Strain-Gradient Modulated Exciton Emission in Bent ZnO Wires Probed by Cathodoluminescence.
Fu, Xue-Wen; Li, Cai-Zhen; Fang, Liang; Liu, Da-Meng; Xu, Jun; Yu, Da-Peng; Liao, Zhi-Min
2016-12-27
Photoelectrical properties of semiconductor nanostructures are expected to be improved significantly by strain engineering. Besides the local strain, the strain gradient is promising to tune the luminescence properties by modifying the crystal symmetry. Here, we report the investigation of strain-gradient induced symmetry-breaking effect on excitonic states in pure bending ZnO microwires by high spatial-resolved cathodoluminescence at low temperature of 80 K. In addition to the local-strain induced light emission peak shift, the bound exciton emission photon energy shows an extraordinary jump of ∼16.6 meV at a high strain-gradient of 1.22% μm -1 , which is ascribed to the strain gradient induced symmetry-breaking. Such a symmetry-breaking lifts the energy degeneracy of the electronic band structures, which significantly modifies the electron-hole interactions and the fine structures of the bound exciton states. These results provide a further understanding of the strain gradient effect on the excitonic states and possess a potential for the applications in optoelectronic devices.
NASA Astrophysics Data System (ADS)
Jiang, Limei; Xu, Xiaofei; Zhou, Yichun
2016-12-01
With the development of the integrated circuit technology and decreasing of the device size, ferroelectric films used in nano ferroelectric devices become thinner and thinner. Along with the downscaling of the ferroelectric film, there is an increasing influence of two strain gradient related terms. One is the strain gradient elasticity and the other one is flexoelectricity. To investigate the interrelationship between flexoelectricity and strain gradient elasticity and their combined effect on the domain structure in ferroelectric nanofilms, a phase field model of flexoelectricity and strain gradient elasticity on the ferroelectric domain evolution is developed based on Mindlin's theory of strain-gradient elasticity. Weak form is derived and implemented in finite element formulations for numerically solving the model equations. The simulation results show that upper bounds for flexoelectric coefficients can be enhanced by increasing strain gradient elasticity coefficients. While a large flexoelectricity that exceeds the upper bound can induce a transition from a ferroelectric state to a modulated/incommensurate state, a large enough strain gradient elasticity may lead to a conversion from an incommensurate state to a ferroelectric state. Strain gradient elasticity and the flexoelectricity have entirely opposite effects on polarization. The observed interrelationship between the strain gradient elasticity and flexoelectricity is rationalized by an analytical solution of the proposed theoretical model. The model proposed in this paper could help us understand the mechanism of phenomena observed in ferroelectric nanofilms under complex electromechanical loads and provide some guides on the practical application of ferroelectric nanofilms.
NASA Astrophysics Data System (ADS)
Nguyen, Trung N.; Siegmund, Thomas; Tomar, Vikas; Kruzic, Jamie J.
2017-12-01
Size effects occur in non-uniform plastically deformed metals confined in a volume on the scale of micrometer or sub-micrometer. Such problems have been well studied using strain gradient rate-independent plasticity theories. Yet, plasticity theories describing the time-dependent behavior of metals in the presence of size effects are presently limited, and there is no consensus about how the size effects vary with strain rates or whether there is an interaction between them. This paper introduces a constitutive model which enables the analysis of complex load scenarios, including loading rate sensitivity, creep, relaxation and interactions thereof under the consideration of plastic strain gradient effects. A strain gradient viscoplasticity constitutive model based on the Kocks-Mecking theory of dislocation evolution, namely the strain gradient Kocks-Mecking (SG-KM) model, is established and allows one to capture both rate and size effects, and their interaction. A formulation of the model in the finite element analysis framework is derived. Numerical examples are presented. In a special virtual creep test with the presence of plastic strain gradients, creep rates are found to diminish with the specimen size, and are also found to depend on the loading rate in an initial ramp loading step. Stress relaxation in a solid medium containing cylindrical microvoids is predicted to increase with decreasing void radius and strain rate in a prior ramp loading step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y. F.; Larson, B. C.; Lee, J. H.
Strain gradient effects are commonly modeled as the origin of the size dependence of material strength, such as the dependence of indentation hardness on contact depth and spherical indenter radius. However, studies on the microstructural comparisons of experiments and theories are limited. First, we have extended a strain gradient Mises-plasticity model to its crystal plasticity version and implemented a finite element method to simulate the load-displacement response and the lattice rotation field of Cu single crystals under spherical indentation. The strain gradient simulations demonstrate that the forming of distinct sectors of positive and negative angles in the lattice rotation fieldmore » is governed primarily by the slip geometry and crystallographic orientations, depending only weakly on strain gradient effects, although hardness depends strongly on strain gradients. Second, the lattice rotation simulations are compared quantitatively with micron resolution, three-dimensional X-ray microscopy (3DXM) measurements of the lattice rotation fields under 100mN force, 100 mu m radius spherical indentations in < 111 >, < 110 >, and < 001 > oriented Cu single crystals. Third, noting the limitation of continuum strain gradient crystal plasticity models, two-dimensional discrete dislocation simulation results suggest that the hardness in the nanocontact regime is governed synergistically by a combination of strain gradients and source-limited plasticity. However, the lattice rotation field in the discrete dislocation simulations is found to be insensitive to these two factors but to depend critically on dislocation obstacle densities and strengths.« less
NASA Astrophysics Data System (ADS)
Zhou, Yarong; Yang, Xu; Pan, Dongmei; Wang, Binglei
2018-04-01
Flexoelectricity, the coupling of strain gradient and polarization, exists in all the dielectric materials and numerous models have been proposed to study this mechanism. However, the contribution of strain gradient elasticity has typically been underestimated. In this work, inspired by the one-length scale parameter model developed by Deng et al. [19], we incorporate three length-scale parameters to carefully capture the contribution of the purely mechanical strain gradients on flexoelectricity. This three-parameter model is more flexible and could be applied to investigate the flexoelectricity in a wide range of complicated deformations. Accordingly, we carry out our analysis by studying a dielectric nanobeam under different boundary conditions. We show that the strain gradient elasticity and flexoelectricity have apparent size effects and significant influence on the electromechanical response. In particular, the strain gradient effects could significantly reduce the energy efficiency, indicating their importance and necessity. This work may be helpful in understanding the mechanism of flexoelectricity at the nanoscale and sheds light on the flexoelectricity energy harvesting.
NASA Astrophysics Data System (ADS)
Managheb, S. A. M.; Ziaei-Rad, S.; Tikani, R.
2018-05-01
The coupling between polarization and strain gradients is called flexoelectricity. This phenomenon exists in all dielectrics with any symmetry. In this paper, energy harvesting from a Timoshenko beam is studied by considering the flexoelectric and strain gradient effects. General governing equations and related boundary conditions are derived using Hamilton's principle. The flexoelectric effects are defined by gradients of normal and shear strains which lead to a more general model. The developed model also covers the classical Timoshenko beam theory by ignoring the flexoelectric effect. Based on the developed model, flexoelectricity effect on dielectric beams and energy harvesting from cantilever beam under harmonic base excitation is investigated. A parametric study was conducted to evaluate the effects of flexoelectric coefficients, strain gradient constants, base acceleration and the attaching tip mass on the energy harvested from a cantilever Timoshenko beam. Results show that the flexoelectricity has a significant effect on the energy harvester performance, especially in submicron and nano scales. In addition, this effect makes the beam to behave softer than before and also it changes the harvester first resonance frequency. The present study provides guidance for flexoelectric nano-beam analysis and a method to evaluate the performance of energy harvester in nano-dielectric devices.
NASA Astrophysics Data System (ADS)
Reza Barati, Mohammad
2018-05-01
In this paper, applying a general nonlocal strain-gradient elasticity model with two nonlocal and one strain-gradient parameters, wave dispersion behavior of thermally affected and elastically bonded nanobeams is investigated. The two nanobeams are considered to have material imperfections or porosities evenly dispersed across the thickness. Each nanobeam has uniform thickness and is modeled by refined shear deformation beam theory with sinusoidal transverse shear strains. The governing equations of the system are derived by Hamilton's rule and are analytically solved to obtain wave frequencies and the velocity of wave propagation. In the presented graphs, one can see that porosities, temperature, nonlocal, strain gradient and bonding springs have great influences on the wave characteristics of the system.
NASA Astrophysics Data System (ADS)
Barati, Mohammad Reza
2017-11-01
Up to now, nonlocal strain gradient theory (NSGT) is broadly applied to examine free vibration, static bending and buckling of nanobeams. This theory captures nonlocal stress field effects together with the microstructure-dependent strain gradient effects. In this study, forced vibrations of NSGT nanobeams on elastic substrate subjected to moving loads are examined. The nanobeam is made of functionally graded material (FGM) with even and uneven porosity distributions inside the material structure. The graded material properties with porosities are described by a modified power-law model. Dynamic deflection of the nanobeam is obtained via Galerkin and inverse Laplace transform methods. The importance of nonlocal parameter, strain gradient parameter, moving load velocity, porosity volume fraction, type of porosity distribution and elastic foundation on forced vibration behavior of nanobeams are discussed.
Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Yeong-Maw; Huang, Tze-Hui; Alexandrov, Sergei
2013-12-16
This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments withmore » a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15°, gradient micro-structures of the grain size decreasing gradually from 17 μm at the center to 4 μm at the edge of product were achieved.« less
Strain gradient drives shear banding in metallic glasses
NASA Astrophysics Data System (ADS)
Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong
2017-09-01
Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.
Chmielak, Bartos; Matheisen, Christopher; Ripperda, Christian; Bolten, Jens; Wahlbrink, Thorsten; Waldow, Michael; Kurz, Heinrich
2013-10-21
We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si₃N₄ strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)(yyz) increase with reduced w(WG). For 300 nm wide waveguides a mean effective χ(2)(yyz) of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.
TIGER: Development of Thermal Gradient Compensation Algorithms and Techniques
NASA Technical Reports Server (NTRS)
Hereford, James; Parker, Peter A.; Rhew, Ray D.
2004-01-01
In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external instruments. To address the problem of thermal gradients on the force measurement balance NASA-LaRC has initiated a research program called TIGER - Thermally-Induced Gradients Effects Research. The ultimate goals of the TIGER program are to: (a) understand the physics of the thermally-induced strain and its subsequent impact on load measurements and (b) develop a robust thermal gradient compensation technique. This paper will discuss the impact of thermal gradients on force measurement balances, specific aspects of the TIGER program (the design of a special-purpose balance, data acquisition and data analysis challenges), and give an overall summary.
NASA Astrophysics Data System (ADS)
Nica, Emilian M.; Franz, Marcel
2018-02-01
Motivated by recent work on strain-induced pseudomagnetic fields in Dirac and Weyl semimetals, we analyze the possibility of analogous fields in two-dimensional nodal superconductors. We consider the prototypical case of a d -wave superconductor, a representative of the cuprate family, and find that the presence of weak, spatially varying strain leads to pseudomagnetic fields and Landau quantization of Bogoliubov quasiparticles in the low-energy sector. A similar effect is induced by the presence of generic, weak doping gradients. In contrast to genuine magnetic fields in superconductors, the strain- and doping-gradient-induced pseudomagnetic fields couple in a way that preserves time-reversal symmetry and is not subject to the screening associated with the Meissner effect. These effects can be probed by tuning weak applied supercurrents which lead to shifts in the energies of the Landau levels and hence to quantum oscillations in thermodynamic and transport quantities.
Gradient and size effects on spinodal and miscibility gaps
NASA Astrophysics Data System (ADS)
Tsagrakis, Ioannis; Aifantis, Elias C.
2018-05-01
A thermodynamically consistent model of strain gradient elastodiffusion is developed. Its formulation is based on the enhancement of a robust theory of gradient elasticity, known as GRADELA, to account for a Cahn-Hilliard type of diffusion. Linear stability analysis is employed to determine the influence of concentration and strain gradients on the spinodal decomposition. For finite domains, spherically symmetric conditions are considered, and size effects on spinodal and miscibility gaps are discussed. The theoretical predictions are in agreement with the experimental trends, i.e., both gaps shrink as the grain diameter decreases and they are completely eliminated for crystals smaller than a critical size.
The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics
NASA Astrophysics Data System (ADS)
Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing
2015-09-01
A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.
Bauschinger Effect and Back Stress in Gradient Cu-Ge Alloy
NASA Astrophysics Data System (ADS)
Hu, Xianzhi; Jin, Shenbao; Zhou, Hao; Yin, Zhe; Yang, Jian; Gong, Yulan; Zhu, Yuntian; Sha, Gang; Zhu, Xinkun
2017-09-01
Using surface mechanical attrition treatment (SMAT), a gradient structure composed of two gradient structure (GS) layers and a coarse grain (CG) layer was generated from a Cu-5.7 wt pct Ge alloy, significantly improving the yield strength of the sample. Unloading-reloading tests showed an unusual Bauschinger effect in these GS samples. The back stresses caused by the accumulated geometrically necessary dislocations (GNDs) on the GS/CG border increased with increasing strain. As found by electron backscatter diffraction (EBSD), the GNDs are mainly distributed in the gradient structured layer, and the density of the GNDs increase with increasing SMAT time. The effect of the back stress increased with increasing SMAT processing time due to the increase in the strain gradient. The pronounced Bauschinger effect in a GS sample can improve the resistance to forward plastic flow and finally contributes to the high strength of GS samples.
Strain Gradient Solution for the Eshelby-Type Polyhedral Inclusion Problem
2012-01-01
2011 Available online 6 November 2011 Keywords: Eshelby tensor Polyhedral inclusion Size effect Eigenstrain Strain gradient a b s t r a c t The Eshelby...material containing an ellipsoidal inclusion prescribed with a uniform eigenstrain is a milestone in micromechanics. The solution for the dynamic Eshelby...strain to the prescribed uniform eigenstrain , is constant inside the inclusion. However, this property is true only for ellipsoidal inclusions (and when
Strain effects on thermal conductivity of nanostructured silicon by Raman piezothermography
NASA Astrophysics Data System (ADS)
Murphy, Kathryn Fay
A fundamental problem facing the rational design of materials is the independent control of electrical and thermal properties, with implications for a wide range of applications including thermoelectrics, solar thermal power generation, and thermal logic. One strategy for controlling transport involves manipulating the length scales which affect it. For instance, Si thermal conductivity may be reduced with relatively little change in electrical properties when the confining dimension (e.g., nanowire diameter) is small enough that heat carriers are preferentially scattered at free surfaces. However, tailoring properties by geometry or chemistry alone does not allow for on-demand modification, precluding applications which require responsive behavior such as thermal transistors, thermoelectric modules which adapt to their environmental temperature, or switchable thermal barriers. One means of tuning transport is elastic strain, which has long been exploited to improve carrier mobility in electronic devices. Uniform strain is predicted to affect thermal conductivity primarily via changes in heat capacity and phonon velocity, and crystalline defects such as vacancies or dislocations---which induce large strain gradients---should lower thermal conductivity by decreasing the phonon mean free path. Nanowires are ideal for the study of strain and defect effects due to the availability of a range of elastic strain an order of magnitude larger than in bulk and due to their small volumes. However, experimental measurements of strain-mediated thermal conductivity in nanowires have been limited due to the complexity of simultaneously applying and measuring stress or strain, heating, and measuring temperature. In this dissertation, we measure strain effects on thermal conductivity using a novel non-contact approach which we name Raman piezothermography. We apply a uniaxial load to individual Si nanowires, Si thin films, and Si micromeshes under a confocal mu-Raman microscope and, using the Raman laser as a heat source and the Raman spectrum as a measure of temperature, determine thermal transport properties. We show that uniaxial strain up to ˜1% has a weak effect on Si nanowire or thin film thermal conductivity, but irradiation-induced defects in nanowires yield dramatic reductions due to increased phonon scattering. Such defects are accompanied by large strain gradients, but decoupling the effect of these gradients from local changes in mass and interatomic potential is experimentally untenable. To isolate the effect of strain gradients, we extend our method to Si micromeshes, which exhibit nonuniform strains upon loading. The complex strain states achieved cause more drastic reductions of thermal conductivity due to enhanced phonon-phonon scattering in the presence of a strain gradient. The directions suggested by our experiments, as well as the development of the method, will allow for more robust understanding and control of thermal transport in nanostructures.
NASA Astrophysics Data System (ADS)
Radwan, Ahmed F.; Sobhy, Mohammed
2018-06-01
This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.
NASA Astrophysics Data System (ADS)
Aldakheel, Fadi
2017-11-01
The coupled thermo-mechanical strain gradient plasticity theory that accounts for microstructure-based size effects is outlined within this work. It extends the recent work of Miehe et al. (Comput Methods Appl Mech Eng 268:704-734, 2014) to account for thermal effects at finite strains. From the computational viewpoint, the finite element design of the coupled problem is not straightforward and requires additional strategies due to the difficulties near the elastic-plastic boundaries. To simplify the finite element formulation, we extend it toward the micromorphic approach to gradient thermo-plasticity model in the logarithmic strain space. The key point is the introduction of dual local-global field variables via a penalty method, where only the global fields are restricted by boundary conditions. Hence, the problem of restricting the gradient variable to the plastic domain is relaxed, which makes the formulation very attractive for finite element implementation as discussed in Forest (J Eng Mech 135:117-131, 2009) and Miehe et al. (Philos Trans R Soc A Math Phys Eng Sci 374:20150170, 2016).
NASA Astrophysics Data System (ADS)
Li, Guannan; Huang, Xiaokun; Hu, Jingsan; Zhang, Weiyi
2017-04-01
Based on the first-principles total-energy calculation, we have studied the shear-strain gradient effect on the polarization reversal of ferroelectric BaTiO3 thin films. By calculating the energies of double-domain supercells for different electric polarization, shear-strain gradients, and domain-wall displacement, we extracted, in addition to the domain-wall energy, the polarization energy, elastic energy, and flexoelectric coefficient of a single domain. The constructed Landau-Devonshire phenomenological theory yields a critical shear-strain gradient of 9.091 ×107/m (or a curvature radius (R ) of 110 Å) for reversing the 180∘ domain at room temperature, which is on the same order of the experimentally estimated value of 3.333 ×107/m (R =300 Å ). In contrast to the commonly used linear response theory, the flexoelectric coefficient derived from fitting the total energy to a Landau-Devonshire energy functional does not depend on the specific pseudopotential. Thus, our method offers an alternative numerical approach to study the flexoelectric effect.
Sahmani, S; Aghdam, M M
2017-06-07
Microtubules including tubulin heterodimers arranging in a parallel shape of cylindrical hollow plays an important role in the mechanical stiffness of a living cell. In the present study, the nonlocal strain gradient theory of elasticity including simultaneously the both nonlocality and strain gradient size dependency is put to use within the framework of a refined orthotropic shell theory with hyperbolic distribution of shear deformation to analyze the size-dependent buckling and postbuckling characteristics of microtubules embedded in cytoplasm under axial compressive load. The non-classical governing differential equations are deduced via boundary layer theory of shell buckling incorporating the nonlinear prebuckling deformation and microtubule-cytoplasm interaction in the living cell environment. Finally, with the aid of a two-stepped perturbation solution methodology, the explicit analytical expressions for nonlocal strain gradient stability paths of axially loaded microtubules are achieved. It is illustrated that by taking the nonlocal size effect into consideration, the critical buckling load of microtubule and its maximum deflection associated with the minimum postbuckling load decreases, while the strain gradient size dependency causes to increase them. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Jianfeng; Zhang, Xu; Konstantinidis, Avraam A.; Kang, Guozheng
2015-06-01
The internal length is the governing parameter in strain gradient theories which among other things have been used successfully to interpret size effects at the microscale. Physically, the internal length is supposed to be related with the microstructure of the material and evolves during the deformation. Based on Taylor hardening law, we propose a power-law relationship to describe the evolution of the variable internal length with strain. Then, the classical Fleck-Hutchinson strain gradient theory is extended with a strain-dependent internal length, and the generalized Fleck-Hutchinson theory is confirmed here, by comparing our model predictions to recent experimental data on tension and torsion of thin wires with varying diameter and grain size. Our work suggests that the internal length is a configuration-dependent parameter, closely related to dislocation characteristics and grain size, as well as sample geometry when this affects either the underlying microstructure or the ductility of the material.
NASA Astrophysics Data System (ADS)
Hatami, M. K.; Pardoen, T.; Lacroix, G.; Berke, P.; Jacques, P. J.; Massart, T. J.
2017-01-01
TRansformation Induced Plasticity (TRIP) is a very effective mechanism to increase the strain hardening capacity of multiphase steels containing a fraction of metastable austenite, leading to both high strength and large uniform elongation. Excellent performances have been reached in the past 20 years, with recent renewed interest through the development of the 3rd generation of high strength steels often involving a TRIP effect. The microstructure and composition optimization is complex due to the interplay of coupled effects on the transformation kinetics and work hardening such as phase stability, size of retained austenite grains, temperature and loading path. In particular, recent studies have shown that the TRIP effect can only be quantitatively captured for realistic microstructures if strain gradient plasticity effects are taken into account, although direct experimental validation of this claim is missing. Here, an original computational averaging scheme is developed for predicting the elastoplastic response of TRIP aided multiphase steels based on a strain gradient plasticity model. The microstructure is represented by an aggregate of many elementary unit cells involving each a fraction of retained austenite with a specified stability. The model parameters, involving the transformation kinetics, are identified based on experimental tensile tests performed at different temperatures. The model is further assessed towards original experiments, involving temperature changes during deformation. A classical size independent plasticity model is shown unable to capture the TRIP effect on the mechanical response. Conversely, the strain gradient formulation properly predicts substantial variations of the strain hardening with deformation and temperature, hence of the uniform elongation in good agreement with the experiments. A parametric study is performed to get more insight on the effect of the material length scale as well as to determine optimum transformation kinetics to reach the highest possible strength-ductility balance. It is shown that the uniform elongation can potentially be increased by 50% or more, paving the way towards future microstructure engineering efforts.
The study of micro-inextensible piezoelectric cantilever plate
NASA Astrophysics Data System (ADS)
Chen, L. H.; Xu, J. W.; Zhang, W.
2018-06-01
In this paper, a micro-inextensible piezoelectric cantilever plate is analyzed and its nonlinear dynamic behaviour is studied. The nonlinear oscillation differential equation is established by using Hamilton’s principle with the application of strain gradient theory to consider the size effect, and inextensible theory to consider the large deformation and rotation effect of cantilever plate. Based on MATLAB software, using the Runge-Kuta method, we can obtain the response of the nonlinear oscillation differential equation. The influences of the strain gradient length scale parameter and voltage on the dynamic response of micro piezoelectric cantilever plate are investigated separately. The results confirmed an increase of the stiffness of the system by using the strain gradient theory and the amplitude of the vibration is reduced. The vibration of the system can be controlled by applying an active voltage. The effect of external excitation frequency on nonlinear dynamic behaviour is considered by using Poincare surface of section and diagrams of waveforms, phase and bifurcation.
Strain Gradient Modulated Exciton Evolution and Emission in ZnO Fibers
Wei, Bin; Ji, Yuan; Gauvin, Raynald; Zhang, Ze; Zou, Jin; Han, Xiaodong
2017-01-01
One-dimensional semiconductor can undergo large deformation including stretching and bending. This homogeneous strain and strain gradient are an easy and effective way to tune the light emission properties and the performance of piezo-phototronic devices. Here, we report that with large strain gradients from 2.1–3.5% μm−1, free-exciton emission was intensified, and the free-exciton interaction (FXI) emission became a prominent FXI-band at the tensile side of the ZnO fiber. These led to an asymmetric variation in energy and intensity along the cross-section as well as a redshift of the total near-band-edge (NBE) emission. This evolution of the exciton emission was directly demonstrated using spatially resolved CL spectrometry combined with an in situ tensile-bending approach at liquid nitrogen temperature for individual fibers and nanowires. A distinctive mechanism of the evolution of exciton emission is proposed: the enhancement of the free-exciton-related emission is attributed to the aggregated free excitons and their interaction in the narrow bandgap in the presence of high bandgap gradients and a transverse piezoelectric field. These results might facilitate new approaches for energy conversion and sensing applications via strained nanowires and fibers. PMID:28084427
Strain Gradient Modulated Exciton Evolution and Emission in ZnO Fibers.
Wei, Bin; Ji, Yuan; Gauvin, Raynald; Zhang, Ze; Zou, Jin; Han, Xiaodong
2017-01-13
One-dimensional semiconductor can undergo large deformation including stretching and bending. This homogeneous strain and strain gradient are an easy and effective way to tune the light emission properties and the performance of piezo-phototronic devices. Here, we report that with large strain gradients from 2.1-3.5% μm -1 , free-exciton emission was intensified, and the free-exciton interaction (FXI) emission became a prominent FXI-band at the tensile side of the ZnO fiber. These led to an asymmetric variation in energy and intensity along the cross-section as well as a redshift of the total near-band-edge (NBE) emission. This evolution of the exciton emission was directly demonstrated using spatially resolved CL spectrometry combined with an in situ tensile-bending approach at liquid nitrogen temperature for individual fibers and nanowires. A distinctive mechanism of the evolution of exciton emission is proposed: the enhancement of the free-exciton-related emission is attributed to the aggregated free excitons and their interaction in the narrow bandgap in the presence of high bandgap gradients and a transverse piezoelectric field. These results might facilitate new approaches for energy conversion and sensing applications via strained nanowires and fibers.
NASA Astrophysics Data System (ADS)
Jiang, W. G.; Xiong, C. A.; Wu, X. G.
2013-11-01
The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices
Rolling motion of an elastic cylinder induced by elastic strain gradients
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Shaohua
2014-10-01
Recent experiment shows that an elastic strain gradient field can be utilized to transport spherical particles on a stretchable substrate by rolling, inspired by which a generalized plane-strain Johnson-Kendall-Roberts model is developed in this paper in order to verify possible rolling of an elastic cylinder adhering on an elastic substrate subject to a strain gradient. With the help of contact mechanics, closed form solutions of interface tractions, stress intensity factors, and corresponding energy release rates in the plane-strain contact model are obtained, based on which a possible rolling motion of an elastic cylinder induced by strain gradients is found and the criterion for the initiation of rolling is established. The theoretical prediction is consistent well with the existing experimental observation. The result should be helpful for understanding biological transport mechanisms through muscle contractions and the design of transport systems with strain gradient.
Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films
NASA Astrophysics Data System (ADS)
Liu, Jinxing; Kah Soh, Ai
2016-08-01
The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.
NASA Astrophysics Data System (ADS)
Oveissi, Soheil; Eftekhari, S. Ali; Toghraie, Davood
2016-09-01
In this study, the effects of small-scale of the both nanoflow and nanostructure on the vibrational response of fluid flowing single-walled carbon nanotubes are investigated. To this purpose, two various flowing fluids, the air-nano-flow and the water nano-flow using Knudsen number, and two different continuum theories, the nonlocal theory and the strain-inertia gradient theory are studied. Nano-rod model is used to model the fluid-structure interaction, and Galerkin method of weighted residual is utilizing to solve and discretize the governing obtained equations. It is found that the critical flow velocity decreases as the wave number increases, excluding the first mode divergence that it has the least value among of the other instabilities if the strain-inertia gradient theory is employed. Moreover, it is observed that Kn effect has considerable impact on the reduction of critical velocities especially for the air-flow flowing through the CNT. In addition, by increasing a nonlocal parameter and Knudsen number the critical flow velocity decreases but it increases as the characteristic length related to the strain-inertia gradient theory increases.
A study of microindentation hardness tests by mechanism-based strain gradient plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.; Xue, Z.; Gao, H.
2000-08-01
We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model.more » In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.« less
NASA Astrophysics Data System (ADS)
Wu, Wenqian; Guo, Lin; Liu, Bin; Ni, Song; Liu, Yong; Song, Min
2017-12-01
The effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy have been investigated. The torsional deformation generates a gradient microstructure distribution due to the gradient torsional strain. Both dislocation activity and deformation twinning dominated the torsional deformation process. With increasing the torsional equivalent strain, the microstructural evolution can be described as follows: (1) formation of pile-up dislocations parallel to the trace of {1 1 1}-type slip planes; (2) formation of Taylor lattices; (3) formation of highly dense dislocation walls; (3) formation of microbands and deformation twins. The extremely high deformation strain (strained to fracture) results in the activation of wavy slip. The tensile strength is very sensitive to the torsional deformation, and increases significantly with increasing the torsional angle.
Refined gradient theory of scale-dependent superthin rods
NASA Astrophysics Data System (ADS)
Lurie, S. A.; Kuznetsova, E. L.; Rabinskii, L. N.; Popova, E. I.
2015-03-01
A version of the refined nonclassical theory of thin beams whose thickness is comparable with the scale characteristic of the material structure is constructed on the basis of the gradient theory of elasticity which, in contrast to the classical theory, contains some additional physical characteristics depending on the structure scale parameters and is therefore most appropriate for modeling the strains of scale-dependent systems. The fundamental conditions for the well-posedness of the gradient theories are obtained for the first time, and it is shown that some of the known applied gradient theories do not generally satisfy the well-posedness criterion. A version of the well-posed gradient strain theory which satisfies the symmetry condition is proposed. The well-posed gradient theory is then used to implement the method of kinematic hypotheses for constructing a refined theory of scale-dependent beams. The equilibrium equations of the refined theory of scale-dependent Timoshenko and Bernoulli beams are obtained. It is shown that the scale effects are localized near the beam ends, and therefore, taking the scale effects into account does not give any correction to the bending rigidity of long beams as noted in the previously published papers dealing with the scale-dependent beams.
Reilly, John; Glisic, Branko
2018-01-01
Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University. PMID:29494496
Reilly, John; Glisic, Branko
2018-03-01
Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.
Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes
NASA Astrophysics Data System (ADS)
Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L.
2016-10-01
We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness—for example, in structural components of aircraft and spacecraft.
NASA Astrophysics Data System (ADS)
Rosi, Giuseppe; Scala, Ilaria; Nguyen, Vu-Hieu; Naili, Salah
2017-06-01
This article is about ultrasonic wave propagation in microstructured porous media. The classic Biot's model is enriched using a strain gradient approach to be able to capture high-order effects when the wavelength approaches the characteristic size of the microstructure. In order to reproduce actual transmission/reflection experiments performed on poroelastic samples, and to validate the choice of the model, the computation of the time domain response is necessary, as it allows for a direct comparison with experimental results. For obtaining the time response, we use two strategies: on the one hand we compute the closed form solution by using the Laplace and Fourier transforms techniques; on the other hand we used a finite element method. The results are presented for a transmission/reflection test performed on a poroelastic sample immersed in water. The effects introduced by the strain gradient terms are visible in the time response and in agreement with experimental observations. The results can be exploited in characterization of mechanical properties of poroelastic media by enhancing the reliability of quantitative ultrasound techniques.
NASA Astrophysics Data System (ADS)
Klecka, Michael A.
Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response. The average plastic strain induced by an indent is shown to be an effective measure of the representative plastic strain, which is used in order to relate hardness to yield strength in both virgin and plastically deformed materials. It is shown that the two carburized steels contain gradients in yield strength, but constant strain hardening exponent with depth. The resulting model of material behavior is used to characterize the influence of specific gradients in material properties on the surface indentation behavior under increasing indentation loads. It is also shown that the response of the material is not greatly influenced by strain hardening exponent, while a gradient in strain hardening ability only has minimal impact. Gradients in elastic properties are also shown to have negligible influence for a fixed gradient in hardness. The depth of subsurface plastic deformation is shown to increase with sharper gradients in hardness, but is not altered by gradients in elastic properties. The proposed approach is not specific to case hardened materials and can be used to determine the subsurface hardness gradient for any graded material.
NASA Astrophysics Data System (ADS)
Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F.; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha
2014-07-01
The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.
Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.
Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L
2016-10-21
We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness-for example, in structural components of aircraft and spacecraft. Copyright © 2016, American Association for the Advancement of Science.
Gradient effects in a new class of electro-elastic bodies
NASA Astrophysics Data System (ADS)
Arvanitakis, Antonios
2018-06-01
Continuum theories for electro-elastic solids suggest the development of electric field or polarization-based models. Advanced versions of these models are the so-called gradient models, i.e., polarization gradient and electric field gradient models, which prove to be more than capable of explaining the behavior of a continuum in a wider range of length scales. In this work, implicit constitutive relations for electro-elastic bodies are considered with the introduction of polarization and electric field gradient effects. In this sense, the new class of electro-elastic bodies extends even further to account for nonlocality in constitutive equations, besides strain-limiting behavior and polarization saturation for large values of stresses and electric field, respectively. Nonlocality in constitutive equations is essential in modeling various phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel
In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less
Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel
2018-02-08
In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less
Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin
2018-05-25
It is highly desirable to discover photovoltaic mechanisms that enable enhanced efficiency of solar cells. Here we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We used either an atomic force microscope or a micrometer-scale indentation system to introduce strain gradients, thus creating very large photovoltaic currents from centrosymmetric single crystals of strontium titanate, titanium dioxide, and silicon. This strain gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p-n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Gao, X.-L.; Ma, H. M.
2010-05-01
A solution for Eshelby's inclusion problem of a finite homogeneous isotropic elastic body containing an inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). An extended Betti's reciprocal theorem and an extended Somigliana's identity based on the SSGET are proposed and utilized to solve the finite-domain inclusion problem. The solution for the disturbed displacement field is expressed in terms of the Green's function for an infinite three-dimensional elastic body in the SSGET. It contains a volume integral term and a surface integral term. The former is the same as that for the infinite-domain inclusion problem based on the SSGET, while the latter represents the boundary effect. The solution reduces to that of the infinite-domain inclusion problem when the boundary effect is not considered. The problem of a spherical inclusion embedded concentrically in a finite spherical elastic body is analytically solved by applying the general solution, with the Eshelby tensor and its volume average obtained in closed forms. This Eshelby tensor depends on the position, inclusion size, matrix size, and material length scale parameter, and, as a result, can capture the inclusion size and boundary effects, unlike existing Eshelby tensors. It reduces to the classical Eshelby tensor for the spherical inclusion in an infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is very small and that the boundary effect can dominate when the inclusion volume fraction is very high. However, the inclusion size effect is diminishing as the inclusion becomes large enough, and the boundary effect is vanishing as the inclusion volume fraction gets sufficiently low.
The role of Rnf in ion gradient formation in Desulfovibrio alaskensis
Wang, Luyao; Bradstock, Peter; Li, Chuang; ...
2016-04-14
Rnf is a membrane protein complex that has been shown to be important in energy conservation. Here, Desulfovibrio alaskensis G20 and Rnf mutants of G20 were grown with different electron donor and acceptor combinations to determine the importance of Rnf in energy conservation and the type of ion gradient generated. The addition of the protonophore TCS strongly inhibited lactate-sulfate dependent growth whereas the sodium ionophore ETH2120 had no effect, indicating a role for the proton gradient during growth. Mutants in rnfA and rnfD were more sensitive to the protonophore at 5 µM than the parental strain, suggesting the importance ofmore » Rnf in the generation of a proton gradient. The electrical potential (ΔΨ), ΔpH and proton motive force were lower in thernfAmutant than in the parental strain of D.alaskensis G20. In conclusion, these results provide evidence that the Rnf complex in D. alaskensis functions as a primary proton pump whose activity is important for growth.« less
NASA Astrophysics Data System (ADS)
Yang, Tingting; Zhong, Yujia; Tao, Dashuai; Li, Xinming; Zang, Xiaobei; Lin, Shuyuan; Jiang, Xin; Li, Zhihong; Zhu, Hongwei
2017-09-01
In nature, some animals change their deceptive coloration for camouflage, temperature preservation or communication. This astonishing function has inspired scientists to replicate the color changing abilities of animals with artificial skin. Recently, some studies have focused on the smart materials and devices with reversible color changing or light-emitting properties for instantaneous strain visualization. However, most of these works only show eye-detectable appearance change when subjected to large mechanical deformation (100%-500% strain), and conspicuous color change at small strain remains rarely explored. In the present study, we developed a user-interactive electronic skin with human-readable optical output by assembling a highly sensitive resistive strain sensor with a stretchable organic electrochromic device (ECD) together. We explored the substrate effect on the electromechanical behavior of graphene and designed a strategy of modulus-gradient structure to employ graphene as both the highly sensitive strain sensing element and the insensitive stretchable electrode of the ECD layer. Subtle strain (0-10%) was enough to evoke an obvious color change, and the RGB value of the color quantified the magnitude of the applied strain. Such high sensitivity to smaller strains (0-10%) with color changing capability will potentially enhance the function of wearable devices, robots and prosthetics in the future.
NASA Astrophysics Data System (ADS)
Lim, C. W.; Wang, C. M.
2007-03-01
This article presents a complete and asymptotic representation of the one-dimensional nanobeam model with nonlocal stress via an exact variational principle approach. An asymptotic governing differential equation of infinite-order strain gradient model and the corresponding infinite number of boundary conditions are derived and discussed. For practical applications, it explores and presents a reduced higher-order solution to the asymptotic nonlocal model. It is also identified here and explained at length that most publications on this subject have inaccurately employed an excessively simplified lower-order model which furnishes intriguing solutions under certain loading and boundary conditions where the results become identical to the classical solution, i.e., without the small-scale effect at all. Various nanobeam examples are solved to demonstrate the difference between using the simplified lower-order nonlocal model and the asymptotic higher-order strain gradient nonlocal stress model. An important conclusion is the discovery of significant over- or underestimation of stress levels using the lower-order model, particularly at the vicinity of the clamped end of a cantilevered nanobeam under a tip point load. The consequence is that the design of a nanobeam based on the lower-order strain gradient model could be flawed in predicting the nonlocal stress at the clamped end where it could, depending on the magnitude of the small-scale parameter, significantly over- or underestimate the failure criteria of a nanobeam which are governed by the level of stress.
A compressibility correction of the pressure strain correlation model in turbulent flow
NASA Astrophysics Data System (ADS)
Klifi, Hechmi; Lili, Taieb
2013-07-01
This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects on the homogeneous turbulence shear flow are parameterized by the gradient Mach number. Several experiment and DNS results suggest that the convective Mach number is appropriate to study the compressibility effects on the mixing layers. The extension of the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure-strain correlation gives results that are in disagreement with the DNS results of Sarkar for high-speed shear flows. This extension is revised to derive a turbulence model for the pressure-strain correlation in which the compressibility is included in the turbulent Mach number, the gradient Mach number and then the convective Mach number. The behavior of the proposed model is compared to the compressible model of Adumitroiae et al. for the pressure-strain correlation in two turbulent compressible flows: homogeneous shear flow and mixing layers. In compressible homogeneous shear flows, the predicted results are compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility, the two compressible models are similar, but they become substantially different at high compressibilities. The proposed model shows good agreement with all cases of DNS results. Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al. and with the experimental results of Goebel et al. shows good qualitative agreement.
Tian, Liang; Russell, Alan; Anderson, Iver
2014-01-03
Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less
Engineering Ferroic and Multiferroic Materials for Active Cooling Applications
2014-02-11
large strain gradients (>105 m-1) – nearly 5-6 orders of magnitude larger than what can be achieved in bulk-versions of materials. These large strain...larger than what can be achieved in bulk-versions of materials. These large strain gradients gave rise to unexpected crystal and domain structure...parameters that are more favorable for generating a compressively strained variety of the Zr-rich phases. In this case, akin to what has been
Topology optimization of finite strain viscoplastic systems under transient loads
Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel
2018-02-08
In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less
Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2016-08-12
Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.
NASA Astrophysics Data System (ADS)
Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2016-08-01
Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.
Implementation and application of a gradient enhanced crystal plasticity model
NASA Astrophysics Data System (ADS)
Soyarslan, C.; Perdahcıoǧlu, E. S.; Aşık, E. E.; van den Boogaard, A. H.; Bargmann, S.
2017-10-01
A rate-independent crystal plasticity model is implemented in which description of the hardening of the material is given as a function of the total dislocation density. The evolution of statistically stored dislocations (SSDs) is described using a saturating type evolution law. The evolution of geometrically necessary dislocations (GNDs) on the other hand is described using the gradient of the plastic strain tensor in a non-local manner. The gradient of the incremental plastic strain tensor is computed explicitly during an implicit FE simulation after each converged step. Using the plastic strain tensor stored as state variables at each integration point and an efficient numerical algorithm to find the gradients, the GND density is obtained. This results in a weak coupling of the equilibrium solution and the gradient enhancement. The algorithm is applied to an academic test problem which considers growth of a cylindrical void in a single crystal matrix.
Ebbers, Lena; Weber, Maren; Nothwang, Hans Gerd
2017-10-26
In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular factors involved in activity-dependent developmental processes in the auditory system. This would provide an important step forward concerning improved auditory rehabilitation in cases of congenital deafness.
Nucleation of ripplocations through atomistic modeling of surface nanoindentation in graphite
NASA Astrophysics Data System (ADS)
Freiberg, D.; Barsoum, M. W.; Tucker, G. J.
2018-05-01
In this work, we study the nucleation and subsequent evolution behavior of ripplocations - a newly proposed strain accommodating defect in layered materials where one, or more, layers buckle orthogonally to the layers - using atomistic modeling of graphite. To that effect, we model the response to cylindrical indenters with radii R of 50, 100, and 250 nm, loaded edge-on into graphite layers and the strain gradient effects beneath the indenter are quantified. We show that the response is initially elastic followed by ripplocation nucleation, and growth of multiple fully reversible ripplocation boundaries below the indenter. In the elastic region, the stress is found to be a function of indentation volume; beyond the elastic regime, the interlayer strain gradient emerges as paramount in the onset of ripplocation nucleation and subsequent in-plane stress relaxation. Furthermore, ripplocation boundaries that nucleate from the alignment of ripplocations on adjacent layers are exceedingly nonlocal and propagate, wavelike, away from the indented surface. This work not only provides a critical understanding of the mechanistic underpinnings of the deformation of layered solids and formation of kink boundaries, but also provides a more complete description of the nucleation mechanics of ripplocations and their strain field dependence.
Anomalous thermoelectricity in strained Bi2Te3 films.
Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning
2016-09-07
Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization.
Anomalous thermoelectricity in strained Bi2Te3 films
Liu, Yucong; Chen, Jiadong; Deng, Huiyong; Hu, Gujin; Zhu, Daming; Dai, Ning
2016-01-01
Bi2Te3-based alloys have been intensively used for thermoelectric coolers and generators due to their high Seebeck coefficient S. So far, efforts to improve the S have been made mostly on changing the structures and components. Herein, we demonstrate an anomalous thermoelectricity in strained Bi2Te3 films, i.e., the value of S is obviously changed after reversing the direction of temperature gradient. Further theoretical and experimental analysis shows that it originates from the coupling of thermoelectric and flexoelectric effects caused by a stress gradient. Our finding provides a new avenue to adjust the S of Bi2Te3-based thermoelectric materials through flexoelectric polarization. PMID:27600406
One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor
NASA Astrophysics Data System (ADS)
Liu, Lisheng; Zhang, Qingjie; Zhai, Pengcheng; Cao, Dongfeng
2008-02-01
An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic and considering the effect of strain rate on the dynamic yield strength.
One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Lisheng; Zhang Qingjie; Zhai Pengcheng
2008-02-15
An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic andmore » considering the effect of strain rate on the dynamic yield strength.« less
Fine-scale features in the far-field of a turbulent jet
NASA Astrophysics Data System (ADS)
Buxton, Oliver; Ganapathisubramani, Bharathram
2008-11-01
The structure of a fully turbulent axisymmetric jet, at Reynolds number based on jet exit conditions of 5000, is investigated with cinematographic (1 kHz) stereoscopic PIV in a plane normal to the jet axis. Taylor's hypothesis is employed to calculate all three velocity gradients in the axial direction. The technique's resolution allows all terms of the velocity gradient tensor, hence strain rate tensor and kinetic energy dissipation, to be computed at each point within the plane. The data reveals that the vorticity field is dominated by high enstrophy tube-like structures. Conversely, the dissipation field appears to consist of sheet-like structures. Several criteria for isolating these strongly swirling vortical structures from the background turbulence were employed. One such technique involves isolating points in which the velocity gradient tensor has a real and a pair of complex conjugate eigenvectors. Once identified, the alignment of the various structures with relation to the vorticity vector and the real velocity gradient tensor eigenvector is investigated. The effect of the strain field on the geometry of the structures is also examined.
Motion Driven by Strain Gradient Fields
Wang, Chao; Chen, Shaohua
2015-01-01
A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603
Carruth, Eric D; McCulloch, Andrew D; Omens, Jeffrey H
2016-12-01
Although a truly complete understanding of whole heart activation, contraction, and deformation is well beyond our current reach, a significant amount of effort has been devoted to discovering and understanding the mechanisms by which myocardial structure determines cardiac function to better treat patients with cardiac disease. Several experimental studies have shown that transmural fiber strain is relatively uniform in both diastole and systole, in contrast to predictions from traditional mechanical theory. Similarly, mathematical models have largely predicted uniform fiber stress across the wall. The development of this uniform pattern of fiber stress and strain during filling and ejection is due to heterogeneous transmural distributions of several myocardial structures. This review summarizes these transmural gradients, their contributions to fiber mechanics, and the potential functional effects of their remodeling during pressure overload hypertrophy. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.
1993-01-01
An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.
On the Possibility of Elastic Strain Localisation in a Fault
NASA Astrophysics Data System (ADS)
Pasternak, E.; Mühlhaus, H.-B.; Dyskin, A. V.
2004-12-01
The phenomenon of strain localisation is often observed in shear deformation of particulate materials, e.g., fault gouge. This phenomenon is usually attributed to special types of plastic behaviour of the material (e.g., strain softening or mismatch between dilatancy and pressure sensitivity or both). Observations of strain localisation in situ or in experiments are usually based on displacement measurements and subsequent computation of the displacement gradient. While in conventional continua the symmetric part of the displacement gradient is equal to the strain, it is no longer the case in the more realistic descriptions within the framework of generalised continua. In such models the rotations of the gouge particles are considered as independent degrees of freedom the values of which usually differ from the rotation of an infinitesimal volume element of the continuum, the latter being described for infinitesimal deformations by the non-symmetric part of the displacement gradient. As a model for gouge material we propose a continuum description for an assembly of spherical particles of equal radius in which the particle rotation is treated as an independent degree of freedom. Based on this model we consider simple shear deformations of the fault gouge. We show that there exist values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-layers of the fault, even in the absence of inelasticity. Inelastic effects are neglected in order to highlight the role of the independent rotations and the associated additional parameters. The localisation-like behaviour occurs if (a) the particle rotations on the boundary of the shear layer are constrained (this type of boundary condition does not exist in a standard continuum) and (b) the contact moment—or bending stiffness is much smaller than the product of the effective shear modulus of the granulate and the square of the width of the gouge layer. It should be noted however that the virtual work functional is positive definite over the range of physically meaningful parameters (here: contact stiffnesses, solid volume fraction and coordination number) so that strictly speaking we are not dealing with a material instability.
NASA Astrophysics Data System (ADS)
Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex
2016-11-01
In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values < to 10-3, with the caveat that such weak phase gradients may become corrupted by stronger measurement noises. Here, we extend the OCT phase-resolved elastographic methodology by (1) showing that an order of magnitude greater strains can significantly increase the accuracy of derived phase-gradient differences, while also avoiding error-phone phase-unwrapping procedures and minimizing the influence of decorrelation noise caused by suprapixel displacements, (2) discussing the appearance of artifactual stiff inclusions in resultant OCT elastograms in the vicinity of bright scatterers due to the amplitude-phase interplay in phase-variation measurements, and (3) deriving/evaluating methods of phase-gradient estimation that can outperform conventionally used least-square gradient fitting. We present analytical arguments, numerical simulations, and experimental examples to demonstrate the advantages of the proposed optimized phase-variation methodology.
Flexoelectricity as a bulk property
NASA Astrophysics Data System (ADS)
Resta, Raffaele
2010-03-01
Piezoelectric composites can be created using nonpiezoelectric materials, by exploiting flexoelectricity. This is by definition the linear response of polarization to strain gradient, and is symmetry-allowed even in elemental crystals. However, the basic issue whether flexoelectricity is a bulk or a surface material property is open. We mention that the analogous issue about piezoelectricity is nontrivial either.^1 In this first attempt towards a full theory of flexoelectricity we prove that, for a simple class of strain and strain gradients, flexoelectricity is indeed a bulk effect. The key ingredients of the present theory are the long-range perturbations linearly induced by a unit displacement of a single nucleus in an otherwise perfect crystal: to leading order these are dipolar, quadrupolar, and octupolar. The corresponding tensors have rank 2, 3, and 4, respectively. Whereas dipoles and quadrupoles provide the piezoelectric response,^1 we show that dipoles and octupoles provide the flexoelectric response in nonpiezoelectric crystals. We conjecture that the full dipole and octupole tensors provide the flexoelectric response to the most general form of strain gradient. Our problem has a close relationship to the one of the ``absolute'' deformation potentials, which is based on a similar kind of dipolar and octupolar tensors.^2 ^1 R. M. Martin, Phys. Rev. B 5, 1607 (1972). ^2 R. Resta, L. Colombo and S. Baroni, Phys. Rev. B 41, 12538 (1990).
In-Plane Heterostructures Enable Internal Stress Assisted Strain Engineering in 2D Materials.
Liu, Feng; Wang, Tzu-Chiang; Tang, Qiheng
2018-04-01
Conventional methods to induce strain in 2D materials can hardly catch up with the sharp increase in requirements to design specific strain forms, such as the pseudomagnetic field proposed in graphene, funnel effect of excitons in MoS 2 , and also the inverse funnel effect reported in black phosphorus. Therefore, a long-standing challenge in 2D materials strain engineering is to find a feasible scheme that can be used to design given strain forms. In this article, combining the ability of experimentally synthetizing in-plane heterostructures and elegant Eshelby inclusion theory, the possibility of designing strain fields in 2D materials to manipulate physical properties, which is called internal stress assisted strain engineering, is theoretically demonstrated. Particularly, through changing the inclusion's size, the stress or strain gradient can be controlled precisely, which is never achieved. By taking advantage of it, the pseudomagnetic field as well as the funnel effect can be accurately designed, which opens an avenue to practical applications for strain engineering in 2D materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment
NASA Astrophysics Data System (ADS)
Hu, Taotao; Deng, Qian; Liang, Xu; Shen, Shengping
2017-08-01
In this paper, a phenomenon of polarization introduced by shock waves is experimentally studied. Although this phenomenon has been reported previously in the community of physics, this is the first time to link it to flexoelectricity, the coupling between electric polarization and strain gradients in dielectrics. As the shock waves propagate in a dielectric material, electric polarization is thought to be induced by the strain gradient at the shock front. First, we control the first-order hydrogen gas gun to impact and generate shock waves in unpolarized bulk barium titanate (BT) samples. Then, a high-precision oscilloscope is used to measure the voltage generated by the flexoelectric effect. Based on experimental results, strain elastic wave theory, and flexoelectric theory, a longitudinal flexoelectric coefficient of the bulk BT sample is calculated to be μ 11 = 17.33 × 10 - 6 C/m, which is in accord with the published transverse flexoelectric coefficient. This method effectively suppresses the majority of drawbacks in the quasi-static and low frequency dynamic techniques and provides more reliable results of flexoelectric behaviors.
Bulk photovoltaic effect at infrared wavelength in strained Bi2Te3 films
NASA Astrophysics Data System (ADS)
Liu, Yucong; Chen, Jiadong; Wang, Chao; Deng, Huiyong; Zhu, Da-Ming; Hu, Gujin; Chen, Xiaoshuang; Dai, Ning
2016-12-01
As a prominent three-dimensional (3-D) topological insulator, traditional thermoelectric material Bi2Te3 has re-attracted greater interest in recent years. Herein, we demonstrate for the first time that c-axis oriented strained Bi2Te3 films exhibit the bulk photovoltaic effect (BPVE) at infrared wavelengths, which was only found in wide band-gap ferroelectric materials before. Moreover, further experiments show that the bulk photovoltaic effect probably comes from the flexoelectric effect which was induced by the stress gradient in strained Bi2Te3 films. And we anticipate that the results are generalizable to other layer-structured or two-dimensional (2-D) materials, e.g., Bi2Se3 and MoS2.
Piwat, S; Teanpaisan, R
2013-01-01
This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances.
Piwat, S.; Teanpaisan, R.
2013-01-01
This study aimed to develop a 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) to identify the species level of Lactobacillus casei group and to investigate their characteristics of acid production and inhibitory effect. PCR-DGGE has been developed based on the 16S rRNA gene, and a set of HDA-1-GC and HDA-2, designed at V2-V3 region, and another set of CARP-1-GC and CARP-2, designed at V1 region, have been used. The bacterial strains included L. casei ATCC 393, L. paracasei CCUG 32212, L. rhamnosus ATCC 7469, L. zeae CCUG 35515, and 46 clinical strains of L. casei/paracasei/rhamnosus. Inhibitory effect against Streptococcus mutans and acid production were examined. Results revealed that each type species strain and identified clinical isolate showed its own unique DGGE pattern using CARP1-GC and CARP2 primers. HDA1-GC and HDA2 primers could distinguish the strains of L. paracasei from L. casei. It was found that inhibitory effect of L. paracasei was stronger than L. casei and L. rhamnosus. The acid production of L. paracasei was lower than L. casei and L. rhamnosus. In conclusion, the technique has been proven to be able to differentiate between closely related species in L. casei group and thus provide reliable information of their phenotypic appearances. PMID:24191230
NASA Astrophysics Data System (ADS)
Karami, Behrouz; Shahsavari, Davood; Li, Li
2018-03-01
A size-dependent model is developed for the hygrothermal wave propagation analysis of an embedded viscoelastic single layer graphene sheet (SLGS) under the influence of in-plane magnetic field. The bi-Helmholtz nonlocal strain gradient theory involving three small scale parameters is introduced to account for the size-dependent effects. The size-dependent model is deduced based on Hamilton's principle. The closed-form solution of eigenfrequency relation between wave number and phase velocity is achieved. By studying the size-dependent effects on the flexural wave of SLGS, the dispersion relation predicted by the developed size-dependent model can show a good match with experimental data. The influence of in-plane magnetic field, temperature and moisture of environs, structural damping, damped substrate, lower and higher order nonlocal parameters and the material characteristic parameter on the phase velocity of SLGS is explored.
On the impact of adverse pressure gradient on the supersonic turbulent boundary layer
NASA Astrophysics Data System (ADS)
Wang, Qian-Cheng; Wang, Zhen-Guo; Zhao, Yu-Xin
2016-11-01
By employing the particle image velocimetry, the mean and turbulent characteristics of a Mach 2.95 turbulent boundary layer are experimentally investigated without the impact of curvature. The physical mechanism with which the streamwise adverse pressure gradient affects the supersonic boundary layer is revealed. The data are compared to that of the concave boundary layer with similar streamwise distributions of wall static pressure to clarify the separate impacts of the adverse pressure gradient and the concave curvature. The logarithmic law is observed to be well preserved for both of the cases. The dip below the logarithmic law is not observed in present investigation. Theoretical analysis indicates that it could be the result of compromise between the opposite impacts of the compression wave and the increased turbulent intensity. Compared to the zero pressure gradient boundary layer, the principal strain rate and the turbulent intensities are increased by the adverse pressure gradient. The shear layer formed due the hairpin packets could be sharpened by the compression wave, which leads to higher principal strain rate and the associated turbulent level. Due to the additional impact of the centrifugal instability brought by the concave wall, even higher turbulent intensities than that of the adverse pressure gradient case are introduced. The existence of velocity modes within the zero pressure gradient boundary layer suggests that the large scale motions are statistically well organized. The generation of new velocity modes due to the adverse pressure gradient indicates that the turbulent structure is changed by the adverse pressure gradient, through which more turbulence production that cannot be effectively predicted by the Reynolds-stress transport equations could be brought.
Theoretical analysis of sheet metal formability
NASA Astrophysics Data System (ADS)
Zhu, Xinhai
Sheet metal forming processes are among the most important metal-working operations. These processes account for a sizable proportion of manufactured goods made in industrialized countries each year. Furthermore, to reduce the cost and increase the performance of manufactured products, in addition to the environmental concern, more and more light weight and high strength materials have been used as a substitute to the conventional steel. These materials usually have limited formability, thus, a thorough understanding of the deformation processes and the factors limiting the forming of sound parts is important, not only from a scientific or engineering viewpoint, but also from an economic point of view. An extensive review of previous studies pertaining to theoretical analyses of Forming Limit Diagrams (FLDs) is contained in Chapter I. A numerical model to analyze the neck evolution process is outlined in Chapter II. With the use of strain gradient theory, the effect of initial defect profile on the necking process is analyzed. In the third chapter, the method proposed by Storen and Rice is adopted to analyze the initiation of localized neck and predict the corresponding FLDs. In view of the fact that the width of the localized neck is narrow, the deformation inside the neck region is constrained by the material in the neighboring homogeneous region. The relative rotation effect may then be assumed to be small and is thus neglected. In Chapter IV, Hill's 1948 yield criterion and strain gradient theory are employed to obtain FLDs, for planar anisotropic sheet materials by using bifurcation analysis. The effects of the strain gradient coefficient c and the material anisotropic parameters R's on the orientation of the neck and FLDs are analyzed in a systematic manner and compared with experiments. In Chapter V, Hill's 79 non-quadratic yield criterion with a deformation theory of plasticity is used along with bifurcation analyses to derive a general analytical expression for calculating FLDs. In the final chapter, a method is proposed to construct forming limit diagrams for sheet metals under different deformation histories. This analysis employs Hill's 79 anisotropic yield function and uses strain gradient theory to describe the constitutive equation for the flow stress. In order to utilize an analytical method developed earlier for proportional loading, the concept of "virtual deformation" is introduced. The actual deformation path is divided into a sequence of linear paths and an effective "virtual deformation" path is defined having a strain ratio identical to that of the linear part in the final deformation stage, and a plastic work identical to that of the prior actual deformation it is replacing. (Abstract shortened by UMI.)
Edge effects in composites by moire interferometry
NASA Technical Reports Server (NTRS)
Czarnek, R.; Post, D.; Herakovich, C.
1983-01-01
The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.
Zhang, Y. B.; Andriollo, T.; Faester, S.; ...
2016-09-14
A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic strains are measured with a maximum strain of ~6.5–8 × 10 –4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found but with a significant overprediction of the maximum strain. Thismore » is discussed in terms of stress relaxation during cooling or during storage by plastic deformation of the nodule, the matrix or both. Furthermore, relaxation by plastic deformation of the ferrite is demonstrated by the formation of low energy dislocation cell structure also quantified by the DAXM technique.« less
NASA Astrophysics Data System (ADS)
Sahmani, S.; Aghdam, M. M.
2017-11-01
In this paper, a new size-dependent inhomogeneous plate model is constructed to analyze the nonlinear buckling and postbuckling characteristics of multilayer functionally graded composite nanoplates reinforced with graphene platelet (GPL) nanofillers under axial compressive load. To this purpose, the nonlocal strain gradient theory of elasticity is implemented into a refined hyperbolic shear deformation plate theory. The mechanical properties of multilayer graphene platelet-reinforced composite (GPLRC) nanoplates are evaluated based upon the Halpin-Tsai micromechanical scheme. The weight fraction of randomly dispersed GPLs remain constant in each individual layer, which results in U-GPLRC nanoplate, or changes layerwise in accordance with three different functionally graded patterns, which make X-GPLRC, O-GPLRC and A-GPLRC nanoplates. Via a two-stepped perturbation technique, explicit analytical expressions for nonlocal strain gradient stability paths are established for layerwise functionally graded GPLRC nanoplates. It is demonstrated that both the nonlocal and strain gradient size dependencies are more significant for multilayer GPLRC nanoplates filling by GPL nanofillers with higher length-to-thickness and width-to-thickness ratios.
NASA Astrophysics Data System (ADS)
Lee, Jin Hong; Kim, Kwang-Eun; Jang, Byung-Kweon; Ünal, Ahmet A.; Valencia, Sergio; Kronast, Florian; Ko, Kyung-Tae; Kowarik, Stefan; Seidel, Jan; Yang, Chan-Ho
2017-08-01
Implementation of antiferromagnetic compounds as active elements in spintronics has been hindered by their insensitive nature against external perturbations which causes difficulties in switching among different antiferromagnetic spin configurations. Electrically controllable strain gradient can become a key parameter to tune the antiferromagnetic states of multiferroic materials. We have discovered a correlation between an electrically written straight-stripe mixed-phase boundary and an in-plane antiferromagnetic spin axis in highly elongated La-5%-doped BiFe O3 thin films by performing polarization-dependent photoemission electron microscopy in conjunction with cluster model calculations. A model Hamiltonian calculation for the single-ion anisotropy including the spin-orbit interaction has been performed to figure out the physical origin of the link between the strain gradient present in the mixed-phase area and its antiferromagnetic spin axis. Our findings enable estimation of the strain-gradient-induced magnetic anisotropy energy per Fe ion at around 5 ×10-12eV m , and provide a pathway toward an electric-field-induced 90° rotation of antiferromagnetic spin axis at room temperature by flexomagnetism.
An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V
Mishurova, Tatiana; Cabeza, Sandra; Artzt, Katia; Haubrich, Jan; Klaus, Manuela; Genzel, Christoph; Requena, Guillermo; Bruno, Giovanni
2017-01-01
Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment. PMID:28772706
Global Existence Results for Viscoplasticity at Finite Strain
NASA Astrophysics Data System (ADS)
Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe
2018-01-01
We study a model for rate-dependent gradient plasticity at finite strain based on the multiplicative decomposition of the strain tensor, and investigate the existence of global-in-time solutions to the related PDE system. We reveal its underlying structure as a generalized gradient system, where the driving energy functional is highly nonconvex and features the geometric nonlinearities related to finite-strain elasticity as well as the multiplicative decomposition of finite-strain plasticity. Moreover, the dissipation potential depends on the left-invariant plastic rate, and thus depends on the plastic state variable. The existence theory is developed for a class of abstract, nonsmooth, and nonconvex gradient systems, for which we introduce suitable notions of solutions, namely energy-dissipation-balance and energy-dissipation-inequality solutions. Hence, we resort to the toolbox of the direct method of the calculus of variations to check that the specific energy and dissipation functionals for our viscoplastic models comply with the conditions of the general theory.
Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Runguang; Xie, Qingge; Wang, Yan-Dong
Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less
Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction
Li, Runguang; Xie, Qingge; Wang, Yan-Dong; ...
2017-12-28
Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less
Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction
Li, Runguang; Xie, Qingge; Wang, Yan-Dong; Liu, Wenjun; Wang, Mingguang; Wu, Guilin; Li, Xiaowu; Zhang, Minghe; Lu, Zhaoping; Geng, Chang; Zhu, Ting
2018-01-01
Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial−temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands. Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials. PMID:29284751
3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients.
Kokkinis, Dimitri; Bouville, Florian; Studart, André R
2018-05-01
Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D-printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect-rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect-tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.
2002-11-01
The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the optical disbond detection system that is being developed. While certification concerns exist with embedding sensors in repairs, this study shows that embedded optical fibre sensors may provide for a health monitoring system with enhanced reliability and sensitivity.
NASA Astrophysics Data System (ADS)
Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan; Zhang, Yingrong
2018-07-01
We investigate the transverse free vibration behaviour of axially moving nanobeams based on the nonlocal strain gradient theory. Considering the geometrical nonlinearity, which takes the form of von Kármán strains, the coupled plane motion equations and related boundary conditions of a new size-dependent beam model of Euler-Bernoulli type are developed using the generalized Hamilton principle. Using the simply supported axially moving nanobeams as an example, the complex modal analysis method is adopted to solve the governing equation; then, the effect of the order of modal truncation on the natural frequencies is discussed. Subsequently, the roles of the nonlocal parameter, material characteristic parameter, axial speed, stiffness and axial support rigidity parameter on the free vibration are comprehensively addressed. The material characteristic parameter induces the stiffness hardening of nanobeams, while the nonlocal parameter induces stiffness softening. In addition, the roles of small-scale parameters on the flutter critical velocity and stability are explained.
Unraveling Deformation Mechanisms in Gradient Structured Metals
NASA Astrophysics Data System (ADS)
Moering, Jordan Alexander
Gradient structures have demonstrated high strength and high ductility, introducing new mechanisms to challenge conventional mechanics. This work develops a method for characterizing the shear strain in gradient structured steel and presents evidence of a texture gradient that develops in Surface Mechanical Attrition Treatment (SMAT). Mechanics underlying some theories of the strengthening mechanisms in gradient structured metals are introduced, followed by the fabrication and testing of gradient structured aluminum rod. The round geometry is intrinsically different from its flat counterparts, which leads to a multiaxial stress state evolving in tension. The aluminum exhibits strengthening beyond rule of mixtures, and texture evolution in the post-mortem sample indicates that out of plane stresses operate within the gradient. Finally, another gradient structured aluminum rod is shown to exhibit higher strength and higher elongation to failure in a variety of sample diameters and processing conditions. The GND density and microstructural evolution showed no significant changes during mechanical testing, and high resolution strain mapping was successfully completed within the core of the material. These discoveries and contributions to the field should help continue unraveling the deformation mechanisms of gradient structured metals.
Phase-based Bragg intragrating distributed strain sensor
NASA Astrophysics Data System (ADS)
Huang, S.; Ohn, M. M.; Measures, R. M.
1996-03-01
A strain-distribution sensing technique based on the measurement of the phase spectrum of the reflected light from a fiber-optic Bragg grating is described. When a grating is subject to a strain gradient, the grating will experience a chirp and therefore the resonant wavelength will vary along the grating, causing wavelength-dependent penetration depth. Because the group delay for each wavelength component is related to its penetration depth and the resonant wavelength is determined by strain, a measured phase spectrum can then indicate the local strain as a function of location within the grating. This phase-based Bragg grating sensing technique offers a powerful new means for studying some important effects over a few millimeters or centimeters in smart structures.
Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankara Rama Krishnan, P. S.; Munroe, Paul; Nagarajan, V.
Cation intermixing at functional oxide interfaces remains a highly controversial area directly relevant to interface-driven nanoelectronic device properties. Here, we systematically explore the cation intermixing in epitaxial (001) oriented multiferroic bismuth ferrite (BFO) grown on a (001) lanthanum aluminate (LAO) substrate. Aberration corrected dedicated scanning transmission electron microscopy and electron energy loss spectroscopy reveal that the interface is not chemically sharp, but with an intermixing of ∼2 nm. The driving force for this process is identified as misfit-driven elastic strain. Landau-Ginzburg-Devonshire-based phenomenological theory was combined with the Sheldon and Shenoy formula in order to understand the influence of boundary conditions andmore » depolarizing fields arising from misfit strain between the LAO substrate and BFO film. The theory predicts the presence of a strong potential gradient at the interface, which decays on moving into the bulk of the film. This potential gradient is significant enough to drive the cation migration across the interface, thereby mitigating the misfit strain. Our results offer new insights on how chemical roughening at oxide interfaces can be effective in stabilizing the structural integrity of the interface without the need for misfit dislocations. These findings offer a general formalism for understanding cation intermixing at highly strained oxide interfaces that are used in nanoelectronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliva, R.; Ibanez, J.; Cusco, R.
We use Raman scattering to investigate the composition behavior of the E{sub 2h} and A{sub 1}(LO) phonons of In{sub x}Ga{sub 1-x}N and to evaluate the role of lateral compositional fluctuations and in-depth strain/composition gradients on the frequency of the A{sub 1}(LO) bands. For this purpose, we have performed visible and ultraviolet Raman measurements on a set of high-quality epilayers grown by molecular beam epitaxy with In contents over a wide composition range (0.25 < x < 0.75). While the as-measured A{sub 1}(LO) frequency values strongly deviate from the linear dispersion predicted by the modified random-element isodisplacement (MREI) model, we showmore » that the strain-corrected A{sub 1}(LO) frequencies are qualitatively in good agreement with the expected linear dependence. In contrast, we find that the strain-corrected E{sub 2h} frequencies exhibit a bowing in relation to the linear behavior predicted by the MREI model. Such bowing should be taken into account to evaluate the composition or the strain state of InGaN material from the E{sub 2h} peak frequencies. We show that in-depth strain/composition gradients and selective resonance excitation effects have a strong impact on the frequency of the A{sub 1}(LO) mode, making very difficult the use of this mode to evaluate the strain state or the composition of InGaN material.« less
Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)
NASA Astrophysics Data System (ADS)
Garland, Anthony
The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the mesostructure are continuous function of the applied pseudo strain. Finally, the macro and mesostructure designs are coordinated so that the macro and meso levels agree on the material properties at each macro region. In addition, a coordination effort seeks to coordinate the boundaries of adjacent mesostructure designs so that the macro load path is transmitted from one mesostructure design to its neighbors. The BOTT algorithm has several advantages over existing algorithms within the literature. First, the BOTT algorithm significantly reduces the computational power required to run the algorithm. Second, the BOTT algorithm indirectly enforces a minimum mesostructure density constraint which increases the manufacturability of the final design. Third, the BOTT algorithm seeks to transfer the load from one mesostructure to its neighbors by coordinating the boundaries of adjacent mesostructure designs. However, the BOTT algorithm can still be improved since it may have difficulty converging due to the step function nature of the mesostructure design problem at low density.
Static strain tuning of quantum dots embedded in a photonic wire
NASA Astrophysics Data System (ADS)
Tumanov, D.; Vaish, N.; Nguyen, H. A.; Curé, Y.; Gérard, J.-M.; Claudon, J.; Donatini, F.; Poizat, J.-Ph.
2018-03-01
We use strain to statically tune the semiconductor band gap of individual InAs quantum dots (QDs) embedded in a GaAs photonic wire featuring very efficient single photon collection. Thanks to the geometry of the structure, we are able to shift the QD excitonic transition by more than 25 meV by using nano-manipulators to apply the stress. Moreover, owing to the strong transverse strain gradient generated in the structure, we can relatively tune two QDs located in the wire waveguide and bring them in resonance, opening the way to the observation of collective effects such as superradiance.
NASA Astrophysics Data System (ADS)
Farajpour, M. R.; Shahidi, A. R.; Tabataba'i-Nasab, F.; Farajpour, A.
2018-06-01
In this paper, the forced vibration of a single-walled carbon nanotube (SWCNT) under a moving nanoparticle is investigated based on the higher-order nonlocal strain gradient theory. The SWCNT is subjected to thermo-mechanical stresses and an external longitudinal magnetic field. The influences of higher-order stress gradients in conjunction with the strain gradient nonlocality are taken into account. Using Hamilton's principle and Maxwell's equations, the higher-order differential equations of motion are derived. An analytical solution is obtained for the dynamic deflection of SWCNTs using the Galerkin method. Furthermore, the governing differential equation is solved numerically using the precise integration method. The results of the two solution procedures are compared and an excellent agreement is found between them. Finally, the influences of various scale parameters, the velocity of the moving nanoparticle, the initial axial stress, the temperature change and longitudinal magnetic field on the dynamic response of SWCNTs are investigated.
He, Tengyu; Lin, Chucheng; Shi, Liangjing; Wang, Ranran; Sun, Jing
2018-03-21
Recent years have witnessed a breathtaking development of wearable strain sensors. Coupling high sensitivity and stretchability in a strain sensor is greatly desired by emerging wearable applications but remains a big challenge. To tackle this issue, a through-layer buckle wavelength-gradient design is proposed and a facile and universal fabrication strategy is demonstrated to introduce such a gradient into the sensing film with multilayered sensing units. Following this strategy, strain sensors are fabricated using graphene woven fabrics (GWFs) as sensing units, which exhibit highly tunable electromechanical performances. Specifically, the sensor with 10-layer GWFs has a gauge factor (GF) of 2996 at a maximum strain of 242.74% and an average GF of 327. It also exhibits an extremely low minimum detection limit of 0.02% strain, a fast signal response of less than 90 ms, and a high cyclic durability through more than 10 000 cycling test. Such excellent performances qualify it in accurately monitoring full-range human activities, ranging from subtle stimuli (e.g., pulse, respiration, and voice recognition) to vigorous motions (finger bending, walking, jogging, and jumping). The combination of experimental observations and modeling study shows that the predesigned through-layer buckle wavelength gradient leads to a layer-by-layer crack propagation process, which accounts for the underlying working mechanism. Modeling study shows a great potential for further improvement of sensing performances by adjusting fabrication parameters such as layers of sensing units ( n) and step pre-strain (ε sp ). For one thing, when ε sp is fixed, the maximum sensing strain could be adjusted from >240% ( n = 10) to >450% ( n = 15) and >1200% ( n = 20). For the other, when n is fixed, the maximum sensing strain could be adjusted from >240% (ε sp = 13.2%) to >400% (ε sp = 18%) and >800% (ε sp = 25%).
NASA Astrophysics Data System (ADS)
Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan
2018-06-01
In this paper, we studied the parametric resonance issue of an axially moving viscoelastic nanobeam with varying velocity. Based on the nonlocal strain gradient theory, we established the transversal vibration equation of the axially moving nanobeam and the corresponding boundary condition. By applying the average method, we obtained a set of self-governing ordinary differential equations when the excitation frequency of the moving parameters is twice the intrinsic frequency or near the sum of certain second-order intrinsic frequencies. On the plane of parametric excitation frequency and excitation amplitude, we can obtain the instability region generated by the resonance, and through numerical simulation, we analyze the influence of the scale effect and system parameters on the instability region. The results indicate that the viscoelastic damping decreases the resonance instability region, and the average velocity and stiffness make the instability region move to the left- and right-hand sides. Meanwhile, the scale effect of the system is obvious. The nonlocal parameter exhibits not only the stiffness softening effect but also the damping weakening effect, while the material characteristic length parameter exhibits the stiffness hardening effect and damping reinforcement effect.
Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason W; Paiella, Roberto; Swan, Anna K
2015-09-09
Graphene is a promising material for strain engineering based on its excellent flexibility and elastic properties, coupled with very high electrical mobility. In order to implement strain devices, it is important to understand and control the clamping of graphene to its support. Here, we investigate the limits of the strong van der Waals interaction on friction clamping. We find that the friction of graphene on a SiO2 substrate can support a maximum local strain gradient and that higher strain gradients result in sliding and strain redistribution. Furthermore, the friction decreases with increasing strain. The system used is graphene placed over a nanoscale SiO2 grating, causing strain and local strain variations. We use a combination of atomic force microscopy and Raman scattering to determine the friction coefficient, after accounting for compression and accidental charge doping, and model the local strain variation within the laser spot size. By using uniaxial strain aligned to a high crystal symmetry direction, we also determine the 2D Raman Grüneisen parameter and deformation potential in the zigzag direction.
The small length scale effect for a non-local cantilever beam: a paradox solved.
Challamel, N; Wang, C M
2008-08-27
Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.
Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus
Pittera, Justine; Humily, Florian; Thorel, Maxine; Grulois, Daphné; Garczarek, Laurence; Six, Christophe
2014-01-01
Marine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long- and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant β-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 °C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation. PMID:24401861
Genetic diversity in natural populations of a soil bacterium across a landscape gradient
McArthur, J. Vaun; Kovacic, David A.; Smith, Michael H.
1988-01-01
Genetic diversity in natural populations of the bacterium Pseudomonas cepacia was surveyed in 10 enzymes from 70 clones isolated along a landscape gradient. Estimates of genetic diversity, ranging from 0.54 to 0.70, were higher than any previously reported values of which we are aware and were positively correlated with habitat variability. Patterns of bacterial genetic diversity were correlated with habitat variability. Findings indicate that the source of strains used in genetic engineering will greatly affect the outcome of planned releases in variable environments. Selection of generalist strains may confer a large advantage to engineered populations, while selection of laboratory strains may result in quick elimination of the engineered strains. PMID:16594009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almer, J. D.; Stock, S. R.; Northeastern Univ.
2010-08-26
High energy X-ray scattering (80.7keV photons) at station 1-ID of the Advanced Photon Source quantified internal strains as a function of applied stress in mature bovine tooth. These strains were mapped from dentin through the dentinoenamel junction (DEJ) into enamel as a function of applied compressive stress in two small parallelepiped specimens. One specimen was loaded perpendicular to the DEJ and the second parallel to the DEJ. Internal strains in enamel and dentin increased and, as expected from the relative values of the Young's modulus, the observed strains were much higher in dentin than in enamel. Large strain gradients weremore » observed across the DEJ, and the data suggest that the mantle dentin-DEJ-aprismatic enamel structure may shield the near-surface volume of the enamel from large strains. In the enamel, drops in internal strain for applied stresses above 40MPa also suggest that this structure had cracked.« less
Turbulence: The chief outstanding difficulty of our subject
NASA Technical Reports Server (NTRS)
Bradshaw, Peter
1992-01-01
A review of interesting current topics in turbulence research is decorated with examples of popular fallacies about the behavior of turbulence. Topics include the status of the Law of the Wall, especially in compressible flow; analogies between the effects of Reynolds numbers, pressure gradient, unsteadiness and roughness change; the status of Kolmogorov's universal equilibrium theory and local isotropy of the small eddies; turbulence modelling, with reference to universality, pressure-strain modelling and the dissipation equation; and chaos. Fallacies include the mixing-length concept; the effect of pressure gradient on Reynolds shear stress; the separability of time and space derivatives; models of the dissipation equation; and chaos.
NASA Astrophysics Data System (ADS)
Zhen, Yaxin; Zhou, Lin
2017-03-01
Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.
A study on Rayleigh wave dispersion in bone according to Mindlin's Form II gradient elasticity.
Vavva, Maria G; Gergidis, Leonidas N; Protopappas, Vasilios C; Charalambopoulos, Antonios; Polyzos, Demosthenes; Fotiadis, Dimitrios I
2014-05-01
The classical elasticity cannot effectively describe bone's mechanical behavior since only homogeneous media and local stresses are assumed. Additionally, it cannot predict the dispersive nature of the Rayleigh wave which has been reported in experimental studies and was also demonstrated in a previous computational study by adopting Mindlin's Form II gradient elasticity. In this work Mindlin's theory is employed to analytically determine the dispersion of Rayleigh waves in a strain gradient elastic half-space. An isotropic semi-infinite space is considered with properties equal to those of bone and dynamic behavior suffering from microstructural effects. Microstructural effects are considered by incorporating four intrinsic parameters in the stress analysis. The results are presented in the form of group and phase velocity dispersion curves and compared with existing computational results and semi-analytical curves calculated for a simpler case of Rayleigh waves in dipolar gradient elastic half-spaces. Comparisons are also performed with the velocity of the first-order antisymmetric mode propagating in a dipolar plate so as to observe the Rayleigh asymptotic behavior. It is shown that Mindlin's Form II gradient elasticity can effectively describe the dispersive nature of Rayleigh waves. This study could be regarded as a step toward the ultrasonic characterization of bone.
Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames
NASA Astrophysics Data System (ADS)
Richardson, E. S.; Granet, V. E.; Eyssartier, A.; Chen, J. H.
2010-11-01
The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. 'Back supported' lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.
NASA Astrophysics Data System (ADS)
Sahmani, S.; Aghdam, M. M.
2018-03-01
A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.
How the tooth got its stripes: patterning via strain-cued motility
Cox, Brian N.
2013-01-01
We hypothesize that a population of migrating cells can form patterns when changes in local strains owing to relative cell motions induce changes in cell motility. That the mechanism originates in competing rates of motion distinguishes it from mechanisms involving strain energy gradients, e.g. those generated by surface energy effects or eigenstrains among cells, and diffusion–reaction mechanisms involving chemical signalling factors. The theory is tested by its ability to reproduce the morphological characteristics of enamel in the mouse incisor. Dental enamel is formed during amelogenesis by a population of ameloblasts that move about laterally within an expanding curved sheet, subject to continuously evolving spatial and temporal gradients in strain. Discrete-cell simulations of this process compute the changing strain environment of all cells and predict cell trajectories by invoking simple rules for the motion of an individual cell in response to its strain environment. The rules balance a tendency for cells to enhance relative sliding motion against a tendency to maintain uniform cell–cell separation. The simulations account for observed waviness in the enamel microstructure, the speed and shape of the ‘commencement front’ that separates domains of migrating secretory-stage ameloblasts from those that are not yet migrating, the initiation and sustainment of layered, fracture-resistant decussation patterns (cross-plied microstructure) and the transition from decussating inner enamel to non-decussating outer enamel. All these characteristics can be correctly predicted with the use of a single scalar adjustable parameter. PMID:23614945
A mechanical analysis of conduit arteries accounting for longitudinal residual strains.
Wang, Ruoya; Gleason, Rudolph L
2010-04-01
Identification of an appropriate stress-free reference configuration is critically important in providing a reasonable prediction of the intramural stress distribution when performing biomechanical analyses on arteries. The stress-free state is commonly approximated as a radially cut ring that typically opens into a nearly circular sector, relieving much of the circumferential residual strains that exist in the traction-free configuration. An opening angle is often used to characterize this sector. In this study, we first present experimental results showing significant residual deformations in the longitudinal direction of two commonly studied arteries in the pig: the common carotid artery and the left anterior descending coronary artery. We concluded that a radially cut ring cannot completely describe the stress-free state of the arteries. Instead, we propose the use of a longitudinal opening angle, in conjunction with the traditional circumferential opening angle, to experimentally quantify the stress-free state of an artery. Secondly, we propose a new kinematic model to account for the addition of longitudinal residual strains through employing the longitudinal opening angle and performed a stress analysis. We found that with the inclusion of longitudinal residual strains in the stress analysis, the predicted circumferential stress gradient was decreased by 3-fold and the predicted longitudinal stress gradient was increased by 5.7-fold. Thus, inclusion of longitudinal residual strains has a significant effect on the predicted stress distribution in arteries.
Mixed finite-element formulations in piezoelectricity and flexoelectricity
2016-01-01
Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a ‘weighted integral sense’ to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application. PMID:27436967
Mixed finite-element formulations in piezoelectricity and flexoelectricity.
Mao, Sheng; Purohit, Prashant K; Aravas, Nikolaos
2016-06-01
Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a 'weighted integral sense' to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application.
Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors
NASA Astrophysics Data System (ADS)
Franke, David P.; Hrubesch, Florian M.; Künzl, Markus; Becker, Hans-Werner; Itoh, Kohei M.; Stutzmann, Martin; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.
2015-07-01
The nuclear spins of ionized donors in silicon have become an interesting quantum resource due to their very long coherence times. Their perfect isolation, however, comes at a price, since the absence of the donor electron makes the nuclear spin difficult to control. We demonstrate that the quadrupolar interaction allows us to effectively tune the nuclear magnetic resonance of ionized arsenic donors in silicon via strain and determine the two nonzero elements of the S tensor linking strain and electric field gradients in this material to S11=1.5 ×1022 V /m2 and S44=6 ×1022 V /m2 . We find a stronger benefit of dynamical decoupling on the coherence properties of transitions subject to first-order quadrupole shifts than on those subject to only second-order shifts and discuss applications of quadrupole physics including mechanical driving of magnetic resonance, cooling of mechanical resonators, and strain-mediated spin coupling.
USDA-ARS?s Scientific Manuscript database
The effect of three rates of a commercial formulation of Beauveria bassiana Strain GHA was evaluated against the coffee berry borer (CBB) Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae), at three commercial coffee farms located at different altitudes on the island of Hawaii. Hypo...
Teichtmeister, S.; Aldakheel, F.
2016-01-01
This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic–plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. PMID:27002069
Investigation of the stress distribution around a mode 1 crack with a novel strain gradient theory
NASA Astrophysics Data System (ADS)
Lederer, M.; Khatibi, G.
2017-01-01
Stress concentrations at the tip of a sharp crack have extensively been investigated in the past century. According to the calculations of Inglis, the stress ahead of a mode 1 crack shows the characteristics of a singularity. This solution is exact in the framework of linear elastic fracture mechanics (LEFM). From the viewpoint of multiscale modelling, however, it is evident that the stress at the tip of a stable crack cannot be infinite, because the strengths of atomic bonds are finite. In order to prevent the problem of this singularity, a new version of strain gradient elasticity is employed here. This theory is implemented in the commercial FEM code ABAQUS through user subroutine UEL. Convergence of the model is proved through consecutive mesh refinement. In consequence, the stresses ahead of a mode 1 crack become finite. Furthermore, the model predicts a size effect in the sense “smaller is stronger”.
NASA Astrophysics Data System (ADS)
Basak, Anup; Levitas, Valery I.
2018-04-01
A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.
Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo; ...
2017-05-10
A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (T C). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba 1-xSr xTiO 3 films which result in spatial polarization gradients as large asmore » 35 μC cm -2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ε r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo
A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (T C). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba 1-xSr xTiO 3 films which result in spatial polarization gradients as large asmore » 35 μC cm -2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ε r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.« less
Dynamic deformations of shallow sediments in the Valley of Mexico, Part II: Single-station estimates
Singh, S.K.; Santoyo, M.; Bodin, P.; Gomberg, J.
1997-01-01
We develop simple relations to estimate dynamic displacement gradients (and hence the strains and rotations) during earthquakes in the lake-bed zone of the Valley of Mexico, where the presence of low-velocity, high-water content clays in the uppermost layers cause dramatic amplification of seismic waves and large strains. The study uses results from a companion article (Bodin et al., 1997) in which the data from an array at Roma, a lake-bed site, were analyzed to obtain displacement gradients. In this article, we find that the deformations at other lake-bed sites may differ from those at Roma by a factor of 2 to 3. More accurate estimates of the dominant components of the deformation at an individual instrumented lake-bed site may be obtained from the maximum horizontal velocity and displacement, ??max and umax, at the surface. The maximum surface strain ??max is related to ??max by ??max = ??max/C, with C ??? 0.6 km/sec. From the analysis of data from sites equipped with surface and borehole sensors, we find that the vertical gradient of peak horizontal displacement (??umax/??z) computed from sensors at 0 and 30 m equals (umax)z = 0/??z, ??z = 30 m, within a factor of 1.5. This is the largest gradient component, and the latter simple relation permits its estimation from surface records alone. The observed profiles of umax versus depth suggest a larger gradient in some depth range of 10 to 20 m, in agreement with synthetic calculations presented in Bodin et al. (1997). From the free-field recordings of the 19 September 1985 Michoacan earthquake, we estimate a maximum surface strain, ??max, between 0.05% and 0.11%, and a lower bound for the peak vertical gradient (??umax/??z) between 0.3% and 1.3%. This implies that (1) the extensive failure of water pipe joints during the Michoacan earthquake in the valley occurred at axial strains of about 0.1%, not 0.38% as previously reported, and (2) the clays of the valley behave almost linearly even at shear strain of about 1%, in agreement with laboratory tests. The available data in the valley can be used to predict deformations during future earthquakes using self-similar earthquake scaling.
NASA Astrophysics Data System (ADS)
Fettré, D.; Bouvier, S.; Favergeon, J.; Kurpaska, L.
2015-12-01
The paper is devoted to modeling residual stresses and strains in an oxide film formed during high temperature oxidation. It describes the deflection test in isothermal high-temperature monofacial oxidation (DTMO) of pure zirconium. The model incorporates kinetics and mechanism of oxidation and takes into account elastic, viscoplastic, growth and chemical strains. Different growth strains models are considered, namely, isotropic growth strains given by Pilling-Bedworth ratio, anisotropic growth strains defined by Parise and co-authors and physically based model for growth strain proposed by Clarke. Creep mechanisms based on dislocation slip and core diffusion, are used. A mechanism responsible for through thickness normal stress gradient in the oxide film is proposed. The material parameters are identified using deflection tests under 400 °C, 500 °C and 600 °C. The effect of temperature on creep and stress relaxation is analyzed. Numerical sensitivity study of the DTMO experiment is proposed in order to investigate the effects of the initial foil thickness and platinum coating on the deflection curves.
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1996-01-01
Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.
Accurate interlaminar stress recovery from finite element analysis
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Riggs, H. Ronald
1994-01-01
The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.
NASA Astrophysics Data System (ADS)
Dou, Ruifeng; Phillion, A. B.
2016-08-01
Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.
Zhang, Ming; Qiao, Xuewei; Zhao, Liang; Jiang, Lu; Ren, Fazheng
2011-12-01
Probiotics and carcinogens both have a significant effect on the microfloral composition of the human intestine. The objective of this study was to investigate the impact of an important carcinogen, 4-Nitroquinoline-1-Oxide on colonic microflora and the efficacy of the probiotic Lactobacillus salivarius REN as an agent of counteracting these effects. Using denaturing gradient gel electrophoresis (DGGE) combined with redundancy analysis, we demonstrated that both 4-Nitroquinoline-1-Oxide and L. salivarius REN significantly altered the bacterial communities of rat colons. A total of 27 bacterial strains were identified as being affected by treatment with 4-Nitroquinoline-1-Oxide or L. salivarius REN using a t-value biplot combined with band sequencing. 4-Nitroquinoline-1-Oxide treatment increased the abundance of two potential pathogens (one Helicobacter strain and one Desulfovibrio strain), as well as reducing the abundance of two potentially beneficial strains (one Ruminococcaceae strain and one Rumen bacteria). The Helicobacter strain was initally detected in carcinogen-treated rat intestinal microflora, but L. salivarius REN treatment effectively suppressed the growth of the Helicobacter strain. These results suggested that L. salivarius REN may be a potential probiotic, efficiently acting against the initial infection with, and the growth of pathogenic bacteria.
Miehe, C; Teichtmeister, S; Aldakheel, F
2016-04-28
This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).
Interface Effects of the Properties and Processing of Graded Composite Aluminum Alloys
2015-08-31
diffuse interface. Produced by the Alcoa sequential casting process, the material has a gradient in composition from a stronger, precipitation...strengthened alloy (7055) to a softer, strain-hardenable alloy (5456) [1], [2]. Alcoa donated material, 30x30x2 cm3 in volume. The material was cast, rolled
Latent hardening size effect in small-scale plasticity
NASA Astrophysics Data System (ADS)
Bardella, Lorenzo; Segurado, Javier; Panteghini, Andrea; Llorca, Javier
2013-07-01
We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.
NASA Technical Reports Server (NTRS)
Garmestai, H.; Harris, K.; Lourenco, L.
1997-01-01
Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.
NASA Astrophysics Data System (ADS)
Park, Jae Yong; Lee, Illhwan; Ham, Juyoung; Gim, Seungo; Lee, Jong-Lam
2017-06-01
Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. Here, we fabricate single-crystal AgCl nanorods by using a Cl2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl nanorods. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl nanorods grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl nanorods. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the nanorod growth. Nanorods grown for 45 s exhibit superior haze up to 100% and luminance of optical device increased by up to 33%.
[Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].
Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui
2015-05-01
Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.
NASA Astrophysics Data System (ADS)
Sandeep, Anurag; Proch, Fabian; Kempf, Andreas M.; Chakraborty, Nilanjan
2018-06-01
The statistical behavior of the surface density function (SDF, the magnitude of the reaction progress variable gradient) and the strain rates, which govern the evolution of the SDF, have been analyzed using a three-dimensional flame-resolved simulation database of a turbulent lean premixed methane-air flame in a bluff-body configuration. It has been found that the turbulence intensity increases with the distance from the burner, changing the flame curvature distribution and increasing the probability of the negative curvature in the downstream direction. The curvature dependences of dilatation rate ∇ṡu → and displacement speed Sd give rise to variations of these quantities in the axial direction. These variations affect the nature of the alignment between the progress variable gradient and the local principal strain rates, which in turn affects the mean flame normal strain rate, which assumes positive values close to the burner but increasingly becomes negative as the effect of turbulence increases with the axial distance from the burner exit. The axial distance dependences of the curvature and displacement speed also induce a considerable variation in the mean value of the curvature stretch. The axial distance dependences of the dilatation rate and flame normal strain rate govern the behavior of the flame tangential strain rate, and its mean value increases in the downstream direction. The current analysis indicates that the statistical behaviors of different strain rates and displacement speed and their curvature dependences need to be included in the modeling of flame surface density and scalar dissipation rate in order to accurately capture their local behaviors.
On the estimation of thermal strains developed during oxide growth
NASA Astrophysics Data System (ADS)
Sabau, Adrian S.; Wright, Ian G.
2009-07-01
This paper presents results for the strains and stresses in oxide scales under the conditions of temperature and pressure expected in typical steam boiler operation. These conditions are radically different from those typically encountered in laboratory testing and include features such as a thermal gradient across the tube wall, significant internal (steam) pressure, and cycling of both steam temperature and pressure. Critical examination of the assumptions of flat-plate geometry, which is usually made in calculating stresses and strains in oxide scales, indicated that only the component of the hoop strain that generates stress must be reported for the cylindrical case, and that the use of simple plane-strain is adequate for the system studied. Calculations were made for alloy T22 with a hypothetical, single-layered oxide with appropriate properties. Typical conditions associated with transition of the boiler from full to partial load involve a decrease in both steam temperature and pressure, and these two sources of stress generation were found to exert opposite effects. The relative magnitudes of the resulting strains were used to explain the trends in strain levels calculated when the effects of thermal expansion, temperature loading, and pressure loading were superimposed.
Ng, Joanna L; Collins, Ciara E; Knothe Tate, Melissa L
2017-07-01
Nonwoven and textile membranes have been applied both externally and internally to prescribe boundary conditions for medical conditions as diverse as oedema and tissue defects. Incorporation of mechanical gradients in next generation medical membrane design offers great potential to enhance function in a dynamic, physiological context. Yet the gradient properties and resulting mechanical performance of current membranes are not well described. To bridge this knowledge gap, we tested and compared the mechanical properties of bounding membranes used in both external (compression sleeves for oedema, exercise bands) and internal (surgical membranes) physiological contexts. We showed that anisotropic compression garment textiles, isotropic exercise bands and surgical membranes exhibit similar ranges of resistance to tension under physiologic strains. However, their mechanical gradients and resulting stress-strain relationships show differences in work capacity and energy expenditure. Exercise bands' moduli of elasticity and respective thicknesses allow for controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. In contrast, the gradients intrinsic to compression sleeve design exhibit gaps in the middle range (1-5N) of physiological strains and also inconsistencies along the length of the sleeve, resulting in less than optimal performance of these devices. These current shortcomings in compression textile and garment design may be addressed in the future through implementation of novel approaches. For example, patterns, fibre compositions, and fibre anisotropy can be incorporated into biomaterial design to achieve seamless mechanical gradients in structure and resulting dynamic function, which would be particularly useful in physiological contexts. These concepts can be applied further to biomaterial design to deliver pressure gradients during movement of oedematous limbs (compression garments) and facilitate transport of molecules and cells during tissue genesis within tissue defects (surgical membranes). External and internal biomaterial membranes prescribe boundary conditions for treatment of medical disorders, from oedema to tissue defects. Studies are needed to guide the design of next generation biomaterials and devices that incorporate gradient engineering approaches, which offer great potential to enhance function in a dynamic and physiological context. Mechanical gradients intrinsic to currently implemented biomaterials such as medical textiles and surgical interface membranes are poorly understood. Here we characterise quantitatively the mechanics of textile and nonwoven biomaterial membranes for external and internal use. The lack of seamless gradients in compression medical textiles contrasts with the graded mechanical effects achieved by elastomeric exercise bands, which are designed to deliver controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. Engineering textiles with a prescient choice of fibre composition/size, type of knit/weave and inlay fibres, and weave density/anisotropy will enable creation of fabrics that can deliver spatially and temporally controlled mechanical gradients to maintain force balances at tissue boundaries, e.g. to treat oedema or tissue defects. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karimipour, I.; Beni, Yaghoub Tadi; Taheri, N.
2017-10-01
Plate-type clamped microplate is of the most common constructive elements for developing in-liquid-operating devices. While the electromechanical behavior of clamped microplate in non-liquid environments has exclusively been addressed in the literature, no theoretical studies have yet been conducted on precise modeling of the clamped microplate in electrolyte liquid. Herein, the electromechanical response and instability of the clamped microplate immersed in ionic electrolyte media are investigated. The electrochemical force field is determined using double layer theory and linearized Poisson-Boltzmann equation. The presence of dispersion forces, i.e., Casimir and van der Waals attractions, are included in the theoretical model considering the correction due to the presence of liquid media between the interacting surfaces (three-layer model). To this end, a kind of microplate has been designed, i.e., a square microplate with all edges clamped supported. The strain gradient elasticity is employed to model the size-dependent structural behavior of the clamped microplate. To solve the nonlinear constitutive equation of the system, Extended Kantorovich Method, is employed and the pull-in parameter of the microplate are extracted. Impacts of the dispersion forces and size effect on the instability characteristics are discussed as well as the effect of ion concentration and potential ratio. It is found that the significant difference between the pull-in instability parameters in the modified strain gradient theory and the classical theory for thin microplates is merely due to the consideration of size effect parameter in the modified strain gradient theory. To confirm the validity of formulations, the numerical values of the results are compared. The results predicted via the aforementioned approach are in excellent agreement with those in the literature. Some new examples are solved to demonstrate the applicability of the procedure.
The Effect of Strain Rate on the Evolution of Plane Wakes Subjected to Irrotational Strains
NASA Technical Reports Server (NTRS)
Rogers, Michael M.; Merriam, Marshal (Technical Monitor)
1996-01-01
Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of irrotational plane strain applied at three different strain rates have been generated. The strain geometry is such that the flow is compressed in the streamwise direction and expanded in the cross-stream direction with the spanwise direction being unstrained. This geometry is the temporally evolving analogue of a spatially evolving wake in an adverse pressure gradient. A pseudospectral numerical method with up to 16 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, Re, of about 2,000. Although the evolutions of many statistics are nearly collapsed when plotted against total strain, there are some differences owing to the different strain rate histories. The impact of strain-rate on the wake spreading rate, the peak velocity deficit, the Reynolds stress profiles, and the flow structure is examined.
NASA Astrophysics Data System (ADS)
Yin, Cun-hong; Liang, Yi-long; Jiang, Yun; Yang, Ming; Long, Shao-lei
2017-11-01
The microstructures of 20CrNi2Mo steel underneath the contact surface were examined after dry sliding. Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Backscattered Diffraction (EBSD) and an ultra-micro-hardness tester were used to characterize the worn surface and dry sliding wear-induced layer. Martensite laths were ultra-refined due to cumulative strains and a large strain gradient that occurred during cyclic loading in wear near the surface. The microstructure evolution in dominant abrasive wear differs from that in adhesive wear. In dominant abrasive wear, only bent martensite laths with high-density deformation dislocations were observed. In contrast, in dominant adhesive wear, gradient structures were formed along the depth from the wear surface. Cross-sectional TEM foils were prepared in a focused ion beam (FIB) to observe the gradient structures in a dry sliding wear-induced layer at depths of approximately 1-5 μm and 5-20 μm. The gradient structures contained nano-laminated structures with an average thickness of 30-50 nm and bent martensite laths. We found that the original martensite laths coordinated with the strain energy and provided origin boundaries for the formation of gradient structures. Geometrically necessary boundaries (GNBs) and isolated dislocation boundaries (IDBs) play important roles in forming the nano-laminated structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandl, Adam, E-mail: jandl@mit.edu; Bulsara, Mayank T.; Fitzgerald, Eugene A.
The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}.more » A model for a two-energy level dislocation nucleation system is proposed based on our results.« less
NASA Astrophysics Data System (ADS)
Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin
2018-05-01
It is highly desirable to discover photovoltaic mechanisms that enable enhanced efficiency of solar cells. Here we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We used either an atomic force microscope or a micrometer-scale indentation system to introduce strain gradients, thus creating very large photovoltaic currents from centrosymmetric single crystals of strontium titanate, titanium dioxide, and silicon. This strain gradient–induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p-n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors.
The notion of a plastic material spin in atomistic simulations
NASA Astrophysics Data System (ADS)
Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.
2016-12-01
A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.
Ecological Divergence of a Novel Group of Chloroflexus Strains along a Geothermal Gradient
Weltzer, Michael L.
2013-01-01
Environmental gradients are expected to promote the diversification and coexistence of ecological specialists adapted to local conditions. Consistent with this view, genera of phototrophic microorganisms in alkaline geothermal systems generally appear to consist of anciently divergent populations which have specialized on different temperature habitats. At White Creek (Lower Geyser Basin, Yellowstone National Park), however, a novel, 16S rRNA-defined lineage of the filamentous anoxygenic phototroph Chloroflexus (OTU 10, phylum Chloroflexi) occupies a much wider thermal niche than other 16S rRNA-defined groups of phototrophic bacteria. This suggests that Chloroflexus OTU 10 is either an ecological generalist or, alternatively, a group of cryptic thermal specialists which have recently diverged. To distinguish between these alternatives, we first isolated laboratory strains of Chloroflexus OTU 10 from along the White Creek temperature gradient. These strains are identical for partial gene sequences encoding the 16S rRNA and malonyl coenzyme A (CoA) reductase. However, strains isolated from upstream and downstream samples could be distinguished based on sequence variation at pcs, which encodes the propionyl-CoA synthase of the 3-hydroxypropionate pathway of carbon fixation used by the genus Chloroflexus. We next demonstrated that strains have diverged in temperature range for growth. Specifically, we obtained evidence for a positive correlation between thermal niche breadth and temperature optimum, with strains isolated from lower temperatures exhibiting greater thermal specialization than the most thermotolerant strain. The study has implications for our understanding of both the process of niche diversification of microorganisms and how diversity is organized in these hot spring communities. PMID:23263946
Ecological divergence of a novel group of Chloroflexus strains along a geothermal gradient.
Weltzer, Michael L; Miller, Scott R
2013-02-01
Environmental gradients are expected to promote the diversification and coexistence of ecological specialists adapted to local conditions. Consistent with this view, genera of phototrophic microorganisms in alkaline geothermal systems generally appear to consist of anciently divergent populations which have specialized on different temperature habitats. At White Creek (Lower Geyser Basin, Yellowstone National Park), however, a novel, 16S rRNA-defined lineage of the filamentous anoxygenic phototroph Chloroflexus (OTU 10, phylum Chloroflexi) occupies a much wider thermal niche than other 16S rRNA-defined groups of phototrophic bacteria. This suggests that Chloroflexus OTU 10 is either an ecological generalist or, alternatively, a group of cryptic thermal specialists which have recently diverged. To distinguish between these alternatives, we first isolated laboratory strains of Chloroflexus OTU 10 from along the White Creek temperature gradient. These strains are identical for partial gene sequences encoding the 16S rRNA and malonyl coenzyme A (CoA) reductase. However, strains isolated from upstream and downstream samples could be distinguished based on sequence variation at pcs, which encodes the propionyl-CoA synthase of the 3-hydroxypropionate pathway of carbon fixation used by the genus Chloroflexus. We next demonstrated that strains have diverged in temperature range for growth. Specifically, we obtained evidence for a positive correlation between thermal niche breadth and temperature optimum, with strains isolated from lower temperatures exhibiting greater thermal specialization than the most thermotolerant strain. The study has implications for our understanding of both the process of niche diversification of microorganisms and how diversity is organized in these hot spring communities.
Biofuels. Engineering alcohol tolerance in yeast.
Lam, Felix H; Ghaderi, Adel; Fink, Gerald R; Stephanopoulos, Gregory
2014-10-03
Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation. Copyright © 2014, American Association for the Advancement of Science.
Cocolin, L; Manzano, M; Aggio, D; Cantoni, C; Comi, G
2001-05-01
A new molecular method consisting of polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis (DGGE) of a small fragment from the 16S rRNA gene identified the Micrococcaceae strains isolated from natural fermented Italian sausages. Lactic acid bacteria, total aerobic mesophilic flora, Enterobacteriaceae and faecal enterococci were also monitored. Micrococcaceaea control strains from international collections were used to optimise the method and 90 strains, isolated from fermented sausages, were identified by biochemical tests and PCR-DGGE. No differences were observed between the methods used. The results reported in this paper prove that Staphylococcus xylosus is the main bacterium involved in fermented sausage production, representing, from the tenth day of ripening, the only Micrococcaceaea species isolated.
NASA Astrophysics Data System (ADS)
Farajpour, A.; Rastgoo, A.
Carbon nanotubes are a new class of microtubule-stabilizing agents since they interact with protein microtubules in living cells, interfering with cell division and inducing apoptosis. In the present work, a modified beam model is developed to investigate the effect of carbon nanotubes on the buckling of microtubule bundles in living cell. A realistic interaction model is employed using recent experimental data on the carbon nanotube-stabilized microtubules. Small scale and surface effects are taken into account applying the nonlocal strain gradient theory and surface elasticity theory. Pasternak model is used to describe the normal and shearing effects of enclosing filament matrix on the buckling behavior of the system. An exact solution is obtained for the buckling growth rates of the mixed bundle in viscoelastic surrounding cytoplasm. The present results are compared with those reported in the open literature for single microtubules and an excellent agreement is found. Finally, the effects of different parameters such as the size, chirality, position and surface energy of carbon nanotubes on the buckling growth rates of microtubule bundles are studied. It is found that the buckling growth rate may increase or decrease by adding carbon nanotubes, depending on the diameter and chirality of carbon nanotubes.
NASA Astrophysics Data System (ADS)
Godard, G.; Paranthoen, P.; Gonzalez, M.
Anisotropic small-scale injection of a scalar (e.g. heat) in a turbulent medium can be performed by means of a small-diameter line source as already done in a turbulent plane jet and a turbulent boundary layer (Rosset et al., Phys. Fluids 13, 3729, 2001). In such conditions, however, experiment is revealed delicate especially, as regard to temperature gradient measurements in the near-field of the source. In the present study, we get rid of previous difficulties by setting up the heated line source in a simpler flow namely, a Bénard-von Kármán street. Under this situation, owing to a phase reference, the history of the instantaneous temperature gradient can be scrutinized from the vicinity of the source. Gradient statistics (second-order mo- ments, skewness, kurtosis ...) is derived which allows us to follow the evolution of anisotropy downstream of the line source. Alignment of temperature gradient with respect to strain principal axes is also analyzed. This experiment provides a precise knowledge of the way in which a scalar gradient evolves under the combined actions of strain, vorticity and molecular diffusion.
Coppotelli, B M; Ibarrolaza, A; Del Panno, M T; Morelli, I S
2008-02-01
The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO(2) production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.
Strain-induced band engineering in monolayer stanene on Sb(111)
NASA Astrophysics Data System (ADS)
Gou, Jian; Kong, Longjuan; Li, Hui; Zhong, Qing; Li, Wenbin; Cheng, Peng; Chen, Lan; Wu, Kehui
2017-10-01
The two-dimensional (2D) allotrope of tin with low buckled honeycomb structure named stanene is proposed to be an ideal 2D topological insulator with a nontrivial gap larger than 0.1 eV. Theoretical works also pointed out the topological property of stanene amenability to strain tuning. In this paper we report the successful realization of high quality, monolayer stanene film as well as monolayer stanene nanoribbons on Sb(111) surface by molecular-beam epitaxy, providing an ideal platform to the study of stanene. More importantly, we observed a continuous evolution of the electronic bands of stanene across the nanoribbon, related to the strain field gradient in stanene. Our work experimentally confirmed that strain is an effective method for band engineering in stanene, which is important for fundamental research and application of stanene.
Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
NASA Astrophysics Data System (ADS)
Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun
A spatially resolved X-ray diffraction method - with a submicron 3D resolution together with SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (1 2 3) and Cu (0 0 1) single crystals shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and the effective strain gradient alter white beam Laue patterns of the shocked materials. Several distinct structural zones are observed at different depths under the impact surface. The density of geometrically necessary dislocations (GNDs) is extremely high near the impact and backmore » surface of the shock recovered crystals. The spall region is characterized by a large density of mesoscale voids and GNDs. The spall region is separated from the impact and back surfaces by compressed regions with high total dislocation density but lower GNDs density. Self-organization of shear bands is observed in the shock recovered Cu single crystal.« less
Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow
NASA Astrophysics Data System (ADS)
Pumir, Alain; Bodenschatz, Eberhard; Xu, Haitao
2013-03-01
We describe the structure and dynamics of turbulence by the scale-dependent perceived velocity gradient tensor as supported by following four tracers, i.e., fluid particles, that initially form a regular tetrahedron. We report results from experiments in a von Kármán swirling water flow and from numerical simulations of the incompressible Navier-Stokes equation. We analyze the statistics and the dynamics of the perceived rate of strain tensor and vorticity for initially regular tetrahedron of size r0 from the dissipative to the integral scale. Just as for the true velocity gradient, at any instant, the perceived vorticity is also preferentially aligned with the intermediate eigenvector of the perceived rate of strain. However, in the perceived rate of strain eigenframe fixed at a given time t = 0, the perceived vorticity evolves in time such as to align with the strongest eigendirection at t = 0. This also applies to the true velocity gradient. The experimental data at the higher Reynolds number suggests the existence of a self-similar regime in the inertial range. In particular, the dynamics of alignment of the perceived vorticity and strain can be rescaled by t0, the turbulence time scale of the flow when the scale r0 is in the inertial range. For smaller Reynolds numbers we found the dynamics to be scale dependent.
Zhang, Ziheng; Dione, Donald P.; Brown, Peter B.; Shapiro, Erik M.; Sinusas, Albert J.; Sampath, Smita
2011-01-01
A novel MR imaging technique, spatial modulation of magnetization with polarity alternating velocity encoding (SPAMM-PAV), is presented to simultaneously examine the left ventricular early diastolic temporal relationships between myocardial deformation and intra-cavity hemodynamics with a high temporal resolution of 14 ms. This approach is initially evaluated in a dynamic flow and tissue mimicking phantom. A comparison of regional longitudinal strains and intra-cavity pressure differences (integration of computed in-plane pressure gradients within a selected region) in relation to mitral valve inflow velocities is performed in eight normal volunteers. Our results demonstrate that apical regions have higher strain rates (0.145 ± 0.005 %/ms) during the acceleration period of rapid filling compared to mid-ventricular (0.114 ± 0.007 %/ms) and basal regions (0.088 ± 0.009 %/ms), and apical strain curves plateau at peak mitral inflow velocity. This pattern is reversed during the deceleration period, when the strain-rates in the basal regions are the highest (0.027 ± 0.003 %/ms) due to ongoing basal stretching. A positive base-to-apex gradient in peak pressure difference is observed during acceleration, followed by a negative base-to apex gradient during deceleration. These studies shed insight into the regional volumetric and pressure difference changes in the left ventricle during early diastolic filling. PMID:21630348
Intermittency in small-scale turbulence: a velocity gradient approach
NASA Astrophysics Data System (ADS)
Meneveau, Charles; Johnson, Perry
2017-11-01
Intermittency of small-scale motions is an ubiquitous facet of turbulent flows, and predicting this phenomenon based on reduced models derived from first principles remains an important open problem. Here, a multiple-time scale stochastic model is introduced for the Lagrangian evolution of the full velocity gradient tensor in fluid turbulence at arbitrarily high Reynolds numbers. This low-dimensional model differs fundamentally from prior shell models and other empirically-motivated models of intermittency because the nonlinear gradient self-stretching and rotation A2 term vital to the energy cascade and intermittency development is represented exactly from the Navier-Stokes equations. With only one adjustable parameter needed to determine the model's effective Reynolds number, numerical solutions of the resulting set of stochastic differential equations show that the model predicts anomalous scaling for moments of the velocity gradient components and negative derivative skewness. It also predicts signature topological features of the velocity gradient tensor such as vorticity alignment trends with the eigen-directions of the strain-rate. This research was made possible by a graduate Fellowship from the National Science Foundation and by a Grant from The Gulf of Mexico Research Initiative.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.
1988-01-01
A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.
NASA Astrophysics Data System (ADS)
Lingyan, Zhao; Yinghao, Cui; He, Xue
2017-12-01
The welding mechanical heterogeneity, load complexity, material and geometrical structure makes it very difficult to assess the structural integrity of dissimilar metal weld (DMW) joints. Based on a numerical simulated approach of the continuous change of material mechanical property in the buttering layer, a reactor pressure vessel (RPV) outlet nozzle DMW joint with service loads is studied, effect of mechanical heterogeneity on the stress-strain field and stress triaxiality at the semi-elliptical surface crack front are discussed. The analyses show that once the crack extends into the high hardness zone of Alloy 182 buttering, the strain decreases sharply, the strain gradient increases and the crack propagation slows down. The influence of strength mismatch on the stress triaxiality at the shallow crack front is greater than that at the deep crack front. The interaction between strength mismatch and crack depth directly affects the crack growth direction.
A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows
NASA Astrophysics Data System (ADS)
Khlifi, Hechmi; Abdallah, J.; Aïcha, H.; Taïeb, L.
2011-01-01
In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the mean part of the pressure-strain correlation is used for the computation of compressible homogeneous at high-speed shear flow. Several studies concerning the compressible homogeneous shear flow show that the changes of the turbulence structures are principally due to the structural compressibility effects which significantly affect the pressure field and then the pressure-strain correlation. Eventually, this term appears as the main term responsible for the changes in the magnitude of the Reynolds stress anisotropies. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model of the pressure strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible Launder, Reece and Rodi model on compressible homogeneous shear flow is the major aim of the present work. From this extension, the standard coefficients C become a function of the extra compressibility parameters (the turbulent Mach number M and the gradient Mach number M) through the Pantano and Sarkar model. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar. The observed trend of the dramatic increase in the normal Reynolds stress anisotropies, the significant decrease in the Reynolds shear stress anisotropy and the increase of the turbulent kinetic energy amplification rate with increasing the gradient Mach number are well predicted by the model. The ability of the model to predict the equilibrium states for the flow in cases A to A from DNS results of Sarkar is examined, the results appear to be very encouraging. Thus, both parameters M and M should be used to model significant structural compressibility effects at high-speed shear flow.
The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent
Tixador, Philippe; Herzog, Laëtitia; Reine, Fabienne; Jaumain, Emilie; Chapuis, Jérôme; Le Dur, Annick; Laude, Hubert; Béringue, Vincent
2010-01-01
Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics. PMID:20419156
Tarascio, Michela; Leo, Laura Anna; Klersy, Catherine; Murzilli, Romina; Moccetti, Tiziano; Faletra, Francesco Fulvio
2017-07-01
Identification of the extent of scar transmurality in chronic ischemic heart disease is important because it correlates with viability. The aim of this retrospective study was to evaluate whether layer-specific two-dimensional speckle-tracking echocardiography allows distinction of scar presence and transmurality. A total of 70 subjects, 49 with chronic ischemic cardiomyopathy and 21 healthy subjects, underwent two-dimensional speckle-tracking echocardiography and late gadolinium-enhanced cardiac magnetic resonance. Scar extent was determined as the relative amount of hyperenhancement using late gadolinium-enhanced cardiac magnetic resonance in an 18-segment model (0% hyperenhancement = normal; 1%-50% = subendocardial scar; 51%-100% = transmural scar). In the same 18-segment model, peak systolic circumferential strain and longitudinal strain were calculated separately for the endocardial and epicardial layers as well as the full-wall myocardial thickness. All strain parameters showed cutoff values (area under the curve > 0.69) that allowed the discrimination of normal versus scar segments but not of transmural versus subendocardial scars. This was true for all strain parameters analyzed, without differences in efficacy between longitudinal and circumferential strain and subendocardial, subepicardial, and full-wall-thickness strain values. Circumferential and longitudinal strain in normal segments showed transmural and basoapical gradients (greatest values at the subendocardial layer and apex). In segments with scar, transmural gradient was maintained, whereas basoapical gradient was lost because the reduction of strain values in the presence of the scar was greater at the apex. The two-dimensional speckle-tracking echocardiographic values distinguish scar presence but not transmurality; thus, they are not useful predictors of scar segment viability. It remains unclear why there is a greater strain value reduction in the presence of a scar at the apical level. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Strain rate dependent activation of slip systems in calcite marbles from Syros (Cyclades, Greece)
NASA Astrophysics Data System (ADS)
Rogowitz, Anna; Grasemann, Bernhard; Morales, Luiz F. G.; Huet, Benjamin; White, Joseph C.
2017-04-01
The activation of certain slip systems in calcite has been experimentally proven to be highly temperature dependent, but also the strain rate plays an important role on the activation of the dominant slip system. In this study, observations from a flanking structure (i.e. shear zone) that developed under lower greenschist-facies conditions, in an almost pure calcite marble (Syros Island, Greece) are presented. The shear zone is characterized by a strain gradient from the slightly deformed tips (γ ˜ 50) to the highly strained centre (γ up to 1000) while the host rock is moderately deformed (γ ˜ 3). During the shear zone development, the strain gradient coincided with a strain rate gradient with strain rate varying from 10-13 to 10-9 s-1. The studied outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent mechanical behaviour in a calcite marble. Detailed microstructural analyses have been performed via optical microscopy, electron microscopy, electron backscatter diffraction mapping and transmission electron microscopy, on samples from the highly strained shear zone and the host rock. The analyses show that the calcite microfabric varies depending on position within the shear zone, indicating activation of different deformation, recrystallization mechanisms and slip systems at different strain rates. Up to strain rates of ˜10-10 s-1 the marble deformed exclusively within the dislocation creep field, showing a change in recrystallization mechanism and dominant active slip system. While the marble preferentially recrystallized by grain boundary migration at relatively low strain rates (˜10-13 s-1), subgrain rotation recrystallization seems to be the dominant mechanism at higher strain rates (˜10-12 to 10-10 s-1). At higher strain rates (˜10-9 s-1), the recrystallization mechanism is bulging, resulting in the development of an extremely fine grained ultramylonite (average grain size ˜3 μm) accompanied by a switch in deformation mechanism from dislocation creep to a combined deformation by grain boundary sliding and dislocation activity. Constraints on dominant active slip system depending on deformation strain rate have been made by a combination of misorientation analyses and viscoplastic self-consistent modelling.
A finite deformation viscoelastic-viscoplastic constitutive model for self-healing materials
NASA Astrophysics Data System (ADS)
Shahsavari, H.; Naghdabadi, R.; Baghani, M.; Sohrabpour, S.
2016-12-01
In this paper, employing the Hencky strain, viscoelastic-viscoplastic response of self-healing materials is investigated. Considering the irreversible thermodynamics and using the effective configuration in the Continuum Damage-Healing Mechanics (CDHM), a phenomenological finite strain viscoelastic-viscoplastic constitutive model is presented. Considering finite viscoelastic and viscoplastic deformations, total deformation gradient is multiplicatively decomposed into viscoelastic and viscoplastic parts. Due to mathematical advantages and physical meaning of Hencky strain, this measure of strain is employed in the constitutive model development. In this regard, defining the damage and healing variables and employing the strain equivalence hypothesis, the strain tensor is determined in the effective configuration. Satisfying the Clausius-Duhem inequality, the evolution equations are introduced for the viscoelastic and viscoplastic strains. The damage and healing variables also evolve according to two different prescribed functions. To employ the proposed model in different loading conditions, the model is discretized in the semi-implicit form. Material parameters of the model are identified employing experimental tests on asphalt mixes available in the literature. Finally, capability of the model is demonstrated comparing the model predictions in the creep-recovery and repeated creep-recovery with the experimental results available in the literature and a good agreement between predicted and test results is revealed.
Gradient Plasticity Model and its Implementation into MARMOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.
2013-08-01
The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in thismore » model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.« less
Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence
NASA Astrophysics Data System (ADS)
Danish, Mohammad; Meneveau, Charles
2018-04-01
Knowledge of local flow-topology, the patterns of streamlines around a moving fluid element as described by the velocity-gradient tensor, is useful for developing insights into turbulence processes, such as energy cascade, material element deformation, or scalar mixing. Much has been learned in the recent past about flow topology at the smallest (viscous) scales of turbulence. However, less is known at larger scales, for instance, at the inertial scales of turbulence. In this work, we present a detailed study on the scale dependence of various quantities of interest, such as the population fraction of different types of flow-topologies, the joint probability distribution of the second and third invariants of the velocity gradient tensor, and the geometrical alignment of vorticity with strain-rate eigenvectors. We perform the analysis on a simulation dataset of isotropic turbulence at Reλ=433 . While quantities appear close to scale invariant in the inertial range, we observe a "bump" in several quantities at length scales between the inertial and viscous ranges. For instance, the population fraction of unstable node-saddle-saddle flow topology shows an increase when reducing the scale from the inertial entering the viscous range. A similar bump is observed for the vorticity-strain-rate alignment. In order to document possible dynamical causes for the different trends in the viscous and inertial ranges, we examine the probability fluxes appearing in the Fokker-Plank equation governing the velocity gradient invariants. Specifically, we aim to understand whether the differences observed between the viscous and inertial range statistics are due to effects caused by pressure, subgrid-scale, or viscous stresses or various combinations of these terms. To decompose the flow into small and large scales, we mainly use a spectrally compact non-negative filter with good spatial localization properties (Eyink-Aluie filter). The analysis shows that when going from the inertial range into the viscous range, the subgrid-stress effect decreases more rapidly as a function of scale than the viscous effects increase. To make up for the difference, the pressure Hessian also behaves somewhat differently in the viscous than in the inertial range. The results have implications for models for the velocity gradient tensor showing that the effects of subgrid scales may not be simply modeled via a constant eddy viscosity in the inertial range if one wishes to reproduce the observed trends.
Restricted Euler dynamics along trajectories of small inertial particles in turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry; Meneveau, Charles
2016-11-01
The fate of small particles in turbulent flows depends strongly on the surrounding fluid's velocity gradient properties such as rotation and strain-rates. For non-inertial (fluid) particles, the Restricted Euler model provides a simple, low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. Here we derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles such as solid particles in a gas or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub Kolmogorov scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from Direct Numerical Simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of severely reduced self-stretching of strain-rate. Supported by a National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825 and by a Grant from The Gulf of Mexico Research Initiative.
van Belkum, Alex; Halimi, Diane; Bonetti, Eve-Julie; Renzi, Gesuele; Cherkaoui, Abdessalam; Sauvonnet, Véronique; Martelin, Roland; Durand, Géraldine; Chatellier, Sonia; Zambardi, Gilles; Engelhardt, Anette; Karlsson, Åsa; Schrenzel, Jacques
2015-01-01
Precise assessment of potential therapeutic synergy, antagonism or indifference between antimicrobial agents currently depends on time-consuming and hard-to-standardize in vitro chequerboard titration methods. We here present a method based on a novel two-dimensional antibiotic gradient technique named Xact™. We used a test comprising a combination of perpendicular gradients of meropenem and colistin in a single quadrant. We compared test outcomes with those obtained with classical chequerboard microbroth dilution testing in a study involving 27 unique strains of multidrug-resistant Acinetobacter baumannii from diverse origins. We were able to demonstrate 92% concordance between the new technology and classical chequerboard titration using the A. baumannii collection. Two strains could not be analysed by Xact™ due to their out-of-range MIC of meropenem (>128 mg/L). The new test was shown to be diagnostically useful, easy to implement and less labour intensive than the classical method. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Evolution of passive scalar statistics in a spatially developing turbulence
NASA Astrophysics Data System (ADS)
Paul, I.; Papadakis, G.; Vassilicos, J. C.
2018-02-01
We investigate the evolution of passive scalar statistics in a spatially developing turbulence using direct numerical simulation. Turbulence is generated by a square grid element, which is heated continuously, and the passive scalar is temperature. The square element is the fundamental building block for both regular and fractal grids. We trace the dominant mechanisms responsible for the dynamical evolution of scalar-variance and its dissipation along the bar and grid-element centerlines. The scalar-variance is generated predominantly by the action of the mean scalar gradient behind the bar and is transported laterally by turbulent fluctuations to the grid-element centerline. The scalar-variance dissipation (proportional to the scalar-gradient variance) is produced primarily by the compression of the fluctuating scalar-gradient vector by the turbulent strain rate, while the contribution of mean velocity and scalar fields is negligible. Close to the grid element the scalar spectrum exhibits a well-defined -5 /3 power-law, even though the basic premises of the Kolmogorov-Obukhov-Corrsin theory are not satisfied (the fluctuating scalar field is highly intermittent, inhomogeneous, and anisotropic, and the local Corrsin-microscale-Péclet number is small). At this location, the PDF of scalar gradient production is only slightly skewed towards positive, and the fluctuating scalar-gradient vector aligns only with the compressive strain-rate eigenvector. The scalar-gradient vector is stretched or compressed stronger than the vorticity vector by turbulent strain rate throughout the grid-element centerline. However, the alignment of the former changes much earlier in space than that of the latter, resulting in scalar-variance dissipation to decay earlier along the grid-element centerline compared to the turbulent kinetic energy dissipation. The universal alignment behavior of the scalar-gradient vector is found far downstream, although the local Reynolds and Péclet numbers (based on the Taylor and Corrsin length scales, respectively) are low.
Stiffener-skin interactions in pressure-loaded composite panels
NASA Technical Reports Server (NTRS)
Loup, D. C.; Hyer, M. W.; Starnes, J. H., Jr.
1986-01-01
The effects of flange thickness, web height, and skin stiffness on the strain distributions in the skin-stiffener interface region of pressure-loaded graphite-epoxy panels, stiffened by the type-T stiffener, were examined at pressure levels up to one atmosphere. The results indicate that at these pressures geometric nonlinearities are important, and that the overall stiffener stiffness has a significant effect on panel response, particularly on the out-of-plane deformation or pillowing of the skin. The strain gradients indicated that the interface between the skin and the stiffener experiences two components of shear stress, in addition to a normal (peel) stress. Thus, the skin-stiffener interface problem is a three-dimensional problem rather than a two-dimensional one, as is often assumed.
Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain
2016-01-01
ABSTRACT A chemolithoautotrophic strain of the family Beggiatoaceae, Beggiatoa sp. strain 35Flor, was found to oxidize molecular hydrogen when grown in a medium with diffusional gradients of oxygen, sulfide, and hydrogen. Microsensor profiles and rate measurements suggested that the strain oxidized hydrogen aerobically when oxygen was available, while hydrogen consumption under anoxic conditions was presumably driven by sulfur respiration. Beggiatoa sp. 35Flor reached significantly higher biomass in hydrogen-supplemented oxygen-sulfide gradient media, but hydrogen did not support growth of the strain in the absence of reduced sulfur compounds. Nevertheless, hydrogen oxidation can provide Beggiatoa sp. 35Flor with energy for maintenance and assimilatory purposes and may support the disposal of internally stored sulfur to prevent physical damage resulting from excessive sulfur accumulation. Our knowledge about the exposure of natural populations of Beggiatoaceae to hydrogen is very limited, but significant amounts of hydrogen could be provided by nitrogen fixation, fermentation, and geochemical processes in several of their typical habitats such as photosynthetic microbial mats and submarine sites of hydrothermal fluid flow. IMPORTANCE Reduced sulfur compounds are certainly the main electron donors for chemolithoautotrophic Beggiatoaceae, but the traditional focus on this topic has left other possible inorganic electron donors largely unexplored. In this paper, we provide evidence that hydrogen oxidation has the potential to strengthen the ecophysiological plasticity of Beggiatoaceae in several ways. Moreover, we show that hydrogen oxidation by members of this family can significantly influence biogeochemical gradients and therefore should be considered in environmental studies. PMID:26896131
Ercolini, D; Moschetti, G; Blaiotta, G; Coppola, S
2001-03-01
Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (DGGE) was tested as a tool for differentiation of lactic acid bacteria commonly isolated from food. Variable V3 regions of 21 reference strains and 34 wild strains referred to species belonging to the genera Pediococcus, Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, Weissella, and Streptococcus were analyzed. DGGE profiles obtained were species-specific for most of the cultures tested. Moreover, it was possible to group the remaining LAB reference strains according to the migration of their 16S V3 region in the denaturing gel. The results are discussed with reference to their potential in the analysis of LAB communities in food, besides shedding light on taxonomic aspects.
NASA Astrophysics Data System (ADS)
Ben Kaabar, A.; Aoufi, A.; Descartes, S.; Desrayaud, C.
2017-05-01
During tribological contact’s life, different deformation paths lead to the formation of high deformed microstructure, in the near-surface layers of the bodies. The mechanical conditions (high pressure, shear) occurring under contact, are reproduced through unconstrained High Pressure Torsion configuration. A 3D finite element model of this HPT test is developed to study the local deformation history leading to high deformed microstructure with nominal pressure and friction coefficient. For the present numerical study the friction coefficient at the interface sample/anvils is kept constant at 0.3; the material used is high purity iron. The strain distribution in the sample bulk, as well as the main components of the strain gradients according to the spatial coordinates are investigated, with rotation angle of the anvil.
Levy, Philip T; El-Khuffash, Afif; Patel, Meghna D; Breatnach, Colm R; James, Adam T; Sanchez, Aura A; Abuchabe, Cristina; Rogal, Sarah R; Holland, Mark R; McNamara, Patrick J; Jain, Amish; Franklin, Orla; Mertens, Luc; Hamvas, Aaron; Singh, Gautam K
2017-07-01
The aim of this study was to determine the maturational changes in systolic ventricular strain mechanics by two-dimensional speckle-tracking echocardiography in extremely preterm neonates from birth to 1 year of age and discern the impact of common cardiopulmonary abnormalities on the deformation measures. In a prospective multicenter study of 239 extremely preterm infants (<29 weeks gestation at birth), left ventricular (LV) global longitudinal strain (GLS) and global longitudinal systolic strain rate (GLSRs), interventricular septal wall (IVS) GLS and GLSRs, right ventricular (RV) free wall longitudinal strain and strain rate, and segmental longitudinal strain in the RV free wall, LV free wall, and IVS were serially measured on days 1, 2, and 5 to 7, at 32 and 36 weeks postmenstrual age, and at 1 year corrected age (CA). Premature infants who developed bronchopulmonary dysplasia or had echocardiographic findings of pulmonary hypertension were analyzed separately. In uncomplicated preterm infants (n = 103 [48%]), LV GLS and GLSRs remained unchanged from days 5 to 7 to 1 year CA (P = .60 and P = .59). RV free wall longitudinal strain, RV free wall longitudinal strain rate, and IVS GLS and GLSRs significantly increased over the same time period (P < .01 for all measures). A significant base-to-apex (highest to lowest) segmental longitudinal strain gradient (P < .01) was seen in the RV free wall and a reverse apex-to-base gradient (P < .01) in the LV free wall. In infants with bronchopulmonary dysplasia and/or pulmonary hypertension (n = 119 [51%]), RV free wall longitudinal strain and IVS GLS were significantly lower (P < .01), LV GLS and GLSRs were similar (P = .56), and IVS segmental longitudinal strain persisted as an RV-dominant base-to-apex gradient from 32 weeks postmenstrual age to 1 year CA. This study tracks the maturational patterns of global and regional deformation by two-dimensional speckle-tracking echocardiography in extremely preterm infants from birth to 1 year CA. The maturational patterns are ventricular specific. Bronchopulmonary dysplasia and pulmonary hypertension leave a negative impact on RV and IVS strain, while LV strain remains stable. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
National Institute of Standards and Technology Data Gateway
SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.
Texture control of zircaloy tubing during tube reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, N.; Kakuma, T.; Fujita, K.
1982-01-01
Seven batches of Zircaloy-2 nuclear fuel cladding tubes with different textures were processed from tube shells of the same size, by different reduction routes, using pilger and 3-roll mills. Based on the texture data of these tubes, the texture control of Zircaloy tubing, the texture gradient across the wall, and the texture change during annealing were studied. The deformation texture of Zicaloy-2 tubing was dependent on the tool's curvature and was independent of the dimensions of the mother tubes. The different slopes of texture gradients were observed between the tubing of higher strain ration and that of lower strain ratio.
Assessment of Higher-Order RANS Closures in a Decelerated Planar Wall-Bounded Turbulent Flow
NASA Technical Reports Server (NTRS)
Jeyapaul, Elbert; Coleman, Gary N.; Rumsey, Christopher L.
2014-01-01
A reference DNS database is presented, which includes third- and fourth-order moment budgets for unstrained and strained planar channel flow. Existing RANS closure models for third- and fourth-order terms are surveyed, and new model ideas are introduced. The various models are then compared with the DNS data term by term using a priori testing of the higher-order budgets of turbulence transport, velocity-pressure-gradient, and dissipation for both the unstrained and strained databases. Generally, the models for the velocity-pressure-gradient terms are most in need of improvement.
Kumar, Ayush; Worobec, Elizabeth A
2002-10-01
To determine the presence of a proton gradient-dependent efflux of fluoroquinolone drugs in Serratia marcescens. Thirteen clinical isolates of S. marcescens were screened for resistance to four fluoroquinolones: ofloxacin, ciprofloxacin, norfloxacin and nalidixic acid by determining MICs. The presence of a proton gradient-dependent efflux mechanism was assessed using ethidium bromide accumulation assays. Drug accumulation studies for norfloxacin, ciprofloxacin and ofloxacin were performed to determine the drug specificity of efflux. Western transfer of cellular proteins, followed by immunodetection using anti-AcrA (Escherichia coli) antibodies were used to demonstrate the presence of a resistance-nodulation-cell division (RND) pump protein. PCR was used to identify a RND pump-encoding gene using primers for two conserved motifs within inner membrane components of RND proteins. A mutant strain of S. marcescens, UOC-67WL, was isolated by culturing the wild-type strain in the presence of ciprofloxacin in T-soy media and was subjected to the same studies as described above for the clinical isolates. Ethidium bromide accumulation assays confirmed the presence of a proton gradient-dependent efflux mechanism in S. marcescens. One clinical isolate, T-861, and the mutant strain, UOC-67WL, were found to efflux ciprofloxacin and ofloxacin. Western immunoblot results confirmed overexpression of an AcrA-like protein in T-861 and UOC-67WL. Sequencing of the PCR product showed the presence of a mexF-like gene, which is overexpressed in nfxC mutants of Pseudomonas aeruginosa. This study reports the presence of a proton gradient-dependent efflux mechanism in S. marcescens.
TEMPERATURE-GRADIENT PLATES FOR GROWTH OF MICROORGANISMS
Landman, Otto E.; Bausum, Howard T.; Matney, Thomas S.
1962-01-01
Landman, Otto E. (Fort Detrick, Frederick, Md.), Howard T. Bausum, and Thomas S. Matney. Temperature-gradient plates for growth of microorganisms. J. Bacteriol. 83:463–469. 1962.—Different temperature-gradient plates have been devised for the study of microbial growth on solid media through continuous temperature ranges or in liquid media at finely graded temperatures. All plates are made of heavy-gauge aluminum; heat supplied at one end is dissipated along the length of the metal so that a gradient is produced. The shape and range of the gradient depends on the amount of heat supplied, the insulation, the ambient temperature, and other factors. Differences of 0.2 C in temperature sensitivity between bacterial strains can be detected. The plates are simple to construct and operate. The dimensions of the aluminum, the mode of temperature measurement, and the method of heating may all be modified without diminishing the basic utility of the device. A sharp growth front develops at the maximal temperature of growth of bacteria. In most strains, all bacteria below the front form colonies and all bacteria above the front are killed, except for a few temperature-resistant mutants. Images PMID:14461975
Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel
NASA Astrophysics Data System (ADS)
Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang
2016-03-01
18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.
NASA Astrophysics Data System (ADS)
Chavez, Andres C.; Kundu, Auni A.; Lynch, Christopher S.; Carman, Gregory P.
2018-03-01
Strain-mediated multiferroic heterostructures relying on fast 180° precessional magnetic switching have been proposed as a pathway for energy efficient and high density memory/logic devices. However, proper device performance requires precisely timed high frequency ( GHz) voltage pulses dependent on the magnetization dynamics of the structure. In turn, the dynamic response of the device is greatly influenced by the device geometry, strain amplitude, and strain rate. Hence, we study the effects of increasing the voltage amplitude and application rate on the in-plane magnetization dynamics of a single-domain CoFeB ellipse (100 nm x 80 nm x 6 nm) on a 500 nm thick PZT substrate in addition to studying defects in the geometry. Both a coupled micromagnetics, electrostatics and elastodynamics finite element model and a conventional micromagnetics software was used to study the strain-induced magnetic response of the CoFeB ellipse. Both models predict increased 90° magnetic reorientation speed with increased strain amplitude and rate. However, the fully-coupled model predicts slower reorientation and incoherency in comparison to the uncoupled model. This occurs because the fully-coupled model can capture the expected strain gradients of a fabricated device while the micromagnetics model can only represent uniform strain states. Additional studies which introduce geometric defects result in faster precessional motion under the same strain amplitude and rate. This is attributed to localized changes in the magnetization that influence neighboring regions via exchange and demagnetization effects. The results of these studies can help design better devices that will be less sensitive to defects and voltage applications for future strain-mediated multiferroic devices.
1991-12-01
gradient will be presented. -Finally, a brief discussion of various piezoelectric materials will be presented, including Rochelle salt, quartz, barium...consideringr a microscopic-level dipole arrangement. The strain induced by ain external force or a tempem at ure gradient changes hie orientation of the...pyroelectric materials, an externally applied temperature gradient can be related to the resulting polarization by a l)yroelectric * constant.1 p (130
NASA Astrophysics Data System (ADS)
Rebelo Kornmeier, Joana; Gibmeier, Jens; Hofmann, Michael
2011-06-01
Neutron strain measurements are critical at the surface. When scanning close to a sample surface, aberration peak shifts arise due to geometrical and divergence effects. These aberration peak shifts can be of the same order as the peak shifts related to residual strains. In this study it will be demonstrated that by optimizing the horizontal bending radius of a Si (4 0 0) monochromator, the aberration peak shifts from surface effects can be strongly reduced. A stress-free sample of fine-grained construction steel, S690QL, was used to find the optimal instrumental conditions to minimize aberration peak shifts. The optimized Si (4 0 0) monochromator and instrument settings were then applied to measure the residual stress depth gradient of a shot-peened SAE 4140 steel sample to validate the effectiveness of the approach. The residual stress depth profile is in good agreement with results obtained by x-ray diffraction measurements from an international round robin test (BRITE-EURAM-project ENSPED). The results open very promising possibilities to bridge the gap between x-ray diffraction and conventional neutron diffraction for non-destructive residual stress analysis close to surfaces.
Impact of heat release on strain rate field in turbulent premixed Bunsen flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coriton, Bruno Rene Leon; Frank, Jonathan H.
2016-08-10
The effects of combustion on the strain rate field are investigated in turbulent premixed CH 4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts ofmore » heat release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the divergence.« less
Adaptation of bone to physiological stimuli.
Judex, S; Gross, T S; Bray, R C; Zernicke, R F
1997-05-01
The ability of bone to alter its morphology in response to local physical stimuli is predicated upon the appropriate recruitment of bone cell populations. In turn, the ability to initiate cellular recruitment is influenced by numerous local and systemic factors. In this paper, we discuss data from three ongoing projects from our laboratory that examine how physiological processes influence adaptation and growth in the skeleton. In the first study, we recorded in vivo strains to quantify the locomotion-induced distribution of two parameters closely related to bone fluid flow strain rate and strain gradients. We found that the magnitude of these parameters (and thus the implied fluid flow) varies substantially within a given cross-section, and that while strain rate magnitude increases uniformly with elevated speed, strain gradients increase focally as gait speed is increased. Secondly, we examined the influence of vascular alterations on bone adaptation by assessing bone blood flow and bone mechanical properties in an in vivo model of trauma-induced joint laxity. A strong negative correlation (r2 = 0.8) was found between increased blood flow (76%) in the primary and secondary spongiosa and decreased stiffness (-34%) following 14 weeks of joint laxity. These data suggest that blood flow and/or vascular adaptation may interact closely with bone adaptation initiated by trauma. Thirdly, we examined the effect of a systemic influence upon skeletal health. After 4 weeks old rats were fed high fat-sucrose diets for 2 yr, their bone mechanical properties were significantly reduced. These changes were primarily due to interference with normal calcium absorption. In the aggregate, these studies emphasize the complexity of bone's normal physical environment, and also illustrate the potential interactions of local and systemic factors upon the process by which bone adapts to physical stimuli.
Diversity and distribution of Frankia strains symbiotic with Ceanothus in California
Brian Oakley; Malcolm North; Jerry F. Franklin; Brian P. Hedlund; James T. Staley
2004-01-01
Frankia strains symbiotic with Ceanothus present an interesting opportunity to study the patterns and causes of Frankia diversity and distribution within a particular host infectivity group. We intensively sampled Frankia from nodules on Ceanothus plants along an elevational gradient in the...
Keshavarz-Motamed, Zahra; Nezami, Farhad Rikhtegar; Partida, Ramon A.; Nakamura, Kenta; Staziaki, Pedro Vinícius; Ben-Assa, Eyal; Ghoshhajra, Brian; Bhatt, Ami B.; Edelman, Elazer R.
2017-01-01
OBJECTIVES To investigate the impact of transcatheter intervention on left ventricular (LV) function and aortic hemodynamics in patients with mild coarctation of the aorta (COA). BACKGROUND The optimal method and timing of transcatheter intervention for COA remains unclear, especially when the severity of COA is mild (peak-to-peak trans-coarctation pressure gradient, PKdP < 20 mmHg). Debate rages regarding the risk/benefit ratio of intervention vs. long-term effects of persistent minimal gradient in this heterogeneous population with differing blood pressures, ventricular function and peripheral perfusion. METHODS We developed a unique computational fluid dynamics and lumped parameter modeling framework based on patient-specific hemodynamic input parameters and validated it against patient-specific clinical outcomes (pre- and post-intervention). We used clinically measured hemodynamic metrics and imaging of the aorta and the LV in thirty-four patients with mild COA to make these correlations. RESULTS Despite dramatic reduction in trans-coarctation pressure gradient (catheter and Doppler echocardiography pressure gradients reduced 75% and 47.3%,), there was only modest effect on aortic flow and no significant impact on aortic shear stress (maximum time-averaged wall shear stress in descending aorta was reduced 5.1%). In no patient did transcatheter intervention improve LV function (e.g., stroke work and normalized stroke work were reduced by only 4.48% and 3.9%). CONCLUSIONS Transcatheter intervention which successfully relieves mild COA pressure gradients does not translate to decrease myocardial strain. The effects of intervention were determined to the greatest degree by ventricular-vascular coupling hemodynamics, and provide a novel valuable mechanism to evaluate patients with COA which may influence clinical practice. PMID:27659574
A Geodetic Strain Rate Model for the East African Rift System.
Stamps, D S; Saria, E; Kreemer, C
2018-01-15
Here we describe the new Sub-Saharan Africa Geodetic Strain Rate Model v.1.0 (SSA-GSRM v.1.0), which provides fundamental constraints on long-term tectonic deformation in the region and an improved seismic hazards assessment in Sub-Saharan Africa. Sub-Saharan Africa encompasses the East African Rift System, the active divergent plate boundary between the Nubian and Somalian plates, where strain is largely accommodated along the boundaries of three subplates. We develop an improved geodetic strain rate field for sub-Saharan Africa that incorporates 1) an expanded geodetic velocity field, 2) redefined regions of deforming zones guided by seismicity distribution, and 3) updated constraints on block rotations. SSA-GSRM v.1.0 spans longitudes 22° to 55.5° and latitudes -52° to 20° with 0.25° (longitude) by 0.2° (latitude) spacing. For plates/sub-plates, we assign rigid block rotations as constraints on the strain rate calculation that is determined by fitting bicubic Bessel splines to a new geodetic velocity solution for an interpolated velocity gradient tensor field. We derive strain rates, velocities, and vorticity rates from the velocity gradient tensor field. A comparison with the Global Geodetic Strain Rate model v2.1 reveals regions of previously unresolved spatial heterogeneities in geodetic strain rate distribution, which indicates zones of elevated seismic risk.
NASA Technical Reports Server (NTRS)
Appleby, Matthew; Morscher, Gregory; Zhu, Dongming
2015-01-01
Because SiCSiC ceramic matrix composites (CMCs) are under consideration for use as turbine engine hot-section components in extreme environments, it becomes necessary to investigate their performance and damage morphologies under complex loading and environmental conditions. Monitoring of electrical resistance (ER) has been shown as an effective tool for detecting damage accumulation of woven melt-infiltrated SiCSiC CMCs. However, ER change under complicated thermo-mechanical loading is not well understood. In this study a systematic approach is taken to determine the capabilities of ER as a relevant non-destructive evaluation technique for high heat-flux testing, including thermal gradients and localized stress concentrations. Room temperature and high temperature, laser-based tensile tests were conducted in which stress-dependent damage locations were determined using modal acoustic emission (AE) monitoring and compared to full-field strain mapping using digital image correlation (DIC). This information is then compared with the results of in-situ ER monitoring, post-test ER inspection and fractography in order to correlate ER response to convoluted loading conditions and damage evolution.
Postreplication Repair of Ultraviolet Damage in Haemophilus influenzae
Leclerc, J. Eugene; Setlow, Jane K.
1972-01-01
The deoxyribonucleic acid (DNA) synthesized following ultraviolet (UV) irradiation of wild-type (Rd) and recombination-defective strains of Haemophilus influenzae has been analyzed by alkaline sucrose gradient sedimentation. Strain Rd and a UV-resistant, recombination-defective strain Rd(DB117) rec− are able to carry out postreplication repair, i.e., close the single-strand gaps in the newly synthesized DNA; in the UV-sensitive, recombination-defective strain DB117, the gaps remain open. The lack of postreplication repair in this strain may be the result of degradation of the newly synthesized DNA. PMID:4537422
Nuclear magnetic resonance probe head design for precision strain control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissikov, T.; Sarkar, R.; Bush, B. T.
Here, we present the design and construction of an NMR probe to investigate single crystals under strain at cryogenic temperatures. The probe head incorporates a piezoelectric-based apparatus from Razorbill Instruments that enables both compressive and tensile strain tuning up to strain values on the order of 0.3% with a precision of 0.001%. 75As NMR in BaFe 2As 2 reveals large changes to the electric field gradient and indicates that the strain is homogeneous to within 16% over the volume of the NMR coil.
Nuclear magnetic resonance probe head design for precision strain control
Kissikov, T.; Sarkar, R.; Bush, B. T.; ...
2017-10-03
Here, we present the design and construction of an NMR probe to investigate single crystals under strain at cryogenic temperatures. The probe head incorporates a piezoelectric-based apparatus from Razorbill Instruments that enables both compressive and tensile strain tuning up to strain values on the order of 0.3% with a precision of 0.001%. 75As NMR in BaFe 2As 2 reveals large changes to the electric field gradient and indicates that the strain is homogeneous to within 16% over the volume of the NMR coil.
Demnerová, Katerina; Mackova, Martina; Spevákova, Veronika; Beranova, Katarina; Kochánková, Lucie; Lovecká, Petra; Ryslavá, Edita; Macek, Tomas
2005-09-01
As part of the EU project MULTIBARRIERS, six new endogenous aerobic bacterial isolates able to grow in the presence of BTmX (benzene, toluene, m-xylene) were characterized with respect to their growth specificities. Preliminary analysis included restriction fragment length polymorphism profiles and 16S rDNA sequencing. The diversity of these strains was confirmed by denaturing gradient gel electrophoresis. Additional aerobic bacterial strains were isolated from the rhizospheres of plants grown in polychlorinated biphenyl (PCB)-contaminated soils. Pot experiments were designed to show the beneficial effect of plants on the bacterial degradation of PCBs. The effect of PCB removal from soil was evaluated and bacteria isolated from three different plant species were examined for the presence of the bph operon.
The effect of vocal fold vertical stiffness gradient on sound production
NASA Astrophysics Data System (ADS)
Geng, Biao; Xue, Qian; Zheng, Xudong
2015-11-01
It is observed in some experimental studies on canine vocal folds (VFs) that the inferior aspect of the vocal fold (VF) is much stiffer than the superior aspect under relatively large strain. Such vertical difference is supposed to promote the convergent-divergent shape during VF vibration and consequently facilitate the production of sound. In this study, we investigate the effect of vertical variation of VF stiffness on sound production using a numerical model. The vertical variation of stiffness is produced by linearly increasing the Young's modulus and shear modulus from the superior to inferior aspects in the cover layer, and its effect on phonation is examined in terms of aerodynamic and acoustic quantities such as flow rate, open quotient, skewness of flow wave form, sound intensity and vocal efficiency. The flow-induced vibration of the VF is solved with a finite element solver coupled with 1D Bernoulli equation, which is further coupled with a digital waveguide model. This study is designed to find out whether it's beneficial to artificially induce the vertical stiffness gradient by certain implanting material in VF restoring surgery, and if it is beneficial, what gradient is the most favorable.
Energy approach to brittle fracture in strain-gradient modelling.
Placidi, Luca; Barchiesi, Emilio
2018-02-01
In this paper, we exploit some results in the theory of irreversible phenomena to address the study of quasi-static brittle fracture propagation in a two-dimensional isotropic continuum. The elastic strain energy density of the body has been assumed to be geometrically nonlinear and to depend on the strain gradient. Such generalized continua often arise in the description of microstructured media. These materials possess an intrinsic length scale, which determines the size of internal boundary layers. In particular, the non-locality conferred by this internal length scale avoids the concentration of deformations, which is usually observed when dealing with local models and which leads to mesh dependency. A scalar Lagrangian damage field, ranging from zero to one, is introduced to describe the internal state of structural degradation of the material. Standard Lamé and second-gradient elastic coefficients are all assumed to decrease as damage increases and to be locally zero if the value attained by damage is one. This last situation is associated with crack formation and/or propagation. Numerical solutions of the model are provided in the case of an obliquely notched rectangular specimen subjected to monotonous tensile and shear loading tests, and brittle fracture propagation is discussed.
Capturing tensile size-dependency in polymer nanofiber elasticity.
Yuan, Bo; Wang, Jun; Han, Ray P S
2015-02-01
As the name implies, tensile size-dependency refers to the size-dependent response under uniaxial tension. It defers markedly from bending size-dependency in terms of onset and magnitude of the size-dependent response; the former begins earlier but rises to a smaller value than the latter. Experimentally, tensile size-dependent behavior is much harder to capture than its bending counterpart. This is also true in the computational effort; bending size-dependency models are more prevalent and well-developed. Indeed, many have questioned the existence of tensile size-dependency. However, recent experiments seem to support the existence of this phenomenon. Current strain gradient elasticity theories can accurately predict bending size-dependency but are unable to track tensile size-dependency. To rectify this deficiency a higher-order strain gradient elasticity model is constructed by including the second gradient of the strain into the deformation energy. Tensile experiments involving 10 wt% polycaprolactone nanofibers are performed to calibrate and verify our model. The results reveal that for the selected nanofibers, their size-dependency begins when their diameters reduce to 600 nm and below. Further, their characteristic length-scale parameter is found to be 1095.8 nm. Copyright © 2014 Elsevier Ltd. All rights reserved.
Damage percolation during stretch flange forming of aluminum alloy sheet
NASA Astrophysics Data System (ADS)
Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.
2005-12-01
A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.
Liu, Fang; Liu, Mei; Du, Lihui; Wang, Daoying; Geng, Zhiming; Zhang, Muhan; Sun, Chong; Xu, Xiaoxi; Zhu, Yongzhi; Xu, Weimin
2015-12-01
This study evaluated the antibacterial effect of the combination of ε-polylysine (ε-PL) and nisin against Enterococcus faecalis strains. The combination of ε-PL and nisin showed synergistic antibacterial activity against three Enterococcus strains. Scanning electron microscopy and a membrane permeability assay revealed that the combined treatment with ε-PL and nisin synergistically damaged the cell morphology of E. faecalis strain R612Z1 cells. Both ε-PL and nisin can dissipate the transmembrane electric potential of E. faecalis R612Z1 cells, but these peptides did not affect the transmembrane pH gradient. The combination of ε-PL and nisin can produce a high reactive oxygen species level in E. faecalis R612Z1 cells. The results indicated that the uptake of ε-PL into cells was promoted through nisin and that the combination of ε-PL and nisin could produce a high reactive oxygen species level in E. faecalis R612Z1 cells, leading to cell growth inhibition.
Han, Jin Kyu; Jeon, Do Hyun; Cho, Sam Yeon; Kang, Sin Wook; Yang, Sun A.; Bu, Sang Don; Myung, Sung; Lim, Jongsun; Choi, Moonkang; Lee, Minbaek; Lee, Min Ku
2016-01-01
We report the first attempt to prepare a flexoelectric nanogenerator consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes (mwCNT). Direct-grown piezoelectrics on mwCNTs are formed by a stirring and heating method using a Pb(Zr0.52Ti0.48)O3 (PZT)-mwCNT precursor solution. We studied the unit cell mismatch and strain distribution of epitaxial PZT nanoparticles, and found that lattice strain is relaxed along the growth direction. A PZT-mwCNT nanogenerator was found to produce a peak output voltage of 8.6 V and an output current of 47 nA when a force of 20 N is applied. Direct-grown piezoelectric nanogenerators generate a higher voltage and current than simple mixtures of PZT and CNTs resulting from the stronger connection between PZT crystals and mwCNTs and an enhanced flexoelectric effect caused by the strain gradient. These experiments represent a significant step toward the application of nanogenerators using piezoelectric nanocomposite materials. PMID:27406631
Löve, Jesper; Hensing, Gunnel; Holmgren, Kristina; Torén, Kjell
2013-06-05
Some previous studies have proposed potential explanatory factors for the social gradient in sickness absence. Yet, this research area is still in its infancy and in order to comprise the full range of socioeconomic positions there is a need for studies conducted on random population samples. The main aim of the present study was to investigate if somatic and mental symptoms, mental wellbeing, job strain, and physical work environment could explain the association between low socioeconomic position and belonging to a sample of new cases of sick-listed employees. This study was conducted on one random working population sample (n = 2763) and one sample of newly sick-listed cases of employees (n = 3044), drawn from the same random general population in western Sweden. Explanatory factors were self-rated 'Somatic and mental symptoms', 'Mental well-being', 'job strain', and 'physical work conditions' (i.e. heavy lifting and awkward work postures). Multiple logistic regression analyses were used. Somatic and mental symptoms, mental well-being, and job strain, could not explain the association between socioeconomic position and sickness absence in both women and men. However, physical work conditions explained the total association in women and much of this association in men. In men the gradient between Non-skilled manual OR 1.76 (1.24;2.48) and Skilled manual OR 1.59 (1.10;2.20), both in relation to Higher non-manual, remained unexplained. The present study strengthens the scientific evidence that social differences in physical work conditions seem to comprise a key element of the social gradient in sickness absence, particularly in women. Future studies should try to identify further predictors for this gradient in men.
Heterogeneity and anisotropy in the lithospheric mantle
NASA Astrophysics Data System (ADS)
Tommasi, Andréa; Vauchez, Alain
2015-10-01
The lithospheric mantle is intrinsically heterogeneous and anisotropic. These two properties govern the repartition of deformation, controlling intraplate strain localization and development of new plate boundaries. Geophysical and geological observations provide clues on the types, ranges, and characteristic length scales of heterogeneity and anisotropy in the lithospheric mantle. Seismic tomography points to variations in geothermal gradient and hence in rheological behavior at scales of hundreds of km. Seismic anisotropy data substantiate anisotropic physical properties consistent at scales of tens to hundreds of km. Receiver functions imply lateral and vertical heterogeneity at scales < 10 km, which might record gradients in composition or anisotropy. Observations on naturally deformed peridotites establish that compositional heterogeneity and Crystal Preferred Orientations (CPOs) are ubiquitous from the mm to the km scales. These data allow discussing the processes that produce/destroy heterogeneity and anisotropy and constraining the time scales over which they are active. This analysis highlights: (i) the role of deformation and reactive percolation of melts and fluids in producing compositional and structural heterogeneity and the feedbacks between these processes, (ii) the weak mechanical effect of mineralogical variations, and (iii) the low volumes of fine-grained microstructures and difficulty to preserve them. In contrast, olivine CPO and the resulting anisotropy of mechanical and thermal properties are only modified by deformation. Based on this analysis, we propose that strain localization at the plate scale is, at first order, controlled by large-scale variations in thermal structure and in CPO-induced anisotropy. In cold parts of the lithospheric mantle, grain size reduction may contribute to strain localization, but the low volume of fine-grained domains limits this effect.
Cardiac biplane strain imaging: initial in vivo experience
NASA Astrophysics Data System (ADS)
Lopata, R. G. P.; Nillesen, M. M.; Verrijp, C. N.; Singh, S. K.; Lammens, M. M. Y.; van der Laak, J. A. W. M.; van Wetten, H. B.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.
2010-02-01
In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (<100 Hz) using a commercial platform with an RF interface. For testing the method in vivo, biplane image sequences of the heart were recorded during the cardiac cycle in four dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Δp: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Δp = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.
NASA Astrophysics Data System (ADS)
Hecker, Friedrich W.; Pindera, Jerzy T.; Wen, Baicheng
Crack-tip photomechanics procedures are based on certain simplifying assumptions that are seldom discussed. In a recent paper the theoretical bases of the shadow optical methods of caustics have been analysed and tested using the results obtained by three analytical-experimental procedures, namely classical strain gage techniques, isodynes, and strain-gradient index method. It has been concluded that the straing-radient index method appears to be a suitable tool for analysis of stress states near crack tips and notches and, in particular, for testing the predictive power of the pertinent singular solutions of the linear elastic fracture mechanics and the ranges of their applicability. In the present paper, a more detailed analysis of all results obtained in light deflection experiments allows to quantify the contribution of both involved effects and to determine the distortion of the faces of the investigated plates along their crack planes. The ability of the strain-gradient light bending method to analyse some features of the three-dimensional stress-state is reported. Finally, the presented experimental evidence allows to draw conclusions related to limits of applicability of certain photomechanical measurements near crack tips. An extensive summary of this paper is published in the Proceedings of the Second International Conference on Photomechanics and Speckle Metrology, Vol. 1554A, part of SPIE's 1991 International Symposium on Optical Applied Science and Engineering, 22-26 July 1991, San Diego, CA, USA. 1
Analysis of Composite Panels Subjected to Thermo-Mechanical Loads
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1999-01-01
The results of a detailed study of the effect of cutout on the nonlinear response of curved unstiffened panels are presented. The panels are subjected to combined temperature gradient through-the-thickness combined with pressure loading and edge shortening or edge shear. The analysis is based on a first-order, shear deformation, Sanders-Budiansky-type shell theory with the effects of large displacements, moderate rotations, transverse shear deformation, and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, principal strains, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the nonlinear response to variations in the panel parameters, as well as in the material properties of the individual layers. Numerical results are presented for cylindrical panels and show the effects of variations in the loading and the size of the cutout on the global and local response quantities as well as their sensitivity to changes in the various panel, layer, and micromechanical parameters.
Bacterial chemotaxis along vapor-phase gradients of naphthalene.
Hanzel, Joanna; Harms, Hauke; Wick, Lukas Y
2010-12-15
The role of bacterial growth and translocation for the bioremediation of organic contaminants in the vadose zone is poorly understood. Whereas air-filled pores restrict the mobility of bacteria, diffusion of volatile organic compounds in air is more efficient than in water. Past research, however, has focused on chemotactic swimming of bacteria along gradients of water-dissolved chemicals. In this study we tested if and to what extent Pseudomonas putida PpG7 (NAH7) chemotactically reacts to vapor-phase gradients forming above their swimming medium by the volatilization from a spot source of solid naphthalene. The development of an aqueous naphthalene gradient by air-water partitioning was largely suppressed by means of activated carbon in the agar. Surprisingly, strain PpG7 was repelled by vapor-phase naphthalene although the steady state gaseous concentrations were 50-100 times lower than the aqueous concentrations that result in positive chemotaxis of the same strain. It is thus assumed that the efficient gas-phase diffusion resulting in a steady, and possibly toxic, naphthalene flux to the cells controlled the chemotactic reaction rather than the concentration to which the cells were exposed. To our knowledge this is the first demonstration of apparent chemotactic behavior of bacteria in response to vapor-phase effector gradients.
Levy, Philip T.; Sanchez, Aura; Machefsky, Aliza; Fowler, Susan; Holland, Mark R.; Singh, Gautam K.
2014-01-01
Background Establishment of the range of normal values and associated variations of two-dimensional speckle-tracking echocardiography (2DSTE) derived right ventricular (RV) strain is a prerequisite for its routine clinical application in children. The objectives of this study were to perform a meta-analysis of normal ranges of RV longitudinal strain measurements derived by 2DSTE in children and identify confounders that may contribute to differences in reported measures. Methods A systematic review was launched in PubMed, Embase, Scopus, Cochrane, and ClinicTrials.gov. Search hedges were created to cover the concepts of pediatrics, speckle-tracking echocardiography, and right heart ventricle. Two investigators independently identified and included studies if they reported the 2DSTE derived RV strain measures: RV peak global longitudinal strain (pGLS), systolic strain rate (pGLSRs), early diastolic strain rate (pGLSRe), late diastolic strain rate (pGLSRa), or segmental longitudinal strain at the apical, mid, and basal ventricular levels in healthy children. Quality and reporting of the studies were assessed. The weighted mean was estimated by using random-effects with 95% confidence intervals (CI), heterogeneity was assessed by the Cochran's Q statistic and the inconsistency index (I2), and publication bias was evaluated using funnel plots and the Egger test. Effects of demographic, clinical, equipment, and software variables were assessed in a meta-regression. Results The search identified 226 children from 10 studies. The reported normal mean values of pGLS among the studies varied from −20.80% to −34.10% (mean, −29.03%, 95%CI, −31.52% to −26.54%), pGLSRs varied from −1.30 to −2.40 1/sec (mean, −1.88, 95%CI, −2.10 to −1.59), pGLSRe ranged from 1.7 to 2.69 1/sec (mean, 2.34, 95%CI, 2.00 to 2.67) and pGLSRa ranged from 1.00 to 1.30 1/sec (mean, 1.18, 95% CI, 1.04 to 1.33). A significant base-to-apex segmental strain gradient (p <0.05) was observed in the right ventricular free wall. There was significant between-study heterogeneity and inconsistency (I2>88% and p<0.01 for each strain measure), which was not explained by age, gender, body surface area, heart rate, frame rate, tissue tracking methodology, equipment, or software. The meta-regression showed that these effects were not significant determinants of variations among normal ranges of strain values. There was no evidence of publication bias (Egger test, p=0.59). Conclusions This study is the first to define normal values of two-dimensional speckle tracking echocardiographic (2DSTE) derived right ventricle strain in children on the basis of a meta-analysis. The normal mean value in children for RV global strain is −29.03% (95% CI, −31.52% to −26.54%). The normal mean value for RV global systolic strain rate is −1.88 1/sec (95% CI, −2.10 to −1.59). RV segmental strain has a stable base-to-apex gradient that highlights the dominance of deep longitudinal layers of the RV that are aligned base to apex. Variations among different normal ranges do not appear to be dependent on differences in demographic, clinical, or equipment parameters in this meta-analysis. All of the eligible studies used equipment and software from one manufacturer, General Electric (GE). PMID:24582163
Liancourt, Pierre; Le Bagousse-Pinguet, Yoann; Rixen, Christian; Dolezal, Jiri
2017-07-01
The stress gradient hypothesis (SGH), the view that competition prevails in undisturbed and productive environments, and shifts to facilitation in disturbed or stressful environments, has become a central paradigm in ecology. However, an alternative view proposes that the relationship between biotic interactions and environmental severity should be unimodal instead of monotonic. Possible causes of discrepancies between these two views were examined in the high elevation desert of the arid Trans-Himalayas. A putative nurse species and its associated plant community was surveyed over its entire elevation range, spanning from alpine to desert vegetation belts. The results were analysed at the community level (vegetation cover and species richness), considering the distinction between the intensity and the importance of biotic interactions. Interactions at the species level (pairwise interactions) were also considered, i.e. the variation of biotic interactions within the niche of a species, for which the abundance (species cover) and probability of occurrence (presence/absence) for the most widespread species along the gradient were distinguished. Overall, facilitation was infrequent in our study system; however, it was observed for the two most widespread species. At the community level, the intensity and importance of biotic interactions showed a unimodal pattern. The departure from the prediction of the SGH happened abruptly where the nurse species entered the desert vegetation belt at the lowest elevation. This abrupt shift was attributed to the turnover of species with contrasting tolerances. At the species level, however, facilitation increased consistently as the level of stress increases and individuals deviate from their optimum (increasing strain). While the stress gradient hypothesis was not supported along our elevation gradient at the community level, the strain gradient hypothesis, considering how species perceive the ambient level of stress and deviate from their optimum, provided a parsimonious explanation for the outcome of plant-plant interactions at both scales. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Badran, Hala Mahfouz; Ibrahim, Waleed Abdou; Faheem, Naglaa; Yassin, Rehab; Alashkar, Tamer; Yacoub, Magdi
2015-01-01
Left ventricular outflow tract obstruction (LVOT) is an independent predictor of adverse outcome in hypertrophic cardiomyopathy (HCM). It is of major importance that the provocation modalities used are validated against each other. To define the magnitude of LVOT gradients provocation during both isosorbide dinitrate (ISDN) inhalation and treadmill exercise in non-obstructive HCM and analyze the correlation to the electromechanical delay using speckle tracking. We studied 39 HCM pts (64% males, mean age 38 ± 13 years) regional LV longitudinal strain and electromechanical delay (TTP) was analyzed at rest using speckle tracking. LVOT gradient was measured at rest and after ISDN then patients underwent a treadmill exercise echocardiography (EE) and LVOT gradient was measured at peak exercise. The maximum effect of ISDN on LVOT gradient was obtained at 5 minutes, it increased to a significant level in 12 (31%) patients, and in 14 (36%) patients using EE, with 85.6% sensitivity & 100% specificity. Patients with latent obstruction had larger left atrial volume and lower E/A ratio compared to the non-obstructive group (p < 0.01). LVOTG using ISDN was significantly correlated with that using EE (p < 0.0001), resting LVOTG (p < 0.0001), SAM (p < 0.0001), EF% (p < 0.02) and regional electromechanical delay but not related to global LV longitudinal strain. Using multivariate regression, resting LVOTG (p = 0.006) & TTP mid septum (p = 0.01) were found to be independent predictors of latent LVOT obstruction using ISDN. There is a comparable diagnostic value of nitrate inhalation to exercise testing in provocation of LVOT obstruction in HCM. Latent obstruction is predominantly dependent on regional electromechanical delay.
Badran, Hala Mahfouz; Ibrahim, Waleed Abdou; Faheem, Naglaa; Yassin, Rehab; Alashkar, Tamer; Yacoub, Magdi
2015-01-01
Background: Left ventricular outflow tract obstruction (LVOT) is an independent predictor of adverse outcome in hypertrophic cardiomyopathy (HCM). It is of major importance that the provocation modalities used are validated against each other. Aim: To define the magnitude of LVOT gradients provocation during both isosorbide dinitrate (ISDN) inhalation and treadmill exercise in non-obstructive HCM and analyze the correlation to the electromechanical delay using speckle tracking. Methods: We studied 39 HCM pts (64% males, mean age 38 ± 13 years) regional LV longitudinal strain and electromechanical delay (TTP) was analyzed at rest using speckle tracking. LVOT gradient was measured at rest and after ISDN then patients underwent a treadmill exercise echocardiography (EE) and LVOT gradient was measured at peak exercise. Results: The maximum effect of ISDN on LVOT gradient was obtained at 5 minutes, it increased to a significant level in 12 (31%) patients, and in 14 (36%) patients using EE, with 85.6% sensitivity & 100% specificity. Patients with latent obstruction had larger left atrial volume and lower E/A ratio compared to the non-obstructive group (p < 0.01). LVOTG using ISDN was significantly correlated with that using EE (p < 0.0001), resting LVOTG (p < 0.0001), SAM (p < 0.0001), EF% (p < 0.02) and regional electromechanical delay but not related to global LV longitudinal strain. Using multivariate regression, resting LVOTG (p = 0.006) & TTP mid septum (p = 0.01) were found to be independent predictors of latent LVOT obstruction using ISDN. Conclusion: There is a comparable diagnostic value of nitrate inhalation to exercise testing in provocation of LVOT obstruction in HCM. Latent obstruction is predominantly dependent on regional electromechanical delay. PMID:26779503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Subrata, E-mail: subrata.panda@univ-lorrain
2017-01-15
Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneitiesmore » in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.« less
Longitudinal Fracture Analysis of a Two-Dimensional Functionally Graded Beam
NASA Astrophysics Data System (ADS)
Rizov, V.
2017-11-01
Longitudinal fracture in a two-dimensional functionally graded beam is analyzed. The modulus of elasticity varies continuously in the beam cross-section. The beam is clamped in its right-hand end. The external loading consists of one longitudinal force applied at the free end of the lower crack arm. The longitudinal crack is located in the beam mid-plane. The fracture is studied in terms of the strain energy release rate. The solution derived is used to elucidate the effects of material gradients along the height as well as along the width of the beam cross-section on the fracture behaviour. The results obtained indicate that the fracture in two-dimensional functionally graded beams can be regulated efficiently by employing appropriate material gradients.
Strain analysis of nanowire interfaces in multiscale composites
NASA Astrophysics Data System (ADS)
Malakooti, Mohammad H.; Zhou, Zhi; Spears, John H.; Shankwitz, Timothy J.; Sodano, Henry A.
2016-04-01
Recently, the reinforcement-matrix interface of fiber reinforced polymers has been modified through grafting nanostructures - particularly carbon nanotubes and ZnO nanowires - on to the fiber surface. This type of interface engineering has made a great impact on the development of multiscale composites that have high stiffness, interfacial strength, toughness, and vibrational damping - qualities that are mutually exclusive to a degree in most raw materials. Although the efficacy of such nanostructured interfaces has been established, the reinforcement mechanisms of these multiscale composites have not been explored. Here, strain transfer across a nanowire interphase is studied in order to gain a heightened understanding of the working principles of physical interface modification and the formation of a functional gradient. This problem is studied using a functionally graded piezoelectric interface composed of vertically aligned lead zirconate titanate nanowires, as their piezoelectric properties can be utilized to precisely control the strain on one side of the interface. The displacement and strain across the nanowire interface is captured using digital image correlation. It is demonstrated that the material gradient created through nanowires cause a smooth strain transfer from reinforcement phase into matrix phase that eliminates the stress concentration between these phases, which have highly mismatched elasticity.
Hagemann, Martin; Henneberg, Manja; Felde, Vincent J M N L; Drahorad, Sylvie L; Berkowicz, Simon M; Felix-Henningsen, Peter; Kaplan, Aaron
2015-07-01
Cyanobacteria occur worldwide but play an important role in the formation and primary activity of biological soil crusts (BSCs) in arid and semi-arid ecosystems. The cyanobacterial diversity in BSCs of the northwest Negev desert of Israel was surveyed at three fixed sampling stations situated along a precipitation gradient in the years 2010 to 2012. The three stations also are characterized by marked differences in soil features such as soil carbon, nitrogen, or electrical conductivity. The cyanobacterial biodiversity was analyzed by sequencing inserts of clone libraries harboring partial 16S rRNA gene sequences obtained with cyanobacteria-specific primers. Filamentous, non-diazotrophic strains (subsection III), particularly Microcoleus-like, dominated the cyanobacterial community (30% proportion) in all years. Specific cyanobacterial groups showed increased (e.g., Chroococcidiopsis, Leptolyngbya, and Nostoc strains) or decreased (e.g., unicellular strains belonging to the subsection I and Scytonema strains) abundances with declining water availability at the most arid, southern station, whereas many cyanobacterial strains were frequently found in the soils of all three stations. The cyanobacterial diversity at the three sampling stations appears dependent on the available precipitation, whereas the differences in soil chemistry were of lower importance.
Biophysical model of prokaryotic diversity in geothermal hot springs.
Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador
2012-02-01
Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society
On the combined gradient-stochastic plasticity model: Application to Mo-micropillar compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantinidis, A. A., E-mail: akonsta@civil.auth.gr; Zhang, X., E-mail: zhangxu26@126.com; Aifantis, E. C., E-mail: mom@mom.gen.auth.gr
2015-02-17
A formulation for addressing heterogeneous material deformation is proposed. It is based on the use of a stochasticity-enhanced gradient plasticity model implemented through a cellular automaton. The specific application is on Mo-micropillar compression, for which the irregularities of the strain bursts observed have been experimentally measured and theoretically interpreted through Tsallis' q-statistics.
Pyro-paraelectric and flexocaloric effects in barium strontium titanate: A first principles approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Satyanarayan; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in; Chauhan, Aditya
2016-04-18
Inhomogeneous strain allows the manifestation of an unexplored component of stress-driven caloric effect (flexocaloric effect) and enhanced pyroelectric performance, obtainable significantly beyond the Curie point. A peak temperature change of 1.5 K (at 289 K) was predicted from first-principles-based simulations for Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} under the application of a strain gradient of 1.5 μm{sup −1}. Additionally, enhanced pyro-paraelectric coefficient (pyroelectric coefficient in paraelectric phase) and flexocaloric cooling 11 × 10{sup −4} C m{sup −2 }K{sup −1} and 1.02 K, respectively, could be obtained (at 330 K and 1.5 μm{sup −1}). A comparative analysis with prevailing literature indicates huge untapped potential and warrants further research.
Levy, Philip T; Machefsky, Aliza; Sanchez, Aura A; Patel, Meghna D; Rogal, Sarah; Fowler, Susan; Yaeger, Lauren; Hardi, Angela; Holland, Mark R; Hamvas, Aaron; Singh, Gautam K
2016-03-01
Establishment of the range of reference values and associated variations of two-dimensional speckle-tracking echocardiography (2DSTE)-derived left ventricular (LV) strain is a prerequisite for its routine clinical adoption in pediatrics. The aims of this study were to perform a meta-analysis of normal ranges of LV global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) measurements derived by 2DSTE in children and to identify confounding factors that may contribute to variance in reported measures. A systematic review was launched in MEDLINE, Embase, Scopus, the Cumulative Index to Nursing and Allied Health Literature, and the Cochrane Library. Search hedges were created to cover the concepts of pediatrics, STE, and left-heart ventricle. Two investigators independently identified and included studies if they reported 2DSTE-derived LV GLS, GCS, or GRS. The weighted mean was estimated by using random effects models with 95% CIs, heterogeneity was assessed using the Cochran Q statistic and the inconsistency index (I(2)), and publication bias was evaluated using the Egger test. Effects of demographic (age), clinical, and vendor variables were assessed in a metaregression. The search identified 2,325 children from 43 data sets. The reported normal mean values of GLS among the studies varied from -16.7% to -23.6% (mean, -20.2%; 95% CI, -19.5% to -20.8%), GCS varied from -12.9% to -31.4% (mean, -22.3%; 95% CI, -19.9% to -24.6%), and GRS varied from 33.9% to 54.5% (mean, 45.2%; 95% CI, 38.3% to 51.7%). Twenty-six studies reported longitudinal strain only from the apical four-chamber view, with a mean of -20.4% (95% CI, -19.8% to -21.7%). Twenty-three studies reported circumferential strain (mean, -20.3%; 95% CI, -19.4% to -21.2%) and radial strain (mean, 46.7%; 95% CI, 42.3% to 51.1%) from the short-axis view at the midventricular level. A significant apex-to-base segmental longitudinal strain gradient (P < .01) was observed in the LV free wall. There was significant between-study heterogeneity and inconsistency (I(2) > 94% and P < .001 for each strain measure), which was not explained by age, gender, body surface area, blood pressure, heart rate, frame rate, frame rate/heart rate ratio, tissue-tracking methodology, location of reported strain value along the strain curve, ultrasound equipment, or software. The metaregression showed that these effects were not significant determinants of variations among normal ranges of strain values. There was no evidence of publication bias (P = .40). This study defines reference values of 2DSTE-derived LV strain in children on the basis of a meta-analysis. In healthy children, mean LV GLS was -20.2% (95% CI, -19.5% to -20.8%), mean GCS was -22.3% (95% CI, -19.9% to -24.6%), and mean GRS was 45.2% (95% CI, 38.3% to 51.7%). LV segmental longitudinal strain has a stable apex-to-base gradient that is preserved throughout maturation. Although variations among different reference ranges in this meta-analysis were not dependent on differences in demographic, clinical, or vendor parameters, age- and vendor-specific referenced ranges were established as well. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Zhou, Jingxiang; Xue, Jiangdong; Wang, Qiuju; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming
2014-06-01
In order to construct the recombinant plasmid of pIRES-ORF81, the nucleic acid isolated from Koi herpes virus-CJ (KHV-CJ) strains was used as a template to insert the ORF81 gene fragments amplified by PCR into the pIRES-neo, a kind of eukaryotic expression vector. Using Western blotting analysis, it was verified that ORF81 gene protein can be expressed correctly by pIRES-ORF81, after MFC cells were transfected. The recombinant plasmid pIRES-ORF81 was set into three immunization dose gradients: 1, 10, and 50 μg/carp. Empty plasmid group, PBS group, and blank control group were set simultaneously. Giving intramuscular injections to healthy carps with an average body mass of 246 ± 20 g, indirect ELISA was used to regularly determine antibody levels after three times immunization injection. Neutralizing antibodies were detected by neutralization assay. The results of inoculation tests showed that the pIRES-ORF81 recombinant plasmid can induce the production of carp-specific antibodies. The differences of immune effect between the three different doses of immune gradients were not significant (P > 0.05), but they can induce the production of neutralizing antibodies. After 25 d of inoculation, carp mortality of pIRES-neo empty vector treatment groups was 85%, while the carp mortality of eukaryotic expression recombinant plasmid pIRES-ORF81 injected with three different doses of immune gradients was 20, 17.5, and 12.5%, respectively. Differences in comparison to the control group were highly significant (P < 0.01). However, histopathological section of immunohistochemistry organization revealed no significant changes. It demonstrated that the DNA vaccine pIRES-ORF81 constructed in the experiment displayed a good protective effect against KHV, which had the potential to industrial applications.
Progress in turbulence modeling for complex flow fields including effects of compressibility
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Rubesin, M. W.
1980-01-01
Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1996-01-01
Background material on Fourier analysis and on the spectral form of the continuum equations, both averaged and unaveraged, are given. The equations are applied to a number of cases of homogeneous turbulence with and without mean gradients. Spectral transfer of turbulent activity between scales of motion is studied in some detail. The effects of mean shear, heat transfer, normal strain, and buoyancy are included in the analyses.
Virus purification by CsCl density gradient using general centrifugation.
Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro
2017-11-01
Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.
NASA Astrophysics Data System (ADS)
Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.
2015-09-01
The first part of this two-part study reported the possibility of simultaneously generating a dense, self-healing α-alumina layer by thermal oxidation and a coarse-grained microstructure with a potential goodness for high-temperature creep resistance in a FeCrAl oxide dispersion-strengthened ferritic alloy that was cold deformed after hot rolling and extrusion. In this second part, the factors affecting the formation of the coarse-grained microstructure such as strain gradients induced during the rolling process are analyzed. It is concluded that larger strain gradients lead to more refined and more isotropic grain structures.
Lowering coefficient of friction in Cu alloys with stable gradient nanostructures
Chen, Xiang; Han, Zhong; Li, Xiuyan; Lu, K.
2016-01-01
The coefficient of friction (COF) of metals is usually high, primarily because frictional contacts induce plastic deformation underneath the wear surface, resulting in surface roughening and formation of delaminating tribolayers. Lowering the COF of metals is crucial for improving the reliability and efficiency of metal contacts in engineering applications but is technically challenging. Refining the metals’ grains to nanoscale cannot reduce dry-sliding COFs, although their hardness may be elevated many times. We report that a submillimeter-thick stable gradient nanograined surface layer enables a significant reduction in the COF of a Cu alloy under high-load dry sliding, from 0.64 (coarse-grained samples) to 0.29, which is smaller than the COFs of many ceramics. The unprecedented stable low COF stems from effective suppression of sliding-induced surface roughening and formation of delaminating tribolayer, owing to the stable gradient nanostructures that can accommodate large plastic strains under repeated sliding for more than 30,000 cycles. PMID:27957545
Numerical and experimental validation of a particle Galerkin method for metal grinding simulation
NASA Astrophysics Data System (ADS)
Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng
2018-03-01
In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.
Fermentation of biomass sugars to ethanol using native industrial yeast strains.
Yuan, Dawei; Rao, Kripa; Relue, Patricia; Varanasi, Sasidhar
2011-02-01
In this paper, the feasibility of a technology for fermenting sugar mixtures representative of cellulosic biomass hydrolyzates with native industrial yeast strains is demonstrated. This paper explores the isomerization of xylose to xylulose using a bi-layered enzyme pellet system capable of sustaining a micro-environmental pH gradient. This ability allows for considerable flexibility in conducting the isomerization and fermentation steps. With this method, the isomerization and fermentation could be conducted sequentially, in fed-batch, or simultaneously to maximize utilization of both C5 and C6 sugars and ethanol yield. This system takes advantage of a pH-dependent complexation of xylulose with a supplemented additive to achieve up to 86% isomerization of xylose at fermentation conditions. Commercially-proven Saccharomyces cerevisiae strains from the corn-ethanol industry were used and shown to be very effective in implementation of the technology for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.
Atomistic determination of flexoelectric properties of crystalline dielectrics
NASA Astrophysics Data System (ADS)
Maranganti, R.; Sharma, P.
2009-08-01
Upon application of a uniform strain, internal sublattice shifts within the unit cell of a noncentrosymmetric dielectric crystal result in the appearance of a net dipole moment: a phenomenon well known as piezoelectricity. A macroscopic strain gradient on the other hand can induce polarization in dielectrics of any crystal structure, even those which possess a centrosymmetric lattice. This phenomenon, called flexoelectricity, has both bulk and surface contributions: the strength of the bulk contribution can be characterized by means of a material property tensor called the bulk flexoelectric tensor. Several recent studies suggest that strain-gradient induced polarization may be responsible for a variety of interesting and anomalous electromechanical phenomena in materials including electromechanical coupling effects in nonuniformly strained nanostructures, “dead layer” effects in nanocapacitor systems, and “giant” piezoelectricity in perovskite nanostructures among others. In this work, adopting a lattice dynamics based microscopic approach we provide estimates of the flexoelectric tensor for certain cubic crystalline ionic salts, perovskite dielectrics, III-V and II-VI semiconductors. We compare our estimates with experimental/theoretical values wherever available and also revisit the validity of an existing empirical scaling relationship for the magnitude of flexoelectric coefficients in terms of material parameters. It is interesting to note that two independent groups report values of flexoelectric properties for perovskite dielectrics that are orders of magnitude apart: Cross and co-workers from Penn State have carried out experimental studies on a variety of materials including barium titanate while Catalan and co-workers from Cambridge used theoretical ab initio techniques as well as experimental techniques to study paraelectric strontium titanate as well as ferroelectric barium titanate and lead titanate. We find that, in the case of perovskite dielectrics, our estimates agree to an order of magnitude with the experimental and theoretical estimates for strontium titanate. For barium titanate however, while our estimates agree to an order of magnitude with existing ab initio calculations, there exists a large discrepancy with experimental estimates. The possible reasons for the observed deviations are discussed.
Ductile crustal flow in Europe's lithosphere
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2011-12-01
Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, M.; National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973; Shukla, V.
Elastic and plastic strain evolution under four-point bending has been studied by synchrotron energy dispersive x-ray diffraction. Measured strain profiles across the specimen thickness showed an increasing linear elastic strain gradient under increasing four-point bending load up to approx2 kN. The bulk elastic modulus of Ti-6Al-4V was determined as 118 GPa. The onset of plastic deformation was found to set in at a total in-plane strain of approx0.008, both under tension and compression. Plastic deformation under bending is initiated in the vicinity of the surface and at a stress of 1100 MPa, and propagates inward, while a finite core regionmore » remains elastically deformed up to 3.67 kN loading. The onset of the plastic regime and the plastic regime itself has been verified by monitoring the line broadening of the (100) peak of alpha-Ti. The effective compression/tension stress-strain curve has been obtained from the scaling collapse of strain profile data taken at seven external load levels. A similar multiple load scaling collapse of the plastic strain variation has also been obtained. The level of precision in strain measurement reported herein was evaluated and found to be 1.5x10{sup -5} or better.« less
Study of the velocity gradient tensor in turbulent flow
NASA Technical Reports Server (NTRS)
Cheng, Wei-Ping; Cantwell, Brian
1996-01-01
The behavior of the velocity gradient tensor, A(ij)=delta u(i)/delta x(j), was studied using three turbulent flows obtained from direct numerical simulation The flows studies were: an inviscid calculation of the interaction between two vortex tubes, a homogeneous isotropic flow, and a temporally evolving planar wake. Self-similar behavior for each flow was obtained when A(ij) was normalized with the mean strain rate. The case of the interaction between two vortex tubes revealed a finite sized coherent structure with topological characteristics predictable by a restricted Euler model. This structure was found to evolve with the peak vorticity as the flow approached singularity. Invariants of A(ij) within this structure followed a straight line relationship of the form: gamma(sup 3)+gammaQ+R=0, where Q and R are the second and third invariants of A(ij), and the eigenvalue gamma is nearly constant over the volume of this structure. Data within this structure have local strain topology of unstable-node/saddle/saddle. The characteristics of the velocity gradient tensor and the anisotropic part of a related acceleration gradient tensor H(ij) were also studied for a homogeneous isotropic flow and a temporally evolving planar wake. It was found that the intermediate principal eigenvalue of the rate-of-strain tensor of H(ij) tended to be negative, with local strain topology of the type stable-node/saddle/saddle. There was also a preferential eigenvalue direction. The magnitude of H(ij) in the wake flow was found to be very small when data were conditioned at high local dissipation regions. This result was not observed in the relatively low Reynolds number simulation of homogeneous isotropic flow. A restricted Euler model of the evolution of A(ij) was found to reproduce many of the topological features identified in the simulations.
Drop casting of stiffness gradients for chip integration into stretchable substrates
NASA Astrophysics Data System (ADS)
Naserifar, Naser; LeDuc, Philip R.; Fedder, Gary K.
2017-04-01
Stretchable electronics have demonstrated promise within unobtrusive wearable systems in areas such as health monitoring and medical therapy. One significant question is whether it is more advantageous to develop holistic stretchable electronics or to integrate mature CMOS into stretchable electronic substrates where the CMOS process is separated from the mechanical processing steps. A major limitation with integrating CMOS is the dissimilar interface between the soft stretchable and hard CMOS materials. To address this, we developed an approach to pattern an elastomeric polymer layer with spatially varying mechanical properties around CMOS electronics to create a controllable material stiffness gradient. Our experimental approach reveals that modifying the interfaces can increase the strain failure threshold up to 30% and subsequently decreases delamination. The stiffness gradient in the polymer layer provides a safe region for electronic chips to function under a substrate tensile strain up to 150%. These results will have impacts in diverse applications including skin sensors and wearable health monitoring systems.
Structure in the Near Field of the Transverse Jet
1990-04-13
73 7.1.2 Rate of strain vs. vorticity ...... .................. 74 7.1.3 Total pressure gradients ...... .................... 75 7.1.4...vorticity from within the nozzle evolves into the CVP vorticity. 7.1.2 Rate of strain vs. vorticity Although there is no mechanism in the present flow...by which to generate new vor- ticity within the flow, such is not the case for the rate of strain (Morton 1984). The 2-D equation governing the rate
360° deterministic magnetization rotation in a three-ellipse magnetoelectric heterostructure
NASA Astrophysics Data System (ADS)
Kundu, Auni A.; Chavez, Andres C.; Keller, Scott M.; Carman, Gregory P.; Lynch, Christopher S.
2018-03-01
A magnetic dipole-coupled magnetoelectric heterostructure comprised of three closely spaced ellipse shapes was designed and shown to be capable of achieving deterministic in-plane magnetization rotation. The design approach used a combination of conventional micromagnetic simulations to obtain preliminary configurations followed by simulations using a fully strain-coupled, time domain micromagnetic code for a detailed assessment of performance. The conventional micromagnetic code has short run times and was used to refine the ellipse shape and orientation, but it does not accurately capture the effects of the strain gradients present in the piezoelectric and magnetostrictive layers that contribute to magnetization reorientation. The fully coupled code was used to assess the effects of strain and magnetic field gradients on precessional switching in the side ellipses and on the resulting dipole-field driven magnetization reorientation in the center ellipse. The work led to a geometry with a CoFeB ellipse (125 nm × 95 nm × 4 nm) positioned between two smaller CoFeB ellipses (75 nm × 50 nm × 4 nm) on a 500 nm PZT-5H film substrate clamped at its bottom surface. The smaller ellipses were oriented at 45° and positioned at 70° and 250° about the central ellipse due to the film deposition on a thick substrate. A 7.3 V pulse applied to the PZT for 0.22 ns produced 180° switching of the magnetization in the outer ellipses that then drove switching in the center ellipse through dipole-dipole coupling. Full 360° deterministic rotation was achieved with a second pulse. The temporal response of the resulting design is discussed.
Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.
Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M
1999-04-01
In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.
Deformation behavior and mechanical analysis of vertically aligned carbon nanotube (VACNT) bundles
NASA Astrophysics Data System (ADS)
Hutchens, Shelby B.
Vertically aligned carbon nanotubes (VACNTs) serve as integral components in a variety of applications including MEMS devices, energy absorbing materials, dry adhesives, light absorbing coatings, and electron emitters, all of which require structural robustness. It is only through an understanding of VACNT's structural mechanical response and local constitutive stress-strain relationship that future advancements through rational design may take place. Even for applications in which the structural response is not central to device performance, VACNTs must be sufficiently robust and therefore knowledge of their microstructure-property relationship is essential. This thesis first describes the results of in situ uniaxial compression experiments of 50 micron diameter cylindrical bundles of these complex, hierarchical materials as they undergo unusual deformation behavior. Most notably they deform via a series of localized folding events, originating near the bundle base, which propagate laterally and collapse sequentially from bottom to top. This deformation mechanism accompanies an overall foam-like stress-strain response having elastic, plateau, and densification regimes with the addition of undulations in the stress throughout the plateau regime that correspond to the sequential folding events. Microstructural observations indicate the presence of a strength gradient, due to a gradient in both tube density and alignment along the bundle height, which is found to play a key role in both the sequential deformation process and the overall stress-strain response. Using the complicated structural response as both motivation and confirmation, a finite element model based on a viscoplastic solid is proposed. This model is characterized by a flow stress relation that contains an initial peak followed by strong softening and successive hardening. Analysis of this constitutive relation results in capture of the sequential buckling phenomenon and a strength gradient effect. This combination of experimental and modeling approaches motivates discussion of the particular microstructural mechanisms and local material behavior that govern the non-trivial energy absorption via sequential, localized buckle formation in the VACNT bundles.
NASA Astrophysics Data System (ADS)
Jaboyedoff, M.; Derron, M.-H.; Manby, G. M.
2005-01-01
Uplift gradients can provide the location of highly strained zones, which can be considered to be seismic. The Turan block (Central Asia) contains zones with high gradient of uplift velocities, above the threshold 0.04mm km-1year-1. Some of these zones are associated with important seismic activity and others are not correlated with any recent important recorded earthquakes, however, recent faults scarps as well as diverted rivers may indicate a recent tectonic activity. This threshold of gradient is probably a significant rheologic property of the upper crust. On the basis of these considerations the Uzboy river area is proposed as a potential high seismic hazard zone.
From progressive to finite deformation, and back: the universal deformation matrix
NASA Astrophysics Data System (ADS)
Provost, A.; Buisson, C.; Merle, O.
2003-04-01
It is widely accepted that any finite strain recorded in the field may be interpreted in terms of the simultaneous combination of a pure shear component with one or several simple shear components. To predict strain in geological structures, approximate solutions may be obtained by multiplying successive small increments of each elementary strain component. A more rigorous method consists in achieving the simultaneous combination in the velocity gradient tensor but solutions already proposed in the literature are valid for special cases only and cannot be used, e.g., for the general combination of a pure shear component and six elementary simple shear components. In this paper, we show that the combination of any strain components is as simple as a mouse click, both analytically and numerically. The finite deformation matrix is given by L=exp(L.Δt) where L.Δt is the time-integrated velocity gradient tensor. This method makes it possible to predict finite strain for any combination of strain components. Reciprocally, L.Δt=ln(D) , which allows to unravel the simplest deformation history that might be liable for a given finite deformation. Given the strain ellipsoid only, it is still possible to constrain the range of compatible deformation matrices and thus the range of strain component combinations. Interestingly, certain deformation matrices, though geologically sensible, have no real logarithm so cannot be explained by a deformation history implying strain rate components with constant proportions, what implies significant changes of the stress field during the history of deformation. The study as a whole opens the possibility for further investigations on deformation analysis in general, the method could be used wathever the configuration is.
NASA Astrophysics Data System (ADS)
Watanabe, Yukio
2018-05-01
In the calculations of tetragonal BaTiO3, some exchange-correlation (XC) energy functionals such as local density approximation (LDA) have shown good agreement with experiments at room temperature (RT), e.g., spontaneous polarization (PS), and superiority compared with other XC functionals. This is due to the error compensation of the RT effect and, hence, will be ineffective in the heavily strained case such as domain boundaries. Here, ferroelectrics under large strain at RT are approximated as those at 0 K because the strain effect surpasses the RT effects. To find effective XC energy functionals for strained BaTiO3, we propose a new comparison, i.e., a criterion. This criterion is the properties at 0 K given by the Ginzburg-Landau (GL) theory because GL theory is a thermodynamic description of experiments working under the same symmetry-constraints as ab initio calculations. With this criterion, we examine LDA, generalized gradient approximations (GGA), meta-GGA, meta-GGA + local correlation potential (U), and hybrid functionals, which reveals the high accuracy of some XC functionals superior to XC functionals that have been regarded as accurate. This result is examined directly by the calculations of homogenously strained tetragonal BaTiO3, confirming the validity of the new criterion. In addition, the data points of theoretical PS vs. certain crystallographic parameters calculated with different XC functionals are found to lie on a single curve, despite their wide variations. Regarding these theoretical data points as corresponding to the experimental results, analytical expressions of the local PS using crystallographic parameters are uncovered. These expressions show the primary origin of BaTiO3 ferroelectricity as oxygen displacements. Elastic compliance and electrostrictive coefficients are estimated. For the comparison of strained results, we show that the effective critical temperature TC under strain <-0.01 is >1000 K from an approximate method combining ab initio results with GL theory. In addition, in a definite manner, the present results show much more enhanced ferroelectricity at large strain than the previous reports.
Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane
2008-01-01
Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671
NASA Astrophysics Data System (ADS)
Delfani, M. R.; Latifi Shahandashti, M.
2017-09-01
In this paper, within the complete form of Mindlin's second strain gradient theory, the elastic field of an isolated spherical inclusion embedded in an infinitely extended homogeneous isotropic medium due to a non-uniform distribution of eigenfields is determined. These eigenfields, in addition to eigenstrain, comprise eigen double and eigen triple strains. After the derivation of a closed-form expression for Green's function associated with the problem, two different cases of non-uniform distribution of the eigenfields are considered as follows: (i) radial distribution, i.e. the distributions of the eigenfields are functions of only the radial distance of points from the centre of inclusion, and (ii) polynomial distribution, i.e. the distributions of the eigenfields are polynomial functions in the Cartesian coordinates of points. While the obtained solution for the elastic field of the latter case takes the form of an infinite series, the solution to the former case is represented in a closed form. Moreover, Eshelby's tensors associated with the two mentioned cases are obtained.
Modeling lateral circulation and its influence on the along-channel flow in a branched estuary
NASA Astrophysics Data System (ADS)
Zhu, Lei; He, Qing; Shen, Jian
2018-02-01
A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.
Matthews, Sharon; Power, Chris
2002-03-01
A focus in the literature on determinants of women's health is the cost and benefit of occupying multiple roles as employee, spouse, and mother, yet little attention has been given to the work and home characteristics of different roles for women in paid and unpaid work. The impact of work-home factors on socio-economic gradients in health has also tended to be overlooked. This paper assesses the contribution of work-home factors on socio-economic differences in psychological distress among women, using data from the 1958 British birth cohort. Outcome measures include psychological distress and social class at age 33. Work-home measures include: (1) roles--employment, marital status, domestic responsibility and parental status (2) work characteristics--psychosocial job strain, insecurity, unsocial working hours, and (3) home characteristics youngest child's age, total number of children, childcare responsibilities and having an older adult in the household (over 70 years). A social gradient in psychological distress exists: the odds ratio (OR) for classes IV and V versus. I and II was 3.02, adjusting for prior psychological distress reduces this to 2.36. Whilst, work and home factors were associated separately with distress and social class, the combined effect of work and home factors did not account for the class gradient in distress. This surprising result therefore implicates factors beyond adult social roles examined here in the development of socio-economic gradients.
Three-dimensional analysis of a postbuckled embedded delamination
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1988-01-01
Delamination growth caused by local buckling of a delaminated group of plies was investigated. Delamination growth was assumed to be governed by the strain energy release rates, G(1), G(2) and G(3). The strain energy release rates were calculated using a geometrically nonlinear three-dimensional finite element analysis. The program is described and several checks of the analysis are discussed. Based on a limited parametric study, the following conclusions were reached: (1) the problem is definitely mixed mode (in some cases G(1) is larger than G(2), for other cases the opposite is true); (2) in general, there is a large gradient in the strain energy release rates along the delamination front; (3) the locations of maximum G(1) and G(2) depend on the delamination shape and the applied strain; (4) the mode 3 component was negligible for all cases considered; and (5) the analysis predicted that parts of the delamination would overlap. The results presented did not impose contact constraints to prevent overlapping. Further work is needed to determine the effects of allowing the overlapping.
Isolation and characterization of diuron-degrading bacteria from lotic surface water.
Batisson, Isabelle; Pesce, Stéphane; Besse-Hoggan, Pascale; Sancelme, Martine; Bohatier, Jacques
2007-11-01
The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1-V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.
Field theory and diffusion creep predictions in polycrystalline aggregates
NASA Astrophysics Data System (ADS)
Villani, A.; Busso, E. P.; Forest, S.
2015-07-01
In polycrystals, stress-driven vacancy diffusion at high homologous temperatures leads to inelastic deformation. In this work, a novel continuum mechanics framework is proposed to describe the strain fields resulting from such a diffusion-driven process in a polycrystalline aggregate where grains and grain boundaries are explicitly considered. The choice of an anisotropic eigenstrain in the grain boundary region provides the driving force for the diffusive creep processes. The corresponding inelastic strain rate is shown to be related to the gradient of the vacancy flux. Dislocation driven deformation is then introduced as an additional mechanism, through standard crystal plasticity constitutive equations. The fully coupled diffusion-mechanical model is implemented into the finite element method and then used to describe the biaxial creep behaviour of FCC polycrystalline aggregates. The corresponding results revealed for the first time that such a coupled diffusion-stress approach, involving the gradient of the vacancy flux, can accurately predict the well-known macroscopic strain rate dependency on stress and grain size in the diffusion creep regime. They also predict strongly heterogeneous viscoplastic strain fields, especially close to grain boundaries triple junctions. Finally, a smooth transition from Herring and Coble to dislocation creep behaviour is predicted and compared to experimental results for copper.
Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.
Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles
2009-01-01
Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.
Settanni, Luca; Valmorri, Sara; van Sinderen, Douwe; Suzzi, Giovanna; Paparella, Antonello; Corsetti, Aldo
2006-01-01
A combination of denaturing gradient gel electrophoresis (DGGE) and a previously described multiplex PCR approach was employed to detect sourdough lactobacilli. Primers specific for certain groups of Lactobacillus spp. were used to amplify fragments, which were analyzed by DGGE. DGGE profiles obtained from Lactobacillus type strains acted as standards to analyze lactobacilli from four regional Abruzzo (central Italy) sourdoughs. PMID:16672538
Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO 3 films
Morozovska, Anna N.; Eliseev, Eugene A.; Bravina, Svetlana L.; ...
2012-09-20
The influence of the flexoelectric and rotostriction coupling on the phase diagrams of ferroelastic-quantum paraelectric SrTiO 3 films was studied using Landau-Ginzburg-Devonshire (LGD) theory. We calculated the phase diagrams in coordinates temperature - film thickness for different epitaxial misfit strains. Tensile misfit strains stimulate appearance of the spontaneous out-of-plane structural order parameter (displacement vector of an appropriate oxygen atom from its cubic position) in the structural phase. For compressive misfit strains are stimulated because of the spontaneous in-plane structural order parameter. Furthermore, gradients of the structural order parameter components, which inevitably exist in the vicinity of film surfaces due tomore » the termination and symmetry breaking, induce improper polarization and pyroelectric response via the flexoelectric and rotostriction coupling mechanism. Flexoelectric and rotostriction coupling results in the roto-flexoelectric field that is antisymmetric inside the film, small in the central part of the film, where the gradients of the structural parameter are small, and maximal near the surfaces, where the gradients of the structural parameter are highest. The field induces improper polarization and pyroelectric response. Penetration depths of the improper phases (both polar and structural) can reach several nm from the film surfaces. An improper pyroelectric response of thin films is high enough to be registered with planar-type electrode configurations by conventional pyroelectric methods.« less
NASA Astrophysics Data System (ADS)
Haoxiang, Chen; Qi, Chengzhi; Peng, Liu; Kairui, Li; Aifantis, Elias C.
2015-12-01
The occurrence of alternating damage zones surrounding underground openings (commonly known as zonal disintegration) is treated as a "far from thermodynamic equilibrium" dynamical process or a nonlinear continuous phase transition phenomenon. The approach of internal variable gradient theory with diffusive transport, which may be viewed as a subclass of Landau's phase transition theory, is adopted. The order parameter is identified with an irreversible strain quantity, the gradient of which enters into the expression for the free energy of the rock system. The gradient term stabilizes the material behavior in the post-softening regime, where zonal disintegration occurs. The results of a simplified linearized analysis are confirmed by the numerical solution of the nonlinear problem.
Experimental and computational investigation of lateral gauge response in polycarbonate
NASA Astrophysics Data System (ADS)
Eliot, Jim; Harris, Ernst; Hazell, Paul; Appleby-Thomas, Gareth; Winter, Ronald; Wood, David; Owen, Gareth
2011-06-01
Polycarbonate's use in personal armour systems means its high strain-rate response has been extensively studied. Interestingly, embedded lateral manganin stress gauges in polycarbonate have shown gradients behind incident shocks, suggestive of increasing shear strength. However, such gauges need to be embedded in a central (typically) epoxy interlayer - an inherently invasive approach. Recently, research has suggested that in such metal systems interlayer/target impedance may contribute to observed gradients in lateral stress. Here, experimental T-gauge (Vishay Micro-Measurements® type J2M-SS-580SF-025) traces from polycarbonate targets are compared to computational simulations. This work extends previous efforts such that similar impedance exists between the interlayer and matrix (target) interface. Further, experiments and simulations are presented investigating the effects of a ``dry joint'' in polycarbonate, in which no encapsulating medium is employed.
Aluminum U-groove weld enhancement based on experimental stress analyses
NASA Technical Reports Server (NTRS)
Verderaime, V.; Vaughan, R.
1995-01-01
Though butt-welds are among the most preferred joining methods in aerostructures because of their sealing and assembly integrity and general elastic performance; their inelastic mechanics are generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the tab thickness between the grooves produce severe peaking, which induces bending moment under uniaxial loading. The filler strain hardening decreased with increasing filler pass sequence. These combined effects reduce the weld strength, and a depeaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve the welding process results over the current normal weld schedule.
Solid-propellant rocket motor ballistic performance variation analyses
NASA Technical Reports Server (NTRS)
Sforzini, R. H.; Foster, W. A., Jr.
1975-01-01
Results are presented of research aimed at improving the assessment of off-nominal internal ballistic performance including tailoff and thrust imbalance of two large solid-rocket motors (SRMs) firing in parallel. Previous analyses using the Monte Carlo technique were refined to permit evaluation of the effects of radial and circumferential propellant temperature gradients. Sample evaluations of the effect of the temperature gradients are presented. A separate theoretical investigation of the effect of strain rate on the burning rate of propellant indicates that the thermoelastic coupling may cause substantial variations in burning rate during highly transient operating conditions. The Monte Carlo approach was also modified to permit the effects on performance of variation in the characteristics between lots of propellants and other materials to be evaluated. This permits the variabilities for the total SRM population to be determined. A sample case shows, however, that the effect of these between-lot variations on thrust imbalances within pairs of SRMs is minor in compariosn to the effect of the within-lot variations. The revised Monte Carlo and design analysis computer programs along with instructions including format requirements for preparation of input data and illustrative examples are presented.
Local relative density modulates failure and strength in vertically aligned carbon nanotubes.
Pathak, Siddhartha; Mohan, Nisha; Decolvenaere, Elizabeth; Needleman, Alan; Bedewy, Mostafa; Hart, A John; Greer, Julia R
2013-10-22
Micromechanical experiments, image analysis, and theoretical modeling revealed that local failure events and compressive stresses of vertically aligned carbon nanotubes (VACNTs) were uniquely linked to relative density gradients. Edge detection analysis of systematically obtained scanning electron micrographs was used to quantify a microstructural figure-of-merit related to relative local density along VACNT heights. Sequential bottom-to-top buckling and hardening in stress-strain response were observed in samples with smaller relative density at the bottom. When density gradient was insubstantial or reversed, bottom regions always buckled last, and a flat stress plateau was obtained. These findings were consistent with predictions of a 2D material model based on a viscoplastic solid with plastic non-normality and a hardening-softening-hardening plastic flow relation. The hardening slope in compression generated by the model was directly related to the stiffness gradient along the sample height, and hence to the local relative density. These results demonstrate that a microstructural figure-of-merit, the effective relative density, can be used to quantify and predict the mechanical response.
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman
2012-11-01
A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.
Statistics of pressure fluctuations in decaying isotropic turbulence.
Kalelkar, Chirag
2006-04-01
We present results from a systematic direct-numerical simulation study of pressure fluctuations in an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid. At cascade completion, isosurfaces of low pressure are found to be organized as slender filaments, whereas the predominant isostructures appear sheetlike. We exhibit several results, including plots of probability distributions of the spatial pressure difference, the pressure-gradient norm, and the eigenvalues of the pressure-Hessian tensor. Plots of the temporal evolution of the mean pressure-gradient norm, and the mean eigenvalues of the pressure-Hessian tensor are also exhibited. We find the statistically preferred orientations between the eigenvectors of the pressure-Hessian tensor, the pressure gradient, the eigenvectors of the strain-rate tensor, the vorticity, and the velocity. Statistical properties of the nonlocal part of the pressure-Hessian tensor are also exhibited. We present numerical tests (in the viscous case) of some conjectures of Ohkitani [Phys. Fluids A 5, 2570 (1993)] and Ohkitani and Kishiba [Phys. Fluids 7, 411 (1995)] concerning the pressure-Hessian and the strain-rate tensors, for the unforced, incompressible, three-dimensional Euler equations.
Main, Russell P
2007-01-01
Vertebrate long bone form, at both the gross and the microstructural level, is the result of many interrelated influences. One factor that is considered to have a significant effect on bone form is the mechanical environment experienced by the bone during growth. The work presented here examines the possible relationships between in vivo bone strains, bone geometry and histomorphology in the radii of three age/size groups of domestic goats. In vivo bone strain data were collected from the radii of galloping goats, and the regional cortical distribution of peak axial strain magnitudes, radial and circumferential strain gradients, and longitudinal strain rates related to regional patterns in cortical growth, porosity, remodelling and collagen fibre orientation. Although porosity and remodelling decreased and increased with age, respectively, these features showed no significant regional differences and did not correspond to regional patterns in the mechanical environment. Thicker regions of the radius's cortex were significantly related to high strain levels and higher rates of periosteal, but not endosteal, growth. However, cortical growth and strain environment were not significantly related. Collagen fibre orientation varied regionally, with a higher percentage of transverse fibres in the caudal region of the radius and primarily longitudinal fibres elsewhere, and, although consistent through growth, also did not generally correspond to regional strain patterns. Although strain magnitudes increased during ontogeny and regional strain patterns were variable over the course of a stride, mean regional strain patterns were generally consistent with growth, suggesting that regional growth patterns and histomorphology, in combination with external loads, may play some role in producing a relatively ‘predictable’ strain environment within the radius. It is further hypothesized that the absence of correlation between regional histomorphometric patterns and the measured strain environments is the result of the variable mechanical environment. However, the potential effects of other physiological and mechanical factors, such as skeletal metabolism and adjacent muscle insertions, that can influence the gross and microstructural morphology of the radius during ontogeny, cannot be ignored. PMID:17331177
Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1987-01-01
An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.
Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2016-09-01
In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing to the dominance of cylindrical curvature of the flame front. Finally, the effect of heat release on the turbulence-flame interactions is examined. It is found that heat release has only limited impact on the statistics due to the minor role played by the strain rate induced by heat release rate in the current high Ka flame.
A homogenized localizing gradient damage model with micro inertia effect
NASA Astrophysics Data System (ADS)
Wang, Zhao; Poh, Leong Hien
2018-07-01
The conventional gradient enhancement regularizes structural responses during material failure. However, it induces a spurious damage growth phenomenon, which is shown here to persist in dynamics. Similar issues were reported with the integral averaging approach. Consequently, the conventional nonlocal enhancement cannot adequately describe the dynamic fracture of quasi-brittle materials, particularly in the high strain rate regime, where a diffused damage profile precludes the development of closely spaced macrocracks. To this end, a homogenization theory is proposed to translate the micro processes onto the macro scale. Starting with simple elementary models at the micro scale to describe the fracture mechanisms, an additional kinematic field is introduced to capture the variations in deformation and velocity within a unit cell. An energetic equivalence between micro and macro is next imposed to ensure consistency at the two scales. The ensuing homogenized microforce balance resembles closely the conventional gradient expression, albeit with an interaction domain that decreases with damage, complemented by a micro inertia effect. Considering a direct single pressure bar example, the homogenized model is shown to resolve the non-physical responses obtained with conventional nonlocal enhancement. The predictive capability of the homogenized model is furthermore demonstrated by considering the spall tests of concrete, with good predictions on failure characteristics such as fragmentation profiles and dynamic tensile strengths, at three different loading rates.
NASA Astrophysics Data System (ADS)
Bazylinski, D. A.; Williams, T. J.; Zhang, C. L.; Scott, J. H.
2005-12-01
All cultured, marine, magnetite-producing, magnetotactic bacteria (MB) are capable of chemolithoautotrophy and use a number of electron donors to support this mode of growth including reduced sulfur compounds. Several vibrioid strains are known to rely on the Calvin-Benson-Bassham (CBB) cycle for autotrophy. An obligately microaerophilic, magnetite-producing, coccoid strain (MC-1) grew with sulfide and thiosulfate as electron donors and 14C-labelling experiments showed that virtually all cell C was derived from H14CO3-/14CO2 confirming autotrophy in this strain. Cell-free extracts of strain MC-1 did not exhibit ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) activity and nor were RubisCO genes found in the draft genome of the organism. Cell extracts also did not exhibit carbon monoxide dehydrogenase activity indicating that the acetyl-CoA pathway also does not function in strain MC-1. The 13C content of whole cells of strain MC-1 relative to the 13C content of the H14CO3-/14CO2 used for growth (Δδ13C) was -11.4 ppt. Cellular fatty acids showed enrichment of 13C relative to biomass. Activities for three key enzymes of the reverse or reductive tricarboxylic acid (rTCA) cycle were demonstrated for MC-1: fumarate reductase, pyruvate: acceptor oxidoreductase and 2-oxoglutarate: acceptor oxidoreductase. Although ATP citrate lyase (another key enzyme of the rTCA cycle) activity was not detected in cell-free extracts of strain MC-1 using commonly used assays for this enzyme, cell-free extract was found to rapidly cleave citrate, and the reaction was dependent upon the presence of ATP, coenzyme A and NADH. Thus, we infer the presence of an ATP-dependent citrate-cleaving enzyme or enzymes. The Δδ13C value and results from enzyme studies are consistent with the operation of the rTCA cycle for autotrophy in strain MC-1. Strain MC-1 appears to be the first known member of the alpha-Proteobacteria to assimilate CO2 during autotrophic growth using the rTCA cycle. Based on the type of chemolithoautotrophy described above, it is clear why marine magnetite-producing MB occupy a precise location, the oxic-anoxic interface, in vertical chemical gradients within chemically-stratified coastal environments: they must have an electron donor, sulfide and perhaps others, and an electron acceptor, O2. The presumed function of magnetosomes is that the magnetic dipole resulting from the magnetosomes aids the cell in locating and maintaining an optimal position within vertical chemical gradients. MB process large amounts of Fe in the biomineralization of magnetosomes: cells consist of 1-3% Fe (dry wt). Because of this, and the fact that many chemolithoautotrophic, non-magnetotactic bacteria occupy a similar niche, we have been investigating possible physiological reasons for the production of magnetosomes and the processing of such large amounts of Fe. We have found that some marine vibrioid strains grow in O2-gradient medium with Fe(II) as the electron donor. Cells appear to oxidize the Fe(II) and produce a layer of Fe oxyhydroxides within the gradient suggesting that cells obtain energy from the oxidation of Fe(II).
Proton Gradient-Driven Nickel Uptake by Vacuolar Membrane Vesicles of Saccharomyces cerevisiae
Nishimura, Ken; Igarashi, Kazuei; Kakinuma, Yoshimi
1998-01-01
A vacuolar H+-ATPase-negative mutant of Saccharomyces cerevisiae was highly sensitive to nickel ion. Accumulation of nickel ion in the cells of this mutant of less than 60% of the value for the parent strain arrested growth, suggesting a role for this ATPase in sequestering nickel ion into vacuoles. An artificially imposed pH gradient (interior acid) induced transient nickel ion uptake by vacuolar membrane vesicles, which was inhibited by collapse of the pH difference but not of the membrane potential. Nickel ion transport into vacuoles in a pH gradient-dependent manner is thus important for its detoxification in yeast. PMID:9537401
Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki
2013-01-01
In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841
NASA Astrophysics Data System (ADS)
Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.
2017-04-01
Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.
Washington Play Fairway Analysis Geothermal GIS Data
Corina Forson
2015-12-15
This file contains file geodatabases of the Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV) and Mount Baker (MB) geothermal play-fairway sites in the Washington Cascades. The geodatabases include input data (feature classes) and output rasters (generated from modeling and interpolation) from the geothermal play-fairway in Washington State, USA. These data were gathered and modeled to provide an estimate of the heat and permeability potential within the play-fairways based on: mapped volcanic vents, hot springs and fumaroles, geothermometry, intrusive rocks, temperature-gradient wells, slip tendency, dilation tendency, displacement, displacement gradient, max coulomb shear stress, sigma 3, maximum shear strain rate, and dilational strain rate at 200m and 3 km depth. In addition this file contains layer files for each of the output rasters. For details on the areas of interest please see the 'WA_State_Play_Fairway_Phase_1_Technical_Report' in the download package. This submission also includes a file with the geothermal favorability of the Washington Cascade Range based off of an earlier statewide assessment. Additionally, within this file there are the maximum shear and dilational strain rate rasters for all of Washington State.
Ultrasonographic study of mechanosensory properties in human esophagus during mechanical distension
Larsen, Ejnar; Reddy, Hariprasad; Drewes, Asbjørn Mohr; Arendt-Nielsen, Lars; Gregersen, Hans
2006-01-01
AIM: To study the esophageal geometry and mechanosensation using endoscopic ultrasonography during volume-controlled ramp distensions in the distal esophagus. METHODS: Twelve healthy volunteers underwent distension of a bag. During distension up to moderate pain the sensory intensity was assessed on a visual analogue scale (VAS). The esophageal deformation in terms of multidimensional stretch ratios and strains was calculated at different volumes and VAS levels. Distensions were done before and during administration of the anti-cholinergic drug butylscopolamine. RESULTS: The stimulus-response (volume-VAS) curve did not differ without or with the administration of butylscopolamine. Analysis of stretch ratios demonstrated tensile stretch in circumferential direction, compression in radial direction and a small tensile stretch in longitudinal direction. A strain gradient existed throughout the esophageal wall with the largest circumferential deformation at the mucosal surface. The sensation intensity increased exponentially as function of the strains. CONCLUSION: The method provides information of esophageal deformation gradients that correlate to the sensation intensity. Hence, it can be used to study mechanosensation in the human esophagus. Further studies are needed to determine the exact deformation stimulus for the esophageal mechanoreceptors. PMID:16874864
Mapping Strain Gradients in the FIB-Structured InGaN/GaN Multilayered Films with 3D X-ray Microbeam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Gao, Yanfei; Ice, Gene E
2010-01-01
This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence ({mu}-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation ofmore » complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent.« less
Mapping strain gradients in the FIB-structured InGaN/GaN multilayered films with 3D x-ray microbeam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, R. I.; Gao, Y. F.; Ice, G. E.
2010-11-25
This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence ({mu}-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation ofmore » complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent.« less
The role of zeta potential in the adhesion of E. coli to suspended intertidal sediments.
Wyness, Adam J; Paterson, David M; Defew, Emma C; Stutter, Marc I; Avery, Lisa M
2018-05-29
The extent of pathogen transport to and within aquatic systems depends heavily on whether the bacterial cells are freely suspended or in association with suspended particles. The surface charge of both bacterial cells and suspended particles affects cell-particle adhesion and subsequent transport and exposure pathways through settling and resuspension cycles. This study investigated the adhesion of Faecal Indicator Organisms (FIOs) to natural suspended intertidal sediments over the salinity gradient encountered at the transition zone from freshwater to marine environments. Phenotypic characteristics of three E. coli strains, and the zeta potential (surface charge) of the E. coli strains and 3 physically different types of intertidal sediments was measured over a salinity gradient from 0 to 5 Practical Salinity Units (PSU). A batch adhesion microcosm experiment was constructed with each combination of E. coli strain, intertidal sediment and 0, 2, 3.5 and 5 PSU. The zeta potential profile of one E. coli strain had a low negative charge and did not change in response to an increase in salinity, and the remaining E. coli strains and the sediments exhibited a more negative charge that decreased with an increase in salinity. Strain type was the most important factor in explaining cell-particle adhesion, however adhesion was also dependant on sediment type and salinity (2, 3.5 PSU > 0, 5 PSU). Contrary to traditional colloidal (Derjaguin, Landau, Vervey, and Overbeek (DLVO)) theory, zeta potential of strain or sediment did not correlate with cell-particle adhesion. E. coli strain characteristics were the defining factor in cell-particle adhesion, implying that diverse strain-specific transport and exposure pathways may exist. Further research applying these findings on a catchment scale is necessary to elucidate these pathways in order to improve accuracy of FIO fate and transport models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Strain characterization of embedded aerospace smart materials using shearography
NASA Astrophysics Data System (ADS)
Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.
2015-04-01
The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.
Intraspecific Adaptations to Thermal Gradients in a Cosmopolitan Coccolithophore
NASA Astrophysics Data System (ADS)
Matson, P. G.; Ladd, T. M.; Iglesias-Rodriguez, D.
2016-02-01
The species concept in marine phytoplankton has enormous biological complexity. Differences in genomic, morphological, physiological, biogeochemical, and ecological/biogeographic properties between strains of the same species can be comparable or even exceed those between species. This complexity is particularly pronounced in the cosmopolitan coccolithophore species Emiliania huxleyi. This bloom-forming species is found at nearly every latitude in a variety of environments including upwelling regions, and exposed to large temperature gradients. We present results from experiments using two strains of E. huxleyi isolated from different latitudes and environmental conditions. Tests involved semi-continuous culturing in lab manipulation experiments to determine how carbon fixation, growth, and morphology respond to temperature-driven alterations in physico-chemical conditions. This talk will discuss the observed differences in physiology within an ecological context and the implications of these biogeochemical differences in modeling carbon fluxes driven by phytoplankton.
Three dimensional grain boundary modeling in polycrystalline plasticity
NASA Astrophysics Data System (ADS)
Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman
2018-05-01
At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.
Study of Rayleigh-Love coupling from Spatial Gradient Observation
NASA Astrophysics Data System (ADS)
Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.
2017-12-01
We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.
Polychromatic microdiffraction characterization of defect gradients in severely deformed materials.
Barabash, Rozaliya I; Ice, Gene E; Liu, Wenjun; Barabash, Oleg M
2009-01-01
This paper analyzes local lattice rotations introduced in severely deformed polycrystalline titanium by friction stir welding. Nondestructive three-dimensional (3D) spatially resolved polychromatic X-ray microdiffraction, is used to resolve the local crystal structure of the restructured surface from neighboring local structures in the sample material. The measurements reveal strong gradients of strain and geometrically necessary dislocations near the surface and illustrate the potential of polychromatic microdiffraction for the study of deformation in complex materials systems.
1995-10-15
tensile extension. At each level of externally imposed displacements, internal equilibrium was achieved by a conjugate gradient method of energy...indentation cracks viewed by TEM. This could be due to either weaker grain boundaries or due to grain level internal stresses of misfit. The fact... internally using the conjugate gradient method until the overall elastic strain energy function 4 was minimized for a unit level of border displacement which
Recent deformation rates on Venus
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
1994-01-01
Constraints on the recent geological evolution of Venus may be provided by quantitative estimates of the rates of the principal resurfacing processes, volcanism and tectonism. This paper focuses on the latter, using impact craters as strain indicators. The total postimpact tectonic strain lies in the range 0.5-6.5%, which defines a recent mean strain rate of 10(exp -18)-10(exp -17)/s when divided by the mean surface age. Interpretation of the cratering record as one of pure production requires a decline in resurfacing rates at about 500 Ma (catastrophic resurfacing model). If distributed tectonic resurfacing contributed strongly before that time, as suggested by the widespread occurrence of tessera as inliers, the mean global strain rate must have been at least approximately 10(exp -15)/s, which is also typical of terrestrial active margins. Numerical calculations of the response of the lithosphere to inferred mantle convective forces were performed to test the hypothesis that a decrease in surface strain rate by at least two orders of magnitude could be caused by a steady decline in heat flow over the last billion years. Parameterized convection models predict that the mean global thermal gradient decreases by only about 5 K/km over this time; even with the exponential dependence of viscosity upon temperature, the surface strain rate drops by little more than one order of magnitude. Strongly unsteady cooling and very low thermal gradients today are necessary to satisfy the catastrophic model. An alternative, uniformitarian resurfacing hypothesis holds that Venus is resurfaced in quasi-random 'patches' several hundred kilometers in size that occur in response to changing mantle convection patterns.
Delamination of Pearlitic Steel Wires: The Defining Role of Prior-Drawing Microstructure
NASA Astrophysics Data System (ADS)
Durgaprasad, A.; Giri, S.; Lenka, S.; Sarkar, Sudip Kumar; Biswas, Aniruddha; Kundu, S.; Mishra, S.; Chandra, S.; Doherty, R. D.; Samajdar, I.
2018-06-01
This article reports the occasional (< 10 pct of the actual production) delamination of pearlitic wires subjected to a drawing strain of 2.5. The original wire rods which exhibited post-drawing delamination had noticeably lower axial alignment of the pearlite: 22 ± 5 pct vs 34 ± 4 pct in the nondelaminated wires. Although all wires had similar through-thickness texture and stress gradients, delaminated wires had stronger gradients in composition and higher hardness across the ferrite-cementite interface. Carbide dissolution and formation of supersaturated ferrite were clearly correlated with delamination, which could be effectively mitigated by controlled laboratory annealing at 673 K. Direct observations on samples subjected to simple shear revealed significant differences in shear localizations. These were controlled by pearlite morphology and interlamellar spacing. Prior-drawing microstructure of coarse misaligned pearlite thus emerged as a critical factor in the wire drawing-induced delamination of the pearlitic wires.
Sokalskis, Vladislavs; Peluso, Diletta; Jagodzinski, Annika; Sinning, Christoph
2017-06-01
Right heart dysfunction has been found to be a strong prognostic factor predicting adverse outcome in various cardiopulmonary diseases. Conventional echocardiographic measurements can be limited by geometrical assumptions and impaired reproducibility. Speckle tracking-derived strain provides a robust quantification of right ventricular function. It explicitly evaluates myocardial deformation, as opposed to tissue Doppler-derived strain, which is computed from tissue velocity gradients. Right ventricular longitudinal strain provides a sensitive tool for detecting right ventricular dysfunction, even at subclinical levels. Moreover, the longitudinal strain can be applied for prognostic stratification of patients with pulmonary hypertension, pulmonary embolism, and congestive heart failure. Speckle tracking-derived right atrial strain, right ventricular longitudinal strain-derived mechanical dyssynchrony, and three-dimensional echocardiography-derived strain are emerging imaging parameters and methods. Their application in research is paving the way for their clinical use. © 2017, Wiley Periodicals, Inc.
Food webs in the human body: linking ecological theory to viral dynamics.
Murall, Carmen Lía; McCann, Kevin S; Bauch, Chris T
2012-01-01
The dynamics of in-host infections are central to predicting the progression of natural infections and the effectiveness of drugs or vaccines, however, they are not well understood. Here, we apply food web theory to in-host disease networks of the human body that are structured similarly to food web models that treat both predation and competition simultaneously. We show that in-host trade-offs, an under-studied aspect of disease ecology, are fundamental to understanding the outcomes of competing viral strains under differential immune responses. Further, and importantly, our analysis shows that the outcome of competition between virulent and non-virulent strains can be highly contingent on the abiotic conditions prevailing in the human body. These results suggest the alarming idea that even subtle behavioral changes that alter the human body (e.g. weight gain, smoking) may switch the environmental conditions in a manner that suddenly allows a virulent strain to dominate and replace less virulent strains. These ecological results therefore cast new light on the control of disease in the human body, and highlight the importance of longitudinal empirical studies across host variation gradients, as well as, of studies focused on delineating life history trade-offs within hosts.
First-principles investigation of graphitic carbon nitride monolayer with embedded Fe atom
NASA Astrophysics Data System (ADS)
Abdullahi, Yusuf Zuntu; Yoon, Tiem Leong; Halim, Mohd Mahadi; Hashim, Md. Roslan; Lim, Thong Leng
2018-01-01
Density-functional theory (DFT) calculations with spin-polarized generalized gradient approximation and Hubbard U correction are carried out to investigate the mechanical, structural, electronic and magnetic properties of graphitic heptazine with embedded Fe atom under bi-axial tensile strain and applied perpendicular electric field. It was found that the binding energy of heptazine with embedded Fe atom system decreases as larger tensile strain is applied, while it increases as larger electric field strength is applied. Our calculations also predict a band gap at a peak value of 5% tensile strain but at expense of the structural stability of the system. The band gap open up at 5% tensile strain is due to distortion in the structure caused by the repulsive effect in the cavity between the lone pairs of the edge nitrogen atoms and dxy /dx2 -y2 orbital of Fe atom, forcing the unoccupied pz- orbital is forced to shift toward higher energy. The electronic and magnetic properties of the heptazine with embedded Fe system under perpendicular electric field up to a peak value of 8 V/nm is also well preserved despite an obvious buckled structure. Such properties are desirable for diluted magnetic semiconductors, spintronics, and sensing devices.
Food Webs in the Human Body: Linking Ecological Theory to Viral Dynamics
Murall, Carmen Lía; McCann, Kevin S.; Bauch, Chris T.
2012-01-01
The dynamics of in-host infections are central to predicting the progression of natural infections and the effectiveness of drugs or vaccines, however, they are not well understood. Here, we apply food web theory to in-host disease networks of the human body that are structured similarly to food web models that treat both predation and competition simultaneously. We show that in-host trade-offs, an under-studied aspect of disease ecology, are fundamental to understanding the outcomes of competing viral strains under differential immune responses. Further, and importantly, our analysis shows that the outcome of competition between virulent and non-virulent strains can be highly contingent on the abiotic conditions prevailing in the human body. These results suggest the alarming idea that even subtle behavioral changes that alter the human body (e.g. weight gain, smoking) may switch the environmental conditions in a manner that suddenly allows a virulent strain to dominate and replace less virulent strains. These ecological results therefore cast new light on the control of disease in the human body, and highlight the importance of longitudinal empirical studies across host variation gradients, as well as, of studies focused on delineating life history trade-offs within hosts. PMID:23155409
Flexoelectric effect in functionally graded materials: A numerical study
NASA Astrophysics Data System (ADS)
Kumar, Anuruddh; Kiran, Raj; Kumar, Rajeev; Chandra Jain, Satish; Vaish, Rahul
2018-04-01
The flexoelectric effect has been observed in a wide range of dielectric materials. However, the flexoelectric effect can only be induced using the strain gradient. Researchers have examined the flexoelectricity using non-uniform loading (cantilever type) or non-uniform shape in dielectric materials, which may be undesirable in many applications. In the present article, we demonstrate induced flexoelectricity in dielectric functionally graded materials (FGMs) due to non-uniform Youngs's modulus along the thickness. To examine flexoelectricity, Ba0.6Sr0.4TiO3 (BST) and polyvinylidene fluoride (PVDF) were used to numerically simulate the performance of FGMs. 2D simulation suggests that output voltage can drastically enhance for optimum grading index of FGMs.
NASA Technical Reports Server (NTRS)
Mills, I.; Cohen, C. R.; Kamal, K.; Li, G.; Shin, T.; Du, W.; Sumpio, B. E.
1997-01-01
Smooth muscle cell (SMC) phenotype can be altered by physical forces as demonstrated by cyclic strain-induced changes in proliferation, orientation, and secretion of macromolecules. However, the magnitude of strain required and the intracellular coupling pathways remain ill defined. To examine the strain requirements for SMC proliferation, we selectively seeded bovine aortic SMC either on the center or periphery of silastic membranes which were deformed with 150 mm Hg vacuum (0-7% center; 7-24% periphery). SMC located in either the center or peripheral regions showed enhanced proliferation compared to cells grown under the absence of cyclic strain. Moreover, SMC located in the center region demonstrated significantly (P < 0.005) greater proliferation as compared to those in the periphery. In contrast, SMC exposed to high strain (7-24%) demonstrated alignment perpendicular to the strain gradient, whereas SMC in the center (0-7%) remained aligned randomly. To determine the mechanisms of these phenomena, we examined the effect of cyclic strain on bovine aortic SMC signaling pathways. We observed strain-induced stimulation of the cyclic AMP pathway including adenylate cyclase activity and cyclic AMP accumulation. In addition, exposure of SMC to cyclic strain caused a significant increase in protein kinase C (PKC) activity and enzyme translocation from the cytosol to a particulate fraction. Further study was conducted to examine the effect of strain magnitude on signaling, particularly protein kinase A (PKA) activity as well as cAMP response element (CRE) binding protein levels. We observed significantly (P < 0.05) greater PKA activity and CRE binding protein levels in SMC located in the center as compared to the peripheral region. However, inhibition of PKA (with 10 microM Rp-cAMP) or PKC (with 5-20 ng/ml staurosporine) failed to alter either the strain-induced increase in SMC proliferation or alignment. These data characterize the strain determinants for activation of SMC proliferation and alignment. Although strain activated both the AC/cAMP/PKA and the PKC pathways in SMC, singular inhibition of PKA and PKC failed to prevent strain-induced alignment and proliferation, suggesting either their lack of involvement or the multifactorial nature of these responses.
2005-04-30
in addition, air cooling instead of water or oil quenching was adopted to avoid quench cracking. Based on a series of preliminary multi -parametric...microstructures were then grain- boundary engineered using four cycles of strain and high-temperature annealing of the single- phase alloy, specifically...automated load- shedding at a normalized K-gradient of -0.08 mm-, as specified in the standard. Multi -sample tests were conducted to verify the effect of
Turbulence Modeling for Shock Wave/Turbulent Boundary Layer Interactions
NASA Technical Reports Server (NTRS)
Lillard, Randolph P.
2011-01-01
Accurate aerodynamic computational predictions are essential for the safety of space vehicles, but these computations are of limited accuracy when large pressure gradients are present in the flow. The goal of the current project is to improve the state of compressible turbulence modeling for high speed flows with shock wave / turbulent boundary layer interactions (SWTBLI). Emphasis will be placed on models that can accurately predict the separated region caused by the SWTBLI. These flows are classified as nonequilibrium boundary layers because of the very large and variable adverse pressure gradients caused by the shock waves. The lag model was designed to model these nonequilibrium flows by incorporating history effects. Standard one- and two-equation models (Spalart Allmaras and SST) and the lag model will be run and compared to a new lag model. This new model, the Reynolds stress tensor lag model (lagRST), will be assessed against multiple wind tunnel tests and correlations. The basis of the lag and lagRST models are to preserve the accuracy of the standard turbulence models in equilibrium turbulence, when the Reynolds stresses are linearly related to the mean strain rates, but create a lag between mean strain rate effects and turbulence when nonequilibrium effects become important, such as in large pressure gradients. The affect this lag has on the results for SWBLI and massively separated flows will be determined. These computations will be done with a modified version of the OVERFLOW code. This code solves the RANS equations on overset grids. It was used for this study for its ability to input very complex geometries into the flow solver, such as the Space Shuttle in the full stack configuration. The model was successfully implemented within two versions of the OVERFLOW code. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWBLI assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.
An equivalent dissipation rate model for capturing history effects in non-premixed flames
Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang; ...
2016-11-11
The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less
An equivalent dissipation rate model for capturing history effects in non-premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang
The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less
Hu, Zhendi; Chen, Huanyu; Yin, Fei; Li, Zhenyu; Dong, Xiaolin; Zhang, Deyong; Ren, Shunxiang; Feng, Xia
2013-01-01
Background The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella’s resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. Principal Findings To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE) system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS) provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp), which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated) were gradient differentially expressed among the susceptible strain (SS) and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA), moderate resistance (LZA) and high resistance strains (HZA). A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. Conclusions The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data provide comprehensive insights into the gene expression profiles of the different chlorantraniliprole-resistant stains. These genes are specifically related to insecticide resistance, with different expressional profiles facilitating the study of the role of each gene in chlorantraniliprole resistance development. PMID:23977278
Rudraraju, Shiva; Van der Ven, Anton; Garikipati, Krishna
2016-06-10
Here, we present a phenomenological treatment of diffusion-driven martensitic phase transformations in multi-component crystalline solids that arise from non-convex free energies in mechanical and chemical variables. The treatment describes diffusional phase transformations that are accompanied by symmetry-breaking structural changes of the crystal unit cell and reveals the importance of a mechanochemical spinodal, defined as the region in strain-composition space, where the free-energy density function is non-convex. The approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. The governing equations describing mechanochemical spinodal decomposition aremore » variationally derived from a free-energy density function that accounts for interfacial energy via gradients of the rapidly varying strain and composition fields. A robust computational framework for treating the coupled, higher-order diffusion and nonlinear strain gradient elasticity problems is presented. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. An evaluation of available experimental phase diagrams and first-principles free energies suggests that mechanochemical spinodal decomposition should occur in metal hydrides such as ZrH 2-2c. The rich physics that ensues is explored in several numerical examples in two and three dimensions, and the relevance of the mechanism is discussed in the context of important electrode materials for Li-ion batteries and high-temperature ceramics.« less
Li, Q; Nelson, C T; Hsu, S-L; Damodaran, A R; Li, L-L; Yadav, A K; McCarter, M; Martin, L W; Ramesh, R; Kalinin, S V
2017-11-13
Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO 3 /SrTiO 3 superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory and experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO 3 and SrTiO 3 . Our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics.
Flexoelectricity in two-dimensional crystalline and biological membranes
NASA Astrophysics Data System (ADS)
Ahmadpoor, Fatemeh; Sharma, Pradeep
2015-10-01
The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between the curvature and electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional (2D) membranes--whether the crystalline ones such as dielectric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing mechanism and ion transport among others.
Parameterization of subgrid-scale stress by the velocity gradient tensor
NASA Technical Reports Server (NTRS)
Lund, Thomas S.; Novikov, E. A.
1993-01-01
The objective of this work is to construct and evaluate subgrid-scale models that depend on both the strain rate and the vorticity. This will be accomplished by first assuming that the subgrid-scale stress is a function of the strain and rotation rate tensors. Extensions of the Caley-Hamilton theorem can then be used to write the assumed functional dependence explicitly in the form of a tensor polynomial involving products of the strain and rotation rates. Finally, use of this explicit expression as a subgrid-scale model will be evaluated using direct numerical simulation data for homogeneous, isotropic turbulence.
2013-07-31
and a Voce -Kocks (Kocks 1976; Voce 1955) relation, the first and second terms in Equation 4.3, respectively. Ho and Go in Equation 4.3 are rate...gradient of the plastic deformation gradient, accommodating the evolution of slip close to twin boundaries. It is noteworthy that the Voce -Kocks relation...1956). “The origin of fatigue fracture in copper.” Philosophical Magazine, 1(2), 113–126. Voce , E. (1955). “A practical strain-hardening function
Stochastic modeling of turbulent reacting flows
NASA Technical Reports Server (NTRS)
Fox, R. O.; Hill, J. C.; Gao, F.; Moser, R. D.; Rogers, M. M.
1992-01-01
Direct numerical simulations of a single-step irreversible chemical reaction with non-premixed reactants in forced isotropic turbulence at R(sub lambda) = 63, Da = 4.0, and Sc = 0.7 were made using 128 Fourier modes to obtain joint probability density functions (pdfs) and other statistical information to parameterize and test a Fokker-Planck turbulent mixing model. Preliminary results indicate that the modeled gradient stretching term for an inert scalar is independent of the initial conditions of the scalar field. The conditional pdf of scalar gradient magnitudes is found to be a function of the scalar until the reaction is largely completed. Alignment of concentration gradients with local strain rate and other features of the flow were also investigated.
NASA Astrophysics Data System (ADS)
Meher Abhinav, E.; Sundararaj, Anuraj; Gopalakrishnan, Chandrasekaran; Kasmir Raja, S. V.; Chokhra, Saurabh
2017-11-01
In this work, chair like fully hydrogenated germanane (CGeH) nano-ribbon 6 nm short channel double gate field effect transistor (DG-FET) has been modeled and the impact of strain on the I-V characteristics of CGeH channel has been examined. The bond lengths, binding and formation energies of various hydrogenated geometries of buckled germanane channel were calculated using local density approximation (LDA) with Perdew-Zunger (PZ) and generalized gradient approximation (GGA) with Perdew Burke Ernzerhof (PBE) parameterization. From four various geometries, chair like structure is found to be more stable compared to boat like obtuse, stiruup structure and table like structure. The bandgap versus width, bandgap versus strain characteristics and I-V characteristics had been analyzed at room temperature using density functional theory (DFT). Using self consistent calculation it was observed that the electronic properties of nano-ribbon is independent of length and band structure, but dependent on edge type, strain [Uni-axial (ɛ xx ), bi-axial (ɛ xx = ɛ yy )] and width of the ribbon. The strain engineered hydrogenated germanane (GeH) showed wide direct bandgap (2.3 eV) which could help to build low noise electronic devices that operates at high frequencies. The observed bi-axial compression has high impact on the device transport characteristics with peak to valley ratio (PVR) of 2.14 and 380% increase in peak current compared to pristine CGeH device. The observed strain in CGeH DG-FET could facilitate in designing novel multiple-logic memory devices due to multiple negative differential resistance (NDR) regions.
NASA Technical Reports Server (NTRS)
Kerr, R. A.
1983-01-01
In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Leone, Frank A., Jr.
2016-01-01
A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.
Multiple-length-scale deformation analysis in a thermoplastic polyurethane
Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.
2015-01-01
Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945
Dynamics of Metamorphic Core Complexes Inferred From Modeling and Metamorphic Petrology
NASA Astrophysics Data System (ADS)
Whitney, D. L.; Rey, P.; Teyssier, C.
2008-12-01
Orogenic collapse involves extension and thinning of thick, hot, and in some cases partially molten, crust, leading to the formation of metamorphic core complexes (MCC) that are commonly cored by migmatite domes. 2D numerical modeling predicts that the geometry and P-T-t history of MCC varies as a function of the presence/absence of a partially molten layer in the deep crust; the nature of heterogeneities that localize the MCC (e.g. normal fault in upper crust vs. point-like anomaly in the deep crust); and extensional strain rate. The presence of melt in particular has a significant effect on the thermal and structural history of MCC because the presence of partially molten crust or magma bodies at depth enhances upward advection of material and heat. At high extension rate (cm/year in the region of the MCC), partially molten crust crystallizes as migmatite and cools along a high geothermal gradient (35-65 C/km); material remains partially molten during ascent, forming a migmatite dome when it crystallizes at shallower crustal levels (e.g. cordierite/sillimanite stability field). At low strain rate (mm/yr in the MCC region), the partially molten crust crystallizes at high pressure (e.g. kyanite zone); this material is subsequently deformed in the solid-state along a cooler geothermal gradient (20-35 C/km) during ascent. MCC that develop during extension of partially molten crust may therefore record distinct crystallization versus exhumation histories as a function of extensional strain rate. The mineral assemblages, metamorphic reaction histories, and structures of migmatite-cored (Mc) MCC can therefore be used to interpret the dynamics of MCC formation, e.g. "fast" McMCC in the northern N American Cordillera and Aegean regions.
Poudel, Pramod; Tashiro, Yukihiro; Miyamoto, Hirokuni; Miyamoto, Hisashi; Okugawa, Yuki; Sakai, Kenji
2017-01-01
Elucidation of functions of bacteria in a mixed culture system (MCS) such as composting, activated sludge system is difficult, since the system is complicating with many unisolated bacteria. Here, we developed a systematic feedback isolation strategy for the isolation and rapid screening of multiple targeted strains from MCS. Six major strains (Corynebacterium sphenisci, Bacillus thermocloacae, Bacillus thermoamylovorans, Bacillus smithii, Bacillus humi, and Bacillus coagulans), which are detected by denaturing gradient gel electrophoresis (DGGE) analysis in our previous study on MCS for l-lactic acid production, were targeted for isolation. Based on information of suitable cultivation conditions (e.g., media, pH, temperature) from the literature, feedback isolation was performed to form 136 colonies. The following direct colony matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was optimised as the second screening to narrow down 20 candidate colonies from similar spectra patterns with six closest type strains. This step could distinguish bacteria at the species level with distance similarity scores ≥0.55 corresponding to 16S rRNA gene sequence similarity ≥98.2%, suggesting that this is an effective technique to minimize isolates close to targeted type strains. Analysis of 16S rRNA gene sequences indicated that two targeted strains and one strain related to the target had successfully been isolated, showing high similarities (99.5-100%) with the sequences from the DGGE bands, and that the other candidates were affiliated with three strains that were closely related to the target species. This study proposes a new method for systematic feedback isolation that may be useful for isolating targeted strains from MCS for further investigation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires.
Albani, Marco; Assali, Simone; Verheijen, Marcel A; Koelling, Sebastian; Bergamaschini, Roberto; Pezzoli, Fabio; Bakkers, Erik P A M; Miglio, Leo
2018-04-19
We address the role of non-uniform composition, as measured by energy-dispersive x-ray spectroscopy, in the elastic properties of core/shell nanowires for the Ge/GeSn system. In particular, by finite element method simulations and transmission electron diffraction measurements, we estimate the residual misfit strain when a radial gradient in Sn and a Ge segregation at the nanowire facet edges are present. An elastic stiffening of the structure with respect to the uniform one is concluded, particularly for the axial strain component. More importantly, refined predictions linking the strain and the Sn percentage at the nanowire facets enable us to quantitatively determine the maximum compressive strain value allowing for additional Sn incorporation into a GeSn alloy. The progressive incorporation with increasing shell thickness, under constant growth conditions, is specifically induced by the nanowire configuration, where a larger elastic relaxation of the misfit strain takes place.
Mechanical properties of graphene nanoribbons under uniaxial tensile strain
NASA Astrophysics Data System (ADS)
Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu
2018-03-01
Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.
NASA Astrophysics Data System (ADS)
Cirrincione, Rosolino; Fazio, Eugenio; Ortolano, Gaetano; Fiannacca, Patrizia; Kern, Hartmut; Mengel, Kurt; Pezzino, Antonino; Punturo, Rosalda
2016-04-01
The present contribution deals with quantitative microstructural analysis, which was performed on granodiorites of the syn-tectonic Symvolon pluton (Punturo et al., 2014) at the south-western boundary of the Rhodope Core Complex (Greece). Our purpose is the quantification of ductile strain rate achieved across the pluton, by considering its cooling gradient from the centre to the periphery, using the combination of a paleopiezometer (Shimizu, 2008) and a quartz flow law (Hirth et al., 2001). Obtained results, associated with a detailed cooling history (Dinter et al., 1995), allowed us to reconstruct the joined cooling and strain gradient evolution of the pluton from its emplacement during early Miocene (ca. 700°C at 22 Ma) to its following cooling stage (ca. 500-300°C at 15 Ma). Shearing temperature values were constrained by means of a thermodynamic approach based on the recognition of syn-shear assemblages at incremental strain; to this aim, statistical handling of mineral chemistry X-Ray maps was carried out on microdomains detected at the tails of porphyroclasts. Results indicate that the strain/cooling gradients evolve "arm in arm" across the pluton, as also testified by the progressive development of mylonitic fabric over the magmatic microstructures approaching the host rock. References • Dinter, D. A., Macfarlane, A., Hames, W., Isachsen, C., Bowring, S., and Royden, L. (1995). U-Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: Implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece. Tectonics, 14 (4), 886-908. • Shimizu, I. (2008). Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms. Journal of Structural Geology, 30 (7), 899-917. • Hirth, G., Teyssier, C., and Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90 (1), 77-87. • Punturo, R., Cirrincione, R., Fazio, E., Fiannacca, P., Kern, H., Mengel, K., Ortolano G., and Pezzino, A. (2014). Microstructural, compositional and petrophysical properties of mylonitic granodiorites from an extensional shear zone (Rhodope Core complex, Greece). Geological Magazine, 151 (6), 1051-1071.
Sources, isolation, characterisation and evaluation of probiotics.
Fontana, Luis; Bermudez-Brito, Miriam; Plaza-Diaz, Julio; Muñoz-Quezada, Sergio; Gil, Angel
2013-01-01
According to the FAO and the WHO, probiotics are 'live microorganisms which, when administered in adequate amounts, confer a health benefit on the host'. The strains most frequently used as probiotics include lactic acid bacteria and bifidobacteria, which are isolated from traditional fermented products and the gut, faeces and breast milk of human subjects. The identification of microorganisms is the first step in the selection of potential probiotics. The present techniques, including genetic fingerprinting, gene sequencing, oligonucleotide probes and specific primer selection, discriminate closely related bacteria with varying degrees of success. Additional molecular methods, such as denaturing gradient gel electrophoresis/temperature gradient gel electrophoresis and fluorescence in situ hybridisation, are employed to identify and characterise probiotics. The ability to examine fully sequenced genomes has accelerated the application of genetic approaches to the elucidation of the functional roles of probiotics. One of the best-demonstrated clinical benefits of probiotics is the prevention and treatment of acute and antibiotic-associated diarrhoea;however, there is mounting evidence for a potential role for probiotics in the treatment of allergies and intestinal, liver and metabolic diseases. There are various mechanisms by which probiotics exert their beneficial effects: regulation of intestinal permeability, normalisation of host intestinal microbiota, improvement of gut immune barrier function, and adjustment between pro- and anti-inflammatory cytokines. The number of studies carried out to test the effects of probiotics in vitro and in animals is enormous. However, the most reliable method of assessing the therapeutic benefits of any probiotic strain is the use of randomised, placebo-controlled trials, which are reviewed in this article [corrected].
Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih
2015-02-01
Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.
NASA Astrophysics Data System (ADS)
Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.
2017-12-01
Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.
Implicit constitutive models with a thermodynamic basis: a study of stress concentration
NASA Astrophysics Data System (ADS)
Bridges, C.; Rajagopal, K. R.
2015-02-01
Motivated by the recent generalization of the class of elastic bodies by Rajagopal (Appl Math 48:279-319, 2003), there have been several recent studies that have been carried out within the context of this new class. Rajagopal and Srinivasa (Proc R Soc Ser A 463:357-367, 2007, Proc R Soc Ser A: Math Phys Eng Sci 465:493-500, 2009) provided a thermodynamic basis for such models and appealing to the idea that rate of entropy production ought to be maximized they developed nonlinear rate equations of the form where T is the Cauchy stress and D is the stretching tensor as well as , where S is the Piola-Kirchhoff stress tensor and E is the Green-St. Venant strain tensor. We follow a similar procedure by utilizing the Gibb's potential and the left stretch tensor V from the Polar Decomposition of the deformation gradient, and we show that when the displacement gradient is small one arrives at constitutive relations of the form . This is, of course, in stark contrast to traditional elasticity wherein one obtains a single model, Hooke's law, when the displacement gradient is small. By solving a classical boundary value problem, with a particular form for f( T), we show that when the stresses are small, the strains are also small which is in agreement with traditional elasticity. However, within the context of our model, when the stress blows up the strains remain small, unlike the implications of Hooke's law. We use this model to study boundary value problems in annular domains to illustrate its efficacy.
Kinematics and dynamics of Nubia-Somalia divergence along the East African rift
NASA Astrophysics Data System (ADS)
Stamps, Dorothy Sarah
Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition is an estimate of basal shear stress from viscous coupling to horizontal mantle flow. The stress field boundary condition is small (˜1.6 MPa) compared to deviatoric stress from GPE gradients (8-20 MPa) and does not improve the fit to surface deformation indicators more than 8% when combined with deviatoric stress from GPE gradients. Hence we suggest the style of deformation across the EAR can be explained by forces derived from gradients in GPE. We then calculate dynamic velocities using two types of forward models to solve the instantaneous momentum equations. One method is regional and requires vertically averaged effective viscosity to define lithospheric structure with velocity boundary conditions and a free-slip basal boundary condition. The second is a global model that accounts for a brittle upper crust and viscous mantle lithosphere with velocity boundary conditions imposed at the base of the lithosphere from 5 mantle flow models. With both methods we find deformation driven by internal lithospheric buoyancy forces provides the best-fit to GPS observations of surface velocities on the Somalian plate. We find that any additional contribution from horizontal tractions results in overpredicting surface velocities. This work indicates horizontal mantle flow plays a minimal role in Nubia-Somalia divergence and the EAR is driven largely by gradients in GPE.
Bithermal fatigue: A simplified alternative to thermomechanical fatigue
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.
1988-01-01
A bithermal fatigue test technique was proposed as a simplified alternative to the thermomechanical fatigue test. Both the thermomechanical cycle and the bithermal technique can be used to study nonisothermal fatigue behavior. The difference between the two cycles is that in a conventional thermomechanical fatigue cycle the temperature is continuously varied concurrently with the applied mechanical strains, but in the bithermal fatigue cycle the specimen is held at zero load during the temperature excursions and all the loads are applied at the two extreme temperatures of the cycle. Experimentally, the bithermal fatigue test technique offers advantages such as ease in synchronizing the temperature and mechanical strain waveforms, in minimizing temperature gradients in the specimen gauge length, and in reducing and interpreting thermal fatigue such as the influence of alternate high and low temperatures on the cyclic stress-strain response characteristics, the effects of thermal state, and the possibility of introducing high- and low-temperature deformation mechanisms within the same cycle. The bithermal technique was used to study nonisothermal fatigue behavior of alloys such as single-crystal PWA 1480, single-crystal Rene N4, cast B1900+Hf, and wrought Haynes 188.
2008-04-01
DIFFRACTION (POSTPRINT) M. Croft, N. Jisrawi , Z. Zhong, K. Horvath, R.L. Holtz, M. Shepard, M. Lakshmipathy, K. Sadananda, J. Skaritka, V...5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) M. Croft, N. Jisrawi , K. Horvath, V. Shukla, R.K. Sadangi, and T. Tsakalakos (Rutgers...Upton, NY 11973 N. Jisrawi Materials Science and Engineering Department, Rutgers University, Piscataway, NJ 08854; Department of Basic Sciences
On the Alignment of Strain, Vorticity and Scalar Gradient in Turbulent, Buoyant, Nonpremixed Flames
NASA Technical Reports Server (NTRS)
Boratav, O. N.; Elghobashi, S. E.; Zhong, R.
1999-01-01
The alignment of vorticity and scalar gradient with the eigendirections of the rate of strain tensor is investigated in turbulent buoyant nonpremixed horizontal and vertical flames. The uniqueness of a buoyant nonpremixed flame is that it contains regions with distinct alignment characteristics. The strain-enstrophy angle Psi is used to identify these regions. Examination of the vorticity field and the vorticity production in these different regions indicates that Psi and consequently the alignment properties near the flame surface identified by the mixture fraction band F approximately equals F(sub st) differ from those in the fuel region, F > F(sub st) and the oxidizer region, F < F(sub st). The F approximately equals F(sub st) band shows strain-dominance resulting in vorticity/alpha alignment while F > F(sub st) (and F < F(sub st) for the vertical flame) band(s) show(s) vorticity/beta alignment. The implication of this result is that the scalar dissipation, epsilon(sub F), attains its maximum value always near F approximately equals F(sub st). These results are also discussed within the framework of recent dynamical results [Galanti et al., Nonlinearity 10, 1675 (1997)] suggesting that the Navier-Stokes equations evolved towards an attracting solution. It is shown that the properties of such an attracting solution are also consistent with our results of buoyant turbulent nonpremixed flames.
Su, Yating; Chen, Xingjie; Liu, Ming; Guo, Xiaohua
2017-01-01
The beneficial effects of Lactobacillus probiotics in animal production are often strain-related. Different strains from the same species may exert different weight-gain effect on hosts in vivo. Most lactobacilli are selected based on their in vitro activities, and their metabolism and regulation on the intestine based on strain-related characters are largely unexplored. The objective of the present study was to study the in vivo effects of the three lactobacilli on growth performance and to compare the differential effects of the strains on the faecal microbiota and ileum mucosa proteomics of piglets. Three hundred and sixty piglets were assigned to one of four treatments, which included an antibiotics-treated control and three experimental groups supplemented with the three lactobacilli, L. salivarius G1-1, L. reuteri G8-5 and L. reuteri G22-2, respectively. Piglets were weighed and the feed intake was recorded to compare the growth performance. The faecal lactobacilli and coliform was quantified using quantitative PCR and the faecal microbiota was profiled by denaturing gradient gel electrophoresis (DGGE). The proteomic approach was applied to compare the differential expression of proteins in the ileum mucosa. No statistical difference was found among the three Lactobacillus -treated groups in animal growth performance compared with the antibiotics-treated group ( P > 0.05). Supplementation of lactobacilli in diets significantly increased the relative 16S rRNA gene copies of Lactobacillus genus on both d 14 and d 28 ( P < 0.05)., and the bacterial community profiles based on DGGE from the lactobacilli-treated groups were distinctly different from the antibiotics-treated group ( P < 0.05). The ileum mucosa of piglets responded to all Lactobacillus supplementation by producing more newly expressed proteins and the identified proteins were all associated with the functions beneficial for stabilization of cell structure. Besides, some other up-regulated and down-regulated proteins in different Lactobacillus -treated groups showed the expression of proteins were partly strain-related. All the three lactobacilli in this study show comparable effects to antibiotics on piglets growth performance. The three lactobacilli were found able to modify intestinal microbiota and mucosa proteomics. The regulation of protein expression in the intestinal mucosa are partly associated with the strains administrated in feed.
Bacterial Transport Experiments in Fractured Crystalline Bedrock
Becker, M.W.; Metge, D.W.; Collins, S.A.; Shapiro, A.M.; Harvey, R.W.
2003-01-01
The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.
Marzotto, Marta; Maffeis, Claudio; Paternoster, Thomas; Ferrario, Rossano; Rizzotti, Lucia; Pellegrino, Maristella; Dellaglio, Franco; Torriani, Sandra
2006-11-01
This study focuses on the potentiality of a putative probiotic strain, Lactobacillus paracasei A, to survive gastrointestinal (GI) passage and modulate the resident microbiota of healthy infants. In a placebo-controlled study, 26 children aged 12-24 months received 100 g/day of either fermented milk containing strain A or pasteurized yogurt for four weeks. Fecal samples were analyzed before starting the administration, after 1, 3 and 4 weeks of consumption and after washout. The fate of strain A was followed by means of a newly developed PCR targeting a strain-specific genomic marker. The composition and dynamics of fecal microbial communities during the study were analyzed by culturing on selective media and by the PCR-denaturing gradient gel electrophoresis (DGGE) technique using universal and group-specific (Lactobacillus and Bifidobacterium) primers. The variation in enzymatic activities in infant feces during probiotic consumption was also analyzed. Strain A survived in fecal samples in most (92%) of the infants examined after 1 week of consumption, and temporarily dominated the intestinal Lactobacillus community. The administration of L. paracasei A led to a significant increment in the Lactobacillus population, while a moderate effect upon the main bacterial groups in the GI ecosystem was observed. Strain A also affected the diversity of the Lactobacillus and Bifidobacterium populations. The fecal bacterial structure of 1 - 2-year-old infants seems to combine neonate and adult-like features. The microbiota of these subjects promptly responded to probiotic consumption, later restoring the endogenous equilibrium.
Silva, Camila Magalhães; Evangelista-Barreto, Norma Suely; Vieira, Regine Helena Silva Dos Fernandes; Mendonça, Kamila Vieira; Sousa, Oscarina Viana de
2014-12-15
The main objective of this study was to quantify population and identify culturable species of Aeromonas in sediment and surface water collected along a salinity gradient in an urban estuary in Northeastern Brazil. Thirty sediment samples and 30 water samples were collected from 3 sampling locations (A, B and C) between October 2007 and April 2008. The Aeromonas count was 10-7050CFU/mL (A), 25-38,500CFU/mL (B) and<10CFU/mL (C) for water samples, and ∼100-37,500CFU/g (A), 1200-43,500CFU/g (B) and<10CFU/g (C) for sediment samples. Five species (Aeromonas caviae, A. sobria, A. trota, A. salmonicida and A. allosaccharophila) were identified among 41 isolates. All strains were sensitive to chloramphenicol and ceftriaxone, whereas 33 (80, 4%) strains were resistant to at least 2 of the 9 antibiotics tested. Resistance to erythromycin was mostly plasmidial. In conclusion, due to pollution, the Cocó River is contaminated by pathogenic strains of Aeromonas spp. with a high incidence of antibacterial resistance, posing a serious risk to human health. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modelling the multidimensional niche by linking functional traits to competitive performance
Maynard, Daniel S.; Leonard, Kenneth E.; Drake, John M.; Hall, David W.; Crowther, Thomas W.; Bradford, Mark A.
2015-01-01
Linking competitive outcomes to environmental conditions is necessary for understanding species' distributions and responses to environmental change. Despite this importance, generalizable approaches for predicting competitive outcomes across abiotic gradients are lacking, driven largely by the highly complex and context-dependent nature of biotic interactions. Here, we present and empirically test a novel niche model that uses functional traits to model the niche space of organisms and predict competitive outcomes of co-occurring populations across multiple resource gradients. The model makes no assumptions about the underlying mode of competition and instead applies to those settings where relative competitive ability across environments correlates with a quantifiable performance metric. To test the model, a series of controlled microcosm experiments were conducted using genetically related strains of a widespread microbe. The model identified trait microevolution and performance differences among strains, with the predicted competitive ability of each organism mapped across a two-dimensional carbon and nitrogen resource space. Areas of coexistence and competitive dominance between strains were identified, and the predicted competitive outcomes were validated in approximately 95% of the pairings. By linking trait variation to competitive ability, our work demonstrates a generalizable approach for predicting and modelling competitive outcomes across changing environmental contexts. PMID:26136444
U-Groove aluminum weld strength improvement
NASA Technical Reports Server (NTRS)
Verderaime, V.; Vaughan, R.
1996-01-01
Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe peaking, which induces bending under uniaxial loading. The filler strain-hardening decreased with increasing filler pass sequence, producing the weakest welds on the last pass side. Current welding schedules unknowingly compound these effects which reduce the weld strength. A depeaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve depeaking in the welding process. The intent is to combine the strongest weld pass side with the peaking induced bending tension to provide a more uniform stress and stronger weld under axial tensile loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Chao; Gao, Yanfei; Wang, Yanli
To study the stress corrosion intergranular cracking mechanism, a diffusion-coupled cohesive zone model (CZM) is proposed for the simulation of the stress-assisted diffusional process along grain boundaries and the mechanical response of grain boundary sliding and separation. This simulation methodology considers the synergistic effects of impurity diffusion driven by pressure gradient and degradation of grain boundary strength by impurity concentration. The diffusion-coupled CZM is combined with crystal plasticity finite element model (CPFEM) to simulate intergranular fracture of polycrystalline material under corrosive environment. Significant heterogeneity of the stress field and extensive impurity accumulation is observed at grain boundaries and junction points.more » Deformation mechanism maps are constructed with respect to the grain boundary degradation factor and applied strain rate, which dictate the transition from internal to near-surface intergranular fracture modes under various strain amplitudes and grain sizes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, K.; Venkataraman, A.; Garbaciak, T.
In-situ high energy diffraction microscopy (HEDM) experiments are carried out to analyze the state of combined bending and tension in a Ti-7Al alloy under room temperature creep. Grain-level elastic strain tensors are evaluated from HEDM data. Atomistic calculations are used to predict elastic constants of Ti-7Al, to be used in determination of stress from strain. The stress gradient and residual stresses are successfully determined, which allows the demarcation between macro-/micro-level residual stresses. A cluster of three neighboring grains are identified that highlight the variation of mean and effective stress between grains. Crystallographic orientations and slip characteristics are analyzed for themore » selected grains. It is inferred that the interfaces between loaded grains with markedly different stress triaxiality and slip tendency are potential spots for material damage.« less
Characterization of the respiration-induced yeast mitochondrial permeability transition pore.
Bradshaw, Patrick C; Pfeiffer, Douglas R
2013-12-01
When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.
Pseudo Landau levels and quantum oscillations in strained Weyl semimetals
NASA Astrophysics Data System (ADS)
Alisultanov, Z. Z.
2018-05-01
The crystal lattice deformation in Weyl materials where the two chiralities are separated in momentum space leads to the appearance of gauge pseudo-fields. We investigated the pseudo-magnetic field induced quantum oscillations in strained Weyl semimetal (WSM). In contrast to all previous works on this problem, we use here a more general tilted Hamiltonian. Such Hamiltonian, seems to be is more suitable for a strained WSMs. We have shown that a pseudo-magnetic field induced magnetization of strained WSM is nonzero due to the fact that electric field (gradient of the deformation potential) is induced simultaneously with the pseudo-magnetic field. This related with fact that the pseudo Landau levels (LLs) in strained WSM are differ in vicinities of different WPs due to the presence of tilt in spectrum. Such violation of the equivalence between Weyl points (WPs) leads to modulation of quantum oscillations. We also showed that magnetization magnitude can be changed by application of an external electric field. In particular, it can be reduced to zero. The possibility of controlling of the magnetization by an electric field is interesting both from a fundamental point of view (a new type of magneto-electric effect) and application point of view (additional possibility to control diamagnetism of deformed WSMs). Finally, a coexistence of type-I and type-II Weyl fermions is possible in the system under investigation. Such phase is absolutely new for physics of topological systems.
Neut, C; Mahieux, S; Dubreuil, L J
2017-11-01
The main goal of this study was to determine the in vitro susceptibility of strains collected from marketed probiotics to antibiotics used to treat community-acquired infections. The minimum inhibitory concentrations (MICs) of 16 antibiotics were determined using a gradient strip (E test) or the agar dilution method for fidaxomicin. The probiotics demonstrated various antibiotic patterns. Bacterial probiotics are generally susceptible to most prescribed antibiotics orally administered, whereas yeast probiotics, such as Saccharomyces boulardii, are resistant. Special attention must be paid to co-prescriptions of antibiotics and probiotics to ensure that the probiotic strain is not susceptible. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of coronary artery reperfusion on transmural myocardial remodeling in dogs.
Ono, S; Waldman, L K; Yamashita, H; Covell, J W; Ross, J
1995-02-15
The effects of reperfusion after coronary occlusion on transmural remodeling of the ischemic region early and late after nontransmural infarction must importantly affect the recovery of regional function. Accordingly, analysis of local volume and three-dimensional strain was performed using a finite element method to determine regional remodeling. Systolic and remodeling strains were measured using radiographic imaging of three columns (approximately 1 cm apart) of four to six gold beads implanted across the left ventricular posterior wall in 6 dogs. After a control study, infarction was produced by 2 to 4 hours of proximal left circumflex coronary artery occlusion followed by reperfusion. Follow-up studies were performed at 2 days, 3 weeks, and 12 weeks with the dogs under anesthesia and in closed-chest conditions. Biplane cineradiography was performed to obtain the three-dimensional coordinates of the beads. At 2 days, end-systolic strains were akinetic with loss of normal transmural gradients of shortening and thickening. Remodeling strains (RS) were determined by use of a nonhomogeneous finite element method by referring the end-diastolic configuration during follow-up studies to its control state at matched end-diastolic pressures and heart rates. Tissue volume at 2 days increased substantially, more at the endocardium (30 +/- 7%) than at the epicardium (5 +/- 12%, P < .01); the increase was associated with an average RS in the wall-thickening direction of 0.18 +/- 0.15 (P < .01) with all other RS near zero. At 12 weeks systolic function partially recovered, with normal wall thickening in the epicardium (radial strain, 0.081 +/- 0.056 [control] versus 0.113 +/- 0.088 [12 weeks]) but with dysfunction in the endocardium (0.245 +/- 0.108 [control] versus 0.111 +/- 0.074 [P < .01] [12 weeks]). This inability of the inner wall to recover function may be related to increased transmural torsional shear and negative longitudinal-radial transverse shear in the inner wall. Volume loss occurred at 12 weeks in the endocardium (-36 +/- 16%) corresponding to transmural gradients in longitudinal RS and both transverse shear RS. Negative longitudinal RS was greater at the endocardium (-0.20 +/- 0.10) than at the epicardium (-0.06 +/- 0.05, P < .01). These results indicate the presence of marked subendocardial edema 2 days after reperfusion following 2 to 4 hours of coronary occlusion. At 3 months after reperfusion, however, there was volume loss in the inner wall due to shrinkage along the myofiber direction with reduced transmural function and loss of longitudinal shortening, while both tissue volume and function recovered completely in the outer wall.
Solar Sail Topology Variations Due to On-Orbit Thermal Effects
NASA Technical Reports Server (NTRS)
Banik, Jeremy A.; Lively, Peter S.; Taleghani, Barmac K.; Jenkins, Chrostopher H.
2006-01-01
The objective of this research was to predict the influence of non-uniform temperature distribution on solar sail topology and the effect of such topology variations on sail performance (thrust, torque). Specifically considered were the thermal effects due to on orbit attitude control maneuvers. Such maneuvers are expected to advance the sail to a position off-normal to the sun by as much as 35 degrees; a solar sail initially deformed by typical pre-tension and solar pressure loads may suffer significant thermally induced strains due to the non-uniform heating caused by these maneuvers. This on-orbit scenario was investigated through development of an automated analytical shape model that iterates many times between sail shape and sail temperature distribution before converging on a final coupled thermal structural affected sail topology. This model utilizes a validated geometrically non-linear finite element model and a thermal radiation subroutine. It was discovered that temperature gradients were deterministic for the off-normal solar angle cases as were thermally induced strains. Performance effects were found to be moderately significant but not as large as initially suspected. A roll torque was detected, and the sail center of pressure shifted by a distance that may influence on-orbit sail control stability.
NASA Astrophysics Data System (ADS)
Tsirigotis, Athanasios; Deligianni, Despoina D.
2017-12-01
In this work, the surface heterogeneity in mechanical compressive strain of cancellous bone was investigated with digital image correlation (DIC). Moreover, the onset and progression of failure was studied by acoustic emission (AE). Cubic cancellous bone specimens, with side of 15 mm, were obtained from bovine femur and kept frozen at -20ºC until testing. Specimen strain was analyzed by measuring the change of distance between the platens (crosshead) and via an optical method, by following the strain evolution with a camera. Simultaneously, AE monitoring was performed. The experiments showed that compressive Young’s modulus determined by crosshead strain is underestimated at 23% in comparison to optically determined strain. However, surface strain fields defined by DIC displayed steep strain gradients, which can be attributed to cancellous bone porosity and inhomogeneity. The cumulative number of events for the total AE activity recorded from the sensors showed that the activity started at a mean load level of 36% of the maximum load and indicated the initiation of micro-cracking phenomena. Further experiments, determining 3D strain with μCT apart from surface strain, are necessary to clarify the issue of strain inhomogeneity in cancellous bone.
Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.
Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S M; Ware, M E; Mazur, Y I; Wang, Z M; Lee, Jihoon; Salamo, G J
2016-12-01
Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement.
The exponentiated Hencky energy: anisotropic extension and case studies
NASA Astrophysics Data System (ADS)
Schröder, Jörg; von Hoegen, Markus; Neff, Patrizio
2017-10-01
In this paper we propose an anisotropic extension of the isotropic exponentiated Hencky energy, based on logarithmic strain invariants. Unlike other elastic formulations, the isotropic exponentiated Hencky elastic energy has been derived solely on differential geometric grounds, involving the geodesic distance of the deformation gradient \\varvec{F} to the group of rotations. We formally extend this approach towards anisotropy by defining additional anisotropic logarithmic strain invariants with the help of suitable structural tensors and consider our findings for selected case studies.
Kong, Lingfen; Zhang, Yu; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Du, Zhongkun; Zhang, Cheng
2018-09-30
The recently discovered endosulfan-degrading bacterial strains Pusillimonas sp. JW2 and Bordetella petrii NS were isolated from endosulfan-polluted water and soil environments. The optimal conditions for the growth and biodegradation activity of the strains JW2 and NS were studied in detail. In addition, the ability of the strains JW2 and NS to biodegrade endosulfan in soils during in situ bioremediation experiments was investigated. At a concentration of 2 mg of endosulfan per kilogram of soil, both JW2 and NS had positive effects on the degradation of endosulfan; JW2 degraded 100% and 91.5% of α- and β-endosulfan, respectively, and NS degraded 95.1% and 90.3% of α- and β-endosulfan, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of soil samples showed the successful colonization of JW2 and NS, and the toxicity of the soil decreased, as determined by single-cell gel electrophoresis (SCGE) assays of Eiseniafetida and micronucleus (MN) assays of Viciafaba root tip cells. Furthermore, the metabolic products of the bacterially degraded endosulfan from the in situ experiments were identified as endosulfan ether and lactone. This study provided potentially foundational backgrounds information for the remediation of endosulfan-contaminated soil. Copyright © 2018 Elsevier Inc. All rights reserved.
Evolution of stress and microstructure in silicon-doped aluminum gallium nitride thin films
NASA Astrophysics Data System (ADS)
Manning, Ian C.
The present work examines the effects of the Si incorporation on the stress evolution of AlxGa1-xN thin films deposited using metalorganic chemical vapor deposition. Specifically, tensile stress generation was evaluated using an in situ wafer curvature measurement technique, and correlated with the inclination of edge-type threading dislocations observed with transmission electron microscopy (TEM). This microstructural process had been theorized to relax compressive strain with increasing film thickness by expanding the missing planes of atoms associated with the dislocations. Prior work regarded dislocation bending as being the result of an effective climb mechanism. In a preliminary investigation, the accuracy of the model derived to quantify the strain induced by dislocation inclination was tested. The relevant parameters were measured to calculate a theoretical stress gradient, which was compared with the gradient as extract from experimental stress data. The predicted value was found to overestimate the measured value. It was also confirmed during the preliminary investigation that Si incorporation alone was sufficient to initiate dislocation bending. The overestimation of the stress gradient yielded by the prediction of the model was then addressed by exploring the effects of dislocation annihilation and fusion reactions occurring during film growth. Si-doped Al0.42Ga 0.58N layers exhibiting inclined threading dislocations were grown to different thicknesses. The dislocation density at the surface of each sample was then measured using plan-view TEM, and was found to be inversely proportional to the thickness. As the original model assumed a constant dislocation density, applying the correction for its reduction yielded a better prediction of the stress evolution. In an attempt to extend the predictive capabilities of the model beyond the single composition examined above, and to better understand the interaction of Si with the host AlxGa1-xN lattice, several sets of AlxGa1-xN films were grown, each with a unique composition. The Si doping level was varied within each set. It was determined that the dominant influence on tensile strain generation is in fact the initial dislocation density, which increased with increasing Al content as observed with plan-view TEM. This was expounded in a series of modeling examples. In addition, threading dislocation inclination was studied in nominally undoped and Si-doped Al xGa1-xN grown under conditions of tensile stress to isolate the influence of Si from that of compressive stress, which had also been found to induce dislocation bending. The effects due to Si and compressive stress were found not to combine as expected, based on a stochastic model of dislocation jog formation that had been developed in prior work to describe the inclination mechanism. Having confirmed the strong, direct relationship between the initial dislocation density and the degree of tensile stress generated in the Al xGa1-xN epilayers during growth, an effort was made to demonstrate the advantage that might be gained by using AlN substrates rather than SiC. In principle, AlN provides a growth surface that inhibits defect formation due to its close similarity to AlxGa1-xN lattice structure and chemistry, particularly at high Al mole fractions. Threading dislocation densities were reduced by an order of magnitude in comparison with samples grown on SiC, with a corresponding reduction in the stress gradient arising from dislocation inclination. (Abstract shortened by UMI.)
Gradients estimation from random points with volumetric tensor in turbulence
NASA Astrophysics Data System (ADS)
Watanabe, Tomoaki; Nagata, Koji
2017-12-01
We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.
The generalized Hill model: A kinematic approach towards active muscle contraction
NASA Astrophysics Data System (ADS)
Göktepe, Serdar; Menzel, Andreas; Kuhl, Ellen
2014-12-01
Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion.
Optimal read/write memory system components
NASA Technical Reports Server (NTRS)
Kozma, A.; Vander Lugt, A.; Klinger, D.
1972-01-01
Two holographic data storage and display systems, voltage gradient ionization system, and linear strain manipulation system are discussed in terms of creating fast, high bit density, storage device. Components described include: novel mounting fixture for photoplastic arrays; corona discharge device; and block data composer.
Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet
NASA Astrophysics Data System (ADS)
Majidi, Omid; Barlat, Frederic; Korkolis, Yannis P.; Fu, Jiawei; Lee, Myoung-Gyu
2016-11-01
To understand the material behavior during non-monotonic loading, uniaxial tension tests were conducted in three modes, namely, the monotonic loading, loading with periodic relaxation and periodic loading-unloadingreloading, at different strain rates (0.001/s to 0.01/s). In this study, the temperature gradient developing during each test and its contribution to increasing the apparent ductility of DP780 steel sheets were considered. In order to assess the influence of temperature, isothermal uniaxial tension tests were also performed at three temperatures (298 K, 313 K and 328 K (25 °C, 40 °C and 55 °C)). A digital image correlation system coupled with an infrared thermography was used in the experiments. The results show that the non-monotonic loading modes increased the apparent ductility of the specimens. It was observed that compared with the monotonic loading, the temperature gradient became more uniform when a non-monotonic loading was applied.
A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.
Chumakov, Sergei G
2008-09-01
We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.
Nübel, U; Engelen, B; Felske, A; Snaidr, J; Wieshuber, A; Amann, R I; Ludwig, W; Backhaus, H
1996-01-01
Sequence heterogeneities in 16S rRNA genes from individual strains of Paenibacillus polymyxa were detected by sequence-dependent separation of PCR products by temperature gradient gel electrophoresis (TGGE). A fragment of the 16S rRNA genes, comprising variable regions V6 to V8, was used as a target sequence for amplifications. PCR products from P. polymyxa (type strain) emerged as a well-defined pattern of bands in the gradient gel. Six plasmids with different inserts, individually demonstrating the migration characteristics of single bands of the pattern, were obtained by cloning the PCR products. Their sequences were analyzed as a representative sample of the total heterogeneity. An amount of 10 variant nucleotide positions in the fragment of 347 bp was observed, with all substitutions conserving the relevant secondary structures of the V6 and V8 regions in the RNA molecules. Hybridizations with specifically designed probes demonstrated different chromosomal locations of the respective rRNA genes. Amplifications of reverse-transcribed rRNA from ribosome preparations, as well as whole-cell hybridizations, revealed a predominant representation of particular sequences in ribosomes of exponentially growing laboratory cultures. Different strains of P. polymyxa showed not only remarkably differing patterns of PCR products in TGGE analysis but also discriminative whole-cell labeling with the designed oligonucleotide probes, indicating the different representation of individual sequences in active ribosomes. Our results demonstrate the usefulness of TGGE for the structural analysis of heterogeneous rRNA genes together with their expression, stress problems of the generation of meaningful data for 16S rRNA sequences and probe designs, and might have consequences for evolutionary concepts. PMID:8824607
Strain-induced shear instability in Liverpool Bay
NASA Astrophysics Data System (ADS)
Wihsgott, Juliane; Palmer, Matthew R.
2013-04-01
Liverpool Bay is a shallow subsection of the eastern Irish Sea with large tides (10 m), which drive strong tidal currents (1 ms-1). The Bay is heavily influenced by large freshwater inputs from several Welsh and English rivers that maintain a strong and persistent horizontal density gradient. This gradient interacts with the sheared tidal currents to strain freshwater over denser pelagic water on a semi-diurnal frequency. This Strain-Induced-Periodic-Stratification (SIPS) has important implications on vertical and horizontal mixing. The subtle interaction between stratification and turbulence in this complex environment is shown to be of critical importance to freshwater transport, and subsequently the fate of associated biogeochemical and pollutant pathways. Recent work identified an asymmetry of current ellipses due to SIPS that increases shear instability in the halocline with the potential to enhance diapycnal mixing. Here, we use data from a short, high intensity process study which reveals this mid-water mechanism maintains prolonged periods of sub-critical gradient Richardson number (Ri ≤ ¼) that suggests shear instability is likely. A time series of measurements from a microstructure profiler identifies the associated increase in turbulence is short lived and 'patchy' but sufficient to promote diapycnal mixing. The significance of this mixing process is further investigated by comparing our findings with long-term observations from the Liverpool Bay Coastal Observatory. We identify that the conditions for shear instability during SIPS are regularly met and suggest that this process contributes to the current underestimates of near coastal mixing observed in regional models. To assist our understanding of the observed processes and to test the current capability of turbulence 'closure schemes' we employ a one-dimensional numerical model to investigate the physical mechanisms driving diapycnal mixing in Liverpool Bay.
NASA Astrophysics Data System (ADS)
Langston, C. A.
2017-12-01
The seismic wave gradient tensor can be derived from a variety of field observations including measurements of the wavefield by a dense seismic array, strain meters, and rotation meters. Coupled with models of wave propagation, wave gradients along with the original wavefield can give estimates of wave attributes that can be used to infer wave propagation directions, apparent velocities, spatial amplitude behavior, and wave type. Compact geodetic arrays with apertures of 0.1 wavelength or less can be deployed to provide wavefield information at a localized spot similar to larger phased arrays with apertures of many wavelengths. Large N, spatially distributed arrays can provide detailed information over an area to detect structure changes. Key to accurate computation of spatial gradients from arrays of seismic instruments is knowledge of relative instrument responses, particularly component sensitivities and gains, along with relative sensor orientations. Array calibration has been successfully performed for the 14-element Pinyon Flat, California, broadband array using long-period teleseisms to achieve relative precisions as small as 0.2% in amplitude and 0.35o in orientation. Calibration has allowed successful comparison of horizontal seismic strains from local and regional seismic events with the Plate Boundary Observatory (PBO) borehole strainmeter located at the facility. Strains from the borehole strainmeter in conjunction with ground velocity from a co-located seismometer are used as a "point" array in estimating wave attributes for the P-SV components of the wavefield. An effort is underway to verify the calibration of PBO strainmeters in southern California and their co-located borehole seismic sensors to create an array of point arrays for use in studies of regional wave propagation and seismic sources.
InSAR Time Series Analysis of Dextral Strain Partitioning Across the Burma Plate
NASA Astrophysics Data System (ADS)
Reitman, N. G.; Wang, Y.; Lin, N.; Lindsey, E. O.; Mueller, K. J.
2017-12-01
Oblique convergence between the India and Sunda plates creates partitioning of strike-slip and compressional strain across the Burma plate. GPS data indicate up to 40 mm/yr (Steckler et al 2016) of dextral strain exists between the India and Sunda plates. The Sagaing fault in Myanmar accommodates 20 mm/yr at the eastern boundary of the Burma plate, but the location and magnitude of dextral strain on other faults remains an open question, as does the relative importance of seismic vs aseismic processes. The remaining 20 mm/yr of dextral strain may be accommodated on one or two faults or widely distributed on faults across the Burma plate, scenarios that have a major impact on seismic hazard. However, the dense GPS data necessary for precise determination of which faults accommodate how much strain do not exist yet. Previous studies using GPS data ascribe 10-18 mm/yr dextral strain on the Churachandpur Mao fault in India (Gahaluat et al 2013, Steckler et al 2016) and 18-22 mm/yr on the northern Sagaing fault (Maurin et al 2010, Steckler et al 2016), leaving up to 10 mm/yr unconstrained. Several of the GPS results are suggestive of shallow aseismic slip along parts of these faults, which, if confirmed, would have a significant impact on our understanding of hazard in the area. Here, we use differential InSAR analyzed in time series to investigate dextral strain on the Churachandpur Mao fault and across the Burma plate. Ascending ALOS-1 imagery spanning 2007-2010 were processed in time series for three locations. Offsets in phase and a strong gradient in line-of-sight deformation rate are observed across the Churachandpur Mao fault, and work is ongoing to determine if these are produced by shallow fault movement, topographic effects, or both. The results of this study will provide further constraints for strain rate on the Churachandpur Mao fault, and yield a more complete understanding of strain partitioning across the Burma plate.
NASA Astrophysics Data System (ADS)
Lyu, Jing; Hammig, Mark D.; Liu, Lehao; Xu, Lizhi; Chi, Hang; Uher, Ctirad; Li, Tiehu; Kotov, Nicholas A.
2017-10-01
Materials that are both stretchable and electrically conductive enable a broad spectrum of applications in sensing, actuating, electronics, optics and energy storage. The materials engineering concept of stretchable conductors is primarily based on combining nanowires, nanoribbons, nanoparticles, or nanocarbons with rubbery polymers to obtain composites with different abilities to transport charge and alter their nanoscale organization under strain. Although some of these composites reveal remarkably interesting multiscale reconfigurability and self-assembly phenomena, decreasing conductance with increased strain has restricted their widespread implementation. In a broader physical sense, the dependence of conductance on stress is undesirable because it requires a correlated change of electrical inputs. In this paper, we describe highly conductive and deformable sheets with a conductivity as high as 230 000 S cm-1, composed of silver nanoparticles, infiltrated within a porous aramid nanofiber (ANF) matrix. By forming a kirigami pattern, consisting of a regularized network of notches cut within the films, their ultimate tensile strain is improved from ˜2% to beyond 100%. The use of ANFs derived from well-known ultrastrong Kevlar™ fibers imparts high mechanical performance to the base composite. Importantly, the conductance of the films remains constant, even under large deformation resulting in a material with a zero conductance gradient. Unlike other nanocomposites for which strain and conductance are strongly coupled, the kirigami nanocomposite provides a pathway to demanding applications for flexible and stretchable electronics with power/voltage being unaffected by the deformation mode and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Q.; Nelson, C. T.; Hsu, S. -L.
Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO 3 /SrTiO 3 superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory andmore » experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO 3 and SrTiO 3. Here, our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics.« less
Li, Q.; Nelson, C. T.; Hsu, S. -L.; ...
2017-11-13
Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO 3 /SrTiO 3 superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory andmore » experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO 3 and SrTiO 3. Here, our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics.« less
Determination of high temperature strains using a PC based vision system
NASA Astrophysics Data System (ADS)
McNeill, Stephen R.; Sutton, Michael A.; Russell, Samuel S.
1992-09-01
With the widespread availability of video digitizers and cheap personal computers, the use of computer vision as an experimental tool is becoming common place. These systems are being used to make a wide variety of measurements that range from simple surface characterization to velocity profiles. The Sub-Pixel Digital Image Correlation technique has been developed to measure full field displacement and gradients of the surface of an object subjected to a driving force. The technique has shown its utility by measuring the deformation and movement of objects that range from simple translation to fluid velocity profiles to crack tip deformation of solid rocket fuel. This technique has recently been improved and used to measure the surface displacement field of an object at high temperature. The development of a PC based Sub-Pixel Digital Image Correlation system has yielded an accurate and easy to use system for measuring surface displacements and gradients. Experiments have been performed to show the system is viable for measuring thermal strain.
Crystal Growth and Characterization of CdTe Grown by Vertical Gradient Freeze
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Lehoczky, S. L.; Raghothamachar, B.; Dudley, M.
2007-01-01
In this study, crystals of CdTe were grown from melts by the unseeded vertical gradient freeze method. The quality of grown crystal were studied by various characterization techniques including Synchrotron White Beam X-ray Topography (SWBXT), chemical analysis by glow discharge mass spectroscopy (GDMS), low temperature photoluminescence (PL), and Hall measurements. The SWBXT images from various angles show nearly strain-free grains, grains with inhomogeneous strains, as well as twinning nucleated in the shoulder region of the boule. The GDMS chemical analysis shows the contamination of Ga at a level of 3900 ppb, atomic. The low temperature PL measurement exhibits the characteristic emissions of a Ga-doped sample. The Hall measurements show a resistivity of 1 x l0(exp 7) ohm-cm at room temperature to 3 x 10(exp 9) ohm-cm at 78K with the respective hole and electron concentration of 1.7 x 10(exp 9) cm(exp -3) and 3.9 x 10(exp 7) cm(exp -3) at room temperature.
Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence
NASA Technical Reports Server (NTRS)
Leonard, Andy D.; Hill, James C.
1992-01-01
Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Lookman, Turab; Shenoy, Subodh R.
2010-09-01
We show how microstructure can arise in first-order ferroelastic structural transitions, in two and three spatial dimensions, through a local mean-field approximation of their pseudospin Hamiltonians, that include anisotropic elastic interactions. Such transitions have symmetry-selected physical strains as their NOP -component order parameters, with Landau free energies that have a single zero-strain “austenite” minimum at high temperatures, and spontaneous-strain “martensite” minima of NV structural variants at low temperatures. The total free energy also has gradient terms, and power-law anisotropic effective interactions, induced by “no-dislocation” St Venant compatibility constraints. In a reduced description, the strains at Landau minima induce temperature dependent, clocklike ZNV+1 Hamiltonians, with NOP -component strain-pseudospin vectors S⃗ pointing to NV+1 discrete values (including zero). We study elastic texturing in five such first-order structural transitions through a local mean-field approximation of their pseudospin Hamiltonians, that include the power-law interactions. As a prototype, we consider the two-variant square/rectangle transition, with a one-component pseudospin taking NV+1=3 values of S=0,±1 , as in a generalized Blume-Capel model. We then consider transitions with two-component (NOP=2) pseudospins: the equilateral to centered rectangle (NV=3) ; the square to oblique polygon (NV=4) ; the triangle to oblique (NV=6) transitions; and finally the three-dimensional (3D) cubic to tetragonal transition (NV=3) . The local mean-field solutions in two-dimensional and 3D yield oriented domain-wall patterns as from continuous-variable strain dynamics, showing the discrete-variable models capture the essential ferroelastic texturings. Other related Hamiltonians illustrate that structural transitions in materials science can be the source of interesting spin models in statistical mechanics.
NASA Astrophysics Data System (ADS)
Sahmani, Saeid; Aghdam, Mohammad Mohammadi; Rabczuk, Timon
2018-04-01
By gradually changing of the porosity across a specific direction, functionally graded porous materials (FGPMs) are produced which can impart desirable mechanical properties. To enhance these properties, it is common to reinforce FGPMs with nanofillers. The main aim of the current study is to investigate the size-dependent nonlinear axial postbuckling characteristics of FGPM micro/nano-plates reinforced with graphene platelets. For this purpose, the theory of nonlocal strain gradient elasticity incorporating the both stiffness reduction and stiffness enhancement mechanisms of size effects is applied to the refined exponential shear deformation plate theory. Three different patterns of porosity dispersion across the plate thickness in conjunction with the uniform one are assumed for FGPM as an open-cell metal foam is utilized associated with the coefficients of the relative density and porosity. With the aid of the virtual work’s principle, the non-classical governing differential equations are constructed. Thereafter, an improved perturbation technique is employed to capture the size dependencies in the nonlinear load-deflection and load-shortening responses of the reinforced FGPM micro/nano-plates with and without initial geometric imperfection. It is indicated that by increasing the value of porosity coefficient, the size-dependent critical buckling loads of reinforced FGPM micro/nano-plates with all types of porosity dispersion pattern reduce, but the associated shortening may increase or decrease which depends on the type of dispersion pattern.
Biomimetic approaches for engineered organ chips and skin electronics for in vitro diagnostics
NASA Astrophysics Data System (ADS)
Suh, Kahp-Yang; Pang, Changhyun; Jang, Kyung-Jin; Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do-Hyun; Kim, Deok-Ho
2012-10-01
Two kinds of biomimetic systems including engineered organ chip and flexible electronic sensor are presented. First, in vivo, renal tubular epithelial cells are exposed to luminal fluid shear stress (FSS) and a transepithelial osmotic gradient. In this study, we used a simple collecting-duct-on-a-chip to investigate the role of an altered luminal microenvironment in the translocation of aquaporin-2 (AQP2) and the reorganization of actin cytoskeleton (F-actin) in primary cultured inner medullary collecting duct (IMCD) cells of rat kidney. We demonstrate that several factors (i.e., luminal FSS, hormonal stimulation, transepithelial osmotic gradient) collectively exert a profound effect on the AQP2 trafficking in the collecting ducts, which is associated with actin cytoskeletal reorganization. Furthermore, with this kidney-mimicking chip, renal toxicity of cisplatin was tested under static and fluidic conditions, suggesting the physiological relevancy of fluidic environment compared to static culture. Second, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface.
Mechano-Electrochemical Interaction Gives Rise to Strain Relaxation in Sn Electrodes
Barai, Pallab; Huang, Bo; Dillon, Shen J.; ...
2016-01-01
Tin (Sn) anode active particles were electrochemically lithiated during simultaneous imaging in a scanning electron microscope. Relationships among the reaction mechanism, active particle local strain rate, particle size, and microcrack formation are elucidated to demonstrate the importance of strain relaxation due to mechano-electrochemical interaction in Sn-based electrodes under electrochemical cycling. At low rates of operation, due to significant creep relaxation, large Sn active particles, of size 1 μm, exhibit no significant surface crack formation. Microcrack formation within Sn active particles occurs due to two different mechanisms: (i)large concentration gradient induced stress at the two-phase interface, and (ii) high volume expansionmore » induced stress at the surface of the active particles. From the present study, it can be concluded that majority of the microcracks evolve at or near the particle surface due to high volume expansion induced tension. Concentration gradient induced damage prevails near the center of the active particle, though significantly smaller in magnitude. Comparison with experimental results indicates that at operating conditions of C/2, even 500 nm sized Sn active particles remain free from surface crack formation, which emphasizes the importance of creep relaxation. A phase map has been developed to demonstrate the preferred mechano-electrochemical window of operation of Sn-based electrodes.« less
Vector method for strain estimation in phase-sensitive optical coherence elastography
NASA Astrophysics Data System (ADS)
Matveyev, A. L.; Matveev, L. A.; Sovetsky, A. A.; Gelikonov, G. V.; Moiseev, A. A.; Zaitsev, V. Y.
2018-06-01
A noise-tolerant approach to strain estimation in phase-sensitive optical coherence elastography, robust to decorrelation distortions, is discussed. The method is based on evaluation of interframe phase-variation gradient, but its main feature is that the phase is singled out at the very last step of the gradient estimation. All intermediate steps operate with complex-valued optical coherence tomography (OCT) signals represented as vectors in the complex plane (hence, we call this approach the ‘vector’ method). In comparison with such a popular method as least-square fitting of the phase-difference slope over a selected region (even in the improved variant with amplitude weighting for suppressing small-amplitude noisy pixels), the vector approach demonstrates superior tolerance to both additive noise in the receiving system and speckle-decorrelation caused by tissue straining. Another advantage of the vector approach is that it obviates the usual necessity of error-prone phase unwrapping. Here, special attention is paid to modifications of the vector method that make it especially suitable for processing deformations with significant lateral inhomogeneity, which often occur in real situations. The method’s advantages are demonstrated using both simulated and real OCT scans obtained during reshaping of a collagenous tissue sample irradiated by an IR laser beam producing complex spatially inhomogeneous deformations.
Sagiyama, Koki; Rudraraju, Shiva; Garikipati, Krishna
2016-09-13
Here, we consider solid state phase transformations that are caused by free energy densities with domains of non-convexity in strain-composition space; we refer to the non-convex domains as mechano-chemical spinodals. The non-convexity with respect to composition and strain causes segregation into phases with different crystal structures. We work on an existing model that couples the classical Cahn-Hilliard model with Toupin’s theory of gradient elasticity at finite strains. Both systems are represented by fourth-order, nonlinear, partial differential equations. The goal of this work is to develop unconditionally stable, second-order accurate time-integration schemes, motivated by the need to carry out large scalemore » computations of dynamically evolving microstructures in three dimensions. We also introduce reduced formulations naturally derived from these proposed schemes for faster computations that are still second-order accurate. Although our method is developed and analyzed here for a specific class of mechano-chemical problems, one can readily apply the same method to develop unconditionally stable, second-order accurate schemes for any problems for which free energy density functions are multivariate polynomials of solution components and component gradients. Apart from an analysis and construction of methods, we present a suite of numerical results that demonstrate the schemes in action.« less
On strain and stress in living cells
NASA Astrophysics Data System (ADS)
Cox, Brian N.; Smith, David W.
2014-11-01
Recent theoretical simulations of amelogenesis and network formation and new, simple analyses of the basic multicellular unit (BMU) allow estimation of the order of magnitude of the strain energy density in populations of living cells in their natural environment. A similar simple calculation translates recent measurements of the force-displacement relation for contacting cells (cell-cell adhesion energy) into equivalent volume energy densities, which are formed by averaging the changes in contact energy caused by a cell's migration over the cell's volume. The rates of change of these mechanical energy densities (energy density rates) are then compared to the order of magnitude of the metabolic activity of a cell, expressed as a rate of production of metabolic energy per unit volume. The mechanical energy density rates are 4-5 orders of magnitude smaller than the metabolic energy density rate in amelogenesis or bone remodeling in the BMU, which involve modest cell migration velocities, and 2-3 orders of magnitude smaller for innervation of the gut or angiogenesis, where migration rates are among the highest for all cell types. For representative cell-cell adhesion gradients, the mechanical energy density rate is 6 orders of magnitude smaller than the metabolic energy density rate. The results call into question the validity of using simple constitutive laws to represent living cells. They also imply that cells need not migrate as inanimate objects of gradients in an energy field, but are better regarded as self-powered automata that may elect to be guided by such gradients or move otherwise. Thus Ġel=d/dt 1/2 >[(C11+C12)ɛ02+2μγ02]=(C11+C12)ɛ0ɛ˙0+2μγ0γ˙0 or Ġel=ηEɛ0ɛ˙0+η‧Eγ0γ˙0 with 1.4≤η≤3.4 and 0.7≤η‧≤0.8 for Poisson's ratio in the range 0.2≤ν≤0.4 and η=1.95 and η‧=0.75 for ν=0.3. The spatial distribution of shear strains arising within an individual cell as cells slide past one another during amelogenesis is not known in detail. However, estimates can be inferred from the known relative velocities of the cells' centers of mass. When averaged over a volume comparable to the cell size, representative values of the strain are, to order of magnitude, ɛ0≈0.1 and γ0≈0.1. The shape distortions of cells seen, for example, in Fig. 1c, imply peak strains in minor segments of a cell of magnitude unity, ɛ0≈1 and γ0≈1; these values represent the upper bound of plausible values and are included for discussion of the extremes of attainable strain energy rates.Given the strain magnitudes, the strain rates follow from the fact that a cell switches from one contacting neighbor in the adjacent row to the next in approximately 0.25 d, during which motion the strains might vary from zero to their maximum values and back again. Thus the most probable shear strain rate is inferred to be γ˙0=10-6 s-1 and the most probable tensile strain rate is inferred to be ɛ˙0≈10-6 s-1, with high bounds γ˙0=10-5 s-1 and ɛ˙0=10-5 s-1.
Aiello, B. R.; Iriarte-Diaz, J.; Blob, R. W.; Butcher, M. T.; Carrano, M. T.; Espinoza, N. R.; Main, R. P.; Ross, C. F.
2015-01-01
Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone's lacunar–canalicular porosity. This model suggests that the osteocyte's intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction. PMID:26063842
Elastic-plastic deformation of a metal-matrix composite coupon with a center slot
NASA Technical Reports Server (NTRS)
Post, D.; Czarnek, R.; Joh, D.; Jo, J.; Guo, Y.
1985-01-01
A comprehensive experimental analysis of deformations of the surface of a metal-matrix specimen is reported. The specimen is a 6-ply 0 + or - 45 sub s boron-aluminum tensile coupon with a central slot. Moire interferometry is used for high-sensitivity whole-field measurements of in-plane displacements. Normal and shear strains are calculated from displacement gradients. Displacement fields are analyzed at various load levels from 15% to 95% of the failure load. Deformations of the boron fibers could be distinguished from those of the matrix. Highly localized plastic slip zones occur tangent to the ends of the slot. Shear strains and concurrent transverse compressive strains in the slip zones reach approximately 10% and 1%, respectively. Upon unloading, elastic recovery in surrounding regions causes a reverse plastic shear strain in the slip zone of about 4%. Longitudinal normal strains on the unslotted ligament peak at the slot boundary at about 1% strain. The strain concentration factor at the end of the slot decreases with load level and the advance of plasticity.
The Formation of Ganymede's Grooved Terrain: Importance of Strain Weakening
NASA Astrophysics Data System (ADS)
Bland, M. T.; McKinnon, W. B.; Showman, A. P.
2008-12-01
Nearly two-thirds of Ganymede's surface consists of relatively bright, young, tectonically deformed terrain dubbed grooved terrain. The grooved terrain consists of sets of parallel, undulatory ridges and troughs with peak to trough amplitudes of several hundred meters and periodic spacings that range from 3 to 10~km. The low slopes and periodic spacing of the grooves suggest that they formed via unstable extension of the ice lithosphere [e.g. Fink and Fletcher 1981, LPS XII; Pappalardo et al. 1998, Icarus 135]. Application of analytical models of unstable extension to Ganymede suggest that large amplitude grooves with appropriate wavelengths can form if the lithosphere is in pervasive brittle failure and if the lithospheric thermal gradient was relatively high (~45K km-1) [Dombard and McKinnon 2001, Icarus 154]; however, numerical models of unstable extension struggle to produce topographic amplitudes consistent with Ganymede's grooves (maximum amplitudes are a factor of five less than typical large amplitude grooves) [Bland and Showman 2007, Icarus 189]. The difficulties in producing large amplitude deformation may be overcome by the inclusion of strain weakening in models of groove formation. Strain weakening effects account for a material's tendency to strain more easily as viscous and/or plastic deformation accumulates, and as strain localizes in shear zones or along faults. When included in models of terrestrial extension, such effects can increase deformation amplitudes by up to several orders of magnitude [e.g. Fredericksen and Braun 2001, EPSL 188; Behn et al. 2002, EPSL 202]. Here we present the results of simulations of Ganymede's groove formation that include various strain weakening processes. Incorporation of a simple damage rheology, in which the yield strength of the ice lithosphere decreases as plastic strain accumulates, permits a factor of three increase in the amplitude of the simulated grooves, generating topography of 200~m or more. Such groove amplitudes are consistent with the lower-end of the range of observed groove amplitudes. More sophisticated strain weakening rheologies are likely to further increase deformation amplitudes. This work is supported by NASA PG&G.
Differentiation and Monitoring of Cells Using a Biochip for Regenerative Medicine
NASA Astrophysics Data System (ADS)
Uchida, Tomoyuki; Arai, Fumihito; Suzuki, Osamu; Ichikawa, Akihiko; Fukuda, Toshio; Katagiri, Takenobu; Kamijo, Ryutaro; Nakamura, Masanori; Numata, Mamoru; Watanabe, Naruaki
A novel biochip is developed for culturing stem cells. Biochip is made of Polymer (PDMS), and cells can be loaded by gradient strains in one chip. They grow well on a hydrophilic membrane and differentiation is promoted by cyclic strains. In this paper, we propose the method for culturing and monitoring of stem cells such as bone marrow stromal cells (ST2 cells) and myoblasts (C2C12 cells), and the results of culture. First we analyzed strains on a membrane when an air hole is decompressed, and clarified their range. From experiment, bone marrow stromal cells grew well in a narrow range, and we quantified their ALP activity as a measure of differentiation. As myoblasts, the direction of their differentiation was perpendicular to a groove, that is, the same direction of uniaxial strains.
NASA Astrophysics Data System (ADS)
Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.
2017-12-01
A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.
An approach to unbiased subsample interpolation for motion tracking.
McCormick, Matthew M; Varghese, Tomy
2013-04-01
Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder-Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique.
Nonlinear motion of cantilevered SWNT and Its Meaning to Phonon Dynamics
NASA Astrophysics Data System (ADS)
Koh, Heeyuen; Cannon, James; Chiashi, Shohei; Shiomi, Junichiro; Maruyama, Shigeo
2013-03-01
Based on the finding that the lowest frequency mode of cantilevered SWNT is described by the continuum beam theory in frequency domain, we considered its effect of the symmetric structure for the coupling of orthogonal transverse modes to explain the nonlinear motion of free thermal vibration. This nonlinear motion calculated by our molecular dynamics simulation, once regarded as noise, is observed to have the periodic order with duffing and beating, which is dependent on aspect ratio and temperature. It could be dictated by the governing equation from the Green Lagrangian strain tensor. The nonlinear beam equation from strain tensor described the motion well for various models which has different aspect ratio in molecular dynamics simulation. Since this motion is nothing but the interaction between 2nd mode of radial, tangential mode and 1st longitudinal mode, it was found that Green Lagrangian strain tensor is capable to deal such coupling. The free thermal motion of suspended SWNT is also considered without temperature gradient. The Q factor measured by this theoretical analysis will be discussed. Part of this work was financially supported by Grant-in-Aid for Scientific Research (19054003 and 22226006), and Global COE Program 'Global Center for Excellence for Mechanical Systems Innovation'
Magnetic skyrmion bubble motion driven by surface acoustic waves
Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.
2018-03-12
Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.
Magnetic skyrmion bubble motion driven by surface acoustic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.
Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.
High-Temperature, Thin-Film Strain Gages Improved
NASA Technical Reports Server (NTRS)
2005-01-01
Conventional resistance strain gage technology uses "bonded" strain gages. These foil or wire gages are bonded onto the surface of the test article with glue, ceramic cements, or flame-sprayed ceramics. These bonding agents can, in some instances, limit both the degree of strain transmission from the test structure to the gage and the maximum working temperature of the gage. Also, the bulky, bonded gage normally disrupts aerodynamic gas flow on the surface of the test structure because of its intrusive character. To respond to the urgent needs in aeronautic and aerospace research where stress and temperature gradients are high, aerodynamic effects need to be minimized, and higher operational temperatures are required, the NASA Lewis Research Center developed a thin film strain gage. This gage, a vacuum-deposited thin film formed directly on the surface of a test structure, operates at much higher temperatures than commercially available gages do and with minimal disruption of the aerodynamic flow. The gage uses an alloy, palladium-13 wt % chromium (hereafter, PdCr), which was developed by United Technologies Research Center under a NASA contract. PdCr is structurally stable and oxidation resistant up to at least 1100 C (2000 F); its temperature-induced resistance change is linear, repeatable, and not sensitive to the rates of heating and cooling. An early strain gage, which was made of 25-micrometer-diameter PdCr wire and demonstrated to be useable to 800 C, won an R&D 100 award in 1991. By further improving the purity of the material and by developing gage fabrication techniques that use sputter-deposition, photolithography patterning, and chemical etching, we have made an 8- to 10-m PdCr thin-film strain gage that can measure dynamic and static strain to at least 1100 C. For static strain measurements, a 5-m-thick Pt element serves as a temperature compensator to further minimize the temperature effect of the gage. These thin-film gages provide the advantage of minimally intrusive surface strain measurements and give highly repeatable readings with low drift at temperatures from ambient to 1100 C. This is a 300 C advance in operating temperature over the PdCr wire gage and a 500 C advance over commercially available gages made of other materials.
Chang, Young-Cheol; Reddy, M. Venkateswar; Umemoto, Honoka; Sato, Yuki; Kang, Mi-Hye; Yajima, Yuka; Kikuchi, Shintaro
2015-01-01
In the present study, a 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacterial strain CY-1 was isolated from the forest soil. Based on physiological, biochemical and 16S rRNA gene sequence analysis it was identified as Cupriavidus sp. CY-1. Further 2,4-D degradation experiments at different concentrations (200 to 800 mg l-1) were carried out using CY-1. Effect of NaCl and KNO3 on 2,4-D degradation was also evaluated. Degradation of 2,4-D and the metabolites produced during degradation process were analyzed using high pressure liquid chromatography (HPLC) and GC-MS respectively. The amount of chloride ions produced during the 2,4-D degradation were analyzed by Ion chromatography (IC) and it is stoichiometric with 2,4-D dechlorination. Furthermore two different types of soils collected from two different sources were used for 2,4-D degradation studies. The isolated strain CY-1 was bio-augmented into 2,4-D contaminated soils to analyze its degradation ability. Culture independent methods like denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP), and culture dependent methods like colony forming units (CFU) and most probable number (MPN) were used to analyze the survivability of strain CY-1 in contaminated soil. Results of T-RFLP were coincident with the DGGE analysis. From the DGGE, T-RFLP, MPN and HPLC results it was concluded that strain CY-1 effectively degraded 2,4-D without disturbing the ecosystem of soil indigenous microorganisms. PMID:26710231
Chi, Xiang-Qun; Liu, Kun; Zhou, Ning-Yi
2015-07-01
Pseudomonas sp. strain WBC-3 mineralizes the priority pollutant para-nitrophenol (PNP) and releases nitrite (NO2 (-)), which is probably involved in the nitrification. In this study, the rate of PNP removal in soil bioaugmented with strain WBC-3 was more accelerated with more NO2 (-) accumulation than in uninoculated soils. Strain WBC-3 survived well and remained stable throughout the entire period. Real-time polymerase chain reaction (real-time PCR) indicated a higher abundance of ammonia-oxidizing bacteria (AOB) than ammonia-oxidizing archaea (AOA), suggesting that AOB played a greater role in nitrification in the original sampled soil. Real-time PCR and multivariate analysis based on the denaturing gradient gel electrophoresis showed that PNP contamination did not significantly alter the abundance and community structure of ammonia oxidizers except for inhibiting the AOB abundance. Bioaugmentation of PNP-contaminated soil showed a significant effect on AOB populations and community structure as well as AOA populations. In addition, ammonium (NH4 (+)) variation was found to be the primary factor affecting the AOB community structure, as determined by the correlation between the community structures of ammonia oxidizers and environmental factors. It is here proposed that the balance between archaeal and bacterial ammonia oxidation could be influenced significantly by the variation in NH4 (+) levels as caused by bioaugmentation of contaminated soil by a pollutant containing nitrogen.
NASA Astrophysics Data System (ADS)
Sharma, Nandlal; Reuter, Dirk
2017-11-01
Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.
NASA Astrophysics Data System (ADS)
Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.
2018-01-01
The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.
NASA Technical Reports Server (NTRS)
Tessler, A.; Annett, M. S.; Gendron, G.
2001-01-01
A {1,2}-order theory for laminated composite and sandwich plates is extended to include thermoelastic effects. The theory incorporates all three-dimensional strains and stresses. Mixed-field assumptions are introduced which include linear in-plane displacements, parabolic transverse displacement and shear strains, and a cubic distribution of the transverse normal stress. Least squares strain compatibility conditions and exact traction boundary conditions are enforced to yield higher polynomial degree distributions for the transverse shear strains and transverse normal stress through the plate thickness. The principle of virtual work is used to derive a 10th-order system of equilibrium equations and associated Poisson boundary conditions. The predictive capability of the theory is demonstrated using a closed-form analytic solution for a simply-supported rectangular plate subjected to a linearly varying temperature field across the thickness. Several thin and moderately thick laminated composite and sandwich plates are analyzed. Numerical comparisons are made with corresponding solutions of the first-order shear deformation theory and three-dimensional elasticity theory. These results, which closely approximate the three-dimensional elasticity solutions, demonstrate that through - the - thickness deformations even in relatively thin and, especially in thick. composite and sandwich laminates can be significant under severe thermal gradients. The {1,2}-order kinematic assumptions insure an overall accurate theory that is in general superior and, in some cases, equivalent to the first-order theory.
Testing experience with unheated stain-gage balances in the NTF. [National Transonic Facility
NASA Technical Reports Server (NTRS)
Jacobs, Peter F.; Ferris, Alice T.
1986-01-01
A series of cryogenic (cryo) cycles was conducted in the cryo chamber at the National Transonic Facility (NTF) in order to identify the cause of apparent strain shifts in axial force with temperature for the Pathfinder I model and to minimize their effects. The results of the investigation indicated that the major cause of axial force end point shifts and thermal hysteresis loops was the thickness of the Teflon insulation on the instrumentation wires crossing the balance. By reducing the thickness of the insulation and the total number and size of the wires, apparent strain values were achieved for the model with instrumentation wires which were nearly identical to those for the model without wires. Because of the special design features used, the balance output was very accurate and repeatable over the entire NTF temperature range, even with balance thermal gradients as large as 64 F and transient conditions as large as 3 F/minute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, G. B.; Okasinski, J. S.; Buchholz, D. B.
Grazing-incidence, wide-angle x-ray scattering measurements were conducted on indium oxide thin films grown on silica substrates via pulsed laser deposition. Growth temperatures (T G) in this study ranged from -50 °C to 600 °C, in order to investigate the thermal effects on the film structure and its spatial homogeneity, as well as their relationship to electrical properties. Films grown below room temperature were amorphous, while films prepared at T G = 25 °C and above crystallized in the cubic bixbyite structure, and their crystalline fraction increased with deposition temperature. The electrical conductivity (σ) and electrical mobility (μ) were strongly enhancedmore » at low deposition temperatures. For T G = 25 °C and 50 °C, a strong < 100 > preferred orientation (texture) occurred, but it decreased as the deposition temperature, and consequential crystallinity, increased. Higher variations in texture coefficients and in lattice parameters were measured at the film surface compared to the interior of the film, indicating strong microstructural gradients. At low crystallinity, the in-plane lattice spacing expanded, while the out-of-plane spacing contracted, and those values merged at T G = 400 °C, where high μ was measured. This directional difference in lattice spacing, or deviatoric strain, was linear as a function of both deposition temperature and the degree of crystallinity. The crystalline sample with T G = 100 °C had the lowest mobility, as well as film diffraction peaks which split into doublets. The deviatoric strains from these doublet peaks differ by a factor of four, supporting the presence of both a microstructure and strain gradient in this film. More isotropic films exhibit larger l values, indicating that the microstructure directly correlates with electrical properties. Lastly, these results provide valuable insights that can help to improve the desirable properties of indium oxide, as well as other transparent conducting oxides.« less
NASA Astrophysics Data System (ADS)
González, G. B.; Okasinski, J. S.; Buchholz, D. B.; Boesso, J.; Almer, J. D.; Zeng, L.; Bedzyk, M. J.; Chang, R. P. H.
2017-05-01
Grazing-incidence, wide-angle x-ray scattering measurements were conducted on indium oxide thin films grown on silica substrates via pulsed laser deposition. Growth temperatures (TG) in this study ranged from -50 °C to 600 °C, in order to investigate the thermal effects on the film structure and its spatial homogeneity, as well as their relationship to electrical properties. Films grown below room temperature were amorphous, while films prepared at TG = 25 °C and above crystallized in the cubic bixbyite structure, and their crystalline fraction increased with deposition temperature. The electrical conductivity (σ) and electrical mobility (μ) were strongly enhanced at low deposition temperatures. For TG = 25 °C and 50 °C, a strong ⟨100⟩ preferred orientation (texture) occurred, but it decreased as the deposition temperature, and consequential crystallinity, increased. Higher variations in texture coefficients and in lattice parameters were measured at the film surface compared to the interior of the film, indicating strong microstructural gradients. At low crystallinity, the in-plane lattice spacing expanded, while the out-of-plane spacing contracted, and those values merged at TG = 400 °C, where high μ was measured. This directional difference in lattice spacing, or deviatoric strain, was linear as a function of both deposition temperature and the degree of crystallinity. The crystalline sample with TG = 100 °C had the lowest mobility, as well as film diffraction peaks which split into doublets. The deviatoric strains from these doublet peaks differ by a factor of four, supporting the presence of both a microstructure and strain gradient in this film. More isotropic films exhibit larger μ values, indicating that the microstructure directly correlates with electrical properties. These results provide valuable insights that can help to improve the desirable properties of indium oxide, as well as other transparent conducting oxides.
González, G. B.; Okasinski, J. S.; Buchholz, D. B.; ...
2017-05-25
Grazing-incidence, wide-angle x-ray scattering measurements were conducted on indium oxide thin films grown on silica substrates via pulsed laser deposition. Growth temperatures (T G) in this study ranged from -50 °C to 600 °C, in order to investigate the thermal effects on the film structure and its spatial homogeneity, as well as their relationship to electrical properties. Films grown below room temperature were amorphous, while films prepared at T G = 25 °C and above crystallized in the cubic bixbyite structure, and their crystalline fraction increased with deposition temperature. The electrical conductivity (σ) and electrical mobility (μ) were strongly enhancedmore » at low deposition temperatures. For T G = 25 °C and 50 °C, a strong < 100 > preferred orientation (texture) occurred, but it decreased as the deposition temperature, and consequential crystallinity, increased. Higher variations in texture coefficients and in lattice parameters were measured at the film surface compared to the interior of the film, indicating strong microstructural gradients. At low crystallinity, the in-plane lattice spacing expanded, while the out-of-plane spacing contracted, and those values merged at T G = 400 °C, where high μ was measured. This directional difference in lattice spacing, or deviatoric strain, was linear as a function of both deposition temperature and the degree of crystallinity. The crystalline sample with T G = 100 °C had the lowest mobility, as well as film diffraction peaks which split into doublets. The deviatoric strains from these doublet peaks differ by a factor of four, supporting the presence of both a microstructure and strain gradient in this film. More isotropic films exhibit larger l values, indicating that the microstructure directly correlates with electrical properties. Lastly, these results provide valuable insights that can help to improve the desirable properties of indium oxide, as well as other transparent conducting oxides.« less
Huang, Shu-shi; Lai, Jun-zhuo; Lu, Ming-qian; Cheng, Qin; Liao, Wei; Chen, Li-mei
2015-08-01
A modified procedure of Percoll density gradient centrifugation was developed to isolate and fractionate synchronous cells from stationary phase (sp) cultures of different yeast strains, as well as Raman spectra discrimination of single yeast cells was reported. About 1.75 mL Percoll solution in 2 mL polypropylene centrifugal tube was centrifuged at 19,320 g, 20 °C with an angle rotor for 15 min to form continuous densities gradient (1.00~1.31 g · mL(-1)), approximately 100 μL sample was overlaid onto the preformed continuous density gradient carefully, subsequently, centrifuged at 400 g for 60 min in a tabletop centrifuge equipped with a angle rotor at 25 °C. Yeast samples could be observed that the suspensions were separated into two cell fractions obviously. Both fractions of different yeast strains were respectively determined by differential interference contrast (DIC), phase contrast microscope and synchronous culture to distinguish their morphological and growth trait. The results showed that the lower fraction cells were unbudded, mostly unicellular, highly refractive, homogeneous and uniform in size, and represented growth characteristic synchronously; Their protoplasm had relatively high density, and contained significant concentrations of glycogen; all of which were accordant with description of quiescent yeast cells and G0 cells in previously published paper. It was shown that lower fraction was quiescent cells, synchronous G0 cells as well. A Raman tweezers setup was used to investigate the differences between two fractions, G0 cells and non G0 cells, at a single cell level. The result showed that both G0 cells and the non G0 cells had the same characteristic peaks corresponding biological macromolecules including proteins, carbohydrates and nucleic acids, but all characteristic peak intensities of G0 cells were higher than that of non G0 cells, implied that the macromolecular substance content of G0 cells was more higher. Principal component analysis (PCA) was performed between G0 cells and non G0 cells, the results showed that the chemical composition content among the synchronization G0 cells has less difference, and G0 cells were homogeneous but non G0 cells were heterogeneous, indicating single cell optical tweezers Raman spectroscopy could identify the synchronous and asynchronous cells. The modified method is feasible, economical and efficient highly. G0 synchronous cells of most yeast strains could be isolated by a modification of Percoll density gradient centrifugation.
Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management
NASA Technical Reports Server (NTRS)
Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.
2016-01-01
A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.
Modelling Thin Film Microbending: A Comparative Study of Three Different Approaches
NASA Astrophysics Data System (ADS)
Aifantis, Katerina E.; Nikitas, Nikos; Zaiser, Michael
2011-09-01
Constitutive models which describe crystal microplasticity in a continuum framework can be envisaged as average representations of the dynamics of dislocation systems. Thus, their performance needs to be assessed not only by their ability to correctly represent stress-strain characteristics on the specimen scale but also by their ability to correctly represent the evolution of internal stress and strain patterns. In the present comparative study we consider the bending of a free-standing thin film. We compare the results of 3D DDD simulations with those obtained from a simple 1D gradient plasticity model and a more complex dislocation-based continuum model. Both models correctly reproduce the nontrivial strain patterns predicted by DDD for the microbending problem.
Development of Michelson interferometer based spatial phase-shift digital shearography
NASA Astrophysics Data System (ADS)
Xie, Xin
Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.
Patterns of muscular strain in the embryonic heart wall.
Damon, Brooke J; Rémond, Mathieu C; Bigelow, Michael R; Trusk, Thomas C; Xie, Wenjie; Perucchio, Renato; Sedmera, David; Denslow, Stewart; Thompson, Robert P
2009-06-01
The hypothesis that inner layers of contracting muscular tubes undergo greater strain than concentric outer layers was tested by numerical modeling and by confocal microscopy of strain within the wall of the early chick heart. We modeled the looped heart as a thin muscular shell surrounding an inner layer of sponge-like trabeculae by two methods: calculation within a two-dimensional three-variable lumped model and simulated expansion of a three-dimensional, four-layer mesh of finite elements. Analysis of both models, and correlative microscopy of chamber dimensions, sarcomere spacing, and membrane leaks, indicate a gradient of strain decreasing across the wall from highest strain along inner layers. Prediction of wall thickening during expansion was confirmed by ultrasonography of beating hearts. Degree of stretch determined by radial position may thus contribute to observed patterns of regional myocardial conditioning and slowed proliferation, as well as to the morphogenesis of ventricular trabeculae and conduction fascicles. Developmental Dynamics 238:1535-1546, 2009. (c) 2009 Wiley-Liss, Inc.
The evolution of tectonic features on Ganymede
NASA Technical Reports Server (NTRS)
Squyres, S. W.
1982-01-01
The bands of bright resurfaced terrain on Ganymede are probably broad grabens formed by global expansion and filled with deposits of ice. Grooves within the bands are thought to be extensional features formed during the same episode of expansion. The crust of Ganymede is modeled as a viscoelastic material subjected to extensional strain. With sufficiently high strain rates and stresses, deep normal faulting will occur, creating broad grabens that may then be filled. Continuing deformation at high strain rates and stresses will cause propagation of deep faults up into the flood deposits and normal faulting at the surface, while lower strain rates and stresses will cause formation of open extension fractures or, if the crustal strength is very low, grabens at the surface. The spacing between adjacent fractures may reflect the geothermal gradient at the time of deformation. Surface topography resulting from fracturing and normal faulting will decay with time as a result of viscous relaxation and mass-wasting.
Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO 3 films
Tang, Y. L.; Zhu, Y. L; Ma, Xiuliang; ...
2015-05-01
Nanoscale ferroelectrics are expected to exhibit various exotic domain configurations, such as the full flux-closure pattern that is well known in ferromagnetic materials. Here we observe not only the atomic morphology of the flux-closure quadrant but also a periodic array of flux closures in ferroelectric PbTiO 3 films, mediated by tensile strain on a GdScO 3 substrate. Using aberration-corrected scanning transmission electron microscopy, we directly visualize an alternating array of clockwise and counterclockwise flux closures, whose periodicity depends on the PbTiO 3 film thickness. In the vicinity of the core, the strain is sufficient to rupture the lattice, with strainmore » gradients up to 10 9 per meter. We found engineering strain at the nanoscale may facilitate the development of nanoscale ferroelectric devices.« less
Improved techniques for thermomechanical testing in support of deformation modeling
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Ellis, John R.
1992-01-01
The feasibility of generating precise thermomechanical deformation data to support constitutive model development was investigated. Here, the requirement is for experimental data that is free from anomalies caused by less than ideal equipment and procedures. A series of exploratory tests conducted on Hastelloy X showed that generally accepted techniques for strain controlled tests were lacking in at least three areas. Specifically, problems were encountered with specimen stability, thermal strain compensation, and temperature/mechanical strain phasing. The source of these difficulties was identified and improved thermomechanical testing techniques to correct them were developed. These goals were achieved by developing improved procedures for measuring and controlling thermal gradients and by designing a specimen specifically for thermomechanical testing. In addition, innovative control strategies were developed to correctly proportion and phase the thermal and mechanical components of strain. Subsequently, the improved techniques were used to generate deformation data for Hastelloy X over the temperature range, 200 to 1000 C.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2015-01-01
Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions
Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.
2016-01-01
The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2 × 10−4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030
Strain and stability of ultrathin Ge layers in Si/Ge/Si axial heterojunction nanowires
Ross, Frances M.; Stach, Eric A.; Wen, Cheng -Yen; ...
2015-02-05
The abrupt heterointerfaces in the Si/Ge materials system presents useful possibilities for electronic device engineering because the band structure can be affected by strain induced by the lattice mismatch. In planar layers, heterointerfaces with abrupt composition changes are difficult to realize without introducing misfit dislocations. However, in catalytically grown nanowires, abrupt heterointerfaces can be fabricated by appropriate choice of the catalyst. Here we grow nanowires containing Si/Ge and Si/Ge/Si structures respectively with sub-1nm thick Ge "quantum wells" and we measure the interfacial strain fields using geometric phase analysis. Narrow Ge layers show radial strains of several percent, with a correspondingmore » dilation in the axial direction. Si/Ge interfaces show lattice rotation and curvature of the lattice planes. We conclude that high strains can be achieved, compared to what is possible in planar layers. In addition, we study the stability of these heterostructures under heating and electron beam irradiation. The strain and composition gradients are supposed to the cause of the instability for interdiffusion.« less
Curvature reduces bending strains in the quokka femur
McCabe, Kyle; Henderson, Keith; Pantinople, Jess; Milne, Nick
2017-01-01
This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side) bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading. PMID:28348929
NASA Astrophysics Data System (ADS)
Haynes, M.; Fabian, P.
2015-12-01
Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.
NASA Astrophysics Data System (ADS)
Ghadi, Hemant; Sehara, Navneet; Murkute, Punam; Chakrabarti, Subhananda
2017-05-01
In this study, a theoretical model is developed for investigating the effect of thermal annealing on a single-layer quaternary-capped (In0.21Al0.21Ga0.58As) InAs quantum dot heterostructure (sample A) and compared to a conventional GaAs-capped sample (sample B). Strain, an interfacial property, aids in dot formation; however, it hinders interdiffusion (up to 650 °C), rendering thermal stability to heterostructures. Three diffusing species In/Al/Ga intermix because of the concentration gradient and temperature variation, which is modeled by Fick's law of diffusion. Ground-state energy for both carriers (electron and holes) is calculated by the Schrodinger equation at different annealing temperatures, incorporating strain computed by the concentration-dependent model. Change in activation energy due to strain decreases particle movement, thereby resulting in thermally stable structures at low annealing temperatures. At low temperature, the conduction band near the dot edge slightly decreases, attributed to the comparatively high strain. Calculated results are consistent with the experimental blue-shift i.e. towards lower wavelength of photoluminescence peak on the same sample with increasing annealing temperatures. Cross-sectional transmission microscopy (TEM) images substantiate the existence of dot till 800 °C for sample (A). With increasing annealing temperature, interdiffusion and dot sublimation are observed in XTEM images of samples A and B. Strain calculated from high-resolution X-ray diffraction (HRXRD) peaks and its decline with increasing temperature are in agreement with that calculated by the model. For highlighting the benefits of quaternary capping, InAlGaAs capping is theoretically and experimentally compared to GaAs capping. Concentration-dependent strain energy is calculated at every point and is further used for computing material interdiffusion, band profiles, and photoluminescence peak wavelength, which can provide better insights into strain energy behavior with temperature and help in the better understanding of thermal annealing.
Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.
Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T
2016-03-01
A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale-up strategies. © 2015 Wiley Periodicals, Inc.
Composite Beam Theory with Material Nonlinearities and Progressive Damage
NASA Astrophysics Data System (ADS)
Jiang, Fang
Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping functions, and the 3D spatial gradients of these warping functions. Asymptotic analysis of the extended Hamiltonian's principle suggests dropping the terms of axial gradients of the warping functions. As a result, the solid mechanics problem resolved into a 3D continuum is dimensionally reduced to a problem of solving the warping functions on a 2D cross-sectional field by minimizing the information loss. The present theory is implemented using the finite element method (FEM) in Variational Asymptotic Beam Sectional Analysis (VABS), a general-purpose cross-sectional analysis tool. An iterative method is applied to solve the finite warping field for the classical-type model in the form of the Euler-Bernoulli beam theory. The deformation gradient tensor is directly used to enable the capability of dealing with finite deformation, various strain definitions, and several types of material constitutive laws regarding the nonlinear elasticity and progressive damage. Analytical and numerical examples are given for various problems including the trapeze effect, Poynting effect, Brazier effect, extension-bending coupling effect, and free edge damage. By comparison with the predictions from 3D finite element analyses (FEA), 2D FEA based on plane stress assumptions, and experimental data, the structural and material responses are proven to be rigorously captured by the present theory and the computational cost is significantly reduced. Due to the semi-analytical feature of the code developed, the unrealistic numerical issues widely seen in the conventional FEA with strain softening material behaviors are prevented by VABS. In light of these intrinsic features, the nonlinear elastic and inelastic 3D material models can be economically calibrated by data-matching the VABS predictions directly with the experimental measurements from slender coupons. Furthermore, the global behavior of slender composite structures in meters can also be effectively characterized by VABS without unnecessary loss of important information of its local laminae in micrometers.
Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.
Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter
2012-04-01
This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan
2016-01-01
This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.
Hayashi, N; Ito, M; Horiike, S; Taguchi, H
2001-05-01
Random amplified polymorphic DNA (RAPD) PCR analysis of Lactobacillus brevis isolates from breweries revealed that one of the random primers could distinguish beer-spoilage strains of L. brevis from nonspoilage strains. The 1.1-kb DNA fragment amplified from all beer-spoilers included one open reading frame, termed hitA (hop-inducible cation transporter), which encodes an integral membrane protein with 11 putative trans-membrane domains and a binding protein-dependent transport signature of a non-ATP binding membrane transporter common to several prokaryotic and eukaryotic transporters. The hitA polypeptide is homologous to the natural resistance-associated macrophage protein (Nramp) family characterized as divalent-cation transport proteins in many prokaryotic and eukaryotic organisms. Northern blot analysis indicated that the hitA transcripts are expressed in cells cultivated in MRS broth supplemented with hop bitter compounds, which act as mobile-carrier ionophores, dissipating the trans-membrane pH gradient in bacteria sensitive to the hop bitter compounds by exchanging H+ for cellular divalent cations such as Mn2+. This suggests that the hitA gene products may play an important role in making the bacteria resistant to hop bitter compounds in beer by transporting metal ions such as Mn2+ into cells that no longer maintain the proton gradient.
On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Zhao, Ziyu; Liu, Jinxing; Soh, Ai Kah
2018-01-01
In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials' amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.
NASA Astrophysics Data System (ADS)
Vattré, A.
2017-08-01
A parametric energy-based framework is developed to describe the elastic strain relaxation of interface dislocations. By means of the Stroh sextic formalism with a Fourier series technique, the proposed approach couples the classical anisotropic elasticity theory with surface/interface stress and elasticity properties in heterogeneous interface-dominated materials. For any semicoherent interface of interest, the strain energy landscape is computed using the persistent elastic fields produced by infinitely periodic hexagonal-shaped dislocation configurations with planar three-fold nodes. A finite element based procedure combined with the conjugate gradient and nudged elastic band methods is applied to determine the minimum-energy paths for which the pre-computed energy landscapes yield to elastically favorable dislocation reactions. Several applications on the Au/Cu heterosystems are given. The simple and limiting case of a single set of infinitely periodic dislocations is introduced to determine exact closed-form expressions for stresses. The second limiting case of the pure (010) Au/Cu heterophase interfaces containing two crossing sets of straight dislocations investigates the effects due to the non-classical boundary conditions on the stress distributions, including separate and appropriate constitutive relations at semicoherent interfaces and free surfaces. Using the quantized Frank-Bilby equation, it is shown that the elastic strain landscape exhibits intrinsic dislocation configurations for which the junction formation is energetically unfavorable. On the other hand, the mismatched (111) Au/Cu system gives rise to the existence of a minimum-energy path where the fully strain-relaxed equilibrium and non-regular intrinsic hexagonal-shaped dislocation rearrangement is accompanied by a significant removal of the short-range elastic energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirras, G., E-mail: dirras@univ-paris13.fr; Ouarem, A.; Couque, H.
2011-05-15
Polycrystalline Zn with an average grain size of about 300 {mu}m was deformed by direct impact Hopkinson pressure bar at a velocity of 29 m/s. An inhomogeneous grain structure was found consisting of a center region having large average grain size of 20 {mu}m surrounded by a fine-grained rim with an average grain size of 6 {mu}m. Transmission electron microscopy investigations showed a significant dislocation density in the large-grained area while in the fine-grained rim the dislocation density was negligible. Most probably, the higher strain yielded recrystallization in the outer ring while in the center only recovery occurred. The hardeningmore » effect of dislocations overwhelms the smaller grain size strengthening in the center part resulting in higher nanohardness in this region than in the outer ring. - Graphical Abstract: (a): EBSD micrograph showing the initial microstructure of polycrystalline Zn that was subsequently submitted to high strain rate impact. (b): an inhomogeneous grain size refinement was obtained which consists of a central coarse-grained area, surrounded by a fine-grained recrystallized rim. The black arrow points to the disc center. Research Highlights: {yields} A polycrystalline Zn specimen was submitted to high strain rate impact loading. {yields} Inhomogeneous grain refinement occurred due to strain gradient in impacted sample. {yields} A fine-grained recrystallized rim surrounded the coarse-grained center of specimen. {yields} The coarse-grained center exhibited higher hardness than the fine-grained rim. {yields} The higher hardness of the center was caused by the higher dislocation density.« less
NASA Astrophysics Data System (ADS)
Sanchez-Santolino, Gabriel; Tornos, Javier; Leon, Carlos; Varela, María; Pennycook, Stephen J.; Santamaría, Jacobo
2014-03-01
Interfaces in complex oxide heterostructures are responsible for exciting new physics, which is directly related to the chemical, structural and electronic properties at the atomic scale. Here, we study artificial multiferroic heterostructures combining ferromagnetic La0.7Sr0.3MnO3 with ferroelectric BaTiO3 by atomic resolution aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy. Measurements of the atomic positions in the STEM images permit calculating relative displacements and hence, local polarization. Polarization gradients can be observed in annular bright field images which seem to be correlated to strain gradients associated with the large lattice mismatch between barriers and electrodes. Spectroscopic measurements suggest the presence of O vacancies through the ferroelectric layers. Understanding the effect of the charge carriers associated with the oxygen vacancies may be the key to control the dynamics of domain walls in these heterostructures. Acknowledgements ORNL: U.S. DOE-BES, Materials Sciences and Engineering Division. UCM: ERC Starting Investigator Award, Spanish MICINN MAT2011-27470-C02 and Consolider Ingenio 2010 - CSD2009-00013 (Imagine), CAM S2009/MAT-1756 (Phama).
Simulation of the temperature distribution in crystals grown by Czochralski method
NASA Technical Reports Server (NTRS)
Dudokovic, M. P.; Ramachandran, P. A.
1985-01-01
Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.
NASA Astrophysics Data System (ADS)
Vollrath, Bastian; Hübel, Hartwig
2018-01-01
The Simplified Theory of Plastic Zones (STPZ) may be used to determine post-shakedown quantities such as strain ranges and accumulated strains at plastic or elastic shakedown. The principles of the method are summarized. Its practical applicability is shown by the example of a pipe bend subjected to constant internal pressure along with cyclic in-plane bending or/and cyclic radial temperature gradient. The results are compared with incremental analyses performed step-by-step throughout the entire load history until the state of plastic shakedown is achieved.
2014-11-01
incorporate the right Cauchy–Green strain tensor E, a function of the ( elas - tic) deformation gradient and its transpose. Such theories have been used...been compared for several anisotropic metallic single crystals (Al, Cu and Mg), with elas - tic constants of up to order four included. Differences
NASA Astrophysics Data System (ADS)
Barati, Mohammad Reza
2018-02-01
Nonlocal and surface effects on nonlinear vibration characteristics of a flexoelectric nanobeams under magnetic field are examined. Eringen’s nonlocal elasticity as well as surface elasticity theories are employed to describe the size-dependency of the flexoelectric nanobeam. Also, flexoelectricity is an important size-dependent phenomena for piezoelectric structures at nanoscale, related to the strain gradient-electric polarization coupling. After the derivation of governing equation via Hamilton’s principle, Galerkin method is employed to satisfy boundary conditions. Also, analytical procedures are implemented to obtain the closed-form nonlinear frequency of flexoelectric nanobeam. It is showed that magnetic field intensity, flexoelectric parameter, nonlocal parameter, elastic foundation and applied voltage on the top surface of the nanobeam have great influences on nonlinear vibration frequency.
Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films
Damodaran, Anoop; Okatan, M. B.; Kacher, J.; ...
2016-02-15
Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less
NASA Astrophysics Data System (ADS)
Chen, Xianfeng; Lin, Zhongqin; Yu, Zhongqi; Chen, Xinping; Li, Shuhui
2011-08-01
This study establishes the forming limit diagram (FLD) for QSTE340 seamed tube hydroforming by finite element method (FEM) simulation. FLD is commonly obtained from experiment, theoretical calculation and FEM simulation. But for tube hydroforming, both of the experimental and theoretical means are restricted in the application due to the equipment costs and the lack of authoritative theoretical knowledge. In this paper, a novel approach of predicting forming limit using thickness gradient criterion (TGC) is presented for seamed tube hydroforming. Firstly, tube bulge tests and uniaxial tensile tests are performed to obtain the stress-strain curve for tube three parts. Then one FE model for a classical tube free hydroforming and another FE model for a novel experimental apparatus by applying the lateral compression force and the internal pressure are constructed. After that, the forming limit strain is calculated based on TGC in the FEM simulation. Good agreement between the simulation and experimental results is indicated. By combining the TGC and FEM, an alternative way of predicting forming limit with enough accuracy and convenience is provided.
Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damodaran, Anoop; Okatan, M. B.; Kacher, J.
Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less
NASA Astrophysics Data System (ADS)
Laurent, Valentin; Scaillet, Stéphane; Jolivet, Laurent; Augier, Romain
2017-04-01
The complex interplay between rheology, temperature and deformation profoundly influences how crustal-scale shear zones form and then evolve across a deforming lithosphere. Understanding early exhumation processes in subduction zones requires quantitative age constraints on the timing of strain localization within high-pressure shear zones. Using both the in situ laser ablation and conventional step-heating 40Ar/39Ar dating (on phengite single grains and populations) methods, this study aims at quantifying the duration of ductile deformation and the timing of strain localization within HP-LT shear zones of the Cycladic Blueschist Unit (CBU, Greece). The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. Critical to retrieve realistic estimates of rates of strain localization during exhumation, dense 40Ar/39Ar age transects were sampled along shear zones recently identified on Syros and Sifnos islands. There, field observations suggest that deformation progressively localized downward in the CBU during exhumation. In parallel, these shear zones are characterized by different degrees of retrogression from blueschist-facies to greenschist-facies P-T conditions overprinting eclogite-facies record throughout the CBU. Results show straightforward correlations between the degree of retrogression, the finite strain intensity and 40Ar/39Ar ages; the most ductilely deformed and retrograded rocks yielded the youngest 40Ar/39Ar ages. The possible effects of strain localization during exhumation on the record of the argon isotopic system in HP-LT shear zones are addressed. Our results show that strain has localized in shear zones over a 30 Ma long period and that individual shear zones evolve during 7-15 Ma. We also discuss these results at small-scale to see whether deformation and fluid circulations, channelled within shear bands, can homogenize chemical compositions and reset the 40Ar/39Ar isotopic record. This study brings new perspective on the process of strain localization through the dating of structures along strain gradients, especially on possible variation of rates of localisation through the entire exhumation history.
NASA Technical Reports Server (NTRS)
Singh, M.; Asthana, R.
2008-01-01
Carbon/carbon composites with CVI and resin-derived matrices, and C/SiC composites reinforced with T-300 carbon fibers in a CVI SiC matrix were joined to Cu-clad Mo using two Ag-Cu braze alloys, Cusil-ABA (1.75% Ti) and Ticusil (4.5% Ti). The brazed joints revealed good interfacial bonding, preferential precipitation of Ti at the composite/braze interface, and a tendency toward delamination in resin-derived C/C composite. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The Knoop microhardness (HK) distribution across the C/C joints indicated sharp gradients at the interface, and a higher hardness in Ticusil than in Cusil-ABA. For the C/SiC composite to Cu-clad-Mo joints, the effect of composite surface preparation revealed that ground samples did not crack whereas unground samples cracked. Calculated strain energy in brazed joints in both systems is comparable to the strain energy in a number of other ceramic/metal systems. Theoretical predictions of the effective thermal resistance suggest that such joined systems may be promising for thermal management applications.
NASA Astrophysics Data System (ADS)
Abdel-Aal, H. A.; Mansori, M. El
2012-12-01
Cutting tools are subject to extreme thermal and mechanical loads during operation. The state of loading is intensified in dry cutting environment especially when cutting the so called hard-to-cut-materials. Although, the effect of mechanical loads on tool failure have been extensively studied, detailed studies on the effect of thermal dissipation on the deterioration of the cutting tool are rather scarce. In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.
Zhao, Yang; Zhao, Liang; Zheng, Xiaonan; Fu, Tianjiao; Guo, Huiyuan; Ren, Fazheng
2013-04-01
In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.
Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda
2017-06-01
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
Ultrastructure and molecular characterization of Fusobacterium necrophorum biovars.
Garcia, M M; Becker, S A; Brooks, B W; Berg, J N; Finegold, S M
1992-01-01
The ultrastructural features and molecular components of 18 strains of Fusobacterium necrophorum biovars A, AB and B, isolated from animal and human infections, were examined by electron microscopy, multilocus enzyme electrophoresis (MEE) and by sodium dodecyl sulfate-gradient polyacrylamide gel electrophoresis (SDS-PAGE). High resolution scanning electron microscopy revealed that the strains possessed a convoluted surface pattern. Transmission electron microscopy showed that all strains possessed a cell wall structure typical of gram-negative bacteria. Bleb formation was not uncommon. Numerous extracellular materials, resembling lipopolysaccharide (LPS) fragments, surrounded cells of both human strains and biovar B animal strains. Biovar A field strains revealed capsules as stained by ruthenium red whereas a stock culture strain showed the capsule only when immunostabilized with hyperimmune serum. Starch gel electrophoresis showed all strains to possess adenyl kinase, glutamate dehydrogenases and lactate dehydrogenase; each enzyme migrated uniformly (monomorphic) among the strains and represented an electrotype. However, SDS-PAGE indicated differences in the protein profiles between all of the strains; the most distinctly different was a human isolate (FN 606). Silver staining to detect LPS showed extensive "ladder" patterns among the majority of biovar A strains but not in the animal biovar B strains. Immunoblotting of LPS with a rabbit antiserum prepared against phenol extracted LPS from a biovar A animal isolate (LA 19) suggested marked variability in the LPS antigens among the isolates studied. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 7. Fig. 8. Fig. 9. PMID:1477801
Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar
2011-06-01
A previous study by the authors using a heated thermal manikin showed that the cooling rates of phase change material (PCM) are dependent on temperature gradient, mass, and covering area. The objective of this study was to investigate if the cooling effects of the temperature gradient observed on a thermal manikin could be validated on human subjects in extreme heat. The subjects wore cooling vests with PCMs at two melting temperatures (24 and 28°C) and fire-fighting clothing and equipment, thus forming three test groups (vest24, vest28 and control group without the vest). They walked on a treadmill at a speed of 5 km/h in a climatic chamber (air temperature = 55°C, relative humidity = 30%, vapour pressure = 4,725 Pa, and air velocity = 0.4 m/s). The results showed that the PCM vest with a lower melting temperature (24°C) has a stronger cooling effect on the torso and mean skin temperatures than that with a higher melting temperature (28°C). Both PCM vests mitigate peak core temperature increase during the resting recovery period. The two PCM vests tested, however, had no significant effect on the alleviation of core temperature increase during exercise in the heat. To study the possibility of effective cooling of core temperature, cooling garments with PCMs at even lower melting temperatures (e.g. 15°C) and a larger covering area should be investigated.
Bio-inspired design of a magnetically active trilayered scaffold for cartilage tissue engineering.
Brady, Mariea A; Talvard, Lucien; Vella, Alain; Ethier, C Ross
2017-04-01
An important topic in cartilage tissue engineering is the development of biomimetic scaffolds which mimic the depth-dependent material properties of the native tissue. We describe an advanced trilayered nanocomposite hydrogel (ferrogel) with a gradient in compressive modulus from the top to the bottom layers (p < 0.05) of the construct. Further, the scaffold was able to respond to remote external stimulation, exhibiting an elastic, depth-dependent strain gradient. When bovine chondrocytes were seeded into the ferrogels and cultured for up to 14 days, there was good cell viability and a biochemical gradient was measured with sulphated glycosaminoglycan increasing with depth from the surface. This novel construct provides tremendous scope for tailoring location-specific cartilage replacement tissue; by varying the density of magnetic nanoparticles, concentration of base hydrogel and number of cells, physiologically relevant depth-dependent gradients may be attained. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Jeyanathan, J; Martin, C; Morgavi, D P
2016-02-01
Direct-fed microbials (DFM) are used to modulate ruminal function and induce beneficial effects on ruminants. The objectives of this work were to 1) screen bacterial strains for their antimethanogenic potential in vitro and 2) assess the effect of 3 selected DFM on ruminal methane (CH) emissions, fermentation parameters, and microbial profiles in sheep. Forty-five bacterial strains were preselected based on their metabolism and fermentation characteristics. These bacteria were screened for their ability to reduce ruminal methanogenesis using 24-h batch incubations and an inoculum of 10 cfu/mL of medium. The addition of bacterial strains stimulated ruminal fermentation with increases in total gas production for 41 strains ( < 0.05) without a concomitant increase in CH production (only 9 strains had higher CH than the controls without DFM; < 0.05). 53-W, D31, and D1 had the greatest difference between total gas and CH production and were selected for further in vivo testing. Twelve rumen-cannulated Texel wethers were divided into 3 groups and were treated daily for 4 wk with 6 × 10 cfu/animal for and and 3 × 10 cfu/animal for . Measures of enteric CH, ruminal fermentation, and ruminal microbial traits were performed before, at 2 and 4 wk during the treatment period, and at 2 wk after the DFM treatment stopped. Methane production was reduced by 13% ( < 0.05) with after 2 wk of DFM administration, and this effect was maintained throughout the treatment and posttreatment periods. In contrast, had no effect on CH production, and increased it by 16% ( < 0.05) after 4 wk of DFM administration. There was no effect on other fermentation parameters or on the bacterial, archaeal, and protozoal numbers monitored by quantitative PCR. However, denaturing gradient gel electrophoresis profiles indicated changes in bacterial and archaeal diversity in the and groups. Although added bacteria were unable to permanently colonize the rumen, had a greater 24-h survival rate than the others, implying that the persistence of DFM may be important for modulating ruminal traits of interest. These results suggest that bacterial DFM used in this trial were able to modify CH emissions, although correlated changes in other ruminal parameters studied were minor.
GP3 is a structural component of the PRRSV type II (US) virion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, M. de; Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niteroi, RJ; Ansari, I.H.
2009-07-20
Glycoprotein 3 (GP3) is a highly glycosylated PRRSV envelope protein which has been reported as being present in the virions of PRRSV type I, while missing in the type II PRRSV (US) virions. We herein present evidence that GP3 is indeed incorporated in the virus particles of a North American strain of PRRSV (FL12), at a density that is consistent with the minor structural role assigned to GP3 in members of the Arterivirus genus. Two 15aa peptides corresponding to two different immunodominant linear epitopes of GP3 derived from the North American strain of PRRSV (FL12) were used as antigen tomore » generate a rabbit monospecific antiserum to this protein. The specificity of this anti-GP3 antiserum was confirmed by radioimmunoprecipitation (RIP) assay using BHK-21 cells transfected with GP3 expressing plasmid, MARC-145 cells infected with FL12 PRRSV, as well as by confocal microscopy on PRRSV-infected MARC-145 cells. To test if GP3 is a structural component of the virion, {sup 35}S-labelled PRRSV virions were pelleted through a 30% sucrose cushion, followed by a second round of purification on a sucrose gradient (20-60%). Virions were detected in specific gradient fractions by radioactive counts and further confirmed by viral infectivity assay in MARC 145 cells. The GP3 was detected in gradient fractions containing purified virions by RIP using anti-GP3 antiserum. Predictably, the GP3 was less abundant in purified virions than other major structural envelope proteins such as GP5 and M. Further evidence of the presence of GP3 at the level of PRRSV FL12 envelope was obtained by immunogold staining of purified virions from the supernatant of infected cells with anti-GP3 antiserum. Taken together, these results indicate that GP3 is a minor structural component of the PRRSV type II (FL12 strain) virion, as had been previously described for PRRSV type I.« less
Finsler geometry of nonlinear elastic solids with internal structure
NASA Astrophysics Data System (ADS)
Clayton, J. D.
2017-02-01
Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal structure. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement fields-i.e., a multiscale representation-whereby the latter are represented mathematically by the director vector of pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient. A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary conditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar, strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a description of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies. For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith's fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For the cavitation problem, the Finsler theory is able to accurately reproduce the vacancy formation energy at a nanoscale resolution, and various solutions describe localized cavitation at the core of the body and/or distributed dilatation and softening associated with amorphization as observed in atomic simulations, with relative stability of solutions depending on the regularization length.
NASA Technical Reports Server (NTRS)
Sisson, R. D., Jr.; Sone, Ichiro; Biederman, R. R.
1985-01-01
Partially Stabilized Zirconia (PSZ) may become widely used for Thermal Barrier Coatings (TBC). Failure of these coatings can occur due to thermal fatigue in oxidizing atmospheres. The failure is due to the strains that develop due to thermal gradients, differences in thermal expansion coefficients, and oxidation of the bond coating. The role of microstructure and the cubic, tetragonal, and monoclinic phase distribution in the strain development and subsequent failure will be discussed. An X-ray diffraction technique for accurate determination of the fraction of each phase in PSZ will be applied to understanding the phase transformations and strain development. These results will be discussed in terms of developing a model for life prediction in PSZ coatings during thermal cycling.
NASA Astrophysics Data System (ADS)
Arefi, Mohammad; Zenkour, Ashraf M.
2017-08-01
Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.
2014-01-01
Background Two major hurdles for successful production of second-generation bioethanol are the presence of inhibitory compounds in lignocellulosic media, and the fact that Saccharomyces cerevisiae cannot naturally utilise pentoses. There are recombinant yeast strains that address both of these issues, but co-utilisation of glucose and xylose is still an issue that needs to be resolved. A non-recombinant way to increase yeast tolerance to hydrolysates is by encapsulation of the yeast. This can be explained by concentration gradients occuring in the cell pellet inside the capsule. In the current study, we hypothesised that encapsulation might also lead to improved simultaneous utilisation of hexoses and pentoses because of such sugar concentration gradients. Results In silico simulations of encapsulated yeast showed that the presence of concentration gradients of inhibitors can explain the improved inhibitor tolerance of encapsulated yeast. Simulations also showed pronounced concentration gradients of sugars, which resulted in simultaneous xylose and glucose consumption and a steady state xylose consumption rate up to 220-fold higher than that found in suspension culture. To validate the results experimentally, a xylose-utilising S. cerevisiae strain, CEN.PK XXX, was constructed and encapsulated in semi-permeable alginate-chitosan liquid core gel capsules. In defined media, encapsulation not only increased the tolerance of the yeast to inhibitors, but also promoted simultaneous utilisation of glucose and xylose. Encapsulation of the yeast resulted in consumption of at least 50% more xylose compared with suspended cells over 96-hour fermentations in medium containing both sugars. The higher consumption of xylose led to final ethanol titres that were approximately 15% higher. In an inhibitory dilute acid spruce hydrolysate, freely suspended yeast cells consumed the sugars in a sequential manner after a long lag phase, whereas no lag phase was observed for the encapsulated yeast, and glucose, mannose, galactose and xylose were utilised in parallel from the beginning of the cultivation. Conclusions Encapsulation of xylose-fermenting S. cerevisiae leads to improved simultaneous and efficient utilisation of several sugars, which are utilised sequentially by suspended cells. The greatest improvement is obtained in inhibitory media. These findings show that encapsulation is a promising option for production of second-generation bioethanol. PMID:25050138
An Approach to Unbiased Subsample Interpolation for Motion Tracking
McCormick, Matthew M.; Varghese, Tomy
2013-01-01
Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder–Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique. PMID:23493609
Creation and Ordering of Oxygen Vacancies at WO 3-δ and Perovskite Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kelvin H. L.; Li, Guoqiang; Spurgeon, Steven R.
Changes in structure and composition resulting from oxygen deficiency can strongly impact the physical and chemical properties of transition metal oxides, which may lead to new functionalities for novel electronic devices. Oxygen vacancies (V o) can be readily formed to accomodate the lattice mismatch during epitixial thin film growth. In this paper, the effects of substrate strain and oxidizing power on the creation and distribution of V o in WO 3-δ thin films are investigated in detail. An 18O 2 isotope labeled time-of-flight secondary ion mass spectrometry study reveals that WO 3-δ films grown on SrTiO 3 substrates display amore » significantly larger oxygen vacancy gradient along the growth direction compared to those grown on LaAlO 3 substrates. This result is corroborated by scanning transmission electron microscopy imaging which reveals a large number of defects close to the interface to accommodate interfacial tensile strain, leading to the ordering of V o and the formation of semi-aligned Magnéli phases. The strain is gradually released and tetragonal phase with much better crystallinity is observed at the film/vacuum interface. The changes in structure resulting from oxygen defect creation are shown to have a direct impact on the electronic and optical properties of the films.« less
Wrinkle surface instability of an inhomogeneous elastic block with graded stiffness
NASA Astrophysics Data System (ADS)
Yang, Shengyou; Chen, Yi-chao
2017-04-01
Surface instabilities have been studied extensively for both homogeneous materials and film/substrate structures but relatively less for materials with continuously varying properties. This paper studies wrinkle surface instability of a graded neo-Hookean block with exponentially varying modulus under plane strain by using the linear bifurcation analysis. We derive the first variation condition for minimizing the potential energy functional and solve the linearized equations of equilibrium to find the necessary conditions for surface instability. It is found that for a homogeneous block or an inhomogeneous block with increasing modulus from the surface, the critical stretch for surface instability is 0.544 (0.456 strain), which is independent of the geometry and the elastic modulus on the surface of the block. This critical stretch coincides with that reported by Biot (1963 Appl. Sci. Res. 12, 168-182. (doi:10.1007/BF03184638)) 53 years ago for the onset of wrinkle instabilities in a half-space of homogeneous neo-Hookean materials. On the other hand, for an inhomogeneous block with decreasing modulus from the surface, the critical stretch for surface instability ranges from 0.544 to 1 (0-0.456 strain), depending on the modulus gradient, and the length and height of the block. This sheds light on the effects of the material inhomogeneity and structural geometry on surface instability.
NASA Astrophysics Data System (ADS)
Wang, Xiao-feng; Guo, Ming-xing; Cao, Ling-yong; Wang, Fei; Zhang, Ji-shan; Zhuang, Lin-zhong
2015-07-01
The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstructural observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio ( r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geometry value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001}<110> and Goss {110}<001> orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H{001}<110> orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.
Franks, A; Egan, S; Holmström, C; James, S; Lappin-Scott, H; Kjelleberg, S
2006-09-01
The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% +/- 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment.
A physical model for strain accumulation in the San Francisco Bay Region
Pollitz, F.F.; Nyst, M.
2005-01-01
Strain accumulation in tectonically active regions is generally a superposition of the effects of background tectonic loading, steady-state dislocation processes, such as creep, and transient deformation. In the San Francisco Bay region (SFBR), the most uncertain of these processes is transient deformation, which arises primarily in association with large earthquakes. As such, it depends upon the history of faulting and the rheology of the crust and mantle, which together determine the pattern of longer term (decade-scale) post-seismic response to earthquakes. We utilize a set of 102 GPS velocity vectors in the SFBR in order to characterize the strain rate field and construct a physical model of its present deformation. We first perform an inversion for the continuous velocity gradient field from the discrete GPS velocity field, from which both tensor strain rate and rotation rate may be extracted. The present strain rate pattern is well described as a nearly uniform shear strain rate oriented approximately N34??W (140 nanostrain yr-1) plus a N56??E uniaxial compression rate averaging 20 nanostrain yr-1 across the shear zone. We fit the velocity and strain rate fields to a model of time-dependent deformation within a 135-kin-wide, arcuate shear zone bounded by strong Pacific Plate and Sierra Nevada block lithosphere to the SW and NE, respectively. Driving forces are purely lateral, consisting of shear zone deformation imposed by the relative motions between the thick Pacific Plate and Sierra Nevada block lithospheres. Assuming a depth-dependent viscoelastic structure within the shear zone, we account for the effects of steady creep on faults and viscoelastic relaxation following the 1906 San Francisco and 1989 Loma Prieta earthquakes, subject to constant velocity boundary conditions on the edges of the shear zone. Fault creep is realized by evaluating dislocations on the creeping portions of faults in the fluid limit of the viscoelastic model. A priori plate-boundary(PB)-parallel motion is set to 38 mm yr -1. A grid search based on fitting the observed strain rate pattern yields a mantle viscosity of 1.2 ?? 1019 Pa s and a PB-perpendicular convergence rate of ???3 mm yr-1. Most of this convergence appears to be uniformly distributed in the Pacific-Sierra Nevada plate boundary zone. ?? 2005 RAS.
Toledo, G; Palenik, B
1997-01-01
Because they are ubiquitous in a range of aquatic environments and culture methods are relatively advanced, cyanobacteria may be useful models for understanding the extent of evolutionary adaptation of prokaryotes in general to environmental gradients. The roles of environmental variables such as light and nutrients in influencing cyanobacterial genetic diversity are still poorly characterized, however. In this study, a total of 15 Synechococcus strains were isolated from the oligotrophic edge of the California Current from two depths (5 and 95 m) with large differences in light intensity, light quality, and nutrient concentrations. RNA polymerase gene (rpoC1) fragment sequences of the strains revealed two major genetic lineages, distinct from other marine or freshwater cyanobacterial isolates or groups seen in shotgun-cloned sequences from the oligotrophic Atlantic Ocean. The California Current low-phycourobilin (CCLPUB) group represented by six isolates in a single lineage was less diverse than the California Current high-phycourobilin (CCHPUB) group with nine isolates in three relatively divergent lineages. The former was found to be the closest known genetic group to Prochlorococcus spp., a chlorophyll b-containing cyanobacterial group. Having an isolate from this group will be valuable for looking at the molecular changes necessary for the transition from the use of phycobiliproteins to chlorophyll b as light-harvesting pigments. Both of the CCHPUB and CCLPUB groups included strains obtained from surface (5 m) and deep (95 m) samples. Thus, contrary to expectations, there was no clear correlation between sampling depth and isolation of genetic groups, despite the large environmental gradients present. To our knowledge, this is the first demonstration with isolates that genetically divergent Synechococcus groups coexist in the same seawater sample. PMID:9361417
Borowska-Wykret, Dorota; Rypien, Aleksandra; Dulski, Mateusz; Grelowski, Michal; Wrzalik, Roman; Kwiatkowska, Dorota
2017-06-01
The capitulum of Helichrysum bracteatum is surrounded by scarious involucral bracts that perform hygroscopic movements leading to bract bending toward or away from the capitulum, depending on cell wall water status. The present investigation aimed at explaining the mechanism of these movements. Surface strain and bract shape changes accompanying the movements were quantified using the replica method. Dissection experiments were used to assess the contribution of different tissues in bract deformation. Cell wall structure and composition were examined with the aid of light and electron microscopy as well as confocal Raman spectroscopy. At the bract hinge (organ actuator) longitudinal strains at opposite surfaces differ profoundly. This results in changes of hinge curvature that drive passive displacement of distal bract portions. The distal portions in turn undergo nearly uniform strain on both surfaces and also minute shape changes. The hinge is built of sclerenchyma-like abaxial tissue, parenchyma and adaxial epidermis with thickened outer walls. Cell wall composition is rather uniform but tissue fraction occupied by cell walls, cell wall thickness, compactness and cellulose microfibril orientation change gradually from abaxial to adaxial hinge surface. Dissection experiments show that the presence of part of the hinge tissues is enough for movements. Differential strain at the hinge is due to adaxial-abaxial gradient in structural traits of hinge tissues and cell walls. Thus, the bract hinge of H. bracteatum is a structure comprising gradually changing tissues, from highly resisting to highly active, rather than a bi-layered structure with distinct active and resistance parts, often ascribed for hygroscopically moving organs. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Compatible-strain mixed finite element methods for incompressible nonlinear elasticity
NASA Astrophysics Data System (ADS)
Faghih Shojaei, Mostafa; Yavari, Arash
2018-05-01
We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.; ...
2017-02-23
This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less
Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres
NASA Astrophysics Data System (ADS)
Zhang, Yin; Chen, Chen; Liang, C. Y.; Liu, Z. W.; Li, Y. S.; Che, Renchao
2015-10-01
Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed.Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed. Electronic supplementary information (ESI) available: Crystal structure pattern; calculated DOS diagram. See DOI: 10.1039/c5nr05528h
NASA Astrophysics Data System (ADS)
Yang, Wei; Wei, Hao; Zhao, Liang
2017-11-01
Tidal straining describes the straining effect induced by the vertical shear of oscillatory tidal currents that act on horizontal density gradients. It tends to create tidal periodic stratification and modulate the turbulence in the bottom boundary layer (BBL). Here, we present observations of current, hydrology and turbulence obtained at two mooring stations that are characterized by two typical hydrological environments in the East China Sea (ECS). One is located adjacent to the Changjiang River's mouth, and the other is located over a sloping shelf which is far from the freshwater sources. Tidal straining induces a semidiurnal switching between stable and unstable stratification at both stations. Near-bottom high-frequency velocity measurements further reveal that the dissipation rate of turbulent kinetic energy (TKE) is highly elevated during periods when unstable stratification occurs. A comparison between the TKE dissipation rate (ɛ) and the shear production (P) further reveals that the near-bottom mixing is locally shear-induced most of the time except during the unstable stratification period. Within this period, the magnitude of dissipation exceeds the expected value based on the law of the wall by an order of magnitude. The buoyancy flux that calculated by the balance method is too small to compensate for the existing discrepancy between the dissipation and shear production. Another plausible candidate is the advection of TKE, which may play an important role in the TKE budget during the unstable stratification period.
Characterization of CCN and IN activity of bacterial isolates collected in Atlanta, GA
NASA Astrophysics Data System (ADS)
Purdue, Sara; Waters, Samantha; Karthikeyan, Smruthi; Konstantinidis, Kostas; Nenes, Athanasios
2016-04-01
Characterization of CCN activity of bacteria, other than a few select types such as Pseudomonas syringae, is limited, especially when looked at in conjunction with corresponding IN activity. The link between these two points is especially important for bacteria as those that have high CCN activity are likely to form an aqueous phase required for immersion freezing. Given the high ice nucleation temperature of bacterial cells, especially in immersion mode, it is important to characterize the CCN and IN activity of many different bacterial strains. To this effect, we developed a droplet freezing assay (DFA) which consists of an aluminum cold plate, cooled by a continuous flow of an ethylene glycol-water mixture, in order to observe immersion freezing of the collected bacteria. Here, we present the initial results on the CCN and IN activities of bacterial samples we have collected in Atlanta, GA. Bacterial strains were collected and isolated from rainwater samples taken from different storms throughout the year. We then characterized the CCN activity of each strain using a DMT Continuous Flow Streamwise Thermal Gradient CCN Counter by exposing the aerosolized bacteria to supersaturations ranging from 0.05% to 0.6%. Additionally, using our new DFA, we characterized the IN activity of each bacterial strain at temperatures ranging from -20oC to 0oC. The combined CCN and IN activity gives us valuable information on how some uncharacterized bacteria contribute to warm and mixed-phase cloud formation in the atmosphere.
USDA-ARS?s Scientific Manuscript database
Spray application is a commonly used time- and labor-efficient means to deliver live Mycoplasma gallisepticum (MG) vaccine to laying hens in commercial production facilities. The dosage of vaccine received by spray vaccinated birds can vary due to variation in the spray plume and vaccine suspension...
Seismic anisotropy of 70 Ma Pacific-plate upper mantle
NASA Astrophysics Data System (ADS)
Mark, H. F.; Lizarralde, D.; Collins, J. A.; Miller, N. C.; Hirth, G.; Gaherty, J. B.; Evans, R. L.
2017-12-01
We present a new measurement of seismic anisotropy and velocity gradients in the Pacific-plate upper mantle based on data from the NoMelt experiment. The seismic velocity structure of oceanic lithosphere reflects the processes involved in its formation at mid-ocean ridges and subsequent evolution off-axis. Increasing mantle depletion with depth due to melt extraction predicts negative velocity gradients, as does cooling with age. Alignment of olivine by corner flow predicts azimuthal anisotropy. Some models predict the strength of anisotropy should decrease with depth. Measurements of uppermost mantle velocities have not fully verified these predictions. Observations of direct Pn phases demonstrate that positive velocity gradients exist; and anisotropy measurements, while consistent with strain-induced olivine alignment, vary widely and generally suggest weaker fabric development than is observed in ophiolite samples. These discrepancies raise questions about the extent to which mantle structure evolves through time due to processes such as cracking and alteration, and hinder the use of seismic measurements to make more detailed inferences on aspects of lithospheric formation processes. We have measured anisotropy and vertical velocity gradients to 10 km below the Moho on 70 Ma lithosphere between the Clarion and Clipperton fracture zones. The lithosphere at the study site has not been obviously affected by tectonic or magmatic events since its formation. We find 6.2% anisotropy at the Moho with a mean velocity of 8.14 km/s and the fast direction parallel to paleospreading. Velocity gradients are estimated at 0.02 km/s/km in the fast direction and near 0 km/s/km in the slow direction. The gradient estimates can be explained by aligned microcracks oriented perpendicular to spreading that close with depth. Cracks are expected to close by 10 km below the Moho. At that depth the strength of anisotropy increases to 9%, close to the strength estimated from ophiolite fabrics. These results are consistent with observed olivine fabrics and the predicted effects of lithospheric formation processes, and suggest that lithospheric evolution is modest even at 70 Ma, involving microcracks oriented by a stress field consistent with thermal contraction.
Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M.; Bernstein, Matt A.
2016-01-01
PURPOSE To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. METHODS After reviewing the first-order concomitant fields that are present on asymmetric gradients, a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms is developed to counteract their effects. A numerically straightforward, simple to implement approximate solution to this pre-emphasis problem is derived, which is compatible with the current hardware infrastructure used on conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver sub-system, and its real-time use was tested using a series of phantom and in vivo data acquired from 2D Cartesian phase-difference, echo-planar imaging (EPI) and spiral acquisitions. RESULTS The phantom and in vivo results demonstrate that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images exhibiting spatially dependent blurring/distortion. The resulting artifacts are effectively prevented using the proposed gradient pre-emphasis. CONCLUSION An efficient and effective gradient pre-emphasis framework is developed to counteract the effects of first-order concomitant fields of asymmetric gradient systems. PMID:27373901
Thermal generation of spin current in epitaxial CoFe{sub 2}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Er-Jia, E-mail: ejguophysics@gmail.com, E-mail: klaeui@uni-mainz.de; Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830; Herklotz, Andreas
2016-01-11
The longitudinal spin Seebeck effect (LSSE) has been investigated in high-quality epitaxial CoFe{sub 2}O{sub 4} (CFO) thin films. The thermally excited spin currents in the CFO films are electrically detected in adjacent Pt layers due to the inverse spin Hall effect. The LSSE signal exhibits a linear increase with increasing temperature gradient, yielding a LSSE coefficient of ∼100 nV/K at room temperature. The temperature dependence of the LSSE is investigated from room temperature down to 30 K, showing a significant reduction at low temperatures, revealing that the total amount of thermally generated magnons decreases. Furthermore, we demonstrate that the spin Seebeck effectmore » is an effective tool to study the magnetic anisotropy induced by epitaxial strain, especially in ultrathin films with low magnetic moments.« less
Effects of Grain Size and Twin Layer Thickness on Crack Initiation at Twin Boundaries.
Zhou, Piao; Zhou, Jianqiu; Zhu, Yongwei; Jiang, E; Wang, Zikun
2018-04-01
A theoretical model to explore the effect on crack initiation of nanotwinned materials was proposed based on the accumulation of dislocations at twin boundaries. First, a critical cracking initiation condition was established considering the number of dislocations pill-up at TBs, grain size and twin layer thickness, and a semi-quantitative relationship between the crystallographic orientation and the stacking fault energy was built. In addition, the number of dislocations pill-up was described by introducing the theory of strain gradient. Based on this model, the effects of grain size and twin lamellae thickness on dislocation density and crack initiation at twin boundaries were also discussed. The simulation results demonstrated that the crack initiation resistance can be improved by decreasing the grain size and increasing the twin lamellae, which keeps in agreement with recent experimental findings reported in the literature.
Yu, Zhongtang; García-González, Rubén; Schanbacher, Floyd L.; Morrison, Mark
2008-01-01
Different hypervariable (V) regions of the archaeal 16S rRNA gene (rrs) were compared systematically to establish a preferred V region(s) for use in Archaea-specific PCR-denaturing gradient gel electrophoresis (DGGE). The PCR products of the V3 region produced the most informative DGGE profiles and permitted identification of common methanogens from rumen samples from sheep. This study also showed that different methanogens might be detected when different V regions are targeted by PCR-DGGE. Dietary fat appeared to transiently stimulate Methanosphaera stadtmanae but inhibit Methanobrevibacter sp. strain AbM4 in rumen samples. PMID:18083874
Javvaji, Brahmanandam; He, Bo; Zhuang, Xiaoying
2018-06-01
Graphene is a non-piezoelectric material. Engineering the piezoelectricity in graphene is possible with the help of impurities, defects and structural modifications. This study reports the mechanism of strain induced polarization and the estimation of piezoelectric and flexoelectric coefficients for graphene system. The combination of charge-dipole potential and the strong many-body potential is employed for describing the inter-atomic interactions. The breaking of symmetry in graphene material is utilized to generate the polarization. Pristine graphene, graphene with circular defect, graphene with triangular defect and trapezium-shaped graphene are considered. Molecular dynamics simulations are performed for straining the graphene atomic systems. The optimization of charge-dipole potential functions measure the polarization for these systems. Pristine and circular defect graphene systems show a constant polarization with strain. The polarization is varying with strain for a triangular defected and trapezium-shaped graphene system. The local atomic deformation produces a change in polarization with respect to the strain gradient. Estimated piezo and flexo coefficients motivate the usage of graphene in electro-mechanical devices.
NASA Astrophysics Data System (ADS)
Cadoni, Ezio
2018-03-01
The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.
Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.
Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae
2014-02-01
Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.
NASA Astrophysics Data System (ADS)
Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard; Strachan, Alejandro
2015-05-01
We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement.
NASA Astrophysics Data System (ADS)
Neff, Patrizio; Lankeit, Johannes; Ghiba, Ionel-Dumitrel; Martin, Robert; Steigmann, David
2015-08-01
We consider a family of isotropic volumetric-isochoric decoupled strain energies based on the Hencky-logarithmic (true, natural) strain tensor log U, where μ > 0 is the infinitesimal shear modulus, is the infinitesimal bulk modulus with the first Lamé constant, are dimensionless parameters, is the gradient of deformation, is the right stretch tensor and is the deviatoric part (the projection onto the traceless tensors) of the strain tensor log U. For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family are polyconvex for , extending a previous finding on its rank-one convexity. Our method uses a judicious application of Steigmann's polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor U. These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.
Separation of similar yeast strains by IEF techniques.
Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel
2009-06-01
Rapid and reliable identification of the etiological agents of infectious diseases, especially species that are hardly distinguishable by routinely used laboratory methods, e.g. Candida albicans from C. dubliniensis, is necessary for early administration of an appropriate therapy. Similarly, the differentiation between biofilm-positive and biofilm-negative yeast strains is necessary for the choice of a therapeutic strategy due to higher resistance of the biofilm-positive strains to antifungals. In this study rapid separation and identification of similar strains of Candida, cells and/or their lysates, based on IEF are outlined. The isoelectric points of the monitored "similar pairs" of Candidas, C. albicans and C. dubliniensis and the biofilm-positive C. parapsilosis, C. tropicalis and their biofilm-negative strains were determined by CIEF with UV detection in the acidic pH gradient. The differences between their isoelectric points were up to 0.3 units of pI. Simultaneously, a fast and a simple technique was developed for the lysis of the outer membrane cell and characteristic fingerprints were found in lysate electrophoreograms and in gels from the capillary or the gel IEF, respectively.
NASA Astrophysics Data System (ADS)
Javvaji, Brahmanandam; He, Bo; Zhuang, Xiaoying
2018-06-01
Graphene is a non-piezoelectric material. Engineering the piezoelectricity in graphene is possible with the help of impurities, defects and structural modifications. This study reports the mechanism of strain induced polarization and the estimation of piezoelectric and flexoelectric coefficients for graphene system. The combination of charge-dipole potential and the strong many-body potential is employed for describing the inter-atomic interactions. The breaking of symmetry in graphene material is utilized to generate the polarization. Pristine graphene, graphene with circular defect, graphene with triangular defect and trapezium-shaped graphene are considered. Molecular dynamics simulations are performed for straining the graphene atomic systems. The optimization of charge-dipole potential functions measure the polarization for these systems. Pristine and circular defect graphene systems show a constant polarization with strain. The polarization is varying with strain for a triangular defected and trapezium-shaped graphene system. The local atomic deformation produces a change in polarization with respect to the strain gradient. Estimated piezo and flexo coefficients motivate the usage of graphene in electro-mechanical devices.
Bakhoum, Niokhor; Ndoye, Fatou; Kane, Aboubacry; Assigbetse, Komi; Fall, Dioumacor; Sylla, Samba Ndao; Noba, Kandioura; Diouf, Diégane
2012-07-01
Rhizobial inoculation has a positive impact on plants growth; however, there is little information about its effect on soil microbial communities and their activity in the rhizosphere. It was therefore necessary to test the effect of inoculation of Acacia senegal (L.) Willd. seedlings with selected rhizobia on plant growth, structure and diversity of soil bacterial communities and soil functioning in relation to plant provenance and soil origin. In order to carry out this experiment, three A. senegal seeds provenance from Kenya, Niger, and Senegal were inoculated with selected rhizobial strains. They have been further grown during 4 months in greenhouse conditions in two non-disinfected soils, Dahra and Goudiry coming respectively from arid and semi-arid areas. The principal component analysis (ACP) showed an inoculation effect on plant growth, rhizospheric bacterial diversity and soil functioning. However, the performances of the rhizobial strains varied in relation to the seed provenance and the soil origin. The selected rhizobial strains, the A. senegal provenance and the soil origin have modified the structure and the diversity of soil bacterial communities as measured by principal component analysis/denaturing gradient gel electrophoresis analyses. It is interesting to note that bacterial communities of Dahra soil were highly structured according to A. senegal provenance, whereas they were structured in relation to rhizobial inoculation in Goudiry soil. Besides, the impact of inoculation on soil microbial activities measured by fluorescein diacetate analyses varied in relation to plant provenance and soil origin. Nevertheless, total microbial activity was about two times higher in Goudiry, arid soil than in Dahra, semi-arid soil. Our results suggest that the rhizobial inoculation is a suitable tool for improving plants growth and soil fertility. Yet, the impact is dependent on inoculants, plant provenance and soil origin. It will, therefore, be crucial to identify the appropriate rhizobial strains and plant provenance or species in relation to the soil type.
Putting Theory to the Test: Which Regulatory Mechanisms Can Drive Realistic Growth of a Root?
De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T. S.
2014-01-01
In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a ‘Uniform Longitudinal Strain Rule’ (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of generating virtual root growth kinematics to dissect and understand the mechanisms controlling this biological system. PMID:25358093
NASA Astrophysics Data System (ADS)
Radgolchin, Moeen; Moeenfard, Hamid
2018-02-01
The construction of self-powered micro-electro-mechanical units by converting the mechanical energy of the systems into electrical power has attracted much attention in recent years. While power harvesting from deterministic external excitations is state of the art, it has been much more difficult to derive mathematical models for scavenging electrical energy from ambient random vibrations, due to the stochastic nature of the excitations. The current research concerns analytical modeling of micro-bridge energy harvesters based on random vibration theory. Since classical elasticity fails to accurately predict the mechanical behavior of micro-structures, strain gradient theory is employed as a powerful tool to increase the accuracy of the random vibration modeling of the micro-harvester. Equations of motion of the system in the time domain are derived using the Lagrange approach. These are then utilized to determine the frequency and impulse responses of the structure. Assuming the energy harvester to be subjected to a combination of broadband and limited-band random support motion and transverse loading, closed-form expressions for mean, mean square, correlation and spectral density of the output power are derived. The suggested formulation is further exploited to investigate the effect of the different design parameters, including the geometric properties of the structure as well as the properties of the electrical circuit on the resulting power. Furthermore, the effect of length scale parameters on the harvested energy is investigated in detail. It is observed that the predictions of classical and even simple size-dependent theories (such as couple stress) appreciably differ from the findings of strain gradient theory on the basis of random vibration. This study presents a first-time modeling of micro-scale harvesters under stochastic excitations using a size-dependent approach and can be considered as a reliable foundation for future research in the field of micro/nano harvesters subjected to non-deterministic loads.
Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?
De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T S
2014-10-01
In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of generating virtual root growth kinematics to dissect and understand the mechanisms controlling this biological system.
Shape and Composition Map of a Prepyramid Quantum Dot
NASA Astrophysics Data System (ADS)
Spencer, Brian
2006-03-01
We present a theory for the shape, size, and nonuniform composition profile of a small prepyramid island in an alloy epitaxial film when surface diffusion is much faster than deposition and bulk diffusion. The predicted composition profile has segregation of the larger misfit component to the island peak, with segregation enhanced by misfit strain and solute strain but retarded by alloy solution thermodynamics. Vertical composition gradients through the center of the island due to this mechanism are on the order of 2%/nm for GeXSi1-X/Si and 10 - 15%/nm for InXGaAs1-X/GaAs [PRL 95, 206101 (2005)].
Measurement of strain distribution in bonded joints by fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Guemes, J. Alfredo; Diaz-Carrillo, Sebastian; Menendez, Jose M.
1998-07-01
Due to the small dimensions of the adhesive layer, the high non-uniformity of the strain field and the non linear elastic behavior of the adhesive material, the strain distribution at an adhesive joint can be predicted by FEM, but can not be experimentally obtained with classical approaches; only non standard procedures like Moire interferometry, or special artifacts like KGR extensometers may afford some insights on the behavior of the adhesive. Due to their small size, ensuring low perturbation of the strain field, and their innate ability to measure strain and strain gradient along the sensor, fiber Bragg gratings offer a good opportunity to solve this problem, and it is a good example of situations that may benefit from these new sensors. Fiber Bragg gratings may be placed or at the interface, within the adhesive layer, or embedded at the adherents, if these were made of composite material. Tests may be run at different temperatures, changing the adhesive characteristics from brittle to pseudoplastic without additional difficulties. When loading the joint, the strain field is obtained by analyzing the distorted spectrum of the reflected light pulse; the algorithm for doing it has already been published. A comparison with theoretical results is done, and the validity and utility of these sensors for this and similar applications is demonstrated.
NASA Astrophysics Data System (ADS)
Cox, Brian N.; Landis, Chad M.
2018-02-01
We present a simple theory of a strain pulse propagating as a solitary wave through a continuous two-dimensional population of cells. A critical strain is assumed to trigger a strain transformation, while, simultaneously, cells move as automata to tend to restore a preferred cell density. We consider systems in which the strain transformation is a shape change, a burst of proliferation, or the commencement of growth (which changes the shape of the population sheet), and demonstrate isomorphism among these cases. Numerical and analytical solutions describe a strain pulse whose height does not depend on how the strain disturbance was first launched, or the rate at which the strain transformation is achieved, or the rate constant in the rule for the restorative cell motion. The strain pulse is therefore very stable, surviving the imposition of strong perturbations: it would serve well as a timing signal in development. The automatous wave formulation is simple, with few model parameters. A strong case exists for the presence of a strain pulse during amelogenesis. Quantitative analysis reveals a simple relationship between the velocity of the leading edge of the pulse in amelogenesis and the known speed of migration of ameloblast cells. This result and energy arguments support the depiction of wave motion as an automatous cell response to strain, rather than as a response to an elastic energy gradient. The theory may also contribute to understanding the determination front in somitogenesis, moving fronts of convergent-extension transformation, and mitotic wavefronts in the syncytial drosophila embryo.
Kimura, Zen-ichiro; Okabe, Satoshi
2013-01-01
Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor. PMID:23486252
Kimura, Zen-ichiro; Okabe, Satoshi
2013-08-01
Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor.
NASA Astrophysics Data System (ADS)
Olgaard, D. L.; Dugan, B. E.; Gooch, M. J.
2001-12-01
Before launching into the title topic, I will share a few ``memories of torsion testing'' that exemplify one of the breakthrough contributions Mervyn Paterson has made to Geodynamics. Mervyn and his machines, the torsion apparatus in particular, have revolutionized structural geology by providing the means to quantify crustal and mantle deformation processes up to and beyond the high shear strains observed in the field. High strain is also important in basin evolution. High strain consolidation tests are used to help understand mechanical and fluid flow processes in deforming sediments on continental slopes. Clay-rich sediments compact from 70% to less than 40% porosity within 1000m below the sea floor [mbsf]. Clay-rich sediments have notoriously low permeabilities and, when combined with rapid deposition rates, can cause pore-fluid pressures greatly in excess of hydrostatic at shallow depths. Such high overpressures are particularly hazardous to slope stability and to deepwater drilling. Recently, Dugan and Flemings [Science, 289, 2000] used forward sedimentation models for the New Jersey continental slope calibrated with ODP data, to predict fluid pressures near lithostatic to depths of 640m. In the current study we use consolidation tests to verify these model predictions. Silty-clay cores were collected from depths of 60 to 650mbsf during ODP Leg 1073. Five samples were tested under drained, uniaxial strain conditions, i.e. zero radial displacement. Cylindrical samples were first subjected to a hydrostatic effective stress of ~0.2MPa, then axially loaded at a constant rate of 0.7kPa/min to maintain drained conditions. Pore pressure [brine] was held constant at 3.5MPa. Confining pressure was increased to maintain the uniaxial strain condition. P-wave velocities and permeabilities were measured at various stress conditions on two samples. The samples compacted rapidly at low stresses, then at decreasing rates as stress increased. A total compaction of 22% volumetric strain was achieved at the maximum axial stress of 22 MPa. The in situ pore pressures for each depth were calculated from the ``maximum effective stress'' determined from the break in slope of the data in log[effective stress] vs. void ratio plots. Test results confirm that pore pressure gradients exceed hydrostatic, approaching lithostatic, from about 60m to the base of the Pleistocene [~550m], then decrease within the underlying Miocene sandy silt. The confining-to-axial effective stress ratio increased asymptotically during loading to a value of 0.6; similar to that expected for silty shales. P-wave velocity-porosity-effective stress trends are used to predict overpressures, and thus anticipate hazards in near-seafloor sediments.
Temperature Preference in IAF Hairless and Hartley Guinea Pigs (Cavia porcellus)
Kleven, Gale A; Joshi, Prianca
2016-01-01
The Hairless strain of guinea pigs (Cavia porcellus) is the result of a spontaneous recessive mutation first identified at the Institute Armand Frappier (IAF) in 1978. Despite the longstanding availability of this strain, little is known about its thermoregulatory behavior. The aim of this study was to determine temperature preference in Hartley and Hairless guinea pigs by observing each strain in a ring-shaped apparatus containing a nonlinear temperature gradient. Temperatures were maintained by separately controlled heating mats lining the apparatus. Set point temperatures ranged from 24 to 38 °C. Guinea pigs (Hartley female, Hairless female, and Hairless male guinea pigs; n = 8 each group) were placed either singly or in pairs at 1 of the 8 randomized starting points within the apparatus. Subjects were observed for 30 min and coded for location within the temperature gradient by both frequency and duration. When placed singly in the apparatus, all 3 groups spent more time in the 30 °C zones. However, when placed as pairs with a cagemate, Hartley female guinea pigs spent more time in the cooler range of temperatures from 24 to 30 °C, whereas Hairless guinea pigs preferred a range of 30 to 38 °C. These results confirm a temperature preference of 30 ± 2 °C for both Hartley and Hairless guinea pigs when singly housed. However, data from the paired housing condition suggest that context plays an important role in thermoregulatory behavior. PMID:27025807
Isolation of five Rubrobacter strains from biodeteriorated monuments
NASA Astrophysics Data System (ADS)
Laiz, L.; Miller, A. Z.; Jurado, V.; Akatova, E.; Sanchez-Moral, S.; Gonzalez, J. M.; Dionísio, A.; Macedo, M. F.; Saiz-Jimenez, C.
2009-01-01
In the last few years, the microbial colonisation of mural paintings in ancient monuments has been attracting the attention of microbiologists and conservators. The genus Rubrobacter is commonly found in biodeteriorated monuments, where it has been reported to cause rosy discolouration. However, to date, only three species of this genus have been isolated, all from thermophilic environments. In this paper, we studied three monuments: the Servilia and Postumio tombs in the Roman Necropolis of Carmona (Spain), and Vilar de Frades church (Portugal), in search of Rubrobacter strains. In all cases, biodeterioration and the formation of efflorescences were observed, and five Rubrobacter strains were isolated. These isolates showed different physiology and migration in denaturing gradient gel electrophoresis, suggesting they might represent new species within this genus. The isolates reproduced some biodeterioration processes in the laboratory and revealed their biomediation in crystal formation.
Vaughan, Benjamin L; Galie, Peter A; Stegemann, Jan P; Grotberg, James B
2013-11-05
In the creation of engineered tissue constructs, the successful transport of nutrients and oxygen to the contained cells is a significant challenge. In highly porous scaffolds subject to cyclic strain, the mechanical deformations can induce substantial fluid pressure gradients, which affect the transport of solutes. In this article, we describe a poroelastic model to predict the solid and fluid mechanics of a highly porous hydrogel subject to cyclic strain. The model was validated by matching the predicted penetration of a bead into the hydrogel from the model with experimental observations and provides insight into nutrient transport. Additionally, the model provides estimates of the wall-shear stresses experienced by the cells embedded within the scaffold. These results provide insight into the mechanics of and convective nutrient transport within a cyclically strained hydrogel, which could lead to the improved design of engineered tissues. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Housing strain, mortgage foreclosure, and health.
Cannuscio, Carolyn C; Alley, Dawn E; Pagán, José A; Soldo, Beth; Krasny, Sarah; Shardell, Michelle; Asch, David A; Lipman, Terri H
2012-01-01
Foreclosure rates have risen rapidly since 2005, reaching historically high levels. The purpose of this study was to examine the health implications of the current housing crisis. We conducted a cross-sectional online consumer panel survey including residents of California, Arizona, Nevada, and Florida (n = 798) to determine the feasibility of contacting distressed homeowners via the Internet and to assess mental and physical health among respondents across the spectrum from those having no housing strain to those in loan default or home foreclosure. Homeowners in default or foreclosure exhibited poorer mental health and more physical symptoms than renters, homeowners with moderate strain, and homeowners with no strainöfollowing a gradient that was consistent across multiple health indicators. Internet panel sampling was an efficient method of contacting distressed homeowners. Record-high foreclosure rates may have broad implications for nursing and public health. Homeowners in default or foreclosure represent an identifiable high-risk group that may benefit from coordinated, affordable health and social services. Copyright © 2012 Elsevier Inc. All rights reserved.
Akbar, Shamsa; Sultan, Sikander; Kertesz, Michael
2014-10-01
The organophosphate pesticide chlorpyrifos (CP) has been used extensively since the 1960s for insect control. However, its toxic effects on mammals and persistence in environment necessitate its removal from contaminated sites, biodegradation studies of CP-degrading microbes are therefore of immense importance. Samples from a Pakistani agricultural soil with an extensive history of CP application were used to prepare enrichment cultures using CP as sole carbon source for bacterial community analysis and isolation of CP metabolizing bacteria. Bacterial community analysis (denaturing gradient gel electrophoresis) revealed that the dominant genera enriched under these conditions were Pseudomonas, Acinetobacter and Stenotrophomonas, along with lower numbers of Sphingomonas, Agrobacterium and Burkholderia. Furthermore, it revealed that members of Bacteroidetes, Firmicutes, α- and γ-Proteobacteria and Actinobacteria were present at initial steps of enrichment whereas β-Proteobacteria appeared in later steps and only Proteobacteria were selected by enrichment culturing. However, when CP-degrading strains were isolated from this enrichment culture, the most active organisms were strains of Acinetobacter calcoaceticus, Pseudomonas mendocina and Pseudomonas aeruginosa. These strains degraded 6-7.4 mg L(-1) day(-1) of CP when cultivated in mineral medium, while the consortium of all four strains degraded 9.2 mg L(-1) day(-1) of CP (100 mg L(-1)). Addition of glucose as an additional C source increased the degradation capacity by 8-14 %. After inoculation of contaminated soil with CP (200 mg kg(-1)) disappearance rates were 3.83-4.30 mg kg(-1) day(-1) for individual strains and 4.76 mg kg(-1) day(-1) for the consortium. These results indicate that these organisms are involved in the degradation of CP in soil and represent valuable candidates for in situ bioremediation of contaminated soils and waters.
Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A
2017-06-01
To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Noutsios, Georgios T; Papi, Rigini M; Ekateriniadou, Loukia V; Minas, Anastasios; Kyriakidis, Dimitrios A
2012-03-01
In the present study forty-four Greek endemic strains of Br. melitensis and three reference strains were genotyped by Multi locus Variable Number Tandem Repeat (ML-VNTR) analysis based on an eight-base pair tandem repeat sequence that was revealed in eight loci of Br. melitensis genome. The forty-four strains were discriminated from the vaccine strain Rev-1 by Restriction Fragment Length Polymorphism (RFLP) and Denaturant Gradient Gel Electrophoresis (DGGE). The ML-VNTR analysis revealed that endemic, reference and vaccine strains are genetically closely related, while most of the loci tested (1, 2, 4, 5 and 7) are highly polymorphic with Hunter-Gaston Genetic Diversity Index (HGDI) values in the range of 0.939 to 0.775. Analysis of ML-VNTRs loci stability through in vitro passages proved that loci 1 and 5 are non stable. Therefore, vaccine strain can be discriminated from endemic strains by allele's clusters of loci 2, 4, 6 and 7. RFLP and DGGE were also employed to analyse omp2 gene and reveled different patterns among Rev-1 and endemic strains. In RFLP, Rev-1 revealed three fragments (282, 238 and 44 bp), while endemic strains two fragments (238 and 44 bp). As for DGGE, the electrophoretic mobility of Rev-1 is different from the endemic strains due to heterologous binding of DNA chains of omp2a and omp2b gene. Overall, our data show clearly that it is feasible to genotype endemic strains of Br. melitensis and differentiate them from vaccine strain Rev-1 with ML-VNTR, RFLP and DGGE techniques. These tools can be used for conventional investigations in brucellosis outbreaks.
NASA Astrophysics Data System (ADS)
Shi, Li-Bin; Liu, Xu-Yang; Dong, Hai-Kuan
2016-09-01
We investigate the interface behaviors of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions. This study is performed by first principles calculations based on density functional theory (DFT). First of all, the biaxial strain is realized by changing the lattice constants in ab plane. Averaged electrostatic potential (AEP) is aligned by establishing Y2O3 and GaAs (110) surfaces. The band offsets of Y2O3/GaAs interface under biaxial strain are investigated by generalized gradient approximation and Heyd-Scuseria-Ernzerhof (HSE) functionals. The interface under biaxial strain is suitable for the design of metal oxide semiconductor (MOS) devices because the valence band offsets (VBO) and conduction band offsets (CBO) are larger than 1 eV. Second, the triaxial strain is applied to Y2O3/GaAs interface by synchronously changing the lattice constants in a, b, and c axis. The band gaps of Y2O3 and GaAs under triaxial strain are investigated by HSE functional. We compare the VBO and CBO under triaxial strain with those under biaxial strain. Third, in the absence of lattice strain, the formation energies, charge state switching levels, and migration barriers of native defects in Y2O3 are assessed. We investigate how they will affect the MOS device performance. It is found that VO+2 and Oi-2 play a very dangerous role in MOS devices. Finally, a direct tunneling leakage current model is established. The model is used to analyze current and voltage characteristics of the metal/Y2O3/GaAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunal, K.; Aluru, N. R., E-mail: aluru@illinois.edu
We investigate the effect of size on intrinsic dissipation in nano-structures. We use molecular dynamics simulation and study dissipation under two different modes of deformation: stretching and bending mode. In the case of stretching deformation (with uniform strain field), dissipation takes place due to Akhiezer mechanism. For bending deformation, in addition to the Akhiezer mechanism, the spatial temperature gradient also plays a role in the process of entropy generation. Interestingly, we find that the bending modes have a higher Q factor in comparison with the stretching deformation (under the same frequency of operation). Furthermore, with the decrease in size, themore » difference in Q factor between the bending and stretching deformation becomes more pronounced. The lower dissipation for the case of bending deformation is explained to be due to the surface scattering of phonons. A simple model, for phonon dynamics under an oscillating strain field, is considered to explain the observed variation in dissipation rate. We also studied the scaling of Q factor with initial tension, in a beam under flexure. We develop a continuum theory to explain the observed results.« less
Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.
2005-01-01
The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.
Thermo-mechanical modeling of laser treatment on titanium cold-spray coatings
NASA Astrophysics Data System (ADS)
Paradiso, V.; Rubino, F.; Tucci, F.; Astarita, A.; Carlone, P.
2018-05-01
Titanium coatings are very attractive to several industrial fields, especially aeronautics, due to the enhanced corrosion resistance and wear properties as well as improved compatibility with carbon fiber reinforced plastic (CFRP) materials. Cold sprayed titanium coatings, among the others deposition processes, are finding a widespread use in high performance applications, whereas post-deposition treatments are often used to modify the microstructure of the cold-sprayed layer. Laser treatments allow one to noticeably increase the superficial properties of titanium coatings when the process parameters are properly set. On the other hand, the high heat input required to melt titanium particles may result in excessive temperature increase even in the substrate. This paper introduces a thermo-mechanical model to simulate the laser treatment effects on a cold sprayed titanium coating as well as the aluminium substrate. The proposed thermo-mechanical finite element model considers the transient temperature field due to the laser source and applied boundary conditions using them as input loads for the subsequent stress-strain analysis. Numerical outcomes highlighted the relevance of thermal gradients and thermally induced stresses and strains in promoting the damage of the coating.
Liu, Aiping; Li, Xiaoyan; Pu, Biao; Ao, Xiaolin; Zhou, Kang; He, Li; Chen, Shujuan; Liu, Shuliang
2017-03-29
To improve the quality of Chinese traditional Paocai, two psychrotolerant lactic acid bacteria (LAB) strains were isolated from Paocai, and the quality of Chinese Paocai product using these two strains as starter cultures was compared to a control sample fermented with aged brine at 10 °C. The results suggested that the physicochemical and sensory features of Paocai fermented with psychrotolerant LAB were more suitable for industrial applications. The nitrite content of Paocai fermented with psychrotolerant LAB was 1 mg/kg, which was significantly lower than that of the control Paocai (P < 0.05). Low-temperature fermentation with the starter cultures of psychrotolerant LAB could effectively prevent overacidity and over-ripening of the Paocai products. Additionally, Paocai fermented with psychrotolerant LAB harbored relatively simple microbial flora as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. This study provides a basis for improving the quality of Chinese traditional Paocai and the large-scale production of low-temperature Chinese traditional Paocai products.
Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters
Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming
2016-01-01
Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources. PMID:27148185
Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters.
Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming
2016-01-01
Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources.
Why is cytoskeletal contraction required for cardiac fusion before but not after looping begins?
NASA Astrophysics Data System (ADS)
Shi, Yunfei; Varner, Victor D.; Taber, Larry A.
2015-02-01
Cytoskeletal contraction is crucial to numerous morphogenetic processes, but its role in early heart development is poorly understood. Studies in chick embryos have shown that inhibiting myosin-II-based contraction prior to Hamburger-Hamilton (HH) stage 10 (33 h incubation) impedes fusion of the mesodermal heart fields that create the primitive heart tube (HT), as well as the ensuing process of cardiac looping. If contraction is inhibited at or after looping begins at HH10, however, fusion and looping proceed relatively normally. To explore the mechanisms behind this seemingly fundamental change in behavior, we measured spatiotemporal distributions of tissue stiffness, stress, and strain around the anterior intestinal portal (AIP), the opening to the foregut where contraction and cardiac fusion occur. The results indicate that stiffness and tangential tension decreased bilaterally along the AIP with distance from the embryonic midline. The gradients in stiffness and tension, as well as strain rate, increased to peaks at HH9 (30 h) and decreased afterward. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that they are mainly generated by active cytoskeletal contraction, and finite-element modeling indicates that the measured mechanical gradients are consistent with a relatively uniform contraction of the endodermal layer in conjunction with constraints imposed by the attached mesoderm. Taken together, our results suggest that, before HH10, endodermal contraction pulls the bilateral heart fields toward the midline where they fuse to create the HT. By HH10, however, the fusion process is far enough along to enable apposing cardiac progenitor cells to keep ‘zipping’ together during looping without the need for continued high contractile forces. These findings should shed new light on a perplexing question in early heart development.
Hammond, W.C.; Thatcher, W.
2004-01-01
We have estimated patterns and rates of crustal movement across 800 km of the Basin and Range at ???39?? north latitude with Global Positioning System surveys in 1992, 1996, 1998, and 2002. The total rate of motion tangent to the small circle around the Pacific-North America pole of rotation is 10.4 ?? 1.0 mm/yr, and motion normal to this small circle is 3.9 ?? 0.9 mm/yr compared to the east end of our network. On the Colorado Plateau the east end of our network moves by ???1-2 mm/yr westerly with respect to North America. Transitions in strain rates delimit six major tectonic domains within the province. These deformation zones coincide with areas of modern seismicity and are, from east to west, (1) east-west extension in the Wasatch Fault zone, (2) low rate east-west extension centered near the Nevada-Utah border, (3) low rate east-west contraction between 114.7??W and 117.9??W, (4) extension normal to and strike-slip motion across the N10??E striking Central Nevada Seismic Zone, (5) right lateral simple shear oriented N13??W inside the Walker Lane Belt, and (6) shear plus extension near the Sierra Nevada frontal faults. Concentration of shear and dilatational deformation across the three westernmost zones suggests that the Walker Lane Belt lithosphere is rheologically weak. However, we show that linear gradients in viscosity and gravitational potential energy can also effectively concentrate deformation. In the Basin and Range, gradients in gravitational potential are spatially anticorrelated with dilatational strain rates, consistent with the presence of horizontal variations in viscosity of the lithosphere.
Using growth-based methods to determine direct effects of salinity on soil microbial communities
NASA Astrophysics Data System (ADS)
Rath, Kristin; Rousk, Johannes
2015-04-01
Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by measuring the bacterial growth response to added NaCl in a soil suspension. The bacterial community tolerance to salt increased along the salt gradients with higher in situ soil salinity. In samples from the low-saline end of the gradient, bacterial growth rates in the soil suspension showed a clear concentration-response relationship to NaCl resulting in inhibition curves. This relationship gradually changed toward higher salt concentrations. In soil samples from high salinity sites, bacterial growth was no longer inhibited by adding high concentrations of NaCl to the bacterial soil suspension. In fact, adding NaCl even promoted bacterial growth rates. These results show that salinity played an ecologically significant role in shaping communities at the highly saline end of the gradients and provide evidence for a direct salt effect on the microbial community
A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces
Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; ...
2016-04-12
We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and bothmore » beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Furthermore, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.« less
A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces
Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.
2016-01-01
ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097
Browne, Patrick; Tamaki, Hideyuki; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Imachi, Hiroyuki; Bräuer, Suzanna; Yavitt, Joseph B; Liu, Wen-Tso; Zinder, Stephen; Cadillo-Quiroz, Hinsby
2017-01-01
Members of the order Methanomicrobiales are abundant, and sometimes dominant, hydrogenotrophic (H 2 -CO 2 utilizing) methanoarchaea in a broad range of anoxic habitats. Despite their key roles in greenhouse gas emissions and waste conversion to methane, little is known about the physiological and genomic bases for their widespread distribution and abundance. In this study, we compared the genomes of nine diverse Methanomicrobiales strains, examined their pangenomes, reconstructed gene flow and identified genes putatively mediating their success across different habitats. Most strains slowly increased gene content whereas one, Methanocorpusculum labreanum, evidenced genome downsizing. Peat-dwelling Methanomicrobiales showed adaptations centered on improved transport of scarce inorganic nutrients and likely use H + rather than Na + transmembrane chemiosmotic gradients during energy conservation. In contrast, other Methanomicrobiales show the potential to concurrently use Na + and H + chemiosmotic gradients. Analyses also revealed that the Methanomicrobiales lack a canonical electron bifurcation system (MvhABGD) known to produce low potential electrons in other orders of hydrogenotrophic methanogens. Additional putative differences in anabolic metabolism suggest that the dynamics of interspecies electron transfer from Methanomicrobiales syntrophic partners can also differ considerably. Altogether, these findings suggest profound differences in electron trafficking in the Methanomicrobiales compared with other hydrogenotrophs, and warrant further functional evaluations.
NASA Astrophysics Data System (ADS)
Morency, C.; Tromp, J.
2008-12-01
The mathematical formulation of wave propagation in porous media developed by Biot is based upon the principle of virtual work, ignoring processes at the microscopic level, and does not explicitly incorporate gradients in porosity. Based on recent studies focusing on averaging techniques, we derive the macroscopic porous medium equations from the microscale, with a particular emphasis on the effects of gradients in porosity. In doing so, we are able to naturally determine two key terms in the momentum equations and constitutive relationships, directly translating the coupling between the solid and fluid phases, namely a drag force and an interfacial strain tensor. In both terms, gradients in porosity arise. One remarkable result is that when we rewrite this set of equations in terms of the well known Biot variables us, w), terms involving gradients in porosity are naturally accommodated by gradients involving w, the fluid motion relative to the solid, and Biot's formulation is recovered, i.e., it remains valid in the presence of porosity gradients We have developed a numerical implementation of the Biot equations for two-dimensional problems based upon the spectral-element method (SEM) in the time domain. The SEM is a high-order variational method, which has the advantage of accommodating complex geometries like a finite-element method, while keeping the exponential convergence rate of (pseudo)spectral methods. As in the elastic and acoustic cases, poroelastic wave propagation based upon the SEM involves a diagonal mass matrix, which leads to explicit time integration schemes that are well-suited to simulations on parallel computers. Effects associated with physical dispersion & attenuation and frequency-dependent viscous resistance are addressed by using a memory variable approach. Various benchmarks involving poroelastic wave propagation in the high- and low-frequency regimes, and acoustic-poroelastic and poroelastic-poroelastic discontinuities have been successfully performed. We present finite-frequency sensitivity kernels for wave propagation in porous media based upon adjoint methods. We first show that the adjoint equations in porous media are similar to the regular Biot equations upon defining an appropriate adjoint source. Then we present finite-frequency kernels for seismic phases in porous media (e.g., fast P, slow P, and S). These kernels illustrate the sensitivity of seismic observables to structural parameters and form the basis of tomographic inversions. Finally, we show an application of this imaging technique related to the detection of buried landmines and unexploded ordnance (UXO) in porous environments.
Sjöqvist, C; Godhe, A; Jonsson, P R; Sundqvist, L; Kremp, A
2015-01-01
Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone. PMID:25892181
NASA Astrophysics Data System (ADS)
Vona, A.; Di Piazza, A.; Romano, C.; De Astis, G.; Soto, G. J.
2014-12-01
We present a study of high-temperature, uniaxial deformation experiments of natural magma from an andesitic eruption of Turrialba volcano (1.9ka Plinian eruption). The aim of this work is to investigate the multiphase rheology (liquid+vesicles+crystals) of natural samples and the effect of vesicles and crystals on the magma viscosity. The experiments were performed using a high-temperature uniaxial Geocomp LoadTrac II press at dry atmospheric conditions and controlled deformation rates. Cores of natural sample (with Φcrys=0.20-0.30 and Φves=0.41-0.58) were deformed isothermally (790-870°C) at variable strain rates (VSR, from 10-6 to 10-4 s-1) and constant strain rate (CSR, 10-5 s-1). VSR were performed at low total amount of strain (e<0.10) to parameterize the flow behavior of these complex natural materials. The stress-strain rate relationships under flow conditions showed a linear trend between the applied stress and strain rate in the temperature interval investigated. All the samples display a steep linear trend, typical of Newtonian fluids (n index ~ 1), with a very small shear thinning behavior. CSR tests were performed at different total amount of strain (e=0.15-0.25-0.35). Strain hardening was observed with increasing deformation, resulting in an increase of apparent viscosity (up to 100.5 Pa s). This increase is related to the loss of total porosity (up to ΔΦves=0.15) due to compaction of the sample as indicated by post-run analyses . The measured multiphase rheology of Turrialba magmas was compared with literature models for both crystal- and bubble-bearing suspension. We calculate a difference of ~101 Pa s in magma apparent viscosity between high and low density samples, that coupled with a lateral temperature gradient inside the conduit of the volcano, could increase up to ~103 Pa s. The large difference in viscosity could be responsible of significant rheological contrasts, possibly resulting in strain localization and brittle fragmentation of magma.
NASA Technical Reports Server (NTRS)
1984-01-01
The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.
Plastic deformation treated as material flow through adjustable crystal lattice
NASA Astrophysics Data System (ADS)
Minakowski, P.; Hron, J.; Kratochvíl, J.; Kružík, M.; Málek, J.
2014-08-01
Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.
NASA Astrophysics Data System (ADS)
Ree, J. H.; Kim, S.; Yoon, H. S.; Choi, B. K.; Park, P. H.
2017-12-01
The GPS-determined, pre-, co- and post-seismic crustal deformations of the Korean peninsula with respect to the 2011 Tohoku-Oki earthquake (Baek et al., 2012, Terra Nova; Kim et al., 2015, KSCE Jour. of Civil Engineering) are all stretching ones (extensional; horizontal stretching rate larger than horizontal shortening rate). However, focal mechanism solutions of earthquakes indicate that South Korea has been at compressional regime dominated by strike- and reverse-slip faultings. We reevaluated the velocity field of GPS data to see any effect of the Tohoku-Oki earthquake on the Korean crustal deformation and seismicity. To calculate the velocity gradient tensor of GPS sites, we used a gridding method based on least-square collocation (LSC). This LSC method can overcome shortcomings of the segmentation methods including the triangulation method. For example, an undesirable, abrupt change in components of velocity field occurs at segment boundaries in the segmentation methods. It is also known that LSC method is more useful in evaluating deformation patterns in intraplate areas with relatively small displacements. Velocity vectors of South Korea, pointing in general to 113° before the Tohoku-Oki earthquake, instantly changed their direction toward the epicenter (82° on average) during the Tohoku-Oki earthquake, and then gradually returned to the original position about 2 years after the Tohoku-Oki earthquake. Our calculation of velocity gradient tensors after the Tohoku-Oki earthquake shows that the stretching and rotating fields are quite heterogeneous, and that both stretching and shortening areas exist in South Korea. In particular, after the post-seismic relaxation ceased (i.e., from two years after the Tohoku-Oki earthquake), regions with thicker and thinner crusts tend to be shortening and stretching, respectively, in South Korea. Furthermore, the straining rate is larger in the regions with thinner crust. Although there is no meaningful correlation between seismicity and crustal straining pattern of South Korea at present, the seismicity tends to be localized along boundaries between areas with opposite vorticity, particularly for velocity field for one year after the Tohoku-Oki earthquake.
Continuum and crystal strain gradient plasticity with energetic and dissipative length scales
NASA Astrophysics Data System (ADS)
Faghihi, Danial
This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in the finite element program ABAQUS/standard via the user element subroutine UEL. Using this numerical capability, an extensive study is conducted on the major characteristics of the proposed theories for bulk and interface such as size effect on yield and kinematic hardening, features of boundary layer formation, thermal softening and grain boundary weakening, and the effect of soft and stiff interfaces.
Kitzing, C; Pröschold, T; Karsten, U
2014-02-01
Members of the green algal genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of biological soil crust communities worldwide, which exert important ecological functions. Klebsormidium fluitans (F. Gay) Lokhorst was isolated from an aeroterrestrial biofilm as well as from four different biological soil crusts along an elevational gradient between 600 and 2350 m in the Tyrolean and South Tyrolean Alps (Austria, Italy), which are characterised by seasonally high solar radiation. Since the UVtolerance of Klebsormidium has not been studied in detail, an ecophysiological and biochemical study was applied. The effects of controlled artificial ultraviolet radiation (UVR; <9 W m(-2) UV-A, <0.5 W m(-2) UV-B) on growth, photosynthetic performance and the capability to synthesise mycosporine-like amino acids (MAAs) as potential sunscreen compounds were comparatively investigated to evaluate physiological plasticity and possible ecotypic differentiation within this Klebsormidium species. Already under control conditions, the isolates showed significantly different growth rates ranging from 0.42 to 0.74 μm day(-1). The UVR effects on growth were isolate specific, with only two strains affected by the UV treatments. Although all photosynthetic and respiratory data indicated strain-specific differences under control conditions, UV-A and UV-B treatment led only to rather minor effects. All physiological results clearly point to a high UV tolerance in the K. fluitans strains studied, which can be explained by their biochemical capability to synthesize and accumulate a putative MAA after exposure to UV-A and UV-B. Using HPLC, a UV-absorbing compound with an absorption maximum at 324 nm could be identified in all strains. The steady-state concentrations of this Klebsormidium MAA under control conditions ranged from 0.09 to 0.93 mg g(-1) dry weight (DW). While UV-A led to a slight stimulation of MAA accumulation, exposure to UV-B was accompanied by a strong but strain-specific increase of this compound (5.34-12.02 mg(-1) DW), thus supporting its function as UV sunscreen. Although ecotypic differences in the UVR response patterns of the five K. fluitans strains occurred, this did not correlate with the altitude of the respective sampling location. All data indicate a generally high UV tolerance which surely contributes to the aeroterrestrial lifestyle of K. fluitans in soil crusts of the alpine regions of the European Alps.
Comparative systems biology across an evolutionary gradient within the Shewanella genus.
Konstantinidis, Konstantinos T; Serres, Margrethe H; Romine, Margaret F; Rodrigues, Jorge L M; Auchtung, Jennifer; McCue, Lee-Ann; Lipton, Mary S; Obraztsova, Anna; Giometti, Carol S; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M
2009-09-15
To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of 10 closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended on the degree of ecological specialization of the organisms evaluated. Using the gradient of evolutionary relatedness formed by these genomes, we were able to partly isolate the effect of ecology from that of evolutionary divergence and to rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms, when the organisms were grown under identical conditions, were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information toward beginning a systems-level understanding of bacterial species and genera.
Dimensionless numbers in additive manufacturing
NASA Astrophysics Data System (ADS)
Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.
2017-02-01
The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.
The effects of kinesio taping on the color intensity of superficial skin hematomas: A pilot study.
Vercelli, Stefano; Colombo, Claudio; Tolosa, Francesca; Moriondo, Andrea; Bravini, Elisabetta; Ferriero, Giorgio; Francesco, Sartorio
2017-01-01
To analyze the effects of kinesio taping (KT) -applied with three different strains that induced or not the formation of skin creases (called convolutions)- on color intensity of post-surgical superficial hematomas. Single-blind paired study. Rehabilitation clinic. A convenience sample of 13 inpatients with post-surgical superficial hematomas. The tape was applied for 24 consecutive hours. Three tails of KT were randomly applied with different degrees of strain: none (SN); light (SL); and full longitudinal stretch (SF). We expected to obtain correct formation of convolutions with SL, some convolutions with SN, and no convolutions with SF. The change in color intensity of hematomas, measured by means of polar coordinates CIE L*a*b* using a validated and standardized digital images system. Applying KT to hematomas did not significantly change the color intensity in the central area under the tape (p > 0.05). There was a significant treatment effect (p < 0.05) under the edges of the tape, independently of the formation of convolutions (p > 0.05). The changes observed along the edges of the tape could be related to the formation of a pressure gradient between the KT and the adjacent area, but were not dependent on the formation of skin convolutions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Filyarovskaya, Viktoriya; Sitarska, Magdalena; Traczewska, Teodora; Wolf, Mirela
2017-11-01
An alternative to traditional cleaning methods of heavy metals in the water environment is phytoremediation. They efficiency depends on used technological process conditions as well as plant species. One of the most dangerous metallic elements mercury plays a particular role, which is a trace element and a physiologically foreign in living organisms. Mercury has a high degree of toxicity with strong affinity to thiol groups. This may cause an adverse effect on the enzymatic processes and consequently inhibiting the physiological functions. Because of high risk for human health, water environment treatment from mercury is essential proecological action. Mercury removal studies were conducted using Salvinia natans pleustofit, sampled from its natural water environment. In the first step, epiphytic bacteria, which was resistant to high concentrations of mercury (0,6 mgHg/l), was isolated from the plant and than selected by the tiles gradient mthod. In the next step, the identification using molecular biology methods was made. In the following step plant Salvinia natans was exposure to high levels of mercury in the presence of the three isolated Pseudomonas strains with exceptional resistance characteristics to environmental factors. Has been found a positive bacteria effect on the plant condition because the selected strains belong to Pseudomonas species producing materials supporting plant growth. The use of microbial stimulation to phytoremediation by hyperaccumulator Salvinia natans can multiply the effectiveness of the process.
Štveráková, Dana; Šedo, Ondrej; Benešík, Martin; Zdráhal, Zbyněk; Doškař, Jiří; Pantůček, Roman
2018-04-04
Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae , Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus , as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus -specific bacteriophages.
Štveráková, Dana; Šedo, Ondrej; Benešík, Martin; Zdráhal, Zbyněk; Doškař, Jiří
2018-01-01
Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae, Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus, as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus-specific bacteriophages. PMID:29617332
Turbulent flow separation in three-dimensional asymmetric diffusers
NASA Astrophysics Data System (ADS)
Jeyapaul, Elbert
2011-12-01
Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants.
NASA Astrophysics Data System (ADS)
El-Sabbagh, A.; Baz, A.
2006-03-01
Conventionally, the viscoelastic cores of Constrained Layer Damping (CLD) treatments are made of materials that have uniform shear modulus. Under such conditions, it is well-recognized that these treatments are only effective near their edges where the shear strains attain their highest values. In order to enhance the damping characteristics of the CLD treatments, we propose to manufacture the cores from Functionally Graded ViscoElastic Materials (FGVEM) that have optimally selected gradient of the shear modulus over the length of the treatments. With such optimized distribution of the shear modulus, the shear strain can be enhanced, and the energy dissipation can be maximized. The theory governing the vibration of beams treated with CLD, that has functionally graded viscoelastic cores, is presented using the finite element method (FEM). The predictions of the FEM are validated experimentally for plain beams, beams treated conventional CLD, and beams with CLD/FGVEM of different configurations. The obtained results indicate a close agreement between theory and experiments. Furthermore, the obtained results demonstrate the effectiveness of the new class of CLD with functionally graded cores in enhancing the energy dissipation over the conventional CLD over a broad frequency band. Extension of the proposed one-dimensional beam/CLD/FGVEM system to more complex structures is a natural extension to the present study.
Negative stiffness honeycombs as tunable elastic metamaterials
NASA Astrophysics Data System (ADS)
Goldsberry, Benjamin M.; Haberman, Michael R.
2018-03-01
Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.
A strain-cue hypothesis for biological network formation
Cox, Brian N.
2011-01-01
The direction of migration of a cell invading a host population is assumed to be controlled by the magnitude of the strains in the host medium (cells plus extracellular matrix) that arise as the host medium deforms to accommodate the invader. The single assumption that invaders are cued by strains external to themselves is sufficient to generate network structures. The strain induced by a line of invaders is greatest at the extremity of the line and thus the strain field breaks symmetry, stabilizing branch formation. The strain cue also triggers sprouting from existing branches, with no further model assumption. Network characteristics depend primarily on the ratio of the rate of advance of the invaders to the rate of relaxation of the host cells after their initial deformation. Intra-cell mechanisms that govern these two rates control network morphology. The strain field that cues an individual invader is a collective response of the combined cell populations, involving the nearest 100 cells, to order of magnitude, to any invader. The mechanism does not rely on the pre-existence of the entire host medium prior to invasion; the host cells need only maintain a layer several cells thick around each invader. Consistent with recent experiments, networks result only from a strain cue that is based on strain magnitudes. Spatial strain gradients do not break symmetry and therefore cannot stabilize branch formation. The theory recreates most of the geometrical features of the nervous network in the mouse gut when the most influential adjustable parameter takes a value consistent with one inferred from human and mouse amelogenesis. Because of similarity in the guiding local strain fields, strain cues could also be a participating factor in the formation of vascular networks. PMID:20671068
Qin, X; Miranda, V S; Machado, M A; Lemos, E G; Hartung, J S
2001-06-01
ABSTRACT Strains of Xylella fastidiosa, isolated from sweet orange trees (Citrus sinensis) and coffee trees (Coffea arabica) with symptoms of citrus variegated chlorosis and Requeima do Café, respectively, were indistinguishable based on repetitive extragenic palindromic polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus PCR assays. These strains were also indistinguishable with a previously described PCR assay that distinguished the citrus strains from all other strains of Xylella fastidiosa. Because we were not able to document any genomic diversity in our collection of Xylella fastidiosa strains isolated from diseased citrus, the observed gradient of increasing disease severity from southern to northern regions of São Paulo State is unlikely due to the presence of significantly different strains of the pathogen in the different regions. When comparisons were made to reference strains of Xylella fastidiosa isolated from other hosts using these methods, four groups were consistently identified consistent with the hosts and regions from which the strains originated: citrus and coffee, grapevine and almond, mulberry, and elm, plum, and oak. Independent results from random amplified polymorphic DNA (RAPD) PCR assays were also consistent with these results; however, two of the primers tested in RAPD-PCR were able to distinguish the coffee and citrus strains. Sequence comparisons of a PCR product amplified from all strains of Xylella fastidiosa confirmed the presence of a CfoI polymorphism that can be used to distinguish the citrus strains from all others. The ability to distinguish Xylella fastidiosa strains from citrus and coffee with a PCR-based assay will be useful in epidemiological and etiological studies of this pathogen.
NASA Astrophysics Data System (ADS)
Manero, Albert; Sofronsky, Stephen; Knipe, Kevin; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Raghavan, Seetha; Bartsch, Marion
2015-07-01
Advances in aircraft and land-based turbine engines have been increasing the extreme loading conditions on traditional engine components and have incited the need for improved performance with the use of protective coatings. These protective coatings shield the load-bearing super alloy blades from the high-temperature combustion gases by creating a thermal gradient over their thickness. This addition extends the life and performance of blades. A more complete understanding of the behavior, failure mechanics, and life expectancy for turbine blades and their coatings is needed to enhance and validate simulation models. As new thermal-barrier-coated materials and deposition methods are developed, strides to effectively test, evaluate, and prepare the technology for industry deployment are of paramount interest. Coupling the experience and expertise of researchers at the University of Central Florida, The German Aerospace Center, and Cleveland State University with the world-class synchrotron x-ray beam at the Advanced Photon Source in Argonne National Laboratory, the synergistic collaboration has yielded previously unseen measurements to look inside the coating layer system for in situ strain measurements during representative service loading. These findings quantify the in situ strain response on multilayer thermal barrier coatings and shed light on the elastic and nonelastic properties of the layers and the role of mechanical load and internal cooling variations on the response. The article discusses the experimental configuration and development of equipment to perform in situ strain measurements on multilayer thin coatings and provides an overview of the achievements thus far.
Analysis of microbial diversity in Shenqu with different fermentation times by PCR-DGGE.
Liu, Tengfei; Jia, Tianzhu; Chen, Jiangning; Liu, Xiaoyu; Zhao, Minjie; Liu, Pengpeng
Shenqu is a fermented product that is widely used in traditional Chinese medicine (TCM) to treat indigestion; however, the microbial strains in the fermentation process are still unknown. The aim of this study was to investigate microbial diversity in Shenqu using different fermentation time periods. DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) profiles indicated that a strain of Pediococcus acidilactici (band 9) is the predominant bacteria during fermentation and that the predominant fungi were uncultured Rhizopus, Aspergillus oryzae, and Rhizopus oryzae. In addition, pathogenic bacteria, such as Enterobacter cloacae, Klebsiella oxytoca, Erwinia billingiae, and Pantoea vagan were detected in Shenqu. DGGE analysis showed that bacterial and fungal diversity declined over the course of fermentation. This determination of the predominant bacterial and fungal strains responsible for fermentation may contribute to further Shenqu research, such as optimization of the fermentation process. Copyright © 2017. Published by Elsevier Editora Ltda.
Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field
Guo, Donghui; Kondo, Takahiro; Machida, Takahiro; Iwatake, Keigo; Okada, Susumu; Nakamura, Junji
2012-01-01
The charge carriers in graphene are massless Dirac fermions and exhibit a relativistic Landau-level quantization in a magnetic field. Recently, it has been reported that, without any external magnetic field, quantized energy levels have been also observed from strained graphene nanobubbles on a platinum surface, which were attributed to the Landau levels of massless Dirac fermions in graphene formed by a strain-induced pseudomagnetic field. Here we show the generation of the Landau levels of massless Dirac fermions on a partially potassium-intercalated graphite surface without applying external magnetic field. Landau levels of massless Dirac fermions indicate the graphene character in partially potassium-intercalated graphite. The generation of the Landau levels is ascribed to a vector potential induced by the perturbation of nearest-neighbour hopping, which may originate from a strain or a gradient of on-site potentials at the perimeters of potassium-free domains. PMID:22990864
Strain dynamics for vortex ring mixing process
NASA Astrophysics Data System (ADS)
Bouremel, Yann; Yianneskis, Michael; Ducci, Andrea
2009-11-01
Simultaneous PIV-PLIF measurements were carried out to investigate the mixing occurring in a laminar vortex ring flow during the formation stage (Re=357-1072). In the first part of the work a control volume analysis was used to determine the variation in time of the scalar concentration mean, variance, and probability density function. In the second part the advection-diffusion differential equations of the scalar, ξ, and of its energy, 0.5 2̂, were studied in depth to gain insight into the effect of the strain rate tensor, S, on the local scalar concentration for increasing Re. The measurements were obtained with a high spatial resolution (12 μm for the PLIF) in order to resolve the scalar dissipative scales. Reliable estimates of the scalar dissipation rate (∇ξ.∇ξ), and of the symmetric contraction term (∇ξ.S .∇ξ), shown in equation 1, were obtained. ∇ξ.S .∇ξ accounts for the reduction of scalar dissipation due to the straining component directed as the local scalar gradient (see Southerland et al.footnotetextSoutherland K B., Porter III J. R., Dahm, W. J. A., Buch K. A., An experimental study of the molecular mixing process in an axisymmetric laminar vortex ring, Phys. Fluids A 3 (5), May 1991) Equation 1: ( t+u.∇+1ReSc∇^2 )12( ∇ξ.∇ξ )=-( ∇ξ.S.∇ξ )-1ReSc∇(∇ξ):∇(∇ξ)
Schreiter, Susanne; Babin, Doreen; Smalla, Kornelia; Grosch, Rita
2018-01-01
Biocontrol inoculants often show inconsistency in their efficacy at field scale and the reason for this remains often unclear. A high rhizosphere competence of inoculant strains is assumed to be a key factor for successful biocontrol effects as the biocontrol strain has to compete with the indigenous microbial community in the rhizosphere. It is known that many factors, among them plant species and soil type shape the rhizosphere microbial community composition. However, microbial community composition in the rhizosphere can also be influenced by the presence of a pathogen. We hypothesized that plant species, soil type, and a pathogen affect the rhizosphere competence of a biocontrol strain and its biocontrol effect against a soil-borne pathogen. To test the hypothesis, we used an experimental plot system with three soil types (diluvial sand, alluvial loam, loess loam) kept under similar agricultural management at the same field site for 12 years. We investigate the rhizosphere competence of Pseudomonas sp. RU47 in two plant species (potato and lettuce) and its biocontrol effect against Rhizoctonia diseases. The colonization density of a rifampicin resistant mutant of RU47 in the rhizosphere of both crops was evaluated by plate counts. Bacterial community compositions were analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from total community DNA. The inoculant RU47 was able to colonize the rhizosphere of both model crops in a sufficient density and to reduce disease severity of black scurf on potato and bottom rot on lettuce in all three soils. DGGE indicated that RU47 affected the bacterial community composition stronger in the rhizosphere of lettuce than in the potato rhizosphere. In contrast, the effect of the pathogen Rhizoctonia solani on the bacterial community was much stronger in the rhizosphere of potato than in the lettuce rhizosphere. A significant effect of RU47 on the Pseudomonas -specific gacA fingerprints of the rhizosphere was only observed in lettuce in alluvial soil. The soil type and plant species independent biocontrol effects of RU47 and its minor influence on the indigenous bacterial community composition might be important criteria for the registration and use of RU47 as biocontrol strain.
Schreiter, Susanne; Babin, Doreen; Smalla, Kornelia; Grosch, Rita
2018-01-01
Biocontrol inoculants often show inconsistency in their efficacy at field scale and the reason for this remains often unclear. A high rhizosphere competence of inoculant strains is assumed to be a key factor for successful biocontrol effects as the biocontrol strain has to compete with the indigenous microbial community in the rhizosphere. It is known that many factors, among them plant species and soil type shape the rhizosphere microbial community composition. However, microbial community composition in the rhizosphere can also be influenced by the presence of a pathogen. We hypothesized that plant species, soil type, and a pathogen affect the rhizosphere competence of a biocontrol strain and its biocontrol effect against a soil-borne pathogen. To test the hypothesis, we used an experimental plot system with three soil types (diluvial sand, alluvial loam, loess loam) kept under similar agricultural management at the same field site for 12 years. We investigate the rhizosphere competence of Pseudomonas sp. RU47 in two plant species (potato and lettuce) and its biocontrol effect against Rhizoctonia diseases. The colonization density of a rifampicin resistant mutant of RU47 in the rhizosphere of both crops was evaluated by plate counts. Bacterial community compositions were analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from total community DNA. The inoculant RU47 was able to colonize the rhizosphere of both model crops in a sufficient density and to reduce disease severity of black scurf on potato and bottom rot on lettuce in all three soils. DGGE indicated that RU47 affected the bacterial community composition stronger in the rhizosphere of lettuce than in the potato rhizosphere. In contrast, the effect of the pathogen Rhizoctonia solani on the bacterial community was much stronger in the rhizosphere of potato than in the lettuce rhizosphere. A significant effect of RU47 on the Pseudomonas-specific gacA fingerprints of the rhizosphere was only observed in lettuce in alluvial soil. The soil type and plant species independent biocontrol effects of RU47 and its minor influence on the indigenous bacterial community composition might be important criteria for the registration and use of RU47 as biocontrol strain. PMID:29449832
2012-01-01
Background Plasmid DNA (pDNA) is a promising molecule for therapeutic applications. pDNA is produced by Escherichia coli in high cell-density cultivations (HCDC) using fed-batch mode. The typical limitations of such cultivations, including metabolic deviations like aerobic acetate production due to the existence of substrate gradients in large-scale bioreactors, remain as serious challenges for fast and effective pDNA production. We have previously demonstrated that the substitution of the phosphotransferase system by the over-expressed galactose permease for glucose uptake in E. coli (strain VH33) allows efficient growth, while strongly decreases acetate production. In the present work, additional genetic modifications were made to VH33 to further improve pDNA production. Several genes were deleted from strain VH33: the recA, deoR, nupG and endA genes were inactivated independently and in combination. The performance of the mutant strains was evaluated in shake flasks for the production of a 6.1 kb plasmid bearing an antigen gene against mumps. The best producer strain was cultivated in lab-scale bioreactors using 100 g/L of glucose to achieve HCDC in batch mode. For comparison, the widely used commercial strain DH5α, carrying the same plasmid, was also cultivated under the same conditions. Results The various mutations tested had different effects on the specific growth rate, glucose uptake rate, and pDNA yields (YP/X). The triple mutant VH33 Δ (recA deoR nupG) accumulated low amounts of acetate and resulted in the best YP/X (4.22 mg/g), whereas YP/X of strain VH33 only reached 1.16 mg/g. When cultivated at high glucose concentrations, the triple mutant strain produced 186 mg/L of pDNA, 40 g/L of biomass and only 2.2 g/L of acetate. In contrast, DH5α produced only 70 mg/L of pDNA and accumulated 9.5 g/L of acetate. Furthermore, the supercoiled fraction of the pDNA produced by the triple mutant was nearly constant throughout the cultivation. Conclusion The pDNA concentration obtained with the engineered strain VH33 Δ (recA deoR nupG) is, to the best of our knowledge, the highest reported for a batch cultivation, and its supercoiled fraction remained close to 80%. Strain VH33 Δ (recA deoR nupG) and its cultivation using elevated glucose concentrations represent an attractive technology for fast and efficient pDNA production and a valuable alternative to fed-batch cultivations of commercial strains. PMID:22992433
Time-dependent brittle deformation (creep) at Mt. Etna volcano
NASA Astrophysics Data System (ADS)
Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Bell, A. F.; Main, I. G.
2009-04-01
Mt. Etna is the largest and most active volcano in Europe. Time-dependent weakening mechanisms, leading to slow fracturing, have been shown to act during pre-eruptive patterns of flank eruptions at Mt. Etna volcano. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts one of the biggest hydrogeologic reservoirs of Sicily (Ogniben, 1966). The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as ‘brittle creep'. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short-term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data not only demonstrates that basalt creeps in the brittle regime but also that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Furthermore, stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time-to-failure properties of the basaltic volcanic pile.
Time-dependent Brittle Deformation in Etna Basalt
NASA Astrophysics Data System (ADS)
Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Bell, A. F.; Main, I. G.
2008-12-01
Mt Etna is the largest and most active volcano in Europe. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts one of the biggest hydrogeologic reservoirs of Sicily (Ogniben, 1966). Pre-eruptive patterns of flank eruptions, closely monitored by means of ground deformation and seismicity, revealed the slow development of fracture systems at different altitudes, marked by repeated bursts of seismicity and accelerating/decelerating deformation patterns acting over the scale of months to days. The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as 'brittle creep'. Stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short- term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data demonstrate that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time- to-failure properties of the basaltic volcanic pile.
Time-dependent brittle deformation at Mt. Etna volcano
NASA Astrophysics Data System (ADS)
Baud, Patrick; Heap, Michael; Meredith, Philip; Vinciguerra, Sergio; Bell, Andrew; Main, Ian
2010-05-01
Time-dependent weakening mechanisms, leading to slow fracturing, are likely to act during the build up to flank eruptions at Mt. Etna volcano and are potentially a primary control on pre-eruptive patterns of seismicity and deformation. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts a large water reservoir (Ogniben, 1966). The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as ‘brittle creep'. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short-term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data not only demonstrates that basalt creeps in the brittle regime but also that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Furthermore, stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations and inverse seismicity plots using our experimental AE data. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time-to-failure properties of the basaltic volcanic pile.
Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres.
Zhang, Yin; Chen, Chen; Liang, C Y; Liu, Z W; Li, Y S; Che, Renchao
2015-11-07
Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed.
NASA Astrophysics Data System (ADS)
Casini, Leonardo; Funedda, Antonio
2014-09-01
The mylonites of the Baccu Locci Shear Zone (BLSZ), Sardinia (Italy), were deformed during thrusting along a bottom-to-top strain gradient in lower greenschist facies. The microstructure of metavolcanic protoliths shows evidence for composite deformation accommodated by dislocation creep within strong quartz porphyroclasts, and pressure solution in the finer grained matrix. The evolution of mylonite is simulated in two sets of numerical experiments, assuming either a constant width of the deforming zone (model 1) or a narrowing shear zone (model 2). A 2-5 mm y-1 constant-external-velocity boundary condition is applied on the basis of geologic constraints. Inputs to the models are provided by inverting paleostress values obtained from quartz recrystallized grain-size paleopiezometry. Both models predict a significant stress drop across the shear zone. However, model 1 involves a dramatic decrease in strain rate towards the zone of apparent strain localization. In contrast, model 2 predicts an increase in strain rate with time (from 10-14 to 10-12 s-1), which is consistent with stabilization of the shear zone profile and localization of deformation near the hanging wall. Extrapolating these results to the general context of crust strength suggests that pressure-solution creep may be a critical process for strain softening and for the stabilization of deformation within shear zones.
Wang, Congli; Lower, Steven; Thomas, Varghese P.; Williamson, Valerie M.
2010-01-01
Root-knot nematodes are obligate parasites of a wide range of plant species and can feed only on the cytoplasm of living plant cells. In the absence of a suitable plant host, infective juveniles of strain VW9 of the Northern root-knot nematode, Meloidogyne hapla, when dispersed in Pluronic F-127 gel, aggregate into tight, spherical clumps containing thousands of worms. Aggregation or clumping behavior has been observed in diverse genera in the phylum Nematoda spanning free-living species such as Caenorhabditis elegans as well as both plant and animal parasites. Clumping behavior differs between strains of M. hapla and occurs with other species within this genus where strain-specific differences in clumping ability are also apparent. Exposure of M. hapla juveniles to a gradient formed using low levels of cyanide promotes formation of clumps at a preferred cyanide level. Analysis of F2 lines from a cross of M. hapla strains that differ in clump-forming behavior reveals that the behavior segregates as a single, major locus that can be positioned on the genetic map of this nematode. Clumping behavior may be a survival strategy whose importance and function depend on the niche of the nematode strain or species. PMID:21151553
Franks, A.; Egan, S.; Holmström, C.; James, S.; Lappin-Scott, H.; Kjelleberg, S.
2006-01-01
The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% ± 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment. PMID:16957232
Deoxyribonucleic acid base compositions of dermatophytes.
Davison, F D; Mackenzie, D W; Owen, R J
1980-06-01
DNA was extracted and purified from 55 dermatophyte isolates representing 34 species of Trichophyton, Microsporum and Epidermophyton. The base compositions of the chromosomal DNA were determined by CsCl density gradient centrifugation and were found to be in the narrow range of 48.7 to 50.3 mol % G + C. A satellite DNA component assumed to be of mitochondrial origin was present in most strains, with a G + C content ranging from 14.7 to 30.8 mol % G + C. Heterogeneity in microscopic and colonial characteristics was not reflected in differences in the mean G + C content of the chromosomal DNAs. Strains varied in the G + C contents of satelite DNA, but these did not correlate with traditional species concepts.