  11. Finite element analysis of the upsetting of a 5056 aluminum alloy sample with consideration of its microstructure

    NASA Astrophysics Data System (ADS)

    Voronin, S. V.; Chaplygin, K. K.

    2017-12-01

    Computer simulation of upsetting the finite element models (FEMs) of an isotropic 5056 aluminum alloy sample and a 5056 aluminum alloy sample with consideration of microstructure is carried out. The stress and strain distribution patterns at different process stages are obtained. The strain required for the deformation of the FEMs of 5056 alloy samples is determined. The influence of the material microstructure on the stress-strain behavior and technological parameters are demonstrated.

  12. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Dmowski, W.; Bei, Hongbin

    Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.

  13. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep

    DOE PAGES

    Tong, Yang; Dmowski, W.; Bei, Hongbin; ...

    2018-02-16

    Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.

  14. Avalanches and diffusion in bubble rafts

    NASA Astrophysics Data System (ADS)

    Maloney, C. E.

    2015-07-01

    Energy dissipation distributions and particle displacement statistics are studied in the mean-field version of Durian's bubble model. A two-dimensional (2D) bi-disperse mixture is simulated at various strain rates, \\dotγ , and packing ratios, ϕ, above the rigidity onset at φ=φc . Well above φc , and at sufficiently low \\dotγ , the system responds in a highly bursty way, reminiscent of other dynamically critical systems with a power-law distribution of energy dissipation. As one increases \\dotγ at fixed ϕ or tunes φ→ φc at fixed \\dotγ , the bursty behavior vanishes. Displacement distributions are non-Fickian at short times but cross to a Fickian regime at a universal strain, Δγ* , independent of \\dotγ and ϕ. Despite the profound differences in short-time dynamics, at intermediate Δγ the systems exhibit qualitatively similar spatial patterns of deformation with lines of slip extending across large fractions of the simulation cell. These deformation patterns explain the observed diffusion constants and the universal crossover time to Fickian behavior.

  15. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland

    NASA Astrophysics Data System (ADS)

    Watkins, Hannah; Healy, David; Bond, Clare E.; Butler, Robert W. H.

    2018-03-01

    Understanding fracture network variation is fundamental in characterising fractured reservoirs. Simple relationships between fractures, stress and strain are commonly assumed in fold-thrust structures, inferring relatively homogeneous fracture patterns. In reality fractures are more complex, commonly appearing as heterogeneous networks at outcrop. We use the Achnashellach Culmination (NW Scotland) as an outcrop analogue to a folded tight sandstone reservoir in a thrust belt. We present fracture data is collected from four fold-thrust structures to determine how fracture connectivity, orientation, permeability anisotropy and fill vary at different structural positions. We use a 3D model of the field area, constructed using field observations and bedding data, and geomechanically restored using Move software, to determine how factors such as fold curvature and strain influence fracture variation. Fracture patterns in the Torridon Group are consistent and predictable in high strain forelimbs, however in low strain backlimbs fracture patterns are inconsistent. Heterogeneities in fracture connectivity and orientation in low strain regions do not correspond to fluctuations in strain or fold curvature. We infer that where strain is low, other factors such as lithology have a greater control on fracture formation. Despite unpredictable fracture attributes in low strain regions, fractured reservoir quality would be highest here because fractures in high strain forelimbs are infilled with quartz. Heterogeneities in fracture attribute data on fold backlimbs mean that fractured reservoir quality and reservoir potential is difficult to predict.

  16. Dynamic measurement of surface strain distribution on the foot during walking.

    PubMed

    Ito, Kohta; Maeda, Kosuke; Fujiwara, Ikumi; Hosoda, Koh; Nagura, Takeo; Lee, Taeyong; Ogihara, Naomichi

    2017-05-01

    To clarify the mechanism underlying the development of foot disorders such as diabetic ulcers and deformities, it is important to understand how the foot surface elongates and contracts during gait. Such information is also helpful for improving the prevention and treatment of foot disorders. We therefore measured temporal changes in the strain distribution on the foot surface during human walking. Five adult male participants walked across a glass platform placed over an angled mirror set in a wooden walkway at a self-selected speed and the dorsolateral and plantar surfaces of the foot were filmed using two pairs of synchronized high-speed cameras. Three-dimensional (3D) digital image correlation was used to quantify the spatial strain distribution on the foot surface with respect to that during quiet standing. Using the proposed method, we observed the 3D patterns of foot surface strain distribution during walking. Large strain was generated around the ball on the plantar surface of the foot throughout the entire stance phase, due to the windlass mechanism. The dorsal surface around the cuboid was stretched in the late stance phase, possibly due to lateral protruding movement of the cuboid. It may be possible to use this technique to non-invasively estimate movements of the foot bones under the skin using the surface strain distribution. The proposed technique may be an effective tool with which to analyze foot deformation in the fields of diabetology, clinical orthopedics, and ergonomics. Copyright © 2017. Published by Elsevier Ltd.

  17. Modulation of Kekulé adatom ordering due to strain in graphene

    NASA Astrophysics Data System (ADS)

    González-Árraga, L.; Guinea, F.; San-Jose, P.

    2018-04-01

    Intervalley scattering of carriers in graphene at "top" adatoms may give rise to a hidden Kekulé ordering pattern in the adatom positions. This ordering is the result of a rapid modulation in the electron-mediated interaction between adatoms at the wave vector K -K' , which has been shown experimentally and theoretically to dominate their spatial distribution. Here we show that the adatom interaction is extremely sensitive to strain in the supporting graphene, which leads to a characteristic spatial modulation of the Kekulé order as a function of adatom distance. Our results suggest that the spatial distributions of adatoms could provide a way to measure the type and magnitude of strain in graphene and the associated pseudogauge field with high accuracy.

  18. Multiscale deformation behavior for multilayered steel by in-situ FE-SEM

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.

    2010-03-01

    The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.

  19. A kirigami approach to engineering elasticity in nanocomposites through patterned defects.

    PubMed

    Shyu, Terry C; Damasceno, Pablo F; Dodd, Paul M; Lamoureux, Aaron; Xu, Lizhi; Shlian, Matthew; Shtein, Max; Glotzer, Sharon C; Kotov, Nicholas A

    2015-08-01

    Efforts to impart elasticity and multifunctionality in nanocomposites focus mainly on integrating polymeric and nanoscale components. Yet owing to the stochastic emergence and distribution of strain-concentrating defects and to the stiffening of nanoscale components at high strains, such composites often possess unpredictable strain-property relationships. Here, by taking inspiration from kirigami—the Japanese art of paper cutting—we show that a network of notches made in rigid nanocomposite and other composite sheets by top-down patterning techniques prevents unpredictable local failure and increases the ultimate strain of the sheets from 4 to 370%. We also show that the sheets' tensile behaviour can be accurately predicted through finite-element modelling. Moreover, in marked contrast to other stretchable conductors, the electrical conductance of the stretchable kirigami sheets is maintained over the entire strain regime, and we demonstrate their use to tune plasma-discharge phenomena. The unique properties of kirigami nanocomposites as plasma electrodes open up a wide range of novel technological solutions for stretchable electronics and optoelectronic devices, among other application possibilities.

  20. Dynamic changes in leptin distribution in the progression from ovum to blastocyst of the pre-implantation mouse embryo

    PubMed Central

    Schulz, Laura C.; Roberts, R. Michael

    2011-01-01

    The hormone leptin, which is primarily produced by adipose tissue, is a critical permissive factor for multiple reproductive events in the mouse, including implantation. In the CD1 strain, maternally-derived leptin from the oocyte becomes differentially distributed among blastomeres of pre-implantation embryos to create a polarized pattern, a feature consistent with a model of development in which blastomeres are biased towards a particular fate as early as the 2-cell stage. Here, we have confirmed that embryonic leptin is of maternal origin and re-examined leptin distribution in two distinct strains in which embryos were derived after either normal ovulation or superovulation. A polarized pattern of leptin distribution was found in the majority of both CD1 and CF1 embryos (79.1 % and 76.9 %, respectively) collected following superovulation, but was reduced, particularly in CF1 embryos (29.8 %; p < 0.0001), after natural ovulation. The difference in leptin asymmetries in the CF1 strain arose between ovulation and the first cleavage division, and was not affected by removal of the zona pellucida. Presence or absence of leptin polarization was not linked to differences in ability of embryos to develop normally to blastocyst. In the early blastocyst, leptin was confined subcortically to trophectoderm but upon blastocoel expansion it was lost from cells. Throughout development leptin co-localized with LRP2, a multi-ligand transport protein, and its patterning resembled that noted for the maternal-effect proteins OOEP, NLRP5, and PADI6, suggesting that it is a component of the subcortical maternal complex with as yet unknown significance in pre-implantation development. PMID:21444625

  1. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  2. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  3. Comparisons of seismic and geodetic strain across the East African rift: Implications for magmatism during rifting

    NASA Astrophysics Data System (ADS)

    Lindsey, N.; Ebinger, C. J.; Pritchard, M. E.; Cote, D. M.

    2010-12-01

    Knowledge of how the continental lithosphere accommodates strain in an active rift setting is essential to both earthquake and volcanic hazard analyses. Far-field and impinging mantle plumes drive extension within the fault-bounded rift systems of East Africa. Our study aims to evaluate models of distributed strain and localized strain between multiple rigid plates using earthquake catalogs and existing constraints, including high resolution DEMs that reveal the spatial distribution of young faults across the broad uplifts of eastern and southern Africa. We determine cumulative seismic moment release within 0.5 degree bins across the Afro-Arabian rift system using the entire NEIC earthquake catalog (1973-present), and compare these results to geodetic estimates of strain and extensional velocity. The small bin size permits comparison of strain with geological factors, including geological terrain, border fault distribution, and the presence or absence of volcanism. Our results highlight the significance of magmatism in strain accommodation across the rift system, and suggest that some strain and magmatism occur within ‘rigid blocks’, such as the Tanzania craton. Throughout the Afro-Arabian rift system, seismic moment release lags geodetic moment release by a factor of 2, consistent with aseismic creep deformation. However, our comparisons indicate that aseismic deformation accounts for a much higher percent of geodetic moment release: approximately 90% in the Main Ethiopian and Eastern rifts, and >97% in the Afar rift zone where incipient seafloor spreading occurs. The time-averaged strain distributions match the estimates from intense seismo-volcanic rifting episodes in Afar, indicating the data base is representative of longer-term patterns in Afar. We see no systematic variation in interbasinal accommodation zones or rift segment offsets, arguing against the development of transform-like structures prior to plate rupture.

  4. Genetic variation of trypsin and chymotrypsin inhibitors in pigeonpea [Cajanus cajan (L.) Millsp.] and its wild relatives.

    PubMed

    Kollipara, K P; Singh, L; Hymowitz, T

    1994-09-01

    Variation in the trypsin inhibitors (TIs) and the chymotrypsin inhibitors (CIs) among 69 pigeonpea [Cajanus cajan (L.) Millsp.] strains from a wide geographical distribution and among 17 accessions representing seven wild Cajanus species was studied by electrophoretic banding pattern comparisons and by spectrophotometric activity assays. The TI and CI electrophoretic migration patterns among the pigeonpea strains were highly uniform but varied in the inhibitor band intensities. The migration patterns of the inhibitors in the wild Cajanus species were highly species specific. The mean TI activity of pigeonpea strains (2279 units) was significantly higher than that of the wild Cajanus species (1407 units). However, the mean CI activity in the pigeonpea strains (62 units) was much lower than that in the wild species (162 units). Kenya 2 and ICP 9151 were the lowest and the highest, respectively, in both the TI and CI activities among all the pigeonpea strains used in this study. A highly-significant positive correlation was observed between the TI and CI activities. The Bowman-Birk type inhibitors with both TI and CI activities were identified in all the pigeonpea strains and also in the accessions of all the wild species except C. volubilis (Blanco) Blanco. The C. volubilis accession ICPW 169 was found to be 'null' for both CI bands and CI activity. Environment, strain, and environment x strain interaction showed highly-significant effects on both the TI and CI activities. Growing the pigeonpea strains at a different environment from their area of adaptation increased TI and CI activities and also altered the maturity period.

  5. Genotype distribution of norovirus around the emergence of Sydney_2012 and the antigenic drift of contemporary GII.4 epidemic strains.

    PubMed

    Zhang, Jun; Shen, Zhen; Zhu, Zhaoqin; Zhang, Wanju; Chen, Huifen; Qian, Fangxing; Chen, Haili; Wang, Gang; Wang, Moying; Hu, Yunwen; Yuan, Zhenghong

    2015-11-01

    The pattern of epochal evolution of NoV is ongoing, while novel GII.4 variants emerge and cause new pandemics. Since, the emergence in March 2012, Sydney_2012 had replaced GII.4-2009 as the primary NoV strain in most countries in the northern hemisphere by November 2012. To determine the genotype distribution around the emergence of Sydney_2012 and to investigate the underlying evolution mechanisms of the contemporary GII.4 strains. From January 2012 to December 2013, molecular epidemiology of norovirus in 846 adults (≥16 years) in Shanghai were conducted. The VP1 proteins of the contemporary GII.4 strains (Den_Haag_2006b, New_Orleans_2009 and Sydney_2012) were expressed in vitro and purified. Receptor binding patterns of these three epidemic strains were determined through histo-blood group antigen (HBGA) binding assays. Convalescent serum from patients infected with GII.4 epidemic strains were employed to investigate the role of antigenic drift in the persistence of GII.4 epidemic strains through receptor-binding blockade assays. Epidemiological studies revealed that Sydeny_2012 has completely replaced Den_Haag_2006b and New_Orleans_2009 and has been the dominant circulating strain in Shanghai since its emergence in October 2012. Interestingly, Den_Haag_2006b and New_Orleans_2009 have been co-circulating in Shanghai before the emergence of Sydeny_2012. The contemporary GII.4 epidemic norovirus strains displayed commonly high tropism to the histo-blood group antigen receptors, whereas Sydeny_2012 was antigenically different from Den_Haag_2006b and New_Orleans_2009. Antigenic drift, rather than receptor switch, played a key role in the emergence and spreading of Sydney_2012. The contemporary GII.4 strains were evolving via epochal evolution without altered ligand binding profiles. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Global Spread of Human Chromoblastomycosis Is Driven by Recombinant Cladophialophora carrionii and Predominantly Clonal Fonsecaea Species.

    PubMed

    Deng, Shuwen; Tsui, Clement K M; Gerrits van den Ende, A H G; Yang, Liyue; Najafzadeh, Mohammad Javad; Badali, Hamid; Li, Ruoyu; Hagen, Ferry; Meis, Jacques F; Sun, Jiufeng; Dolatabadi, Somayeh; Papierok, Bernard; Pan, Weihua; de Hoog, G S; Liao, Wanqing

    2015-01-01

    Global distribution patterns of Cladophialophora carrionii, agent of human chromoblastomycosis in arid climates of Africa, Asia, Australia, Central-and South-America, were compared with similar data of the vicarious Fonsecaea spp., agents of the disease in tropical rain forests. Population diversities among 73 C. carrionii strains and 60 strains of three Fonsecaea species were analyzed for rDNA ITS, partial β-tubulin, and amplified fragment-length polymorphism (AFLP) fingerprints. Populations differed significantly between continents. Lowest haplotype diversity was found in South American populations, while African strains were the most diverse. Gene flow was noted between the African population and all other continents. The general pattern of Fonsecaea agents of chromoblastomycosis differed significantly from that of C. carrionii and revealed deeper divergence among three differentiated species with smaller numbers of haplotypes, indicating a longer evolutionary history.

  7. Mycobacterium tuberculosis population structure and molecular epidemiological analysis in Sucre municipality, Miranda state, Venezuela.

    PubMed

    Patiño, Margareth A; Abadía, Edgar; Solalba Gómez; Maes, Mailis; Muñoz, Mariana; Gómez, Daniela; Guzmán, Patricia; Méndez, María Victoria; Ramirez, Carmen; Mercedes, España; de Waard, Jacobus; Takiff, Howard

    2014-12-01

    Sucre municipality is a large, densely populated marginal area in the eastern part of Caracas, Venezuela that consistently has more cases of tuberculosis than other municipalities in the country. To identify the neighborhoods in the municipality with the highest prevalence of tuberculosis, and determine whether the Mycobacterium tuberculosis strain distribution in this municipality is different from that previously found in the western part of Caracas and the rest of Venezuela, we collected data on all tuberculosis cases in the municipality diagnosed in 2005-6. We performed two separate molecular epidemiological studies, spoligotyping 44 strains in a first study, and spoligotyping 131 strains, followed by MIRU-VNTR 15 on 21 clustered isolates in the second. With spoligotyping, the most common patterns were Shared International Type SIT17 (21%); SIT42 (15%); SIT93 (11%); SIT20 (7%); SIT53 (6%), a distribution similar to other parts of Venezuela, except that SIT42 and SIT20 were more common. MIRU-VNTR 15 showed that six of seven SIT17 strains examined belonged to a large cluster previously found circulating in Venezuela, but all of the SIT42 strains were related to a cluster centered in the neighborhoods of Unión and Maca, with a MIRU-VNTR pattern not previously seen in Venezuela. It appears that a large percentage of the tuberculosis in the Sucre municipality is caused by the active transmission of two strain families centered within distinct neighborhoods, one reflecting communication with the rest of the country, and the other suggesting the insular, isolated nature of some sectors.

  8. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions*

    PubMed Central

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-01-01

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrPSc. Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrPC production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrPC present in each part of the brain. Our results suggest that the variable regional distribution of PrPSc in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. PMID:27056328

  9. Use of 16S-23S rRNA spacer-region (SR)-PCR for identification of intestinal clostridia.

    PubMed

    Song, Yuli; Liu, Chengxu; Molitoris, Denise; Tomzynski, Thomas J; Mc Teague, Maureen; Read, Erik; Finegold, Sydney M

    2002-12-01

    The suitability of a species identification technique based on PCR analysis of 16S-23S rRNA spacer region (SR) polymorphism for human intestinal Clostridium species was evaluated. This SR-PCR based technique is highly reproducible and successfully differentiated the strains tested, which included 17 ATCC type strains of Clostridium and 152 human stool Clostridium isolates, at the species or intraspecies level. Ninety-eight of 152 stool isolates, including C. bifermentans, C. butyricum, C. cadaveris, C. orbiscindens, C. paraputrificum, C. pefringens, C. ramosum, C. scindens, C. spiroforme, C. symbiosum and C. tertium, were identified to species level by SR-PCR patterns that were identical to those of their corresponding ATCC type strains. The other 54 stool isolates distributed among ten SR-PCR patterns that are unique and possibly represent ten novel Clostridium species or subspecies. The species identification obtained by SR-PCR pattern analysis completely agreed with that obtained by 16S rRNA sequencing, and led to identification that clearly differed from that obtained by cellular fatty acid analysis for 23/152 strains (15%). These results indicate that SR-PCR provides an accurate and rapid molecular method for the identification of human intestinal Clostridium species.

  10. Influenza virus isolations at the Government of India Influenza Centre, Coonoor, during 1950-60.

    PubMed

    VEERARAGHAVAN, N

    1961-01-01

    In 1950, responding to an invitation by the World Health Organization to all its Member States to establish regional laboratories for the study, in collaboration with the World Influenza Centre, of the distribution and antigenic pattern of influenza viruses, the Government of India set up an Influenza Centre at the Pasteur Institute of Southern India, Coonoor. The author presents a study of the antigenic pattern and variation of the influenza virus strains isolated at the Government of India Influenza Centre during 1950-60. Of the 152 strains isolated, 135 were type A viruses (23 belonging to the A1/Liverpool/50 subtype, 5 to A1/Eire/55, 10 to A1/Ned/56 and 97 to A2/Asia/57), 15 were type B viruses, and 2 were type C viruses. Two striking facts that emerged from this study were the absence of the Scandinavian strains from the area in which the viruses were isolated and the total disappearance of old strains after a new one had appeared.

  11. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods

    PubMed Central

    Tofalo, Rosanna; Perpetuini, Giorgia; Schirone, Maria; Fasoli, Giuseppe; Aguzzi, Irene; Corsetti, Aldo; Suzzi, Giovanna

    2013-01-01

    Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualize patterns in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere.” Agricultural practices such as farming (organic versus conventional) and floor management systems have selected different populations within this species that are phylogenetically distinct. In fact, recent ecological and geographic studies highlighted that unique strains are associated with particular grape varieties in specific geographical locations. These studies also highlighted that significant diversity and regional character, or ‘terroir,’ have been introduced into the winemaking process via this association. This diversity of wild strains preserves typicity, the high quality, and the unique flavor of wines. Recently, different molecular methods were developed to study population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review, we will provide an update on the current molecular methods used to reveal the geographical distribution of S. cerevisiae wine yeast. PMID:23805132

  12. Venus tectonics: initial analysis from magellan.

    PubMed

    Solomon, S C; Head, J W; Kaula, W M; McKenzie, D; Parsons, B; Phillips, R J; Schubert, G; Talwani, M

    1991-04-12

    Radar imaging and altimetry data from the Magellan mission have revealed a diversity of deformational features at a variety of spatial scales on the Venus surface. The plains record a superposition of different episodes of deformation and volcanism; strain is both areally distributed and concentrated into zones of extension and shortening. The common coherence of strain patterns over hundreds of kilometers implies that many features in the plains reflect a crustal response to mantle dynamic processes. Ridge belts and mountain belts represent successive degrees of lithospheric shortening and crustal thickening; the mountain belts also show widespread evidence for extension and collapse both during and following crustal compression. Venus displays two geometrical patterns of concentrated lithospheric extension: quasi-circular coronae and broad rises with linear rift zones; both are sites of significant volcanism. No long, large-offset strike-slip faults have been observed, although limited local horizontal shear is accommodated across many zones of crustal shortening. In general, tectonic features on Venus are unlike those in Earth's oceanic regions in that strain typically is distributed across broad zones that are one to a few hundred kilometers wide, and separated by stronger and less deformed blocks hundreds of kilometers in width, as in actively deforming continental regions on Earth.

  13. Serotyping and esterase typing for analysis of Listeria monocytogenes populations recovered from foodstuffs and from human patients with listeriosis in Belgium.

    PubMed Central

    Gilot, P; Genicot, A; André, P

    1996-01-01

    Listeria monocytogenes strains isolated in Belgium from different foodstuffs and in sporadic cases of human listeriosis were analyzed. The distribution of serovars differed in each of these populations. The bacteria isolated from cheeses and from human patients with listeriosis were further studied by esterase typing. The twenty esterase patterns defined were not equally distributed in these two populations. The secretion of the virulence determinant phosphatidylinositol-specific phospholipase C and the pathogenicity level of strains in immunocompromised mice could not explain the unequal distribution of esterase types. The discrimination index of esterase typing (DI = 0.868) was compared with that of serotyping (DI = 0.666) and with that of the two combined methods (DI = 0.899). PMID:8815071

  14. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.

    PubMed

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi

    2017-05-23

    This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.

  15. Contrasting Genomic Diversity in Two Closely Related Postharvest Pathogens: Penicillium digitatum and Penicillium expansum.

    PubMed

    Julca, Irene; Droby, Samir; Sela, Noa; Marcet-Houben, Marina; Gabaldón, Toni

    2015-12-14

    Penicillium digitatum and Penicillium expansum are two closely related fungal plant pathogens causing green and blue mold in harvested fruit, respectively. The two species differ in their host specificity, being P. digitatum restricted to citrus fruits and P. expansum able to infect a wide range of fruits after harvest. Although host-specific Penicillium species have been found to have a smaller gene content, it is so far unclear whether these different host specificities impact genome variation at the intraspecific level. Here we assessed genome variation across four P. digitatum and seven P. expansum isolates from geographically distant regions. Our results show very high similarity (average 0.06 SNPs [single nucleotide polymorphism] per kb) between globally distributed isolates of P. digitatum pointing to a recent expansion of a single lineage. This low level of genetic variation found in our samples contrasts with the higher genetic variability observed in the similarly distributed P. expansum isolates (2.44 SNPs per kb). Patterns of polymorphism in P. expansum indicate that recombination exists between genetically diverged strains. Consistent with the existence of sexual recombination and heterothallism, which was unknown for this species, we identified the two alternative mating types in different P. expansum isolates. Patterns of polymorphism in P. digitatum indicate a recent clonal population expansion of a single lineage that has reached worldwide distribution. We suggest that the contrasting patterns of genomic variation between the two species reflect underlying differences in population dynamics related with host specificities and related agricultural practices. It should be noted, however, that this results should be confirmed with a larger sampling of strains, as new strains may broaden the diversity so far found in P. digitatum. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Low dose aerosol fitness at the innate phase of murine infection better predicts virulence amongst clinical strains of Mycobacterium tuberculosis.

    PubMed

    Caceres, Neus; Llopis, Isaac; Marzo, Elena; Prats, Clara; Vilaplana, Cristina; de Viedma, Dario Garcia; Samper, Sofía; Lopez, Daniel; Cardona, Pere-Joan

    2012-01-01

    Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 10⁴ CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 10² CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism of the induction of active TB derived from the dynamic hypothesis of latent tuberculosis infection.

  17. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions.

    PubMed

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-06-10

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A Biomechanical Analysis Of Craniofacial Form And Function

    NASA Astrophysics Data System (ADS)

    Oyen, Ordean J.

    1989-04-01

    In vivo measures of bite force and bone strain obtained in growing African green monkeys (Cercopeithecus aethiops) are being used to study skull biology and geometry. Strain values and distributional patterns seen in association with forceful jaw elevation are inconsistent with conventional explanations linking upper facial morphology with masticatory function and/or using beam models of craniofacial architecture. These results mandate careful use of notions about skeletal geometry based on static analyses that have not been experimentally verified using in vivo procedures.

  19. Distribution of Genes Encoding Putative Transmissibility Factors among Epidemic and Nonepidemic Strains of Burkholderia cepacia from Cystic Fibrosis Patients in the United Kingdom

    PubMed Central

    Clode, Fiona E.; Kaufmann, Mary E.; Malnick, Henry; Pitt, Tyrone L.

    2000-01-01

    In the last 15 years, Burkholderia cepacia has emerged as a significant pathogen in cystic fibrosis (CF) patients, mainly due to the severity of infection observed in a subset of patients and the fear of transmission of the organism to noncolonized patients. Although patients who deteriorate rapidly cannot be predicted by microbiological characteristics, three genetic markers have been described for strains that spread between patients. These are the cblA gene, encoding giant cable pili; a hybrid of two insertion sequences, IS1356 and IS402; and a 1.4-kb open reading frame known as the B. cepacia epidemic strain marker (BCESM). The latter two are of unknown function. An epidemic strain lineage was previously identified among CF patients in the United Kingdom that apparently had spread from North America and that was characterized by a specific random amplified polymorphic DNA (RAPD) pattern. We searched for the described genetic markers using specific PCR assays with 117 patient isolates of B. cepacia from 40 United Kingdom hospitals. Isolates were grouped according to genomovar and epidemic strain lineage RAPD pattern with a 10-base primer, P272. A total of 41 isolates from patients in 12 hospitals were classified as the epidemic strain, and 40 of these were distributed in genomovars IIIa (11 isolates), IIIb (1 isolate), and IIIc (28 isolates). All isolates of the epidemic strain were positive for the cblA gene and BCESM, but two lacked the insertion sequence hybrid. None of the 76 sporadic isolates contained cblA or the insertion sequence hybrid, but 11 of them were positive for BCESM. Nonepidemic isolates were distributed among genomovars I or IV (9), II (49), IIIa (11), IIIb (3), and IIIc (4). There were three clusters of cross-infection (one involving two patients and two involving three patients) with isolates of genomovar II. We conclude that in the United Kingdom, a single clonal lineage has spread between and within some hospitals providing care for CF patients. The presence of the cblA gene is the most specific marker for the epidemic strain. We recommend that all isolates of B. cepacia from CF patients should be screened by PCR to influence segregation and infection control strategies. PMID:10790095

  20. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    NASA Astrophysics Data System (ADS)

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment.

  1. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations

    PubMed Central

    2011-01-01

    Background Lactobacillus ruminis is a poorly characterized member of the Lactobacillus salivarius clade that is part of the intestinal microbiota of pigs, humans and other mammals. Its variable abundance in human and animals may be linked to historical changes over time and geographical differences in dietary intake of complex carbohydrates. Results In this study, we investigated the ability of nine L. ruminis strains of human and bovine origin to utilize fifty carbohydrates including simple sugars, oligosaccharides, and prebiotic polysaccharides. The growth patterns were compared with metabolic pathways predicted by annotation of a high quality draft genome sequence of ATCC 25644 (human isolate) and the complete genome of ATCC 27782 (bovine isolate). All of the strains tested utilized prebiotics including fructooligosaccharides (FOS), soybean-oligosaccharides (SOS) and 1,3:1,4-β-D-gluco-oligosaccharides to varying degrees. Six strains isolated from humans utilized FOS-enriched inulin, as well as FOS. In contrast, three strains isolated from cows grew poorly in FOS-supplemented medium. In general, carbohydrate utilisation patterns were strain-dependent and also varied depending on the degree of polymerisation or complexity of structure. Six putative operons were identified in the genome of the human isolate ATCC 25644 for the transport and utilisation of the prebiotics FOS, galacto-oligosaccharides (GOS), SOS, and 1,3:1,4-β-D-Gluco-oligosaccharides. One of these comprised a novel FOS utilisation operon with predicted capacity to degrade chicory-derived FOS. However, only three of these operons were identified in the ATCC 27782 genome that might account for the utilisation of only SOS and 1,3:1,4-β-D-Gluco-oligosaccharides. Conclusions This study has provided definitive genome-based evidence to support the fermentation patterns of nine strains of Lactobacillus ruminis, and has linked it to gene distribution patterns in strains from different sources. Furthermore, the study has identified prebiotic carbohydrates with the potential to promote L. ruminis growth in vivo. PMID:21995520

  2. Size–strain separation in diffraction line profile analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scardi, P.; Ermrich, M.; Fitch, A.

    Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size–strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensitymore » values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.« less

  3. Size–strain separation in diffraction line profile analysis

    DOE PAGES

    Scardi, P.; Ermrich, M.; Fitch, A.; ...

    2018-05-29

    Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size–strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensitymore » values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.« less

  4. Microsatellite analysis of genotype distribution patterns of Candida albicans vulvovaginal candidiasis in Nanjing, China and its association with pregnancy, age and clinical presentation.

    PubMed

    Li, Caixia; Wang, Le; Tong, Hua; Ge, Yiping; Mei, Huan; Chen, Liangyu; Lv, Guixia; Liu, Weida

    2016-08-01

    To characterize the genotype distribution pattern of Candida albicans associated with vulvovaginal candidiasis (VVC) in Nanjing, China by microsatellite genotyping. A questionnaire was completed by each patient diagnosed with VVC. A total of 208 independent C. albicans was isolated from 208 patients. Microsatellite genotyping characterized the genotype distribution by analysis of the CAI locus marker. PCR of CAI fragments showed the three major genotypes contained 30:45, 21:21 and 32:46 alleles among the 51 genotypes detected, accounting for 29.3, 13.0 and 12.0 % of 208 clinical isolates. Genotype distributions had a similar pattern among different clinical presentations (P = 0.219). In both groups of the (21-30) and (31-40) years, 30:45 was the most frequent genotype allele detected. In the (21-30) year females, 16.5 % of the isolated strains had the genotype 21:21, while the same genotype in the group of (31-40) years was 6.9 %. Genotype distributions were significant difference between the pregnant and non-pregnant women (P < 0.001). 30:45 was detected only one in the 23 pregnant women. The results indicated a unique genotype distribution of C. albicans associated with VVC in Nanjing, eastern China and a different distribution pattern was also detected in pregnant women compared to non-pregnant women.

  5. Spatial distribution of airway wall displacements during breathing and bronchoconstriction measured by ultrasound elastography using finite element image registration.

    PubMed

    Harvey, Brian C; Lutchen, Kenneth R; Barbone, Paul E

    2017-03-01

    With every breath, the airways within the lungs are strained. This periodic stretching is thought to play an important role in determining airway caliber in health and disease. Particularly, deep breaths can mitigate excessive airway narrowing in healthy subjects, but this beneficial effect is absent in asthmatics, perhaps due to an inability to stretch the airway smooth muscle (ASM) embedded within an airway wall. The heterogeneous composition throughout an airway wall likely modulates the strain felt by the ASM but the magnitude of ASM strain is difficult to measure directly. In this study, we optimized a finite element image registration method to measure the spatial distribution of displacements and strains throughout an airway wall during pressure inflation within the physiological breathing range before and after induced narrowing with acetylcholine (ACh). The method was shown to be repeatable, and displacements estimated from different image sequences of the same deformation agreed to within 5.3μm (0.77%). We found the magnitude and spatial distribution of displacements were radially and longitudinally heterogeneous. The region in the middle layer of the airway experienced the largest radial strain due to a transmural pressure (Ptm) increase simulating tidal breathing and a deep inspiration (DI), while the region containing the ASM (i.e., closest to the lumen) strained least. During induced narrowing with ACh, we observed temporal longitudinal heterogeneity of the airway wall. After constriction, the displacements and strain are much smaller than the relaxed airway and the pattern of strains changed, suggesting the airway stiffened heterogeneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Low Dose Aerosol Fitness at the Innate Phase of Murine Infection Better Predicts Virulence amongst Clinical Strains of Mycobacterium tuberculosis

    PubMed Central

    Caceres, Neus; Llopis, Isaac; Marzo, Elena; Prats, Clara; Vilaplana, Cristina; de Viedma, Dario Garcia; Samper, Sofía; Lopez, Daniel; Cardona, Pere-Joan

    2012-01-01

    Background Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. Methodology/Principal Findings The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 104 CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 102 CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. Conclusions/Significance The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism of the induction of active TB derived from the dynamic hypothesis of latent tuberculosis infection. PMID:22235258

  7. Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion

    USGS Publications Warehouse

    Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.

    2014-01-01

    The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.

  8. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    NASA Astrophysics Data System (ADS)

    Yi, Xiaohua; Cho, Chunhee; Cooper, James; Wang, Yang; Tentzeris, Manos M.; Leon, Roberto T.

    2013-08-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack.

  9. Ultrasound elastography assessment of bone/soft tissue interface

    NASA Astrophysics Data System (ADS)

    Parmar, Biren J.; Yang, Xu; Chaudhry, Anuj; Shafeeq Shajudeen, Peer; Nair, Sanjay P.; Weiner, Bradley K.; Tasciotti, Ennio; Krouskop, Thomas A.; Righetti, Raffaella

    2016-01-01

    We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing.

  10. Microfracture spacing distributions and the evolution of fracture patterns in sandstones

    NASA Astrophysics Data System (ADS)

    Hooker, J. N.; Laubach, S. E.; Marrett, R.

    2018-03-01

    Natural fracture patterns in sandstone were sampled using scanning electron microscope-based cathodoluminescence (SEM-CL) imaging. All fractures are opening-mode and are fully or partially sealed by quartz cement. Most sampled fractures are too small to be height-restricted by sedimentary layers. At very low strains (<∼0.001), fracture spatial distributions are indistinguishable from random, whereas at higher strains, fractures are generally statistically clustered. All 12 large (N > 100) datasets show spacings that are best fit by log-normal size distributions, compared to exponential, power law, or normal distributions. The clustering of fractures suggests that the locations of natural factures are not determined by a random process. To investigate natural fracture localization, we reconstructed the opening history of a cluster of fractures within the Huizachal Group in northeastern Mexico, using fluid inclusions from synkinematic cements and thermal-history constraints. The largest fracture, which is the only fracture in the cluster visible to the naked eye, among 101 present, opened relatively late in the sequence. This result suggests that the growth of sets of fractures is a self-organized process, in which small, initially isolated fractures grow and progressively interact, with preferential growth of a subset of fractures developing at the expense of growth of the rest. Size-dependent sealing of fractures within sets suggests that synkinematic cementation may contribute to fracture clustering.

  11. Numerical analysis of the effect of surface roughness on mechanical fields in polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges

    2018-06-01

    This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.

  12. The Influence of Microgravity on Invasive Growth in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Van Mulders, Sebastiaan E.; Stassen, Catherine; Daenen, Luk; Devreese, Bart; Siewers, Verena; van Eijsden, Rudy G. E.; Nielsen, Jens; Delvaux, Freddy R.; Willaert, Ronnie

    2011-01-01

    This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.

  13. Microscopic full-field three-dimensional strain measurement during the mechanical testing of additively manufactured porous biomaterials.

    PubMed

    Genovese, Katia; Leeflang, Sander; Zadpoor, Amir A

    2017-05-01

    A custom-designed micro-digital image correlation system was used to track the evolution of the full-surface three-dimensional strain field of Ti6Al4V additively manufactured lattice samples under mechanical loading. The high-magnification capabilities of the method allowed to resolve the strain distribution down to the strut level and disclosed a highly heterogeneous mechanical response of the lattice structure with local strain concentrations well above the nominal global strain level. In particular, we quantified that strain heterogeneity appears at a very early stage of the deformation process and increases with load, showing a strain accumulation pattern with a clear correlation to the later onset of the fracture. The obtained results suggest that the unique opportunities offered by the proposed experimental method, in conjunction with analytical and computational models, could serve to provide novel important information for the rational design of additively manufactured porous biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. On the Correlation Between the Self-Organized Island Pattern and Substrate Elastic Anisotropy

    DTIC Science & Technology

    2007-04-01

    eters would be most useful to experimentalists. The kinetic Monte Carlo KMC has been proposed re- cently to study QD island self-organization by many...time ti. 21,25 Based on a proposed coupled KMC , the authors simu- lated the island ordering and narrow size distribution in two dimensions and further...100, 013527 2006pattern has not been studied so far within the coupled KMC algorithm where the long-range strain energy field is in- cluded

  15. Physiological and Biochemical Changes Reveal Differential Patterns of Docosahexaenoic Acid Partitioning in Two Marine Algal Strains of Isochrysis

    PubMed Central

    Chen, Yong; Mao, Xuemei; Liu, Jin

    2017-01-01

    The marine microalgae Isochrysis are a good producer of natural docosahexaenoic acid (DHA). To better understand the patterns of DHA accumulation and distribution, two Isochrysis strains, CL153180 and CCMP462, were evaluated in this study. In a batch culture, CL153180 showed a decline in DHA content while CCMP462 exhibited a progressive increase during the late growth period when nitrogen was almost exhausted. In response to nitrogen deficiency (ND), both strains showed a considerable increase in neutral lipids (NL) at the expense of glycolipids (GL) but had little variation in phospholipids (PL). In CL153180, the DHA percentage of NL decreased gradually upon ND, while that in CCMP462 increased progressively to 21.4% after 4 days of ND, which is around 5-fold higher than CL153180. Accordingly, in contrast to CL153180 that stored DHA predominantly in GL, CCMP462 accumulated DHA mainly in NL in late days of ND. Taken together, we proposed a working model for the differential DHA partitioning patterns between two Isochrysis strains: for CCMP462, the degradation of GL released free fatty acids including DHA, which was incorporated into NL upon ND; whereas for CL153180, the released DHA from GL might not be incorporated into NL, and, consequently, might be subject to β-oxidation for degradation. PMID:29137149

  16. Site specificity of adrenalectomy-induced brain growth.

    PubMed

    Thomas, T L; Devenport, L D

    1988-12-01

    Infant, juvenile, and adult brain growth is modulated by corticosterone. This study was designed to determine whether such modulation is confined to certain specific brain areas, and if the pattern of growth revealed is consistent across strains of rats. Young female Sprague-Dawley-derived rats were either adrenalectomized (ADX) or sham-operated (Sham) and allowed to mature 45 days before they were sacrificed for histological analysis. Fore brain sections were taken at several planes for display by projection microscope. Of the 21 sites examined, ADX exerted its greatest effect upon neocortical tissue and myelinated fiber tracts. The only other brain region affected was thalamus, which exhibited a significant widening as a result of ADX. In contrast, archicortical structures were notably unaffected by ADX. Neither the hippocampus, measured from a variety of planes, nor nuclei in the septal area were subject to increased growth by ADX. This general portrayal of ADX's site specificity held across strains of rats. However, there were local differences. Within the neopallium, the frontal region underwent the greatest thickening in one strain, while the occipital area was most strongly affected in the other. Parietal cortex was equally responsive in both strains. The pattern of sensitive vs insensitive sites bore a resemblance to the pattern of increased growth brought about by environmental enrichment as well as the fore brain distribution of Type 2 corticosterone receptors.

  17. Psychosocial job strain and sleep quality interaction leading to insufficient recovery.

    PubMed

    Rydstedt, Leif W; Devereux, Jason J

    2013-11-05

    The purpose of the study was to assess the impact of job strain and sleep quality on the diurnal pattern of cortisol reactivity, measured by awakening and evening (10 PM) saliva cortisol. The sample consisted of 76 British white-collar workers (24 women, 52 men; mean age 45.8 years). Sleep quality and job strain were assessed in a survey distributed just before the cortisol sampling. Both input variables were dichotomized about the median and factorial ANOVA was used for the statistical analysis. Low sleep quality was significantly associated with lower morning cortisol secretion. While job strain had no main effects on the cortisol reactivity there was a significant interaction effect between the input variables on morning cortisol secretion. These findings tentatively support the hypothesis that lack of sleep for workers with high job strain may result in a flattened diurnal cortisol reactivity.

  18. Effects of patterning induced stress relaxation in strained SOI/SiGe layers and substrate

    NASA Astrophysics Data System (ADS)

    Hermann, P.; Hecker, M.; Renn, F.; Rölke, M.; Kolanek, K.; Rinderknecht, J.; Eng, L. M.

    2011-06-01

    Local stress fields in strained silicon structures important for CMOS technology are essentially related to size effects and properties of involved materials. In the present investigation, Raman spectroscopy was utilized to analyze the stress distribution within strained silicon (sSi) and silicon-germanium (SiGe) island structures. As a result of the structuring of initially unpatterned strained films, a size-dependent relaxation of the intrinsic film stresses was obtained in agreement with model calculations. This changed stress state in the features also results in the appearance of opposing stresses in the substrate underneath the islands. Even for strained island structures on top of silicon-on-insulator (SOI) wafers, corresponding stresses in the silicon substrate underneath the oxide were detected. Within structures, the stress relaxation is more pronounced for islands on SOI substrates as compared to those on bulk silicon substrates.

  19. Psychosocial Job Strain and Sleep Quality Interaction Leading to Insufficient Recovery

    PubMed Central

    Rydstedt, Leif W.; Devereux, Jason J.

    2013-01-01

    The purpose of the study was to assess the impact of job strain and sleep quality on the diurnal pattern of cortisol reactivity, measured by awakening and evening (10 PM) saliva cortisol. The sample consisted of 76 British white-collar workers (24 women, 52 men; mean age 45.8 years). Sleep quality and job strain were assessed in a survey distributed just before the cortisol sampling. Both input variables were dichotomized about the median and factorial ANOVA was used for the statistical analysis. Low sleep quality was significantly associated with lower morning cortisol secretion. While job strain had no main effects on the cortisol reactivity there was a significant interaction effect between the input variables on morning cortisol secretion. These findings tentatively support the hypothesis that lack of sleep for workers with high job strain may result in a flattened diurnal cortisol reactivity. PMID:24196305

  20. Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance

    PubMed Central

    Zimic, Mirko; Sheen, Patricia; Quiliano, Miguel; Gutierrez, Andrés; Gilman, Robert H.

    2010-01-01

    Resistance to pyrazinamide in Mycobacterium tuberculosis is usually associated with a reduction of pyrazinamidase activity caused by mutations in pncA, the pyrazinamidase coding gene. Pyrazinamidase is a hydrolase that converts pyrazinamide, the antituberculous drug against the latent stage, to the active compound, pyrazinoic acid. To better understand the relationship between pncA mutations and pyrazinamide-resistance, it is necessary to analyze the distribution of pncA mutations from pyrazinamide resistant strains. We determined the distribution of Peruvian and globally reported pncA missense mutations from M. tuberculosis clinical isolates resistant to pyrazinamide. The distributions of the single amino acid substitutions were compared at the secondary-structure-domains level. The distribution of the Peruvian mutations followed a similar pattern as the mutations reported globally. A consensus clustering of mutations was observed in hot-spot regions located in the metal coordination site and to a lesser extent in the active site of the enzyme. The data was not able to reject the null hypothesis that both distributions are similar, suggesting that pncA mutations associated to pyrazinamide resistance in M. tuberculosis, follow a conserved pattern responsible to impair the pyrazinamidase activity. PMID:19963078

  1. Statistical Characterization of the Mechanical Parameters of Intact Rock Under Triaxial Compression: An Experimental Proof of the Jinping Marble

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Zhong, Shan; Cui, Jie; Feng, Xia-Ting; Song, Leibo

    2016-12-01

    We investigated the statistical characteristics and probability distribution of the mechanical parameters of natural rock using triaxial compression tests. Twenty cores of Jinping marble were tested under each different levels of confining stress (i.e., 5, 10, 20, 30, and 40 MPa). From these full stress-strain data, we summarized the numerical characteristics and determined the probability distribution form of several important mechanical parameters, including deformational parameters, characteristic strength, characteristic strains, and failure angle. The statistical proofs relating to the mechanical parameters of rock presented new information about the marble's probabilistic distribution characteristics. The normal and log-normal distributions were appropriate for describing random strengths of rock; the coefficients of variation of the peak strengths had no relationship to the confining stress; the only acceptable random distribution for both Young's elastic modulus and Poisson's ratio was the log-normal function; and the cohesive strength had a different probability distribution pattern than the frictional angle. The triaxial tests and statistical analysis also provided experimental evidence for deciding the minimum reliable number of experimental sample and for picking appropriate parameter distributions to use in reliability calculations for rock engineering.

  2. Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.

    PubMed

    No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu

    2016-11-14

    High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.

  3. Evolution of Self-Organization in Adiabatic Shear Bands

    NASA Astrophysics Data System (ADS)

    Meyers, Marc A.; Xue, Qing; Nesterenko, Vitali F.

    2001-06-01

    The evolution of multiple adiabatic shear bands was investigated in stainless steel, an Fe-15%Cr-15% Ni alloy, titanium, and Ti-6%Al-4%V alloy through the radial collapse of a thick-walled cylinder under high-strain-rate deformation ( 10^4 s-1). The shear-band initiation, propagation, as well as spatial distribution were examined under different global strains(varied from 0 to 0.9). The shear-band spacing is compared with one-dimensional theoretical predictions based on perturbation (Ockendon- Wright and Molinari) and momentum diffusion (Grady-Kipp). The experimentally observed spacing reveals the two-dimensional character of self-organization. These aspects are incorporated into a novel analytical description, in which a distribution of embryos(potential initiation sites) is activated as a function of strain (greater than a threshold) accoding to a Weibull-type distribution. The model incorporates embryo disactivation by stress shielding as well as selective growth of shear bands. The imposed strain rate, embryo distribution, and rates of initiation and propagation determine the evolutionary shear band configurations. The microstructural parameter investigated for stainless steel was the grain size, that was varied from 30 and 500 um. The influence of grain size was found to be minor and through the flow stress. Titanium and Ti-6%Al-4%V displayed drastically different patterns of shear bands,which are explained in terms of the model proposed. Research Supported by US Army Research Office MURI Program (Contract DAAH 04-96-1-0376).

  4. A novel sensor for bite force determinations.

    PubMed

    Fernandes, Cláudio P; Glantz, Per Olof J; Svensson, Stig A; Bergmark, Anders

    2003-03-01

    The clinical usefulness, accuracy and precision of a novel bite force sensor based on force sensing resistors were tested in six subjects wearing maxillary removable partial dentures retained by conical crowns. The surfaces of the sensor were manufactured in a silicone material that had mechanical properties similar to those of tough foodstuffs. In two separate series of standardized bite force tests, submaximum force levels were recorded with the sensor and with a strain gaged bite fork. Subjects were assisted in the loading tests with visual feedback instrumentation. Reliability estimates for the bite force sensor were calculated in order to show their reproducibility. Strain gages attached to the prostheses were used to determine the pattern of force distribution during loading tests. The bite force results obtained with the new bite force sensor and with the bite fork were analyzed with ANOVA and Scheffés tests. The strain patterns registered with strain gages were analyzed with F-test. The bite force sensor and the bite fork transducer showed no statistically significant differences in respect of intra-individual bite force levels (range 50-300N). The bite forces registered with the new sensor were dependent on the loading position (p<0.05), sex (p<0.05) and test subject (p<0.05). The reliability of the new sensor for submaximum bite forces was calculated to be 93%. Strain gage results showed that the new sensor generated strain patterns of less variance (p<0.05) than the bite fork and therefore allowed for higher precision during biting tests. The presented instrument has such clinical merits, as to favor its use in experimental clinical studies on the biomechanics of prosthetic appliances.

  5. Non-Euclidean stress-free configuration of arteries accounting for curl of axial strips sectioned from vessels.

    PubMed

    Takamizawa, Keiichi; Nakayama, Yasuhide

    2013-11-01

    It is well known that arteries are subject to residual stress. In earlier studies, the residual stress in the arterial ring relieved by a radial cut was considered in stress analysis. However, it has been found that axial strips sectioned from arteries also curled into arcs, showing that the axial residual stresses were relieved from the arterial walls. The combined relief of circumferential and axial residual stresses must be considered to accurately analyze stress and strain distributions under physiological loading conditions. In the present study, a mathematical model of a stress-free configuration of artery was proposed using Riemannian geometry. Stress analysis for arterial walls under unloaded and physiologically loaded conditions was performed using exponential strain energy functions for porcine and human common carotid arteries. In the porcine artery, the circumferential stress distribution under physiological loading became uniform compared with that without axial residual strain, whereas a gradient of axial stress distribution increased through the wall thickness. This behavior showed almost the same pattern that was observed in a recent study in which approximate analysis accounting for circumferential and axial residual strains was performed, whereas the circumferential and axial stresses increased from the inner surface to the outer surface under a physiological condition in the human common carotid artery of a two-layer model based on data of other recent studies. In both analyses, Riemannian geometry was appropriate to define the stress-free configurations of the arterial walls with both circumferential and axial residual strains.

  6. Analysis of Mycobacterium tuberculosis Genotypic Lineage Distribution in Chile and Neighboring Countries

    PubMed Central

    Lagos, Jaime; Couvin, David; Arata, Loredana; Tognarelli, Javier; Aguayo, Carolina; Leiva, Tamara; Arias, Fabiola; Hormazabal, Juan Carlos; Rastogi, Nalin; Fernández, Jorge

    2016-01-01

    Tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (MTB), remains a disease of high importance to global public health. Studies into the population structure of MTB have become vital to monitoring possible outbreaks and also to develop strategies regarding disease control. Although Chile has a low incidence of MTB, the current rates of migration have the potential to change this scenario. We collected and analyzed a total of 458 M. tuberculosis isolates (1 isolate per patient) originating from all 15 regions of Chile. The isolates were genotyped using the spoligotyping method and the data obtained were analyzed and compared with the SITVIT2 database. A total of 169 different patterns were identified, of which, 119 patterns (408 strains) corresponded to Spoligotype International Types (SITs) and 50 patterns corresponded to orphan strains. The most abundantly represented SITs/lineages were: SIT53/T1 (11.57%), SIT33/LAM3 (9.6%), SIT42/LAM9 (9.39%), SIT50/H3 (5.9%), SIT37/T3 (5%); analysis of the spoligotyping minimum spanning tree as well as spoligoforest were suggestive of a recent expansion of SIT42, SIT50 and SIT37; all of which potentially evolved from SIT53. The most abundantly represented lineages were LAM (40.6%), T (34.1%) and Haarlem (13.5%). LAM was more prevalent in the Santiago (43.6%) and Concepción (44.1%) isolates, rather than the Iquique (29.4%) strains. The proportion of X lineage was appreciably higher in Iquique and Concepción (11.7% in both) as compared to Santiago (1.6%). Global analysis of MTB lineage distribution in Chile versus neighboring countries showed that evolutionary recent lineages (LAM, T and Haarlem) accounted together for 88.2% of isolates in Chile, a pattern which mirrored MTB lineage distribution in neighboring countries (n = 7378 isolates recorded in SITVIT2 database for Peru, Brazil, Paraguay, and Argentina; and published studies), highlighting epidemiological advantage of Euro-American lineages in this region. Finally, we also observed exclusive emergence of patterns SIT4014/X1 and SIT4015 (unknown lineage signature) that have hitherto been found exclusively in Chile, indicating that conditions specific to Chile, along with the unique genetic makeup of the Chilean population, might have allowed for a possible co-evolution leading to the success of these emerging genotypes. PMID:27518286

  7. Finite element analysis of an implant-assisted removable partial denture.

    PubMed

    Shahmiri, Reza; Aarts, John M; Bennani, Vincent; Atieh, Momen A; Swain, Michael V

    2013-10-01

    This study analyzes the effects of loading a Kennedy class I implant-assisted removable partial denture (IARPD) using finite element analysis (FEA). Standard RPDs are not originally designed to accommodate a posterior implant load point. The null hypothesis is that the introduction of posteriorly placed implants into an RPD has no effect on the load distribution. A Faro Arm scan was used to extract the geometrical data of a human partially edentulous mandible. A standard plus regular neck (4.8 × 12 mm) Straumann® implant and titanium matrix, tooth roots, and periodontal ligaments were modeled using a combination of reverse engineering in Rapidform XOR2 and solid modeling in Solidworks 2008 FEA program. The model incorporated an RPD and was loaded with a bilateral force of 120 N. ANSYS Workbench 11.0 was used to analyze deformation in the IARPD and elastic strain in the metal framework. FEA identified that the metal framework developed high strain patterns on the major and minor connectors, and the acrylic was subjected to deformation, which could lead to acrylic fractures. The ideal position of the neutral axis was calculated to be 0.75 mm above the ridge. A potentially destructive mismatch of strain distribution was identified between the acrylic and metal framework, which could be a factor in the failure of the acrylic. The metal framework showed high strain patterns on the major and minor connectors around the teeth, while the implant components transferred the load directly to the acrylic. © 2013 by the American College of Prosthodontists.

  8. Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Chen, Chen; Liang, C. Y.; Liu, Z. W.; Li, Y. S.; Che, Renchao

    2015-10-01

    Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed.Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed. Electronic supplementary information (ESI) available: Crystal structure pattern; calculated DOS diagram. See DOI: 10.1039/c5nr05528h

  9. Molecular Analysis of Mycobacterium avium Isolates by Using Pulsed-Field Gel Electrophoresis and PCR

    PubMed Central

    Pestel-Caron, Martine; Graff, Gabriel; Berthelot, Gilles; Pons, Jean-Louis; Lemeland, Jean-François

    1999-01-01

    Genetic relationships among 46 isolates of Mycobacterium avium recovered from 37 patients in a 2,500-bed hospital from 1993 to 1998 were assessed by pulsed-field gel electrophoresis (PFGE) and PCR amplification of genomic sequences located between the repetitive elements IS1245 and IS1311. Each technique enabled the identification of 27 to 32 different patterns among the 46 isolates, confirming that the genetic heterogeneity of M. avium strains is high in a given community. Furthermore, this retrospective analysis of sporadic isolates allowed us (i) to suggest the existence of two remanent strains in our region, (ii) to raise the question of the possibility of nosocomial acquisition of M. avium strains, and (iii) to document laboratory contamination. The methods applied in the present study were found to be useful for the typing of M. avium isolates. In general, both methods yielded similar results for both related and unrelated isolates. However, the isolates in five of the six PCR clusters were distributed among two to three PFGE patterns, suggesting that this PCR-based method may have limitations for the analysis of strains with low insertion sequence copy numbers or for resolution of extended epidemiologic relationships. PMID:10405383

  10. Growth stimulation of Brevibacterium sp. by siderophores.

    PubMed

    Noordman, W H; Reissbrodt, R; Bongers, R S; Rademaker, J L W; Bockelmann, W; Smit, G

    2006-09-01

    To assess which types of siderophores are typically produced by Brevibacterium and how siderophore production and utilization traits are distributed within this genus. During co-cultivation experiments it was found that growth of B. linens Br5 was stimulated by B. linens NIZO B1410 by two orders of magnitude. The stimulation was caused by the production of hydroxamate siderophores by B. linens NIZO B1410 that enabled the siderophore-auxotrophic strain Br5 to grow faster under the applied iron-limited growth conditions. Different patterns of siderophore production and utilization were observed within the genus Brevibacterium. These patterns did not reflect the phylogenetic relations within the group as determined by partial 16S rDNA sequencing. Most Brevibacterium strains were found to utilize hydroxamate siderophores. Brevibacteria can produce and utilize siderophores although certain strains within this genus are siderophore-auxotrophic. It is reported for the first time that brevibacteria produce and utilize siderophores. This knowledge can be utilized to stimulate growth of auxotrophic strains under certain conditions. Enhancing the growth rate of Brevibacterium is of importance for the application of this species, for example, for cheese manufacturing or for industrial production of enzymes or metabolites.

  11. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    PubMed Central

    Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  12. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.

  13. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    NASA Astrophysics Data System (ADS)

    Hedayati, R.; Mirzaali, M. J.; Vergani, L.; Zadpoor, A. A.

    2018-03-01

    Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of "action-at-a-distance" metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular) materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson's ratios as a way of making "action-at-a-distance" metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable) robotics and exosuits.

  14. Establishment of a Universal Size Standard Strain for Use with the PulseNet Standardized Pulsed-Field Gel Electrophoresis Protocols: Converting the National Databases to the New Size Standard

    PubMed Central

    Hunter, Susan B.; Vauterin, Paul; Lambert-Fair, Mary Ann; Van Duyne, M. Susan; Kubota, Kristy; Graves, Lewis; Wrigley, Donna; Barrett, Timothy; Ribot, Efrain

    2005-01-01

    The PulseNet National Database, established by the Centers for Disease Control and Prevention in 1996, consists of pulsed-field gel electrophoresis (PFGE) patterns obtained from isolates of food-borne pathogens (currently Escherichia coli O157:H7, Salmonella, Shigella, and Listeria) and textual information about the isolates. Electronic images and accompanying text are submitted from over 60 U.S. public health and food regulatory agency laboratories. The PFGE patterns are generated according to highly standardized PFGE protocols. Normalization and accurate comparison of gel images require the use of a well-characterized size standard in at least three lanes of each gel. Originally, a well-characterized strain of each organism was chosen as the reference standard for that particular database. The increasing number of databases, difficulty in identifying an organism-specific standard for each database, the increased range of band sizes generated by the use of additional restriction endonucleases, and the maintenance of many different organism-specific strains encouraged us to search for a more versatile and universal DNA size marker. A Salmonella serotype Braenderup strain (H9812) was chosen as the universal size standard. This strain was subjected to rigorous testing in our laboratories to ensure that it met the desired criteria, including coverage of a wide range of DNA fragment sizes, even distribution of bands, and stability of the PFGE pattern. The strategy used to convert and compare data generated by the new and old reference standards is described. PMID:15750058

  15. Strain analysis from nano-beam electron diffraction: Influence of specimen tilt and beam convergence.

    PubMed

    Grieb, Tim; Krause, Florian F; Schowalter, Marco; Zillmann, Dennis; Sellin, Roman; Müller-Caspary, Knut; Mahr, Christoph; Mehrtens, Thorsten; Bimberg, Dieter; Rosenauer, Andreas

    2018-07-01

    Strain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Strain Variation along Cimandiri Fault, West Java Based on Continuous and Campaign GPS Observation From 2006-2016

    NASA Astrophysics Data System (ADS)

    Safitri, A. A.; Meilano, I.; Gunawan, E.; Abidin, H. Z.; Efendi, J.; Kriswati, E.

    2018-03-01

    The Cimandiri fault which is running in the direction from Pelabuhan Ratu to Padalarang is the longest fault in West Java with several previous shallow earthquakes in the last 20 years. By using continues and campaign GPS observation from 2006-2016, we obtain the deformation pattern along the fault through the variation of strain tensor. We use the velocity vector of GPS station which is fixed in stable International Terrestrial Reference Frame 2008 to calculate horizontal strain tensor. Least Square Collocation is applied to produce widely dense distributed velocity vector and optimum scale factor for the Least Square Weighting matrix. We find that the strain tensor tend to change from dominantly contraction in the west to dominantly extension to the east of fault. Both the maximum shear strain and dilatation show positive value along the fault and increasing from the west to the east. The findings of strain tensor variation along Cimandiri Fault indicate the post seismic effect of the 2006 Java Earthquake.

  17. Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence.

    PubMed

    Dietzel, Erik; Anderson, Danielle E; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea

    2011-07-01

    In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.

  18. Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7

    PubMed Central

    Akao, Takeshi; Yashiro, Isao; Hosoyama, Akira; Kitagaki, Hiroshi; Horikawa, Hiroshi; Watanabe, Daisuke; Akada, Rinji; Ando, Yoshinori; Harashima, Satoshi; Inoue, Toyohisa; Inoue, Yoshiharu; Kajiwara, Susumu; Kitamoto, Katsuhiko; Kitamoto, Noriyuki; Kobayashi, Osamu; Kuhara, Satoru; Masubuchi, Takashi; Mizoguchi, Haruhiko; Nakao, Yoshihiro; Nakazato, Atsumi; Namise, Masahiro; Oba, Takahiro; Ogata, Tomoo; Ohta, Akinori; Sato, Masahide; Shibasaki, Seiji; Takatsume, Yoshifumi; Tanimoto, Shota; Tsuboi, Hirokazu; Nishimura, Akira; Yoda, Koji; Ishikawa, Takeaki; Iwashita, Kazuhiro; Fujita, Nobuyuki; Shimoi, Hitoshi

    2011-01-01

    The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast. PMID:21900213

  19. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization

    NASA Astrophysics Data System (ADS)

    Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze

    2016-01-01

    A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08618c

  20. HPV strain distribution in patients with genital warts in a female population sample.

    PubMed

    Boda, Daniel; Neagu, Monica; Constantin, Carolina; Voinescu, Razvan Nicolae; Caruntu, Constantin; Zurac, Sabina; Spandidos, Demetrios A; Drakoulis, Nikolaos; Tsoukalas, Dimitrios; Tsatsakis, Aristides M

    2016-09-01

    The incidence of human papillomavirus (HPV) in the human cancer domain is still a subject of intensive study. In this study, we examined cervical swab samples from 713 females with genital warts, and tested the samples for high- and low-risk genital HPV. HPV genotyping was assessed using a Genotyping test that detects HPV by the amplification of target DNA using polymerase chain reaction and nucleic acid hybridization. In total, we detected 37 anogenital HPV DNA genotypes [6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 45, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73 (MM9), 81, 82 (MM4), 83 (MM7), 84 (MM8), IS39 and CP6108] and investigated the incidence of these genotypes in the patients with genital warts. We found differences in the distribution of high-/low-risk strains and the incidence of high-risk strains was found to occur mainly in females under 35 years of age. The data from our study suggest that a detailed oral, rectal and genital identification of high-risk strains should be performed to visualize the entire pattern of possible triggers of carcinogenesis.

  1. Further consideration of the clonal nature of Salmonella typhi: evaluation of molecular and clinical characteristics of strains from Indonesia and Peru.

    PubMed Central

    Franco, A; Gonzalez, C; Levine, O S; Lagos, R; Hall, R H; Hoffman, S L; Moechtar, M A; Gotuzzo, E; Levine, M M; Hone, D M

    1992-01-01

    We examined envelope protein profiles, chromosomal restriction endonuclease digest patterns, and immune responses to envelope proteins for collections of Salmonella typhi strains isolated in Peru and Indonesia. Only minor differences in envelope protein patterns were apparent among strains. Strains from 7 of 20 Indonesian patients had a distinct chromosomal digest pattern compared with patterns of Peruvian and other Indonesian strains. Strains with this pattern carried the gene for the j flagellar antigen (H1-j); differences in response to envelope proteins of j and d strains were noted on immunoblot analysis. Our data suggest that there are genotypic and phenotypic differences among S. typhi strains. The clinical importance of these differences remains to be fully evaluated; however, in this study it was not possible to show a clear correlation between strain characteristics and disease severity. Images PMID:1500532

  2. Winter distribution and abundance of Snowy Plovers in eastern North America and the West Indies

    USGS Publications Warehouse

    Elliott-Smith, Elise; Haig, Susan M.; Ferland, C.L.; Gorman, Leah

    2004-01-01

    Serum protein changes were studied in immune and nonimmune pigeons infected with three different strains of Trichomonas gallinae. Strain I (nonvirulent) produced no change in the relative concentration of serum components. Strains II (oral canker) and III (Jones' Barn) produced decreases in albumin and alpha globulins, and increases in beta and gamma globulins between the 7th and 20th days post infection. Birds infected with strain II began to return to normal by the 20th day, while all those infected with strain III were dead between 10 and 14 days post infection. Two serum protein patterns resulted from infection of immune birds with the Jones' Barn strain. One showed no change in relative protein concentrations and no tissue invasion by the parasite while the other was similar to that seen in nonimmune birds infected with a strain producing oral canker. These also showed evidence of tissue invasion by the parasite. It was concluded that tissue invasion was necessary to evoke a quantitative change in serum protein concentrations.

  3. Phylogeography of Rickettsia rickettsii genotypes associated with fatal Rocky Mountain spotted fever.

    PubMed

    Paddock, Christopher D; Denison, Amy M; Lash, R Ryan; Liu, Lindy; Bollweg, Brigid C; Dahlgren, F Scott; Kanamura, Cristina T; Angerami, Rodrigo N; Pereira dos Santos, Fabiana C; Brasil Martines, Roosecelis; Karpathy, Sandor E

    2014-09-01

    Rocky Mountain spotted fever (RMSF), a tick-borne zoonosis caused by Rickettsia rickettsii, is among the deadliest of all infectious diseases. To identify the distribution of various genotypes of R. rickettsii associated with fatal RMSF, we applied molecular typing methods to samples of DNA extracted from formalin-fixed, paraffin-embedded tissue specimens obtained at autopsy from 103 case-patients from seven countries who died of RMSF. Complete sequences of one or more intergenic regions were amplified from tissues of 30 (29%) case-patients and revealed a distribution of genotypes consisting of four distinct clades, including the Hlp clade, regarded previously as a non-pathogenic strain of R. rickettsii. Distinct phylogeographic patterns were identified when composite case-patient and reference strain data were mapped to the state and country of origin. The phylogeography of R. rickettsii is likely determined by ecological and environmental factors that exist independently of the distribution of a particular tick vector. © The American Society of Tropical Medicine and Hygiene.

  4. Phylogeography of Rickettsia rickettsii Genotypes Associated with Fatal Rocky Mountain Spotted Fever

    PubMed Central

    Paddock, Christopher D.; Denison, Amy M.; Lash, R. Ryan; Liu, Lindy; Bollweg, Brigid C.; Dahlgren, F. Scott; Kanamura, Cristina T.; Angerami, Rodrigo N.; Pereira dos Santos, Fabiana C.; Brasil Martines, Roosecelis; Karpathy, Sandor E.

    2014-01-01

    Rocky Mountain spotted fever (RMSF), a tick-borne zoonosis caused by Rickettsia rickettsii, is among the deadliest of all infectious diseases. To identify the distribution of various genotypes of R. rickettsii associated with fatal RMSF, we applied molecular typing methods to samples of DNA extracted from formalin-fixed, paraffin-embedded tissue specimens obtained at autopsy from 103 case-patients from seven countries who died of RMSF. Complete sequences of one or more intergenic regions were amplified from tissues of 30 (29%) case-patients and revealed a distribution of genotypes consisting of four distinct clades, including the Hlp clade, regarded previously as a non-pathogenic strain of R. rickettsii. Distinct phylogeographic patterns were identified when composite case-patient and reference strain data were mapped to the state and country of origin. The phylogeography of R. rickettsii is likely determined by ecological and environmental factors that exist independently of the distribution of a particular tick vector. PMID:24957541

  5. PCR-based identification and characterization of Burkholderia cepacia complex bacteria from clinical and environmental sources.

    PubMed

    Seo, S-T; Tsuchiya, K

    2004-01-01

    To study the genotypic identification and characterization of the 119 Burkholderia cepacia complex (Bcc) strains recovered from clinical and environmental sources in Japan and Thailand. Based on the results of analysis by 16S rDNA RFLP generated after digestion with DdeI, the Bcc strains were differentiated into two patterns: pattern 1 (including Burkholderia vietnamiensis) and pattern 2 (including B. cepacia genomovar I, Burkholderia cenocepacia and Burkholderia stabilis). All strains belonged to pattern 2 except for one strain. In the RFLP analysis of the recA gene using HaeIII, strains were separated into eight patterns designated as A, D, E, G, H, I, J and K, of which pattern K was new. Burkholderia cepacia epidemic strain marker (BCESM) encoded by esmR [corrected] and the pyrrolnitrin biosynthetic locus encoded by prnC were present in 22 strains (18%) and 88 strains (74%) from all sources, respectively. All esmR-positive [corrected] strains belonged to B. cenocepacia, whereas most prnC-positive strains belonged to B. cepacia genomovar I. Strains derived from clinical sources were assigned to B. cepacia genomovar I, B. cenocepacia, B. stabilis and B. vietnamiensis. The majority of Bcc strains from environmental sources (77 of a total 95 strains) belonged to B. cepacia genomovar I, whereas the rest belonged to B. cenocepacia. On the basis of genomovar-specific PCR and prnC RFLP analysis, strains belonging to recA pattern K were identified as B. cepacia genomovar I. This work provides the genotypic identification of a collection of the Bcc strains from Japan and Thailand. RFLP analysis of the prnC gene promises to be a useful method for differentiating Burkholderia pyrrocinia from B. cepacia genomovar I strains.

  6. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization.

    PubMed

    Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze

    2016-02-07

    A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10,000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.

  7. Efficient characterization of inhomogeneity in contraction strain pattern.

    PubMed

    Nazzal, Christina M; Mulligan, Lawrence J; Criscione, John C

    2012-05-01

    Cardiac dyssynchrony often accompanies patients with heart failure (HF) and can lead to an increase in mortality rate. Cardiac resynchronization therapy (CRT) has been shown to provide substantial benefits to the HF population with ventricular dyssynchrony; however, there still exists a group of patients who do not respond to this treatment. In order to better understand patient response to CRT, it is necessary to quantitatively characterize both electrical and mechanical dyssynchrony. The quantification of mechanical dyssynchrony via characterization of contraction strain field inhomogeneity is the focus of this modeling investigation. Raw data from a 3D finite element (FE) model were received from Roy Kerckhoffs et al. and analyzed in MATLAB. The FE model consisted of canine left and right ventricles coupled to a closed circulation with the effects of the pericardium acting as a pressure on the epicardial surface. For each of three simulations (normal synchronous, SYNC, right ventricular apical pacing, RVA, and left ventricular free wall pacing, LVFW) the Gauss point locations and values were used to generate lookup tables (LUTs) with each entry representing a location in the heart. In essence, we employed piecewise cubic interpolation to generate a fine point cloud (LUTs) from a course point cloud (Gauss points). Strain was calculated in the fiber direction and was then displayed in multiple ways to better characterize strain inhomogeneity. By plotting average strain and standard deviation over time, the point of maximum contraction and the point of maximal inhomogeneity were found for each simulation. Strain values were organized into seven strain bins to show operative strain ranges and extent of inhomogeneity throughout the heart wall. In order to visualize strain propagation, magnitude, and inhomogeneity over time, we created 2D area maps displaying strain over the entire cardiac cycle. To visualize spatial strain distribution at the time point of maximum inhomogeneity, a 3D point cloud was created for each simulation, and a CURE index was calculated. We found that both the RVA and LFVW simulations took longer to reach maximum contraction than the SYNC simulation, while also exhibiting larger disparities in strain values during contraction. Strain in the hoop direction was also analyzed and was found to be similar to the fiber strain results. It was found that our method of analyzing contraction strain pattern yielded more detailed spacial and temporal information about fiber strain in the heart over the cardiac cycle than the more conventional CURE index method. We also observed that our method of strain binning aids in visualization of the strain fields, and in particular, the separation of the mass points into separate images associated with each strain bin allows the strain pattern to be explicitly compartmentalized.

  8. Pure shear and simple shear calcite textures. Comparison of experimental, theoretical and natural data

    USGS Publications Warehouse

    Wenk, H.-R.; Takeshita, T.; Bechler, E.; Erskine, B.G.; Matthies, S.

    1987-01-01

    The pattern of lattice preferred orientation (texture) in deformed rocks is an expression of the strain path and the acting deformation mechanisms. A first indication about the strain path is given by the symmetry of pole figures: coaxial deformation produces orthorhombic pole figures, while non-coaxial deformation yields monoclinic or triclinic pole figures. More quantitative information about the strain history can be obtained by comparing natural textures with experimental ones and with theoretical models. For this comparison, a representation in the sensitive three-dimensional orientation distribution space is extremely important and efforts are made to explain this concept. We have been investigating differences between pure shear and simple shear deformation incarbonate rocks and have found considerable agreement between textures produced in plane strain experiments and predictions based on the Taylor model. We were able to simulate the observed changes with strain history (coaxial vs non-coaxial) and the profound texture transition which occurs with increasing temperature. Two natural calcite textures were then selected which we interpreted by comparing them with the experimental and theoretical results. A marble from the Santa Rosa mylonite zone in southern California displays orthorhombic pole figures with patterns consistent with low temperature deformation in pure shear. A limestone from the Tanque Verde detachment fault in Arizona has a monoclinic fabric from which we can interpret that 60% of the deformation occurred by simple shear. ?? 1987.

  9. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.

    PubMed

    Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia

    2014-01-01

    The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.

  10. Application of a Genetically Encoded Biosensor for Live Cell Imaging of L-Valine Production in Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum Strains

    PubMed Central

    Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia

    2014-01-01

    The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains. PMID:24465669

  11. Application of genotypic and phenotypic analyses to commercial probiotic strain identity and relatedness.

    PubMed

    Yeung, P S M; Kitts, C L; Cano, R; Tong, P S; Sanders, M E

    2004-01-01

    The objective of this study was to generate strain-specific genomic patterns of a bank of 67 commercial and reference probiotic strains, with a focus on probiotic lactobacilli. Pulsed-field gel electrophoresis (PFGE) was used as the primary method for strain differentiation. This method was compared with carbohydrate fermentation analysis. To supplement visual comparison, PFGE patterns were analysed quantitatively by cluster analysis using unweighted pair group method with arithmetic averages. SmaI, NotI and XbaI were found to effectively generate clear and easy-to-interpret PFGE patterns of a range of probiotic strains. Some probiotic strains from different sources shared highly similar PFGE patterns. Results document the value of genotypic strain identification methods, combined with phenotypic methods, for determining probiotic strain identity and relatedness. No correlation was found between relatedness determined by carbohydrate fermentation profiles alone compared with PFGE analysis alone. Some commercial strains are probably derived from similar sources. This approach is valuable to the probiotic industry to develop commercial strain identification patterns, to provide quality control of strain manufacturing production runs, to track use of protected strains and to determine the relatedness among different research and commercial probiotic strains.

  12. Biaxially mechanical tuning of 2-D reversible and irreversible surface topologies through simultaneous and sequential wrinkling.

    PubMed

    Yin, Jie; Yagüe, Jose Luis; Boyce, Mary C; Gleason, Karen K

    2014-02-26

    Controlled buckling is a facile means of structuring surfaces. The resulting ordered wrinkling topologies provide surface properties and features desired for multifunctional applications. Here, we study the biaxially dynamic tuning of two-dimensional wrinkled micropatterns under cyclic mechanical stretching/releasing/restretching simultaneously or sequentially. A biaxially prestretched PDMS substrate is coated with a stiff polymer deposited by initiated chemical vapor deposition (iCVD). Applying a mechanical release/restretch cycle in two directions loaded simultaneously or sequentially to the wrinkled system results in a variety of dynamic and tunable wrinkled geometries, the evolution of which is investigated using in situ optical profilometry, numerical simulations, and theoretical modeling. Results show that restretching ordered herringbone micropatterns, created through sequential release of biaxial prestrain, leads to reversible and repeatable surface topography. The initial flat surface and the same wrinkled herringbone pattern are obtained alternatively after cyclic release/restretch processes, owing to the highly ordered structure leaving no avenue for trapping irregular topological regions during cycling as further evidenced by the uniformity of strains distributions and negligible residual strain. Conversely, restretching disordered labyrinth micropatterns created through simultaneous release shows an irreversible surface topology whether after sequential or simultaneous restretching due to creation of irregular surface topologies with regions of highly concentrated strain upon formation of the labyrinth which then lead to residual strains and trapped topologies upon cycling; furthermore, these trapped topologies depend upon the subsequent strain histories as well as the cycle. The disordered labyrinth pattern varies after each cyclic release/restretch process, presenting residual shallow patterns instead of achieving a flat state. The ability to dynamically tune the highly ordered herringbone patterning through mechanical stretching or other actuation makes these wrinkles excellent candidates for tunable multifunctional surfaces properties such as reflectivity, friction, anisotropic liquid flow or boundary layer control.

  13. Direct measurement of hoop strains in the intact and torn human medial meniscus.

    PubMed

    Jones, R Spencer; Keene, G C R; Learmonth, D J A; Bickerstaff, D; Nawana, N S; Costi, J J; Pearcy, M J

    1996-07-01

    OBJECTIVE: To measure the circumferential or hoop strains generated in the medial meniscus during loading of the knee joint and to examine the effect of longitudinal and radial tears in the meniscus on these strain values. DESIGN: An in vitro investigation measuring the circumferential strains in the medial menisci of cadaveric human knees as they were loaded in a materials testing machine. BACKGROUND: The menisci transmit approximately 50% of the load through the knee, the rest being transmitted by direct contact of the articular cartilage. Damage to the menisci will alter the pattern of load transmission as will meniscectomy. This study examined the changes in the mechanics of the meniscus in situ as a result of simulated tears to assess the effect of its load carrying capacity and the implications of surgery to remove part or all of a damaged meniscus. METHODS: Nineteen human cadaveric knees were tested. Windows were made in the joint capsule and strain gauges inserted into the anterior, middle and posterior sections of the medial meniscus. The knees were then loaded to three times body weight at speeds of 50 and 500 mm/min, with the knee joint at 0 degrees and 30 degrees of flexion. The tests were repeated following the creation of a longitudinal or a radial tear in the meniscus. RESULTS: The intact menisci showed significantly less strain in the posterior section compared to the anterior and middle sections (P < 0.003, with strains of 1.54%, 2.86% and 2.65% respectively). With a longitudinal tear this pattern changed with strains decreasing anteriorly and increasing posteriorly. There were also significant differences at different angles of knee joint flexion not seen in the intact meniscus. 50% radial tears reduced the strains anteriorly whilst a complete radial tear completely defunctioned the meniscus. CONCLUSIONS: This study has shown that there are significantly different hoop strains produced in different sections of the medial meniscus under load and the patterns of strain distribution are disturbed by meniscal tears. RELEVANCE: These results provide important data for mathematical models which must include non-uniform behaviour. They also have implications for the surgical management of torn menisci. Undamaged portions should be preserved and the integrity of the circumferential fibres maintained to ensure the menisci retain a load bearing capability.

  14. Human respiratory syncytial virus genomic and antigenic variants isolated in two hospitals during one epidemic, in Santiago, Chile.

    PubMed

    Luchsinger, Vivian; Noy, Andrea Elgueta; Avendaño, Luis F

    2008-07-01

    Human respiratory syncytial virus (HRSV) is a major cause of severe lower respiratory tract infection (LRI) in children. Distinct variants of the viruses have been described. The objective was to compare the antigenic and genetic variability of HRSV strains recovered from infants admitted to two hospitals during one epidemic in a big city. We analyzed nasopharyngeal aspirates from 201 infants admitted for LRI to two hospitals during 2002 in Santiago, Chile. The analyses were carried out using a panel of monoclonal antibodies against G glycoprotein epitopes (EIA) and RFLP for N and G genes. No differences in HRSV groups A/B and in N patterns distribution were observed among both hospitals. On the contrary, antigenic and genetic G patterns displayed a wide diversity of strains circulating during one epidemic, in one big city. RSV variability assessment depended rather on the tool used for analysis than on the geographical location.

  15. Comparison of coseismic near-field and off-fault surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes: Implications for controls on the distribution of surface strain

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.

    2016-10-01

    Subpixel correlation of preevent and postevent air photos reveal the complete near-field, horizontal surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine ruptures. Total surface displacement values for both earthquakes are systematically larger than "on-fault" displacements from geologic field surveys, indicating significant distributed, inelastic deformation occurred along these ruptures. Comparison of these two data sets shows that 46 ± 10% and 39 ± 22% of the total surface deformation were distributed over fault zones averaging 154 m and 121 m in width for the Landers and Hector Mine events, respectively. Spatial variations of distributed deformation along both ruptures show correlations with the type of near-surface lithology and degree of fault complexity; larger amounts of distributed shear occur where the rupture propagated through loose unconsolidated sediments and areas of more complex fault structure. These results have basic implications for geologic-geodetic rate comparisons and probabilistic seismic hazard analysis.

  16. Highly sensitive distributed birefringence measurements based on a two-pulse interrogation of a dynamic Brillouin grating

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Denisov, Andrey; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Thévenaz, Luc; Gonzalez-Herraez, Miguel

    2017-04-01

    A method for distributed birefringence measurements is proposed based on the interference pattern generated by the interrogation of a dynamic Brillouin grating (DBG) using two short consecutive optical pulses. Compared to existing DBG interrogation techniques, the method here offers an improved sensitivity to birefringence changes thanks to the interferometric effect generated by the reflections of the two pulses. Experimental results demonstrate the possibility to obtain the longitudinal birefringence profile of a 20 m-long Panda fibre with an accuracy of 10-8 using 16 averages and 30 cm spatial resolution. The method enables sub-metric and highly-accurate distributed temperature and strain sensing.

  17. Mechanical deformation model of the western United States instantaneous strain-rate field

    USGS Publications Warehouse

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF system is systematically underpredicted by models which account only for relaxation from known large earthquakes. This strongly suggests that in addition to viscoelastic-cycle effects, steady deep slip in the lower lithosphere is needed to explain the observed strain-rate field. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  18. Kirigami-based PVDF thin-film as stretchable strain sensor

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Chen, Dajing; Hao, Nanjing; Huang, Shicheng; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi

    Kirigami, as the sister of the origami, involves cutting of 2D sheets to form complex 3D geometries with out-of-plane patterns. Motivated by the development of the high-stretchable biomedical devices, we explore the stretchability of the kirigami-based PVDF thin film under tension. Our structural prototypes include a set of 2D geometry with kirigami-based pattern cutting on PVDF thin films. We first used paper models to generate a wide range of cutting patterns to study the deformation under compression tests, the results of which are compared with finite element simulations. We then proceeded to test different kirigami-based designs to identify geometric parameters that can tune the post-buckling response and strain distribution. Next, we fabricated and tested the PVDF thin film with kirigami pattern. Experiments showed that the PVDF film in the absence of cutting can be stretched to a limited extent and will break upon further stretching. In contrast, the kirigami-based films can be stretched up to 100% without failure. Our designs demonstrate the ability to significantly improve the strain range of the structure and sensing ability of a sensor. We envision a promising future to use this class of structural elements to develop highly stretchable materials, structures, and devices. Z.C. acknowledges the Society in Science-Branco Weiss fellowship, administered by ETH Zürich. J.X.J.Z. acknowledges the NIH Director's Transformative Research Award (1R01 OD022910-01).

  19. Molecular subtyping of Clostridium perfringens by pulsed-field gel electrophoresis to facilitate food-borne-disease outbreak investigations.

    PubMed

    Maslanka, S E; Kerr, J G; Williams, G; Barbaree, J M; Carson, L A; Miller, J M; Swaminathan, B

    1999-07-01

    Clostridium perfringens is a common cause of food-borne illness. The illness is characterized by profuse diarrhea and acute abdominal pain. Since the illness is usually self-limiting, many cases are undiagnosed and/or not reported. Investigations are often pursued after an outbreak involving large numbers of people in institutions, at restaurants, or at catered meals. Serotyping has been used in the past to assist epidemiologic investigations of C. perfringens outbreaks. However, serotyping reagents are not widely available, and many isolates are often untypeable with existing reagents. We developed a pulsed-field gel electrophoresis (PFGE) method for molecular subtyping of C. perfringens isolates to aid in epidemiologic investigations of food-borne outbreaks. Six restriction endonucleases (SmaI, ApaI, FspI, MluI, KspI, and XbaI) were evaluated with a select panel of C. perfringens strains. SmaI was chosen for further studies because it produced 11 to 13 well-distributed bands of 40 to approximately 1,100 kb which provided good discrimination between isolates. Seventeen distinct patterns were obtained with 62 isolates from seven outbreak investigations or control strains. In general, multiple isolates from a single individual had indistinguishable PFGE patterns. Epidemiologically unrelated isolates (outbreak or control strains) had unique patterns; isolates from different individuals within an outbreak had similar, if not identical, patterns. PFGE identifies clonal relationships of isolates which will assist epidemiologic investigations of food-borne-disease outbreaks caused by C. perfringens.

  20. Sources of bovine tuberculosis in the United States.

    PubMed

    Tsao, Kimberly; Robbe-Austerman, Suelee; Miller, Ryan S; Portacci, Katie; Grear, Daniel A; Webb, Colleen

    2014-12-01

    Despite control and eradication efforts, bovine tuberculosis continues to be identified at low levels among cattle in the United States. We evaluated possible external sources of infection by characterizing the genetic relatedness of bovine tuberculosis from a national database of reported infections, comparing strains circulating among US cattle with those of imported cattle, and farmed and wild cervids. Farmed cervids maintained a genetically distinct Mycobacterium bovis strain, and cattle occasionally became infected with this strain. In contrast, wild cervids acted as an epidemiologically distinct group, instead hosting many of the same strains found in cattle, and the data did not show a clear transmission direction. Cattle from Mexico hosted a higher overall richness of strains than US cattle, and many of those strains were found in both US and Mexican cattle. However, these two populations appeared to be well-mixed with respect to their M. bovis lineages, and higher resolution data is necessary to infer the direction of recent transmission. Overall patterns of both host and geographic distributions were highly variable among strains, suggesting that different sources or transmission mechanisms are contributing to maintaining different strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Active Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Effinger, Robert T., IV; Aranda, Isaiah, Jr.; Copeland, Ben M.; Covington, Ed W., III

    2002-01-01

    Several active piezoelectric diaphragms were fabricated by placing unelectroded piezoelectric disks between copper clad films patterned with Inter-Circulating Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is radially distributed electric field that mechanically strains the piezo-ceramic along the Z-axis (perpendicular to the applied electric field), rather than the expected in-plane (XY-axis) direction. Unlike other out of plane piezoelectric actuators, which are benders, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements while maintaining a constant circumference. This paper covers the fabrication and characterization of these diaphragms as a function of poling field strength, ceramic diameter and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage ranging from DC to 10 Hz.

  2. Lattice-Mismatch-Induced Oscillatory Feature Size and Its Impact on the Physical Limitation of Grain Size

    NASA Astrophysics Data System (ADS)

    Deng, Jinyu; Li, Huihui; Dong, Kaifeng; Li, Run-Wei; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng

    2018-03-01

    We find that the misfit strain may lead to the oscillatory size distributions of heteroepitaxial nanostructures. In heteroepitaxial FePt thin films grown on single-crystal MgO substrate, ⟨110 ⟩ -oriented mazelike and granular patterns with "quantized" feature sizes are realized in scanning-electron-microscope images. The physical mechanism responsible for the size oscillations is related to the oscillatory nature of the misfit strain energy in the domain-matching epitaxial FePt /MgO system, which is observed by transmission electron microscopy. Based on the experimental observations, a model is built and the results suggest that when the FePt island sizes are an integer times the misfit dislocation period, the misfit strain can be completely canceled by the misfit dislocations. With applying the mechanism, small and uniform grain is obtained on the TiN (200) polycrystalline underlayer, which is suitable for practical application. This finding may offer a way to synthesize nanostructured materials with well-controlled size and size distribution by tuning the lattice mismatch between the epitaxial-grown heterostructure.

  3. Effects of Foot Strike and Step Frequency on Achilles Tendon Stress During Running.

    PubMed

    Lyght, Michael; Nockerts, Matthew; Kernozek, Thomas W; Ragan, Robert

    2016-08-01

    Achilles tendon (AT) injuries are common in runners. The AT withstands high magnitudes of stress during running which may contribute to injury. Our purpose was to examine the effects of foot strike pattern and step frequency on AT stress and strain during running utilizing muscle forces based on a musculoskeletal model and subject-specific ultrasound-derived AT cross-sectional area. Nineteen female runners performed running trials under 6 conditions, including rearfoot strike and forefoot strike patterns at their preferred cadence, +5%, and -5% preferred cadence. Rearfoot strike patterns had less peak AT stress (P < .001), strain (P < .001), and strain rate (P < .001) compared with the forefoot strike pattern. A reduction in peak AT stress and strain were exhibited with a +5% preferred step frequency relative to the preferred condition using a rearfoot (P < .001) and forefoot (P=.005) strike pattern. Strain rate was not different (P > .05) between step frequencies within each foot strike condition. Our results suggest that a rearfoot pattern may reduce AT stress, strain, and strain rate. Increases in step frequency of 5% above preferred frequency, regardless of foot strike pattern, may also lower peak AT stress and strain.

  4. 3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning

    NASA Astrophysics Data System (ADS)

    Cawood, Adam J.; Bond, Clare E.

    2018-01-01

    Stratigraphic influence on structural style and strain distribution in deformed sedimentary sequences is well established, in models of 2D mechanical stratigraphy. In this study we attempt to refine existing models of stratigraphic-structure interaction by examining outcrop scale 3D variations in sedimentary architecture and the effects on subsequent deformation. At Monkstone Point, Pembrokeshire, SW Wales, digital mapping and virtual scanline data from a high resolution virtual outcrop have been combined with field observations, sedimentary logs and thin section analysis. Results show that significant variation in strain partitioning is controlled by changes, at a scale of tens of metres, in sedimentary architecture within Upper Carboniferous fluvio-deltaic deposits. Coupled vs uncoupled deformation of the sequence is defined by the composition and lateral continuity of mechanical units and unit interfaces. Where the sedimentary sequence is characterized by gradational changes in composition and grain size, we find that deformation structures are best characterized by patterns of distributed strain. In contrast, distinct compositional changes vertically and in laterally equivalent deposits results in highly partitioned deformation and strain. The mechanical stratigraphy of the study area is inherently 3D in nature, due to lateral and vertical compositional variability. Consideration should be given to 3D variations in mechanical stratigraphy, such as those outlined here, when predicting subsurface deformation in multi-layers.

  5. Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola.

    PubMed

    Chen, Yaowen; Li, Zongcheng; Hu, Shuofeng; Zhang, Jian; Wu, Jiaqi; Shao, Ningsheng; Bo, Xiaochen; Ni, Ming; Ying, Xiaomin

    2017-02-01

    Gut microbes play a critical role in human health and disease, and researchers have begun to characterize their genomes, the so-called gut metagenome. Thus far, metagenomics studies have focused on genus- or species-level composition and microbial gene sets, while strain-level composition and single-nucleotide polymorphism (SNP) have been overlooked. The gut metagenomes of type 2 diabetes (T2D) patients have been found to be enriched with butyrate-producing bacteria and sulfate reduction functions. However, it is not known whether the gut metagenomes of T2D patients have characteristic strain patterns or SNP distributions. We downloaded public gut metagenome datasets from 170 T2D patients and 174 healthy controls and performed a systematic comparative analysis of their metagenome SNPs. We found that Bacteroides coprocola, whose relative abundance did not differ between the groups, had a characteristic distribution of SNPs in the T2D patient group. We identified 65 genes, all in B. coprocola, that had remarkably different enrichment of SNPs. The first and sixth ranked genes encode glycosyl hydrolases (GenBank accession EDU99824.1 and EDV02301.1). Interestingly, alpha-glucosidase, which is also a glycosyl hydrolase located in the intestine, is an important drug target of T2D. These results suggest that different strains of B. coprocola may have different roles in human gut and a specific set of B. coprocola strains are correlated with T2D.

  6. Localization through surface folding in solid foams under compression.

    PubMed

    Reis, P M; Corson, F; Boudaoud, A; Roman, B

    2009-07-24

    We report a combined experimental and theoretical study of the compression of a solid foam coated with a thin elastic film. Past a critical compression threshold, a pattern of localized folds emerges with a characteristic size that is imposed by an instability of the thin surface film. We perform optical surface measurements of the statistical properties of these localization zones and find that they are characterized by robust exponential tails in the strain distributions. Following a hybrid continuum and statistical approach, we develop a theory that accurately describes the nucleation and length scale of these structures and predicts the characteristic strains associated with the localized regions.

  7. The numerical simulation study of the dynamic evolutionary processes in an earthquake cycle on the Longmen Shan Fault

    NASA Astrophysics Data System (ADS)

    Tao, Wei; Shen, Zheng-Kang; Zhang, Yong

    2016-04-01

    The Longmen Shan, located in the conjunction of the eastern margin the Tibet plateau and Sichuan basin, is a typical area for studying the deformation pattern of the Tibet plateau. Following the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), a great deal of observations and studies on geology, geophysics, and geodesy have been carried out for this region, with results published successively in recent years. Using the 2D viscoelastic finite element model, introducing the rate-state friction law to the fault, this thesis makes modeling of the earthquake recurrence process and the dynamic evolutionary processes in an earthquake cycle of 10 thousand years. By analyzing the displacement, velocity, stresses, strain energy and strain energy increment fields, this work obtains the following conclusions: (1) The maximum coseismic displacement on the fault is on the surface, and the damage on the hanging wall is much more serious than that on the foot wall of the fault. If the detachment layer is absent, the coseismic displacement would be smaller and the relative displacement between the hanging wall and foot wall would also be smaller. (2) In every stage of the earthquake cycle, the velocities (especially the vertical velocities) on the hanging wall of the fault are larger than that on the food wall, and the values and the distribution patterns of the velocity fields are similar. While in the locking stage prior to the earthquake, the velocities in crust and the relative velocities between hanging wall and foot wall decrease. For the model without the detachment layer, the velocities in crust in the post-seismic stage is much larger than those in other stages. (3) The maximum principle stress and the maximum shear stress concentrate around the joint of the fault and detachment layer, therefore the earthquake would nucleate and start here. (4) The strain density distribution patterns in stages of the earthquake cycle are similar. There are two concentration areas in the model, one is located in the mid and upper crust on the hanging wall where the strain energy could be released by permanent deformation like folding, and the other lies in the deep part of the fault where the strain energy could be released by earthquakes. (5) The whole earthquake dynamic process could be clearly reflected by the evolutions of the strain energy increments on the stages of the earthquake cycle. In the inter-seismic period, the strain energy accumulates relatively slowly; prior to the earthquake, the fault is locking and the strain energy accumulates fast, and some of the strain energy is released on the upper crust on the hanging wall of the fault. In coseismic stage, the strain energy is released fast along the fault. In the poseismic stage, the slow accumulation process of strain recovers rapidly as that in the inerseismic period in around one hundred years. The simulation study in this thesis would help better understand the earthquake dynamic process.

  8. Finite Element Modeling of Passive Material Influence on the Deformation and Force Output of Skeletal Muscle

    PubMed Central

    Hodgson, John A.; Chi, Sheng-Wei; Yang, Judy P.; Chen, Jiun-Shyan; Edgerton, V. Reggie; Sinha, Shantanu

    2014-01-01

    The pattern of deformation of the different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. Maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo muscle contractions and is easily extrapolated from our plane-strain conditions into a 3-dimensional structure. Such modeling approaches have the potential of explaining the reduction of force output consequent to changes in material properties of intramuscular materials arising in the diseased state such as in genetic disorders. PMID:22498294

  9. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.

    PubMed

    Hodgson, John A; Chi, Sheng-Wei; Yang, Judy P; Chen, Jiun-Shyan; Edgerton, Victor R; Sinha, Shantanu

    2012-05-01

    The pattern of deformation of different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. The maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in the optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo muscle contractions and is easily extrapolated from our plane-strain conditions into a three-dimensional structure. Such modeling approaches have the potential of explaining the reduction of force output consequent to changes in material properties of intramuscular materials arising in the diseased state such as in genetic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Allan, Andrew; McComb, Christie; Luo, Xiaoyu; Berry, Colin

    2014-07-01

    Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.

  11. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.

    PubMed

    Vetter, A; Liu, Y; Witt, F; Manjubala, I; Sander, O; Epari, D R; Fratzl, P; Duda, G N; Weinkamer, R

    2011-02-03

    During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Dermal Aged and Fetal Fibroblasts Realign in Response to Mechanical Strain

    NASA Technical Reports Server (NTRS)

    Sawyer, Christine; Grymes, Rose; Alvarez, Teresa (Technical Monitor)

    1994-01-01

    Integrins specifically recognize and bind extracellular matrix components, providing physical anchor points and functional setpoints. Focal adhesion complexes, containing integrin and cytoskeletal proteins, are potential mechanoreceptors, poised to distribute applied forces through the cytoskeleton. Pursuing the hypothesis that cells both perceive and respond to external force, we applied a stretch/relaxation regimen to normal human fetal and aged dermal fibroblast monolayers cultured on flexible membranes. The frequency and magnitude of the applied force is precisely controlled by the Flexercell Unit(Trademark). A protocol of stretch (20% elongation of the monolayer) at a frequency of 6 cycles/min caused a progressive change from a randomly distributed pattern of cells to a symmetric, radial distribution with cells aligned parallel to the applied force. We have coined the term 'orienteering' as the process of active alignment of cells in response to applied force. Cytochalasin D was added in graded doses to investigate the role of the actin cytoskeleton in force perception and transmission. A clear dose response was found; at high concentrations orienteering was abolished; and the drug's impact was reversible. The two cell strains used were similar in their alignment behavior and in their responses to cytochalasin D. Orienteering was influenced by cell density, and the cell strains studied differed in this respect. Fetal cells, unlike their aged counterparts, failed to orient at high cell density. In both cell strains, mid-density cultures aligned rapidly and sparse cultures lagged. These results indicate that both cell-cell adhesion and cytoskeleton integrity are critical in mediating the orienteering response. Differences between these two cell strains may relate to their expression of extracellular matrix molecules (fibronectin, collagen type 1) integrins and their relative binding affinities.

  13. Molecular phylogenetic study in genus Hydra.

    PubMed

    Kawaida, Hitomi; Shimizu, Hiroshi; Fujisawa, Toshitaka; Tachida, Hidenori; Kobayakawa, Yoshitaka

    2010-11-15

    Among 8000-9000 species of Cnidaria, only several dozens of species of Hydrozoa have been found in the fresh water. Hydra is such a fresh water polyp and has been used as a good material for research in developmental biology, regeneration and pattern formation. Although the genus Hydra has only a few ten species, its distribution is cosmopolitan. The phylogenetic relationship between hydra species is fascinating from the aspect of evolutionary biology and biogeography. However, only a few molecular phylogenetic studies have been reported on hydra. Therefore, we conducted a molecular phylogenetic study of the genus Hydra based on mitochondrial and nuclear nucleotide sequences using a hydra collection that has been kept in the National Institute of Genetics (NIG) of Japan. The results support the idea that four species groups comprise the genus Hydra. Within the viridissima group (green hydra) and braueri group, genetic distances between strains were relatively large. In contrast, genetic distances between strains among the vulgaris and oligactis groups were small irrespective of their geographic distribution. The vulgaris group strains were classified at least (as far as our investigated samples) into three sub-groups, vulgaris sub-group, carnea sub-group, and H. sp. (K5 and K6) sub-group. All of the vulgaris sub-group and H. sp. (K5 and K6) sub-group strains were collected in Eurasia. The carnea sub-group strains in NIG collection were all collected in North America. A few newly collected samples in Japan, however, suggested belonging to the carnea sub-group according to the molecular phylogenic analysis. This suggests a trans-Pacific distribution of the carnea sub-group hydra. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Genetics of Host Response to Leishmania tropica in Mice – Different Control of Skin Pathology, Chemokine Reaction, and Invasion into Spleen and Liver

    PubMed Central

    Grekov, Igor; Volkova, Valeriya; Vojtíšková, Jarmila; Slapničková, Martina; Kurey, Iryna; Sohrabi, Yahya; Svobodová, Milena; Demant, Peter; Lipoldová, Marie

    2012-01-01

    Background Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models. Methods We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured. Principal Findings Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain. Conclusion Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes. PMID:22679519

  15. Relationships between in vivo microdamage and the remarkable regional material and strain heterogeneity of cortical bone of adult deer, elk, sheep and horse calcanei

    PubMed Central

    Skedros, John G; Sybrowsky, Christian L; Anderson, Wm Erick; Chow, Frank

    2011-01-01

    Natural loading of the calcanei of deer, elk, sheep and horses produces marked regional differences in prevalent/predominant strain modes: compression in the dorsal cortex, shear in medial–lateral cortices, and tension/shear in the plantar cortex. This consistent non-uniform strain distribution is useful for investigating mechanisms that mediate the development of the remarkable regional material variations of these bones (e.g. collagen orientation, mineralization, remodeling rates and secondary osteon morphotypes, size and population density). Regional differences in strain-mode-specific microdamage prevalence and/or morphology might evoke and sustain the remodeling that produces this material heterogeneity in accordance with local strain characteristics. Adult calcanei from 11 animals of each species (deer, elk, sheep and horses) were transversely sectioned and examined using light and confocal microscopy. With light microscopy, 20 linear microcracks were identified (deer: 10; elk: six; horse: four; sheep: none), and with confocal microscopy substantially more microdamage with typically non-linear morphology was identified (deer: 45; elk: 24; horse: 15; sheep: none). No clear regional patterns of strain-mode-specific microdamage were found in the three species with microdamage. In these species, the highest overall concentrations occurred in the plantar cortex. This might reflect increased susceptibility of microdamage in habitual tension/shear. Absence of detectable microdamage in sheep calcanei may represent the (presumably) relatively greater physical activity of deer, elk and horses. Absence of differences in microdamage prevalence/morphology between dorsal, medial and lateral cortices of these bones, and the general absence of spatial patterns of strain-mode-specific microdamage, might reflect the prior emergence of non-uniform osteon-mediated adaptations that reduce deleterious concentrations of microdamage by the adult stage of bone development. PMID:21951210

  16. Distribution and Phylogeny of Immunoglobulin-Binding Protein G in Shiga Toxin-Producing Escherichia coli and Its Association with Adherence Phenotypes▿

    PubMed Central

    Merkel, Viktor; Ohder, Barbara; Bielaszewska, Martina; Zhang, Wenlan; Fruth, Angelika; Menge, Christian; Borrmann, Erika; Middendorf, Barbara; Müthing, Johannes; Karch, Helge; Mellmann, Alexander

    2010-01-01

    eibG in Shiga toxin-producing Escherichia coli (STEC) O91 encodes a protein (EibG) which binds human immunoglobulins G and A and contributes to bacterial chain-like adherence to human epithelial cells. We investigated the prevalence of eibG among STEC, the phylogeny of eibG, and eibG allelic variations and their impact on the adherence phenotype. eibG was found in 15.0% of 240 eae-negative STEC strains but in none of 157 eae-positive STEC strains. The 36 eibG-positive STEC strains belonged to 14 serotypes and to eight multilocus sequence types (STs), with serotype O91:H14/H− and ST33 being the most common. Sequences of the complete eibG gene (1,527 bp in size) from eibG-positive STEC resulted in 21 different alleles with 88.11% to 100% identity to the previously reported eibG sequence; they clustered into three eibG subtypes (eibG-α, eibG-β, and eibG-γ). Strains expressing EibG-α and EibG-β displayed a mostly typical chain-like adherence pattern (CLAP), with formation of long chains on both human and bovine intestinal epithelial cells, whereas strains with EibG-γ adhered in short chains, a pattern we termed atypical CLAP. The same adherence phenotypes were displayed by E. coli BL21(DE3) clones containing the respective eibG-α, eibG-β, and eibG-γ subtypes. We propose two possible evolutionary scenarios for eibG in STEC: a clonal development of eibG in strains with the same phylogenetic background or horizontal transfer of eibG between phylogenetically unrelated STEC strains. PMID:20547747

  17. Model of an axially strained weakly guiding optical fiber modal pattern

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1992-01-01

    Axial strain can be determined by monitoring the modal pattern variation of an optical fiber. The results of a numerical model developed to calculate the modal pattern variation at the end of a weakly guiding optical fiber under axial strain is presented. Whenever an optical fiber is under stress, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term for the fields and the fiber output pattern are also modified. For multimode fibers, very complicated patterns result. The predicted patterns are presented, and an expression for the phase variation with strain is derived.

  18. Genotypic and Phenotypic Characteristics of Corynebacterium diphtheriae Strains Isolated from Patients in Belarus during an Epidemic Period

    PubMed Central

    Titov, Leonid; Kolodkina, Valentina; Dronina, Alina; Grimont, Francine; Grimont, Patrick A. D.; Lejay-Collin, Monique; de Zoysa, Aruni; Andronescu, Constantin; Diaconescu, Angela; Marin, Byanca; Efstratiou, Androulla

    2003-01-01

    One hundred two Corynebacterium diphtheriae strains (93 of the gravis biotype and nine of the mitis biotype) isolated from clinical cases during the Belarus diphtheria epidemic were characterized by biotyping, toxigenicity testing by the Elek test and an indirect hemagglutination assay, phage typing, and ribotyping. The gravis biotype strains were characterized as high and medium toxin producers, and strains of biotype mitis were characterized as low and medium toxin producers. Most strains (82 of 102) were distributed among five phage types. Seventy-two strains (64 of the gravis biotype and 8 of the mitis biotype) belonged to phage type VI ls5,34add. Hybridization of genomic DNA digested with BstEII and PvuII revealed five ribotype patterns, namely, D1, D4, D6, D7, and D13. The majority of gravis biotype strains belonged to ribotypes D1 (49 of 93) and D4 (33 of 93) and included one clonal group of C. diphtheriae. This clone predominated in all regions in Belarus. There was a statistical association between ribotypes and phage types but not between ribotypes and levels of toxin production. PMID:12624069

  19. Method of producing strained-layer semiconductor devices via subsurface-patterning

    DOEpatents

    Dodson, Brian W.

    1993-01-01

    A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.

  20. Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef.

    PubMed

    Ulstrup, K E; Van Oppen, M J H

    2003-12-01

    Intra- and intercolony diversity and distribution of zooxanthellae in acroporid corals is largely uncharted. In this study, two molecular methods were applied to determine the distribution of zooxanthellae in the branching corals Acropora tenuis and A. valida at several reef locations in the central section of the Great Barrier Reef. Sun-exposed and shaded parts of all colonies were examined. Single-stranded conformational polymorphism analysis showed that individual colonies of A. tenuis at two locations harbour two strains of Symbiodinium belonging to clade C (C1 and C2), whereas conspecific colonies at two other reefs harboured a single zooxanthella strain. A. valida was found to simultaneously harbour strains belonging to two distinct phylogenetic clades (C and D) at all locations sampled. A novel method with improved sensitivity (quantitative polymerase chain reaction using Taqman fluorogenic probes) was used to map the relative abundance distribution of the two zooxanthella clades. At two of the five sampling locations both coral species were collected. At these two locations, composition of the zooxanthella communities showed the same pattern in both coral species, i.e. correlation with ambient light in Pioneer Bay and an absence thereof in Nelly Bay. The results show that the distribution of genetically distinct zooxanthellae is correlated with light regime and possibly temperature in some (but not all) colonies of A. tenuis and A. valida and at some reef locations, which we interpret as acclimation to local environmental conditions.

  1. Three dimensional characterization of GaN-based light emitting diode grown on patterned sapphire substrate by confocal Raman and photoluminescence spectromicroscopy.

    PubMed

    Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming

    2017-03-30

    We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the In x Ga 1-x N/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E 2 (high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the In x Ga 1-x N/GaN MQWs active layer.

  2. Three dimensional characterization of GaN-based light emitting diode grown on patterned sapphire substrate by confocal Raman and photoluminescence spectromicroscopy

    PubMed Central

    Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming

    2017-01-01

    We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the InxGa1−xN/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E2(high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the InxGa1−xN/GaN MQWs active layer. PMID:28358119

  3. Phage Types and Genotypes of Shiga Toxin-Producing Escherichia coli O157:H7 Isolates from Humans and Animals in Spain: Identification and Characterization of Two Predominating Phage Types (PT2 and PT8)

    PubMed Central

    Mora, Azucena; Blanco, Miguel; Blanco, Jesús E.; Alonso, M. Pilar; Dhabi, Ghizlane; Thomson-Carter, Fiona; Usera, Miguel A.; Bartolomé, Rosa; Prats, Guillermo; Blanco, Jorge

    2004-01-01

    Phage typing and DNA macrorestriction fragment analysis by pulsed-field electrophoresis (PFGE) were used for the epidemiological subtyping of a collection of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains isolated in Spain between 1980 and 1999. Phage typing distinguished a total of 18 phage types among 171 strains isolated from different sources (67 humans, 82 bovines, 12 ovines, and 10 beef products). However, five phage types, phage type 2 (PT2; 42 strains), PT8 (33 strains), PT14 (14 strains), PT21/28 (11 strains), and PT54 (16 strains), accounted for 68% of the study isolates. PT2 and PT8 were the most frequently found among strains from both humans (51%) and bovines (46%). Interestingly, we detected a significant association between PT2 and PT14 and the presence of acute pathologies. A group of 108 of the 171 strains were analyzed by PFGE, and 53 distinct XbaI macrorestriction patterns were identified, with 38 strains exhibiting unique PFGE patterns. In contrast, phage typing identified 15 different phage types. A total of 66 phage type-PFGE subtype combinations were identified among the 108 strains. PFGE subtyping differentiated between unrelated strains that exhibited the same phage type. The most common phage type-PFGE pattern combinations were PT2-PFGE type 1 (1 human and 11 bovine strains), PT8-PFGE type 8 (2 human, 6 bovine, and 1 beef product strains), PT2-PFGE subtype 4A (1 human, 3 bovine, and 1 beef product strains). Nine (29%) of 31 human strains showed phage type-PFGE pattern combinations that were detected among the bovine strains included in this study, and 26 (38%) of 68 bovine strains produced phage type-PFGE pattern combinations observed among human strains included in this study, confirming that cattle are a major reservoir of strains pathogenic for humans. PT2 and PT8 strains formed two groups which differed from each other in their motilities, stx genotypes, PFGE patterns, and the severity of the illnesses that they caused. PMID:15364983

  4. Phylogeographic distribution of very virulent infectious bursal disease virus isolates in the Iberian Peninsula.

    PubMed

    Cortey, Martí; Bertran, Kateri; Toskano, Jennifer; Majó, Natàlia; Dolz, Roser

    2012-01-01

    Viral population dynamics of very virulent infectious bursal disease virus (vvIBDV) field strains isolated in the Iberian Peninsula since the first outbreak in the 1990s have been analysed. Low levels of genetic variability and a global purification selection pattern were reported in 480 base pairs of the hypervariable region of the VP2 gene, indicating a lack of a selection-driven immune escape in the evolutive pathway of the virus. The viral population structure of vvIBDV strains in the Iberian Peninsula showed a strong relationship between geography and phylogeny, with two main groups observed. A global comparison among vvIBDV strains also showed an association with sequences from the same country. The low variability, the strong purifying selection and the geographical pattern observed point to a picture where the virus evolves slowly, occupying the same geographical niche for a long time. The scenario depicted fits well with the biological features of the virus: being able to remain viable for long periods of time due to a strong environmental resistance, and as an immunosuppressive agent, capable per se of annihilating temporally the immune system of the host.

  5. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  6. Model of an axially strained weakly guiding optical fiber modal pattern

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1991-01-01

    Axial strain may be determined by monitoring the modal pattern variation of an optical fiber. In this paper we present the results of a numerical model that has been developed to calculate the modal pattern variation at the end of a weakly guiding optical fiber under axial strain. Whenever an optical fiber is under stress, the optical path length, the index of refraction and the propagation constants of each fiber mode change. In consequence, the modal phase term of the fields and the fiber output pattern are also modified. For multimode fibers, very complicated patterns result. The predicted patterns are presented, and an expression for the phase variation with strain is derived.

  7. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria.

    PubMed

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-29

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  8. Job strain — Attributable depression in a sample of working Australians: Assessing the contribution to health inequalities

    PubMed Central

    LaMontagne, Anthony D; Keegel, Tessa; Vallance, Deborah; Ostry, Aleck; Wolfe, Rory

    2008-01-01

    Background The broad aim of this study was to assess the contribution of job strain to mental health inequalities by (a) estimating the proportion of depression attributable to job strain (low control and high demand jobs), (b) assessing variation in attributable risk by occupational skill level, and (c) comparing numbers of job strain–attributable depression cases to numbers of compensated 'mental stress' claims. Methods Standard population attributable risk (PAR) methods were used to estimate the proportion of depression attributable to job strain. An adjusted Odds Ratio (OR) of 1.82 for job strain in relation to depression was obtained from a recently published meta-analysis and combined with exposure prevalence data from the Australian state of Victoria. Job strain exposure prevalence was determined from a 2003 population-based telephone survey of working Victorians (n = 1101, 66% response rate) using validated measures of job control (9 items, Cronbach's alpha = 0.80) and psychological demands (3 items, Cronbach's alpha = 0.66). Estimates of absolute numbers of prevalent cases of depression and successful stress-related workers' compensation claims were obtained from publicly available Australian government sources. Results Overall job strain-population attributable risk (PAR) for depression was 13.2% for males [95% CI 1.1, 28.1] and 17.2% [95% CI 1.5, 34.9] for females. There was a clear gradient of increasing PAR with decreasing occupational skill level. Estimation of job strain–attributable cases (21,437) versus "mental stress" compensation claims (696) suggest that claims statistics underestimate job strain–attributable depression by roughly 30-fold. Conclusion Job strain and associated depression risks represent a substantial, preventable, and inequitably distributed public health problem. The social patterning of job strain-attributable depression parallels the social patterning of mental illness, suggesting that job strain is an important contributor to mental health inequalities. The numbers of compensated 'mental stress' claims compared to job strain-attributable depression cases suggest that there is substantial under-recognition and under-compensation of job strain-attributable depression. Primary, secondary, and tertiary intervention efforts should be substantially expanded, with intervention priorities based on hazard and associated health outcome data as an essential complement to claims statistics. PMID:18505559

  9. Development of a miniaturized DNA microarray for identification of 66 virulence genes of Legionella pneumophila.

    PubMed

    Żak, Mariusz; Zaborowski, Piotr; Baczewska-Rej, Milena; Zasada, Aleksandra A; Matuszewska, Renata; Krogulska, Bożena

    2011-12-20

    For the last five years, Legionella sp. infections and legionnaire's disease in Poland have been receiving a lot of attention, because of the new regulations concerning microbiological quality of drinking water. This was the inspiration to search for and develop a new assay to identify many virulence genes of Legionella pneumophila to better understand their distribution in environmental and clinical strains. The method might be an invaluable help in infection risk assessment and in epidemiological investigations. The microarray is based on Array Tube technology. It contains 3 positive and 1 negative control. Target genes encode structural elements of T4SS, effector proteins and factors not related to T4SS. Probes were designed using OligoWiz software and data analyzed using IconoClust software. To isolate environmental and clinical strains, BAL samples and samples of hot water from different and independent hot water distribution systems of public utility buildings were collected. We have developed a miniaturized DNA microarray for identification of 66 virulence genes of L. pneumophila. The assay is specific to L. pneumophila sg 1 with sensitivity sufficient to perform the assay using DNA isolated from a single L. pneumophila colony. Seven environmental strains were analyzed. Two exhibited a hybridization pattern distinct from the reference strain. The method is time- and cost-effective. Initial studies have shown that genes encoding effector proteins may vary among environmental strains. Further studies might help to identify set of genes increasing the risk of clinical disease and to determine the pathogenic potential of environmental strains.

  10. Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae).

    PubMed

    Arthofer, Wolfgang; Riegler, Markus; Schneider, Daniela; Krammer, Martin; Miller, Wolfgang J; Stauffer, Christian

    2009-09-01

    The European cherry fruit fly Rhagoletis cerasi has been a field model for cytoplasmic incompatibility since the mid 1970s. Two Wolbachia strains were detected in this tephritid species and wCer2 was described as the CI inducing agent dividing European populations into two unidirectional incompatible groups, i.e. southern females produce viable offspring with northern males, whereas the reciprocal cross results in incompatibility. We detected three new Wolbachia strains by sequencing a multitude of plasmids derived from Wolbachia surface protein gene (wsp) polymerase chain reaction (PCR) products. Strain-specific primers were developed allowing individual diagnosis without need for cloning. Hybridization of specific PCR products with a wsp oligonucleotide enhanced the detection limit significantly and revealed the presence of low-titre infections in some strains, in different ontogenetic stages and in adults of different age. We then performed a survey of strain prevalence and infection frequency in eight European regions. wCer1 was fixed in all populations, whereas wCer2 was detected only in the South. wCer3 frequency was the lowest without a clear distribution pattern. The abundance of wCer4 was homogenous across Europe. Like wCer2, wCer5 showed significant differences in spatial distribution. Our new findings of previously undetected and recombinant Wolbachia strains in R. cerasi reveal a major caveat to the research community not to overlook hidden Wolbachia diversity in field populations. Low-titres and geographical variability in Wolbachia diversity are expected to influence the outcome of Wolbachia population dynamics and Wolbachia-based insect population control and may create invasion barriers for expanding and artificially introduced Wolbachia strains.

  11. Experimental and numerical investigation of dual phase steels formability during laser-assisted hole-flanging

    NASA Astrophysics Data System (ADS)

    Motaman, S. A. H.; Komerla, K.; Storms, T.; Prahl, U.; Brecher, C.; Bleck, W.

    2018-05-01

    Today, in the automotive industry dual phase (DP) steels are extensively used in the production of various structural parts due to their superior mechanical properties. Hole-flanging of such steels due to simultaneous bending and stretching of sheet metal, is complex and associated with some issues such as strain and strain rate localization, development of micro-cracks, inhomogeneous sheet thinning, etc. In this study an attempt is made to improve the formability of DP sheets, by localized Laser heating. The Laser beam was oscillated in circular pattern rapidly around the pre-hole, blanked prior to the flanging process. In order to investigate formability of DP steel (DP1000), several uniaxial tensile tests were conducted from quasi to intermediate strain rates at different temperatures in warm regime. Additionally, experimentally acquired temperature and strain rate-dependent flow curves were fed into thermomechanical finite element (FE) simulation of the hole-flanging process using the commercial FE software ABAQUS/Explicit. Several FE simulations were performed in order to evaluate the effect of blank's initial temperature and punch speed on deformation localization, stress evolution and temperature distribution in DP1000 sheets during warm hole-flanging process. The experimental and numerical analyses revealed that prescribing a distribution of initial temperature between 300 to 400 °C to the blank and setting a punch speed that accommodates strain rate range of 1 to 5 s-1 in the blank, provides the highest strain hardening capacity in the considered rate and temperature regimes for DP1000. This is in fact largely due to the dynamic strain aging (DSA) effect which occurs due to pinning of mobile dislocations by interstitial solute atoms, particularly at elevated temperatures.

  12. Spatial arrangement and size distribution of normal faults, Buckskin detachment upper plate, Western Arizona

    NASA Astrophysics Data System (ADS)

    Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.

    2018-03-01

    Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.

  13. Distribution of virulence determinants among antimicrobial-resistant and antimicrobial-susceptible Escherichia coli implicated in urinary tract infections.

    PubMed

    Stephenson, Sam; Brown, P D

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) rely on the correlation of virulence expression with antimicrobial resistance to persist and cause severe urinary tract infections (UTIs). We assessed the virulence pattern and prevalence among UPEC strains susceptible and resistant to multiple antimicrobial classes. A total of 174 non-duplicate UPEC strains from patients with clinically significant UTIs were analysed for susceptibility to aminoglycoside, antifolate, cephalosporin, nitrofuran and quinolone antibiotics for the production of extended-spectrum β-lactamases and for the presence of six virulence determinants encoding adhesins (afimbrial, Type 1 fimbriae, P and S-fimbriae) and toxins (cytotoxic necrotising factor and haemolysin). Relatively high resistance rates to nalidixic acid, ciprofloxacin, cephalothin and trimethoprim-sulfamethoxazole (82%, 78%, 62% and 59%, respectively) were observed. Fourteen distinct patterns were identified for the virulence determinants such as afaBC, cnfI, fimH, hylA, papEF and sfaDE. The toxin gene, cnfI (75.3%), was the second most prevalent marker to the adhesin, fimH (97.1%). The significant association of sfaDE/hylA (P < 0.01) among antimicrobial resistant and susceptible strains was also observed notwithstanding an overall greater occurrence of virulence factors among the latter. This study provides a snapshot of UPEC complexity in Jamaica and highlights the significant clonal heterogeneity among strains. Such outcomes emphasise the need for evidence-based strategies in the effective management and control of UTIs.

  14. Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis

    PubMed Central

    Wilmanns, Matthias; Gräter, Frauke

    2009-01-01

    The role of mechanical force in cellular processes is increasingly revealed by single molecule experiments and simulations of force-induced transitions in proteins. How the applied force propagates within proteins determines their mechanical behavior yet remains largely unknown. We present a new method based on molecular dynamics simulations to disclose the distribution of strain in protein structures, here for the newly determined high-resolution crystal structure of I27, a titin immunoglobulin (IG) domain. We obtain a sparse, spatially connected, and highly anisotropic mechanical network. This allows us to detect load-bearing motifs composed of interstrand hydrogen bonds and hydrophobic core interactions, including parts distal to the site to which force was applied. The role of the force distribution pattern for mechanical stability is tested by in silico unfolding of I27 mutants. We then compare the observed force pattern to the sparse network of coevolved residues found in this family. We find a remarkable overlap, suggesting the force distribution to reflect constraints for the evolutionary design of mechanical resistance in the IG family. The force distribution analysis provides a molecular interpretation of coevolution and opens the road to the study of the mechanism of signal propagation in proteins in general. PMID:19282960

  15. Microstructure characterization of 316L deformed at high strain rates using EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yvell, K., E-mail: kyv@du.se

    2016-12-15

    Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s{sup −1} at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneousmore » and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain. - Highlights: •Only changes in strain, not strain rate, gave differences in the microstructure. •A bimodal lognormal size distribution was found to describe the size distribution. •Variation of the subgrain fraction sizes agrees with models for heterogeneous slip. •Variation of subgrain size with strain describes part of the stress strain curve.« less

  16. Electrocardiographic left ventricular strain pattern: everything old is new again.

    PubMed

    Schocken, Douglas D

    2014-01-01

    Electrocardiographic left ventricular hypertrophy (LVH) has many faces with countless features. Beyond the classic measures of LVH, including QRS voltage and duration, the left ventricular (LV) strain pattern is an element whereby characteristic R-ST depression is followed by a concave ST segment that ends in an asymmetrically inverted T wave. The LV strain pattern generally appears in states of increased systemic blood pressure and must be differentiated from similar but not identical ST-T waves indicating ischemia. The LV strain pattern has been found in population studies to be associated with poor prognosis and increased risk of adverse cardiovascular outcomes. Regression of LV strain pattern parallels decline in systemic BP during clinical trials of anti-hypertensive therapies but does not indicate or serve as a surrogate for decrease in LV mass. Newer techniques in data collection and processing may allow the process of strain to be studied in more detail to determine the ways in which electrical remodeling of the left ventricle as characterized by LVH with 'repolarization abnormalities' indicates how CV risk might be managed by using LV strain pattern as an electrocardiographic biomarker. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Strain Pattern in Supercooled Liquids

    NASA Astrophysics Data System (ADS)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  18. [Work-related behaviour and experience patterns and mental health: a study in psychotherapy trainees].

    PubMed

    Grundmann, Johanna; Sude, Kerstin; Löwe, Bernd; Wingenfeld, Katja

    2013-03-01

    In view of the fact that many reports have been published that emphasize the difficult conditions of the German psychotherapy training, the aim of this study was to investigate psychotherapy trainees´ work stress as well as work-related psychosocial risks and resources. Variables of interest were work-related behaviour and experience patterns (AVEM), effort-reward-imbalance, chronic stress and health-related quality of life. 321 participants completed an online survey. The distribution of work-related behaviour and experience patterns as well as the results regarding work overload and mental health are evidence of psychotherapy trainees' strain. AVEM-risk patterns are associated with effort-reward-imbalance, chronic stress and reduced mental health. These results clearly support claims for a modification of the psychotherapy training in Germany. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Temporal stability of novelty exploration in mice exposed to different open field tests.

    PubMed

    Kalueff, Allan V; Keisala, Tiina; Minasyan, Anna; Kuuslahti, Marianne; Tuohimaa, Pentti

    2006-03-01

    We investigated behavioural activity and temporal distribution (patterning) of mouse exploration in different open field (OF) arenas. Mice of 129S1 (S1) strain were subjected in parallel to three different OF arenas (Experiment 1), two different OF arenas in two trials (Experiment 2) or two trials of the same OF test (Experiment 3). Overall, mice demonstrated a high degree of similarity in the temporal profile of novelty-induced horizontal and vertical exploration (regardless of the size, colour and shape of the OF), which remained stable in subsequent OF exposures. In Experiments 4 and 5, we tested F1 hybrid mice (BALB/c-S1; NMRI-S1), and Vitamin D receptor knockout mice (generated on S1 genetic background), again showing strikingly similar temporal patterns of their OF exploration, despite marked behavioural strain differences in anxiety and activity. These results suggest that mice are characterised by stability of temporal organization of their exploration in different OF novelty situations.

  20. Comparative Epidemiology of Highly Pathogenic Avian Influenza Virus H5N1 and H5N6 in Vietnamese Live Bird Markets: Spatiotemporal Patterns of Distribution and Risk Factors.

    PubMed

    Mellor, Kate C; Meyer, Anne; Elkholly, Doaa A; Fournié, Guillaume; Long, Pham T; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H; Vergne, Timothée; Pfeiffer, Dirk U; Stevens, Kim B

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north-south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches.

  1. Distributed and Localized Deformation Along the Lebanese Restraining Bend from Geomorphic Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Castelltort, S.; Klinger, Y.

    2014-12-01

    The Dead Sea Fault System changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh Fault (YF), is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates and strain partitioning in Lebanon still prevail. Here, we use morphometric analysis together with analytical and numerical models to constrain rates and modes of distributed and localized deformation along the Lebanese restraining bend.The rivers that drain the western flank of Mount Lebanon show a consistent counterclockwise rotation with respect to an expected orogen perpendicular orientation. Moreover, a pattern of divide disequilibrium in between these rivers emerges from an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. These geometrical patterns are compatible with simulation results using a landscape evolution model, which imposes a distributed velocity field along a domain that represents the western flank of Mount Lebanon. We further develop an analytical model that relates the river orientation to a set of kinematic parameters that represents a combined pure and simple shear strain field, and we find the parameters that best explain the present orientation of the western Lebanon rivers. Our results indicate that distributed deformation to the west of the YF takes as much as 30% of the relative Arabia-Sinai plate velocity since the late Miocene, and that the average slip rate along the YF during the same time interval has been 3.8-4.4 mm/yr. The theoretical model can further explain the inferred rotation from Paleomagnetic measurements.

  2. Comparative Epidemiology of Highly Pathogenic Avian Influenza Virus H5N1 and H5N6 in Vietnamese Live Bird Markets: Spatiotemporal Patterns of Distribution and Risk Factors

    PubMed Central

    Mellor, Kate C.; Meyer, Anne; Elkholly, Doaa A.; Fournié, Guillaume; Long, Pham T.; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H.; Vergne, Timothée; Pfeiffer, Dirk U.; Stevens, Kim B.

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north–south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches. PMID:29675418

  3. Colonization Pattern of the Biocontrol Strain Pseudomonas chlororaphis MA 342 on Barley Seeds Visualized by Using Green Fluorescent Protein

    PubMed Central

    Tombolini, Riccardo; van der Gaag, Dirk Jan; Gerhardson, Berndt; Jansson, Janet K.

    1999-01-01

    Pseudomonas chlororaphis MA 342 is a potent biocontrol agent that can be used against several seed-borne diseases of cereal crops, including net blotch of barley caused by the fungus Drechslera teres. In this study, strain MA 342 was tagged with the gfp gene (encoding the green fluorescent protein) in order to study the fate of cells after seed inoculation. The gfp-tagged strain, MA 342G2, had the same biocontrol efficacy as the wild type when it was applied at high cell concentrations to seeds but was less effective at lower cell concentrations. By comparing cell counts determined by microscopy to the number of CFU, we found that the number of culturable cells was significantly lower than the total number of bacteria on seeds which were inoculated and dried for 20 h. Confocal microscopy and epifluorescence stereomicroscopy were used to determine the pattern of MA 342G2 colonization and cell aggregation on barley seeds. Immediately after inoculation of seeds, bacteria were found mainly under the seed glume, and there was no particular aggregation pattern. However, after the seeds were sown, irregularly distributed areas of bacterial aggregation were found, which reflected epiphytic colonization of glume cells. There was a trend towards bacterial aggregation near the embryo but never within the embryo. Bacterial aggregates were regularly found in the groove of each seed formed by the base of the coleoptile and the scutellum. Based on these results, we suggest that MA 342 colocalizes with the pathogen D. teres, which facilitates the action of the fungistatic compound(s) produced by this strain. PMID:10427065

  4. Candida species isolated from different body sites and their antifungal susceptibility pattern: Cross-analysis of Candida albicans and Candida glabrata biofilms.

    PubMed

    Cataldi, Valentina; Di Campli, Emanuela; Fazii, Paolo; Traini, Tonino; Cellini, Luigina; Di Giulio, Mara

    2017-08-01

    Candida species are regular commensal in humans, but-especially in immunocompromised patients-they represent opportunistic pathogens giving rise to systemic infection. The aim of the present work was to isolate and characterize for their antifungal profile Candida species from different body sites and to analyze the biofilms produced by C. albicans and C. glabrata isolates. Eighty-one strains of Candida species from 77 patients were identified. Epidemiological study showed that the most isolated species were C. albicans (44), C. glabrata (13) and C. parapsilosis (13) mainly from Hematology, Infectious Diseases, Medicine, Neonatology and Oncology Divisions, the majority of the biological samples were swabs (44) and blood cultures (16). The analysis of the biofilm formation was performed at 24 and 48-hours comparing resistant and susceptible strains of C. albicans to resistant and susceptible strains of C. glabrata. Candida albicans has a greater ability to form biofilm compared to C. glabrata, both in the susceptible and resistant strains reaching maturity after 24 hours with a complex structure composed of blastospores, pseudohyphae, and hyphae embedded in a matrix. On the contrary, C. glabrata biofilm was composed exclusively of blastospores that in the resistant strain, after 24 hours, were organized in a compact multilayer different to the discontinuous structure observed in the susceptible analyzed strains. In conclusion, the increasing of the incidence of Candida species infection together with their emerging drug resistance also related to the biofilm forming capability underline the need to monitor their distribution and susceptibility patterns for improving the surveillance and for a correct management of the infection. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Isolation and Characterization of Five Erwinia amylovora Bacteriophages and Assessment of Phage Resistance in Strains of Erwinia amylovora

    PubMed Central

    Schnabel, Elise L.; Jones, Alan L.

    2001-01-01

    Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages φEa1 and φEa7 and 3 novel phages named φEa100, φEa125, and φEa116C, were identified based on differences in genome size and restriction fragment pattern. φEa1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages φEa100, φEa7, and φEa125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. φEa116C contained an approximately 75-kb genome. φEa1, φEa7, φEa100, φEa125, and φEa116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. φEa116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 105 CFU. PMID:11133428

  6. Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges.

    PubMed

    Han, Chi-Jui; Chiang, Hsuan-Ping; Cheng, Yun-Chien

    2018-02-18

    In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photolithography, which suffers from a large number of steps and difficult mass production. Hence, we fabricated flexible strain sensors using a stamping-process with fewer processes than photolithography. The piezoresistive coefficient and sensitivity of the flexible strain sensor were improved by sensor pattern design and thickness change. Micro-patterning is used to fabricate various CPDMS microstructure patterns. The effect of gauge pattern was evaluated with ANSYS simulations. The piezoresistance of the strain gauges was measured and the gauge factor determined. Experimental results show that the piezoresistive coefficient of CPDMS is approximately linear. Gauge factor measurement results show that the gauge factor of a 140.0 μm thick strain gauge with five grids is the highest.

  7. Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism.

    PubMed

    Math, Renukaradhya K; Jin, Hyun Mi; Kim, Jeong Myeong; Hahn, Yoonsoo; Park, Woojun; Madsen, Eugene L; Jeon, Che Ok

    2012-01-01

    Alteromonas species are globally distributed copiotrophic bacteria in marine habitats. Among these, sea-tidal flats are distinctive: undergoing seasonal temperature and oxygen-tension changes, plus periodic exposure to petroleum hydrocarbons. Strain SN2 of the genus Alteromonas was isolated from hydrocarbon-contaminated sea-tidal flat sediment and has been shown to metabolize aromatic hydrocarbons there. Strain SN2's genomic features were analyzed bioinformatically and compared to those of Alteromonas macleodii ecotypes: AltDE and ATCC 27126. Strain SN2's genome differs from that of the other two strains in: size, average nucleotide identity value, tRNA genes, noncoding RNAs, dioxygenase gene content, signal transduction genes, and the degree to which genes collected during the Global Ocean Sampling project are represented. Patterns in genetic characteristics (e.g., GC content, GC skew, Karlin signature, CRISPR gene homology) indicate that strain SN2's genome architecture has been altered via horizontal gene transfer (HGT). Experiments proved that strain SN2 was far more cold tolerant, especially at 5°C, than the other two strains. Consistent with the HGT hypothesis, a total of 15 genomic islands in strain SN2 likely confer ecological fitness traits (especially membrane transport, aromatic hydrocarbon metabolism, and fatty acid biosynthesis) specific to the adaptation of strain SN2 to its seasonally cold sea-tidal flat habitat.

  8. Comparative Genomics Reveals Adaptation by Alteromonas sp. SN2 to Marine Tidal-Flat Conditions: Cold Tolerance and Aromatic Hydrocarbon Metabolism

    PubMed Central

    Math, Renukaradhya K.; Jin, Hyun Mi; Kim, Jeong Myeong; Hahn, Yoonsoo; Park, Woojun; Madsen, Eugene L.; Jeon, Che Ok

    2012-01-01

    Alteromonas species are globally distributed copiotrophic bacteria in marine habitats. Among these, sea-tidal flats are distinctive: undergoing seasonal temperature and oxygen-tension changes, plus periodic exposure to petroleum hydrocarbons. Strain SN2 of the genus Alteromonas was isolated from hydrocarbon-contaminated sea-tidal flat sediment and has been shown to metabolize aromatic hydrocarbons there. Strain SN2's genomic features were analyzed bioinformatically and compared to those of Alteromonas macleodii ecotypes: AltDE and ATCC 27126. Strain SN2's genome differs from that of the other two strains in: size, average nucleotide identity value, tRNA genes, noncoding RNAs, dioxygenase gene content, signal transduction genes, and the degree to which genes collected during the Global Ocean Sampling project are represented. Patterns in genetic characteristics (e.g., GC content, GC skew, Karlin signature, CRISPR gene homology) indicate that strain SN2's genome architecture has been altered via horizontal gene transfer (HGT). Experiments proved that strain SN2 was far more cold tolerant, especially at 5°C, than the other two strains. Consistent with the HGT hypothesis, a total of 15 genomic islands in strain SN2 likely confer ecological fitness traits (especially membrane transport, aromatic hydrocarbon metabolism, and fatty acid biosynthesis) specific to the adaptation of strain SN2 to its seasonally cold sea-tidal flat habitat. PMID:22563400

  9. Development of olivine crystallographic preferred orientation in response to strain-induced fabric geometry

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Kruckenberg, Seth C.; Cohen, Shaina M.; Medaris, L. Gordon, Jr.; Withers, Anthony C.; Bagley, Brian

    2016-04-01

    The effect of finite strain ellipsoid geometry on crystallographic preferred orientation (CPO) is well known for crustal minerals (e.g., quartz, calcite, biotite, and hornblende). In the upper mantle, however, it remains poorly constrained how strain and fabric may affect olivine CPO. We present data from a suite of 40 spinel peridotite xenoliths from Marie Byrd Land (west Antarctica), which support an interpretation that fabric geometry rather than deformation conditions control the development of olivine CPO. We use X-ray computed tomography (XRCT) to quantitatively determine spinel fabric (orientation and geometry). Olivine CPOs, determined by Electron Backscattered Diffraction (EBSD), are plotted with respect to the XRCT-derived spinel foliation and lineation; this approach allows for the accurate, and unbiased, identification of CPO symmetries and types in mantle xenoliths. The combined XRCT and EBSD data show that the xenoliths are characterized by a range of fabric geometries (from oblate to prolate) and olivine CPO patterns; we recognize the A-type, axial-[010], axial-[100], and B-type patterns. The mantle xenoliths equilibrated at temperatures 779-1198 oC, as determined by 2-Px geothermometry. Using a geotherm consistent with the stability of spinel in all xenoliths, the range of equilibration temperatures occurs at depths between 39 and 72 km. Olivine recrystallized grain size piezometry reveals differential stresses ranging 2-60 MPa. Analysis of low-angle misorientation axes show a wide range in the distribution of rotation axes, with dominant {0kl}[100] slip. We use Fourier Transform Infrared (FTIR) spectroscopy to estimate the water content in the xenolith with the B-type CPO pattern. FTIR analysis shows that the equilibrium H concentration in olivine is low (4-13 ppm H2O). Combining these data, we observe that olivine CPO symmetry is controlled neither by the deformation conditions (stress, temperature, pressure, water content) for the range of conditions estimated in the Marie Byrd Land xenoliths, nor by the activation of the slip systems predicted by deformation experiments. Rather, our data show that olivine CPO is controlled by transitions in strain-induced fabric geometry. Microstructures and deformation mechanism maps suggest that deformation is dominated by dislocation-accommodated grain boundary sliding. We propose that slip of olivine glide planes and rotation of olivine grains occur so as to accommodate the imposed material flow, which is guided by the 3D strain-induced fabric geometry. As a result of this process, the axial-[010] and B-type patterns form in relation to oblate fabric ellipsoids, the A-type pattern forms in a range of fabric ellipsoids, and the axial-[100] pattern is associated with prolate fabric ellipsoids. We therefore suggest that the well-known process of strain geometry-induced development of CPO is also applicable to upper mantle rocks.

  10. A physical model for strain accumulation in the San Francisco Bay Region

    USGS Publications Warehouse

    Pollitz, F.F.; Nyst, M.

    2005-01-01

    Strain accumulation in tectonically active regions is generally a superposition of the effects of background tectonic loading, steady-state dislocation processes, such as creep, and transient deformation. In the San Francisco Bay region (SFBR), the most uncertain of these processes is transient deformation, which arises primarily in association with large earthquakes. As such, it depends upon the history of faulting and the rheology of the crust and mantle, which together determine the pattern of longer term (decade-scale) post-seismic response to earthquakes. We utilize a set of 102 GPS velocity vectors in the SFBR in order to characterize the strain rate field and construct a physical model of its present deformation. We first perform an inversion for the continuous velocity gradient field from the discrete GPS velocity field, from which both tensor strain rate and rotation rate may be extracted. The present strain rate pattern is well described as a nearly uniform shear strain rate oriented approximately N34??W (140 nanostrain yr-1) plus a N56??E uniaxial compression rate averaging 20 nanostrain yr-1 across the shear zone. We fit the velocity and strain rate fields to a model of time-dependent deformation within a 135-kin-wide, arcuate shear zone bounded by strong Pacific Plate and Sierra Nevada block lithosphere to the SW and NE, respectively. Driving forces are purely lateral, consisting of shear zone deformation imposed by the relative motions between the thick Pacific Plate and Sierra Nevada block lithospheres. Assuming a depth-dependent viscoelastic structure within the shear zone, we account for the effects of steady creep on faults and viscoelastic relaxation following the 1906 San Francisco and 1989 Loma Prieta earthquakes, subject to constant velocity boundary conditions on the edges of the shear zone. Fault creep is realized by evaluating dislocations on the creeping portions of faults in the fluid limit of the viscoelastic model. A priori plate-boundary(PB)-parallel motion is set to 38 mm yr -1. A grid search based on fitting the observed strain rate pattern yields a mantle viscosity of 1.2 ?? 1019 Pa s and a PB-perpendicular convergence rate of ???3 mm yr-1. Most of this convergence appears to be uniformly distributed in the Pacific-Sierra Nevada plate boundary zone. ?? 2005 RAS.

  11. Comparison of antibiotic resistance patterns in collections of Escherichia coli and Proteus mirabilis uropathogenic strains.

    PubMed

    Adamus-Bialek, Wioletta; Zajac, Elzbieta; Parniewski, Pawel; Kaca, Wieslaw

    2013-04-01

    Escherichia coli and Proteus mirabilis are important urinary tract pathogens. The constant increase in the antibiotic resistance of clinical bacterial strains has become an important clinical problem. The aim of this study was to compare the antibiotic resistance of 141 clinical (Sweden and Poland) and 42 laboratory (Czech Republic) P. mirabilis strains and 129 clinical (Poland) uropathogenic E. coli strains. The proportion of unique versus diverse patterns in Swedish clinical and laboratory P. mirabilis strain collections was comparable. Notably, a similar proportion of unique versus diverse patterns was observed in Polish clinical P. mirabilis and E. coli strain collections. Mathematical models of the antibiotic resistance of E. coli and P. mirabilis strains based on Kohonen networks and association analysis are presented. In contrast to the three clinical strain collections, which revealed complex associations with the antibiotics tested, laboratory P. mirabilis strains provided simple antibiotic association diagrams. The monitoring of antibiotic resistance patterns of clinical E. coli and P. mirabilis strains plays an important role in the treatment procedures for urinary tract infections and is important in the context of the spreading drug resistance in uropathogenic strain populations. The adaptability and flexibility of the genomes of E. coli and P. mirabilis strains are discussed.

  12. Differential distribution of blood and lymphatic vessels in the murine cornea.

    PubMed

    Ecoiffier, Tatiana; Yuen, Don; Chen, Lu

    2010-05-01

    Because of its unique characteristics, the cornea has been widely used for blood and lymphatic vessel research. However, whether limbal or corneal vessels are evenly distributed under normal or inflamed conditions has never been studied. The purpose of this study was to investigate this question and to examine whether and how the distribution patterns change during corneal inflammatory lymphangiogenesis (LG) and hemangiogenesis (HG). Corneal inflammatory LG and HG were induced in two most commonly used mouse strains, BALB/c and C57BL/6 (6-8 weeks of age), by a standardized two-suture placement model. Oriented flat-mount corneas together with the limbal tissues were used for immunofluorescence microscope studies. Blood and lymphatic vessels under normal and inflamed conditions were analyzed and quantified to compare their distributions. The data demonstrate, for the first time, greater distribution of both blood and lymphatic vessels in the nasal side in normal murine limbal areas. This nasal-dominant pattern was maintained during corneal inflammatory LG, whereas it was lost for HG. Blood and lymphatic vessels are not evenly distributed in normal limbal areas. Furthermore, corneal LG and HG respond differently to inflammatory stimuli. These new findings will shed some light on corneal physiology and pathogenesis and on the development of experimental models and therapeutic strategies for corneal diseases.

  13. Mycobacterium tuberculosis ecology in Venezuela: epidemiologic correlates of common spoligotypes and a large clonal cluster defined by MIRU-VNTR-24

    PubMed Central

    2009-01-01

    Background Tuberculosis remains an endemic public health problem, but the ecology of the TB strains prevalent, and their transmission, can vary by country and by region. We sought to investigate the prevalence of Mycobacterium tuberculosis strains in different regions of Venezuela. A previous study identified the most prevalent strains in Venezuela but did not show geographical distribution nor identify clonal genotypes. To better understand local strain ecology, we used spoligotyping to analyze 1298 M. tuberculosis strains isolated in Venezuela from 1997 to 2006, predominantly from two large urban centers and two geographically distinct indigenous areas, and then studied a subgroup with MIRU-VNTR 24 loci. Results The distribution of spoligotype families is similar to that previously reported for Venezuela and other South American countries: LAM 53%, T 10%, Haarlem 5%, S 1.9%, X 1.2%, Beijing 0.4%, and EAI 0.2%. The six most common shared types (SIT's 17, 93, 605, 42, 53, 20) accounted for 49% of the isolates and were the most common in almost all regions, but only a minority were clustered by MIRU-VNTR 24. One exception was the third most frequent overall, SIT 605, which is the most common spoligotype in the state of Carabobo but infrequent in other regions. MIRU-VNTR homogeneity suggests it is a clonal group of strains and was named the "Carabobo" genotype. Epidemiologic comparisons showed that patients with SIT 17 were younger and more likely to have had specimens positive for Acid Fast Bacilli on microscopy, and patients with SIT 53 were older and more commonly smear negative. Female TB patients tended to be younger than male patients. Patients from the high incidence, indigenous population in Delta Amacuro state were younger and had a nearly equal male:female distribution. Conclusion Six SIT's cause nearly half of the cases of tuberculosis in Venezuela and dominate in nearly all regions. Strains with SIT 17, the most common pattern overall may be more actively transmitted and SIT 53 strains may be less virulent and associated with reactivation of past infections in older patients. In contrast to other common spoligotypes, strains with SIT 605 form a clonal group centered in the state of Carabobo. PMID:19660112

  14. Transmural gradients of myocardial structure and mechanics: Implications for fiber stress and strain in pressure overload.

    PubMed

    Carruth, Eric D; McCulloch, Andrew D; Omens, Jeffrey H

    2016-12-01

    Although a truly complete understanding of whole heart activation, contraction, and deformation is well beyond our current reach, a significant amount of effort has been devoted to discovering and understanding the mechanisms by which myocardial structure determines cardiac function to better treat patients with cardiac disease. Several experimental studies have shown that transmural fiber strain is relatively uniform in both diastole and systole, in contrast to predictions from traditional mechanical theory. Similarly, mathematical models have largely predicted uniform fiber stress across the wall. The development of this uniform pattern of fiber stress and strain during filling and ejection is due to heterogeneous transmural distributions of several myocardial structures. This review summarizes these transmural gradients, their contributions to fiber mechanics, and the potential functional effects of their remodeling during pressure overload hypertrophy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Geographical distribution of genetic polymorphism of the pathogen Histoplasma capsulatum isolated from infected bats, captured in a central zone of Mexico.

    PubMed

    Taylor, Maria Lucia; Chávez-Tapia, Catalina B; Rojas-Martínez, Alberto; del Rocio Reyes-Montes, Maria; del Valle, Mirian Bobadilla; Zúñiga, Gerardo

    2005-09-01

    Fourteen Histoplasma capsulatum isolates recovered from infected bats captured in Mexican caves and two human H. capsulatum reference strains were analyzed using random amplification of polymorphic DNA PCR-based and partial DNA sequences of four genes. Cluster analysis of random amplification of polymorphic DNA-patterns revealed differences for two H. capsulatum isolates of one migratory bat Tadarida brasiliensis. Three groups were identified by distance and maximum-parsimony analyses of arf, H-anti, ole, and tub1 H. capsulatum genes. Group I included most isolates from infected bats and one clinical strain from central Mexico; group II included the two isolates from T. brasiliensis; the human G-217B reference strain from USA formed an independent group III. Isolates from group II showed diversity in relation to groups I and III, suggesting a different H. capsulatum population.

  16. Characteristic mutations found in the ML0411 gene of Mycobacterium leprae isolated in Northeast Asian countries.

    PubMed

    Kai, M; Nakata, N; Matsuoka, M; Sekizuka, T; Kuroda, M; Makino, M

    2013-10-01

    Genome analysis of Mycobacterium leprae strain Kyoto-2 in this study revealed characteristic nucleotide substitutions in gene ML0411, compared to the reference genome M. leprae strain TN. The ML0411 gene of Kyoto-2 had six SNPs compared to that of TN. All SNPs in ML0411 were non-synonymous mutations that result in amino acid replacements. In addition, a seventh SNP was found 41 bp upstream of the start codon in the regulatory region. The seven SNP sites in the ML0411 region were investigated by sequencing in 36 M. leprae isolates from the Leprosy Research Center in Japan. The SNP pattern in 14 of the 36 isolates showed similarity to that of Kyoto-2. Determination of the standard SNP types within the 36 stocked isolates revealed that almost all of the Japanese strains belonged to SNP type III, with nucleotide substitutions at position 14676, 164275, and 2935685 of the M. leprae TN genome. The geographical distribution pattern of east Asian M. leprae isolates by discrimination of ML0411 SNPs was investigated and interestingly turned out to be similar to that of tandem repeat numbers of GACATC in the rpoT gene (3 copies or 4 copies), which has been established as a tool for M. leprae genotyping. All seven Korean M. leprae isolates examined in this study, as well as those derived from Honshu Island of Japan, showed 4 copies of the 6-base tandem repeat plus the ML0411 SNPs observed in M. leprae Kyoto-2. They are termed Northeast Asian (NA) strain of M. leprae. On the other hand, many of isolates derived from the Okinawa Islands of Japan and from the Philippines showed 3 copies of the 6-base tandem repeat in addition to the M. leprae TN ML0411 type of SNPs. These results demonstrate the existence of M. leprae strains in Northeast Asian region having characteristic SNP patterns. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Genetic polymorphism in Leishmania infantum isolates from human and animals determined by nagt PCR-RFLP.

    PubMed

    El Hamouchi, Adil; El Kacem, Sofia; Ejghal, Rajaa; Lemrani, Meryem

    2018-06-14

    Leishmania infantum is the causative agent of human visceral leishmaniasis (VL) and sporadic human cutaneous leishmaniasis (CL) in the Mediterranean region. The genetic variation of the Leishmania parasites may result in different phenotypes that can be associated with the geographical distribution and diversity of the clinical manifestations. The main objective of this study was to explore the genetic polymorphism in L. infantum isolates from human and animal hosts in different regions of Morocco. The intraspecific genetic variability of 40 Moroccan L. infantum MON-1 strains isolated from patients with VL (n = 31) and CL (n = 2) and from dogs (n = 7) was evaluated by PCR-RFLP of nagt, a single-copy gene encoding N-acetylglucosamine-1-phosphate transferase. For a more complete analysis of L. infantum polymorphism, we included the restriction patterns of nagt from 17 strains available in the literature and patterns determined by in-silico digestion of three sequences from the GenBank database. Moroccan L. infantum strains presented a certain level of genetic diversity and six distinct nagt-RFLP genotypes were identified. Three of the six genotypes were exclusively identified in the Moroccan population of L. infantum: variant M1 (15%), variant M2 (7.5%), and variant M3 (2.5%). The most common genotype (65%), variant 2 (2.5%), and variant 4 (7.5%), were previously described in several countries with endemic leishmaniasis. Phylogenetic analysis segregated our L. infantum population into two distinct clusters, whereas variant M2 was clearly distinguished from both cluster I and cluster II. This distribution highlights the degree of genetic variability among the Moroccan L. infantum population. The nagt PCR-RFLP method presented here showed an important genetic heterogeneity among Moroccan L. infantum strains isolated from human and canine reservoirs with 6 genotypes identified. Three of the six Moroccan nagt genotypes, have not been previously described and support the particular genetic diversity of the Moroccan L. infantum population reported in other studies.

  18. Usefulness of the (GTG)4-PCR for typing of monophasic Salmonella enterica isolates with antigenic shame l,4,[5],12:i:-.

    PubMed

    Wołkowicz, Tomasz; Januszkiewicz, Aleksandra; Chróst, Anna; Wolaniuk, Natalia; Kubiak, Anna B; Majchrzak, Marta; Szych, Jolanta; Parniewski, Paweł

    2015-01-01

    Monophasic Salmonella enterica strains presenting the antigenic shame 1,4,[5],12:i:- are becoming more prevalent. Accurate identification of such strains is hard with routine using biochemical and serological tests. Such strains can be identified with molecular tests. In this study we have tested the usefulness of(GTG)4-PCR for the diagnostic of such monophasic strains. This usefulness of this method was previously confirmed for genoserotyping of S. Enterica, Typhimurium, Infantis, Virchow, Hadar, Newport and Anatum. 76 strains with antigenic shame l,4,[5],12:i:-, isolated in Poland in years 2007-12 were tested. Additionally (GTG)4-PCR patterns were obtained for reference strains of serotypes S. Lagos, S. Agama, S. Farsta, S. Tsevie, S. Glocester and S. Tumodi. (GTG)4-PCR was performed with DreamTaq DNA polymerase. Obtained patterns were analysed with BioNumerics software. No pattern specific for monophasic pattern was identified. Additionally it was also impossible to differentiate patterns obtained for S. Typhimurium, S. Farsta, S. Tsevie and S. Glocester. Only reference strains of serotypes S. Tumodi, Farsta and Agama has the distinguishable patterns of (GTG)4-PCR. Analysed (GTG)4-PCR method do not show the ability to distinguish S. enterica serotypes from group 04, H:i, including monophasic strains with the antigenic shame 1,4,[5],12:i:-.

  19. A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes

    PubMed Central

    Pasquali, Matias; Beyer, Marco; Logrieco, Antonio; Audenaert, Kris; Balmas, Virgilio; Basler, Ryan; Boutigny, Anne-Laure; Chrpová, Jana; Czembor, Elżbieta; Gagkaeva, Tatiana; González-Jaén, María T.; Hofgaard, Ingerd S.; Köycü, Nagehan D.; Hoffmann, Lucien; Lević, Jelena; Marin, Patricia; Miedaner, Thomas; Migheli, Quirico; Moretti, Antonio; Müller, Marina E. H.; Munaut, Françoise; Parikka, Päivi; Pallez-Barthel, Marine; Piec, Jonathan; Scauflaire, Jonathan; Scherm, Barbara; Stanković, Slavica; Thrane, Ulf; Uhlig, Silvio; Vanheule, Adriaan; Yli-Mattila, Tapani; Vogelgsang, Susanne

    2016-01-01

    Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000–2013 and (2) to enhance the standardization of epidemiological data collection. Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F. graminearum, 479 F. culmorum, and 3 F. cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European dataset showed that in F. graminearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON) (82.9%), followed by 3-acetyldeoxynivalenol (3-ADON) (13.6%), and nivalenol (NIV) (3.5%). In F. culmorum, the prevalent genotype was 3-ADON (59.9%), while the NIV genotype accounted for the remaining 40.1%. Both, geographical and temporal patterns of trichothecene genotypes distribution were identified. PMID:27092107

  20. Molecular characterization of ciprofloxacin resistance of gonococcal strains in Spain.

    PubMed

    Alcalá, B; Arreaza, L; Salcedo, C; Antolín, I; Borrell, N; Cacho, J; De Las Cuevas, C; Otero, L; Sauca, G; Vázquez, F; Villar, H; Vázquez, J A

    2003-05-01

    Over the past several years, the emergence of gonococcal isolates with intermediate or full resistance to fluoroquinolones has become a significant concern in several countries, including Spain. The goal was to determine the occurrence of ciprofloxacin resistance among Neisseria gonorrhoeae strains in Spain during 2000 to 2001 and determine the frequency and patterns of mutations at gyrA, gyrB, and parC genes in these isolates. Eleven ciprofloxacin-resistant strains (with MICs ranging from 1 to 64 micrograms/mL) and two intermediate isolates (with MICs of 0.12 and 0.5 microgram/mL) were found. Mutations were identified by polymerase chain reaction and direct sequencing of the amplified products. Alterations at Ser-91 and Asp-95 in GyrA were detected in all strains except one, an isolate for which the MIC was 0.12 microgram/mL. Alterations in ParC were more variable, and there was no clear correlation between the number of parC mutations and the level of resistance. No alterations at gyrB gene associated with ciprofloxacin resistance were found. The resistance was distributed among different types of strains, suggesting that the increase in the incidence of ciprofloxacin-resistant strains in Spain was not exclusively due to the appearance of a single-strain outbreak.

  1. Characterization of craniofacial sutures using the finite element method.

    PubMed

    Maloul, Asmaa; Fialkov, Jeffrey; Wagner, Diane; Whyne, Cari M

    2014-01-03

    Characterizing the biomechanical behavior of sutures in the human craniofacial skeleton (CFS) is essential to understand the global impact of these articulations on load transmission, but is challenging due to the complexity of their interdigitated morphology, the multidirectional loading they are exposed to and the lack of well-defined suture material properties. This study aimed to quantify the impact of morphological features, direction of loading and suture material properties on the mechanical behavior of sutures and surrounding bone in the CFS. Thirty-six idealized finite element (FE) models were developed. One additional specimen-specific FE model was developed based on the morphology obtained from a µCT scan to represent the morphological complexity inherent in CFS sutures. Outcome variables of strain energy (SE) and von Mises stress (σvm) were evaluated to characterize the sutures' biomechanical behavior. Loading direction was found to impact the relationship between SE and interdigitation index and yielded varied patterns of σvm in both the suture and surrounding bone. Adding bone connectivity reduced suture strain energy and altered the σvm distribution. Incorporating transversely isotropic material properties was found to reduce SE, but had little impact on stress patterns. High-resolution µCT scanning of the suture revealed a complex morphology with areas of high and low interdigitations. The specimen specific suture model results were reflective of SE absorption and σvm distribution patterns consistent with the simplified FE results. Suture mechanical behavior is impacted by morphologic factors (interdigitation and connectivity), which may be optimized for regional loading within the CFS. © 2013 Elsevier Ltd. All rights reserved.

  2. Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications.

    PubMed

    Romeo, Alessia; Lacour, Stphanie P

    2015-08-01

    Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.

  3. Research on the novel FBG detection system for temperature and strain field distribution

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-chao; Yang, Jin-hua

    2017-10-01

    In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.

  4. Magnetic resonance and diffusion tensor imaging analyses indicate heterogeneous strains along human medial gastrocnemius fascicles caused by submaximal plantar-flexion activity.

    PubMed

    Karakuzu, Agah; Pamuk, Uluç; Ozturk, Cengizhan; Acar, Burak; Yucesoy, Can A

    2017-05-24

    Sarcomere length changes are central to force production and excursion of skeletal muscle. Previous modeling indicates non-uniformity of that if mechanical interaction of muscle with its surrounding muscular and connective tissues is taken into account. Hence, quantifying length changes along the fascicles of activated human muscle in vivo is crucial, but this is lacking due to technical complexities. Combining magnetic resonance imaging deformation analyses and diffusion tensor imaging tractography, the aim was to test the hypothesis that submaximal plantar flexion activity at 15% MVC causes heterogeneous length changes along the fascicles of human medial gastrocnemius (GM) muscle. A general fascicle strain distribution pattern shown for all subjects indicates that proximal track segments are shortened, whereas distal ones are lengthened (e.g., by 13% and 29%, respectively). Mean fiber direction strains of different tracts also shows heterogeneity (for up to 57.5% of the fascicles). Inter-subject variability of amplitude and distribution of fascicle strains is notable. These findings confirm the hypothesis and are solid indicators for the functionally dependent mechanics of human muscle, in vivo. Heterogeneity of fascicle strains can be explained by epimuscular myofascial force transmission. To the best of our knowledge, this is the first study, which quantified local deformations along human skeletal muscle fascicles caused by sustained submaximal activation. The present approach and indicated fascicle strain heterogeneity has numerous implications for muscle function in health and disease to estimate the muscle's contribution to the joint moment and excursion and to evaluate mechanisms of muscle injury and several treatment techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    Rift initiation in thick, strong continental lithosphere challenges current models of continental lithospheric deformation, in part owing to gaps in our knowledge of strain patterns in the lower crust. New geophysical, geochemical, and structural data sets from youthful magmatic (Magadi-Natron, Kivu), weakly magmatic (Malawi, Manyara), and amagmatic (Tanganyika) sectors of the cratonic East African rift system provide new insights into the distribution of brittle strain, magma intrusion and storage, and time-averaged deformation. We compare and contrast time-space relations, seismogenic layer thickness variations, and fault kinematics using earthquakes recorded on local arrays and teleseisms in sectors of the Western and Eastern rifts, including the Natron-Manyara basins that developed in Archaean lithosphere. Lower crustal seismicity occurs in both the Western and Eastern rifts, including sectors on and off craton, and those with and without central rift volcanoes. In amagmatic sectors, lower crustal strain is accommodated by slip along relatively steep border faults, with oblique-slip faults linking opposing border faults that penetrate to different crustal levels. In magmatic sectors, seismicity spans surface to lower crust beneath both border faults and eruptive centers, with earthquake swarms around magma bodies. Our focal mechanisms and Global CMTs from a 2007 fault-dike episode show a local rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with time-averaged strain recorded in vent and eruptive chain alignments. These patterns suggest that strain localization via widespread magma intrusion can occur during the first 5 My of rifting in originally thick lithosphere. Lower crustal seismicity in magmatic sectors may be caused by high gas pressures and volatile migration from active metasomatism and magma degassing, consistent with high CO2 flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and migration may be critical to strength reduction of initially cold, strong cratonic lithosphere. Our comparisons suggest that large offset border faults that develop very early in rift history create fluid pathways that maintain the initial along-axis segmentation until magma (if available), reaches mid-crustal levels.

  6. Octahedral rotation patterns in strained EuFeO 3 and other Pbnm perovskite films: Implications for hybrid improper ferroelectricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choquette, A. K.; Smith, C. R.; Sichel-Tissot, R. J.

    2016-07-01

    We report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A-site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO3 films under strain states ranging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a(-)a(+)c(-) and a(+)a(-)c(-) rotational patterns. We compare the EuFeO3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on nonorthorhombic substrates, as well as additional measurements from LaGaO3, LaFeO3, and Eu0.7Sr0.3MnO3 films on SrTiO3. Compiling the results from various material systems reveals a general strain dependence in which compressivemore » strain strongly favors a(-)a(+)c(-) and a(+)a(-)c(-) rotation patterns and tensile strain weakly favors a(-)a(-)c(+) structures. In contrast, EuFeO3 films grown on Pbnm-type GdScO3 under 2.3% tensile strain take on a uniform a(-)a(+)c(-) rotation pattern imprinted from the substrate, despite strain considerations that favor the a(-)a(-)c(+) pattern. These results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A-site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.« less

  7. Octahedral rotation patterns in strained EuFeO 3 and other Pbnm perovskite films: Implications for hybrid improper ferroelectricity

    DOE PAGES

    Choquette, A. K.; Smith, C. R.; Sichel-Tissot, R. J.; ...

    2016-07-07

    Here, we report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A -site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO 3 films under strain states ranging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a - a + c - and a + a - c - rotational patterns. We compare the EuFeO 3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on nonorthorhombic substrates, as well as additional measurements from LaGaO 3 ,more » LaFeO 3 , and Eu 0.7Sr 0.3 MnO 3 films on SrTiO 3 . Compiling the results from various material systems reveals a general strain dependence in which compressive strain strongly favors a - a + c - and a + a - c - rotation patterns and tensile strain weakly favors a - a - c + structures. In contrast, EuFeO 3 films grown on Pbnm-type GdScO 3 under 2.3% tensile strain take on a uniform a - a + c - rotation pattern imprinted from the substrate, despite strain considerations that favor the a - a - c + pattern. Our results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A -site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.« less

  8. Evaluation of repetitive element polymerase chain reaction for surveillance of methicillin-resistant Staphylococcus aureus at a large academic medical center and community hospitals.

    PubMed

    Wang, Shu-Hua; Stevenson, Kurt B; Hines, Lisa; Mediavilla, José R; Khan, Yosef; Soni, Ruchi; Dutch, Wendy; Brandt, Eric; Bannerman, Tammy; Kreiswirth, Barry N; Pancholi, Preeti

    2015-01-01

    Repetitive element polymerase chain reaction (rep-PCR) typing has been used for methicillin-resistant Staphylococcus aureus (MRSA) strain characterization. The goal of this study was to determine if a rapid commercial rep-PCR system, DiversiLab™ (DL; bioMérieux, Durham, NC, USA), could be used for MRSA surveillance at a large medical center and community hospitals. A total of 1286 MRSA isolates genotyped by the DL system were distributed into 84 distinct rep-PCR patterns: 737/1286 (57%) were clustered into 6 major rep-PCR patterns. A subset of 220 isolates was further typed by pulsed-field gel electrophoresis (PFGE), spa typing, and SCCmec typing. The 220 isolates were distributed into 80 rep-PCR patterns, 94 PFGE pulsotypes, 27 spa, and 3 SCCmec types. The DL rep-PCR system is sufficient for surveillance, but the DL system alone cannot be used to compare data to other institutions until a standardized nomenclature is established and the DL MRSA reference library is expanded. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Use of AFLP, plasmid typing and phenotyping in a comparative study to assess genetic diversity of Shigella flexneri strains.

    PubMed Central

    Herrera, S.; Cabrera, R.; Ramirez, M. M.; Usera, M. A.; Echeita, M. A.

    2002-01-01

    Shigella flexneri infections are one of the main causes of acute diarrhoea in Cuba. Twenty strains isolated from sporadic cases in nine different Cuban provinces were characterized. Serotyping, antibiotic-resistance typing, plasmid-typing and AFLP-typing were used to determine their suitability for use in epidemiological studies of S. flexneri. The predominant serotypes were serotype 6 (35%) and serotype 2 (35%). Eleven different plasmid profiles were detected (Diversity Index = 0.92). AFLP-typing discriminated 12 different patterns (DI = 0.95), these patterns were not coincident with plasmid-typing patterns. Both techniques combined distinguished 14 patterns among the 20 studied strains (DI = 0.99). There was no consistent relationship between plasmid-typing and AFLP-typing patterns or antibiotic-resistance typing patterns. Ninety-five percent of S. flexneri strains were multiresistant. PMID:12558326

  10. Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics.

    PubMed

    Beres, Stephen B; Carroll, Ronan K; Shea, Patrick R; Sitkiewicz, Izabela; Martinez-Gutierrez, Juan Carlos; Low, Donald E; McGeer, Allison; Willey, Barbara M; Green, Karen; Tyrrell, Gregory J; Goldman, Thomas D; Feldgarden, Michael; Birren, Bruce W; Fofanov, Yuriy; Boos, John; Wheaton, William D; Honisch, Christiane; Musser, James M

    2010-03-02

    Understanding the fine-structure molecular architecture of bacterial epidemics has been a long-sought goal of infectious disease research. We used short-read-length DNA sequencing coupled with mass spectroscopy analysis of SNPs to study the molecular pathogenomics of three successive epidemics of invasive infections involving 344 serotype M3 group A Streptococcus in Ontario, Canada. Sequencing the genome of 95 strains from the three epidemics, coupled with analysis of 280 biallelic SNPs in all 344 strains, revealed an unexpectedly complex population structure composed of a dynamic mixture of distinct clonally related complexes. We discovered that each epidemic is dominated by micro- and macrobursts of multiple emergent clones, some with distinct strain genotype-patient phenotype relationships. On average, strains were differentiated from one another by only 49 SNPs and 11 insertion-deletion events (indels) in the core genome. Ten percent of SNPs are strain specific; that is, each strain has a unique genome sequence. We identified nonrandom temporal-spatial patterns of strain distribution within and between the epidemic peaks. The extensive full-genome data permitted us to identify genes with significantly increased rates of nonsynonymous (amino acid-altering) nucleotide polymorphisms, thereby providing clues about selective forces operative in the host. Comparative expression microarray analysis revealed that closely related strains differentiated by seemingly modest genetic changes can have significantly divergent transcriptomes. We conclude that enhanced understanding of bacterial epidemics requires a deep-sequencing, geographically centric, comparative pathogenomics strategy.

  11. Trypanosoma cruzi: clones isolated from the Colombian strain, reproduce the parental strain characteristics, with ubiquitous histotropism

    PubMed Central

    Camandaroba, Edson; Thé, Torriceli S; Pessina, Daniel Huber; Andrade, Sonia G

    2006-01-01

    Clonal histotropism and biological characters of five clones isolated during the early acute phase of the infection of Swiss mice with the Colombian strain of Trypanosoma cruzi (T. cruzi I), Biodeme Type III, were investigated. Clones were isolated from mice at the 10th and the 30th day of infection with the Colombian strain. Isolation was performed by micromanipulation and injection of one trypomatigote blood form into newborn mice, followed by passages into suckling mice for obtaining the inocula for the experimental groups. Mice infected with parental strain were also studied. All the clones have shown the basic characteristics of Biodeme Type III, with the same patterns of parasitemia, tissue tropism, morphological characters and isoenzymic profiles, such as the parental strain. Histotropism was most intense to myocardium and skeletal muscles, with intense lesions found in the advanced phase (20th to 30th day of infection). Both parental strain and the clones were seen to parasitize several organs and tissues; amastigote nests were identified in the cytoplasm of macrophages, adipose cells, smooth muscle of intestinal wall and Auerbach's neuronal plexus. The findings of the present study confirm the homology of the clones isolated from the Colombian strain, with predominance of a ‘principal clone’ and an ubiquitous distribution of parasites belonging to a same clone. PMID:16709229

  12. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate.

    PubMed

    Ma, Y J; Zhong, Z; Yang, X J; Fan, Y L; Jiang, Z M

    2013-01-11

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 10(10) cm(-2), and that the lateral and the vertical interdot spacing were ~10 and ~2.5 nm, respectively.

  13. LPAIV H9N2 Drives the Differential Expression of Goose Interferons and Proinflammatory Cytokines in Both In Vitro and In Vivo Studies.

    PubMed

    Zhou, Hao; Chen, Shun; Yan, Bing; Chen, Hongjun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Jing, Bo; Cheng, Anchun

    2016-01-01

    Geese, as aquatic birds, are an important natural reservoir of avian influenza virus (AIV). To characterize the innate antiviral immune response against AIV H9N2 strain infection in geese as well as the probable relationship between the expression of immune-related genes and the distribution of viral antigens, we investigated the levels of immune-related gene transcription both in AIV H9N2 strain-infected geese and in vitro. The patterns of viral location and the tissue distribution of CD4- and CD8α-positive cells were concurrently detected by immunohistochemical staining, which revealed respiratory and digestive organs as the primary sites of antigen-positive signals. Average AIV H9N2 viral loads were detected in the feces, Harderian gland (HG), and trachea, where higher copy numbers were detected compared with the rectum. Our results suggested the strong induction of proinflammatory cytokine expression compared with interferons (IFNs). Notably, in most tissues from the AIV H9N2 strain-infected birds, IFNα and IFNγ gene transcripts were differentially expressed. However, inverse changes in IFNα and IFNγ expression after AIV H9N2 strain infection were observed in vitro. Taken together, the results suggest that AIV H9N2 is widely distributed in multiple tissues, efficiently induces inflammatory cytokines in the HG and spleen of goslings and inversely influences type I and II IFN expression both in vivo and in vitro. The findings of this study further our understanding of host defense mechanisms and the pathogenesis of the H9N2 influenza virus in geese.

  14. Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey.

    PubMed

    Altinli, Mine; Gunay, Filiz; Alten, Bulent; Weill, Mylene; Sicard, Mathieu

    2018-03-20

    Wolbachia are maternally transmitted bacteria that can manipulate their hosts' reproduction causing cytoplasmic incompatibility (CI). CI is a sperm-egg incompatibility resulting in embryonic death. Due to this sterilising effect on mosquitoes, Wolbachia are considered for vector control strategies. Important vectors for arboviruses, filarial nematodes and avian malaria, mosquitoes of Culex pipiens complex are suitable for Wolbachia-based vector control. They are infected with Wolbachia wPip strains belonging to five genetically distinct groups (wPip-I to V) within the Wolbachia B supergroup. CI properties of wPip strongly correlate with this genetic diversity: mosquitoes infected with wPip strains from a different wPip group are more likely to be incompatible with each other. Turkey is a critical spot for vector-borne diseases due to its unique geographical position as a natural bridge between Asia, Europe and Africa. However, general wPip diversity, distribution and CI patterns in natural Cx. pipiens (s.l.) populations in the region are unknown. In this study, we first identified wPip diversity in Turkish Cx. pipiens (s.l.) populations, by assigning them to one of the five groups within wPip (wPip-Ito V). We further investigated CI properties between different wPip strains from this region. We showed a wPip fixation in Cx. pipiens (s.l.) populations in Turkey by analysing 753 samples from 59 sampling sites. Three wPip groups were detected in the region: wPip-I, wPip-II and wPip-IV. The most dominant group was wPip-II. While wPip-IV was restricted to only two locations, wPip-I and wPip-II had wider distributions. Individuals infected with wPip-II were found co-existing with individuals infected with wPip-I or wPip-IV in some sampling sites. Two mosquito isofemale lines harbouring either a wPip-I or a wPip-II strain were established from a population in northwestern Turkey. Reciprocal crosses between these lines showed that they were fully compatible with each other but bidirectionally incompatible with wPip-IV Istanbul infected line. Our findings reveal a high diversity of wPip and CI properties in Cx. pipiens (s.l.) populations in Turkey. Knowledge on naturally occurring CI patterns caused by wPip diversity in Turkey might be useful for Cx. pipiens (s.l.) control in the region.

  15. Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface sphingomonas strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.; Aversano, P.J.; Zylstra, G.J.

    The cloned genes for aromatic hydrocarbon degradation from Sphingomonas yanoikuyae B1 were utilized in Southern hybridization experiments with Sphingomonas strains from the surface and deep-subsurface environments. One hybridization pattern was obtained with BamHI-digested genomic DNAs for two surface strains, while a differing pattern was seen for five deep-subsurface strains. The cross-hybridizing genes were located in the chromosomes of the surface strains and on plasmids in the deep-subsurface strains. 31 refs., 3 figs., 1 tab.

  16. Radial Field Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  17. Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40.

    PubMed

    Zischka, Melanie; Künne, Carsten T; Blom, Jochen; Wobser, Dominique; Sakιnç, Türkân; Schmidt-Hohagen, Kerstin; Dabrowski, P Wojtek; Nitsche, Andreas; Hübner, Johannes; Hain, Torsten; Chakraborty, Trinad; Linke, Burkhard; Goesmann, Alexander; Voget, Sonja; Daniel, Rolf; Schomburg, Dietmar; Hauck, Rüdiger; Hafez, Hafez M; Tielen, Petra; Jahn, Dieter; Solheim, Margrete; Sadowy, Ewa; Larsen, Jesper; Jensen, Lars B; Ruiz-Garbajosa, Patricia; Quiñones Pérez, Dianelys; Mikalsen, Theresa; Bender, Jennifer; Steglich, Matthias; Nübel, Ulrich; Witte, Wolfgang; Werner, Guido

    2015-03-12

    Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type. We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro). Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.

  18. Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria

    PubMed Central

    Sahraoui, Naima; Müller, Borna; Guetarni, Djamel; Boulahbal, Fadéla; Yala, Djamel; Ouzrout, Rachid; Berg, Stefan; Smith, Noel H; Zinsstag, Jakob

    2009-01-01

    Background Bovine Tuberculosis is prevalent in Algeria despite governmental attempts to control the disease. The objective of this study was to conduct, for the first time, molecular characterization of a population sample of Mycobacterium bovis strains isolated from slaughter cattle in Algeria. Between August and November 2007, 7250 animals were consecutively screened at the abattoirs of Algiers and Blida. In 260 animals, gross visible granulomatous lesions were detected and put into culture. Bacterial isolates were subsequently analysed by molecular methods. Results Altogether, 101 bacterial strains from 100 animals were subjected to molecular characterization. M. bovis was isolated from 88 animals. Other bacteria isolated included one strain of M. caprae, four Rhodococcus equi strains, three Non-tuberculous Mycobacteria (NTM) and five strains of other bacterial species. The M. bovis strains isolated showed 22 different spoligotype patterns; four of them had not been previously reported. The majority of M. bovis strains (89%) showed spoligotype patterns that were previously observed in strains from European cattle. Variable Number of Tandem Repeat (VNTR) typing supported a link between M. bovis strains from Algeria and France. One spoligotype pattern has also been shown to be frequent in M. bovis strains from Mali although the VNTR pattern of the Algerian strains differed from the Malian strains. Conclusion M. bovis infections account for a high amount of granulomatous lesions detected in Algerian slaughter cattle during standard meat inspection at Algiers and Blida abattoir. Molecular typing results suggested a link between Algerian and European strains of M. bovis. PMID:19173726

  19. Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability

    PubMed Central

    Tolonen, Andrew C; Aach, John; Lindell, Debbie; Johnson, Zackary I; Rector, Trent; Steen, Robert; Church, George M; Chisholm, Sallie W

    2006-01-01

    Nitrogen (N) often limits biological productivity in the oceanic gyres where Prochlorococcus is the most abundant photosynthetic organism. The Prochlorococcus community is composed of strains, such as MED4 and MIT9313, that have different N utilization capabilities and that belong to ecotypes with different depth distributions. An interstrain comparison of how Prochlorococcus responds to changes in ambient nitrogen is thus central to understanding its ecology. We quantified changes in MED4 and MIT9313 global mRNA expression, chlorophyll fluorescence, and photosystem II photochemical efficiency (Fv/Fm) along a time series of increasing N starvation. In addition, the global expression of both strains growing in ammonium-replete medium was compared to expression during growth on alternative N sources. There were interstrain similarities in N regulation such as the activation of a putative NtcA regulon during N stress. There were also important differences between the strains such as in the expression patterns of carbon metabolism genes, suggesting that the two strains integrate N and C metabolism in fundamentally different ways. PMID:17016519

  20. Genetic Regulation of Hypothalamic Cocaine and Amphetamine-Regulated Transcript (CART) in BxD Inbred Mice

    PubMed Central

    Hawks, Brian W.; Li, Wei; Garlow, Steven J.

    2009-01-01

    Cocaine-Amphetamine Regulated Transcript (CART) peptides are implicated in a wide range of behaviors including in the reinforcing properties of psychostimulants, feeding and energy balance and stress and anxiety responses. We conducted a complex trait analysis to examine natural variation in the regulation of CART transcript abundance (CARTta) in the hypothalamus. CART transcript abundance was measured in total hypothalamic RNA from 26 BxD recombinant inbred (RI) mouse strains and in the C57BL/6 (B6) and DBA/2J (D2) progenitor strains. The strain distribution pattern for CARTta was continuous across the RI panel, which is consistent with this being a quantitative trait. Marker regression and interval mapping revealed significant quantitative trait loci (QTL) on mouse chromosome 4 (around 58.2cM) and chromosome 11 (between 20–36cM) that influence CARTta and account for 31% of the between strain variance in this phenotype. There are numerous candidate genes and QTL in these chromosomal regions that may indicate shared genetic regulation between CART expression and other neurobiological processes referable to known actions of this neuropeptide. PMID:18199428

  1. Biomechanical Effects of Various Bone-Implant Interfaces on the Stability of Orthodontic Miniscrews: A Finite Element Study

    PubMed Central

    Tan, Fabing; Yang, Chongshi; Huang, Yuanding

    2017-01-01

    Introduction Osseointegration is required for prosthetic implant, but the various bone-implant interfaces of orthodontic miniscrews would be a great interest for the orthodontist. There is no clear consensus regarding the minimum amount of bone-implant osseointegration required for a stable miniscrew. The objective of this study was to investigate the influence of different bone-implant interfaces on the miniscrew and its surrounding tissue. Methods Using finite element analysis, an advanced approach representing the bone-implant interface is adopted herein, and different degrees of bone-implant osseointegration were implemented in the FE models. A total of 26 different FE analyses were performed. The stress/strain patterns were calculated and compared, and the displacement of miniscrews was also evaluated. Results The stress/strain distributions are changing with the various bone-implant interfaces. In the scenario of 0% osseointegration, a rather homogeneous distribution was predicted. After 15% osseointegration, the stress/strains were gradually concentrated on the cortical bone region. The miniscrew experienced the largest displacement under the no osseointegra condition. The maximum displacement decreases sharply from 0% to 3% and tends to become stable. Conclusion From a biomechanical perspective, it can be suggested that orthodontic loading could be applied on miniscrews after about 15% osseointegration without any loss of stability. PMID:29065641

  2. Experimental Study for Structural Behaviour of Precast Lightweight Panel (PLP) Under Flexural Load

    NASA Astrophysics Data System (ADS)

    Goh, W. I.; Mohamad, N.; Tay, Y. L.; Rahim, N. H. A.; Jhatial, A. A.; Samad, A. A. A.; Abdullah, R.

    2017-06-01

    Precast lightweight concrete slab is first fabricated in workshop or industrial before construction and then transported to site and installed by skilled labour. It can reduce construction time by minimizing user delay and time for cast-in-situ to increase workability and efficiency. is environmental friendly and helps in resource reduction. Although the foamed concrete has low compressive strength compared to normal weight concrete but it has excellent thermal insulation and sound absorption. It is environmental friendly and helps in resource reduction. To determine the material properties of foamed concrete, nine cubes and six cylindrical specimens were fabricated and the results were recorded. In this study, structural behaviour of precast lightweight panel (PLP) with dry density of 1800 kg/m3 was tested under flexural load. The results were recorded and analysed in terms of ultimate load, crack pattern, load-deflection profiles and strain distribution. Linear Voltage Displacement Transducers (LVDT) and strain gauges were used to determine the deflection and strain distribution of PLP. The theoretical and experimental ultimate load of PLP was analysed and recorded to be 70 and 62 kN respectively, having a difference of 12.9%. Based on the results, it can be observed that PLP can resist the adequate loading. Thus, it can be used in precast industry for construction purposes.

  3. Geometric pre-patterning based tuning of the period doubling onset strain during thin film wrinkling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourabh K.

    Wrinkling of supported thin films is an easy-to-implement and low-cost fabrication technique for generation of stretch-tunable periodic micro and nano-scale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric pre-patterning based technique is introduced to delay the onset of period doubling that can be implemented to predictively tune the onset strain even with limited system knowledge. The technique comprises pre-patterning themore » film/base bilayer with a sinusoidal pattern that has the same period as the natural wrinkle period of the system. The effectiveness of this technique has been verified via physical and computational experiments on the polydimethylsiloxane/glass bilayer system. It is observed that the period doubling onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest pre-pattern aspect ratio (2∙amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain can be increased up to a limit by increasing the amplitude of the pre-patterns and (ii) the delaying effect can be captured entirely by the pre-pattern geometry. As a result, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Thus, geometric pre-patterning is a practical scheme to suppress period doubling that can increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.« less

  4. Evaluation of crystallographic strain, rotation and defects in functional oxides by the moiré effect in scanning transmission electron microscopy.

    PubMed

    Naden, A B; O'Shea, K J; MacLaren, D A

    2018-04-20

    Moiré patterns in scanning transmission electron microscopy (STEM) images of epitaxial perovskite oxides are used to assess strain and defect densities over fields of view extending over several hundred nanometers. The patterns arise from the geometric overlap of the rastered STEM electron beam and the samples' crystal periodicities and we explore the emergence and application of these moiré fringes for rapid strain analysis. Using the epitaxial functional oxide perovskites BiFeO 3 and Pr 1-x Ca x MnO 3 , we discuss the impact of large degrees of strain on the quantification of STEM moiré patterns, identify defects in the fringe patterns and quantify strain and lattice rotation. Such a wide-area analysis of crystallographic strain and defects is crucial for developing structure-function relations of functional oxides and we find the STEM moiré technique to be an attractive means of structural assessment that can be readily applied to low dose studies of damage sensitive crystalline materials.

  5. Evaluation of crystallographic strain, rotation and defects in functional oxides by the moiré effect in scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Naden, A. B.; O'Shea, K. J.; MacLaren, D. A.

    2018-04-01

    Moiré patterns in scanning transmission electron microscopy (STEM) images of epitaxial perovskite oxides are used to assess strain and defect densities over fields of view extending over several hundred nanometers. The patterns arise from the geometric overlap of the rastered STEM electron beam and the samples’ crystal periodicities and we explore the emergence and application of these moiré fringes for rapid strain analysis. Using the epitaxial functional oxide perovskites BiFeO3 and Pr1-x Ca x MnO3, we discuss the impact of large degrees of strain on the quantification of STEM moiré patterns, identify defects in the fringe patterns and quantify strain and lattice rotation. Such a wide-area analysis of crystallographic strain and defects is crucial for developing structure-function relations of functional oxides and we find the STEM moiré technique to be an attractive means of structural assessment that can be readily applied to low dose studies of damage sensitive crystalline materials.

  6. Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model.

    PubMed

    Nymo, Ingebjørg H; Arias, Maykel A; Pardo, Julián; Álvarez, María Pilar; Alcaraz, Ana; Godfroid, Jacques; Jiménez de Bagüés, María Pilar

    2016-01-01

    Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.

  7. Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming

    NASA Astrophysics Data System (ADS)

    Amrouch, Khalid; Lacombe, Olivier; Bellahsen, Nicolas; Daniel, Jean-Marc; Callot, Jean-Paul

    2010-02-01

    In order to characterize and compare the stress-strain record prior to, during, and just after folding at the macroscopic and the microscopic scales and to provide insights into stress levels sustained by folded rocks, we investigate the relationship between the stress-strain distribution in folded strata derived from fractures, striated microfaults, and calcite twins and the development of the Laramide, basement-cored Sheep Mountain Anticline, Wyoming. Tectonic data were mainly collected in Lower Carboniferous to Permian carbonates and sandstones. In both rock matrix and veins, calcite twins recorded three different tectonic stages: the first stage is a pre-Laramide (Sevier) layer-parallel shortening (LPS) parallel to fold axis, the second one is a Laramide LPS perpendicular to the fold axis, and the third stage corresponds to Laramide late fold tightening with compression also perpendicular to the fold axis. Stress and strain orientations and regimes at the microscale agree with the polyphase stress evolution revealed by populations of fractures and striated microfaults, testifying for the homogeneity of stress record at different scales through time. Calcite twin analysis additionally reveals significant variations of differential stress magnitudes between fold limbs. Our results especially point to an increase of differential stress magnitudes related to Laramide LPS from the backlimb to the forelimb of the fold possibly in relation with motion of an underlying basement thrust fault that likely induced stress concentrations at its upper tip. This result is confirmed by a simple numerical model. Beyond regional implications, this study highlights the potential of calcite twin analyses to yield a representative quantitative picture of stress and strain patterns related to folding.

  8. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  9. Denitrification potential evaluation of a newly indigenous aerobic denitrifier isolated from largemouth bass Micropterus salmoides culture pond

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Zhang, Kai; Xie, Jun; Liu, Qigen; Yu, Deguang; Wang, Guangjun; Yu, Ermeng; Gong, Wangbao; Li, Zhifei

    2017-10-01

    This work evaluates the application potential of a new indigenous aerobic denitrifier, strain Pseudomonas CW-2, isolated from a largemouth bass culture pond. The rate of ammonium-N removal by strain CW-2 was approximately 97% at a DO concentration of 5.2 mg/L. Furthermore, when nitrate and ammonia coexisted, the strain gave priority to assimilating ammonia, and thereafter to denitrification. Under optimal cultivation conditions, citrate and acetate were the carbon resources, C/N was 8, dissolved oxygen was 5.2 mg/L, and pH was 7; the removal rate of ammonium reached nearly 90%. The changing patterns of different bacteria in strain CW-2-treated and the control pond water were also compared. Lower levels of ammonia, nitrite, and phosphates were observed in the treated water as compared with the controls. Meanwhile, phylum-level distributions of the bacterial OTUs revealed that Proteobacteria, Bacteroidetes, Planctomycetes, and Nitrospirae continuously changed their relative abundances in relation to carbon and the addition of strain CW-2; this finding implies that the conventional denitrification process was weakened under the effects of carbon or the presence of strain CW-2. We propose that strain CW-2 is a promising organism for the removal of ammonium in intensive fish culture systems, according to our evaluations of its denitrification performance.

  10. [Identification of mycobacteria by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry--using reference strains and clinical isolates of Mycobacterium].

    PubMed

    Niitsuma, Katsunao; Saito, Miwako; Koshiba, Shizuko; Kaneko, Michiyo

    2014-05-01

    Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) method is being played an important role for the inspection of clinical microorganism as a rapid and the price reduction. Mass spectra obtained by measuring become points of identification whether the peak pattern match any species mass spectral pattern. We currently use MALDI-TOF MS for rapid and accurate diagnosis of inactivated reference and clinical isolates of Mycobacterium because of the improved pretreatment techniques compared with former inspection methods that pose a higher risk of infection to the operator. The identification matching rate of score value (SV) peak pattern spectra was compared with that of conventional methods such as strain diffusion/amplification. Also, cultures were examined after a fixed number of days. Compared with the initial inspection technique, the pretreatment stage of current MALDI-TOF MS inspection techniques can improve the analysis of inactivated acid-fast bacteria that are often used as inspection criteria strains of clinical isolates. Next, we compared the concordance rate for identification between MALDI-TOF MS and conventional methods such as diffusion/amplification by comparison of peak pattern spectra and evaluated SV spectra to identify differences in the culture media after the retention period. In examination of 158 strains of clinical isolated Mycobacterium tuberculosis complex (MTC), the identification coincidence rate in the genus level in a matching pattern was 99.4%, when the species level was included 94.9%. About 37 strains of nontuberculous mycobacteria (NTM), the identification coincidence rate in the genus level was 94.6%. M. bovis BCG (Tokyo strain) in the reference strain was judged by the matching pattern to be MTC, and it suggested that they are M. tuberculosis and affinity species with high DNA homology. Nontuberculous mycobacterial M. gordonae strain JATA 33-01 shared peak pattern spectra, excluding the isolates, with each clinically isolated strain. However, the mass spectra of six M. gordonae clinical isolates suggested polymorphisms with similar mass-to-charge ratios compared with those of the reference strains. The peak pattern spectra of the clinical isolates and reference strains, excluding the NTM M. gordonae strain JATA33-01, were consistent with the peak pattern characteristics of each isolate. However, a comparison between the peak patterns of the reference strains and those of the six clinically isolated M. gordonae strains revealed a similar mass-to-charge ratio, which may indicate few polymorphisms. The SV spectrum of the improved inspection technique showed no fidelity, but it was acceptable after days of culture as indicated by the decrease in SV (0.3 degree). Also, the reproducibility of this method was good, but no difference was observed from the SV of the improved inspection technique, which decreased by approximately 0.3 because of the number of days of culture storage. In addition, expansion of the database and dissemination of regional specificity by genotype analysis of clinical isolates was relevant to the accumulated data, as expected. In future studies, the relevance and regional specificity of clinical isolates by genotype analysis can be determined by stacking the solid media and database penetration.

  11. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  12. A New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  13. Fiber-Optic Strain Sensors With Linear Characteristics

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1993-01-01

    Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.

  14. The relevance of stress percolation in polycrystalline solids to the deformation of deep earth materials

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.

    2013-12-01

    One of the fundamental challenges in characterizing the plastic properties of deep earth materials at relevant length and time scales is that some form of extrapolation will always be required. With increasing computational power, single crystal mechanical properties will probably be accessible to first principles calculations in the not too distant future. If the relationship between single crystal and polycrystal mechanical properties were straightforward, with some ground truthing in the lab, the bulk behavior could be confidently extrapolated to experimentally inaccessible conditions. However, we currently lack a satisfactory paradigm to describe the relationship between single crystal and polycrystalline deformation. Existing mechanical models, including self-consistent models cannot predict or account for the spatial variations in the local stress and strain states observed in real-world materials. Full field models can be constructed so as to explicitly include the spatial relationships between crystals and their neighbors, but in their explicitness they lose the ability to generalize. Using finite element (FEM) simulations of a polycrystalline material (Figure 1a), I show that local variations in stress and strain participate in large-scale patterns, that are a function of the heterogeneity and statistical distribution of elastic and plastic properties across the population of mechanical components (grains and grain boundaries) in the material. The patterns of modulation in the local stress tensor are similar to the patterns of stress distribution observed in granular materials - often referred to as force chains. Force chains are caused by percolation of stress through strong contacts between particles in a granular aggregate. The patterns in stress modulation observed in the FEM simulations are caused by stress percolation through the elastically heterogeneous mechanical elements. Greater degrees of heterogeneity lead to more intense stress concentrations across a less dense pattern (Figure 1b). Lower degrees of elastic heterogeneity lead to a denser pattern of stress transmission that carries smaller modulations (Figure1e). Paralleling the development of shear bands in granular materials, the stress patterns lead directly to shear localization even in the absence of strain softening. The recognition of stress percolation provides a foundation for devising models that link single crystal mechanics and local interactions to bulk behavior. Such rheological models should provide a more robust platform for extrapolating to deep earth conditions including spatial and time scales. Figure 1: Panel a) FE model mesh, inset shows an enlarged region. Properties are assigned to each of 25 grain sets (coded by color). Panels b)-e) Equivalent von Mises stress patterns for models in compression. For b) Young's modulus E of grain sets ranges from 500 to 0 GPa with v=0.1 to 0.4, for c) E= 500 to 0 GPa with v=0.3 for d) E= 200 to 20 GPa with v=0.3 and for e) E =120 to 100 GPa with v=0.3. The maximum value of the equivalent stress in b) is 10 times that found in e).

  15. Synchronized diffusive-wave spectroscopy: Principle and application to sound propagation in aqueous foams.

    PubMed

    Crassous, Jérôme; Chasle, Patrick; Pierre, Juliette; Saint-Jalmes, Arnaud; Dollet, Benjamin

    2016-03-01

    We present an experimental method to measure oscillatory strains in turbid material. The material is illuminated with a laser, and the speckle patterns are recorded. The analysis of the deformations of the optical path length shows that the speckle patterns are modulated at the strain frequency. By recording those patterns synchronously with the strain source, we are able to measure the amplitude and the phase of the strain. This method is tested in the specific case of an aqueous foam where an acoustic wave propagates. The effects of material internal dynamics and heterogeneous deformations are also discussed.

  16. Synchronized diffusive-wave spectroscopy: Principle and application to sound propagation in aqueous foams

    NASA Astrophysics Data System (ADS)

    Crassous, Jérôme; Chasle, Patrick; Pierre, Juliette; Saint-Jalmes, Arnaud; Dollet, Benjamin

    2016-03-01

    We present an experimental method to measure oscillatory strains in turbid material. The material is illuminated with a laser, and the speckle patterns are recorded. The analysis of the deformations of the optical path length shows that the speckle patterns are modulated at the strain frequency. By recording those patterns synchronously with the strain source, we are able to measure the amplitude and the phase of the strain. This method is tested in the specific case of an aqueous foam where an acoustic wave propagates. The effects of material internal dynamics and heterogeneous deformations are also discussed.

  17. Dynamic strain distribution of FRP plate under blast loading

    NASA Astrophysics Data System (ADS)

    Saburi, T.; Yoshida, M.; Kubota, S.

    2017-02-01

    The dynamic strain distribution of a fiber re-enforced plastic (FRP) plate under blast loading was investigated using a Digital Image Correlation (DIC) image analysis method. The testing FRP plates were mounted in parallel to each other on a steel frame. 50 g of composition C4 explosive was used as a blast loading source and set in the center of the FRP plates. The dynamic behavior of the FRP plate under blast loading were observed by two high-speed video cameras. The set of two high-speed video image sequences were used to analyze the FRP three-dimensional strain distribution by means of DIC method. A point strain profile extracted from the analyzed strain distribution data was compared with a directly observed strain profile using a strain gauge and it was shown that the strain profile under the blast loading by DIC method is quantitatively accurate.

  18. Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern

    NASA Astrophysics Data System (ADS)

    Fuchs, L.; Becker, T. W.

    2017-12-01

    How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface deformation is reduced significantly and mainly governed by the location of the up- and downwellings. VSWH thereby affects plate dynamics due to two main properties: the intensity of weakening with increasing strain and the strain healing rate. As both increase, mobility increases as well and strain becomes more localized at the downwellings.

  19. Determination of antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from different foods in turkey

    USDA-ARS?s Scientific Manuscript database

    This study aimed to determine the antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from animal derived foods. With disc diffusion assay, all fourteen L. monocytogenes strains were susceptible to the antibiotics, including penicillin G, vancomycin, ...

  20. Efficient mobilization of haematopoietic progenitors after a single injection of pegylated recombinant human granulocyte colony-stimulating factor in mouse strains with distinct marrow-cell pool sizes.

    PubMed

    de Haan, G; Ausema, A; Wilkens, M; Molineux, G; Dontje, B

    2000-09-01

    We have compared the efficacy of a single injection of SD/01, a newly engineered, pegylated form of recombinant human granulocyte colony stimulating factor (rhG-CSF), with a single injection of glycosylated rhG-CSF (Filgrastim). SD/01 was administered to regular and recombinant inbred strains of mice (AKR, C57L/J, DBA/2, C57BL/6, AKXL) known to have widely distinct marrow-cell pool sizes and proliferation kinetics. A single injection of G-CSF was unable to mobilize granulocyte-macrophage colony-forming units (CFU-GM). In sharp contrast, a single dose of SD/01 resulted in massive mobilization of progenitors and stem cells. Although all mice strains showed qualitatively similar mobilization responses, large interstrain differences remained. C57L and C57BL/6 mice mobilized relatively poorly, whereas AKR and DBA/2 mice showed threefold to tenfold superior responses. In order to explain these different phenotypes, we studied the effects of SD/01 in nine AKXL recombinant inbred strains, derived from well-responding AKR and poorly responding C57L parental strains. The best predictor for SD/01 responsiveness in these strains was marrow cellularity prior to mobilization. Comparison of the AKXL strain distribution pattern for marrow cellularity with loci previously mapped in these strains showed complete concordance with Aat, a serine protease inhibitor mapping to chromosome 12.

  1. Biomechanics of phalangeal curvature.

    PubMed

    Richmond, Brian G

    2007-12-01

    Phalangeal curvature has been widely cited in primate functional morphology and is one of the key traits in the ongoing debate about whether the locomotion of early hominins included a significant degree of arboreality. This study examines the biomechanics of phalangeal curvature using data on hand posture, muscle recruitment, and anatomical moment arms to develop a finite element (FE) model of a siamang manual proximal phalanx during suspensory grasping. Strain patterns from experiments on intact cadaver forelimbs validated the model. The strain distribution in the curved siamang phalanx FE model was compared to that in a mathematically straight rendition in order to test the hypotheses that curvature: 1) reduces strain and 2) results in lower bending strains but relatively higher compression. In the suspensory posture, joint reaction forces load the articular ends of the phalanx in compression and dorsally, while muscle forces acting through the flexor sheath pull the mid-shaft palmarly. These forces compress the phalanx dorsally and tense it palmarly, effectively bending it 'open.' Strains in the curved model were roughly half that of the straight model despite equivalent lengths, areas, mechanical properties, and loading conditions in the two models. The curved model also experienced a higher ratio of compressive to tensile strains. Curvature reduces strains during grasping hand postures because the curved bone is more closely aligned with the joint reaction forces. Therefore, phalangeal curvature reduces the strains associated with arboreal, and especially suspensory, activity involving flexed digits. These results offer a biomechanical explanation for the observed association between phalangeal curvature and arboreality.

  2. Bending, wrinkling, and folding of thin polymer film/elastomer interfaces

    NASA Astrophysics Data System (ADS)

    Ebata, Yuri

    This work focuses on understanding the buckling deformation mechanisms of bending, wrinkling, and folding that occur on the surfaces and interfaces of polymer systems. We gained fundamental insight into the formation mechanism of these buckled structures for thin glassy films placed on an elastomeric substrate. By taking advantage of geometric confinement, we demonstrated new strategies in controlling wrinkling morphologies. We were able to achieve surfaces with controlled patterned structures which will have a broad impact in optical, adhesive, microelectronics, and microfluidics applications. Wrinkles and strain localized features, such as delaminations and folds, are observed in many natural systems and are useful for a wide range of patterning applications. However, the transition from sinusoidal wrinkles to more complex strain localized structures is not well understood. We investigated the onset of wrinkling and strain localizations under uniaxial strain. We show that careful measurement of feature amplitude allowed not only the determination of wrinkle, fold, or delamination onset, but also allowed clear distinction between each feature. The folds observed in this experiment have an outward morphology from the surface in contrast to folds that form into the plane, as observed in a film floating on a liquid substrate. A critical strain map was constructed, where the critical strain was measured experimentally for wrinkling, folding, and delamination with varying film thickness and modulus. Wrinkle morphologies, i.e. amplitude and wavelength of wrinkles, affect properties such as electron transport in stretchable electronics and adhesion properties of smart surfaces. To gain an understanding of how the wrinkle morphology can be controlled, we introduced a geometrical confinement in the form of rigid boundaries. Upon straining, we found that wrinkles started near the rigid boundaries where maximum local strain occurred and propagated towards the middle as more global strain was applied. In contrast to homogeneous wrinkling with constant amplitude that is observed for an unconfined system, the wrinkling observed here had varying amplitude as a function of distance from the rigid boundaries. We demonstrated that the number of wrinkles can be tuned by controlling the distance between the rigid boundaries. Location of wrinkles was also controlled by introducing local stress distributions via patterning the elastomeric substrate. Two distinct wrinkled regions were achieved on a surface where the film is free-standing over a circular hole pattern and where the film is supported by the substrate. The hoe diameter and applied strain affected the wavelength and amplitude of the free-standing membrane. Using discontinuous dewetting, a one-step fabrication method was developed to selectively deposit a small volume of liquid in patterned microwells and encapsulate it with a polymeric film. The pull-out velocity, a velocity at which the sample is removed from a bath of liquid, was controlled to observe how encapsulation process is affected. The polymeric film was observed to wrinkle at low pull-out velocity due to no encapsulation of liquid; whereas the film bent at medium pull-out velocity due to capillary effect as the liquid evaporated through the film. To quantify the amount of liquid encapsulated, we mixed salt in water and measured the size of the deposited salt crystals. The salt crystal size, and hence the amount of liquid encapsulated, was controlled by varying either the encapsulation velocity or the size of the patterned microwells. In addition, we showed that the deposited salt crystals are protected by the laminated film until the film is removed, providing advantageous control for delivery and release. Yeast cells were also captured in the microwells to show the versatility. This encapsulation method is useful for wide range of applications, such as trapping single cells for biological studies, growing microcrystals for optical and magnetic applications, and single-use sensor technologies.

  3. FIV diversity: FIVPle subtype composition may influence disease outcome in African lions

    PubMed Central

    Troyer, Jennifer L.; Roelke, Melody E.; Jespersen, Jillian M.; Baggett, Natalie; Buckley-Beason, Valerie; MacNulty, Dan; Craft, Meggan; Packer, Craig; Pecon-Slattery, Jill; O’Brien, Stephen J.

    2011-01-01

    Feline immunodeficiency virus (FIV) infects domestic cats and at least 20 additional species of non-domestic felids throughout the world. Strains specific to domestic cat (FIVFca) produce AIDS-like disease progression, sequelae and pathology providing an informative model for HIV infection in humans. Less is known about the immunological and pathological influence of FIV in other felid species although multiple distinct strains of FIV circulate in natural populations. As in HIV-1 and HIV-2, multiple diverse cross-species infections may have occurred. In the Serengeti National Park, Tanzania, three divergent subtypes of lion FIV (FIVPle) are endemic, whereby 100% of adult lions are infected with one or more of these strains. Herein, the relative distribution of these subtypes in the population are surveyed and, combined with observed differences in lion mortality due to secondary infections based on FIVPle subtypes, the data suggest that FIVPle subtypes may have different patterns of pathogenicity and transmissibility among wild lion populations. PMID:21723622

  4. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression

    PubMed Central

    Keir, Derek; Belachew, M.; Ebinger, C.J.; Kendall, J.-M.; Hammond, J.O.S.; Stuart, G.W.; Ayele, A.; Rowland, J.V.

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  5. Diversity and distribution of Wolbachia in relation to geography, host plant affiliation and life cycle of a heterogonic gall wasp.

    PubMed

    Schuler, Hannes; Egan, Scott P; Hood, Glen R; Busbee, Robert W; Driscoe, Amanda L; Ott, James R

    2018-03-27

    The maternally inherited endosymbiont Wolbachia is widespread in arthropods and nematodes and can play an important role in the ecology and evolution of its host through reproductive manipulation. Here, we survey Wolbachia in Belonocnema treatae, a widely distributed North American cynipid gall forming wasp that exhibits regional host specialization on three species of oaks and alternation of sexually and asexually reproducing generations. We investigated whether patterns of Wolbachia infection and diversity in B. treatae are associated with the insect's geographic distribution, host plant association, life cycle, and mitochondrial evolutionary history. Screening of 463 individuals from 23 populations including sexual and asexual generations from all three host plants across the southern U.S. showed an average infection rate of 56% with three common Wolbachia strains: wTre1-3 and an additional rare variant wTre4. Phylogenetic analysis based on wsp showed that these strains are unrelated and likely independently inherited. We found no difference in Wolbachia infection frequency among host plant associated populations or between the asexual and sexual generations, or between males and females of the sexual generation. Partially incomplete Wolbachia transmission rates might explain the occurrence of uninfected individuals. A parallel analysis of the mitochondrial cytochrome oxidase I gene in B. treatae showed high mtDNA haplotype diversity in both infected and uninfected populations suggesting an ancestral infection by Wolbachia as well as a clear split between eastern and western B. treatae mtDNA clades with a sequence divergence of > 6%. The strain wTre1 was present almost exclusively in the western clade while wTre2 and wTre3 occur almost exclusively in eastern populations. In contrast, the same strains co-occur as double-infections in Georgia and triple-infections in two populations in central Florida. The diversity of Wolbachia across geographically and genetically distinct populations of B. treatae and the co-occurrence of the same strains within three populations highlights the complex infection dynamics in this system. Moreover, the association of distinct Wolbachia strains with mitochondrial haplotypes of its host in populations infected by different Wolbachia strains suggests a potential role of the endosymbiont in reproductive isolation in B. treatae.

  6. Patterns of Adherence of Helicobacter pylori Clinical Isolates to Epithelial Cells, and its Association with Disease and with Virulence Factors.

    PubMed

    Vázquez-Jiménez, Flor Elizabeth; Torres, Javier; Flores-Luna, Lourdes; Cerezo, Silvia Giono; Camorlinga-Ponce, Margarita

    2016-02-01

    Adherence to the gastric epithelium is one of the most important steps of Helicobacter pylori to remain and cause disease. The aim of this study was to analyze whether H. pylori isolates from patients with different gastroduodenal diseases present differences in the pattern of adherence to gastric epithelial cells (AGS), in the ability to induce IL-8, and in the presence of virulence genes. We tested 75 H. pylori strains isolated from nonatrophic gastritis, gastric cancer, and duodenal ulcer patients. The adhesion pattern and IL-8 induction were determined in AGS cells, and invasion of AGS cells was studied using a gentamicin protection assay. The IL-8 levels induced were determined by ELISA. Helicobacter pylori strains presented diffuse adherence (DA) and localized (LA) adherence patterns, similar to those described for enteropathogenic E. coli (EPEC), were observed in AGS cells. A DA pattern was observed in 57% and LA in 43% of the strains, and DA was more frequent in isolates from patients with gastric cancer (p = 0.044). Strains with a LA pattern induced higher levels of IL-8 (p = 0.042) in AGS cells. The adherence pattern was not associated with neither invasiveness nor with the presence of virulence genes. Our study shows that H. pylori strains present adherence patterns to AGS cells resembling those observed in EPEC and that these patterns may be associated with disease and with activity on AGS cells. © 2015 John Wiley & Sons Ltd.

  7. Timescale dependent deformation of orogenic belts?

    NASA Astrophysics Data System (ADS)

    Hoth, S.; Friedrich, A. M.; Vietor, T.; Hoffmann-Rothe, A.; Kukowski, N.; Oncken, O.

    2004-12-01

    The principle aim to link geodetic, paleoseismologic and geologic estimates of fault slip is to extrapolate the respective rates from one timescale to the other to finally predict the recurrence interval of large earthquakes, which threat human habitats. This approach however, is based on two often implicitly made assumptions: a uniform slip distribution through time and space and no changes of the boundary conditions during the time interval of interest. Both assumptions are often hard to verify. A recent study, which analysed an exceptionally complete record of seismic slip for the Wasatch and related faults (Basin and Range province), ranging from 10 yr to 10 Myr suggests that such a link between geodetic and geologic rates might not exist, i.e., that our records of fault displacement may depend on the timescale over which they were measured. This view derives support from results of scaled 2D sandbox experiments, as well as numerical simulations with distinct elements, both of which investigated the effect of boundary conditions such as flexure, mechanic stratigraphy and erosion on the spatio-temporal distribution of deformation within bivergent wedges. We identified three types of processes based on their distinct spatio-temporal distribution of deformation. First, incremental strain and local strain rates are very short-lived are broadly distributed within the bivergent wedge and no temporal pattern could be established. Second, footwall shortcuts and the re-activation of either internal thrusts or of the retro shear-zone are irregularly distributed in time and are thus not predictable either, but last for a longer time interval. Third, the stepwise initiation and propagation of the deformation front is very regular in time, since it depends on the thickness of the incoming layer and on its internal and basal material properties. We consider the propagation of the deformation front as an internal clock of a thrust belt, which is therefore predictable. A deformation front advance cycle requires the longest timescale. Thus, despite known and constant boundary conditions during the simulations, we found only one regular temporal pattern of deformation in a steady active bivergent-wedge. We therefore propose that the structural inventory of an orogenic belt is hierarchically ordered with respect to accumulated slip, in analogy to the discharge pattern in a drainage network. The deformation front would have the highest, a branching splay the lowest order. Since kinematic boundary conditions control deformation front advance, its timing and the related maximum magnitude of finite strain, i.e. throw on the frontal thrust are predictable. However, the number of controlling factors, such as the degree of strain softening, the orientation of faults or fluid flow and resulting cementation of faults, responsible for the reactivation of faults increases with increasing distance from the deformation front. Since it is rarely possible to determine the complete network of forces within a wedge, the reactivation of lower order structures is not predictable in time and space. Two implications for field studies may emerge: A change of the propagation of deformation can only be determined, if at least two accretion cycles are sampled. The link between geodetic, paleoseismologic and geologic fault slip estimates can only be successfully derived if the position of the investigated fault within the hierarchical order has not changed over the time interval of interest.

  8. Numerical modelling of strain in lava tubes

    NASA Astrophysics Data System (ADS)

    Merle, Olivier

    The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.

  9. Movement and Orientation Decision Modeling of Rhyzopertha dominica (Coleoptera: Bostrichidae) in the Grain Mass.

    PubMed

    Cordeiro, Erick M G; Campbell, James F; Phillips, Thomas W

    2016-04-01

    Grain stored in bins is initially a relatively homogenous resource patch for stored-product insects, but over time, spatial pattern in insect distribution can form, due in part to insect movement patterns. However, the factors that influence stored-product insect movement patterns in grain are not well-understood. This research focused on the movement of the lesser grain borer, Rhyzopertha dominica (F.), within a simulated wheat grain mass (vertical monolayer of wheat) and the identification of factors that contribute to overall and upward movement (age since adult emergence from an infested kernel [1, 7, and 14 d], sex, strain, and different levels of environment quality). We also used the model selection approach to select the most relevant factors and determine the relationships among them. Three-week-old adults tended to stay closer to the surface compared with 1- or 2-wk-old insects. Also, females tended to be more active and to explore a larger area compared with males. Explored area and daily displacement were also significantly strain-dependent, and increasing grain infestation level decreased daily displacement and explored area. Variation in movement pattern is likely to influence the formation of spatial pattern and affect probability to disperse. Understanding movement behavior within a grain bin is crucial to designing better strategies to implement and interpret monitoring programs and to target control tactics. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  10. Trait Differentiation within the Fungus-Feeding (Mycophagous) Bacterial Genus Collimonas

    PubMed Central

    Ballhausen, Max-Bernhard; Vandamme, Peter; de Boer, Wietse

    2016-01-01

    The genus Collimonas consists of facultative, fungus-feeding (mycophagous) bacteria. To date, 3 species (C. fungivorans, C. pratensis and C. arenae) have been described and over 100 strains have been isolated from different habitats. Functional traits of Collimonas bacteria that are potentially involved in interactions with soil fungi mostly negatively (fungal inhibition e.g.), but also positively (mineral weathering e.g.), affect fungal fitness. We hypothesized that variation in such traits between Collimonas strains leads to different mycophagous bacterial feeding patterns. We investigated a) whether phylogenetically closely related Collimonas strains possess similar traits, b) how far phylogenetic resolution influences the detection of phylogenetic signal (possession of similar traits by related strains) and c) if there is a pattern of co-occurrence among the studied traits. We measured genetically encoded (nifH genes, antifungal collimomycin gene cluster e.g.) as well as phenotypically expressed traits (chitinase- and siderophore production, fungal inhibition and others) and related those to a high-resolution phylogeny (MLSA), constructed by sequencing the housekeeping genes gyrB and rpoB and concatenating those with partial 16S rDNA sequences. Additionally, high-resolution and 16S rDNA derived phylogenies were compared. We show that MLSA is superior to 16SrDNA phylogeny when analyzing trait distribution and relating it to phylogeny at fine taxonomic resolution (a single bacterial genus). We observe that several traits involved in the interaction of collimonads and their host fungus (fungal inhibition e.g.) carry phylogenetic signal. Furthermore, we compare Collimonas trait possession with sister genera like Herbaspirillum and Janthinobacterium. PMID:27309848

  11. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Yanxin; Cheng Yipik; Xu Xiaomin

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wavemore » velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.« less

  12. Application of physico-chemical typing methods for the epidemiological analysis of Salmonella enteritidis strains of phage type 25/17.

    PubMed Central

    Seltmann, G.; Voigt, W.; Beer, W.

    1994-01-01

    Eighty-nine Salmonella enteritidis phage type 25/17 strains isolated from a localized outbreak in the German state Nordrhein-Westfalen (outbreak NWI) could not be further differentiated by biochemotyping and plasmid pattern analysis. They were submitted to a complex typing system consisting of modern physico-chemical analytical procedures. In lipopolysaccharide pattern analysis the strains proved to be homogeneous. In multilocus enzyme electrophoresis, outer membrane and whole cell protein pattern (WCPP) analysis, and Fourier-transform infrared (FT-IR) spectroscopy (increasing extent of differentiation in the given order) strains deviating from each basal pattern were found. The extent of correspondence in these deviations was satisfactory. Forty-six strains of the same sero- and phage type, however, obtained from different outbreaks, were additionally typed. The results obtained with them indicate that the data of the first group were not restricted to strains from outbreak NWI, but of general validity. It was found that both WCPP and FT-IR represent valuable methods for the sub-grouping of bacteria. Images Fig. 1 Fig. 2 Fig. 3 PMID:7995351

  13. Shattering a myth - Whooping cough susceptible to antibiotics.

    PubMed

    Syed, Muhammad Ali; Jamil, Bushra; Bokhari, Habib

    2016-05-01

    Bordetella parapertussis is the causative agent of a milder form of pertussis or whooping cough. Little is reported about the antibiotic resistance patterns and mechanism of drug resistance of Bordetella parapertussis. The objective of this study has been to investigate antimicrobial resistance, distribution of integrons and presence of gene cassettes to quinolones (qnr) and sulfonamides (sul) among B. parapertussis strains' isolated from Pakistan. Thirty-five (35) samples were collected from various hospitals of Pakistan from children (median age 3 years) with pertussis-like symptoms, all were tested and confirmed to be B. Parapertussis. Resistance profile of Ampicillin, Cephalexin, Sulphamethoxazole, Chloramphenicol, Ofloxacin, Nalidixic acid, Gentamycin and Erythromycin were investigated through all samples. Majority of the isolates were found to be resistant to the afore-mentioned antibiotics except erythromycin. All isolates were resistant to quinolones phenotypically, but qnr genes were detected in only 25.7% (9/35) of isolates. On the other hand, 71.4% (25/35) isolates were resistant to sulfonamides phenotypically. From these 71% strains showing phenotypical resistance, 96% (24/25) were found to possess sul genes. Only two isolates were carrying class 1 integrons, which also harbored sul gene and qnr gene cassettes. It can be safely concluded that the phenotypic resistance patterns seemed mostly independent of presence of integrons. However, interestingly both integrons harboring strains were resistant to quinolones and sulfonamides and also possessed qnr and sul genes.

  14. Optical fiber sensor technique for strain measurement during materials deposition, chemical reaction, and relaxation

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1988-01-21

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study. 9 figs.

  15. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  16. Near-field analysis of metallic DFB lasers at telecom wavelengths.

    PubMed

    Greusard, L; Costantini, D; Bousseksou, A; Decobert, J; Lelarge, F; Duan, G-H; De Wilde, Y; Colombelli, R

    2013-05-06

    We image in near-field the transverse modes of semiconductor distributed feedback (DFB) lasers operating at λ ≈ 1.3 μm and employing metallic gratings. The active region is based on tensile-strained InGaAlAs quantum wells emitting transverse magnetic polarized light and is coupled via an extremely thin cladding to a nano-patterned gold grating integrated on the device surface. Single mode emission is achieved, which tunes with the grating periodicity. The near-field measurements confirm laser operation on the fundamental transverse mode. Furthermore--together with a laser threshold reduction observed in the DFB lasers--it suggests that the patterning of the top metal contact can be a strategy to reduce the high plasmonic losses in this kind of systems.

  17. Species Distribution and Susceptibility to Azoles of Vaginal Yeasts Isolated Prostitutes

    PubMed Central

    Gross, Norma T.; Arias, M. L.; Moraga, M.; Baddasarow, Y.; Jarstrand, C.

    2007-01-01

    Objective. We investigated the use of miconazole among female prostitutes in Costa Rica as well as the distribution of vaginal yeasts and the susceptibility pattern to azoles of strains obtained from this population. Our intention was to relate a frequent use of miconazole to occurrence of vaginal yeasts resistant to azoles. Methods. Vaginal samples were taken from 277 patients that have previously used azoles. Vaginal swabs were obtained for direct microscopy and culture. Yeast isolates were identified by germ tube test and assimilation pattern. Susceptibility testing was determined using a tablet diffusion method. Results. The number of clinical Candida isolates (one from each patient) was 57 (20.6%). C. albicans was the predominant species (70%), followed by C. parapsilosis (12%), C. tropicalis (5.3%), C. glabrata and C. famata (3.5% each), C. krusei, C. inconspicua and C. guilliermondii (1.7% each). The majority of vaginal Candida isolates were susceptible to ketoconazole (91%), fluconazole (96.5%), and itraconazole (98%). A lower susceptibility of some isolates to miconazole (63%) was observed as compared to the other azoles tested. Moreover, the strains, nonsusceptible to miconazole, were more often obtained from patients that have used this antifungal at least four times within the last year before taking the samples as compared to those with three or less treatments (P<.01). Conclusion. An indiscriminate use of miconazole, such as that observed among female prostitutes in Costa Rica, results in a reduced susceptibility of vaginal yeasts to miconazole but not to other azoles. PMID:18273407

  18. Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology

    PubMed Central

    Murashko, Oleg N.; Lin-Chao, Sue

    2017-01-01

    Escherichia coli RNase E is an essential enzyme that forms multicomponent ribonucleolytic complexes known as “RNA degradosomes.” These complexes consist of four major components: RNase E, PNPase, RhlB RNA helicase, and enolase. However, the role of enolase in the RNase E/degradosome is not understood. Here, we report that presence of enolase in the RNase E/degradosome under anaerobic conditions regulates cell morphology, resulting in E. coli MG1655 cell filamentation. Under anaerobic conditions, enolase bound to the RNase E/degradosome stabilizes the small RNA (sRNA) DicF, i.e., the inhibitor of the cell division gene ftsZ, through chaperon protein Hfq-dependent regulation. RNase E/enolase distribution changes from membrane-associated patterns under aerobic to diffuse patterns under anaerobic conditions. When the enolase-RNase E/degradosome interaction is disrupted, the anaerobically induced characteristics disappear. We provide a mechanism by which E. coli uses enolase-bound degradosomes to switch from rod-shaped to filamentous form in response to anaerobiosis by regulating RNase E subcellular distribution, RNase E enzymatic activity, and the stability of the sRNA DicF required for the filamentous transition. In contrast to E. coli nonpathogenic strains, pathogenic E. coli strains predominantly have multiple copies of sRNA DicF in their genomes, with cell filamentation previously being linked to bacterial pathogenesis. Our data suggest a mechanism for bacterial cell filamentation during infection under anaerobic conditions. PMID:28874523

  19. Inactivity periods and postural change speed can explain atypical postural change patterns of Caenorhabditis elegans mutants.

    PubMed

    Fukunaga, Tsukasa; Iwasaki, Wataru

    2017-01-19

    With rapid advances in genome sequencing and editing technologies, systematic and quantitative analysis of animal behavior is expected to be another key to facilitating data-driven behavioral genetics. The nematode Caenorhabditis elegans is a model organism in this field. Several video-tracking systems are available for automatically recording behavioral data for the nematode, but computational methods for analyzing these data are still under development. In this study, we applied the Gaussian mixture model-based binning method to time-series postural data for 322 C. elegans strains. We revealed that the occurrence patterns of the postural states and the transition patterns among these states have a relationship as expected, and such a relationship must be taken into account to identify strains with atypical behaviors that are different from those of wild type. Based on this observation, we identified several strains that exhibit atypical transition patterns that cannot be fully explained by their occurrence patterns of postural states. Surprisingly, we found that two simple factors-overall acceleration of postural movement and elimination of inactivity periods-explained the behavioral characteristics of strains with very atypical transition patterns; therefore, computational analysis of animal behavior must be accompanied by evaluation of the effects of these simple factors. Finally, we found that the npr-1 and npr-3 mutants have similar behavioral patterns that were not predictable by sequence homology, proving that our data-driven approach can reveal the functions of genes that have not yet been characterized. We propose that elimination of inactivity periods and overall acceleration of postural change speed can explain behavioral phenotypes of strains with very atypical postural transition patterns. Our methods and results constitute guidelines for effectively finding strains that show "truly" interesting behaviors and systematically uncovering novel gene functions by bioimage-informatic approaches.

  20. Undirected learning styles and academic risk: Analysis of the impact of stress, strain and coping.

    PubMed

    Kimatian, Stephen; Lloyd, Sara; Berger, Jeffrey; Steiner, Lorraine; McKay, Robert; Schwengal, Deborah

    2017-01-01

    Learning style inventories used in conjunction with a measure of academic achievement consistently show an association of meaning directed learning patterns with academic success, but have failed to show a clear association of undirected learning styles with academic failure. Using survey methods with anesthesia residents, this study questioned whether additional assessment of factors related to stress, strain, and coping help to better define the association between undirected learning styles and academic risk. Pearson chi squared tests. 296 subjects were enrolled from eight institutions with 142 (48%) completing the study. American Board of Anesthesiologists In Training Examinations (ITE) percentiles (ITE%) were used as a measure of academic achievement. The Vermunt Inventory of Learning Styles (ILS) was used to identify four learning patterns and 20 strategies, and the Osipow Stress Inventory-Revised (OSI-R) was used as a measure of six scales of occupational stress, four of personal strain, and four coping resources. Two learning patterns had significant relationship with ITE scores. As seen in previous studies, Meaning Directed Learning was beneficial for academic achievement while Undirected Learning was the least beneficial. Higher scores on Meaning Directed Learning correlated positively with higher ITE scores while higher Undirected and lower Meaning Directed patterns related negatively to ITE%. OSI-R measures of stress, strain and coping indicated that residents with Undirected learning patterns had higher scores on three scales related to stress, and 4 related to strain, while displaying lower scores on two scales related to coping. Residents with higher Meaning Directed patterns scored lower on two scales of stress and two scales of strain, with higher scores on two scales for coping resources. Low Meaning Directed and high Undirected learning patterns correlated with lower ITE percentiles, higher scores for stress and strain, and lower coping resources. This association suggests that successful remediation of at-risk residents must address stress, strain and coping if long term academic improvement is expected. Further research to identify the value of stress, strain, and coping screening and education is warranted.

  1. Characteristic systolic waveform of left ventricular longitudinal strain rate in patients with hypertrophic cardiomyopathy.

    PubMed

    Okada, Kazunori; Kaga, Sanae; Mikami, Taisei; Masauzi, Nobuo; Abe, Ayumu; Nakabachi, Masahiro; Yokoyama, Shinobu; Nishino, Hisao; Ichikawa, Ayako; Nishida, Mutsumi; Murai, Daisuke; Hayashi, Taichi; Shimizu, Chikara; Iwano, Hiroyuki; Yamada, Satoshi; Tsutsui, Hiroyuki

    2017-05-01

    We analyzed the waveform of systolic strain and strain-rate curves to find a characteristic left ventricular (LV) myocardial contraction pattern in patients with hypertrophic cardiomyopathy (HCM), and evaluated the utility of these parameters for the differentiation of HCM and LV hypertrophy secondary to hypertension (HT). From global strain and strain-rate curves in the longitudinal and circumferential directions, the time from mitral valve closure to the peak strains (T-LS and T-CS, respectively) and the peak systolic strain rates (T-LSSR and T-CSSR, respectively) were measured in 34 patients with HCM, 30 patients with HT, and 25 control subjects. The systolic strain-rate waveform was classified into 3 patterns ("V", "W", and "√" pattern). In the HCM group, T-LS was prolonged, but T-LSSR was shortened; consequently, T-LSSR/T-LS ratio was distinctly lower than in the HT and control groups. The "√" pattern of longitudinal strain-rate waveform was more frequently seen in the HCM group (74 %) than in the control (4 %) and HT (20 %) groups. Similar but less distinct results were obtained in the circumferential direction. To differentiate HCM from HT, the sensitivity and specificity of the T-LSSR/T-LS ratio <0.34 and the "√"-shaped longitudinal strain-rate waveform were 85 and 63 %, and 74 and 80 %, respectively. In conclusion, in patients with HCM, a reduced T-LSSR/T-LS ratio and a characteristic "√"-shaped waveform of LV systolic strain rate was seen, especially in the longitudinal direction. The timing and waveform analyses of systolic strain rate may be useful to distinguish between HCM and HT.

  2. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.

    PubMed

    Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling

    2017-06-22

    Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.

  3. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography

    PubMed Central

    Nayfach, Stephen; Rodriguez-Mueller, Beltran; Garud, Nandita

    2016-01-01

    We present the Metagenomic Intra-species Diversity Analysis System (MIDAS), which is an integrated computational pipeline for quantifying bacterial species abundance and strain-level genomic variation, including gene content and single-nucleotide polymorphisms (SNPs), from shotgun metagenomes. Our method leverages a database of more than 30,000 bacterial reference genomes that we clustered into species groups. These cover the majority of abundant species in the human microbiome but only a small proportion of microbes in other environments, including soil and seawater. We applied MIDAS to stool metagenomes from 98 Swedish mothers and their infants over one year and used rare SNPs to track strains between hosts. Using this approach, we found that although species compositions of mothers and infants converged over time, strain-level similarity diverged. Specifically, early colonizing bacteria were often transmitted from an infant’s mother, while late colonizing bacteria were often transmitted from other sources in the environment and were enriched for spore-formation genes. We also applied MIDAS to 198 globally distributed marine metagenomes and used gene content to show that many prevalent bacterial species have population structure that correlates with geographic location. Strain-level genetic variants present in metagenomes clearly reveal extensive structure and dynamics that are obscured when data are analyzed at a coarser taxonomic resolution. PMID:27803195

  4. Molecular identification and cluster analysis of homofermentative thermophilic lactobacilli isolated from dairy products.

    PubMed

    Andrighetto, C; De Dea, P; Lombardi, A; Neviani, E; Rossetti, L; Giraffa, G

    1998-10-01

    Twenty-five strains of thermophilic lactobacilli isolated from yoghurt and from semi-hard and hard cheeses (in parallel with nine type or reference strains) were identified and grouped according to their genetic relatedness. Strains were identified by sugar fermentation patterns using the "API 50 CHL" galleries, by species-specific DNA probes in dot-blot hybridization experiments, by amplification and restriction analysis of the 16S rRNA gene (ARDRA) and by polymerase chain reaction (PCR) using species-specific oligonucleotide primers. Strains were classified as Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus, L. helveticus, and L. acidophilus. Strains which were atypical by sugar fermentation patterns were also identified. Most of the strains could not be grouped using carbohydrate fermentation profiles. PCR fingerprinting was used to identify DNA profiles for the 25 lactobacilli. Experimentally obtained PCR profiles enabled discrimination of all strains, which were grouped according to the similarities in their combined patterns. In general, the clustering of the strains corresponded well with species delineation obtained by molecular identification. The dendrogram of genetic relatedness enabled the unambiguous identification of most of the strains which were shown to be atypical by the sugar fermentation profile, except for a discrepancy in one L. delbrueckii subsp. lactis strain and one atypical Lactobacillus sp. strain.

  5. Seasonal and geographic distribution of luminous bacteria in the eastern mediterranean sea and the gulf of elat.

    PubMed

    Yetinson, T; Shilo, M

    1979-06-01

    Luminous bacteria in the Mediterranean Sea and the Gulf of Aqaba-Elat have different distribution patterns. In the Mediterranean Sea, Beneckea harveyi is present all year round, with different subtypes alternating in summer and winter; Photobacterium fischeri was only present during the winter. In the Gulf of Elat, P. leiognathi is present throughout the water column in similar densities during the entire year. This constancy in distribution is presumably due to the near-constancy in water temperature. In summer, Photobacterium leiognathi is replaced by B. harveyi in coastal surface waters. In the hypersaline Bardawil lagoon, only B. harveyi types are present. P. fischeri, a major component of the Mediterranean Sea winter communities, is absent from the lagoon. Luminous Beneckea strains show a great diversity in properties, e.g. temperature range for growth, sensitivity to infection by phages, sensitivity to attack by Bdellovibrio strains, and differences in tolerance to high-salinity shock. Therefore, subdivision of the taxonomic cluster of B. harveyi into subtypes is indicated. The composition of the luminous bacteria communities may serve as indicators of different marine water bodies. The symbiotic luminous bacteria of the light organ of the common Gulf of Elat fish, Photoblepharon palbebratus steinitzi, is different from any of the types described.

  6. Seasonal and Geographic Distribution of Luminous Bacteria in the Eastern Mediterranean Sea and the Gulf of Elat

    PubMed Central

    Yetinson, T.; Shilo, M.

    1979-01-01

    Luminous bacteria in the Mediterranean Sea and the Gulf of Aqaba-Elat have different distribution patterns. In the Mediterranean Sea, Beneckea harveyi is present all year round, with different subtypes alternating in summer and winter; Photobacterium fischeri was only present during the winter. In the Gulf of Elat, P. leiognathi is present throughout the water column in similar densities during the entire year. This constancy in distribution is presumably due to the near-constancy in water temperature. In summer, Photobacterium leiognathi is replaced by B. harveyi in coastal surface waters. In the hypersaline Bardawil lagoon, only B. harveyi types are present. P. fischeri, a major component of the Mediterranean Sea winter communities, is absent from the lagoon. Luminous Beneckea strains show a great diversity in properties, e.g. temperature range for growth, sensitivity to infection by phages, sensitivity to attack by Bdellovibrio strains, and differences in tolerance to high-salinity shock. Therefore, subdivision of the taxonomic cluster of B. harveyi into subtypes is indicated. The composition of the luminous bacteria communities may serve as indicators of different marine water bodies. The symbiotic luminous bacteria of the light organ of the common Gulf of Elat fish, Photoblepharon palbebratus steinitzi, is different from any of the types described. Images PMID:16345404

  7. Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation.

    PubMed

    Mulet, M; Gomila, M; Ramírez, A; Cardew, S; Moore, E R B; Lalucat, J; García-Valdés, E

    2017-02-01

    Fifty-two Pseudomonas strains that were difficult to identify at the species level in the phenotypic routine characterizations employed by clinical microbiology laboratories were selected for genotypic-based analysis. Species level identifications were done initially by partial sequencing of the DNA dependent RNA polymerase sub-unit D gene (rpoD). Two other gene sequences, for the small sub-unit ribosonal RNA (16S rRNA) and for DNA gyrase sub-unit B (gyrB) were added in a multilocus sequence analysis (MLSA) study to confirm the species identifications. These sequences were analyzed with a collection of reference sequences from the type strains of 161 Pseudomonas species within an in-house multi-locus sequence analysis database. Whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses of these strains complemented the DNA sequenced-based phylogenetic analyses and were observed to be in accordance with the results of the sequence data. Twenty-three out of 52 strains were assigned to 12 recognized species not commonly detected in clinical specimens and 29 (56 %) were considered representatives of at least ten putative new species. Most strains were distributed within the P. fluorescens and P. aeruginosa lineages. The value of rpoD sequences in species-level identifications for Pseudomonas is emphasized. The correct species identifications of clinical strains is essential for establishing the intrinsic antibiotic resistance patterns and improved treatment plans.

  8. A method to transfer speckle patterns for digital image correlation

    NASA Astrophysics Data System (ADS)

    Chen, Zhenning; Quan, Chenggen; Zhu, Feipeng; He, Xiaoyuan

    2015-09-01

    A simple and repeatable speckle creation method based on water transfer printing (WTP) is proposed to reduce artificial measurement error for digital image correlation (DIC). This technique requires water, brush, and a piece of transfer paper that is made of prefabricated decal paper, a protected sheet, and printed speckle patterns. The speckle patterns are generated and optimized via computer simulations, and then printed on the decal paper. During the experiments, operators can moisten the basement with water and the brush, so that digital patterns can be simply transferred to the carriers’ surfaces. Tensile experiments with an extended three-dimensional (3D) DIC system are performed to test and verify the validity of WTP patterns. It is shown that by comparing with a strain gage, the strain error is less than 50μɛ in a uniform tensile test. From five carbon steel tensile experiments, Lüders bands in both WTP patterns and spray paint patterns are demonstrated to propagate symmetrically. In the necking part where the strain is up to 66%, WTP patterns are proved to adhere to the specimens well. Hence, WTP patterns are capable of maintaining coherence and adherence to the specimen surface. The transfer paper, working as the role of strain gage in the electrometric method, will contribute to speckle creation.

  9. Mesoscopic Strains Maps in Woven Composite Laminas During Off-axis Tension

    NASA Astrophysics Data System (ADS)

    Anzelotti, G.; Nicoletto, G.; Riva, E.

    2010-06-01

    The mechanics of woven carbon-fiber reinforced plastic (CFRP) composites is influenced by the complex architecture of the reinforcement phase. Computational (i.e. finite element based) approaches have been used increasingly to model not only the global laminate stiffness, but also damage evolution and laminate strength. The modeling combines the identification of the architectural unit cell (UC), the selection of suitable constitutive models of the different phases, the creation of a fine discretization of the UC in finite elements, the application of an incremental solution procedure that solves iteratively for the stresses and strains in the UC, [1]. The experimental validation of computational models is carried out mainly at the macroscopical level, i.e. simulation of the macroscopic stress-strain curve. Damage, however, is a localized, straindependent phenomenon and therefore only accurate strain distribution within the UC (at the mesolevel) can identify critical conditions in terms of damage location, extension and evolution. The validation of computational damage procedures is a key task and full-field optical strain analysis methods appear the ideal instrument. However, only limited examples of direct finte element method (FEM) vs experimental strain correlation are found because of the limited sensitivity and spatial resolution of some techniques and the complexity and applicative difficulty of others. The aim of the present paper is to present the application of the digital image correlation (DIC) technique, [2], to the full-field strain analysis at the mesoscopic level (i.e. within the UC) of a woven CFRP lamina when the direction of loading forms an angle to the material direction. The material under consideration is a woven carbon fiber reinforced epoxy composite. Orthogonal yarns, each made of of several thousand fibers, are woven according the twill-weave architecture is shown in Fig. 1a. Single-ply laminas were manufactured and tested to eliminate the random 3D influence of multiple-ply laminates and to favor computational model validation. Specimens with different loading directions with respect to the material principal directions were prepared and tested in a servo-hydraulic testing machine. Specimen surface preparation consisted in a speckle pattern generation to allow the application of the DIC tecnique. During the tensile experiment, the speckle pattern is recorded (frame rate of 0.1 picture/second) using a CCD camera equipped with a microscopic lens and adjustable light sources. In-house DIC software was used for in-plane displacement and strain determination and mapping. For brevity only the case of loading in the tow yarn direction is considered here. Fig. 1b shows a tipical strain map obtained with the DIC technique at an applied macroscopic strain of 0.9%. The strains are small but the DIC dechnique is sensitive enough and suitable filtering reduce the noise level of the strain maps. Strong local strain gradients are determined and referred to the yarn architecture in Fig. 1c. The DIC measurements were validated by averaging the strain over the field of view and comparing it with the macroscopic strain given by a high-sensitivity MTS extensometer. The mesoscopic srain data obtained with DIC are used to assess and validate parallel material model development by direct FEM vs experimental strain correlation. Fig. 2a shows the FEM model of the unit cell for the twill-weave architecture with a detail of the yarn geometry and finite element discretization. Suitable boundary conditions are applied to the UC model contours before the analysis, [1]. Fig. 2b shows and example of the comparison of the local longitudinal FEM/DIC strain distribution along a transverse line of Fig. 1c. The comparison shows the excellent correlation achieved both in terms of gradients and absolute strain values, [3].

  10. Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors

    NASA Astrophysics Data System (ADS)

    Naruse, Hiroshi; Tateda, Mitsuhiro; Ohno, Hiroshige; Shimada, Akiyoshi

    2002-12-01

    We theoretically derive the shape of the Brillouin gain spectrum, that is, the Brillouin backscattered-light power spectrum, produced in an optical fiber under conditions of a strain distribution that changes linearly with a constant slope. The modeled measurement system is an optical time-domain reflectometer-type strain sensor system. The linear strain distribution is one of the fundamental distributions and is produced in, for example, a beam to which a concentrated load is applied. By analyzing a function that expresses the shape of the derived Brillouin gain spectrum, we show that the strain calculated from the frequency at which the spectrum has a peak value coincides with that at the center of the effective pulsed light. In addition, the peak value and the full width at half-maximum of the Brillouin gain spectrum are both influenced by the strain difference between the two ends of the effective pulse. We investigate this influence in detail and obtain the relationship between strain difference and strain measurement error.

  11. Hydrogen uptake causes molecular "avalanches" in palladium | Argonne

    Science.gov Websites

    experimental and calculated strain distributions in the hydrogen-poor phase. The strains are consistent with a trapped hydrogen-rich surface layer. Middle: Comparison between experimental and calculated strain transformation. Comparison between experimental and calculated strain distributions in the hydrogen-poor phase

  12. Genetic patterns of Streptococcus uberis isolated from bovine mastitis.

    PubMed

    Reinoso, Elina B; Lasagno, Mirta C; Odierno, Liliana M

    2015-01-01

    The aim of this study was to evaluate the genotypic relationships among 40 Streptococcus uberis isolated from bovine mastitis by using pulsed-field gel electrophoresis (PFGE). Additionally, the association between PFGE patterns and virulence profiles was investigated. The isolates exhibited 17 PFGE patterns. Different strains were found within and among herds; however, a low number of isolates within the same herd shared an identical PFGE type. No association between PFGE patterns and virulence profiles was found. However, the detection of specific strains in some herds could indicate that some strains are more virulent than others. Further research needs to be undertaken to elucidate new virulence-associated genes that might contribute to the capability of these strains to produce infection. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Local nanoscale strain mapping of a metallic glass during in situ testing

    NASA Astrophysics Data System (ADS)

    Gammer, Christoph; Ophus, Colin; Pekin, Thomas C.; Eckert, Jürgen; Minor, Andrew M.

    2018-04-01

    The local elastic strains during tensile deformation in a CuZrAlAg metallic glass are obtained by fitting an elliptic shape function to the characteristic amorphous ring in electron diffraction patterns. Scanning nanobeam electron diffraction enables strain mapping with a resolution of a few nanometers. Here, a fast direct electron detector is used to acquire the diffraction patterns at a sufficient speed to map the local transient strain during continuous tensile loading in situ in the transmission electron microscope. The elastic strain in tensile direction was found to increase during loading. After catastrophic fracture, a residual elastic strain that relaxes over time was observed.

  14. Biofilm formation, antibiotic susceptibility and RAPD genotypes in Pseudomonas aeruginosa clinical strains isolated from single centre intensive care unit patients.

    PubMed

    Vaněrková, Martina; Mališová, Barbora; Kotásková, Iva; Holá, Veronika; Růžička, Filip; Freiberger, Tomáš

    2017-11-01

    The aim of this study was to analyse genotypes, antimicrobial susceptibility patterns and serotypes in Pseudomonas aeruginosa clinical strains, including the clonal dissemination of particular strains throughout various intensive care units in one medical centre. Using random amplified polymorphic DNA (RAPD-PCR) and P. aeruginosa antisera, 22 different genotypes and 8 serotypes were defined among 103 isolates from 48 patients. No direct association between P. aeruginosa strain genotypes and serotypes was observed. RAPD typing in strains with the same serotype revealed different genotypes and, on the contrary, most strains with a different serotype displayed the same amplification pattern. The resulting banding patterns showed a high degree of genetic heterogeneity among all isolates from the patients examined, suggesting a non-clonal relationship between isolates from these patients. A higher degree of antibiotic resistance and stronger biofilm production in common genotypes compared to rare ones and genetic homogeneity of the most resistant strains indicated the role of antibiotic pressure in acquiring resistant and more virulent strains in our hospital. In conclusion, genetic characterisation of P. aeruginosa strains using RAPD method was shown to be more accurate in epidemiological analyses than phenotyping.

  15. Spatial variability of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, southwestern Utah

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2012-12-01

    In order to yield new insight into the process of faulting in fine-grained, poorly indurated volcanic ash, the distribution of strain around faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, is investigated. Several distinct styles of inelastic strain are identified. Deformation bands are observed in tuff that is porous and granular in nature, or is inferred to have been so at the time of deformation. Where silicic alteration is pervasive, fractures are the dominant form of localized strain. Non-localized strain within the host rock is manifest as pore space compaction, including crushing of pumice clasts. Distinct differences in fault zone architecture are observed at different magnitudes of normal fault displacement, in the mode II orientation. A fault with cm-scale displacements is manifest as a single well-defined surface. Off-fault damage occurs as pore space compaction near the fault tips and formation of deformation band damage zones that are roughly symmetric about the fault. At a fault with larger meter-scale displacements, a fault core is present. A recognizable fault-related deformation band damage zone is not observed here, even though large areas of the host rock remain porous and granular and deformation bands had formed prior to faulting. The host rock is instead fractured in areas of pervasive alteration and shows possible textural evidence of fault pulverization. The zones of localized and distributed strain have notably different spatial extents around the causative fault. The region of distributed deformation, as indicated by changes in gas permeability of the macroscopically intact rock, extends up to four times farther from the fault than the highest densities of localized deformation (i.e., fractures and deformation bands). This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in poorly indurated tuff. Not surprisingly, the type of structural discontinuity that forms in the fault environment is found to be a function of the porosity and granularity of the host rock. Non-localized deformation in the form of pore space compaction of the host rock is found to be prominent around the fault tips at First Spring Hollow. Interestingly, the spatial distribution of host rock compaction and the occurrences of dilational deformation bands around this fault do not correlate with the classic pattern of compression and dilation generally anticipated for slipped normal faults when viewed in mode II. Therefore, while broad generalities regarding the types of discontinuities that form around faults in tuff can be drawn based on current principles, additional work is needed to better understand the genesis of the observed spatial distributions of strain.

  16. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    EPA Science Inventory

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  17. Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis

    PubMed Central

    Sonnenschein, Eva C; Nielsen, Kristian F; D'Alvise, Paul; Porsby, Cisse H; Melchiorsen, Jette; Heilmann, Jens; Kalatzis, Panos G; López-Pérez, Mario; Bunk, Boyke; Spröer, Cathrin; Middelboe, Mathias; Gram, Lone

    2017-01-01

    Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primarily been isolated from marine aquaculture and have probiotic potential due to inhibition of fish pathogens. We hypothesized that TDA producers with additional novel features are present in the oceanic environment. We isolated 42 TDA-producing R. mobilis strains during a global marine research cruise. While highly similar on the 16S ribosomal RNA gene level (99–100% identity), the strains separated into four sub-clusters in a multilocus sequence analysis. They were further differentiated to the strain level by average nucleotide identity using pairwise genome comparison. The four sub-clusters could not be associated with a specific environmental niche, however, correlated with the pattern of sub-typing using co-isolated phages, the number of prophages in the genomes and the distribution in ocean provinces. Major genomic differences within the sub-clusters include prophages and toxin-antitoxin systems. In general, the genome of R. mobilis revealed adaptation to a particle-associated life style and querying TARA ocean data confirmed that R. mobilis is more abundant in the particle-associated fraction than in the free-living fraction occurring in 40% and 6% of the samples, respectively. Our data and the TARA data, although lacking sufficient data from the polar regions, demonstrate that R. mobilis is a globally distributed marine bacterial species found primarily in the upper open oceans. It has preserved key phenotypic behaviors such as the production of TDA, but contains diverse sub-clusters, which could provide new capabilities for utilization in aquaculture. PMID:27552638

  18. Transcriptomic analysis of two Beauveria bassiana strains grown on cuticle extracts of the silkworm uncovers their different metabolic response at early infection stage.

    PubMed

    Wang, Jing-Jie; Bai, Wen-Wen; Zhou, Wei; Liu, Jing; Chen, Jie; Liu, Xiao-Yuan; Xiang, Ting-Ting; Liu, Ren-Hua; Wang, Wen-Hui; Zhang, Bao-Ling; Wan, Yong-Ji

    2017-05-01

    Beauveria bassiana is an important entomopathogenic fungus which not only widely distributes in the environment but also shows phenotypic diversity. However, the mechanism of pathogenic differences among natural B. bassiana strains has not been revealed at transcriptome-wide level. In the present study, in order to explore the mechanism, two B. bassiana strains with different pathogenicity were isolated from silkworms (Bombyx mori L.) and selected to analyze the gene expression of early stage by culturing on cuticle extracts of the silkworm and using RNA-sequencing technique. A total of 2108 up-regulated and 1115 down-regulated genes were identified in B. bassiana strain GXsk1011 (hyper-virulent strain) compared with B. bassiana strain GXtr1009 (hypo-virulent strain), respectively. The function categorization of differential expressed genes (DEGs) showed that most of them involved in metabolic process, biosynthesis of secondary metabolites, catalytic activity, and some involved in nutrition uptake, adhesion and host defense were also noted. Based on our data, distinct pathogenicity among different strains of B. bassiana may largely attribute to unique gene expression pattern which differed at very early infection process. Most of the genes involved in conidia adhesion, cuticle degradation and fungal growth were up-regulated in hyper-virulent B. bassiana strain GXsk1011. Furthermore, in combination with fungal growth analysis, our research provided a clue that fungal growth may also play an important role during early infection process. The results will help to explain why different B. bassiana strains show distinct pathogenicity on the same host even under same condition. Moreover, the transcriptome data were also useful for screening potential virulence factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Distribution of genes encoding resistance to aminoglycoside modifying enzymes in methicillin-resistant Staphylococcus aureus (MRSA) strains.

    PubMed

    Khosravi, Azar Dokht; Jenabi, Atefeh; Montazeri, Effat Abbasi

    2017-12-01

    Today Methicillin-Resistant Staphylococcus aureus (MRSA) have acquired multiple resistance to a wide range of antibiotics including aminoglycosides. So, this study was aimed to investigate the rate of aminoglycoside resistance and the frequency of aminoglycoside resistance mediated genes of aac(Ia)-2, aph(3)-IIIa and ant(4')-Ia among MRSA strains. A total of 467 staphylococci isolates were collected from various clinical samples. S. aureus strains were identified by standard culture and identification criteria and investigating of presence of 16S rRNA and nuc genes. Cefoxitin disk diffusion, and oxacillin-salt agar screening methods were used to detect the MRSA strains with subsequent molecular identification for the presence of mecA gene. Antibiotic susceptibility of MRSA strains against aminoglycoside antibiotics was evaluated by using agar disk diffusion method. Multiplex PCR for the presence of aac(Ia)-2, aph(3)-IIIa and ant(4')-Ia encoding genes for aminoglycosides were performed for MRSA strains. From total staphylococci tested isolates, 262 (56.1%) were identified as S. aureus, of which 161 (61.45%) were detected as MRSA and all comprised mecA gene. The resistance pattern of MRSA strains to aminoglycoside antibiotics were: gentamicin 136 (84.5%); amikacin 125 (77.6%); kanamycin 139 (86.3%); tobramycin 132 (82%); and neomycin 155 (96.3%). The frequency of aac(Ia)-2, aph(3)-IIIa, and ant(4')-Ia genes among MRSA strains, were 64%, 42% and 11.8% respectively. In conclusion, as MRSA strains are of great concern in human infections, the results of present study could provide a useful resource for health sectors for choosing appropriate antibiotics for the effective treatment of infections due to MRSA strains. Copyright © 2017. Published by Elsevier Taiwan.

  20. Definition of the Beijing/W lineage of Mycobacterium tuberculosis on the basis of genetic markers.

    PubMed

    Kremer, Kristin; Glynn, Judith R; Lillebaek, Troels; Niemann, Stefan; Kurepina, Natalia E; Kreiswirth, Barry N; Bifani, Pablo J; van Soolingen, Dick

    2004-09-01

    Mycobacterium tuberculosis Beijing genotype strains are highly prevalent in Asian countries and in the territory of the former Soviet Union. They are increasingly reported in other areas of the world and are frequently associated with tuberculosis outbreaks and drug resistance. Beijing genotype strains, including W strains, have been characterized by their highly similar multicopy IS6110 restriction fragment length polymorphism (RFLP) patterns, deletion of spacers 1 to 34 in the direct repeat region (Beijing spoligotype), and insertion of IS6110 in the genomic dnaA-dnaN locus. In this study the suitability and comparability of these three genetic markers to identify members of the Beijing lineage were evaluated. In a well-characterized collection of 1,020 M. tuberculosis isolates representative of the IS6110 RFLP genotypes found in The Netherlands, strains of two clades had spoligotypes characteristic of the Beijing lineage. A set of 19 Beijing reference RFLP patterns was selected to retrieve all Beijing strains from the Dutch database. These reference patterns gave a sensitivity of 98.1% and a specificity of 99.7% for identifying Beijing strains (defined by spoligotyping) in an international database of 1,084 strains. The usefulness of the reference patterns was also assessed with large DNA fingerprint databases in two other European countries and for identification strains from the W lineage found in the United States. A standardized definition for the identification of M. tuberculosis strains belonging to the Beijing/W lineage, as described in this work, will facilitate further studies on the spread and characterization of this widespread genotype family of M. tuberculosis strains.

  1. Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae).

    PubMed

    Riegler, Markus; Stauffer, Christian

    2002-11-01

    Wolbachia is an obligately intracellular, maternally inherited bacterium which has been detected in many arthropods. Wolbachia infections disperse in host populations by mechanisms such as cytoplasmic incompatibility (CI). CI leads to embryonic mortality which occurs when infected males mate with uninfected females or females with a different Wolbachia strain. Populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae) were found to be infected by two different Wolbachia strains, wCer1 and wCer2. Superinfections with both strains occurred throughout southern and central Europe and infections with wCer1 were found in northern, western and eastern Europe. Strong unidirectional CI between European populations of R. cerasi were first reported in the 1970s. From the conformity in the recent geographical distribution of the Wolbachia infections and the CI expression patterns found 25 years ago it was deduced that wCer2 potentially causes CI in R. cerasi. The comparison of the geographical distributions indicated that wCer1 + 2 must have spread into wCer1-infected populations in some areas. In other regions, a spread of wCer1 + 2 was probably prevented by dispersal barriers. There, a sharp transition from infected to superinfected populations suggested regional isolation between wCer1 and wCer1 + 2-infected populations.

  2. Pan genome and CRISPR analyses of the bacterial fish pathogen Moritella viscosa.

    PubMed

    Karlsen, Christian; Hjerde, Erik; Klemetsen, Terje; Willassen, Nils Peder

    2017-04-20

    Winter-ulcer Moritella viscosa infections continue to be a significant burden in Atlantic salmon (Salmo salar L.) farming. M. viscosa comprises two main clusters that differ in genetic variation and phenotypes including virulence. Horizontal gene transfer through acquisition and loss of mobile genetic elements (MGEs) is a major driving force of bacterial diversification. To gain insight into genomic traits that could affect sublineage evolution within this bacterium we examined the genome sequences of twelve M. viscosa strains. Matches between M. viscosa clustered, regularly interspaced, short palindromic, repeats and associated cas genes (CRISPR-Cas) were analysed to correlate CRISPR-Cas with adaptive immunity against MGEs. The comparative genomic analysis of M. viscosa isolates from across the North Atlantic region and from different fish species support delineation of M. viscosa into four phylogenetic lineages. The results showed that M. viscosa carries two distinct variants of the CRISPR-Cas subtype I-F systems and that CRISPR features follow the phylogenetic lineages. A subset of the spacer content match prophage and plasmid genes dispersed among the M. viscosa strains. Further analysis revealed that prophage and plasmid-like element distribution were reflected in the content of the CRISPR-spacer profiles. Our data suggests that CRISPR-Cas mediated interactions with MGEs impact genome properties among M. viscosa, and that patterns in spacer and MGE distributions are linked to strain relationships.

  3. [Molecular characterization and antimicrobial susceptibility pattern of extended-spectrum β-lactamase-producing Escherichia coli as cause of community acquired urinary tract infection].

    PubMed

    Galindo-Méndez, Mario

    Background Community acquired urinary tract infections (CaUTI) caused by strains of extended-spectrum β-lactamases (ESBL) - producing Escherichia coli, mainly by strains carrying the blaCTX-M-15 gene, is a growing phenomenon worldwide. Aim To determine the antibiotic susceptibility pattern of ESBL-producing E. coli as cause of CaUTI and to identify their molecular pattern. Methods A descriptive study was performed in the city of Oaxaca, Mexico, from where 288 strains of CaUTI-producing strains of E. coli in adults with possible UTI were isolated. The CLSI criteria was followed to determine the antimicrobial susceptibility patterns, and their molecular characterization was performed by using PCR. Results 31.3% of E. coli strains isolated in our population were ESBL producers, which presented higher levels of antibiotic resistance than those of non-producers of these enzymes. 95.6% of the studied strains were carriers of the blaCTX-M gene. Conclusions One-third of the Ca-UTI caused by E. coli in our population are caused by ESBL-producing strains, which present high levels of resistance to the antibiotics widely used in our community. This situation considerably decreases the number of antibiotics available for an empiric treatment against these infections.

  4. Mixed colonies of Aspergillus niger and Aspergillus oryzae cooperatively degrading wheat bran.

    PubMed

    Benoit-Gelber, I; Gruntjes, T; Vinck, A; van Veluw, J G; Wösten, H A B; Boeren, S; Vervoort, J J M; de Vries, R P

    2017-05-01

    In both natural and man-made environments, microorganisms live in mixed populations, while in laboratory conditions monocultures are mainly used. Microbial interactions are often described as antagonistic, but can also be neutral or cooperative, and are generally associated with a metabolic change of each partner and cause a change in the pattern of produced bioactive molecules. A. niger and A. oryzae are two filamentous fungi widely used in industry to produce various enzymes (e.g. pectinases, amylases) and metabolites (e.g. citric acid). The co-cultivation of these two fungi in wheat bran showed an equal distribution of the two strains forming mixed colonies with a broad range of carbohydrate active enzymes produced. This stable mixed microbial system seems suitable for subsequent commercial processes such as enzyme production. XlnR knock-out strains for both aspergilli were used to study the influence of plant cell wall degrading enzyme production on the fitness of the mixed culture. Microscopic observation correlated with quantitative PCR and proteomic data suggest that the XlnR Knock-out strain benefit from the release of sugars by the wild type strain to support its growth. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. The cost and distribution of firefighter injuries in a large Canadian Fire Department.

    PubMed

    Frost, D M; Beach, T A C; Crosby, I; McGill, S M

    2016-11-22

    There is limited data available regarding the cost of firefighter injuries. This information is necessary to develop targeted injury prevention strategies. To categorize the cost of injuries filed in 2012 by firefighters from a from a large department by job duty, injury type, body part affected, and the general motion pattern employed at the time of injury. Data were taken from reports filed by CFD personnel and claims filed with the Workers' Compensation Board (WCB) of Alberta between January 1, 2012 and December 31, 2012. Of the 244 injuries reported, 65% were categorized as sprains and strains, the most frequent of which affected the back (32%). The total cost of all claims was $555,955; 77% were sprain/strain-related. Knee and back injuries were most costly ($157,383 and $100,459). Categorized by job duty, most sprains/strains (31%) were sustained while attending to fire station responsibilities, although physical training was associated with the highest costs (34%). Fireground operations were attributed to 18% of sprains/strains and 16% of costs. Lifting injuries were more frequent (23%) and costly (20%) than all injuries. The most common and costly injuries occurred while attending to fire station-related responsibilities and during physical training.

  6. Resistance of Marine Bacterioneuston to Solar Radiation

    PubMed Central

    Agogué, Hélène; Joux, Fabien; Obernosterer, Ingrid; Lebaron, Philippe

    2005-01-01

    A total of 90 bacterial strains were isolated from the sea surface microlayer (i.e., bacterioneuston) and underlying waters (i.e., bacterioplankton) from two sites of the northwestern Mediterranean Sea. The strains were identified by sequence analysis, and growth recovery was investigated after exposure to simulated solar radiation. Bacterioneuston and bacterioplankton isolates were subjected to six different exposure times, ranging from 0.5 to 7 h of simulated noontime solar radiation. Following exposure, the growth of each isolate was monitored, and different classes of resistance were determined according to the growth pattern. Large interspecific differences among the 90 marine isolates were observed. Medium and highly resistant strains accounted for 41% and 22% of the isolates, respectively, and only 16% were sensitive strains. Resistance to solar radiation was equally distributed within the bacterioneuston and bacterioplankton. Relative contributions to the highly resistant class were 43% for γ-proteobacteria and 14% and 8% for α-proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) group, respectively. Within the γ-proteobacteria, the Pseudoalteromonas and Alteromonas genera appeared to be highly resistant to solar radiation. The majority of the CFB group (76%) had medium resistance. Our study further provides evidence that pigmented bacteria are not more resistant to solar radiation than nonpigmented bacteria. PMID:16151115

  7. Influence of Biochemical Features of Burkholderia pseudomallei Strains on Identification Reliability by Vitek 2 System.

    PubMed

    Zakharova, Irina B; Lopasteyskaya, Yana A; Toporkov, Andrey V; Viktorov, Dmitry V

    2018-01-01

    Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium that causes melioidosis, a potentially fatal disease endemic in wet tropical areas. The currently available biochemical identification systems can misidentify some strains of B. pseudomallei . The aim of the present study was to identify the biochemical features of B. pseudomallei , which can affect its correct identification by Vitek 2 system. The biochemical patterns of 40 B. pseudomallei strains were obtained using Vitek 2 GN cards. The average contribution of biochemical tests in overall dissimilarities between correctly and incorrectly identified strains was assessed using nonmetric multidimensional scaling. It was found ( R statistic of 0.836, P = 0.001) that a combination of negative N-acetyl galactosaminidase, β-N-acetyl glucosaminidase, phosphatase, and positive D-cellobiase (dCEL), tyrosine arylamidase (TyrA), and L-proline arylamidase (ProA) tests leads to low discrimination of B. pseudomallei , whereas a set of positive dCEL and negative N-acetyl galactosaminidase, TyrA, and ProA determines the wrong identification of B. pseudomallei as Burkholderia cepacia complex. The further expansion of the Vitek 2 identification keys is needed for correct identification of atypical or regionally distributed biochemical profiles of B. pseudomallei .

  8. Staphylococcus aureus nasal carriage in Ukraine: antibacterial resistance and virulence factor encoding genes.

    PubMed

    Netsvyetayeva, Irina; Fraczek, Mariusz; Piskorska, Katarzyna; Golas, Marlena; Sikora, Magdalena; Mlynarczyk, Andrzej; Swoboda-Kopec, Ewa; Marusza, Wojciech; Palmieri, Beniamino; Iannitti, Tommaso

    2014-03-05

    The number of studies regarding the incidence of multidrug resistant strains and distribution of genes encoding virulence factors, which have colonized the post-Soviet states, is considerably limited. The aim of the study was (1) to assess the Staphylococcus (S.) aureus nasal carriage rate, including Methicillin Resistant S. aureus (MRSA) strains in adult Ukrainian population, (2) to determine antibiotic resistant pattern and (3) the occurrence of Panton Valentine Leukocidine (PVL)-, Fibronectin-Binding Protein A (FnBPA)- and Exfoliative Toxin (ET)-encoding genes. Nasal samples for S. aureus culture were obtained from 245 adults. The susceptibility pattern for several classes of antibiotics was determined by disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The virulence factor encoding genes, mecA, lukS-lukF, eta, etb, etd, fnbA, were detected by Polymerase Chain Reaction (PCR). The S. aureus nasal carriage rate was 40%. The prevalence of nasal MRSA carriage in adults was 3.7%. LukS-lukF genes were detected in over 58% of the strains. ET-encoding genes were detected in over 39% of the strains and the most prevalent was etd. The fnbA gene was detected in over 59% of the strains. All MRSA isolates tested were positive for the mecA gene. LukS-lukF genes and the etd gene were commonly co-present in MRSA, while lukS-lukF genes and the fnbA gene were commonly co-present in Methicillin Sensitive S. aureus (MSSA) isolates. No significant difference was detected between the occurrence of lukS-lukF genes (P > 0.05) and the etd gene (P > 0.05) when comparing MRSA and MSSA. The occurrence of the fnbA gene was significantly more frequent in MSSA strains (P < 0.05). In Ukraine, S. aureus is a common cause of infection. The prevalence of S. aureus nasal carriage in our cohort of patients from Ukraine was 40.4%. We found that 9.1% of the strains were classified as MRSA and all MRSA isolates tested positive for the mecA gene. We also observed a high prevalence of PVL- and ET- encoding genes among S. aureus nasal carriage strains. A systematic surveillance system can help prevent transmission and spread of drug resistant toxin producing S. aureus strains.

  9. Temperature effect in the production of multiple xylanases by Aspergillus fumigatus.

    PubMed

    Lenartovicz, Veridiana; Marques de Souza, Cristina Giatti; Moreira, Fabiana Guillen; Peralta, Rosane Marina

    2002-01-01

    This work has evaluated the temperature effect in the production of multiple xylanases by a locally isolated strain of Aspergillus fumigatus Fresenius. Three isoenzymes, identified as xylanases I, II, and III with apparent molecular weight of 45.7 KDa, 39.8 KDa and 18.2 KDa, respectively, were produced in cultures developed at 30 degrees C and at 42 degrees C. The pattern of distribution of xylanase activity among the three isoenzymes was greatly affected by the growth temperature: at 30 degrees C, the total xylanase activity was distributed homogeneously among the three enzymes, while at 42 degrees C, the total xylanase activity was mainly due to the fractions with the highest MW (I and II) and the xylanase III was a minor component.

  10. Antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market.

    PubMed

    Xiao, Jin-Zhong; Takahashi, Sachiko; Odamaki, Toshitaka; Yaeshima, Tomoko; Iwatsuki, Keiji

    2010-01-01

    The aim of the present study was to analyze the antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market. A total of 23 strains, including probiotic isolates from foods, supplements, pharmaceuticals and reference strains of each species (or subspecies), were tested for susceptibility to 15 antibiotics by the broth microdilution method and examined for the presence of possible resistant determinants. The strains were susceptible overall to chloramphenicol, ampicillin, vancomycin and linezolid, and were intrinsically resistant to aminoglycoside group agents. Susceptibility to erythromycin, clindamycin, rifampicin, tetracycline and trimethoprim varied among the strains. All strains of Bifidobacterium animalis subsp. lactis were resistant to tetracycline and appeared to harbor tet(W) genes. No risk factor for safety was found for bifidobacterial strains distributed in the Japanese market in respect of their antimicrobial resistance, although the presence of the tet(W) gene in some strains stresses the need for future evaluation.

  11. Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages

    PubMed Central

    Desai, Prerak T.; den Bakker, Henk C.; Mikoleit, Matthew; Tolar, Beth; Trees, Eija; Hendriksen, Rene S.; Frye, Jonathan G.; Porwollik, Steffen; Weimer, Bart C.; Wiedmann, Martin; Weinstock, George M.; Fields, Patricia I.; McClelland, Michael

    2014-01-01

    Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. enterica serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th–18th centuries and diversified during the 1920s and 1950s. PMID:25147968

  12. Ribosome Patterns in Escherichia coli Growing at Various Rates

    PubMed Central

    Varricchio, Frederick; Monier, Roger

    1971-01-01

    The distribution of ribosomes, 30 and 50S subunits and polysomes, at three different growth rates of Escherichia coli strains B and K-12 has been studied. The usual percentage of subunits is about 20%. However, at the lowest growth rate (μ = generations/hour), μ = 0.45 at 30C, the proportion of subunits is about 30%. An exceptional situation exists in K-12 strains growing at maximum growth rate, μ = 1.35, where the percentage of subunits is 45%. Several points of control over ribosome production are thus indicated. It is suggested that “subunit pool” is essentially a reserve. Furthermore, the polysome content when related to deoxyribonucleic acid content varies directly with the growth rate, which indicates the average efficiency of polysomes in protein synthesis does not vary over the range of growth rates tested. PMID:5001192

  13. Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Isolates from Pediatric Patients in Singapore

    PubMed Central

    Soh, Shirlena Wee-Ling; Poh, Chit Laa; Lin, Raymond V. Tzer Pin

    2000-01-01

    One hundred eighty Streptococcus pneumoniae strains isolated from children at a pediatric hospital in Singapore from 1997 to 1999 were serotyped and their antimicrobial susceptibility patterns were determined. Sixty-three percent of the isolates were resistant to penicillin. Significantly large numbers of the strains investigated were resistant to trimethoprim-sulfamethoxazole (87.8%), tetracycline (71.7%), erythromycin (67.8%), and chloramphenicol (40%). Penicillin and multidrug resistance was mostly associated with the frequently isolated S. pneumoniae isolates of serotypes (serotypes 19F, 23F, 6B, and 14). Isolates of serotype 19F, the serotype most commonly encountered in Singapore (41.1%), had the highest prevalence of penicillin (78.4%) and multidrug resistance (94.6%). Most of the invasive S. pneumoniae isolates (8 of 17; 47.1%) were of serotype 14. PMID:10898701

  14. An outbreak of neonatal toxic shock syndrome-like exanthematous disease (NTED) caused by methicillin-resistant Staphylococcus aureus (MRSA) in a neonatal intensive care unit.

    PubMed

    Nakano, Miyo; Miyazawa, Hirofumi; Kawano, Yasushi; Kawagishi, Mika; Torii, Keizo; Hasegawa, Tadao; Iinuma, Yoshitsugu; Ohta, Michio

    2002-01-01

    Neonatal toxic shock syndrome-like exanthematous disease (NTED) is a new entity of methicillin-resistant Staphylococcus aureus (MRSA) infection. Most of NTED cases reported previously in the literature were sporadic ones. In the present report, we describe an outbreak of NTED that occurred in a neonatal intensive care unit (NICU) between April, 1999 and April, 2000 in Japan. All MRSA strains isolated from 14 patients (6 NTED, 2 infections and 6 colonizations) in this outbreak belonged to the group of coagulase II and produced toxic shock syndrome toxin 1 (TSST-1). Of these, 14 strains produced staphylococcal enterotoxin C (SEC). No other superantigenic toxins were produced by these strains. The pulsed field gel electrophoresis (PFGE) patterns of genomic DNA digested with SmaI were indistinguishable each other due to no band shifting in all of the 13 strains except for strain O-21 and M56. Strain M56 was different from the dominant type in the positions of only 2 bands, whereas the pattern of strain O-21 had no similarity with the other pattern, suggesting that this outbreak was associated with the spread of a unique MRSA strain in the NICU. Two-dimensional electrophoresis (2-DE) analysis of exoproteins revealed that the patterns of these 14 strains were very indistinguishable to each other, and that these strains produced very large amounts of TSST-1 and SEC3 subtype superantigens, as measured with computer-assisted image analysis of the intensity of 2-DE spots. The 2-DE gel of O-21 showed the different pattern from the others. These results as well as the profiles of toxin production also supported the conclusion drawn from PFGE analysis. Based on these results, the involvement of TSST-1 and SEC3 in the pathogenesis of NTED is discussed.

  15. First insights into the genetic diversity of Mycobacterium tuberculosis isolates from HIV-infected Mexican patients and mutations causing multidrug resistance

    PubMed Central

    2010-01-01

    Background The prevalence of infections with Mycobacterium tuberculosis (MTb) and nontuberculous mycobacteria (NTM) species in HIV-infected patients in Mexico is unknown. The aims of this study were to determine the frequency of MTb and NTM species in HIV-infected patients from Mexico City, to evaluate the genotypic diversity of the Mycobacterium tuberculosis complex strains, to determine their drug resistance profiles by colorimetric microplate Alamar Blue assay (MABA), and finally, to detect mutations present in katG, rpoB and inhA genes, resulting in isoniazid (INH) and rifampin (RIF) resistance. Results Of the 67 mycobacterial strains isolated, 48 were identified as MTb, 9 as M. bovis, 9 as M. avium and 1 as M. intracellulare. IS6110-RFLP of 48 MTb strains showed 27 profiles. Spoligotyping of the 48 MTb strains yielded 21 patterns, and 9 M. bovis strains produced 7 patterns. Eleven new spoligotypes patterns were found. A total of 40 patterns were produced from the 48 MTb strains when MIRU-VNTR was performed. Nineteen (39.6%) MTb strains were resistant to one or more drugs. One (2.1%) multidrug-resistant (MDR) strain was identified. A novel mutation was identified in a RIF-resistant strain, GAG → TCG (Glu → Ser) at codon 469 of rpoB gene. Conclusions This is the first molecular analysis of mycobacteria isolated from HIV-infected patients in Mexico, which describe the prevalence of different mycobacterial species in this population. A high genetic diversity of MTb strains was identified. New spoligotypes and MIRU-VNTR patterns as well as a novel mutation associated to RIF-resistance were found. This information will facilitate the tracking of different mycobacterial species in HIV-infected individuals, and monitoring the spread of these microorganisms, leading to more appropriate measures for tuberculosis control. PMID:20236539

  16. Comparative analysis of antibiotic resistance and phylogenetic group patterns in human and porcine urinary tract infectious Escherichia coli.

    PubMed

    Hancock, Viktoria; Nielsen, Eva Møller; Krag, Louise; Engberg, Jørgen; Klemm, Per

    2009-11-01

    Urinary tract infections (UTIs) are one of the most common infectious diseases in humans and domestic animals such as pigs. The most frequent infectious agent in such infections is Escherichia coli. Virulence characteristics of E. coli UTI strains range from highly virulent pyelonephritis strains to relatively benign asymptomatic bacteriuria strains. Here we analyse a spectrum of porcine and human UTI E. coli strains with respect to their antibiotic resistance patterns and their phylogenetic groups, determined by multiplex PCR. The clonal profiles of the strains differed profoundly; whereas human strains predominantly belonged to clonal types B2 and D, these were not seen among the porcine strains, which all belonged to the E. coli clonal groups A and B1. Contrary to the human strains, the majority of the porcine strains were multidrug resistant. The distinct profiles of the porcine strains suggest selective pressure due to extensive antibiotic use.

  17. Temporal variations in patterns of Escherichia coli strain diversity and antimicrobial resistance in the migrant Egyptian vulture

    PubMed Central

    Maherchandani, Sunil; Shringi, B. N.; Kashyap, Sudhir Kumar

    2018-01-01

    ABSTRACT Aims: Multiple antimicrobial resistance in Escherichia coli of wild vertebrates is a global concern with scarce assessments on the subject from developing countries that have high human-wild species interactions. We studied the ecology of E. coli in a wintering population of Egyptian Vultures in India to understand temporal changes in both E. coli strains and patterns of antimicrobial resistance. Methods and Results: We ribotyped E. coli strains and assessed antimicrobial resistance from wintering vultures at a highly synanthropic carcass dump in north-west India. Both E. coli occurence (90.32%) and resistance to multiple antimicrobials (71.43%) were very high. Clear temporal patterns were apparent. Diversity of strains changed and homogenized at the end of the Vultures’ wintering period, while the resistance pattern showed significantly difference inter-annually, as well as between arrival and departing individuals within a wintering cycle. Significance of study: The carcass dump environment altered both E. coli strains and multiple antimicrobial resistance in migratory Egyptian Vultures within a season. Long-distance migratory species could therefore disseminate resistant E. coli strains across broad geographical scales rendering regional mitigation strategies to control multiple antimicrobial resistance in bacteria ineffective. PMID:29755700

  18. Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type.

    PubMed

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A; Haïk, Stéphane

    2013-03-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.

  19. Prion Propagation and Toxicity Occur In Vitro with Two-Phase Kinetics Specific to Strain and Neuronal Type

    PubMed Central

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A.

    2013-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrPSc) of the host-encoded prion protein (PrPC), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrPSc distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau. PMID:23255799

  20. Association of Recurrent Furunculosis with Panton-Valentine Leukocidin and the Genetic Background of Staphylococcus aureus▿ †

    PubMed Central

    Masiuk, Helena; Kopron, Katarzyna; Grumann, Dorothee; Goerke, Christiane; Kolata, Julia; Jursa-Kulesza, Joanna; Giedrys-Kalemba, Stefania; Bröker, Barbara M.; Holtfreter, Silva

    2010-01-01

    Staphylococcus aureus is a major cause of skin and soft tissue infections, such as furuncles, carbuncles, and abscesses, but it also frequently colonizes the human skin and mucosa without causing clinical symptoms. Panton-Valentine leukocidin (PVL) is a pore-forming toxin that has been associated with soft tissue infections and necrotizing pneumonia. We have compared the genotypes, virulence gene repertoires, and phage patterns of 74 furunculosis isolates with those of 108 control strains from healthy nasal carriers. The large majority of furunculosis strains were methicillin sensitive. Clonal cluster (CC) 121 (CC121) and CC22 accounted for 70% of the furunculosis strains but for only 8% of the nasal isolates. The PVL-encoding genes luk-PV were detected in 85% of furunculosis strains, while their prevalence among colonizing S. aureus strains was below 1%. luk-PV genes were distributed over several lineages (CCs 5, 8, 22, 30, and 121 and sequence type 59). Even within the same lineages, luk-PV-positive phages characterized furunculosis strains, while their luk-PV-negative variants were frequent among nasal strains. The very tight epidemiological linkage between luk-PV and furunculosis, which could be separated from the genetic background of the S. aureus strain as well as from the gene makeup of the luk-PV-transducing phage, lends support to the notion of an important role for PVL in human furunculosis. These results make a case for the determination of luk-PV in recurrent soft tissue infections with methicillin-sensitive as well as methicillin-resistant S. aureus. PMID:20200289

  1. Control of magnetic anisotropy in (Ga,Mn)as by lithography-induced strain relaxation.

    PubMed

    Wenisch, J; Gould, C; Ebel, L; Storz, J; Pappert, K; Schmidt, M J; Kumpf, C; Schmidt, G; Brunner, K; Molenkamp, L W

    2007-08-17

    We report control of magnetic anisotropy in epitaxial (Ga,Mn)As by anisotropic strain relaxation in patterned structures. The strain in the structures is characterized using reciprocal space mapping by x-ray techniques. The magnetic anisotropy before patterning of the layer, which shows biaxial easy axes along [100] and [010], is replaced by a hard axis in the direction of large elastic strain relaxation and a uniaxial easy axis in the direction where pseudomorphic conditions are retained.

  2. Different Strategies for Molecular Differentiation of Mycobacterium bovis Strains Isolated in Sardinia, Italy

    PubMed Central

    Sechi, Leonardo A.; Leori, Guido; Lollai, Stefano A.; Duprè, Ilaria; Molicotti, Paola; Fadda, Giovanni; Zanetti, Stefania

    1999-01-01

    Different genetic markers were used to analyze 22 Mycobacterium bovis strains isolated from cattle in Sardinia and one human isolate. IS6110 DNA fingerprinting differentiated the strains into six patterns, whereas with enterobacterial repetitive consensus sequence primers produced seven clusters. PCR ribotyping followed by digestion with HaeIII and PvuII produced five and seven patterns, respectively. PCR with the (GTG)5 oligonucleotide primer showed the best discriminatory power, generating eight clusters among the strains analyzed. PMID:10103282

  3. Construction of an Optical Fiber Strain Gauge

    NASA Astrophysics Data System (ADS)

    Sulaiman, Najwa

    This project is focused on the construction of an optical fiber strain gauge that is based on a strain gauge described by Butter and Hocker. Our gauge is designed to generate an interference pattern from the signals carried on two bare single-mode fibers that are fastened to an aluminum cantilever. When the cantilever experiences flexural stress, the interference pattern should change. By observing this change, it is possible to determine the strain experienced by the cantilever. I describe the design and construction of our optical fiber strain gauge as well as the characterization of different parts of the apparatus.

  4. Characteristics of Vibrio parahaemolyticus O3:K6 from Asia

    PubMed Central

    Wong, Hin-Chung; Liu, Shu-Hui; Wang, Tien-Kuei; Lee, Chih-Lung; Chiou, Chien-Shun; Liu, Ding-Ping; Nishibuchi, Mitsuaki; Lee, Bok-Kwon

    2000-01-01

    A variety of serovars of the food-borne pathogen Vibrio parahaemolyticus normally cause infection. Since 1996, the O3:K6 strains of this pathogen have caused pandemics in many Asian countries, including Taiwan. For a better understanding of these pandemic strains, the recently isolated clinical O3:K6 strains from India, Japan, Korea, and Taiwan were examined in terms of pulsed-field gel electrophoresis (PFGE) typing and other biological characteristics. After PFGE and cluster analysis, all the O3:K6 strains were grouped into two unrelated groups. The recently isolated O3:K6 strains were all in one group, consisting of eight closely related patterns, with I1(81%) and I5(13%) being the most frequent patterns. Pattern I1 was the major one for strains from Japan, Korea, and Taiwan. All recently isolated O3:K6 strains carried the thermostable direct hemolysin (tdh) gene. No significant difference was observed between recently isolated O3:K6 strains and either non-O3:K6 reference strains or old O3:K6 strains isolated before 1996 with respect to antibiotic susceptibility, the level of thermostable direct hemolysin, and the susceptibility to environmental stresses. Results in this study confirmed that the recently isolated O3:K6 strains of V. parahaemolyticus are genetically close to each other, while the other biological traits examined were usually strain dependent, and no unique trait was found in the recently isolated O3:K6 strains. PMID:10966418

  5. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results of our studies show, that Sic nanocrystals have the features of two phases, each with its distinct elastic properties. and under pressures up to 8 GPa.

  6. Prevalence of BK virus subtype I in Germany.

    PubMed

    Krumbholz, Andi; Zell, Roland; Egerer, Renate; Sauerbrei, Andreas; Helming, Andrea; Gruhn, Bernd; Wutzler, Peter

    2006-12-01

    The primary infection with human polyomavirus BK (BKV) occurs in early childhood and leads to viral latency within the urogenital tract. Up to 90% of the adult population are seropositive. In immunosuppressed patients, the BKV may be reactivated resulting in typical disease patterns like hemorrhagic cystitis and tubulointerstitial nephritis. Based on serological and molecular methods, BKV isolates were classified into four subtypes previously. Sixty specimens obtained from German renal and bone marrow transplant recipients were analyzed to gain data on the prevalence of BKV subtypes in Germany. With 90.9%, BKV subtype I was found to be predominant in both patient groups. 6.1% of BKV strains were classified as subtype IV. This pattern of phylogenetic distribution is similar to that demonstrated previously in England, Tanzania, the United States and Japan. Remarkably, there was one German BKV virus with a sequence which clusters together with strain SB in subtype II. The BKV subtype I was found to consist of at least three subgroups designated as Ia, Ib, and Ic. While the majority of the German sequences represent subgroup Ic, most of the Japanese sequences are clearly distinct. These findings support the hypothesis of distinct geographical prevalence of BKV subgroups. For the genotyping region, a relationship of BKV subgroups to disease patterns like hemorrhagic cystitis or tubulointerstitial nephritis could not be demonstrated. (c) 2006 Wiley-Liss, Inc.

  7. Antigenic and molecular characterization of Vibrio ordalii strains isolated from Atlantic salmon Salmo salar in Chile.

    PubMed

    Silva-Rubio, Andrés; Acevedo, Claudia; Magariños, Beatriz; Jaureguiberry, Beltrán; Toranzo, Alicia E; Avendaño-Herrera, Ruben

    2008-03-03

    Biochemical, serological and molecular properties of a group of 14 Vibrio ordalii strains isolated from cultured Atlantic salmon Salmo salar in Chile in recent years were studied. The characteristics of isolates were compared with the type strain V. ordalii ATCC 33509T. The Chilean V. ordalii represented a biochemically homogenous group; however, some minor differences with the type strain were observed. The serological relationships among isolates, as well as the study of their antigenic determinant (LPS) revealed a strong reaction with antisera raised against Atlantic salmon strains and the antiserum raised against Listonella anguillarum serotype O2. However, LPS electrophoretic patterns were completely different from the V. ordalii type strain, regardless of the serum employed, suggesting the possibility that the Chilean strains constitute a new serological subgroup within this bacterial species. Genetic analyses by PFGE, RAPD, REP-PCR and ERIC-PCR demonstrated that all V. ordalii strains were genetically homogenous, displaying similar DNA patterns, regardless of the techniques used. Moreover, the analysis of DNA banding patterns generated by ERIC-PCR and REP-PCR also clearly separated the type strain from the Chilean strains. This is the first report of characterization of V. ordalii strains from the Southeastern Pacific area, the results of which should facilitate the development of vaccines for protecting cultured Atlantic salmon against vibriosis in this area.

  8. Impact of textural anisotropy on syn-kinematic partial melting of natural gneisses: an experimental approach.

    NASA Astrophysics Data System (ADS)

    Ganzhorn, Anne-Céline; Trap, Pierre; Arbaret, Laurent; Champallier, Rémi; Fauconnier, Julien; Labrousse, Loic; Prouteau, Gaëlle

    2015-04-01

    Partial melting of continental crust is a strong weakening process controlling its rheological behavior and ductile flow of orogens. This strength weakening due to partial melting is commonly constrained experimentally on synthetic starting material with derived rheological law. Such analog starting materials are preferentially used because of their well-constrained composition to test the impact of melt fraction, melt viscosity and melt distribution upon rheology. In nature, incipient melting appears in particular locations where mineral and water contents are favorable, leading to stromatic migmatites with foliation-parallel leucosomes. In addition, leucosomes are commonly located in dilatants structural sites like boudin-necks, in pressure shadows, or in fractures within more competent layers of migmatites. The compositional layering is an important parameter controlling melt flow and rheological behavior of migmatite but has not been tackled experimentally for natural starting material. In this contribution we performed in-situ deformation experiments on natural rock samples in order to test the effect of initial gneissic layering on melt distribution, melt flow and rheological response. In-situ deformation experiments using a Paterson apparatus were performed on two partially melted natural gneissic rocks, named NOP1 & PX28. NOP1, sampled in the Western Gneiss Region (Norway), is biotite-muscovite bearing gneiss with a week foliation and no gneissic layering. PX28, sampled from the Sioule Valley series (French Massif Central), is a paragneiss with a very well pronounced layering with quartz-feldspar-rich and biotite-muscovite-rich layers. Experiments were conducted under pure shear condition at axial strain rate varying from 5*10-6 to 10-3 s-1. The main stress component was maintained perpendicular to the main plane of anisotropy. Confining pressure was 3 kbar and temperature ranges were 750°C and 850-900°C for NOP1 and PX28, respectively. For the 750°C experiments NOP1 was previously hydrated at room pressure and temperature. According to melt fraction, deformation of partially molten gneiss induced different strain patterns. For low melt fraction, at 750°C, deformation within the initially isotropic gneiss NOP1 is localized along large scales shear-zones oriented at about 60° from main stress component σ1. In these zones quartz grains are broken and micas are sheared. Melt is present as thin film (≥20 µm) at muscovite-quartz grain boundaries and intrudes quartz aggregates as injections parallel to σ1. For higher melt fraction, at 850°C, deformation is homogeneously distributed. In the layered gneiss PX28, deformation is partitioned between mica-rich and quartz-rich layers. For low melt fraction, at 850°C, numerous conjugate shear-bands crosscut mica-rich layers. Melt is present around muscovite grains and intrudes quartz grains in the favor of fractures. For high melt fractions, at 900°C, melt assisted creep within mica-rich layers is responsible for boudinage of the quartz-feldspar rich layers. Melt-induced veining assists the transport of melt toward inter-boudin zones. Finite strain pattern and melt distribution after deformation of PX28 attest for appearance of strong pressure gradients leading to efficient melt flow. The subsequent melt redistribution strongly enhance strain partitioning and strength weakening, as shown by differential stress vs. strain graphs. Our experiments have successfully reproduced microstructures commonly observed in migmatitic gneisses like boudinage of less fertile layers. Comparison between non-layered and layered gneisses attest for strong influence of compositional anisotropies inherited from the protolith upon melt distribution and migmatite strength.

  9. '1001' Campylobacters: cultural characteristics of intestinal campylobacters from man and animals.

    PubMed

    Skirrow, M B; Benjamin, J

    1980-12-01

    The cultural characteristics of 1220 Campylobacter strains from a variety of sources are described. Forty-two were identified as Campylobacter fetus ssp. fetus (Véron & Chatelain, 1973), 1120 as members of the C. jejuni/C. coli group, and 58 did not conform to any known description. Sixteen of the latter strains had the basic characteristics of C. fetus but were atypical in certain other respects. The other 42 strains had the thermophilic characteristics of the jejuni/coli group, but were resistant to nalidixic acid and had other features in common; it is possible that they represent a new species. They were isolated from 19% of locally caught wild seagulls but only occasionally from other animals and man.Growth at 25 degrees C clearly distinguished strains of C. fetus from those of the jejuni/coli and the nalidixic acid-resistant thermophilic (NARTC) groups. Maximum growth temperature was less reliable for this purpose, and 43 degrees C was found to be better than the traditional 42 degrees C. By arranging the results of three tests (tolerance to 2,3,5-triphenyltetrazolium chloride, growth at 30.5 and 45.5 degrees C) serially in the form of a schema comprising nine categories, the jejuni/coli strains fell into two main groups resembling the Institute Pasteur C. jejuni and C. coli type strains, but these groups could not be clearly defined owing to the existence of strains with intermediate characteristics.Most of the strains from cattle resembled C. jejuni, whereas those from pigs resembled C. coli; poultry strains occupied a more intermediate position. Strains from man and other animals were of mixed types, but most human strains resembled C. jejuni rather than C. coli. The type distribution pattern that most nearly matched that of human indigenous strains was given by a half-and-half mixture of strains from cattle and poultry.

  10. '1001' Campylobacters: cultural characteristics of intestinal campylobacters from man and animals

    PubMed Central

    Skirrow, M. B.; Benjamin, J.

    1980-01-01

    The cultural characteristics of 1220 Campylobacter strains from a variety of sources are described. Forty-two were identified as Campylobacter fetus ssp. fetus (Véron & Chatelain, 1973), 1120 as members of the C. jejuni/C. coli group, and 58 did not conform to any known description. Sixteen of the latter strains had the basic characteristics of C. fetus but were atypical in certain other respects. The other 42 strains had the thermophilic characteristics of the jejuni/coli group, but were resistant to nalidixic acid and had other features in common; it is possible that they represent a new species. They were isolated from 19% of locally caught wild seagulls but only occasionally from other animals and man. Growth at 25 °C clearly distinguished strains of C. fetus from those of the jejuni/coli and the nalidixic acid-resistant thermophilic (NARTC) groups. Maximum growth temperature was less reliable for this purpose, and 43 °C was found to be better than the traditional 42 °C. By arranging the results of three tests (tolerance to 2,3,5-triphenyltetrazolium chloride, growth at 30·5 and 45·5 °C) serially in the form of a schema comprising nine categories, the jejuni/coli strains fell into two main groups resembling the Institute Pasteur C. jejuni and C. coli type strains, but these groups could not be clearly defined owing to the existence of strains with intermediate characteristics. Most of the strains from cattle resembled C. jejuni, whereas those from pigs resembled C. coli; poultry strains occupied a more intermediate position. Strains from man and other animals were of mixed types, but most human strains resembled C. jejuni rather than C. coli. The type distribution pattern that most nearly matched that of human indigenous strains was given by a half-and-half mixture of strains from cattle and poultry. PMID:7462593

  11. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea

    PubMed Central

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; Rijk, Pim De; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C.

    2015-01-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 “orphan” and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. PMID:26004194

  12. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea.

    PubMed

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; De Rijk, Pim; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C

    2015-07-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 "orphan" and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. Copyright © 2015. Published by Elsevier B.V.

  13. Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans.

    PubMed

    Magnes, Jenny; Hastings, Harold M; Raley-Susman, Kathleen M; Alivisatos, Clara; Warner, Adam; Hulsey-Vincent, Miranda

    2017-09-13

    This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.

  14. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Bratkovsky, Alexandr

    2009-03-01

    We investigate the effects of a lattice misfit strain on a ground state and polarization patterns in flat perovskite nanoparticles (nanoislands of BaTiO3 and PbZr0.5Ti0.5O3) with the use of an ab-initio derived effective Hamiltonian. We show that the strain strongly controls the balance between the depolarizing field and the polarization anizotropy in determining the equilibrium polarization patterns. Compressive strain favors 180 ^0 stripe/tweed domains while a tensile strain leads to in-plane vortex formation, with the unusual intermediate phase (s) where both ordering motifs coexist [1]. The results may allow to explain contradictions in recent experimental data for ferroelectric nanoparticles. [1] Ivan Naumov and Alexander M. Bratkovsky, Phys. Rev. Lett. 101, 107601 (2008).

  15. Strain and lattice orientation distribution in SiN/Ge complementary metal–oxide–semiconductor compatible light emitting microstructures by quick x-ray nano-diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chahine, G. A.; Schülli, T. U.; Zoellner, M. H.

    2015-02-16

    This paper presents a study of the spatial distribution of strain and lattice orientation in CMOS-fabricated strained Ge microstripes using high resolution x-ray micro-diffraction. The recently developed model-free characterization tool, based on a quick scanning x-ray diffraction microscopy technique can image strain down to levels of 10{sup −5} (Δa/a) with a spatial resolution of ∼0.5 μm. Strain and lattice tilt are extracted using the strain and orientation calculation software package X-SOCS. The obtained results are compared with the biaxial strain distribution obtained by lattice parameter-sensitive μ-Raman and μ-photoluminescence measurements. The experimental data are interpreted with the help of finite element modelingmore » of the strain relaxation dynamics in the investigated structures.« less

  16. Comparative Transcriptome Analysis Reveals the Genetic Basis of Skin Color Variation in Common Carp

    PubMed Central

    Jiang, Yanliang; Zhang, Songhao; Xu, Jian; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.; Sun, Xiaowen; Xu, Peng

    2014-01-01

    Background The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. Methodology/Principal Findings In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. Conclusions In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values. PMID:25255374

  17. Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp.

    PubMed

    Jiang, Yanliang; Zhang, Songhao; Xu, Jian; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Sun, Xiaowen; Xu, Peng

    2014-01-01

    The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values.

  18. Whole Genome Analysis of a Wine Yeast Strain

    PubMed Central

    Hauser, Nicole C.; Fellenberg, Kurt; Gil, Rosario; Bastuck, Sonja; Hoheisel, Jörg D.

    2001-01-01

    Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. PMID:18628902

  19. Biased distribution of IS629 among strains in different lineages of enterohemorrhagic Escherichia coli serovar O157.

    PubMed

    Yokoyama, Eiji; Hashimoto, Ruiko; Etoh, Yoshiki; Ichihara, Sachiko; Horikawa, Kazumi; Uchimura, Masako

    2011-01-01

    The distribution of insertion sequence (IS) 629 among strains of enterohemorrhagic Escherichia coli serovar O157 (O157) was investigated and compared with the strain lineages defined by lineage specific polymorphism assay-6 (LSPA-6) to demonstrate the effectiveness of IS629 analysis for population genetics analysis. Using pulsed-field gel electrophoresis and variable-number tandem repeat typing, 140 strains producing both VT1 and VT2 and 98 strains producing only VT2 were selected from a total of 592 strains isolated from patients and asymptomatic carriers in Chiba Prefecture, Japan, during 2003-2008. By LSPA-6 analysis, six strains had atypical amplicon sizes in their Z5935 loci and five strains had atypical amplicon sizes in their arp-iclR intergenic regions. Sequence analyses of PCR amplified DNAs showed that five of the six loci used for LSPA-6 analysis had tandem repeats and the allele changes were due to changes in the number of tandem repeats. Subculturing and long-term incubation was found to have no detectable effect on the lineages defined by LSPA-6 analysis, demonstrating the robustness of LSPA-6 analysis. Minimum spanning tree analysis reconstruction revealed that strains in lineage I, I/II, and II clustered on separate branches, indicating that the distribution of IS629 was biased among O157 strains in different lineages. Strains with LSPA-6 codes 231111, 211113, and 211114 had atypical amplicon sizes and were clustered in lineage I/II branch, and strains with LSPA-6 codes 212114, 221123, 221223, 222123, 222224, 242123, 252123, and 242222 had atypical amplicon sizes and clustered in lineage II branches. Linkage disequilibrium was observed in strains in every lineage when the standardized index of association was calculated using IS629 distribution data. Therefore, the distribution analysis of IS629 may be effective for population genetics analysis of O157 due to the biased IS629 distribution among strains in the three O157 lineages. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Long-gauge FBGs interrogated by DTR3 for dynamic distributed strain measurement of helicopter blade model

    NASA Astrophysics Data System (ADS)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2014-05-01

    In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.

  1. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  2. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.

    PubMed

    Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine

    2014-12-01

    Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.

  3. Comparative studies on soluble protein profiles and isozyme patterns of seven Trichinella isolates.

    PubMed

    Fukumoto, S; Takechi, M; Kamo, H; Yamaguchi, T

    1987-01-01

    Soluble protein profiles and isozyme patterns of eight enzymes were compared for extracts of muscle stage larvae of the seven Trichinella isolates, using isoelectric focusing in polyacrylamide gel. Soluble protein profiles and isozyme patterns of four enzymes: malic enzyme, glucosephosphate isomerase, phosphoglucomutase, superoxide dismutase of them were clearly divided into four types. T. pseudospiralis from a racoon and the Polar strain from a polar bear formed type 1 and type 2. The Iwasaki strain from a Japanese black bear and the Yamagata strain from a racoon dog, both from Japan, were type 3. Type 4 consisted of three remaining strains, the Polish strain from a wild pig, the USA strain from a pig and the Thai strain from a human case, which have similar infectivities to pigs. The Thai strain varied a bit electrophoretically from other members of type 4. Zymograms of adenylate kinase and malate dehydrogenase were similar in types 2 and 3. The 6-phosphogluconate dehydrogenase zymogram of type 3, similar to that of type 4, was different from that of type 2. It is assumed from the data that type 3 (Japanese strain) was genetically intermediate to types 2 and 4. T. pseudospiralis and the Polar strain had a common main isozyme of 6-phosphogluconate dehydrogenase. The zymogram of lactate dehydrogenase was common except for T. pseudospiralis.

  4. Quantitative method for gait pattern detection based on fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Tong, Xinglin; Yu, Lie

    2017-03-01

    This paper presents a method that uses fiber Bragg grating (FBG) sensors to distinguish the temporal gait patterns in gait cycles. Unlike most conventional methods that focus on electronic sensors to collect those physical quantities (i.e., strains, forces, pressure, displacements, velocity, and accelerations), the proposed method utilizes the backreflected peak wavelength from FBG sensors to describe the motion characteristics in human walking. Specifically, the FBG sensors are sensitive to external strain with the result that their backreflected peak wavelength will be shifted according to the extent of the influence of external strain. Therefore, when subjects walk in different gait patterns, the strains on FBG sensors will be different such that the magnitude of the backreflected peak wavelength varies. To test the reliability of the FBG sensor platform for gait pattern detection, the gold standard method using force-sensitive resistors (FSRs) for defining gait patterns is introduced as a reference platform. The reliability of the FBG sensor platform is determined by comparing the detection results between the FBG sensors and FSRs platforms. The experimental results show that the FBG sensor platform is reliable in gait pattern detection and gains high reliability when compared with the reference platform.

  5. Rotavirus genotype shifts among Swedish children and adults-Application of a real-time PCR genotyping.

    PubMed

    Andersson, Maria; Lindh, Magnus

    2017-11-01

    It is well known that human rotavirus group A is the most important cause of severe diarrhoea in infants and young children. Less is known about rotavirus infections in other age groups, and about how rotavirus genotypes change over time in different age groups. Develop a real-time PCR to easily genotype rotavirus strains in order to monitor the pattern of circulating genotypes. In this study, rotavirus strains in clinical samples from children and adults in Western Sweden during 2010-2014 were retrospectively genotyped by using specific amplification of VP 4 and VP 7 genes with a new developed real-rime PCR. A genotype was identified in 97% of 775 rotavirus strains. G1P[8] was the most common genotype representing 34.9%, followed by G2P[4] (28.3%), G9P[8] (11.5%), G3P[8] (8.1%), and G4P[8] (7.9%) The genotype distribution changed over time, from predominance of G1P[8] in 2010-2012 to predominance of G2P[4] in 2013-2014. There were also age-related differences, with G1P[8] being the most common genotype in children under 2 years (47.6%), and G2P[4] the most common in those over 70 years of age (46.1%.). The shift to G2P[4] in 2013-2014 was associated with a change in the age distribution, with a greater number of rotavirus positive cases in elderly than in children. By using a new real-time PCR method for genotyping we found that genotype distribution was age related and changed over time with a decreasing proportion of G1P[8]. Copyright © 2017. Published by Elsevier B.V.

  6. Kinematics, partitioning and the relationship between velocity and strain in shear zones

    NASA Astrophysics Data System (ADS)

    Murphy, Justin James

    Granite Point, southeast Washington State, captures older distributed deformation deflected by younger localized deformation. This history agrees with mathematical modeling completed by Watkinson and Patton (2005; 2007 in prep). This model suggests that distributed strain occurs at a lower energy threshold than localized strain and predicts deformation histories similar to Granite Point. Ductile shear zones at Granite Point define a zone of deformation where strain is partitioned and localized into at least ten sub parallel shear zones with sinistral, west side down shear sense. Can the relative movement of the boundaries of this partitioned system be reconstructed? Can partitioning be resolved from a distributed style of deformation? The state of strain and kinematics of actively deforming zones was studied by relating the velocity field to strain. The Aleutian Arc, Alaska and central Walker Lane, Nevada were chosen because they have a wealth of geologic data and are recognized examples of obliquely deforming zones. The graphical construction developed by Declan De Paor is ideally suited for this application because it provides a spatially referenced visualization of the relationship between velocity and strain. The construction of De Paor reproduces the observed orientation of strain in the Aleutian Arc, however, the spatial distribution of GPS stations suggest a component of partitioning. Partitioning does not provide a unique solution and cannot be differentiated from a combination of partitioning and distributed strain. In the central Walker Lane, strain trajectories can be reproduced at the domain scale. Furthermore, the effect of anisotropy from Paleozoic through Cenozoic crustal structure, which breaks the regional strain field into pure shear and simple shear dominated transtension can be detected. Without GPS velocities to document strictly coaxial strain, the strain orientation should not be taken as the velocity orientation. The strain recorded at Granite Point should not be used to reconstruct the relative movement of the boundaries because the strain direction may not be parallel to the velocity orientation. Kinematic reconstructions of obliquely deforming zones that assume a palaeo-velocity orientation equal to the measured orientation of finite strain may not accurately reflect the deviation between velocity and strain.

  7. Relation between alternating open/closed-conduit conditions and deformation patterns: An example from the Somma-Vesuvius volcano (southern Italy)

    NASA Astrophysics Data System (ADS)

    Tramparulo, F. D. A.; Vitale, S.; Isaia, R.; Tadini, A.; Bisson, M.; Prinzi, E. P.

    2018-07-01

    We present the results of a meso-scale systematic structural analysis of fractures, faults and dykes exposed at the Somma-Vesuvius volcano (southern Italy). Observed fractures include: (i) radial and tangential (with respect the caldera axis), sub-metric to metric joints associated with the edifice load and volcano-tectonic activity (i.e. inflation, deflation and caldera collapse stages) and (ii) decameter-scale fractures related to volcano flank instabilities. For the Somma-Vesuvius volcano, preexisting radial joints were commonly reactivated as transfer faults during the caldera formation, allowing different blocks to move toward the center of the collapsing area. Dykes occur with different geometries, including en-echelon structures bounding structural depressions. The orientation analysis of all structures indicates that they are preferentially oriented. Furthermore, we provide a morphological lineament analysis using high-resolution Digital Terrain Models of Somma-Vesuvius. Azimuth and spatial distribution of dykes and morphological lineaments were analyzed for comparison with the old Somma Crater and Gran Cono axes, respectively. Results highlight the overprinting of radial and clustered strain patterns recorded in different volcano-tectonic evolution stages. We suggest a possible deformation evolution model in which structures develop along either radial or preferential trends, highlighting different volcanic conditions: (i) where radial patterns occur, the structures developed during volcanic inflation cycles with a closed magmatic conduit condition whereas (ii) clustered patterns are probably associated with a regional strain field that overcomes the local deformation field, a situation typical in the case of open-conduit activity.

  8. FIV diversity: FIV Ple subtype composition may influence disease outcome in African lions.

    PubMed

    Troyer, Jennifer L; Roelke, Melody E; Jespersen, Jillian M; Baggett, Natalie; Buckley-Beason, Valerie; MacNulty, Dan; Craft, Meggan; Packer, Craig; Pecon-Slattery, Jill; O'Brien, Stephen J

    2011-10-15

    Feline immunodeficiency virus (FIV) infects domestic cats and at least 20 additional species of non-domestic felids throughout the world. Strains specific to domestic cat (FIV(Fca)) produce AIDS-like disease progression, sequelae and pathology providing an informative model for HIV infection in humans. Less is known about the immunological and pathological influence of FIV in other felid species although multiple distinct strains of FIV circulate in natural populations. As in HIV-1 and HIV-2, multiple diverse cross-species infections may have occurred. In the Serengeti National Park, Tanzania, three divergent subtypes of lion FIV (FIV(Ple)) are endemic, whereby 100% of adult lions are infected with one or more of these strains. Herein, the relative distribution of these subtypes in the population are surveyed and, combined with observed differences in lion mortality due to secondary infections based on FIV(Ple) subtypes, the data suggest that FIV(Ple) subtypes may have different patterns of pathogenicity and transmissibility among wild lion populations. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. LaAlO3: A substrate material with unusual ferroelastic properties

    NASA Astrophysics Data System (ADS)

    Kustov, S.; Liubimova, Iu.; Salje, E. K. H.

    2018-01-01

    Twin boundary dynamics in LaAlO3 is associated with non-linear anelasticity. Ultrasonic studies of non-linear twin boundary dynamics between 80 and 520 K show that cooling substrates from temperatures near the ferroelastic transition at 813 K generate three characteristic thermal regimes with different non-linear dynamics. Twin boundaries are initially highly mobile. Anelastic strain amplitudes versus stress are power law distributed with an exponent of 2.5. No de-pinning was found down to elastic strain amplitudes of ɛ0 ˜ 10-7. The power law is gradually replaced between 370 K and 280 K by few large singularities (jerks) due to massive rearrangements of the domain structure for ɛ0 larger than ca. 5 × 10-5. At lower temperatures, the domain structure is pinned with well-defined thresholds for de-pinning. The de-pinning is not accompanied by global rearrangements of twin patterns below room temperature. Unexpectedly, the low-temperature critical de-pinning strain amplitude decreases with decreasing temperature, which may indicate an additional, so far unknown phase transition near 40 K.

  10. Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates

    NASA Astrophysics Data System (ADS)

    Parra-Belky, Karlett

    2002-11-01

    A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.

  11. Genetic heterogeneity of skin microvasculature

    PubMed Central

    Liu, Fang; Smith, Jason; Zhang, Zhen; Cole, Richard; Herron, Bruce J

    2010-01-01

    Angiogenesis, the formation of new blood vessels from existing vasculature, is a complex process that is essential for normal embryonic development. Current models for experimental evaluation of angiogenesis often use tissue from large vessels like the aorta and umbilical vein, which are phenotypically distinct from microvasculature. We demonstrate that the utilization of skin to measure microvascular angiogenesis in embryonic and adult tissues is an efficient way to quantify microvasculature angiogenesis. We validate this approach and demonstrate its added value by showing significant differences in angiogenesis in monogenic and polygenic mouse models. We discovered that the pattern of angiogenic response among inbred mouse strains in this ex vivo assay differ from the strain distributions of previous in vivo angiogenesis assays. The difference between the ex vivo and in vivo assays may be related to systemic factors present in whole animals. Expression analysis of cultured skin biopsies from strains of mice with opposing angiogenic response were performed to identify pathways that contribute to differential angiogenic response. Increased expression of negative regulators of angiogenesis in C57Bl/6J mice was associated with lower growth rates. PMID:20170648

  12. Diversity and geographical distribution of Flavobacterium psychrophilum isolates and their phages: patterns of susceptibility to phage infection and phage host range.

    PubMed

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio; Middelboe, Mathias

    2014-05-01

    Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.

  13. Mechanical response of silk crystalline units from force-distribution analysis.

    PubMed

    Xiao, Senbo; Stacklies, Wolfram; Cetinkaya, Murat; Markert, Bernd; Gräter, Frauke

    2009-05-20

    The outstanding mechanical toughness of silk fibers is thought to be caused by embedded crystalline units acting as cross links of silk proteins in the fiber. Here, we examine the robustness of these highly ordered beta-sheet structures by molecular dynamics simulations and finite element analysis. Structural parameters and stress-strain relationships of four different models, from spider and Bombyx mori silk peptides, in antiparallel and parallel arrangement, were determined and found to be in good agreement with x-ray diffraction data. Rupture forces exceed those of any previously examined globular protein many times over, with spider silk (poly-alanine) slightly outperforming Bombyx mori silk ((Gly-Ala)(n)). All-atom force distribution analysis reveals both intrasheet hydrogen-bonding and intersheet side-chain interactions to contribute to stability to similar extent. In combination with finite element analysis of simplified beta-sheet skeletons, we could ascribe the distinct force distribution pattern of the antiparallel and parallel silk crystalline units to the difference in hydrogen-bond geometry, featuring an in-line or zigzag arrangement, respectively. Hydrogen-bond strength was higher in antiparallel models, and ultimately resulted in higher stiffness of the crystal, compensating the effect of the mechanically disadvantageous in-line hydrogen-bond geometry. Atomistic and coarse-grained force distribution patterns can thus explain differences in mechanical response of silk crystals, opening up the road to predict full fiber mechanics.

  14. A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schayes, Claire; Valeo Engine Electrical Systems, 2 Rue André Boulle, 94046 Créteil; Bouquerel, Jérémie, E-mail: jeremie.bouquerel@univ-lille1.fr

    The current work aims at proposing an EBSD-based indicator for fatigue damage of a Fe-3Si steel. At the same time direct observation of dislocation structures is provided by electron channelling contrast imaging (ECCI). The investigation consisted in processing the EBSD data from patterns collected on specimen subjected to low cycle fatigue. It revealed two different regimes depending on the applied total strain variation which is explained by the identification of the dislocations structures and their evolution. At low strain variation, strain accommodation occurs by planar glide of dislocations uniformly distributed throughout the grains. No misorientation evolution is observed. At highermore » strain variation, the vein-channel structure is observed within the grain and the wall-channel structure in the vicinity of grain boundaries. The misorientation between these two dislocation structures is evaluated at about 0.7° which is detected by the EBSD analyses and explains the increase of the different misorientation based criteria. The EBSD study enables also the prediction of crack initiation mode. Finally, this study points out the limits of the EBSD technique as no misorientation evolution is detected at small strain variation. Indeed, the lattice distortion is too weak to be detected by conventional EBSD. - Highlights: • Microstructure investigation of the fatigue behaviour of an iron-silicon steel • Use of cECCI to investigate the fatigue dislocations structures • Characterisation of local plastic accommodation through EBSD misorientation criteria.« less

  15. Biogeography and evolution of Thermococcus isolates from hydrothermal vent systems of the Pacific

    PubMed Central

    Price, Mark T.; Fullerton, Heather; Moyer, Craig L.

    2015-01-01

    Thermococcus is a genus of hyperthermophilic archaea that is ubiquitous in marine hydrothermal environments growing in anaerobic subsurface habitats but able to survive in cold oxygenated seawater. DNA analyses of Thermococcus isolates were applied to determine the relationship between geographic distribution and relatedness focusing primarily on isolates from the Juan de Fuca Ridge and South East Pacific Rise. Amplified fragment length polymorphism (AFLP) analysis and multilocus sequence typing (MLST) were used to resolve genomic differences in 90 isolates of Thermococcus, making biogeographic patterns and evolutionary relationships apparent. Isolates were differentiated into regionally endemic populations however there was also evidence in some lineages of cosmopolitan distribution. The biodiversity identified in Thermococcus isolates and presence of distinct lineages within the same vent site suggests the utilization of varying ecological niches in this genus. In addition to resolving biogeographic patterns in Thermococcus, this study has raised new questions about the closely related Pyrococcus genus. The phylogenetic placement of Pyrococcus type strains shows the close relationship between Thermococcus and Pyrococcus and the unresolved divergence of these two genera. PMID:26441901

  16. Mutation of the murC and murB Genes Impairs Heterocyst Differentiation in Anabaena sp. Strain PCC 7120

    PubMed Central

    Videau, Patrick; Rivers, Orion S.; Ushijima, Blake; Oshiro, Reid T.; Kim, Min Joo; Philmus, Benjamin

    2016-01-01

    ABSTRACT To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:l-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. IMPORTANCE Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular bacterium Anabaena, which differentiates a periodic pattern of specialized heterocyst cells, requires peptidoglycan synthesis by the murine ligase genes murC (alr5065) and murB (alr5066) for maintenance of patterned gene expression, filament integrity, and overall development. This work highlights the significant influence that intracellular structure and intercellular connections can have on the execution of a developmental program. PMID:26811320

  17. Mutation of the murC and murB Genes Impairs Heterocyst Differentiation in Anabaena sp. Strain PCC 7120.

    PubMed

    Videau, Patrick; Rivers, Orion S; Ushijima, Blake; Oshiro, Reid T; Kim, Min Joo; Philmus, Benjamin; Cozy, Loralyn M

    2016-04-01

    To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:L-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular bacterium Anabaena, which differentiates a periodic pattern of specialized heterocyst cells, requires peptidoglycan synthesis by the murine ligase genes murC (alr5065) and murB (alr5066) for maintenance of patterned gene expression, filament integrity, and overall development. This work highlights the significant influence that intracellular structure and intercellular connections can have on the execution of a developmental program. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    PubMed

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Stress and strain relaxation in magnesium AZ31 rolled plate: In-situ neutron measurement and elastic viscoplastic polycrystal modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huamiao; Clausen, Bjorn; Capolungo, Laurent

    Continuous mechanical tests with strain holds (stress relaxation) and with stress holds (strain relaxation) are performed simultaneously with in-situ neutron measurements to analyze the mechanisms of stress and strain relaxation in Mg AZ31 rolled plate. A dislocation activity based constitutive model, accounting for internal stress statistical distributions, is proposed and implemented into an elastic viscoplastic self-consistent (EVPSC) framework to simultaneously describe both stress and strain relaxation. The model captures the experimental data in terms of macroscopic stress strain curves, evolution of stress and strain during holding, as well as evolution of the internal elastic strains. Model results indicate that themore » magnitude of the stress relaxed during strain holding is dependent on both, the magnitude of the flow stress and the spread of the resolved shear stress distribution. The magnitude of strain accumulated during stress holding is, on the other hand, dependent on the magnitude of the hardening rate and on the spread of the resolved shear stress distribution. Furthermore, the internal elastic strains are directly correlated with the stress state, and hence the stress relaxation during strain holds has a greater influence on the lattice strains than strain relaxation during stress holds.« less

  20. Stress and strain relaxation in magnesium AZ31 rolled plate: In-situ neutron measurement and elastic viscoplastic polycrystal modeling

    DOE PAGES

    Wang, Huamiao; Clausen, Bjorn; Capolungo, Laurent; ...

    2015-07-16

    Continuous mechanical tests with strain holds (stress relaxation) and with stress holds (strain relaxation) are performed simultaneously with in-situ neutron measurements to analyze the mechanisms of stress and strain relaxation in Mg AZ31 rolled plate. A dislocation activity based constitutive model, accounting for internal stress statistical distributions, is proposed and implemented into an elastic viscoplastic self-consistent (EVPSC) framework to simultaneously describe both stress and strain relaxation. The model captures the experimental data in terms of macroscopic stress strain curves, evolution of stress and strain during holding, as well as evolution of the internal elastic strains. Model results indicate that themore » magnitude of the stress relaxed during strain holding is dependent on both, the magnitude of the flow stress and the spread of the resolved shear stress distribution. The magnitude of strain accumulated during stress holding is, on the other hand, dependent on the magnitude of the hardening rate and on the spread of the resolved shear stress distribution. Furthermore, the internal elastic strains are directly correlated with the stress state, and hence the stress relaxation during strain holds has a greater influence on the lattice strains than strain relaxation during stress holds.« less

  1. Bathythermal distribution, maturity, and growth of lake trout strains stocked in U.S. waters of Lake Ontario, 1978-1993

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.

    1996-01-01

    Bathythermal distributions, sexual maturity, and growth of lake trout (Salvelinus namaycush) strains stocked in Lake Ontario were determined for fish collected with trawls and gill nets in 1978-93. The purpose was to augment the basis for deciding which strains to continue stocking in an effort to reestablish a self-sustaining population. The Clearwater Lake (CWL) strain was found in shallower, warmer water than all other strains; the Seneca Lake (SEN) strain was usually shallower than the Jenny Lake (JEN) and Lake Superior (SUP) strains at ages 1 and 2 but was usually deeper at age 3 and older. Depth distribution of the 'Ontario strain'--from gametes of several strains that survived to maturity in Lake Ontario-- was similar to that of the SEN and SUP strains. About half the males matured at age 4 and half the females at age 5; males < 500 mm and females < 600 mm long were rarely mature. Least-sqaures mean lengths and weights of the CWL strain were greater than those of all other strains through age 4. At age 7 and older, CWL and JEN fish were generally smaller than all other strains. Means lengths and weights of males and females of the same age and strain frequently differed at age 4 and older. Growth in weight at age 4 and older was not associated with biomass indices of prey fishes. Differences in growth rates among strains were associated with bathythermal distribution which is a heritable trait. Weight-length regressions differed by year, sex, and stage of maturity but were rarely different among strains. Competition for space appeared to affect condition of large lake trout. Growth rates and maturity schedules provide little basis for recommending stocking one strain in preference to another. Depth ranges of strains overlapped widely, but lake trout occupied only about one-fourth of available bottom habitat. Stocking several strains should be continued to maximize use of sustainable habitat.

  2. Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries

    NASA Astrophysics Data System (ADS)

    Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald

    2016-04-01

    Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic axis directions are similar. The greatest difference in CPO for the nonlinear cases develop at the flow 'corner' at depths of 10-30 km and 20-100 km off-axis. J index values up to 10% greater than the linear case are predicted near the lithosphere base in that region. Viscosity tensor components are notably altered in the nonlinear cases. Iterations between the texture and flow calculations for the non-linear cases are underway this winter; results will be reported in the presentation.

  3. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  4. The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain.

    PubMed

    Weinhold, Paul S; Stewart, Jason-Dennis N; Liu, Hsin-Yi; Lin, Cheng-Feng; Garrett, William E; Yu, Bing

    2007-08-01

    Studies have shown that women are at higher risk of sustaining noncontact anterior cruciate ligament (ACL) injuries in specific sports. Recent gait studies of athletic tasks have documented that gender differences in knee movement, muscle activation, and external loading patterns exist. The objective of this study was to determine in a knee cadaver model if application of female-specific loading and movement patterns characterised in vivo for a stop-jump task cause higher ACL strains than male patterns. Gender-specific loading patterns of the landing phase of the vertical stop-jump task were applied to seven cadaver knees using published kinetic/kinematic results for recreational athletes. Loads applied consecutively included: tibial compression, quadriceps, hamstrings, external posterior tibial shear, and tibial torque. Knee flexion was fixed based on the kinematic data. Strain of the ACL was monitored by means of a differential variable reluctance transducer installed on the anterior-medial bundle of the ACL. The ACL strain was significantly increased (P<0.05) for the female loading pattern relative to the male loading pattern after the posterior tibial shear force was applied, and showed a similar trend (P=0.1) to be increased after the final tibial torque was applied. This study suggests that female motor control strategies used during the stop-jump task may place higher strains on the ACL than male strategies, thus putting females at greater risk of ACL injury. We believe these results suggest the potential effectiveness of using training programs to modify motor control strategies and thus modify the risk of injury.

  5. Shape optimization of disc-type flywheels

    NASA Technical Reports Server (NTRS)

    Nizza, R. S.

    1976-01-01

    Techniques were developed for presenting an analytical and graphical means for selecting an optimum flywheel system design, based on system requirements, geometric constraints, and weight limitations. The techniques for creating an analytical solution are formulated from energy and structural principals. The resulting flywheel design relates stress and strain pattern distribution, operating speeds, geometry, and specific energy levels. The design techniques incorporate the lowest stressed flywheel for any particular application and achieve the highest specific energy per unit flywheel weight possible. Stress and strain contour mapping and sectional profile plotting reflect the results of the structural behavior manifested under rotating conditions. This approach toward flywheel design is applicable to any metal flywheel, and permits the selection of the flywheel design to be based solely on the criteria of the system requirements that must be met, those that must be optimized, and those system parameters that may be permitted to vary.

  6. Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study.

    PubMed

    Limbert, Georges; van Lierde, Carl; Muraru, O Luiza; Walboomers, X Frank; Frank, Milan; Hansson, Stig; Middleton, John; Jaecques, Siegfried

    2010-05-07

    The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the implant and the surrounding bone. The work hypothesis adopted was that these virtual measurements would be a useful indicator of bone adaptation (resorption, homeostasis, formation). In order to reach these objectives, a microCT-based finite element model of an oral implant implanted into a Berkshire pig mandible was developed along with a robust software methodology. The finite element mesh of the 3D trabecular bone architecture was generated from the segmentation of microCT scans. The implant was meshed independently from its CAD file obtained from the manufacturer. The meshes of the implant and the bone sample were registered together in an integrated software environment. A series of non-linear contact finite element (FE) analyses considering an axial load applied to the top of the implant in combination with three sets of mechanical properties for the trabecular bone tissue was devised. Complex strain distribution patterns are reported and discussed. It was found that considering the Young's modulus of the trabecular bone tissue to be 5, 10 and 15GPa resulted in maximum peri-implant bone microstrains of about 3000, 2100 and 1400. These results indicate that, for the three sets of mechanical properties considered, the magnitude of maximum strain lies within an homeostatic range known to be sufficient to maintain/form bone. The corresponding micro-motions of the implant with respect to the bone microstructure were shown to be sufficiently low to prevent fibrous tissue formation and to favour long-term osseointegration. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Multi-locus variable-number tandem repeat analysis of Chinese Brucella strains isolated from 1953 to 2013.

    PubMed

    Tian, Guo-Zhong; Cui, Bu-Yun; Piao, Dong-Ri; Zhao, Hong-Yan; Li, Lan-Yu; Liu, Xi; Xiao, Pei; Zhao, Zhong-Zhi; Xu, Li-Qing; Jiang, Hai; Li, Zhen-Jun

    2017-05-02

    Brucellosis was a common human and livestock disease caused by Brucella strains, the category B priority pathogens by the US Center for Disease Control (CDC). Identified as a priority disease in human and livestock populations, the increasing incidence in recent years in China needs urgent control measures for this disease but the molecular background important for monitoring the epidemiology of Brucella strains at the national level is still lacking. A total of 600 Brucella isolates collected during 60 years (from 1953 to 2013) in China were genotyped by multiple locus variable-number tandem repeat analysis (MLVA) and the variation degree of MLVA11 loci was calculated by the Hunter Gaston Diversity Index (HGDI) values. The charts and map were processed by Excel 2013, and cluster analysis and epidemiological distribution was performed using BioNumerics (version 5.1). The 600 representative Brucella isolates fell into 104 genotypes with 58 singleton genotypes by the MLVA11 assay, including B. melitensis biovars 2 and 3 (five main genotypes), B. abortus biovars 1 and 3 (two main genotypes), B. suis biovars 1 and 3 (three main genotypes), and B. canis (two main genotypes) respectively. While most B. suis biovar 1 and biovar 3 were respectively found in northern provinces and southern provinces, B. melitensis and B. abortus strains were dominant in China. Canine Brucellosis was only found in animals without any human cases reported. Eight Brucellosis epidemic peaks emerged during the 60 years between 1953 and 2013: 1955 - 1959, 1962 - 1969, 1971 - 1975, 1977 - 1983, 1985 - 1989, 1992 - 1997, 2000 - 2008 and 2010 - 2013 in China. Brucellosis has its unique molecular epidemiological patterns with specific spatial and temporal distribution according to MLVA. IDOP-D-16-00101.

  8. Complete Genome Sequence of a Yersinia enterocolitica “Old World” (3/O:9) Strain and Comparison with the “New World” (1B/O:8) Strain▿†

    PubMed Central

    Wang, Xin; Li, Yang; Jing, Huaiqi; Ren, Yan; Zhou, Zhemin; Wang, Shaojing; Kan, Biao; Xu, Jianguo; Wang, Lei

    2011-01-01

    Yersinia enterocolitica is a heterogeneous bacterial species with a wide range of animal reservoirs through which human intestinal illness can be facilitated. In contrast to the epidemiological pattern observed in the United States, infections in China present a pattern similar to those in European countries and Japan, wherein “Old World” strains (biotypes 2 to 5) are prevalent. To gain insights into the evolution of Y. enterocolitica and pathogenic properties toward human hosts, we sequenced the genome of a biotype 3 strain, 105.5R(r) (O:9), obtained from a Chinese patient. Comparative genome sequence analysis with strain 8081 (1B/O:8) revealed new insights into Y. enterocolitica. Both strains have more than 14% specific genes. In strain 105.5R(r), putative virulence factors were found in strain-specific genomic pathogenicity islands that comprised a novel type III secretion system and rtx-like genes. Many of the loci representing ancestral clusters, which are believed to contribute to enteric survival and pathogenesis, are present in strain 105.5R(r) but lost in strain 8081. Insertion elements in 105.5R(r) have a pattern distinct from those in strain 8081 and were exclusively located in a strain-specific region. In summary, our comparative genome analysis indicates that these two strains may have attained their pathogenicity by completely separate evolutionary events, and the 105.5R(r) strain, a representative of the Old World biogroup, lies in a branch of Y. enterocolitica that is distinct from the “New World” 8081 strain. PMID:21325549

  9. Near-infrared cathodoluminescence imaging of defect distributions in In(0.2)Ga(0.8)As/GaAs multiple quantum wells grown on prepatterned GaAs

    NASA Technical Reports Server (NTRS)

    Rich, D. H.; Fajkumar, K. C.; Chen, LI; Madhukar, A.; Grunthaner, F. J.

    1992-01-01

    The defect distribution in a highly strained In(0.2)Ga(0.8)As/GaAs multiple-quantum-well (MQW) structure grown on a patterned GaAs substrate is examined with cathodoluminescence imaging and spectroscopy in the near IR. By spatially correlating the luminescence arising from the MQW exciton recombination (950 nm) with the longer wavelength (1000-1200 nm) luminescence arising from the defect-induced recombination, it is demonstrated that it is possible to determine the regions of highest film quality in both the mesa and valley regions. The present approach enables a judicious determination of the optimal regions to be used for active pixels in InGaAs/GaAs spatial light modulators.

  10. Clinical Practice Patterns and Beliefs in the Management of Hamstrings Strain Injuries.

    PubMed

    Di Trani Lobacz, Andrea; Glutting, Joseph; Kaminski, Thomas W

    2016-02-01

    Hamstrings strain injuries (HSIs) are among the most commonly occurring injuries in sport and are top causes of missed playing time. Lingering symptoms, prolonged recovery, and a high reinjury rate (12%-34%) make HSI management a frustrating and challenging process for the athletic trainer (AT). The clinical practice patterns and opinions of ATs regarding HSI treatment and rehabilitation are unknown. To examine the frequency of method use and opinions about current HSI management among ATs. Cross-sectional study. Survey administered to registrants at the 2013 National Athletic Trainers' Association Clinical Symposia and AT Expo. A total of 1356 certified ATs (691 men, 665 women; age = 35.4 ± 10.5 years, time certified = 11.92 ± 9.75 years). A survey was distributed electronically to 7272 registrants and on paper to another 700 attendees. Validity and reliability were established before distribution. Participants reported demographic information and rated their frequency of treatment and rehabilitation method use and agreement with questions assessing confidence, satisfaction, and desire for better clinical practice guidelines. Exploratory factor analysis and principal axis factor analysis were used. We also calculated descriptive statistics and χ(2) tests to assess practice patterns. The response rate was 17% (n = 1356). A 2-factor solution was accepted for factor analysis (r = 0.76, r = 0.70), indicating that ATs follow either a contemporary or traditional management style. Various practice patterns were evident across employment settings and years of clinical experience. Satisfaction with the current HSI management plan was high (73.6%), whereas confidence in returning an athlete to play was lower (62.0%). Rates of use were associated with belief in effectiveness for all methods assessed (P < .001). Higher confidence levels were associated with high use of several methods; we observed increased satisfaction (χ(2)2 = 22.5, P = .002) but not increased confidence levels in more experienced ATs. Our study demonstrated the lack of consensus in HSI treatment and rehabilitation and the ATs' desire for better clinical practice guidelines. Future research in which multimodal strategies, including both traditional and contemporary methods, are studied is warranted for effective management of HSI.

  11. Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates

    PubMed Central

    Ko, Eun-Hye; Kim, Hyo-Joong; Lee, Sang-Mok; Kim, Tae-Woong; Kim, Han-Ki

    2017-01-01

    We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, we investigated the effect of the Ag thickness on the mechanical stretchability of the Ag electrode formed on the wavy-patterned PDMS substrate. The semi-transparent Ag films formed on the wavy-patterned PDMS substrate showed better stretchability (strain 20%) than the Ag films formed on a flat PDMS substrate because the wavy pattern effectively relieved strain. In addition, the optical transmittance of the Ag electrode on the wavy-patterned PDMS substrate was tunable based on the degree of stretching for the PDMS substrate. In particular, it was found that the wavy-patterned PDMS with a smooth buckling was beneficial for a precise patterning of Ag interconnectors. Furthermore, we demonstrated the feasibility of semi-transparent Ag films on wavy-patterned PDMS as stretchable electrodes for the stretchable electronics based on bending tests, hysteresis tests, and dynamic fatigue tests. PMID:28436426

  12. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  13. Modelling the joint torques and loadings during squatting at the Smith machine.

    PubMed

    Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio; Mastrandrea, Francesco; Zanuso, Silvano

    2011-03-01

    An analytical biomechanical model was developed to establish the relevant properties of the Smith squat exercise, and the main differences from the free barbell squat. The Smith squat may be largely patterned to modulate the distributions of muscle activities and joint loadings. For a given value of the included knee angle (θ(knee)), bending the trunk forward, moving the feet forward in front of the knees, and displacing the weight distribution towards the forefoot emphasizes hip and lumbosacral torques, while also reducing knee torque and compressive tibiofemoral and patellofemoral forces (and vice versa). The tibiofemoral shear force φ(t) displays more complex trends that strongly depend on θ(knee). Notably, for 180° ≥ θ(knee) ≥ 130°, φ(t) and cruciate ligament strain forces can be suppressed by selecting proper pairs of ankle and hip angles. Loading of the posterior cruciate ligament increases (decreases) in the range 180° ≥ θ(knee) ≥ 150° (θ(knee) ≤ 130°) with knee extension, bending the trunk forward, and moving the feet forward in front of the knees. In the range 150° > θ(knee) > 130°, the behaviour changes depending on the foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are explained. This work enables careful use of the Smith squat in strengthening and rehabilitation programmes.

  14. Distributed dynamic strain measurement using long-gauge FBG and DTR3 interrogator based on delayed transmission/reflection ratiometric reflectometry

    NASA Astrophysics Data System (ADS)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2013-09-01

    In this paper, we reveal characteristics of static and dynamic distributed strain measurement using a long-gauge fiber Bragg grating (FBG) and a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme. The DTR3 scheme has capability of detecting distributed strain using the long-gauge FBG with 50-cm spatial resolution. Additionally, dynamic strain measurement can be achieved using this technique in 100-Hz sampling rate. We evaluated strain sensing characteristics of the long-gauge FBG attached on 2.5-m aluminum bar by a four-point bending equipment. Experimental results showed that the DTR3 using the long-gauge FBG could detect distributed strain in static tests and resonance frequency of structure in free vibration tests. As a result, it is suggested that the DTR3 scheme using the longgauge FBG is attractive to structural health monitoring (SHM) as dynamic deformation detection of a few and tensmeters structure such as the airplane wing and the helicopter blade.

  15. Structural health monitoring of IACC yachts using fiber optic distributed strain sensors: a technical challenge for America's Cup 2000

    NASA Astrophysics Data System (ADS)

    Murayama, Hideaki; Kageyama, Kazuro; Kimpara, Isao; Akiyoshi, Shimada; Naruse, Hiroshi

    2000-06-01

    In this study, we developed a health monitoring system using a fiber optic distributed strain sensor for International America's Cup Class (IACC) yachts. Most structural components of an IACC yacht consist of an aluminum honeycomb core sandwiched between carbon fiber reinforced plastic (CFRP) laminates. In such structures, delamination, skin/core debonding and debonding between adhered members will be result in serious fracture of the structure. We equipped two IACC yachts with fiber optic strain sensors designed to measured the distributed strain using a Brillouin optical time domain reflectometer (BOTDR) and to detect any deterioration or damage to the yacht's structures caused by such failures. And based on laboratory test results, we proposed a structural health monitoring technique for IACC yachts that involves analyzing their strain distribution. Some important information about structural conditions of the IACC yachts could be obtained from this system through the periodical strain measurements in the field.

  16. Strain detection in crystalline heterostructures using bidimensional blocking patterns of channelled particles

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; David-Bosne, E.; Wahl, U.; Miranda, P.; da Silva, M. R.; Correia, J. G.; Lorenz, K.

    2018-03-01

    Strain is a critical parameter affecting the growth and the performance of many semiconductor systems but, at the same time, the accurate determination of strain profiles in heterostructures can be challenging, especially at the nanoscale. Ion channelling/blocking is a powerful technique for the detection of the strain state of thin films, normally carried out through angular scans with conventional particle detectors. Here we report the novel application of position sensitive detectors for the evaluation of the strain in a series of AlInN/GaN heterostructures with different compositions and thicknesses. The tetragonal strain is varied from compressive to tensile and analysed through bidimensional blocking patterns. The results demonstrate that strain can be correctly quantified when compared to Monte Carlo channelling simulations, which are essential because of the presence of ion steering effects at the interface between the layer and the substrate. Despite this physical limitation caused by ion steering, our results show that full bidimensional patterns can be applied to detect fingerprints and enhance the accuracy for most critical cases, in which the angular shift associated to the lattice distortion is below the critical angle for channelling.

  17. Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite.

    PubMed

    Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani

    2017-01-28

    This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  18. Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite

    PubMed Central

    Kuokkala, Veli-Tapani

    2017-01-01

    This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956513

  19. Expanded spectrum β-lactamase producing Escherichia coli isolated from chickens with colibacillosis in Egypt.

    PubMed

    El-Shazly, D A; Nasef, S A; Mahmoud, F F; Jonas, Daniel

    2017-07-01

    Throughout the world, expanded spectrum β-lactamases (ESBL) are increasing among clinical isolates of Enterobacteriaceae, both in humans and animals. Unfortunately, there is a paucity of data on ESBL or Ampicillin class C β-lactamase (AmpC) in Egypt, although antimicrobial consumption is high in this developing country. This study aims to characterize the resistance mechanisms to expanded spectrum cephalosporins among resistant veterinary Escherichia coli isolates in Egypt. We investigated 50 clinical multi-resistant E. coli strains isolated from 20 chicken farms for production of ESBL or AmpC. Antibiotic susceptibility was tested by Clinical and Laboratory Standards Institute (CLSI) disk diffusion and ESBL confirmatory tests. PCR and sequencing were performed to screen for plasmid mediated ESBL genes and genes encoding AmpC β-lactamases. All the isolates were phylogentically classified, investigated for harboring class 1 integrons, and genotyped by amplified fragment length polymorphism (AFLP). Three strains showed ESBL and 6 strains AmpC phenotypic patterns, respectively, with confirmed ESBL genes of blaTEM-57, blaSHV-12, blaCTX-M-14, and blaCMY-2 for AmpC producing strains. All ESBL strains belonged to phylogroup D with different clones isolated from different flocks, while most of the AmpC strains belonged to phylogroup B1 (4/6) and were assigned to the same genotype distributed in 2 different farms. Class 1 integrons were disseminated in 60% of all tested strains and in 100% of ESBL and AmpC strains. These results highlight the antimicrobial resistance problem in Egypt, caused in all probability by unwise use of antimicrobials in animal husbandry. The results call for a nationwide surveillance program to monitor antimicrobial resistance. © 2017 Poultry Science Association Inc.

  20. Epidemiology of a Salmonella enterica subsp. Enterica serovar Typhimurium strain associated with a songbird outbreak.

    USGS Publications Warehouse

    Blehert, David S.; Hernandez, Sonia M.; Keel, Kevin; Sanchez, Susan; Trees, Eija; ,

    2012-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. This Salmonella serovar is also responsible for die-offs in songbird populations. In 2009, there was an S. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and human S. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This same S. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 total S. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature of S. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast.

  1. Community analysis of pigment patterns from 37 microalgae strains reveals new carotenoids and porphyrins characteristic of distinct strains and taxonomic groups

    PubMed Central

    Bérard, Jean-Baptiste; Kaas, Raymond; Pasquet, Virginie; Picot, Laurent; Cadoret, Jean-Paul

    2017-01-01

    Phytoplankton, with an estimated 30 000 to 1 000 000 species clustered in 12 phyla, presents a high taxonomic and ecophysiological diversity, reflected by the complex distribution of pigments among the different algal classes. High performance liquid chromatography is the gold standard method for qualitative and quantitative analysis of phytoplankton pigments in seawater and culture samples, but only a few pigments can be used as robust chemotaxonomic markers. A major challenge is thus to identify new ones, characteristic of a strain, species, class or taxon that cannot be currently identified on the basis of its pigment signature. Using an optimized extraction process coupled to a HPLC de-replication strategy, we examined the pigment composition of 37 microalgae strains, representative of the broad taxonomic diversity of marine and freshwater species (excluding cyanobacteria). For each species, the major pigments already described were unambiguously identified. We also observed the presence of several minor unidentified pigments in each chromatogram. The global analysis of pigment compositions revealed a total of 124 pigments, including 98 pigments or derivatives unidentified using the standards. Absorption spectra indicated that 35 corresponded to chlorophyll/porphyrin derivatives, 57 to carotenoids and six to derivatives having both spectral signatures. Sixty-one of these unidentified or new carotenoids and porphyrin derivatives were characteristic of particular strains or species, indicating their possible use as highly specific chemotaxonomic markers capable of identifying one strain out of the 37 selected. We developed a graphical analysis using Gephi software to give a clear representation of pigment communities among the various phytoplankton strains, and to reveal strain-characteristic and shared pigments. This made it possible to reconstruct the taxonomic evolution of microalgae classes, on the basis of the conservation, loss, and/or appearance of pigments. PMID:28231253

  2. The mechanical consequences of load bearing in the equine third metacarpal across speed and gait: the nonuniform distributions of normal strain, shear strain, and strain energy density

    PubMed Central

    Rubin, Clinton T.; Seeherman, Howard; Qin, Yi-Xian; Gross, Ted S.

    2013-01-01

    Distributions of normal strain, shear strain, and strain energy density (SED) were determined across the midshaft of the third metacarpal (MCIII, or cannon bone) of 3 adult thoroughbred horses as a function of speed and gait. A complete characterization of the mechanical demands of the bone made through the stride and from mild through the extremes of locomotion was possible by using three 3-element rosette strain gauges bonded at the diaphyseal midshaft of the MCIII and evaluating the strain output with beam theory and finite element analysis. Mean ± sd values of normal strain, shear strain, and SED increased with speed and peaked during a canter (−3560±380 microstrain, 1760±470 microstrain, and 119±23 kPa, respectively). While the location of these peaks was similar across animals and gaits, the resulting strain distributions across the cortex were consistently nonuniform, establishing between a 73-fold (slow trot) to a 330-fold (canter) disparity between the sites of maximum and minimum SED for each gait cycle. Using strain power density as an estimate of strain history across the bone revealed a 154-fold disparity between peak and minimum at the walk but fell to ∼32-fold at the canter. The nonuniform, minimally varying, strain environment suggests either that bone homeostasis is mediated by magnitude-independent mechanical signals or that the duration of stimuli necessary to establish and maintain tissue integrity is relatively brief, and thus the vast majority of strain information is disregarded.—Rubin, C. T., Seeherman, H., Qin, Y.-X., Gross, T. S., The mechanical consequences of load bearing in the equine third metacarpal across speed and gait: the nonuniform distributions of normal strain, shear strain, and strain energy density. PMID:23355269

  3. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    DOE PAGES

    MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; ...

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enablingmore » elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less

  4. Impact of ballistic body armour and load carriage on walking patterns and perceived comfort.

    PubMed

    Park, Huiju; Branson, Donna; Petrova, Adriana; Peksoz, Semra; Jacobson, Bert; Warren, Aric; Goad, Carla; Kamenidis, Panagiotis

    2013-01-01

    This study investigated the impact of weight magnitude and distribution of body armour and carrying loads on military personnel's walking patterns and comfort perceptions. Spatio-temporal parameters of walking, plantar pressure and contact area were measured while seven healthy male right-handed military students wore seven different garments of varying weight (0.06, 9, 18 and 27 kg) and load distribution (balanced and unbalanced, on the front and back torso). Higher weight increased the foot contact time with the floor. In particular, weight placement on the non-dominant side of the front torso resulted in the greatest stance phase and double support. Increased plantar pressure and contact area observed during heavier loads entail increased impact forces, which can cause overuse injuries and foot blisters. Participants reported increasingly disagreeable pressure and strain in the shoulder, neck and lower back during heavier weight conditions and unnatural walking while wearing unbalanced weight distributed loads. This study shows the potentially synergistic impact of wearing body armour vest with differential loads on body movement and comfort perception. This study found that soldiers should balance loads, avoiding load placement on the non-dominant side front torso, thus minimising mobility restriction and potential injury risk. Implications for armour vest design modifications can also be found in the results.

  5. Rate of evolutionary change in cranial morphology of the marsupial genus Monodelphis is constrained by the availability of additive genetic variation

    PubMed Central

    Porto, Arthur; Sebastião, Harley; Pavan, Silvia Eliza; VandeBerg, John L.; Marroig, Gabriel; Cheverud, James M.

    2015-01-01

    We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyze the morphological diversification of the Monodelphis brevicaudata species group. We found that within-species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between-species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation. PMID:25818173

  6. Discrete Analysis of Damage and Shear Banding in Argillaceous Rocks

    NASA Astrophysics Data System (ADS)

    Dinç, Özge; Scholtès, Luc

    2018-05-01

    A discrete approach is proposed to study damage and failure processes taking place in argillaceous rocks which present a transversely isotropic behavior. More precisely, a dedicated discrete element method is utilized to provide a micromechanical description of the mechanisms involved. The purpose of the study is twofold: (1) presenting a three-dimensional discrete element model able to simulate the anisotropic macro-mechanical behavior of the Callovo-Oxfordian claystone as a particular case of argillaceous rocks; (2) studying how progressive failure develops in such material. Material anisotropy is explicitly taken into account in the numerical model through the introduction of weakness planes distributed at the interparticle scale following predefined orientation and intensity. Simulations of compression tests under plane-strain and triaxial conditions are performed to clarify the development of damage and the appearance of shear bands through micromechanical analyses. The overall mechanical behavior and shear banding patterns predicted by the numerical model are in good agreement with respect to experimental observations. Both tensile and shear microcracks emerging from the modeling also present characteristics compatible with microstructural observations. The numerical results confirm that the global failure of argillaceous rocks is well correlated with the mechanisms taking place at the local scale. Specifically, strain localization is shown to directly result from shear microcracking developing with a preferential orientation distribution related to the orientation of the shear band. In addition, localization events presenting characteristics similar to shear bands are observed from the early stages of the loading and might thus be considered as precursors of strain localization.

  7. Magnetic characterisation of folded aeolian sandstones: Interpretation of magnetic fabrics in diamagnetic rocks

    NASA Astrophysics Data System (ADS)

    Callot, J.-P.; Robion, P.; Sassi, W.; Guiton, M. L. E.; Faure, J.-L.; Daniel, J.-M.; Mengus, J.-M.; Schmitz, J.

    2010-12-01

    This study provides an original example of exploitation of Anisotropy of Magnetic Susceptibility (AMS) for rocks with weak magnetic susceptibility. Within the upper Weber Sandstone at Split Mountain, Utah, 430 cores from 31 sites were collected for magnetic characterization. The magnetic susceptibility ranges from -10 to 10 μSI, indicating a mostly diamagnetic matrix, with degree of anisotropy up to 1.6. Specific treatment of magnetic susceptibility allows using diamagnetic data. The fabrics are fairly clustered and triaxial. Sedimentary magnetic fabrics show a foliation plane parallel to the lamina of the sand dunes, without defined lineation. Apart from sedimentary fabrics (< 30%), most of the sites display intermediate to tectonic fabrics related to variable degree of strain (> 70%). Magnetic fabric patterns averaged for sites distributed on the anticline are well defined in sub-groups related to the major structural domains of the anticline. The fracture network at Split Mountain is composed of a dominant N120 set and a secondary N035 set. A scenario of strain record is proposed based on the correlation of (1) fracture sets orientation, (2) diagenetic cementation, (3) paleostresses and (4) distribution of magnetic susceptibility anisotropy. Following the Sevier orogeny and N120 fracture set emplacement, the N035 fracture network and AMS signal were recorded during the Laramide Layer Parallel Shortening phase, with local deviation along pre-existing structures, and recorded a partitioning of the strain during early folding, with a maximum horizontal stress axis perpendicular to the fold bounding faults within the fold.

  8. Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.; Lyakhovsky, V.

    Observational studies indicate that large earthquakes are sometimes preceded by phases of accelerated seismic release (ASR) characterized by cumulative Benioff strain following a power law time-to-failure relation with a term (tf-t)m, where tf is the failure time of the large event and observed values of m are close to 0.3. We discuss properties of ASR and related aspects of seismicity patterns associated with several theoretical frameworks. The subcritical crack growth approach developed to describe deformation on a crack prior to the occurrence of dynamic rupture predicts great variability and low asymptotic values of the exponent m that are not compatible with observed ASR phases. Statistical physics studies assuming that system-size failures in a deforming region correspond to critical phase transitions predict establishment of long-range correlations of dynamic variables and power-law statistics before large events. Using stress and earthquake histories simulated by the model of Ben-Zion (1996) for a discrete fault with quenched heterogeneities in a 3-D elastic half space, we show that large model earthquakes are associated with nonrepeating cyclical establishment and destruction of long-range stress correlations, accompanied by nonstationary cumulative Benioff strain release. We then analyze results associated with a regional lithospheric model consisting of a seismogenic upper crust governed by the damage rheology of Lyakhovskyet al. (1997) over a viscoelastic substrate. We demonstrate analytically for a simplified 1-D case that the employed damage rheology leads to a singular power-law equation for strain proportional to (tf-t)-1/3, and a nonsingular power-law relation for cumulative Benioff strain proportional to (tf-t)1/3. A simple approximate generalization of the latter for regional cumulative Benioff strain is obtained by adding to the result a linear function of time representing a stationary background release. To go beyond the analytical expectations, we examine results generated by various realizations of the regional lithospheric model producing seismicity following the characteristic frequency-size statistics, Gutenberg-Richter power-law distribution, and mode switching activity. We find that phases of ASR exist only when the seismicity preceding a given large event has broad frequency-size statistics. In such cases the simulated ASR phases can be fitted well by the singular analytical relation with m = -1/3, the nonsingular equation with m = 0.2, and the generalized version of the latter including a linear term with m = 1/3. The obtained good fits with all three relations highlight the difficulty of deriving reliable information on functional forms and parameter values from such data sets. The activation process in the simulated ASR phases is found to be accommodated both by increasing rates of moderate events and increasing average event size, with the former starting a few years earlier than the latter. The lack of ASR in portions of the seismicity not having broad frequency-size statistics may explain why some large earthquakes are preceded by ASR and other are not. The results suggest that observations of moderate and large events contain two complementary end-member predictive signals on the time of future large earthquakes. In portions of seismicity following the characteristic earthquake distribution, such information exists directly in the associated quasi-periodic temporal distribution of large events. In portions of seismicity having broad frequency-size statistics with random or clustered temporal distribution of large events, the ASR phases have predictive information. The extent to which natural seismicity may be understood in terms of these end-member cases remains to be clarified. Continuing studies of evolving stress and other dynamic variables in model calculations combined with advanced analyses of simulated and observed seismicity patterns may lead to improvements in existing forecasting strategies.

  9. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K. Y.; Chen, Y.; Li, J.

    Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

  10. Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study

    DOE PAGES

    Yu, K. Y.; Chen, Y.; Li, J.; ...

    2016-11-28

    Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.

  11. Clonal relationship among Vibrio cholerae O1 El Tor strains isolated in Somalia.

    PubMed

    Scrascia, Maria; Pugliese, Nicola; Maimone, Francesco; Mohamud, Kadigia A; Grimont, Patrick A D; Materu, Sadiki F; Pazzani, Carlo

    2009-03-01

    One hundred and three Vibrio cholerae O1 strains, selected to represent the cholera outbreaks which occurred in Somalia in 1998-1999, were characterized by random amplified polymorphic DNA patterns, ribotyping, and antimicrobial susceptibility. All strains showed a unique amplified DNA pattern and 2 closely related ribotypes (B5a and B8a), among which B5a was the more frequently identified. Ninety-one strains were resistant to ampicillin, chloramphenicol, spectinomycin, streptomycin, sulfamethoxazole, and trimethoprim, conferred, except for spectinomycin, by a conjugative plasmid IncC. These findings indicated that the group of strains active in Somalia in the late 1990s had a clonal origin.

  12. Chondron curvature mapping in growth plate cartilage under compressive loading.

    PubMed

    Vendra, Bhavya B; Roan, Esra; Williams, John L

    2018-05-18

    The physis, or growth plate, is a layer of cartilage responsible for long bone growth. It is organized into reserve, proliferative and hypertrophic zones. Unlike the reserve zone where chondrocytes are randomly arranged, either singly or in pairs, the proliferative and hypertrophic chondrocytes are arranged within tubular structures called chondrons. In previous studies, the strain patterns within the compressed growth plate have been reported to be nonuniform and inhomogeneous, with an apparent random pattern in compressive strains and a localized appearance of tensile strains. In this study we measured structural deformations along the entire lengths of chondrons when the physis was subjected to physiological (20%) and hyper-physiological (30% and 40%) levels of compression. This provided a means to interpret the apparent random strain patterns seen in texture correlation maps in terms of bending deformations of chondron structures and provided a physical explanation for the inhomogeneous and nonuniform strain patterns reported in previous studies. We observed relatively large bending deformations (kinking) of the chondron structures at the interface of the reserve and proliferative zones during compression. Bending in this region may induce dividing cells to align longitudinally to maintain column formation and drive longitudinal growth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Fermentation reactions of Erysipelothrix rhusiopathiae.

    PubMed

    WHITE, T G; SHUMAN, R D

    1961-10-01

    White, Thomas G. (U. S. Department of Agriculture, Ames, Iowa), and Richard D. Shuman. Fermentation reactions of Erysipelothrix rhusiopathiae. J. Bacteriol. 82:595-599. 1961.-A study was made to determine the effect of four different basal media, to which fermentable carbon compounds had been added, upon 22 selected strains of Erysipelothrix rhusiopathiae (insidiosa). Acid production was measured by (i) chemical indicator, (ii) change in pH, and (iii) production of titrable acidity. At least two determinations, usually four, were made for each test on each strain. The fermentation pattern varied according to the medium, the indicator, and the method of measuring acid production. Andrade's base plus serum was the most dependable medium because it permitted the least variation in the total number of different patterns. Of the three methods used to measure acid production, the chemical indicator gave the most valid and reproducible results. The within-strain variation was not extreme and most strains persisted in a given fermentation pattern under like conditions of growth and acid production. Results of the study indicated that, regardless of the medium and indicator routinely used, one should be familiar with the fermentation pattern of known strains of the erysipelas organism.

  14. FERMENTATION REACTIONS OF ERYSIPELOTHRIX RHUSIOPATHIAE

    PubMed Central

    White, Thomas G.; Shuman, Richard D.

    1961-01-01

    White, Thomas G. (U. S. Department of Agriculture, Ames, Iowa), and Richard D. Shuman. Fermentation reactions of Erysipelothrix rhusiopathiae. J. Bacteriol. 82:595–599. 1961.—A study was made to determine the effect of four different basal media, to which fermentable carbon compounds had been added, upon 22 selected strains of Erysipelothrix rhusiopathiae (insidiosa). Acid production was measured by (i) chemical indicator, (ii) change in pH, and (iii) production of titrable acidity. At least two determinations, usually four, were made for each test on each strain. The fermentation pattern varied according to the medium, the indicator, and the method of measuring acid production. Andrade's base plus serum was the most dependable medium because it permitted the least variation in the total number of different patterns. Of the three methods used to measure acid production, the chemical indicator gave the most valid and reproducible results. The within-strain variation was not extreme and most strains persisted in a given fermentation pattern under like conditions of growth and acid production. Results of the study indicated that, regardless of the medium and indicator routinely used, one should be familiar with the fermentation pattern of known strains of the erysipelas organism. PMID:14006576

  15. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  16. Molecular characterization of the probiotic strain Bacillus cereus var. toyoi NCIMB 40112 and differentiation from food poisoning strains.

    PubMed

    Klein, Günter

    2011-07-01

    Bacillus cereus var. toyoi strain NCIMB 40112 (Toyocerin), a probiotic authorized in the European Union as feed additive for swine, bovines, poultry, and rabbits, was characterized by DNA fingerprinting applying pulsed-field gel electrophoresis and multilocus sequence typing and was compared with reference strains (of clinical and environmental origins). The probiotic strain was clearly characterized by pulsed-field gel electrophoresis using the restriction enzymes Apa I and Sma I resulting in unique DNA patterns. The comparison to the clinical reference strain B. cereus DSM 4312 was done with the same restriction enzymes, and again a clear differentiation of the two strains was possible by the resulting DNA patterns. The use of the restriction enzymes Apa I and Sma I is recommended for further studies. Furthermore, multilocus sequence typing analysis revealed a sequence type (ST 111) that was different from all known STs of B. cereus strains from food poisoning incidents. Thus, a strain characterization and differentiation from food poisoning strains for the probiotic strain was possible. Copyright ©, International Association for Food Protection

  17. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates.

    PubMed

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-07-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains.

  18. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates

    PubMed Central

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-01-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains. PMID:26130851

  19. Influence of Biochemical Features of Burkholderia pseudomallei Strains on Identification Reliability by Vitek 2 System

    PubMed Central

    Zakharova, Irina B; Lopasteyskaya, Yana A; Toporkov, Andrey V; Viktorov, Dmitry V

    2018-01-01

    Background: Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium that causes melioidosis, a potentially fatal disease endemic in wet tropical areas. The currently available biochemical identification systems can misidentify some strains of B. pseudomallei. The aim of the present study was to identify the biochemical features of B. pseudomallei, which can affect its correct identification by Vitek 2 system. Materials and Methods: The biochemical patterns of 40 B. pseudomallei strains were obtained using Vitek 2 GN cards. The average contribution of biochemical tests in overall dissimilarities between correctly and incorrectly identified strains was assessed using nonmetric multidimensional scaling. Results: It was found (R statistic of 0.836, P = 0.001) that a combination of negative N-acetyl galactosaminidase, β-N-acetyl glucosaminidase, phosphatase, and positive D-cellobiase (dCEL), tyrosine arylamidase (TyrA), and L-proline arylamidase (ProA) tests leads to low discrimination of B. pseudomallei, whereas a set of positive dCEL and negative N-acetyl galactosaminidase, TyrA, and ProA determines the wrong identification of B. pseudomallei as Burkholderia cepacia complex. Conclusion: The further expansion of the Vitek 2 identification keys is needed for correct identification of atypical or regionally distributed biochemical profiles of B. pseudomallei. PMID:29563716

  20. Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio cholerae O1, O139, and non-O1 strains.

    PubMed

    Rivera, I G; Chowdhury, M A; Huq, A; Jacobs, D; Martins, M T; Colwell, R R

    1995-08-01

    Enterobacterial repetitive intergenic consensus (ERIC) sequence polymorphism was studied in Vibrio Cholerae strains isolated before and after the cholera epidemic in Brazil (in 1991), along with epidemic strains from Peru, Mexico, and India, by PCR. A total of 17 fingerprint patterns (FPs) were detected in the V. cholerae strains examined; 96.7% of the toxigenic V. cholerae O1 strains and 100% of the O139 serogroup strains were found to belong to the same FP group comprising four fragments (FP1). The nontoxigenic V. cholerae O1 also yielded four fragments but constituted a different FP group (FP2). A total of 15 different patterns were observed among the V. cholerae non-O1 strains. Two patterns were observed most frequently for V. cholerae non-01 strains, 25% of which have FP3, with five fragments, and 16.7% of which have FP4, with two fragments. Three fragments, 1.75, 0.79, and 0.5 kb, were found to be common to both toxigenic and nontoxigenic V. cholerae O1 strains as well as to group FP3, containing V. cholerae non-O1 strains. Two fragments of group FP3, 1.3 and 1.0 kb, were present in FP1 and FP2 respectively. The 0.5-kb fragment was common to all strains and serogroups of V. cholerae analyzed. It is concluded from the results of this study, based on DNA FPs of environmental isolates, that it is possible to detect an emerging virulent strain in a cholera-endemic region. ERIC-PCR constitutes a powerful tool for determination of the virulence potential of V. cholerae O1 strains isolated in surveillance programs and for molecular epidemiological investigations.

  1. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    PubMed Central

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  2. Cells as strain-cued automata

    NASA Astrophysics Data System (ADS)

    Cox, Brian N.; Snead, Malcolm L.

    2016-02-01

    We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, "enhanced shear motility", accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in homogeneous populations and network formation by invaders, morphological outcomes are governed by the ratio of the rates of two competing time dependent processes, one a migration velocity and the other a relaxation velocity related to the propagation of strain information. Relaxation velocities are approximately constant for different species and organs, whereas cell migration rates vary by three orders of magnitude. We conjecture that developmental processes use rapid cell migration to achieve certain outcomes, and slow migration to achieve others. We infer from analysis of host relaxation during network formation that a transition exists in the mechanical response of a host cell from animate to inanimate behavior when its strain changes at a rate that exceeds 10-4-10-3 s-1. The transition has previously been observed in experiments conducted in vitro.

  3. Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light-Matter Interaction toward Excellent Photodetectors.

    PubMed

    Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun

    2017-09-26

    Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.

  4. [The etiology of urinary tract infections].

    PubMed

    Avio, C M; Ceccherini, M; Pierotti, R; Falcone, G

    1977-01-01

    The Authors have planned a program in order to file and elaborate with a computer the results of urine cultures. From 8.600 specimens, about 86% were negative or doubtful. The data obtained from 1201 positive cultures were processed in order to state the absolute and relative frequency of the bacterial species isolated and their distribution according to their genera, antibiotic resistence, month and sex. Among the most representative species the pattern of antibiotic resistence was surveyed. E. coli shows very high frequency (38%). The frequency of Pseudomonas increases while staphylococci frequency decreases as compared with the previous statements of various Authors. The analysis of the antibiotic sensitivity spectrum of 534 specimens shows that about 50% of E. coli strains are sensitive to 10, 11 and 12 antibiotics and their pattern of resistence involves no more than 9 antibiotics; on the contrary more than 60% of Pseudomonas and Proteus rettgeri are resistant to 10, 11 or 12 antibiotics and at any rate to no less than seven. Enterobacter and Proteus mirabilis present an intermediate pattern of resistence.

  5. Electronic structures of GeSi nanoislands grown on pit-patterned Si(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Han, E-mail: Dabombyh@aliyun.com; Yu, Zhongyuan

    2014-11-15

    Patterning pit on Si(001) substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in (105) pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP) in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facetsmore » for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications.« less

  6. Comparative study on luminescence extraction strategies of LED by large-scale fabrication of nanopillar and nanohole structures

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun

    2018-06-01

    Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.

  7. Effect of Domestication on the Spread of the [PIN+] Prion in Saccharomyces cerevisiae

    PubMed Central

    Kelly, Amy C.; Busby, Ben; Wickner, Reed B.

    2014-01-01

    Prions (infectious proteins) cause fatal neurodegenerative diseases in mammals. In the yeast Saccharomyces cerevisiae, many toxic and lethal variants of the [PSI+] and [URE3] prions have been identified in laboratory strains, although some commonly studied variants do not seem to impair cell growth. Phylogenetic analysis has revealed four major clades of S. cerevisiae that share histories of two prion proteins and largely correspond to different ecological niches of yeast. The [PIN+] prion was most prevalent in commercialized niches, infrequent among wine/vineyard strains, and not observed in ancestral isolates. As previously reported, the [PSI+] and [URE3] prions are not found in any of these strains. Patterns of heterozygosity revealed genetic mosaicism and indicated extensive outcrossing among divergent strains in commercialized environments. In contrast, ancestral isolates were all homozygous and wine/vineyard strains were closely related to each other and largely homozygous. Cellular growth patterns were highly variable within and among clades, although ancestral isolates were the most efficient sporulators and domesticated strains showed greater tendencies for flocculation. [PIN+]-infected strains had a significantly higher likelihood of polyploidy, showed a higher propensity for flocculation compared to uninfected strains, and had higher sporulation efficiencies compared to domesticated, uninfected strains. Extensive phenotypic variability among strains from different environments suggests that S. cerevisiae is a niche generalist and that most wild strains are able to switch from asexual to sexual and from unicellular to multicellular growth in response to environmental conditions. Our data suggest that outbreeding and multicellular growth patterns adapted for domesticated environments are ecological risk factors for the [PIN+] prion in wild yeast. PMID:24812307

  8. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum

    PubMed Central

    Niño-Sánchez, Jonathan; Tello, Vega; Casado-del Castillo, Virginia; Thon, Michael R.; Benito, Ernesto P.; Díaz-Mínguez, José María

    2015-01-01

    The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2. PMID:25883592

  9. Roll forming of eco-friendly stud

    NASA Astrophysics Data System (ADS)

    Keum, Y. T.; Lee, S. Y.; Lee, T. H.; Sim, J. K.

    2013-12-01

    In order to manufacture an eco-friendly stud, the sheared pattern is designed by the Taguchi method and expanded by the side rolls. The seven geometrical shape of sheared pattern are considered in the structural and thermal analyses to select the best functional one in terms of the durability and fire resistance of dry wall. For optimizing the size of the sheared pattern chosen, the L9 orthogonal array and smaller-the-better characteristics of the Taguchi method are used. As the roll gap causes forming defects when the upper-and-lower roll type is adopted for expanding the sheared pattern, the side roll type is introduced. The stress and strain distributions obtained by the FEM simulation of roll-forming processes are utilized for the design of expanding process. The expanding process by side rolls shortens the length of expanding process and minimizes the cost of dies. Furthermore, the stud manufactured by expanding the sheared pattern of the web is an eco-friend because of the scrapless roll-forming process. In addition, compared to the conventionally roll-formed stud, the material cost is lessened about 13.6% and the weight is lightened about 15.5%.

  10. Epidemiological markers of Serratia marcescens isolates causing nosocomial infections in Spain (1981-1991).

    PubMed

    Boquete, T; Vindel, A; Martin-Bourgon, C; Azañedo, L; Sáez-Nieto, J A

    1996-12-01

    The distribution of epidemiological markers (serotyping and phage-typing) of Serratia marcescens isolates from nosocomial episodes (63 nosocomial cutbreaks with 475 isolates, and 1208 sporadic cases) received in our laboratory during the period 1981-1991 was studied. The records for 1683 isolates from Spanish hospitals have been analyzed. In relation with the sporadic cases, the predominant types were serotype O6 (13.4%) and serotype O14 (11.4%); polyagglutinable strains accounted for 15.6%; in outbreaks, type O14 is clearly predominant (27.4%). Phage-typing was a good secondary marker, with a 87.9% of typability; the number of lytic patterns was very high, extended patterns (six or more phages) being the most frequent. We have studied the characteristics of S. marcescens isolates causing infections in the nosocomial environment in Spain.

  11. PVA/NaCl/MgO nanocomposites-microstructural analysis by whole pattern fitting method

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Somashekar, R.; Nagabhushana, B. M.

    2018-04-01

    The nanofillers in the macromolecular matrix have displayed noteworthy changes in the structure and reactivity of the polymer nanocomposites. Novel functional materials usually consist of defects and are largely disordered. The intriguing properties of these materials are often attributed to defects. X-ray line profiles from powder diffraction reveal the quantitative information about size distribution and shape of diffracting domains which governs the contribution from small conventional X-ray diffraction (XRD) techniques to enumerate the microstructural information. In this study the MgO nanoparticles were prepared by solution combustion method and PVA/NaCl/MgO nanocomposite films were synthesized by the solvent cast method. Microstructural parameters viz crystal defects like stacking faults and twin faults, compositional inhomogeneity, crystallite size and lattice strain (g in %), were extracted using whole pattern fitting method.

  12. Genetic characterization of Measles Viruses in China, 2004

    PubMed Central

    Zhang, Yan; Ji, Yixin; Jiang, Xiaohong; Xu, Songtao; Zhu, Zhen; Zheng, Lei; He, Jilan; Ling, Hua; Wang, Yan; Liu, Yang; Du, Wen; Yang, Xuelei; Mao, Naiying; Xu, Wenbo

    2008-01-01

    Genetic characterization of wild-type measles virus was studied using nucleotide sequencing of the C-terminal region of the N protein gene and phylogenetic analysis on 59 isolates from 16 provinces of China in 2004. The results showed that all of the isolates belonged to genotype H1. 51 isolates were belonged to cluster 1 and 8 isolates were cluster 2 and Viruses from both clusters were distributed throughout China without distinct geographic pattern. The nucleotide sequence and predicted amino acid homologies of the 59 H1 strains were 96.5%–100% and 95.7%–100%, respectively. The report showed that the transmission pattern of genotype H1 viruses in China in 2004 was consistent with ongoing endemic transmission of multiple lineages of a single, endemic genotype. Multiple transmission pathways leaded to multiple lineages within endemic genotype. PMID:18928575

  13. Finite Element Approach for the Design of Control Algorithms for Vertical Fin Buffeting Using Strain Actuation

    DTIC Science & Technology

    2001-06-01

    Algorithms for Vertical Fin Buffeting Using Strain Actuation DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the...UNCLASSIFIED 8-1 Finite Element Approach for the Design of Control Algorithms for Vertical Fin Buffeting Using Strain Actuation Fred Nitzsche...groups), the disturbance (buffet load), and the two output variables (a choice among four Introduction accelerometers and five strain - gauge positions

  14. Strain distribution in an Si single crystal measured by interference fringes of X-ray mirage diffraction

    PubMed Central

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2013-01-01

    In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841

  15. Application of microtomography and image analysis to the quantification of fragmentation in ceramics after impact loading

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal; Ando, Edward

    2017-01-01

    Silicon carbide ceramics are widely used in personal body armour and protective solutions. However, during impact, an intense fragmentation develops in the ceramic tile due to high-strain-rate tensile loadings. In this work, microtomography equipment was used to analyse the fragmentation patterns of two silicon carbide grades subjected to edge-on impact (EOI) tests. The EOI experiments were conducted in two configurations. The so-called open configuration relies on the use of an ultra-high-speed camera to visualize the fragmentation process with an interframe time set to 1 µs. The so-called sarcophagus configuration consists in confining the target in a metallic casing to avoid any dispersion of fragments. The target is infiltrated after impact so the final damage pattern is entirely scanned using X-ray tomography and a microfocus source. Thereafter, a three-dimensional (3D) segmentation algorithm was tested and applied in order to separate fragments in 3D allowing a particle size distribution to be obtained. Significant differences between the two specimens of different SiC grades were noted. To explain such experimental results, numerical simulations were conducted considering the Denoual-Forquin-Hild anisotropic damage model. According to the calculations, the difference of crack pattern in EOI tests is related to the population of defects within the two ceramics. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  16. An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in predicted permeability and elasticity (seismic velocity). Conversely, this implies that measured changes in any of the in situ properties or responses in the subsurface (e.g. permeability, seismic velocity) could be used to predict, or at least constrain, the fracture network. Explicitly linking the fracture network geometry to the permeability and elasticity (seismic velocity) through a tensorial formulation provides an exciting and efficient alternative to existing approaches.

  17. Genetic Structure of Natural Populations of Escherichia coli in Wild Hosts on Different Continents

    PubMed Central

    Souza, Valeria; Rocha, Martha; Valera, Aldo; Eguiarte, Luis E.

    1999-01-01

    Current knowledge of genotypic and phenotypic diversity in the species Escherichia coli is based almost entirely on strains recovered from humans or zoo animals. In this study, we analyzed a collection of 202 strains obtained from 81 mammalian species representing 39 families and 14 orders in Australia and the Americas, as well as several reference strains; we also included a strain from a reptile and 10 from different families of birds collected in Mexico. The strains were characterized genotypically by multilocus enzyme electrophoresis (MLEE) and phenotypically by patterns of sugar utilization, antibiotic resistance, and plasmid profile. MLEE analysis yielded an estimated genetic diversity (H) of 0.682 for 11 loci. The observed genetic diversity in this sample is the greatest yet reported for E. coli. However, this genetic diversity is not randomly distributed; geographic effects and host taxonomic group accounted for most of the genetic differentiation. The genetic relationship among the strains showed that they are more associated by origin and host order than is expected by chance. In a dendrogram, the ancestral cluster includes primarily strains from Australia and ECOR strains from groups B and C. The most differentiated E. coli in our analysis are strains from Mexican carnivores and strains from humans, including those in the ECOR group A. The kinds and numbers of sugars utilized by the strains varied by host taxonomic group and country of origin. Strains isolated from bats were found to exploit the greatest range of sugars, while those from primates utilized the fewest. Toxins are more frequent in strains from rodents from both continents than in any other taxonomic group. Strains from Mexican wild mammals were, on average, as resistant to antibiotics as strains from humans in cities. On average, the Australian strains presented a lower antibiotic resistance than the Mexican strains. However, strains recovered from hosts in cities carried significantly more plasmids than did strains isolated from wild mammals. Previous studies have shown that natural populations of E. coli harbor an extensive genetic diversity that is organized in a limited number of clones. However, knowledge of this worldwide bacterium has been limited. Here, we suggest that the strains from a wide range of wild hosts from different regions of the world are organized in an ecotypic structure where adaptation to the host plays an important role in the population structure. PMID:10427022

  18. A pulsed field gel electrophoresis (PFGE) study that suggests a major world-wide clone of Salmonella enterica serovar Enteritidis.

    PubMed

    Pang, Jen-Chieh; Chiu, Tsai-Hsin; Helmuth, Reiner; Schroeter, Andreas; Guerra, Beatriz; Tsen, Hau-Yang

    2007-05-30

    Since human infections by Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) have been increasing world-wide over the past years and epidemiological studies have implicated the consumption of meat, poultry, eggs and egg products, elucidation of the predominant subtypes for this Salmonella spp. is important. In this study, 107 poultry and food isolates of Salmonella Enteritidis obtained from Germany were analyzed by pulsed field gel electrophoresis (PFGE), and the subtypes were compared with those of the 124 human isolates obtained in Taiwan. Results showed that for these 107 poultry and food isolates, when XbaI, SpeI and NotI were used for chromosomal DNA digestion followed by PFGE analysis, a total of 19, 20 and 19 PFGE patterns, respectively, were identified. Of them, 51 (47.7%), 52 (48.6%) and 42 (39.3%) strains belong to a single pattern of X3, S3 and N3, respectively, and 34 strains belong to a pattern combination of X3S3N3, which was the major subtype. When PFGE patterns of these 107 German isolates were compared with those of the 124 human isolates obtained in Taiwan, pattern combination of X3S3N3 was found as the most common pattern shared by isolates from both areas. PT4 is a major phage type for German and Taiwan isolates. Although most of the X3S3N3 strains are of this phage type, some strains of other PFGE patterns are also of this phage type. Since strains used in this study were unrelated, i.e., they were isolated from different origins in areas geographically far apart from each other, the PFGE study suggests a major world-wide clone of S. enterica serovar Enteritidis.

  19. Experimental strain modal analysis for beam-like structure by using distributed fiber optics and its damage detection

    NASA Astrophysics Data System (ADS)

    Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo

    2017-07-01

    Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.

  20. Fabrication and Design of Optical Nanomaterials

    NASA Astrophysics Data System (ADS)

    Huntington, Mark D.

    Over the past several decades, advances in nanometer scale fabrication has sparked interes in applications that take advantage of materials that are structured at these small length scales. Specifically, metallic optical nanomaterials have emerged as a new way to control light at length scales that are smaller than the wavelength of light and have optical properties that are distinctly different from their macroscale counterparts. Although there have been may advances in nanofabrication, the performance and widespread use of optical nanomaterials is still limited by fabrication and design challenges. This dissertation describes advances in the fabrication, characterization, and design of optical nanomaterials. First we demonstrate how a portable and compact photolithography system can be made using a light source composed of UV LEDs. Our solid-state photolithography (SSP) system brings the capabilities of one of the most important yet workhorse tools of micro- and nanotechnology--the mask aligner--to the benchtop. The two main highlights of chapter 2 include: (i) portable, low-cost photolithography and (ii) high quality patterning. We replace the mask aligner with a system composed of UV LEDs and a diffuser that can be built for as little as $30. The design of the SSP system alleviates the need for dedicated power supplies, vacuum lines and cooling systems, which makes it a true benchtop photolithography system. We further show that sub-wavelength features can be fabricated across 4-in wafers and that these patterns are of high quality such that they can be easily transferred into functional materials. Chapter 3 describes a parallel method to create nanometer scale textures over large areas with unprecedented control over wrinkle wavelength. The main points of this chapter include: (i) a new material system for nanowrinkles, (ii) wrinkles with tunable wavelengths, and (iii) a method for measuring the skin thickness. First, we show that RIE treatment of PS with fluorinated molecules can be used to create nanometer-scale wrinkles. Next, we found that wrinkle wavelength could be controlled by either (i) changing the gas used during RIE treatment or (ii) by changing the plasma exposure time for a specific gas. We fabricated wrinkles with wavelengths ranging from 250 nm to 50 nm by chemically treating PS thermoplastic films with RIE gases SF6, CF4, CHF3 or Ar. Unique to the CHF3 gas, the wrinkle wavelength could be continuously tuned from several microns down to as small as 30 nm simply by decreasing the RIE exposure time. Finally, in previous work on polymeric wrinkle systems it was not possible to measure the thickness of the skin layer using ellipsometry because there was not enough refractive difference contrast between the skin and substrate layer. Therefore, more complicated and destructive techniques were used such as secondary ion mass spectroscopy and x-ray photoelectron spectroscopy. Here we showed that the fluorination of the top layer causes a significant shift in the refractive index of the top layer, so that ellipsometry could be used measure the thickness of the modified layer. The thickness of the skin layer was used to determine the Young's moduli of the skin and substrate. We continue the discussion of nanowrinkles in chapter 4, which shows unprecedented control the amplitude and the complex hierarchical wrinkle structures and nanofolds that form at high strains. The three main highlights of this paper are: (i) wrinkles with nanometer wavelengths with large amplitudes, (ii) modulation of type of secondary structure with macroscale strain distribution, and (iii) patterning strain to control the orientation of nanowrinkles and nanofolds. Typically, nonlinear strain between the skin and substrate limit the amplitude of nanowrinkles (lambda < 100 nm) to less than 10 nm. Because of the unique mechanical properties of the PS substrate, we could increase the amplitude of the nanowrinkles approximately 10 times greater than the previously reported limit. Next we describe the two types of secondary structures that form at high strain (i) self-similar hierarchical wrinkles, and (ii) folds. Previous studies have focused on changes in material properties to explain the type of secondary structure that will emerge at high strains. Here we show that the macroscale strain distribution (1D or 2D) can be used to regulate the type of structure that forms. Furthermore, we found that we could pattern strain distribution in the skin layer by fabricating strain relief features using inverse solvent assisted nanoscale embossing (inSANE). These strain relief features can be used to direct the orientation of wrinkles with sub-200 nm wavelengths. Furthermore, by carefully engineering the ratio between periodicity of the pattern and the wavelength of the wrinkles, we could induce folds to align along the edges of the directions of least strain. In chapters 5 and 6, we focus on the design of optical nanomaterials. These chapters introduce a new type of artificially structured material--lattice opto-materials--that can achieve arbitrary light profiles with deep subwavelength accuracy in three dimensions. The driving innovation is the nexus of a computational approach to obtain a nano-optics genome and a paradigm shift in how to achieve structured optics that can operate at visible wavelengths based on different configurations of discrete units. We believe that lattice opto-materials represent a new class of engineered materials that have the potential to revolutionize micro and nano-optics. The development of new optics has a long history of driving key scientific discoveries, and we expect that lattice opto-materials could have a similarly transformative impact. For example, substrates with multiple focal points and in different planes could resolve different spatial locations in a cell simultaneously. Polarization-sensitive lattice opto-materials could also be used to prepare dynamic nano-optical traps for nanoparticles or even single atoms. We expect that lattice opto-materials designed by algorithmic approaches will open a wide range of new and unexpected applications.

  1. Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Fralick, Gustave (Technical Monitor)

    2003-01-01

    Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.

  2. Atypical enteropathogenic Escherichia coli that contains functional locus of enterocyte effacement genes can be attaching-and-effacing negative in cultured epithelial cells.

    PubMed

    Rocha, Sérgio P D; Abe, Cecilia M; Sperandio, Vanessa; Bando, Silvia Y; Elias, Waldir P

    2011-05-01

    Enteropathogenic Escherichia coli (EPEC) induces a characteristic histopathology on enterocytes known as the attaching-and-effacing (A/E) lesion, which is triggered by proteins encoded by the locus of enterocyte effacement (LEE). EPEC is currently classified as typical EPEC (tEPEC) and atypical EPEC (aEPEC), based on the presence or absence of the EPEC adherence factor plasmid, respectively. Here we analyzed the LEE regions of three aEPEC strains displaying the localized adherence-like (LAL), aggregative adherence (AA), and diffuse adherence (DA) patterns on HEp-2 cells as well as one nonadherent (NA) strain. The adherence characteristics and the ability to induce A/E lesions were investigated with HeLa, Caco-2, T84, and HT29 cells. The adherence patterns and fluorescent actin staining (FAS) assay results were reproducible with all cell lines. The LEE region was structurally intact and functional in all strains regardless of their inability to cause A/E lesions. An EspF(U)-expressing plasmid (pKC471) was introduced into all strains, demonstrating no influence of this protein on either the adherence patterns or the capacity to cause A/E of the adherent strains. However, the NA strain harboring pKC471 expressed the LAL pattern and was able to induce A/E lesions on HeLa cells. Our data indicate that FAS-negative aEPEC strains are potentially able to induce A/E in vivo, emphasizing the concern about this test for the determination of aEPEC virulence. Also, the presence of EspF(U) was sufficient to provide an adherent phenotype for a nonadherent aEPEC strain via the direct or indirect activation of the LEE4 and LEE5 operons.

  3. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  4. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads

    NASA Astrophysics Data System (ADS)

    Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi

    2018-05-01

    A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.

  5. Variation in the sizes of eggs and oncospheres and the numbers and distributions of testes in the tapeworm, Hymenolepis diminuta.

    PubMed

    Pappas, P W; Leiby, D A

    1986-06-01

    Four "strains" of Hymenolepis diminuta were examined for morphological variation. These included the ARME "strain" (currently maintained at the University of Keele, U.K.), the OSU "strain" (currently maintained at The Ohio State University) and the TOR (or UT) "strain" (currently maintained at the University of Toronto), all of which were derived from the parental RICE "strain," and the ANU "strain" (currently maintained at the Australian National University). Additionally, 2 separate "clonal" populations (populations derived from single cysticercoids) from both the OSU and ANU "strains" were examined. All "strains" and "clones" were maintained under identical conditions using Tenebrio molitor and male Sprague-Dawley rats as the intermediate and definitive hosts, respectively. The lengths and widths of eggs and larvae (oncospheres) passed in the hosts' feces, and the numbers and distributions of testes in proglottids were quantified and the data analyzed. Although analyses of the lengths and widths of eggs and larvae demonstrated significant differences among some "strains" and "clones," a discriminate analysis of the data indicated these parameters to be of questionable taxonomic significance. The eggs of all "strains" and "clones" consisted of 2 distinct populations differing in density and size but not infectivity; the relative proportions of eggs in the 2 populations were not determined. Considering all possible numbers and distributions of testes, 17 variations were seen in the strobilae of tapeworms. Analyses of the data demonstrated that the "strains" and "clones" could be differentiated clearly using only the frequencies of the 1p2a (1 poral and 2 aporal testes) or 1p3a distribution, or the frequencies of proglottids containing 3 or 4 testes; all other variations failed to clearly differentiate or group the various "strains" and "clones."(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains.

    PubMed

    Monerawela, Chandre; James, Tharappel C; Wolfe, Kenneth H; Bond, Ursula

    2015-03-01

    Lager yeasts, Saccharomyces pastorianus, are interspecies hybrids between S. cerevisiae and S. eubayanus and are classified into Group I and Group II clades. The genome of the Group II strain, Weihenstephan 34/70, contains eight so-called 'lager-specific' genes that are located in subtelomeric regions. We evaluated the origins of these genes through bioinformatic and PCR analyses of Saccharomyces genomes. We determined that four are of cerevisiae origin while four originate from S. eubayanus. The Group I yeasts contain all four S. eubayanus genes but individual strains contain only a subset of the cerevisiae genes. We identified S. cerevisiae strains that contain all four cerevisiae 'lager-specific' genes, and distinct patterns of loss of these genes in other strains. Analysis of the subtelomeric regions uncovered patterns of loss in different S. cerevisiae strains. We identify two classes of S. cerevisiae strains: ale yeasts (Foster O) and stout yeasts with patterns of 'lager-specific' genes and subtelomeric regions identical to Group I and II S. pastorianus yeasts, respectively. These findings lead us to propose that Group I and II S. pastorianus strains originate from separate hybridization events involving different S. cerevisiae lineages. Using the combined bioinformatic and PCR data, we describe a potential classification map for industrial yeasts. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  7. Shearography NDE of NASA COPV

    NASA Technical Reports Server (NTRS)

    Newman, John W.; Santos, Fernando; Saulsbury, Regor; Koshti, Ajay; Russell, Rick; Regez, Brad

    2006-01-01

    1. 21 Composite Over-wrapped Pressure Vessels (COPV) consisting of Kevlar Space Shuttle Fleet Leaders and Graphite COPV were inspected at NASA WSTF, NM from Sept. 12 through Sept 16. 2. The inspection technique was Pressurization Shearography, tests designed to image composite material damage, degradation or design flaws leading to stress concentrations in the axial or hoop strain load path. 3. The defect types detected consisted of the following: a) Intentional impact damage with known energy. b) Un-intentional impact damage. c) Manufacturing defects. 4. COPV design features leading to strain concentrations detected include: a) Strain concentrations at bosses due to fiber closure pattern. b) Strain concentrations in body of COPV due to fiber wrap pattern. c) Strain concentrations at equator due to liner weld/fiber lay-up.

  8. PERSISTENT ANTIGENIC VARIATION OF INFLUENZA A VIRUSES AFTER INCOMPLETE NEUTRALIZATION IN OVO WITH HETEROLOGOUS IMMUNE SERUM

    PubMed Central

    Archetti, Italo; Horsfall, Frank L.

    1950-01-01

    Antigenic variants of influenza A virus strains emerge on serial passage in ovo in the presence of immune serum against different but related strains. An old laboratory strain (PR8) which had been through hundreds of animal passages was as readily modified by this procedure as recently recovered strains. Such variants apparently can be obtained at will and show antigenic patterns which are reproducible and appear to be predictable in terms of the immune serum used for their selection. Variant strains retain their new antigenic patterns on serial passage in ovo in the absence of immune serum. Limited serial passage in ovo of strains in the absence of immune serum did not result in the emergence of antigenic variants. Similarly, serial passages of strains in ovo in the presence of immune serum against widely different strains, which failed to show significant cross-neutralization, did not lead to the appearance of antigenic variants. PMID:14778924

  9. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog

    PubMed Central

    Liao, Sheng-hui; Zhu, Xing-hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers. PMID:27403424

  10. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog.

    PubMed

    Liao, Sheng-Hui; Zhu, Xing-Hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers.

  11. Evolution of Residual-Strain Distribution through an Overload-Induced Retardation Period during Fatigue Crack Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Sun, Yinan; An, Ke

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less

  12. Monitoring the Vertical Distribution of Rainfall-Induced Strain Changes in a Landslide Measured by Distributed Fiber Optic Sensing With Rayleigh Backscattering

    NASA Astrophysics Data System (ADS)

    Kogure, Tetsuya; Okuda, Yudai

    2018-05-01

    Distributed fiber optic sensing with Rayleigh backscattering, which has been recognized as a novel technique for measuring differences in temperature or strain, was adopted in a borehole to a depth of 16 m in an actual landslide to detect a vertical profile of strain changes. Strain changes were measured every 6 hr from 19 June 2017 to 18 October 2017 with a spatial resolution of 10 cm and strain resolution of 1.87 μɛ. The measurements provided a clear-cut vertical profile of the strain changes caused by rainfalls that cannot be detected by conventional methods. The results show that there are two types of deformation in the landslide mass: (1) sliding at the boundary between tuff and mudstone and (2) creep in mudstone layers. Activation of deeper sections of the landslide by heavy rainfalls has also been detected.

  13. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners

    PubMed Central

    Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M.F.

    2016-01-01

    Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n = 134), their owners (n = 134), and humans who claim to have no contact with dogs (n = 44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains. PMID:26887238

  14. Correlation between high resolution sequence stratigraphy and mechanical stratigraphy for enhanced fracture characteristic prediction

    NASA Astrophysics Data System (ADS)

    Al Kharusi, Laiyyan M.

    Sequence stratigraphy relates changes in vertical and lateral facies distribution to relative changes in sea level. These relative changes in carbonates effect early diagenesis, types of pores, cementation and dissolution patterns. As a result, in carbonates, relative changes in sea level significantly impact the lithology, porosity, diagenesis, bed and bounding surfaces which are all factors that control fracture patterns. This study explores these relationships by integrating stratigraphy with fracture analysis and petrophysical properties. A special focus is given to the relationship between mechanical boundaries and sequence stratigraphic boundaries in three different settings: (1) Mississippian strata in Sheep Mountain Anticline, Wyoming, (2) Mississippian limestones in St. Louis, Missouri, and (3) Pennsylvanian limestones intermixed with elastics in the Paradox Basin, Utah. The analysis of these sections demonstrate that a fracture hierarchy exists in relation to the sequence stratigraphic hierarchy. The majority of fractures (80%) terminate at genetic unit boundaries or the internal flooding surface that separates the transgressive from regressive hemicycle. Fractures (20%) that do not terminate at genetic unit boundaries or their internal flooding surface terminate at lower order sequence stratigraphic boundaries or their internal flooding surfaces. Secondly, the fracture spacing relates well to bed thickness in mechanical units no greater than 0.5m in thickness but with increasing bed thickness a scatter from the linear trend is observed. In the Paradox Basin the influence of strain on fracture density is illustrated by two sections measured in different strain regimes. The folded strata at Raplee Anticline has higher fracture densities than the flat-lying beds at the Honaker Trail. Cemented low porosity rocks in the Paradox Basin do not show a correlation between fracture pattern and porosity. However velocity and rock stiffness moduli's display a slight correlation to fracture spacing. Furthermore, bed thickness is found to be only one factor in determining fracture density but with increasing strain, internal bedforms and rock petrophysical heterogeneities influence fracture density patterns. This study illustrates how integrating sedimentologic and sequence stratigraphic interpretations with data on structural kinematics can lead to refined predictive understanding of fracture attributes.

  15. Job Strain and Casual Blood Pressure Distribution: Looking beyond the Adjusted Mean and Taking Gender, Age, and Use of Antihypertensives into Account. Results from ELSA-Brasil

    PubMed Central

    Juvanhol, Leidjaira Lopes; Melo, Enirtes Caetano Prates; Carvalho, Marilia Sá; Chor, Dóra; Mill, José Geraldo; Griep, Rosane Härter

    2017-01-01

    Methodological issues are pointed to as the main sources of inconsistencies in studies about the association between job strain and blood pressure (BP)/hypertension. Our aim was to analyze the relationship between job strain and the whole BP distribution, as well as potential differences by gender, age, and use of antihypertensives. Additionally, we addressed issues relating to the operationalization of the exposure and outcome variables that influence the study of their inter-relations. We evaluated the baseline date of 12,038 participants enrolled in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) (2008–2010), a multicenter cohort study of 35–74-year-old civil servants. Job strain was assessed by the Demand-Control-Support Questionnaire. The distribution of casual BP by categories of job strain was compared by a combination of exploratory techniques. Participants were classified into three subgroups (normotensives, medicated hypertensives, and unmedicated hypertensives), and analyses were stratified by gender and age. The relationship between job strain and casual BP varied along the whole outcome distribution. Hypertensive participants had greater differences in casual BP by job strain category, especially medicated hypertensives. Differences in casual BP were also greater for systolic than for diastolic BP and for older participants. No differences were encountered by gender. The exclusion of participants susceptible to misclassification for the exposure and outcome variables increased the differences observed between the categories of low and high job strain. In conclusion, the relationship between job strain and casual BP varied along the whole outcome distribution and by use of antihypertensive drugs, age, and BP parameter evaluated. Misclassification for exposure and outcome variables should be considered in analyses of this topic. PMID:28441727

  16. Job Strain and Casual Blood Pressure Distribution: Looking beyond the Adjusted Mean and Taking Gender, Age, and Use of Antihypertensives into Account. Results from ELSA-Brasil.

    PubMed

    Juvanhol, Leidjaira Lopes; Melo, Enirtes Caetano Prates; Carvalho, Marilia Sá; Chor, Dóra; Mill, José Geraldo; Griep, Rosane Härter

    2017-04-22

    Methodological issues are pointed to as the main sources of inconsistencies in studies about the association between job strain and blood pressure (BP)/hypertension. Our aim was to analyze the relationship between job strain and the whole BP distribution, as well as potential differences by gender, age, and use of antihypertensives. Additionally, we addressed issues relating to the operationalization of the exposure and outcome variables that influence the study of their inter-relations. We evaluated the baseline date of 12,038 participants enrolled in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) (2008-2010), a multicenter cohort study of 35-74-year-old civil servants. Job strain was assessed by the Demand-Control-Support Questionnaire. The distribution of casual BP by categories of job strain was compared by a combination of exploratory techniques. Participants were classified into three subgroups (normotensives, medicated hypertensives, and unmedicated hypertensives), and analyses were stratified by gender and age. The relationship between job strain and casual BP varied along the whole outcome distribution. Hypertensive participants had greater differences in casual BP by job strain category, especially medicated hypertensives. Differences in casual BP were also greater for systolic than for diastolic BP and for older participants. No differences were encountered by gender. The exclusion of participants susceptible to misclassification for the exposure and outcome variables increased the differences observed between the categories of low and high job strain. In conclusion, the relationship between job strain and casual BP varied along the whole outcome distribution and by use of antihypertensive drugs, age, and BP parameter evaluated. Misclassification for exposure and outcome variables should be considered in analyses of this topic.

  17. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America

    NASA Astrophysics Data System (ADS)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.

    2014-12-01

    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  18. Wide distribution range of rhizobial symbionts associated with pantropical sea-dispersed legumes.

    PubMed

    Bamba, Masaru; Nakata, Sayuri; Aoki, Seishiro; Takayama, Koji; Núñez-Farfán, Juan; Ito, Motomi; Miya, Masaki; Kajita, Tadashi

    2016-12-01

    To understand the geographic distributions of rhizobia that associated with widely distributed wild legumes, 66 nodules obtained from 41 individuals including three sea-dispersed legumes (Vigna marina, Vigna luteola, and Canavalia rosea) distributed across the tropical and subtropical coastal regions of the world were studied. Partial sequences of 16S rRNA and nodC genes extracted from the nodules showed that only Bradyrhizobium and Sinorhizobium were associated with the pantropical legumes, and some of the symbiont strains were widely distributed over the Pacific. Horizontal gene transfer of nodulation genes were observed within the Bradyrhizobium and Sinorhizobium lineages. BLAST searches in GenBank also identified records of these strains from various legumes across the world, including crop species. However, one of the rhizobial strains was not found in GenBank, which implies the strain may have adapted to the littoral environment. Our results suggested that some rhizobia, which associate with the widespread sea-dispersed legume, distribute across a broad geographic range. By establishing symbiotic relationships with widely distributed rhizobia, the pantropical legumes may also be able to extend their range much further than other legume species.

  19. Stresses in and General Instability of Monocoque Cylinders with Cutouts I : Experimental Investigation of Cylinders with a Symmetric Cutout Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Boley, Bruno A

    1946-01-01

    Ten 24S-T alclad cylinders of 20-inch diameter, 45- or 58-inch length, and 0.012-inch wall thickness, reinforced with 24S-T aluminum alloy stringers and rings were tested in pure bending. In the middle of the compression side of the cylinders there was a cutout extending over 19 inches in the longitudinal direction, and over an angle of 45 degrees, 90 degrees, or 135 degrees in the circumferential direction. The strain in the stringers and in the sheet covering was measured with metal electric strain gages. The stress distribution in the cylinders deviate considerably from the linear law valid for cylinders without a cutout. The maximum strain measured was about four-thirds of the value calculated from the Mc/I formula when I was taken as the moment of inertia of the cross section of the portion of the cylinder where the cutout was situated. A diagram is presented containing the strain factors defined as the ratios of measured strain to strain calculated with the Mc/I formula. All the 10 cylinders tested failed in general instability. Two symmetric and one antisymmetric pattern of buckling were observed and the buckling load appeared to be independent of the method of manufacture and the length of the cylinder. The buckling load of the cylinders having cutouts extending over 45 degrees, 90 degrees, and 135 degrees was 66, 47, and 31 percent, respectively, of the buckling load of the cylinder without a cutout.

  20. Comparative genome analysis of a thermotolerant Escherichia coli obtained by Genome Replication Engineering Assisted Continuous Evolution (GREACE) and its parent strain provides new understanding of microbial heat tolerance.

    PubMed

    Luan, Guodong; Bao, Guanhui; Lin, Zhao; Li, Yang; Chen, Zugen; Li, Yin; Cai, Zhen

    2015-12-25

    Heat tolerance of microbes is of great importance for efficient biorefinery and bioconversion. However, engineering and understanding of microbial heat tolerance are difficult and insufficient because it is a complex physiological trait which probably correlates with all gene functions, genetic regulations, and cellular metabolisms and activities. In this work, a novel strain engineering approach named Genome Replication Engineering Assisted Continuous Evolution (GREACE) was employed to improve the heat tolerance of Escherichia coli. When the E. coli strain carrying a mutator was cultivated under gradually increasing temperature, genome-wide mutations were continuously generated during genome replication and the mutated strains with improved thermotolerance were autonomously selected. A thermotolerant strain HR50 capable of growing at 50°C on LB agar plate was obtained within two months, demonstrating the efficiency of GREACE in improving such a complex physiological trait. To understand the improved heat tolerance, genomes of HR50 and its wildtype strain DH5α were sequenced. Evenly distributed 361 mutations covering all mutation types were found in HR50. Closed material transportations, loose genome conformation, and possibly altered cell wall structure and transcription pattern were the main differences of HR50 compared with DH5α, which were speculated to be responsible for the improved heat tolerance. This work not only expanding our understanding of microbial heat tolerance, but also emphasizing that the in vivo continuous genome mutagenesis method, GREACE, is efficient in improving microbial complex physiological trait. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Recent deformation rates on Venus

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.

    1994-01-01

    Constraints on the recent geological evolution of Venus may be provided by quantitative estimates of the rates of the principal resurfacing processes, volcanism and tectonism. This paper focuses on the latter, using impact craters as strain indicators. The total postimpact tectonic strain lies in the range 0.5-6.5%, which defines a recent mean strain rate of 10(exp -18)-10(exp -17)/s when divided by the mean surface age. Interpretation of the cratering record as one of pure production requires a decline in resurfacing rates at about 500 Ma (catastrophic resurfacing model). If distributed tectonic resurfacing contributed strongly before that time, as suggested by the widespread occurrence of tessera as inliers, the mean global strain rate must have been at least approximately 10(exp -15)/s, which is also typical of terrestrial active margins. Numerical calculations of the response of the lithosphere to inferred mantle convective forces were performed to test the hypothesis that a decrease in surface strain rate by at least two orders of magnitude could be caused by a steady decline in heat flow over the last billion years. Parameterized convection models predict that the mean global thermal gradient decreases by only about 5 K/km over this time; even with the exponential dependence of viscosity upon temperature, the surface strain rate drops by little more than one order of magnitude. Strongly unsteady cooling and very low thermal gradients today are necessary to satisfy the catastrophic model. An alternative, uniformitarian resurfacing hypothesis holds that Venus is resurfaced in quasi-random 'patches' several hundred kilometers in size that occur in response to changing mantle convection patterns.

  2. Characterization and Identification of Pediococcus Species Isolated from Forage Crops and Their Application for Silage Preparation

    PubMed Central

    Cai, Yimin; Kumai, Sumio; Ogawa, Masuhiro; Benno, Yoshimi; Nakase, Takashi

    1999-01-01

    Pediococcus species isolated from forage crops were characterized, and their application to silage preparation was studied. Most isolates were distributed on forage crops at low frequency. These isolates could be divided into three (A, B, and C) groups by their sugar fermentation patterns. Strains LA 3, LA 35, and LS 5 are representative isolates from groups A, B, and C, respectively. Strains LA 3 and LA 35 had intragroup DNA homology values above 93.6%, showing that they belong to the species Pediococcus acidilactici. Strain LS 5 belonged to Pediococcus pentosaceus on the basis of DNA-DNA relatedness. All three of these strains and strain SL 1 (Lactobacillus casei, isolated from a commercial inoculant) were used as additives to alfalfa and Italian ryegrass silage preparation at two temperatures (25 and 48°C). When stored at 25°C, all of the inoculated silages were well preserved and exhibited significantly (P < 0.05) reduced fermentation losses compared to that of their control in alfalfa and Italian ryegrass silages. When stored at 48°C, silages inoculated with strains LA 3 and LA 35 were also well preserved, with a significantly (P < 0.05) lower pH, butyric acid and ammonia-nitrogen content, gas production, and dry matter loss and significantly (P < 0.05) higher lactate content than the control, but silages inoculated with LS 5 and SL 1 were of poor quality. P. acidilactici LA 3 and LA 35 are considered suitable as potential silage inoculants. PMID:10388681

  3. ROTAVIRUS GENOTYPES CIRCULATING IN BRAZIL, 2007-2012: IMPLICATIONS FOR THE VACCINE PROGRAM

    PubMed Central

    LUCHS, Adriana; CILLI, Audrey; MORILLO, Simone Guadagnucci; CARMONA, Rita de Cássia Compagnoli; TIMENETSKY, Maria do Carmo Sampaio Tavares

    2015-01-01

    SUMMARY Regarding public health in Brazil, a new scenario emerged with the establishment of universal rotavirus (RV) vaccination programs. Herein, the data from the five years of surveillance (2007-2012) of G- and P-type RV strains isolated from individuals with acute gastroenteritis in Brazil are reported. A total of 6,196 fecal specimens were investigated by ELISA and RT-PCR. RVs were detected in 19.1% (1,181/6,196). The peak of RV incidence moved from June-August to September. RV was detected less frequently (19.5%) among children ≤ 5 years than in older children and adolescents (6-18 years) (40.6%). Genotype distribution showed a different profile for each year: G2P[4] strains were most prevalent during 2007-2010, G9P[8] in 2011, and G12P[8] in 2012. Mixed infections (G1+G2P[4], G2+G3P[4]+P[8], G2+G12P[8]), unusual combinations (G1P[4], G2P[6]), and rare strains (G3P[3]) were also identified throughout the study period. Widespread vaccination may alter the RV seasonal pattern. The finding of RV disease affecting older children and adolescents after vaccine implementation has been reported worldwide. G2P[4] emergence most likely follows a global trend seemingly unrelated to vaccination, and G12, apparently, is emerging in the Brazilian population. The rapidly changing RV genotype patterns detected during this study illustrate a dynamic population of co-circulating wildtype RVs in Brazil. PMID:26422154

  4. The molecular phylogenic tree of the genus Trichinella constructed from isozyme patterns.

    PubMed

    Fukumoto, S; Nagai, D; Yazaki, S; Kamo, H; Yamaguchi, T

    1988-01-01

    Six zymograms were compared for extracts of muscle-stage larvae of the seven Trichinella isolates, using isoelectric focusing in polyacrylamide gels. The isozyme patterns of acid phosphatase among them fell into four types. T. pseudospiralis from a raccoon and the Polar strain from a polar bear formed type 1 and type 2, respectively. The Iwasaki strain from a Japanese black bear and the Yamagata strain from a raccoon dog, both from Japan, were type 3. Type 4 consisted of three remaining strains, viz. the Polish strain from a wild pig, the USA strain from a pig, and the Thai strain from a human case, all of which have similar infectivity to pigs. The isozyme patterns of esterase 1, beta-N-acetylglucosaminidase, and peptidase were similar in types 2 and 3. Those of esterase D were common to types 2-4 but not to type 1. In the zymogram of mannosephosphate isomerase, types 2-4 but not type 1 had one common band, whereas in the other bands type 2 was markedly distinguished from types 3 and 4. In the present study, the molecular phylogenic tree was constructed for the first time on the basis of our present and previous electrophoretic data by the use of cluster analysis, and the evolutionary process was considered as follows: T. pseudospiralis (type 1) and T. spiralis (the common ancestor of types 2-4) were initially separated. Next, the common ancestor of the strains from wild carnivores (types 2 and 3) and type 4 were separated. Finally, the Polar strain (type 2) and the Japanese strain (type 3) were separated.

  5. Influence of age, strain and season on circadian periodicity of pituitary, gonadal and adrenal hormones in the serum of male laboratory rats.

    PubMed

    Wong, C C; Döhler, K D; Geerlings, H; von zur Mühlen, A

    1983-01-01

    The influence of age, strain and season on the circadian pattern of serum levels of LH, FSH, prolactin androgens and corticosterone was studied in five groups of male laboratory rats. Significant 24-hour periodicity was observed for serum levels of corticosterone in all five groups, for androgen levels in four, for prolactin levels in three, for LH levels in two and for FSH levels in one group of rats. There were significant influences of age, strain and season on the temporal patterns and/or on 24-hour mean serum hormone levels. The results indicate that some of the disagreements on existence or nonexistence of circadian rhythms and on rhythm patterns in serum hormone levels may be explained by the fact that animals of different ages or strains had been used or that experiments were performed at different times of the year.

  6. Mycobacterium avium restriction fragment length polymorphism-IS IS1245 and the simple double repetitive element polymerase chain reaction typing method to screen genetic diversity in Brazilian strains.

    PubMed

    Sequeira, Patrícia Carvalho de; Fonseca, Leila de Souza; Silva, Marlei Gomes da; Saad, Maria Helena Féres

    2005-11-01

    Simple double repetitive element polymerase chain reaction (MaDRE-PCR) and Pvu II-IS1245 restriction fragment length polymorphism (RFLP) typing methods were used to type 41 Mycobacterium avium isolates obtained from 14 AIDS inpatients and 10 environment and animals specimens identified among 53 mycobacteria isolated from 237 food, chicken, and pig. All environmental and animals strains showed orphan patterns by both methods. By MaDRE-PCR four patients, with multiple isolates, showed different patterns, suggesting polyclonal infection that was confirmed by RFLP in two of them. This first evaluation of MaDRE-PCR on Brazilian M. avium strains demonstrated that the method seems to be useful as simple and less expensive typing method for screening genetic diversity in M. avium strains on selected epidemiological studies, although with limitation on analysis identical patterns except for one band.

  7. Virulence factors in Vibrios and Aeromonads isolated from seafood.

    PubMed

    Scoglio, M E; Di Pietro, A; Picerno, I; Delia, S; Mauro, A; Lagana, P

    2001-07-01

    Thirty-one isolates from seafood, identified as Aeromonas hydrophila (7), Aeromonas caviae (11), Vibrio parahaemolyticus (3), Vibrio fluvialis (5), Vibrio alginolytictus (3), Vibrio metschnikovii (1) and Vibrio damsela (1), were tested for possible virulence factors including extracellular hydrolytic enzymes, haemolysins, cytotoxins (VERO and HEp-2 cells) and adherence ability (HEp-2 cells). All the A. hydrophila strains were beta-haemolytic and produced cytotoxins as well as one strain of V. fluvialis. A. hydrophila and A. caviae strains, frequently adhesive, showed both aggregative and diffusive patterns, while five Vibrio strains only (three V. fluvialis, one V. parahaemolyticus and one V. alginolyticus) were adhesive with an aggregative pattern.

  8. Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome.

    PubMed

    Kuenne, Carsten; Billion, André; Mraheil, Mobarak Abu; Strittmatter, Axel; Daniel, Rolf; Goesmann, Alexander; Barbuddhe, Sukhadeo; Hain, Torsten; Chakraborty, Trinad

    2013-01-22

    Listeria monocytogenes is an important food-borne pathogen and model organism for host-pathogen interaction, thus representing an invaluable target considering research on the forces governing the evolution of such microbes. The diversity of this species has not been exhaustively explored yet, as previous efforts have focused on analyses of serotypes primarily implicated in human listeriosis. We conducted complete genome sequencing of 11 strains employing 454 GS FLX technology, thereby achieving full coverage of all serotypes including the first complete strains of serotypes 1/2b, 3c, 3b, 4c, 4d, and 4e. These were comparatively analyzed in conjunction with publicly available data and assessed for pathogenicity in the Galleria mellonella insect model. The species pan-genome of L. monocytogenes is highly stable but open, suggesting an ability to adapt to new niches by generating or including new genetic information. The majority of gene-scale differences represented by the accessory genome resulted from nine hyper variable hotspots, a similar number of different prophages, three transposons (Tn916, Tn554, IS3-like), and two mobilizable islands. Only a subset of strains showed CRISPR/Cas bacteriophage resistance systems of different subtypes, suggesting a supplementary function in maintenance of chromosomal stability. Multiple phylogenetic branches of the genus Listeria imply long common histories of strains of each lineage as revealed by a SNP-based core genome tree highlighting the impact of small mutations for the evolution of species L. monocytogenes. Frequent loss or truncation of genes described to be vital for virulence or pathogenicity was confirmed as a recurring pattern, especially for strains belonging to lineages III and II. New candidate genes implicated in virulence function were predicted based on functional domains and phylogenetic distribution. A comparative analysis of small regulatory RNA candidates supports observations of a differential distribution of trans-encoded RNA, hinting at a diverse range of adaptations and regulatory impact. This study determined commonly occurring hyper variable hotspots and mobile elements as primary effectors of quantitative gene-scale evolution of species L. monocytogenes, while gene decay and SNPs seem to represent major factors influencing long-term evolution. The discovery of common and disparately distributed genes considering lineages, serogroups, serotypes and strains of species L. monocytogenes will assist in diagnostic, phylogenetic and functional research, supported by the comparative genomic GECO-LisDB analysis server (http://bioinfo.mikrobio.med.uni-giessen.de/geco2lisdb).

  9. Slime-producing Staphylococcus epidermidis and S. aureus in acute bacterial conjunctivitis in soft contact lens wearers.

    PubMed

    Catalanotti, Piergiorgio; Lanza, Michele; Del Prete, Antonio; Lucido, Maria; Catania, Maria Rosaria; Gallè, Francesca; Boggia, Daniela; Perfetto, Brunella; Rossano, Fabio

    2005-10-01

    In recent years, an increase in ocular pathologies related to soft contact lens has been observed. The most common infectious agents were Staphylococcus spp. Some strains produce an extracellular polysaccharidic slime that can cause severe infections. Polysaccharide synthesis is under genetic control and involves a specific intercellular adhesion (ica) locus, in particular, icaA and icaD genes. Conjunctival swabs from 97 patients with presumably bacterial bilateral conjunctivitis, wearers of soft contact lenses were examined. We determined the ability of staphylococci to produce slime, relating it to the presence of icaA and icaD genes. We also investigated the antibiotic susceptibility and Pulsed Field Gel Electrophoresis (PFGE) patterns of the clinical isolates. We found that 74.1% of the S. epidermidis strains and 61.1% of the S. aureus strains isolated were slime producers and showed icaA and icaD genes. Both S. epidermidis and S. aureus slime-producing strains exhibited more surface hydrophobicity than non-producing slime strains. The PFGE patterns overlapped in S. epidermidis strains with high hydrophobicity. The similar PFGE patterns were not related to biofilm production. We found scarce matching among the Staphylococcus spp. studied, slime production, surface hydrophobicity and antibiotic susceptibility.

  10. Comparative methylome analysis of the occasional ruminant respiratory pathogen Bibersteinia trehalosi

    USDA-ARS?s Scientific Manuscript database

    Four strains of Bibersteinia trehalosi have been sequenced and both their genomes and methylomes compared. Three of the strains, 188, 189 and 192, are very similar while strain 190 is significantly different in several aspects. Within these strains differential methylation patterns are observed an...

  11. Distribution of multidrug-resistant human isolates of MDR-ACSSuT Salmonella Typhimurium and MDR-AmpC Salmonella Newport in the United States, 2003-2005.

    PubMed

    Greene, Sharon K; Stuart, Andrew M; Medalla, Felicita M; Whichard, Jean M; Hoekstra, Robert M; Chiller, Tom M

    2008-10-01

    Multidrug-resistant (MDR) Salmonella strains are associated with excess bloodstream infections, hospitalizations, and deaths compared with pansusceptible strains. Bovine products are sometimes a source of MDR Salmonella. To generate hypotheses for regional differences in risk factors for human infection, we analyzed distributions of the two most prevalent MDR Salmonella phenotypes in the United States, 2003-2005: (i) MDR-ACSSuT (resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline) Typhimurium; (ii) MDR-AmpC (resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, amoxicillin/clavulanic acid, and ceftiofur, and with decreased susceptibility to ceftriaxone) Newport. Participating public health laboratories in all states forwarded every 20th Salmonella isolate from humans to the National Antimicrobial Resistance Monitoring System for Enteric Bacteria for antimicrobial susceptibility testing. Among the serotypes Typhimurium and Newport isolates submitted 2003-2005, pansusceptible, MDR-ACSSuT Typhimurium, and MDR-AmpC Newport were identified. Patterns of resistance, demographic factors, and cattle density were compared across regions. Of 1195 serotype Typhimurium isolates, 289 (24%) were MDR-ACSSuT. There were no significant differences in region, age, or sex distribution for pansusceptible versus MDR-ACSSuT Typhimurium. Of 612 serotype Newport isolates, 97 (16%) were MDR-AmpC, but the percentage of MDR-AmpC isolates varied significantly across regions: South 3%, Midwest 28%, West 32%, and Northeast 38% (p < 0.0001). The South had the lowest percentage of MDR-AmpC Newport isolates and also the lowest density of milk cows. More Newport isolates were MDR-AmpC in the 10 states with the highest milk cow density compared with the remaining states. Overall, 22% of pansusceptible Newport isolates but only 7% of MDR-AmpC Newport isolates were from patients <2 years of age. For both serotypes, MDR phenotypes had less seasonal variation than pansusceptible phenotypes. This is the first analysis of the distribution of clinically important MDR Salmonella isolates in the United States. MDR-ACSSuT Typhimurium was evenly distributed across regions. However, MDR-AmpC Newport was less common in the South and in children <2 years of age. Information on individuals' exposures is needed to fully explain the observed patterns.

  12. Detection of unusual strains of RV in patients with acute diarrhoea in Mexico.

    PubMed

    del R González-Losa, Maria; Rodríguez-Angulo, Elsa; Manzano-Cabrera, Luis; Mejía-Cámara, Javier; Puerto-Solís, Marylin

    2005-04-01

    Group A rotaviruses are a major cause of acute gastroenteritis in infants. Human strains with a short RNA pattern generally exhibit subgroup I, G2, P1B[4] specificity, those with a long RNA pattern show subgroup II, G1, G3 or G4, P1A[8] specificity. The presence of strains with unusual specificities has been reported worldwide over the last decade. To determine antigenic diversity among rotaviruses isolated from patients with diarrhoea. A laboratory-based survey study was carried out with faecal samples from patients with acute gastroenteritis form January to April 2000. To classify the samples PAGE and ELISA with specific antibodies to serotype G and P and RT-PCR were carried out. Twenty one specimens from patients with dehydrating diarrhoea had unusual specifies. Nine specimens had unusual combination of long pattern and subgroup I. Twelve specimens with short pattern belong to G1 serotype. As far as the serotypes and genotypes concern 11 samples were P1A, P[4] and one specimen was P1A, P[9]. These results demonstrated the unexpected presence of unusual strains of rotavirus in Mexico. Detection of strains with both human and animal characteristics may indicate interspecies transmission of RV between humans and animals.

  13. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Vorberger, J.

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate latticemore » strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less

  14. Distribution of the ompA-types among ruminant and swine pneumonic strains of Pasteurella multocida exhibiting various cap-locus and toxA patterns.

    PubMed

    Vougidou, C; Sandalakis, V; Psaroulaki, A; Siarkou, V; Petridou, E; Ekateriniadou, L

    2015-05-01

    Pasteurella multocida is an important pathogen in food-producing animals and numerous virulence genes have been identified in an attempt to elucidate the pathogenesis of pasteurellosis. Currently, some of these genes including the capsule biosynthesis genes, the toxA and the OMPs-encoding genes have been suggested as epidemiological markers. However, the number of studies concerning ruminant isolates is limited, while, no attempt has ever been made to investigate the existence of ompA sequence diversity among P. multocida isolates. The aim of the present study was the comparative analysis of 144 P. multocida pneumonic isolates obtained from sheep, goats, cattle and pigs by determining the distribution of the ompA-types in conjunction with the cap-locus and toxA patterns. The ompA genotypes of the isolates were determined using both a PCR-RFLP method and DNA sequence analysis. The most prevalent capsule biosynthesis gene among the isolates was capA (86.1%); a noticeable, however, rate of capD-positive isolates (38.6%) was found among the ovine isolates that had been associated primarily with the capsule type A in the past. Moreover, an unexpectedly high percentage of toxA-positive pneumonic isolates was noticed among small ruminants (93.2% and 85.7% in sheep and goats, respectively), indicating an important epidemiological role of toxigenic P. multocida for these species. Despite their great heterogeneity, certain ompA-genotypes were associated with specific host species, showing evidence of a host preference. The OmpA-based PCR-RFLP method developed proved to be a valuable tool in typing P. multocida strains. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. An extended OpenSim knee model for analysis of strains of connective tissues.

    PubMed

    Marieswaran, M; Sikidar, Arnab; Goel, Anu; Joshi, Deepak; Kalyanasundaram, Dinesh

    2018-04-17

    OpenSim musculoskeletal models provide an accurate simulation environment that eases limitations of in vivo and in vitro studies. In this work, a biomechanical knee model was formulated with femoral articular cartilages and menisci along with 25 connective tissue bundles representing ligaments and capsules. The strain patterns of the connective tissues in the presence of femoral articular cartilage and menisci in the OpenSim knee model was probed in a first of its kind study. The effect of knee flexion (0°-120°), knee rotation (- 40° to 30°) and knee adduction (- 15° to 15°) on the anterior cruciate, posterior cruciate, medial collateral, lateral collateral ligaments and other connective tissues were studied by passive simulation. Further, a new parameter for assessment of strain namely, the differential inter-bundle strain of the connective tissues were analyzed to provide new insights for injury kinematics. ACL, PCL, LCL and PL was observed to follow a parabolic strain pattern during flexion while MCL represented linear strain patterns. All connective tissues showed non-symmetric parabolic strain variation during rotation. During adduction, the strain variation was linear for the knee bundles except for FL, PFL and TL. Strains higher than 0.1 were observed in most of the bundles during lateral rotation followed by abduction, medial rotation and adduction. In the case of flexion, highest strains were observed in aACL and aPCL. A combination of strains at a flexion of 0° with medial rotation of 30° or a flexion of 80° with rotation of 30° are evaluated as rupture-prone kinematics.

  16. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    PubMed

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters for the mechanical modulation of growth plate in fusionless treatments.

  17. The influence of the compression interface on the failure behavior and size effect of concrete

    NASA Astrophysics Data System (ADS)

    Kampmann, Raphael

    The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.

  18. Measurement of Strain and Stress Distributions in Structural Materials by Electron Moiré Method

    NASA Astrophysics Data System (ADS)

    Kishimoto, Satoshi; Xing, Yougming; Tanaka, Yoshihisa; Kagawa, Yutaka

    A method for measuring the strain and stress distributions in structural materials has been introduced. Fine model grids were fabricated by electron beam lithography, and an electron beam scan by a scanning electron microscope (SEM) was used as the master grid. Exposure of the electron beam scan onto the model grid in an SEM produced the electron beam moiré fringes of bright and dark parts caused by the different amounts of the secondary electrons per a primary electron. For demonstration, the micro-creep deformation of pure copper was observed. The creep strain distribution and the grain boundary sliding were analyzed. The residual strain and stress at the interface between a fiber and a matrix of a fiber reinforced plastic (FRP) were measured using the pushing-out test and this electron moiré method. Also, a non-uniform deformation around the boundary of 3-point bended laminated steel was observed and the strain distribution analyzed.

  19. Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides.

    PubMed

    Chmielak, Bartos; Matheisen, Christopher; Ripperda, Christian; Bolten, Jens; Wahlbrink, Thorsten; Waldow, Michael; Kurz, Heinrich

    2013-10-21

    We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si₃N₄ strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)(yyz) increase with reduced w(WG). For 300 nm wide waveguides a mean effective χ(2)(yyz) of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.

  20. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  1. Contribution of spoligotyping and MIRU-VNTRs to characterize prevalent Mycobacterium tuberculosis genotypes infecting tuberculosis patients in Morocco.

    PubMed

    Chaoui, Imane; Zozio, Thierry; Lahlou, Ouafae; Sabouni, Radia; Abid, Mohammed; El Aouad, Rajae; Akrim, Mohammed; Amzazi, Said; Rastogi, Nalin; El Mzibri, Mohammed

    2014-01-01

    In the present study, Mycobacterium tuberculosis complex (MTBC) clinical isolates from culture-positive TB patients in Morocco were studied by spoligotyping and 12-loci MIRU-VNTR typing methods to characterize prevalent genotypes (n = 219 isolates from 208 patients). Spoligotyping resulted in 39 unique patterns and 167 strains in 30 clusters (2-50 strains per cluster). Comparison with international database showed that 29 of 39 unique patterns matched existing shared spoligotype international types (SITs). Nine shared types containing 10 strains were newly created (SIT 2891 to SIT 2899); this led to the description of 69 SITs with 206 strains and two orphan patterns. The most prevalent spoligotype was SIT42 (LAM; n = 50 or 24% of isolates). The repartition of strains according to major MTBC clades was as follows LAM (46.1%)> Haarlem (26%) >ill-defined T superfamily (22.6%) and S clade (0.96%). On the other hand, Beijing, CAS (Central Asian) and EAI (East-African Indian) strains were absent in this setting. Subsequent 12-Loci MIRU typing resulted in a total of 25 SIT/MIT clusters (n = 66 isolates, 2-6 isolates per cluster), with a resulting recent transmission rate of 22.3%. The MIRU-VNTR patterns corresponded to 69 MITs for 138 strains and 46 orphan patterns. The most frequent patterns were MIT43 (n = 8), MIT9 (n = 7) and MIT42 (n = 7). HGDI analysis of the 12 MIRU loci showed that loci 10, 23 and 40 were highly discriminative in our setting. The results also underlined the usefulness of spoligotyping and MIRU-VNTR to detect mixed infections among certain of our TB patients. Globally, the results obtained showed that TB is almost exclusively transmitted in Morocco through evolutionary-modern MTBC lineages belonging to principal genetic groups 2/3 strains (Haarlem, LAM, T), with a high level of biodiversity seen by MIRU typing. This study provides with a 1st global snapshot of MTBC population structure in Morocco, and validates the potential use of spoligotyping in conjunction with minisatellites for future investigations in Morocco that should in future ideally include optimized 15- or 24-loci MIRU-VNTRs. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet.

    PubMed

    Zachow, Christin; Fatehi, Jamshid; Cardinale, Massimiliano; Tilcher, Ralf; Berg, Gabriele

    2010-10-01

    To develop effective biocontrol strategies, basic knowledge of plant growth promotion (PGP) and root colonization by antagonists is essential. The survival and colonization patterns of five different biocontrol agents against Rhizoctonia solani AG2-2IIIB in the rhizosphere of greenhouse-grown sugar beet plants were analysed in single and combined treatments. The study included bacteria (Pseudomonas fluorescens L13-6-12, Pseudomonas trivialis RE(*) 1-1-14, Serratia plymuthica 3Re4-18) as well as fungi (Trichoderma gamsii AT1-2-4, Trichoderma velutinum G1/8). Microscopic analysis by confocal laser scanning microscopy revealed different colonization patterns for each DsRed2/green fluorescent protein-labelled strain. Bacteria and T. velutinum G1/8 colonized the root surface and the endorhiza in single and co-culture, while for T. gamsii AT1-2-4, only the transfer of spores was observed. Whereas Pseudomonas strains formed large microcolonies consisting of hundreds of cells, S. plymuthica was arranged in small endophytic clusters or clouds around the entire root system. In co-culture, each strain showed its typical pattern and occupied specific niches on the root, without clear evidence of morphological interactions. PGP was only observed for four strains with rhizosphere competence and not for T. gamsii AT1-2-4. The results provide useful information on which combination of strains to test in larger biocontrol experiments directed to applications. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Influence of Palatal Coverage and Implant Distribution on Denture Strain in Maxillary Implant Overdentures.

    PubMed

    Takahashi, Toshihito; Gonda, Tomoya; Tomita, Akiko; Mizuno, Yoko; Maeda, Yoshinobu

    2016-01-01

    As maxillary implant overdentures are being increasingly used in clinical practice, prosthodontic complications related to these dentures are also reported more often. The purpose of this study was to examine the influence of palatal coverage and implant distribution on the shear strain of maxillary implant overdentures. A maxillary edentulous model with implants inserted in the anterior, premolar, and molar areas was fabricated. Two kinds of experimental overdentures, with and without palatal coverage, were also fabricated, and two strain gauges were attached at the midline of the labial and palatal sides. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the shear strain in each denture was compared by analysis of variance (P = .05). In all situations, the shear strain in palateless dentures was significantly higher than in dentures with palate on both sides (P < .05). In dentures with palate, the shear strain was lower when anterior implants were present. Palateless maxillary implant overdentures exhibited much higher strain than overdentures with palate regardless of the implant distribution; this may cause more prosthodontic and implant complications. The most favorable configuration to prevent complications in maxillary implant overdentures was palatal coverage that was supported by more than four widely distributed implants.

  4. Impact of measurement uncertainty from experimental load distribution factors on bridge load rating

    NASA Astrophysics Data System (ADS)

    Gangone, Michael V.; Whelan, Matthew J.

    2018-03-01

    Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.

  5. Brain Injury Differences in Frontal Impact Crash Using Different Simulation Strategies

    PubMed Central

    Ma, Chunsheng; Shen, Ming; Li, Peiyu; Zhang, Jinhuan

    2015-01-01

    In the real world crashes, brain injury is one of the leading causes of deaths. Using isolated human head finite element (FE) model to study the brain injury patterns and metrics has been a simplified methodology widely adopted, since it costs significantly lower computation resources than a whole human body model does. However, the degree of precision of this simplification remains questionable. This study compared these two kinds of methods: (1) using a whole human body model carried on the sled model and (2) using an isolated head model with prescribed head motions, to study the brain injury. The distribution of the von Mises stress (VMS), maximum principal strain (MPS), and cumulative strain damage measure (CSDM) was used to compare the two methods. The results showed that the VMS of brain mainly concentrated at the lower cerebrum and occipitotemporal region close to the cerebellum. The isolated head modelling strategy predicted higher levels of MPS and CSDM 5%, while the difference is small in CSDM 10% comparison. It suggests that isolated head model may not equivalently reflect the strain levels below the 10% compared to the whole human body model. PMID:26495029

  6. Automated cell tracking identifies mechanically oriented cell divisions during Drosophila axis elongation.

    PubMed

    Wang, Michael F Z; Hunter, Miranda V; Wang, Gang; McFaul, Christopher; Yip, Christopher M; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryos extend their anterior-posterior (AP) axis in a conserved process known as axis elongation. Drosophila axis elongation occurs in an epithelial monolayer, the germband, and is driven by cell intercalation, cell shape changes, and oriented cell divisions at the posterior germband. Anterior germband cells also divide during axis elongation. We developed image analysis and pattern-recognition methods to track dividing cells from confocal microscopy movies in a generally applicable approach. Mesectoderm cells, forming the ventral midline, divided parallel to the AP axis, while lateral cells displayed a uniform distribution of division orientations. Mesectoderm cells did not intercalate and sustained increased AP strain before cell division. After division, mesectoderm cell density increased along the AP axis, thus relieving strain. We used laser ablation to isolate mesectoderm cells from the influence of other tissues. Uncoupling the mesectoderm from intercalating cells did not affect cell division orientation. Conversely, separating the mesectoderm from the anterior and posterior poles of the embryo resulted in uniformly oriented divisions. Our data suggest that mesectoderm cells align their division angle to reduce strain caused by mechanical forces along the AP axis of the embryo. © 2017. Published by The Company of Biologists Ltd.

  7. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.

  8. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study.

    PubMed

    Aunmeungtong, W; Khongkhunthian, P; Rungsiyakull, P

    2016-01-01

    Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant should exhibit the same behavior to chewing force.

  9. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen

    NASA Technical Reports Server (NTRS)

    Mathrani, I. M.; Boone, D. R.; Mah, R. A.; Fox, G. E.; Lau, P. P.

    1988-01-01

    Methanohalophilus zhilinae, a new alkaliphilic, halophilic, methylotrophic species of methanogenic bacteria, is described. Strain WeN5T (T = type strain) from Bosa Lake of the Wadi el Natrun in Egypt was designated the type strain and was further characterized. This strain was nonmotile, able to catabolize dimethylsulfide, and able to grow in medium with a methyl group-containing substrate (such as methanol or trimethylamine) as the sole organic compound added. Sulfide (21 mM) inhibited cultures growing on trimethylamine. The antibiotic susceptibility pattern of strain WeN5T was typical of the pattern for archaeobacteria, and the guanine-plus-cytosine content of the deoxyribonucleic acid was 38 mol%. Characterization of the 16S ribosomal ribonucleic acid sequence indicated that strain WeN5T is phylogenetically distinct from members of previously described genera other than Methanohalophilus and supported the partition of halophilic methanogens into their own genus.

  10. Micropatterned stretchable circuit and strain sensor fabricated by lithography on an electrospun nanofiber mat.

    PubMed

    Park, Minwoo; Im, Jungkyun; Park, Jongjin; Jeong, Unyong

    2013-09-11

    This paper describes a novel approach for composite nanofiber mats and its application to fabricate a strain sensor. Electrospun poly(4-vinylpyridine) (P4VP) nanofiber mats are micropatterned by a lithographic approach that includes selective oxidation of the nanofibers and removal of unreacted fibers. The P4VP/HAuCl4 complex is converted to P4VP/Au composites by chemical reduction. We investigate the electrical resistivity of the composite mats according to the number of complexation-and-reduction cycles, the thickness of the fiber mats, and the annealing temperatures which control the percolation of the Au nanoparticles in the fiber mats. Nozzle printing of a polymeric solution on the patterned nanofiber mats simply produces an array of strain-sensitive and strain-invariant units. The patterns demonstrate high strain-sensing performance without any mechanical and electrical failure over 200 bending cycles in the strain range of ε<0.17.

  11. [Study on molecular characteristics regarding DNA genotype of Mycobacterium tuberculosis clinical strains in Shandong].

    PubMed

    Deng, Yun-feng; Zhang, Yan-an; Zheng, Jian-li; Jing, Hui; Wang, Yan; Wang, Hai-ying; Ma, Xin; Liu, Zhi-min

    2010-03-01

    To establish the molecular characteristics of Mycobacterium tuberculosis and on factors influencing the recent transmission of drug resistant isolates in Shandong. Mycobacterium tuberculosis isolated from active pulmonary tuberculosis patients of 13 counties were genotyped by mycobacterial interspersed repetitive units (MIRU) methods. 12 loci of MIRU were detected in 558 isolates and a total of 143 MIRU patterns were confirmed. 66 isolates had distinct patterns, and 481 (86.2%) strains were in clusters. Shandong cluster included 177 strains with 74.6% of the isolates belonged to Beijing family. The recent transmission index of multi-drug resistance strains was in lower level, comparing to the susceptible strains. Our results showed that the Shandong cluster isolates had capacities of facilitating person-to-person transmission and high level of drug resistance.

  12. Distributed strain measurement in a rectangular plate using an array of optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Wade, J. C.

    1984-01-01

    Single mode optical fiber waveguide has been used to determine the two-dimensional strain distribution on a simply supported rectangular plate. Each of the fifty individual fibers in the rectangular grid array attached to one surface of the plate yields a measurement of the strain integrated along the length of that fiber on the specimen. By using similar sensor information from all of the fibers, both the functional form and the amplitude of the distribution may be determined. Limits on the dynamic range and spatial resolution are indicated. Applications in the measurement of internal strain and the monitoring of physically small critical-structural components are suggested.

  13. Two-Dimensional Laser-Speckle Surface-Strain Gauge

    NASA Technical Reports Server (NTRS)

    Barranger, John P.; Lant, Christian

    1992-01-01

    Extension of Yamaguchi's laser-speckle surface-strain-gauge method yields data on two-dimensional surface strains in times as short as fractions of second. Laser beams probe rough spot on surface of specimen before and after processing. Changes in speckle pattern of laser light reflected from spot indicative of changes in surface strains during processing. Used to monitor strains and changes in strains induced by hot-forming and subsequent cooling of steel.

  14. Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering.

    PubMed

    Masoudi, Ali; Belal, Mohammad; Newson, Trevor P

    2013-09-01

    A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach-Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50 με and spatial resolution of 1.3 m.

  15. Numerical Modeling of Surface Deformation due to Magma Chamber Inflation/Deflation in a Heterogeneous Viscoelastic Half-space

    NASA Astrophysics Data System (ADS)

    Dichter, M.; Roy, M.

    2015-12-01

    Interpreting surface deformation patterns in terms of deeper processes in regions of active magmatism is challenging and inherently non-unique. This study focuses on interpreting the unusual sombrero-shaped pattern of surface deformation in the Altiplano Puna region of South America, which has previously been modeled as the effect of an upwelling diapir of material in the lower crust. Our goal is to investigate other possible interpretations of the surface deformation feature using a suite of viscoelastic models with varying material heterogeneity. We use the finite-element code PyLith to study surface deformation due to a buried time-varying (periodic) overpressure source, a magma body, at depth within a viscoelastic half-space. In our models, the magma-body is a penny-shaped crack, with a cylindrical region above the crack that is weak relative to the surrounding material. We initially consider a magma body within a homogeneous viscoelastic half-space to determine the effect of the free surface upon deformation above and beneath the source region. We observe a complex depth-dependent phase relationship between stress and strain for elements that fall between the ground surface and the roof of the magma body. Next, we consider a volume of weak material (faster relaxation time relative to background) that is distributed with varying geometry around the magma body. We investigate how surface deformation is governed by the spatial distribution of the weak material and its rheologic parameters. We are able to reproduce a "sombrero" pattern of surface velocities for a range of models with material heterogeneity. The wavelength of the sombrero pattern is primarily controlled by the extent of the heterogeneous region, modulated by flexural effects. Our results also suggest an "optimum overpressure forcing frequency" where the lifetime of the sombrero pattern (a transient phenomenon due to the periodic nature of the overpressure forcing) reaches a maximum. Through further research we hope to better understand how the parameter space of our forward model controls the distribution of surface deformation and eventually develop a better understanding of the observed pattern of surface deformation in the Altiplano Puna.

  16. [RAPD analysis of Aspergilli and its application in brewing industry].

    PubMed

    Pan, Li; Wang, Bin; Guo, Yong

    2007-06-01

    Phylogenetic analysis of sixteen Aspergilli was done by RAPD technology, using Aspergillus oryzae AS3.951, Aspergillus flavus GIM3.18 and Aspergillus sojae AS3.495 as controls. First, genome DNA of the sixteen test strains were prepared by improved extraction method, and their quality was verified by electrophoresis and spectrophotometry. They displayed an identical band (approximately 20 kb) in agarose gel electrophoresis, which conformed to the fact that these strains all belong to Aspergillus. OD260/OD280 of the prepared DNA ranged from 1.80 to 1.90, illustrating that they were good enough to be used as templates in the following RAPD-PCR experiment. Then, three appropriate primers (Primerl, Primer2, Primer5) for RAPD-PCR were screened from nine random primers, and repetitive experiments demonstrated that the RAPD-PCR polymorphic patterns of the sixteen test strains based on these three primers were stable. There were usually 8-14 bands in their RADP-PCR patterns, where the number of the main bands was 4-9 and the secondary bands were abundant. There were totally 181 bands in their RAPD-PCR patterns, where the percentage of polymorphic bands reached to 40.9% (74 bands). The similarity coefficient between the strains was calculated based on their RAPD-PCR patterns, ranging from 8.0% to 96.6%. All these data suggests that the genetic polymorphism of the strains is abundant and they have evident genetic differentiation. The phylogenetic tree of the sixteen test strains was reconstructed according to their RAPD-PCR patterns with Primer1, Primer2 and Primer5. It basically corresponded to traditional morphological taxonomy, demonstrating that the application of RAPD molecular marker in the phylogenetic analysis of these Aspergilli is feasible. Besides, the aflatoxin-producing strains (GIM3.17, CICC2219, CICC2357, CICC2390, CICC2402, CICC2404) could be easily discriminated by RAPD molecular marker, whereas it is difficult to distinguish them by conventional morphological taxonomy. Consequently, RAPD molecular marker provides a novel clue to discriminating aflatoxin-producing strains in brewing industry.

  17. Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorur, A.; Leung, C. M.; Jorgens, D.

    2010-06-01

    Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches,more » but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the chromosome is located. Two other proteins - Thiosulfate reductase and ATP binding protein were found to be cytoplasmically distributed, whereas a molybdenum transporter was found to locate to the cell periphery. We judge labeling outcome by (1) SDS gel electrophoresis, followed by direct fluorescence imaging of the gel to address specificity of labeling/confirm expected molecular weight, and subsequent Coomassie analysis to ensure comparable protein levels (2) fluorescence intensity of culture by plate reader for statistical sampling (after adjustment for respective cell numbers) and (3) fluorescence microscopy for addressing cell-to-cell signal variation and potential localization patterns. All three assays were usually found to be consistent with one another. While we have been able to improve the efficacy of photoconversion by drastically reducing (eliminating) non-specific binding with our altered labeling protocol, we are currently working on reducing non-specific photoconversion reaction arising occasionally in non-labeled cells. In addition, we have confirmed the presence of SNAP tagged constructs in three recently cloned E.coli strains under promotor control, and are in the process of utilizing them for evaluating the sensitivity of the photoconversion protocol. Fluorescent Activated Cell Sorting was successfully applied to labeled E.coli cells containing SNAP tagged AtpA protein. Different batches of sorted cells, representing low and high labeling intensity, were re-grown and re-labeled and displayed a labeling efficiency similar to the starter culture, supporting the notion that cell-to-cell differences in labeling reflect difference in protein expression, rather then genetic differences.« less

  18. Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.

    2012-04-01

    Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.

  19. Influence of pre-tectonic carbonate facies architecture on deformation patterns of syntectonic turbidites, an example from the central Mexican fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Vásquez Serrano, Alberto; Tolson, Gustavo; Fitz Diaz, Elisa; Chávez Cabello, Gabriel

    2018-04-01

    The Mexican fold-thrust belt in central México excellently exposes relatively well preserved syntectonic deposits that overlay rocks with lateral lithostratigraphic changes across the belt. We consider the deformational effects of these changes by investigating the geometry, kinematics and strain distribution within syntectonic turbidites, which are deposited on top of Albian-Cenomanian shallow and deep water carbonate layers. Field observations and detailed structural analysis at different stratigraphic and structural levels of the Late Cretaceous syntectonic formation are compared with the deformation as a function of lithological and structural variations in the underlying carbonate units, to better understand the effect of these lithostratigraphic variations on deformation, kinematics, strain distribution and propagation of deformation. From our kinematic analyses, we conclude that the syntectonic strata are pervasively affected by folding in all areas and that deformation partitioning localized shear zones at the boundaries of this unit, particularly along the contact with massive carbonates. At the boundaries with massive platformal carbonates, the turbidites are strongly deformed by isoclinal folding with a pervasive sub-horizontal axial plane cleavage and 70-60% shortening. In contrast, contacts with thinly-bedded carbonate layers (basinal facies), do not show strain localization, and have horizontal shortening of 50-40% that is accommodated by buckle folds with a less pervasive, steeply dipping cleavage. The mechanical properties variations in the underlying pre-tectonic units as a function of changes in lithostratigraphy fundamentally control the deformation in the overlying syntectonic strata, which is an effect that could be expected to occur in any deformed sedimentary sequence with such variations.

  20. Clonal relationship and differentiation among Mycobacterium abscessus isolates as determined using the semiautomated repetitive extragenic palindromic sequence PCR-based DiversiLab system.

    PubMed

    Mougari, Faiza; Raskine, Laurent; Ferroni, Agnes; Marcon, Estelle; Sermet-Gaudelus, Isabelle; Veziris, Nicolas; Heym, Beate; Gaillard, Jean-Louis; Nassif, Xavier; Cambau, Emmanuelle

    2014-06-01

    Mycobacterium abscessus is a rapidly growing mycobacterium that causes respiratory tract infections in predisposed patients, such as those with cystic fibrosis and nosocomial skin and soft tissue infections. In order to investigate the clonal relationships between the strains causing epidemic episodes, we evaluated the discriminatory power of the semiautomated DiversiLab (DL) repetitive extragenic palindromic sequence PCR (REP-PCR) test for M. abscessus genotyping. Since M. abscessus was shown to be composed of subspecies (M. abscessus subsp. massiliense, M. abscessus subsp. bolletii, and M. abscessus subsp. abscessus), we also evaluated the ability of this technique to differentiate subspecies. The technique was applied to two collections of clinical isolates, (i) 83 M. abscessus original isolates (43 M. abscessus subsp. abscessus, 12 M. abscessus subsp. bolletii, and 28 M. abscessus subsp. massiliense) from infected patients and (ii) 35 repeated isolates obtained over 1 year from four cystic fibrosis patients. The DL REP-PCR test was standardized for DNA extraction, DNA amplification, and electrophoresis pattern comparisons. Among the isolates from distinct patients, 53/83 (62%) isolates showed a specific pattern, and 30 were distributed in 11 clusters and 6 patterns, with 2 to 4 isolates per pattern. The clusters and patterns did not fully correlate with multilocus sequence typing (MLST) analysis results. This revealed a high genomic diversity between patients, with a discriminatory power of 98% (Simpson's diversity index). However, since some isolates shared identical patterns, this raises the question of whether it is due to transmission between patients or a common reservoir. Multiple isolates from the same patient showed identical patterns, except for one patient infected by two strains. Between the M. abscessus subspecies, the indexes were <70%, indicating that the DL REP-PCR test is not an accurate tool for identifying organisms to the subspecies level. REP-PCR appears to be a rapid genotyping method that is useful for investigating epidemics of M. abscessus infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners.

    PubMed

    Carvalho, A C; Barbosa, A V; Arais, L R; Ribeiro, P F; Carneiro, V C; Cerqueira, A M F

    2016-01-01

    Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n=134), their owners (n=134), and humans who claim to have no contact with dogs (n=44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Distribution patterns of Saccharomyces species in cultural landscapes of Germany.

    PubMed

    Brysch-Herzberg, Michael; Seidel, Martin

    2017-08-01

    The distribution patterns of the three Saccharomyces species, Saccharomyces paradoxus, S. uvarum and S. cerevisiae, were investigated by a culture-dependent approach in order to understand better how these species propagate in the cultural landscape of Germany. Saccharomyces paradoxus, the closest relative of S. cerevisiae, is shown to be a true woodland species. It was frequently found in the soil under conifers indicating that S. paradoxus is an autochthonous member of the microbial community in this habitat. Physiological characteristics of the species like the Crabtree effect and high tolerance against ethanol suggest that the species is adapted to regular supply with considerable amounts of sugars. Additionally, a high proportion of the S. paradoxus strains isolated in this study are shown to have the rare ability to ferment melezitose. For these reasons, it is hypothesized that S. paradoxus may be closely associated with the honeydew system in forests. Saccharomyces cerevisiae was rare in most habitats and only exceeded the frequency of S. paradoxus in habitats characterized by modern agricultural mass production of fruit. Both the landscape structure and the agricultural system heavily influence the frequencies of Saccharomyces species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Optically defined modal sensors incorporating spiropyran-doped liquid crystals with piezoelectric sensors.

    PubMed

    Chen, Kuan-Ting; Chang, Chin-Kai; Kuo, Hui-Lung; Lee, Chih-Kung

    2011-01-01

    We integrated a piezoelectric sensing layer lamina containing liquid crystals (LC) and spiropyran (SP) in a LC/SP mixture to create an optically reconfigurable modal sensor for a cantilever beam. The impedance of this LC/SP lamina was decreased by UV irradiation which constituted the underlying mechanism to modulate the voltage externally applied to the piezoelectric actuating layer. Illuminating a specific pattern onto the LC/SP lamina provided us with a way to spatially modulate the piezoelectric vibration signal. We showed that if an UV illuminated pattern matches the strain distribution of a specific mode, a piezoelectric modal sensor can be created. Since UV illumination can be changed in situ in real-time, our results confirm for the first time since the inception of smart sensors, that an optically tailored modal sensor can be created. Some potential applications of this type of sensor include energy harvesting devices, bio-chips, vibration sensing and actuating devices.

  4. Strain distribution of confined Ge/GeO2 core/shell nanoparticles engineered by growth environments

    NASA Astrophysics Data System (ADS)

    Wei, Wenyan; Yuan, Cailei; Luo, Xingfang; Yu, Ting; Wang, Gongping

    2016-02-01

    The strain distributions of Ge/GeO2 core/shell nanoparticles confined in different host matrix grown by surface oxidation are investigated. The simulated results by finite element method demonstrated that the strains of the Ge core and the GeO2 shell strongly depend on the growth environments of the nanoparticles. Moreover, it can be found that there is a transformation of the strain on Ge core from tensile to compressive strain during the growth of Ge/GeO2 core/shell nanoparticles. And, the transformation of the strain is closely related with the Young's modulus of surrounding materials of Ge/GeO2 core/shell nanoparticles.

  5. Full field study of strain distribution near the crack tip in the fracture of solid propellants via large strain digital image correlation and optical microscopy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier

    A full field method for visualizing deformation around the crack tip in a fracture process with large strains is developed. A digital image correlation program (DIC) is used to incrementally compute strains and displacements between two consecutive images of a deformation process. Values of strain and displacements for consecutive deformations are added, this way solving convergence problems in the DIC algorithm when large deformations are investigated. The method developed is used to investigate the strain distribution within 1 mm of the crack tip in a particulate composite solid (propellant) using microscopic visualization of the deformation process.

  6. [Enterotoxin genes occurance among S. aureus strains isolated from inpatients and carriers].

    PubMed

    Lawrynowicz-Paciorek, Maja; Kochman, Maria; Piekarska, Katarzyna; Wyrebiak, Agata; Potracka, Ewa; Leniak-Chmiel, Urszula; Magdziak, Agnieszka

    2006-01-01

    We examined 44 inpatients and 66 carriers Staphylococcus aureus strains, isolated in years 2002-2005, for the presence of 18 enterotoxin genes (se/sel) (by PCR), the ability for A-D enterotoxin production (by SET-RPLA) and antibiotic resistance distribution (by disc diffusion method). se/sel genes were detected in 90,9% of all strains, sea (70,5%) and selk and selq (52,3%) - among inpatients strains and egc (65,2%) - among carriers strains were the most frequently se/sel genes found. Positive results of SET-RPLA were consistent with PCR results. There was no correlation observed between antibiotic resistance and se/sel genes distribution among tested S. aureus strains.

  7. Nanoscale strain mapping in battery nanostructures

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Cho, H. M.; Harder, R.; Kim, J. W.; Dietze, S. H.; Fohtung, E.; Meng, Y. S.; Shpyrko, O. G.

    2014-02-01

    Coherent x-ray diffraction imaging is used to map the local three dimensional strain inhomogeneity and electron density distribution of two individual LiNi0.5Mn1.5O4-δ cathode nanoparticles in both ex-situ and in-situ environments. Our reconstructed images revealed a maximum strain of 0.4%. We observed different variations in strain inhomogeneity due to multiple competing effects. The compressive/tensile component of the strain is connected to the local lithium content and, on the surface, interpreted in terms of a local Jahn-Teller distortion of Mn3+. Finally, the measured strain distributions are discussed in terms of their impact on competing theoretical models of the lithiation process.

  8. Anisotropic spin-density distribution and magnetic anisotropy of strained La1-xSrxMnO3 thin films: angle-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Shibata, Goro; Kitamura, Miho; Minohara, Makoto; Yoshimatsu, Kohei; Kadono, Toshiharu; Ishigami, Keisuke; Harano, Takayuki; Takahashi, Yukio; Sakamoto, Shoya; Nonaka, Yosuke; Ikeda, Keisuke; Chi, Zhendong; Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Fujihira, Jun-ichi; Uchida, Akira; Watanabe, Kazunori; Fujihira, Hideyuki; Fujihira, Seiichi; Tanaka, Arata; Kumigashira, Hiroshi; Koide, Tsuneharu; Fujimori, Atsushi

    2018-01-01

    Magnetic anisotropies of ferromagnetic thin films are induced by epitaxial strain from the substrate via strain-induced anisotropy in the orbital magnetic moment and that in the spatial distribution of spin-polarized electrons. However, the preferential orbital occupation in ferromagnetic metallic La1-xSrxMnO3 (LSMO) thin films studied by x-ray linear dichroism (XLD) has always been found out-of-plane for both tensile and compressive epitaxial strain and hence irrespective of the magnetic anisotropy. In order to resolve this mystery, we directly probed the preferential orbital occupation of spin-polarized electrons in LSMO thin films under strain by angle-dependent x-ray magnetic circular dichroism (XMCD). Anisotropy of the spin-density distribution was found to be in-plane for the tensile strain and out-of-plane for the compressive strain, consistent with the observed magnetic anisotropy. The ubiquitous out-of-plane preferential orbital occupation seen by XLD is attributed to the occupation of both spin-up and spin-down out-of-plane orbitals in the surface magnetic dead layer.

  9. Genetic Heterogeneity in Mycobacterium tuberculosis Isolates Reflected in IS6110 Restriction Fragment Length Polymorphism Patterns as Low-Intensity Bands

    PubMed Central

    de Boer, Annette S.; Kremer, Kristin; Borgdorff, Martien W.; de Haas, Petra E. W.; Heersma, Herre F.; van Soolingen, Dick

    2000-01-01

    Mycobacterium tuberculosis isolates with identical IS6110 restriction fragment length polymorphism (RFLP) patterns are considered to originate from the same ancestral strain and thus to reflect ongoing transmission. In this study, we investigated 1,277 IS6110 RFLP patterns for the presence of multiple low-intensity bands (LIBs), which may indicate infections with multiple M. tuberculosis strains. We did not find any multiple LIBs, suggesting that multiple infections are rare in the Netherlands. However, we did observe a few LIBs in 94 patterns (7.4%) and examined the nature of this phenomenon. With single-colony cultures it was found that LIBs mostly represent mixed bacterial populations with slightly different RFLP patterns. Mixtures were expressed in RFLP patterns as LIBs when 10 to 30% of the DNA analyzed originated from a bacterial population with another RFLP pattern. Presumably, a part of the LIBs did not represent mixed bacterial populations, as in some clusters all strains exhibited LIBs in their RFLP patterns. The occurrence of LIBs was associated with increased age in patients. This may reflect either a gradual change of the bacterial population in the human body over time or IS6110-mediated genetic adaptation of M. tuberculosis to changes in the environmental conditions during the dormant state or reactivation thereafter. PMID:11101583

  10. Design and performance investigation of a highly accurate apodized fiber Bragg grating-based strain sensor in single and quasi-distributed systems.

    PubMed

    Ali, Taha A; Shehata, Mohamed I; Mohamed, Nazmi A

    2015-06-01

    In this work, fiber Bragg grating (FBG) strain sensors in single and quasi-distributed systems are investigated, seeking high-accuracy measurement. Since FBG-based strain sensors of small lengths are preferred in medical applications, and that causes the full width at half-maximum (FWHM) to be larger, a new apodization profile is introduced for the first time, to the best of our knowledge, with a remarkable FWHM at small sensor lengths compared to the Gaussian and Nuttall profiles, in addition to a higher mainlobe slope at these lengths. A careful selection of apodization profiles with detailed investigation is performed-using sidelobe analysis and the FWHM, which are primary judgment factors especially in a quasi-distributed configuration. A comparison between the elite selection of apodization profiles (extracted from related literature) and the proposed new profile is carried out covering the reflectivity peak, FWHM, and sidelobe analysis. The optimization process concludes that the proposed new profile with a chosen small length (L) of 10 mm and Δnac of 1.4×10-4 is the optimum choice for single stage and quasi-distributed strain-sensor networks, even better than the Gaussian profile at small sensor lengths. The proposed profile achieves the smallest FWHM of 15 GHz (suitable for UDWDM), and the highest mainlobe slope of 130 dB/nm. For the quasi-distributed scenario, a noteworthy high isolation of 6.953 dB is achieved while applying a high strain value of 1500 μstrain (με) for a five-stage strain-sensing network. Further investigation was undertaken, proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. A test was made of the inclusion of a uniform apodized sensor among other apodized sensors with the proposed profile in an FBG strain-sensor network.

  11. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan)

    NASA Astrophysics Data System (ADS)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.

    2018-01-01

    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  12. Microstructure and strain-stress analysis of the dynamic strain aging in inconel 625 at high temperature

    NASA Astrophysics Data System (ADS)

    Maj, P.; Zdunek, J.; Mizera, J.; Kurzydlowski, K. J.; Sakowicz, B.; Kaminski, M.

    2017-01-01

    Serrated flow is a result of unstable plastic flow, which occurs during tensile and compression tests on some dilute alloys. This phenomenon is referred as the Portevin Le-Chatelier effect (PLC effect). The aim of this research was to investigate and analyze this phenomenon in Inconel 625 solution strengthened superalloy. The tested material was subjected to tensile tests carried out within the temperature range 200-700 °C, with three different strain rates: 0.002 1/s, 0.01/s, and 0.05 1/s and additional compression tests with high deformation speeds of 0.1, 1, and 10 1/s. The tensile strain curves were analyzed in terms of intensity and the observed patterns of serrations Using a modified stress drop method proposed by the authors, the activation energy was calculated with the assumption that the stress drops' distribution is a direct representation of an average solute atom's interaction with dislocations. Subsequently, two models, the standard vacancy diffusion Bilby-Cottrell model and the realistic cross-core diffusion mechanism proposed by Zhang and Curtin, were compared. The results obtained show that the second one agrees with the experimental data. Additional microstructure analysis was performed to identify microstructure elements that may be responsible for the PLC effect. Based on the results, the relationship between the intensity of the phenomenon and the conditions of the tests were determined.

  13. Dynamics of Aeromonas hydrophila, Aeromonas sobria, and Aeromonas caviae in a sewage treatment pond.

    PubMed Central

    Monfort, P; Baleux, B

    1990-01-01

    The spatiotemporal dynamics of Aeromonas spp. and fecal coliforms in the sewage treatment ponds of an urban wastewater center were studied after 20 months of sampling from five stations in these ponds. Isolation and identification of 247 Aeromonas strains were undertaken over four seasons at the inflow and outflow of this pond system. The hemolytic activity of these strains was determined. The Aeromonas spp. and the fecal coliform distributions showed seasonal cycles, the amplitude of which increased at distances further from the wastewater source, so that in the last pond there was an inversion of the Aeromonas spp. cycle in comparison with that of fecal coliforms. The main patterns in these cycles occurred simultaneously at all stations, indicating control of these bacterial populations by seasonal factors (temperature, solar radiation, phytoplankton), the effects of which were different on each bacterial group. The analysis of the Aeromonas spp. population structure showed that, regardless of the season, Aeromonas caviae was the dominant species at the pond system inflow. However at the outflow the Aeromonas spp. population was dominated by A. caviae in winter, whereas Aeromonas sobria was the dominant species in the treated effluent from spring to fall. Among the Aeromonas hydrophila and A. sobria strains, 100% produced hemolysin; whereas among the A. caviae strains, 96% were nonhemolytic. Images PMID:2389929

  14. IMAGING MASS SPECTROMETRY OF A CORAL MICROBE INTERACTION WITH FUNGI

    PubMed Central

    ZHAO, XILING; LIU, WEI-TING; APARICIO, MARYSTELLA; ATENCIO, LIBRADA; BALLESTEROS, JAVIER; SÁNCHEZ, JOEL; GAVILÁN, RONNIE G.; GUTIÉRREZ, MARCELINO; DORRESTEIN, PIETER C.

    2013-01-01

    Fungal infections are increasing worldwide, including in the aquatic environment. Microbiota that coexist with marine life can provide protection against fungal infections by secretion of metabolites with antifungal properties. Our laboratory has developed mass spectrometric methodologies with the goal of improving our functional understanding of microbial metabolites and guiding the discovery process of anti-infective agents from natural sources. GA40, a Bacillus amyloliquefaciens strain isolated from an octocoral in Panama, displayed antifungal activity against various terrestrial and marine fungal strains. Using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), the molecular species produced by this microbe were visualized in a side-by-side interaction with two representative fungal strains, Aspergillus fumigatus and Aspergillus niger. The visualization was performed directly on the agar without the need for extraction. By comparison of spatial distributions, relative intensities and m/z values of GA40 secreted metabolites in the fungal interactions versus singly grown control colonies, we obtained insight into the antifungal activity of secreted metabolites. Annotation of GA40 metabolites observed in MALDI-IMS was facilitated by MS/MS networking analysis, a mass spectrometric technique that clusters metabolites with similar MS/MS fragmentation patterns. This analysis established that the predominant GA40 metabolites belong to the iturin family. In a fungal inhibition assay of A. fumigatus, the GA40 iturin metabolites were found to be responsible for the antifungal properties of this Bacillus strain. PMID:23881443

  15. Evolution of a calcite marble shear zone complex on Thassos Island, Greece: microstructural and textural fabrics and their kinematic significance

    NASA Astrophysics Data System (ADS)

    Bestmann, Michel; Kunze, Karsten; Matthews, Alan

    2000-11-01

    The deformation history of a monophase calcite marble shear zone complex on Thassos Island, Northern Greece, is reconstructed by detailed geometric studies of the textural and microstructural patterns relative to a fixed reference system (shear zone boundary, SZB). Strain localization within the massive marble complex is linked to decreasing P- T conditions during the exhumation process of the metamorphic core complex. Solvus thermometry indicates that temperatures of 300-350°C prevailed during part of the shear zone deformation history. The coarse-grained marble protolith outside the shear zone is characterized by symmetrically oriented twin sets due to early coaxial deformation. A component of heterogeneous non-coaxial deformation is first recorded within the adjacent protomylonite. Enhanced strain weakening by dynamic recrystallization promoted strong localization of plastic deformation in the ultramylonite of the calcite shear zone, where high strain was accommodated by non-coaxial flow. This study demonstrates that both a pure shear and a simple shear strain path can result in similar crystallographic preferred orientations (single c-axis maximum perpendicular to the SZB) by different dominant deformation mechanisms. Separated a-axis pole figures (+ a- and - a-axis) show different density distributions with orthorhombic texture symmetry in the protolith marble and monoclinic symmetry in the ultramylonite marble consistently with the observed grain fabric symmetry.

  16. Population growth of the floricolous yeast Metschnikowia reukaufii: effects of nectar host, yeast genotype, and host × genotype interaction.

    PubMed

    Herrera, Carlos M

    2014-05-01

    Genetic diversity and genotypic diversity of wild populations of the floricolous yeast Metschnikowia reukaufii exhibit a strong host-mediated component, with genotypes being nonrandomly distributed among flowers of different plant species. To unravel the causal mechanism of this pattern of host-mediated genetic diversity, this paper examines experimentally whether floral nectars of different host plants differ in their quality as a growing substrate for M. reukaufii and also whether genetically distinct yeast strains differ in their relative ability to thrive in nectars of different species (host × genotype interaction). Genetically distinct M. reukaufii strains were grown in natural nectar of different hosts under controlled conditions. Population growth varied widely among nectar hosts, revealing that different host plants provided microhabitats of different quality for M. reukaufii. Different M. reukaufii strains responded in different ways to interspecific nectar variation, and variable growth responses were significantly associated with genetic differences between strains, thus leading to a significant host × genotype interaction. Results of this study provide support for the diversifying selection hypothesis as the underlying mechanism preserving high genetic diversity in wild M. reukaufii populations and also suggest that consequences of functional plant-pollinator diversity may surpass the domain of the mutualistic organisms to implicate associated microorganisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Epidemiology of antibiotic and heavy metal resistance in bacteria: resistance patterns in staphylococci isolated from populations in Iraq exposed and not exposed to heavy metals or antibiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groves, D.J.; Short, H.; Thewaini, A.J.

    Staphylococci were isolated from rural and urban populations in Iraq, which were not known to be exposed to either heavy metals or antibiotics. The antibiotic and heavy metal resistance patterns of these strains were analyzed in both mannitol-fermenting and nonfermenting strains. Over 90% of the strains were resistant to at least one of the following antibiotics: penicillin, chloramphenicol, erythromycin, tetracycline, cephalothin, lincomycin, and methicillin. In general, mannitol-fermenting strains were resistant to penicillin and cupric ions. Mannitol-negative strains were more frequently associated with mercuric ion and tetracycline resistance. Although resistance to penicillin and tetracycline can coexist, the combination of penicillin resistancemore » and tetracycline resistance usually occurred in mannitol-negative strains. The possibility of selection of heavy metal-resistant strains due to exposure to toxic levels of methylmercury was examined. No significant increase in mercuric ion-resistant strains of staphylococci or Escherichia coli were detected in exposed populations as compared to control groups. The possible reasons for this result are discussed.« less

  18. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure

    PubMed Central

    Yang, Wenge; Huang, Xiaojing; Harder, Ross; Clark, Jesse N.; Robinson, Ian K.; Mao, Ho-kwang

    2013-01-01

    The evolution of morphology and internal strain under high pressure fundamentally alters the physical property, structural stability, phase transition and deformation mechanism of materials. Until now, only averaged strain distributions have been studied. Bragg coherent X-ray diffraction imaging is highly sensitive to the internal strain distribution of individual crystals but requires coherent illumination, which can be compromised by the complex high-pressure sample environment. Here we report the successful de-convolution of these effects with the recently developed mutual coherent function method to reveal the three-dimensional strain distribution inside a 400 nm gold single crystal during compression within a diamond-anvil cell. The three-dimensional morphology and evolution of the strain under pressures up to 6.4 GPa were obtained with better than 30 nm spatial resolution. In addition to providing a new approach for high-pressure nanotechnology and rheology studies, we draw fundamental conclusions about the origin of the anomalous compressibility of nanocrystals. PMID:23575684

  19. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure.

    PubMed

    Yang, Wenge; Huang, Xiaojing; Harder, Ross; Clark, Jesse N; Robinson, Ian K; Mao, Ho-kwang

    2013-01-01

    The evolution of morphology and internal strain under high pressure fundamentally alters the physical property, structural stability, phase transition and deformation mechanism of materials. Until now, only averaged strain distributions have been studied. Bragg coherent X-ray diffraction imaging is highly sensitive to the internal strain distribution of individual crystals but requires coherent illumination, which can be compromised by the complex high-pressure sample environment. Here we report the successful de-convolution of these effects with the recently developed mutual coherent function method to reveal the three-dimensional strain distribution inside a 400 nm gold single crystal during compression within a diamond-anvil cell. The three-dimensional morphology and evolution of the strain under pressures up to 6.4 GPa were obtained with better than 30 nm spatial resolution. In addition to providing a new approach for high-pressure nanotechnology and rheology studies, we draw fundamental conclusions about the origin of the anomalous compressibility of nanocrystals.

  20. Geomorphic Proxies to Test Strain Accommodation in Southwestern Puerto Rico from Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Barrios Galindez, I. M.; Xue, L.; Laó-Dávila, D. A.

    2017-12-01

    The Puerto Rico and the Virgin Island microplate is located in at the northeastern corner of the Caribbean plate boundary with North America is placed within an oblique subduction zone in which strain patterns remain unresolved. Seismic hazard is a major concern in the region as seen from the seismic history of the Caribbean-North America plate boundary zone. Most of the tectonic models of the microplate show the accommodation of strain occurring offshore, despite evidence from seismic activity, trench studies, and geodetic studies suggesting the existence of strain accomodation in southwest Puerto Rico. These studies also suggest active faulting specially in the western part of the island, but limited work has been done regarding their mechanism. Therefore, this work aims to define and map these active faults in western Puerto Rico by integrating data from analysis of fluvial terrains, and detailed mapping using digital elevation model (DEM) extracted from Shuttle Radar Topography Mission (SRTM) and LIDAR data. The goal is to (1) identify structural features such as surface lineaments and fault scarps for the Cerro Goden fault, South Lajas fault, and other active faults in the western of Puerto Rico, (2) correlate these information with the distribution pattern and values of the geomorphic proxies, including Chi integral (χ), normalized steepness (ksn) and Asymmetric factor (AF). Our preliminary results from geomorphic proxies and Lidar data provide some insight of the displacement and stage of activities of these faults (e.g. Boqueron-Punta Malva Fault and Cerro Goden fault). Also, the anomaly of the geomorphic proxies generally correlate with the locations of the landslides in the southwestern Puerto Rico. The geomorphic model of this work include new information of active faulting fundamental to produce better seismic hazards maps. Additionally, active tectonics studies are vital to issue and adjust construction buildings codes and zonification codes.

  1. Phylogenetic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea.

    PubMed

    Lee, J H; Subhadra, B; Son, Y-J; Kim, D H; Park, H S; Kim, J M; Koo, S H; Oh, M H; Kim, H-J; Choi, C H

    2016-01-01

    Urinary tract infections (UTIs) are one of the most common diseases by which humans seek medical help and are caused mainly by uropathogenic Escherichia coli (UPEC). Studying the virulence and antibiotic resistance of UPEC with respect to various phylogenetic groups is of utmost importance in developing new therapeutic agents. Thus, in this study, we analysed the virulence factors, antibiotic resistance and phylogenetic groups among various UPEC isolates from children with UTIs. The phylogenetic analysis revealed that majority of the strains responsible for UTIs belonged to the phylogenetic groups B2 and D. Of the 58 E. coli isolates, 79·31% belonged to group B2, 15·51% to group D, 3·44% to group A and 1·72% to B1. Simultaneously, the number of virulence factors and antibiotic resistance exhibited were also significantly high in groups B2 and D compared to other groups. Among the isolates, 44·8% were multidrug resistant and of that 73% belonged to the phylogenetic group B2, indicating the compatibility of antibiotic resistance and certain strains carrying virulence factor genes. The antibiotic resistance profiling of UPEC strains elucidates that the antimicrobial agents such as chloramphenicol, cefoxitin, cefepime, ceftazidime might still be used in the therapy for treating UTIs. As the antibiotic resistance pattern of uropathogenic Escherichia coli varies depending on different geographical regions, the antibiotic resistance pattern from this study will help the physicians to effectively administer antibiotic therapy for urinary tract infections. In addition, the frequency of virulence factors and antibiotic resistance genes among various phylogenic groups could be effectively used to draw new targets for uropathogenic Escherichia coli antibiotic-independent therapies. The study emphasizes need of public awareness on multidrug resistance and for more prudent use of antimicrobials. © 2015 The Society for Applied Microbiology.

  2. Analysis of organic matter in sediments and meteorites and paleochemical studies of extinct and contemporary life forms

    NASA Technical Reports Server (NTRS)

    Calvin, M.

    1975-01-01

    The insoluble organic materials present in the algal mats at Laguna Mormona, Baja California were studied. A series of six identical sediments collected from Mono lake which were stored under different conditions was investigated to see if any changes are observed in the lipid distribution patterns as a result of differences in sample storage conditions. Bacteria strains from Mono Lake sediments were cultured in bulk quantities and the sterol fractions from them were isolated and analyzed. Results add further support to the utility of the sterols as a chemotaxonomical tool in distinguishing and classifying these bacteria.

  3. Optical and electro-optic anisotropy of epitaxial PZT thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  4. Optical fiber sensors and signal processing for intelligent structure monitoring

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel; Cox, Dave; Lindner, D. K.; Claus, R. O.

    1989-01-01

    Few mode optical fibers have been shown to produce predictable interference patterns when placed under strain. The use is described of a modal domain sensor in a vibration control experiment. An optical fiber is bonded along the length of a flexible beam. Output from the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed. This model is combined with the beam and actuator dynamics to produce a system suitable for control design. Computer simulations predict open and closed loop dynamic responses. An experimental apparatus is described and experimental results are presented.

  5. Soleus aponeurosis strain distribution following chronic unloading in humans: an in vivo MR phase-contrast study.

    PubMed

    Lee, Hae-Dong; Finni, Taija; Hodgson, John A; Lai, Alex M; Edgerton, V Reggie; Sinha, Shantanu

    2006-06-01

    The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techniques. Following ULLS, volumes of the soleus and the medial gastrocnemius and the maximum isometric ankle plantar flexion (maximum voluntary contraction) decreased by 5.5+/-1.9, 7.5+/-2.7, and 48.1+/-6.1%, respectively. The strain of the aponeurosis along the length of the muscle before the ULLS was 0.3+/-0.3%, ranging from -1.5 to 2.7% in different locations of the aponeurosis. Following ULLS, the mean strain was -6.4+/-0.3%, ranging from -1.6 to 1.3%. The strain distribution of the midregion of the aponeurosis was significantly influenced by the ULLS, whereas the more distal component showed no consistent changes. Achilles tendon strain was not affected by the ULLS. These results raise the issue as to whether these changes in strain distribution affect the functional properties of the triceps surae and whether the probability of strain injuries within the triceps surae increases following chronic unloading in those regions of this muscle complex in which unusual strains occur.

  6. Investigation of antibacterial activity of Bacillus spp. isolated from the feces of Giant Panda and characterization of their antimicrobial gene distributions.

    PubMed

    Zhou, Ziyao; Zhou, Xiaoxiao; Zhong, Zhijun; Wang, Chengdong; Zhang, Hemin; Li, Desheng; He, Tingmei; Li, Caiwu; Liu, Xuehan; Yuan, Hui; Ji, Hanli; Luo, Yongjiu; Gu, Wuyang; Fu, Hualin; Peng, Guangneng

    2014-12-01

    Bacillus group is a prevalent community of Giant Panda's intestinal flora, and plays a significant role in the field of biological control of pathogens. To understand the diversity of Bacillus group from the Giant Panda intestine and their functions in maintaining the balance of the intestinal microflora of Giant Panda, this study isolated a significant number of strains of Bacillus spp. from the feces of Giant Panda, compared the inhibitory effects of these strains on three common enteric pathogens, investigated the distributions of six universal antimicrobial genes (ituA, hag, tasA, sfp, spaS and mrsA) found within the Bacillus group by PCR, and analyzed the characterization of antimicrobial gene distributions in these strains using statistical methods. The results suggest that 34 strains of Bacillus spp. were isolated which has not previously been detected at such a scale, these Bacillus strains could be classified into five categories as well as an external strain by 16S rRNA; Most of Bacillus strains are able to inhibit enteric pathogens, and the antimicrobial abilities may be correlated to their categories of 16S rRNA; The detection rates of six common antimicrobial genes are between 20.58 %(7/34) and 79.41 %(27/34), and genes distribute in three clusters in these strains. We found that the antimicrobial abilities of Bacillus strains can be one of the mechanisms by which Giant Panda maintains its intestinal microflora balance, and may be correlated to their phylogeny.

  7. Diphtheria in the Republic of Georgia: Use of Molecular Typing Techniques for Characterization of Corynebacterium diphtheriae Strains

    PubMed Central

    Sulakvelidze, Alexander; Kekelidze, Merab; Gomelauri, Tsaro; Deng, Yingkang; Khetsuriani, Nino; Kobaidze, Ketino; De Zoysa, Aruni; Efstratiou, Androulla; Morris, J. Glenn; Imnadze, Paata

    1999-01-01

    Sixty-six Corynebacterium diphtheriae strains (62 of the gravis biotype and 4 of the mitis biotype) isolated during the Georgian diphtheria epidemic of 1993 to 1998 and 13 non-Georgian C. diphtheriae strains (10 Russian and 3 reference isolates) were characterized by (i) biotyping, (ii) toxigenicity testing with the Elek assay and PCR, (iii) the randomly amplified polymorphic DNA (RAPD) technique, and (iv) pulsed-field gel electrophoresis (PFGE). Fifteen selected strains were ribotyped. Six RAPD types and 15 PFGE patterns were identified among all strains examined, and 12 ribotypes were found among the 15 strains that were ribotyped. The Georgian epidemic apparently was caused by one major clonal group of C. diphtheriae (PFGE type A, ribotype R1), which was identical to the predominant epidemic strain(s) isolated during the concurrent diphtheria epidemic in Russia. A dendrogram based on the PFGE patterns revealed profound differences between the minor (nonpredominant) epidemic strains found in Georgia and Russia. The methodologies for RAPD typing, ribotyping, and PFGE typing of C. diphtheriae strains were improved to enable rapid and convenient molecular typing of the strains. The RAPD technique was adequate for biotype differentiation; however, PFGE and ribotyping were better (and equal to each other) at discriminating between epidemiologically related and unrelated isolates. PMID:10488190

  8. Two genetic loci control syllable sequences of ultrasonic courtship vocalizations in inbred mice

    PubMed Central

    2011-01-01

    Background The ultrasonic vocalizations (USV) of courting male mice are known to possess a phonetic structure with a complex combination of several syllables. The genetic mechanisms underlying the syllable sequence organization were investigated. Results This study compared syllable sequence organization in two inbred strains of mice, 129S4/SvJae (129) and C57BL6J (B6), and demonstrated that they possessed two mutually exclusive phenotypes. The 129S4/SvJae (129) strain frequently exhibited a "chevron-wave" USV pattern, which was characterized by the repetition of chevron-type syllables. The C57BL/6J strain produced a "staccato" USV pattern, which was characterized by the repetition of short-type syllables. An F1 strain obtained by crossing the 129S4/SvJae and C57BL/6J strains produced only the staccato phenotype. The chevron-wave and staccato phenotypes reappeared in the F2 generations, following the Mendelian law of independent assortment. Conclusions These results suggest that two genetic loci control the organization of syllable sequences. These loci were occupied by the staccato and chevron-wave alleles in the B6 and 129 mouse strains, respectively. Recombination of these alleles might lead to the diversity of USV patterns produced by mice. PMID:22018021

  9. A New Kinematic Model for Polymodal Faulting: Implications for Fault Connectivity

    NASA Astrophysics Data System (ADS)

    Healy, D.; Rizzo, R. E.

    2015-12-01

    Conjugate, or bimodal, fault patterns dominate the geological literature on shear failure. Based on Anderson's (1905) application of the Mohr-Coulomb failure criterion, these patterns have been interpreted from all tectonic regimes, including normal, strike-slip and thrust (reverse) faulting. However, a fundamental limitation of the Mohr-Coulomb failure criterion - and others that assume faults form parallel to the intermediate principal stress - is that only plane strain can result from slip on the conjugate faults. However, deformation in the Earth is widely accepted as being three-dimensional, with truly triaxial stresses and strains. Polymodal faulting, with three or more sets of faults forming and slipping simultaneously, can generate three-dimensional strains from truly triaxial stresses. Laboratory experiments and outcrop studies have verified the occurrence of the polymodal fault patterns in nature. The connectivity of polymodal fault networks differs significantly from conjugate fault networks, and this presents challenges to our understanding of faulting and an opportunity to improve our understanding of seismic hazards and fluid flow. Polymodal fault patterns will, in general, have more connected nodes in 2D (and more branch lines in 3D) than comparable conjugate (bimodal) patterns. The anisotropy of permeability is therefore expected to be very different in rocks with polymodal fault patterns in comparison to conjugate fault patterns, and this has implications for the development of hydrocarbon reservoirs, the genesis of ore deposits and the management of aquifers. In this contribution, I assess the published evidence and models for polymodal faulting before presenting a novel kinematic model for general triaxial strain in the brittle field.

  10. Emerging Helicobacter pylori levofloxacin resistance and novel genetic mutation in Nepal.

    PubMed

    Miftahussurur, Muhammad; Shrestha, Pradeep Krishna; Subsomwong, Phawinee; Sharma, Rabi Prakash; Yamaoka, Yoshio

    2016-11-04

    The prevalence of Helicobacter pylori antibiotic susceptibility in the Nepalese strains is untracked. We determined the antibiotic susceptibility for H. pylori and analyzed the presence of genetic mutations associated with antibiotic resistance in Nepalese strains. This study included 146 consecutive patients who underwent gastroduodenal endoscopy in Kathmandu, Nepal. Among 42 isolated H. pylori, there was no resistance to amoxicillin and tetracycline. In contrast, similar with typical South Asian patterns; metronidazole resistance rate in Nepalese strains were extremely high (88.1 %, 37/42). Clarithromycin resistance rate in Nepalese strains were modestly high (21.4 %, 9/42). Most of metronidazole resistant strains had highly distributed rdxA and frxA mutations, but were relative coincidence without a synergistic effect to increase the minimum inhibitory concentration (MIC). Among strains with the high MIC, 63.6 % (7/11) were associated with frameshift mutation at position 18 of frxA with or without rdxA involvement. However, based on next generation sequencing data we found that one strain with the highest MIC value had a novel mutation in the form of amino acid substituted at Ala-212, Gln-382, Ile-485 of dppA and Leu-145, Thr-168, Glu-117, Val-121, Arg-221 in dapF aside from missense mutations in full-length rdxA. Mutations at Asn-87 and/or Asp-91 of the gyrA were predominantly in levofloxacin-resistant strains. The gyrB mutation had steady relationship with the gyrA 87-91 mutations. Although three (44.4 %) and two (22.2 %) of clarithromycin resistant strains had point mutation on A2143G and A2146G, we confirmed the involvement of rpl22 and infB in high MIC strains without an 23SrRNA mutation. The rates of resistance to clarithromycin, metronidazole and levofloxacin were high in Nepalese strains, indicating that these antibiotics-based triple therapies are not useful as first-line treatment in Nepal. Bismuth or non-bismuth-based quadruple regimens, furazolidone-based triple therapy or rifabutin-based triple therapy may become alternative strategy in Nepal.

  11. Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide.

    PubMed

    Wang, Zhan; Li, Jianjun; Altman, Eleonora

    2006-12-11

    The lipid A components of Aeromonas salmonicida subsp. salmonicida from strains A449, 80204-1 and an in vivo rough isolate were isolated by mild acid hydrolysis of the lipopolysaccharide. Structural studies carried out by a combination of fatty acid, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed that the structure of lipid A was conserved among different isolates of A. salmonicida subsp. salmonicida. All analyzed strains contained three major lipid A molecules differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising 4'-monophosphorylated beta-2-amino-2-deoxy-d-glucopyranose-(1-->6)-2-amino-2-deoxy-d-glucopyranose disaccharide, where the reducing end 2-amino-2-deoxy-d-glucose was present primarily in the alpha-pyranose form. Electrospray ionization-tandem mass spectrometry fragment pattern analysis, including investigation of the inner-ring fragmentation, allowed the localization of fatty acyl residues on the disaccharide backbone of lipid A. The tetraacylated lipid A structure containing 3-(dodecanoyloxy)tetradecanoic acid at N-2',3-hydroxytetradecanoic acid at N-2 and 3-hydroxytetradecanoic acid at O-3, respectively, was found. The pentaacyl lipid A molecule had a similar fatty acid distribution pattern and, additionally, carried 3-hydroxytetradecanoic acid at O-3'. In the hexaacylated lipid A structure, 3-hydroxytetradecanoic acid at O-3' was esterified with a secondary 9-hexadecenoic acid. Interestingly, lipid A of the in vivo rough isolate contained predominantly tetra- and pentaacylated lipid A species suggesting that the presence of the hexaacyl lipid A was associated with the smooth-form lipopolysaccharide.

  12. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-Hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Polychromatic Microdiffraction Analysis of Defect Self-Organization in Shock Deformed Single Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun

    A spatially resolved X-ray diffraction method - with a submicron 3D resolution together with SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (1 2 3) and Cu (0 0 1) single crystals shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and the effective strain gradient alter white beam Laue patterns of the shocked materials. Several distinct structural zones are observed at different depths under the impact surface. The density of geometrically necessary dislocations (GNDs) is extremely high near the impact and backmore » surface of the shock recovered crystals. The spall region is characterized by a large density of mesoscale voids and GNDs. The spall region is separated from the impact and back surfaces by compressed regions with high total dislocation density but lower GNDs density. Self-organization of shear bands is observed in the shock recovered Cu single crystal.« less

  14. Method for Estimating Operational Loads on Aerospace Structures Using Span-Wisely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    This report presents a new method for estimating operational loads (bending moments, shear loads, and torques) acting on slender aerospace structures using distributed surface strains (unidirectional strains). The surface strain-sensing stations are to be evenly distributed along each span-wise strain-sensing line. A depth-wise cross section of the structure along each strain-sensing line can then be considered as an imaginary embedded beam. The embedded beam was first evenly divided into multiple small domains with domain junctures matching the strain-sensing stations. The new method is comprised of two steps. The first step is to determine the structure stiffness (bending or torsion) using surface strains obtained from a simple bending (or torsion) loading case, for which the applied bending moment (or torque) is known. The second step is to use the strain-determined structural stiffness (bending or torsion), and a new set of surface strains induced by any other loading case to calculate the associated operational loads (bending moments, shear loads, or torques). Performance of the new method for estimating operational loads was studied in light of finite-element analyses of several example structures subjected to different loading conditions. The new method for estimating operational loads was found to be fairly accurate, and is very promising for applications to the flight load monitoring of flying vehicles with slender wings.

  15. Effects of different numbers of mini-dental implants on alveolar ridge strain distribution under mandibular implant-retained overdentures.

    PubMed

    Warin, Pongsakorn; Rungsiyakull, Pimduen; Rungsiyakull, Chaiy; Khongkhunthian, Pathawee

    2018-01-01

    To investigate the strains around mini-dental implants (MDIs) and retromolar edentulous areas when using different numbers of MDIs in order to retain mandibular overdentures. Four different prosthetic situations were fabricated on an edentulous mandibular model including a complete denture (CD), and three overdentures, retained by four, three or two MDIs in the interforaminal region with retentive attachments. A static load of 200N was applied on the posterior teeth of the dentures under bilateral or unilateral loading conditions. The strains at the mesial and distal of the MDIs and the retromolar edentulous ridges were measured using twelve strain gauges. Comparisons of the mean microstrains among all strain gauges in all situations were analyzed. The strain distribution determined during bilateral loading experienced a symmetrical distribution; while during unilateral loading, the recorded strains tended to change from compressive strains on the loaded side to tensile strains. Overall, the number of MDIs was found to be passively correlated to the generated compressive strain. The highest strains were recorded in the four MDIs followed by three, two MDIs retained overdenture and CD situations, respectively. The highest strain was found around the terminal MDI. The use of a low number of MDIs tends to produce low strain values in the retromolar denture-bearing area and around the terminal MDIs during posterior loadings. However, when using a high number of MDIs, the overdenture tends to have more stability during function. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. Functional Strain-Line Pattern in the Human Left Ventricle

    NASA Astrophysics Data System (ADS)

    Pedrizzetti, Gianni; Kraigher-Krainer, Elisabeth; De Luca, Alessio; Caracciolo, Giuseppe; Mangual, Jan O.; Shah, Amil; Toncelli, Loira; Domenichini, Federico; Tonti, Giovanni; Galanti, Giorgio; Sengupta, Partho P.; Narula, Jagat; Solomon, Scott

    2012-07-01

    Analysis of deformations in terms of principal directions appears well suited for biological tissues that present an underlying anatomical structure of fiber arrangement. We applied this concept here to study deformation of the beating heart in vivo analyzing 30 subjects that underwent accurate three-dimensional echocardiographic recording of the left ventricle. Results show that strain develops predominantly along the principal direction with a much smaller transversal strain, indicating an underlying anisotropic, one-dimensional contractile activity. The strain-line pattern closely resembles the helical anatomical structure of the heart muscle. These findings demonstrate that cardiac contraction occurs along spatially variable paths and suggest a potential clinical significance of the principal strain concept for the assessment of mechanical cardiac function. The same concept can help in characterizing the relation between functional and anatomical properties of biological tissues, as well as fiber-reinforced engineered materials.

  17. [A structural protein study of the influenza A (H1N1) virus by polyacrylamide gel electrophoresis].

    PubMed

    Pérez Guevara, M T; Savón Valdés, C; Rivas Arjona, M; Goyenechea Hernández, A

    1992-01-01

    Influenza is an acute respiratory disease typically appearing as an epidemic. Three immunological types of the influenza virus are known: A, B and C. Continually, antigen changes occur, especially in type A. Therefore, a comparative study was carried out on 4 influenza A(H1N1) virus strains in relation to protein structure (surface antigens), by using polyacrylamide gel electrophoresis by the modified Laemmli method. The objective was to compare the structural proteins of the A/Havana/1292/78 (H1N1) national strain with the proteins of 3 international pattern strains. In all the cases, 6 bands were detected by densitometry. In the 4 strains studied the most abundant protein was M. Great differences between the Cuban strain and the 3 international patterns were not seen.

  18. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei.

    PubMed

    Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth.

  19. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  20. Intragranulomatous necrosis in lungs of mice infected by aerosol with Mycobacterium tuberculosis is related to bacterial load rather than to any one cytokine or T cell type.

    PubMed

    Gil, Olga; Guirado, Evelyn; Gordillo, Sergi; Díaz, Jorge; Tapia, Gustavo; Vilaplana, Cristina; Ariza, Aurelio; Ausina, Vicenç; Cardona, Pere-Joan

    2006-03-01

    Low dose aerosol infection of C57BL/6 mice with a clinical strain of Mycobacterium tuberculosis (UTE 0335 R) induced intragranulomatous necrosis in pulmonary granulomas (INPG) at week 9 postinfection. Infection of different knockout (KO) mouse strains with UTE 0335 R induced INPG in all strains and established two histopathological patterns. The first pattern was seen in SCID mice and in mice with deleted alpha/beta T receptor, TNF R1, IL-12, IFN-gamma, or iNOS genes, and showed a massive INPG with a high granulomatous infiltration of the lung, a large and homogeneous eosinophilic necrosis full of acid-fast bacilli, with marked karyorrhexis, coarse basophilic necrosis, and surrounded by patches delimited by partially conserved alveolar septum full of PMNs. The second pattern was seen in mice with deleted IL-1 R1, IL-6, IL-10, CD4, CD8 or gamma/delta T cell receptor genes, and showed more discrete lesions with predominant homogeneous eosinophilic necrosis with few bacilli and surrounded by a well-defined lymphocyte-based ring. Local expression of IFN-gamma, iNOS, TNF and RANTES showed no significant differences between these mouse strains generating a discrete INPG. Mouse strains showing a massive INPG showed higher, lower or equal expression values compared to the control strain. In conclusion, the severity of the INPG pattern correlated with pulmonary CFU counts, irrespective of the genetic absence or the infection-induced levels of cytokine mediators.

Top