Tang, Yuanyue; Nielsen, Lene N; Hvitved, Annemette; Haaber, Jakob K; Wirtz, Christiane; Andersen, Paal S; Larsen, Jesper; Wolz, Christiane; Ingmer, Hanne
2017-01-01
Human strains of Staphylococcus aureus commonly carry the bacteriophage ΦSa3 that encodes immune evasion factors. Recently, this prophage has been found in livestock-associated, methicillin resistant S. aureus (MRSA) CC398 strains where it may promote human colonization. Here, we have addressed if exposure to biocidal products induces phage transfer, and find that during co-culture, Φ13 from strain 8325, belonging to ΦSa3 group, is induced and transferred from a human strain to LA-MRSA CC398 when exposed to sub-lethal concentrations of commercial biocides containing hydrogen peroxide. Integration of ΦSa3 in LA-MRSA CC398 occurs at multiple positions and the integration site influences the stability of the prophage. We did not observe integration in hlb encoding β-hemolysin that contains the preferred ΦSa3 attachment site in human strains, and we demonstrate that this is due to allelic variation in CC398 strains that disrupts the phage attachment site, but not the expression of β-hemolysin. Our results show that hydrogen peroxide present in biocidal products stimulate transfer of ΦSa3 from human to LA-MRSA CC398 strains and that in these strains prophage stability depends on the integration site. Knowledge of ΦSa3 transfer and stability between human and livestock strains may lead to new intervention measures directed at reducing human infection by LA-MRSA strains.
Tang, Yuanyue; Nielsen, Lene N.; Hvitved, Annemette; Haaber, Jakob K.; Wirtz, Christiane; Andersen, Paal S.; Larsen, Jesper; Wolz, Christiane; Ingmer, Hanne
2017-01-01
Human strains of Staphylococcus aureus commonly carry the bacteriophage ΦSa3 that encodes immune evasion factors. Recently, this prophage has been found in livestock-associated, methicillin resistant S. aureus (MRSA) CC398 strains where it may promote human colonization. Here, we have addressed if exposure to biocidal products induces phage transfer, and find that during co-culture, Φ13 from strain 8325, belonging to ΦSa3 group, is induced and transferred from a human strain to LA-MRSA CC398 when exposed to sub-lethal concentrations of commercial biocides containing hydrogen peroxide. Integration of ΦSa3 in LA-MRSA CC398 occurs at multiple positions and the integration site influences the stability of the prophage. We did not observe integration in hlb encoding β-hemolysin that contains the preferred ΦSa3 attachment site in human strains, and we demonstrate that this is due to allelic variation in CC398 strains that disrupts the phage attachment site, but not the expression of β-hemolysin. Our results show that hydrogen peroxide present in biocidal products stimulate transfer of ΦSa3 from human to LA-MRSA CC398 strains and that in these strains prophage stability depends on the integration site. Knowledge of ΦSa3 transfer and stability between human and livestock strains may lead to new intervention measures directed at reducing human infection by LA-MRSA strains. PMID:29270158
Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15.
Gov, Lanny; Karimzadeh, Alborz; Ueno, Norikiyo; Lodoen, Melissa B
2013-07-09
Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a "master regulator" of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body.
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-08
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
Sousa, Patrícia S.; Silva, Inês N.; Moreira, Leonilde M.; Veríssimo, António; Costa, Joana
2018-01-01
Legionella pneumophila is a ubiquitous bacterium in freshwater environments and in many man-made water systems capable of inducing pneumonia in humans. Despite its ubiquitous character most studies on L. pneumophila virulence focused on clinical strains and isolates from man-made environments, so little is known about the nature and extent of virulence variation in strains isolated from natural environments. It has been established that clinical isolates are less diverse than man-made and natural environmental strains, suggesting that only a subset of environmental isolates is specially adapted to infect humans. In this work we intended to determine if unrelated L. pneumophila strains, isolated from different environments and with distinct virulence-related genetic backgrounds, displayed differences in virulence, using the Wax Moth Galleria mellonella infection model. We found that all tested strains were pathogenic in G. mellonella, regardless of their origin. Indeed, a panoply of virulence-related phenotypes was observed sustaining the existence of significant differences on the ability of L. pneumophila strains to induce disease. Taken together our results suggest that the occurrence of human infection is not related with the increased capability of some strains to induce disease since we also found a concentration threshold above which L. pneumophila strains are equally able to cause disease. In addition, no link could be established between the sequence-type (ST) and L. pneumophila pathogenicity. We envision that in man-made water distribution systems environmental filtering selection and biotic competition acts structuring L. pneumophila populations by selecting more resilient and adapted strains that can rise to high concentration if no control measures are implemented. Therefore, public health strategies based on the sequence based typing (STB) scheme analysis should take into account that the major disease-associated clones of L. pneumophila were not related with higher virulence in G. mellonella infection model, and that potential variability of virulence-related phenotypes was found within the same ST. PMID:29670859
Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study
Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene
2014-01-01
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current definition of a probiotic. PMID:24816850
Aeromonas Caviae Strain Induces Th1 Cytokine Response in Mouse Intestinal Tract
Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small i...
Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract
Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus,. Microarray profiling of...
Does a monovalent inactivated human rotavirus vaccine induce heterotypic immunity?
Jiang, Baoming; Wang, Yuhuan; Glass, Roger I.
2013-01-01
There is substantial evidence for broad cross-reactive immunity and heterotypic protection among human rotavirus strains in children with natural infection or with monovalent Rotarix vaccination. In this commentary, we addressed this same topic by testing sera of guinea pigs and gnotobiotic piglets that were intramuscularly immunized with an inactivated human rotavirus vaccine and also demonstrated a broad cross-protective immunity among human rotavirus strains. Our findings from a single human strain in animal studies bode well for a low cost and efficacious inactivated vaccine to protect children against rotavirus disease throughout the world. PMID:23744507
NASA Astrophysics Data System (ADS)
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-01
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
Wright, M O; Nishida, K; Bavington, C; Godolphin, J L; Dunne, E; Walmsley, S; Jobanputra, P; Nuki, G; Salter, D M
1997-09-01
Mechanical stimuli influence chondrocyte metabolism, inducing changes in intracellular cyclic adenosine monophosphate and proteoglycan production. We have previously demonstrated that primary monolayer cultures of human chondrocytes have an electrophysiological response after intermittent pressure-induced strain characterised by a membrane hyperpolarisation of approximately 40%. The mechanisms responsible for these changes are not fully understood but potentially involve signalling molecules such as integrins that link extracellular matrix with cytoplasmic components. The results reported in this paper demonstrate that the transduction pathways involved in the hyperpolarisation response of human articular chondrocytes in vitro after cyclical pressure-induced strain involve alpha 5 beta 1 integrin. We have demonstrated, using pharmacological inhibitors of a variety of intracellular signalling pathways, that the actin cytoskeleton, the phospholipase C calmodulin pathway, and both tyrosine protein kinase and protein kinase C activities are important in the transduction of the electrophysiological response. These results suggest that alpha 5 beta 1 is an important chondrocyte mechanoreceptor and a potential regulator of chondrocyte function.
Toll-like receptor 9 mediates oral bacteria-induced IL-8 expression in gingival epithelial cells.
Kim, Youngsook; Jo, Ah-ram; Jang, Da Hyun; Cho, Yong-Joon; Chun, Jongsik; Min, Byung-Moo; Choi, Youngnim
2012-07-01
Previously, we reported that various oral bacteria regulate interleukin (IL)-8 production differently in gingival epithelial cells. The aim of this study was to characterize the pattern recognition receptor(s) that mediate bacteria-induced IL-8 expression. Among ligands that mimic bacterial components, only a Toll-like receptor (TLR) 9 ligand enhanced IL-8 expression as determined by ELISA. Both normal and immortalized human gingival epithelial (HOK-16B) cells expressed TLR9 intracellularly and showed enhanced IL-8 expression in response to CpG-oligonucleotide. The ability of eight strains of four oral bacterial species to induce IL-8 expression in HOK-16B cells, and their invasion capacity were examined in the absence or presence of 2% human serum. The ability of purified bacterial DNA (bDNA) to induce IL-8 was also examined. Six out of eight strains increased IL-8 production in the absence of serum. Usage of an endosomal acidification blocker or a TLR9 antagonist inhibited the IL-8 induction by two potent strains. In the presence of serum, many strains lost the ability to induce IL-8 and presented substantially reduced invasion capacity. The IL-8-inducing ability of bacteria in the absence or presence of serum showed a strong positive correlation with their invasion index. The IL-8-inducing ability of bacteria in the absence of human serum was also correlated with the immunostimulatory activity of its bDNA. The observed immunostimulatory activity of the bDNA could not be linked to its CpG motif content. In conclusion, oral bacteria induce IL-8 in gingival epithelial cells through TLR9 and the IL-8-inducing ability depends on the invasive capacity and immunostimulating DNA.
Hussein, Nawfal R; Argent, Richard H; Marx, Christian K; Patel, Sapna R; Robinson, Karen; Atherton, John C
2010-07-15
Infection with Helicobacter pylori possessing a newly described virulence factor--duodenal ulcer-promoting gene A (dupA)--has been associated with duodenal ulceration and increased gastric inflammation. The dupA locus of 34 strains was sequenced. A panel of dupA mutants was generated and cocultured with human gastric epithelial cells and peripheral blood mononuclear cells; proinflammatory cytokine release was measured. IL8 expression was measured in human gastric biopsy specimens and related to the dupA and cagA status of infecting strains. Most H. pylori strains had a dupA allele that was longer (1884 bp; dupA1) than previously described dupA alleles, although some had truncated versions (dupA2). Unlike the best-characterized H. pylori virulence determinant, the cag pathogenicity island (cag PaI), neither dupA type induced release of interleukin (IL)-8 from gastric epithelial cells. However, infections due to dupA-positive strains were associated with higher-level mucosal IL-8 messenger RNA expression in the human stomach than were infections due to dupA-negative strains. To explain this paradox, we found that dupA1 (but not dupA2 or the cag PaI) substantially increased H. pylori-induced IL-12p40 and IL-12p70 production from CD14(+) mononuclear cells. Other T helper 1-associated cytokines were also modestly induced. We suggest that virulent H. pylori strains cause inflammation by stimulating epithelial cells through cag-encoded proteins and mononuclear inflammatory cells through dupA1 products.
Wild type measles virus attenuation independent of type I IFN.
Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T
2008-02-03
Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the alpha/beta IFN system.
Wild type measles virus attenuation independent of type I IFN
Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T
2008-01-01
Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system. PMID:18241351
Hovingh, Elise S.; van Gent, Marjolein; Hamstra, Hendrik-Jan; Demkes, Marc; Mooi, Frits R.; Pinelli, Elena
2017-01-01
Vaccines against pertussis have been available for more than 60 years. Nonetheless, this highly contagious disease is reemerging even in countries with high vaccination coverage. Genetic changes of Bordetella pertussis over time have been suggested to contribute to the resurgence of pertussis, as these changes may favor escape from vaccine-induced immunity. Nonetheless, studies on the effects of these bacterial changes on the immune response are limited. Here, we characterize innate immune recognition and activation by a collection of genetically diverse B. pertussis strains isolated from Dutch pertussis patients before and after the introduction of the pertussis vaccines. For this purpose, we used HEK-Blue cells transfected with human pattern recognition receptors TLR2, TLR4, NOD2 and NOD1 as a high throughput system for screening innate immune recognition of more than 90 bacterial strains. Physiologically relevant human monocyte derived dendritic cells (moDC), purified from peripheral blood of healthy donors were also used. Findings indicate that, in addition to inducing TLR2 and TLR4 signaling, all B. pertussis strains activate the NOD-like receptor NOD2 but not NOD1. Furthermore, we observed a significant increase in TLR2 and NOD2, but not TLR4, activation by strains circulating after the introduction of pertussis vaccines. When using moDC, we observed that the recently circulating strains induced increased activation of these cells with a dominant IL-10 production. In addition, we observed an increased expression of surface markers including the regulatory molecule PD-L1. Expression of PD-L1 was decreased upon blocking TLR2. These in vitro findings suggest that emerging B. pertussis strains have evolved to dampen the vaccine-induced inflammatory response, which would benefit survival and transmission of this pathogen. Understanding how this disease has resurged in a highly vaccinated population is crucial for the design of improved vaccines against pertussis. PMID:28076445
Neutrophil-derived resistin release induced by Aggregatibacter actinomycetemcomitans.
Furugen, Reiko; Hayashida, Hideaki; Yoshii, Yumiko; Saito, Toshiyuki
2011-08-01
Resistin is an adipokine that induces insulin resistance in mice. In humans, resistin is not produced in adipocytes, but in various leukocytes instead, and it acts as a proinflammatory molecule. The present investigation demonstrated high levels of resistin in culture supernatants of neutrophils that are stimulated by a highly leukotoxic strain of Aggregatibacter actinomycetemcomitans. In contrast, the level of resistin was remarkably low when neutrophils were exposed to two other strains that produce minimal levels of leukotoxin and a further isogenic mutant strain incapable of producing leukotoxin. Pretreatment of neutrophils with a monoclonal antibody to CD18, β chain of lymphocyte function-associated molecule 1 (LFA-1), or an Src family tyrosine kinase inhibitor before incubation with the highly leukotoxic strain inhibited the release of resistin. These results show that A. actinomycetemcomitans-expressed leukotoxin induces extracellular release of human neutrophil-derived resistin by interacting with LFA-1 on the surface of neutrophils and, consequently, activating Src family tyrosine kinases. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
The zoonotic potential of avian influenza viruses isolated from wild waterfowl in Zambia.
Simulundu, Edgar; Nao, Naganori; Yabe, John; Muto, Nilton A; Sithebe, Thami; Sawa, Hirofumi; Manzoor, Rashid; Kajihara, Masahiro; Muramatsu, Mieko; Ishii, Akihiro; Ogawa, Hirohito; Mweene, Aaron S; Takada, Ayato
2014-10-01
Whilst remarkable progress in elucidating the mechanisms governing interspecies transmission and pathogenicity of highly pathogenic avian influenza viruses (AIVs) has been made, similar studies focusing on low-pathogenic AIVs isolated from the wild waterfowl reservoir are limited. We previously reported that two AIV strains (subtypes H6N2 and H3N8) isolated from wild waterfowl in Zambia harbored some amino acid residues preferentially associated with human influenza virus proteins (so-called human signatures) and replicated better in the lungs of infected mice and caused more morbidity than a strain lacking such residues. To further substantiate these observations, we infected chickens and mice intranasally with AIV strains of various subtypes (H3N6, H3N8, H4N6, H6N2, H9N1 and H11N9) isolated from wild waterfowl in Zambia. Although some strains induced seroconversion, all of the tested strains replicated poorly and were nonpathogenic for chickens. In contrast, most of the strains having human signatures replicated well in the lungs of mice, and one of these strains caused severe illness in mice and induced lung injury that was characterized by a severe accumulation of polymorphonuclear leukocytes. These results suggest that some strains tested in this study may have the potential to infect mammalian hosts directly without adaptation, which might possibly be associated with the possession of human signature residues. Close monitoring and evaluation of host-associated signatures may help to elucidate the prevalence and emergence of AIVs with potential for causing zoonotic infections.
Matson, Liana M; McCarren, Hilary S; Cadieux, C Linn; Cerasoli, Douglas M; McDonough, John H
2018-01-15
Genetics likely play a role in various responses to nerve agent exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses to environmental stimuli. Mouse strains or selected lines can be used to identify susceptibility based on background genetic features to nerve agent exposure. Additional genetic techniques can then be used to identify mechanisms underlying resistance and sensitivity, with the ultimate goal of developing more effective and targeted therapies. Here, we discuss the available literature on strain and selected line differences in cholinesterase activity levels and response to nerve agent-induced toxicity and seizures. We also discuss the available cholinesterase and toxicity literature across different non-human primate species. The available data suggest that robust genetic differences exist in cholinesterase activity, nerve agent-induced toxicity, and chemical-induced seizures. Available cholinesterase data suggest that acetylcholinesterase activity differs across strains, but are limited by the paucity of carboxylesterase data in strains and selected lines. Toxicity and seizures, two outcomes of nerve agent exposure, have not been fully evaluated for genetic differences, and thus further studies are required to understand baseline strain and selected line differences. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...
Miyauchi, Eiji; O'Callaghan, John; Buttó, Ludovica F; Hurley, Gráinne; Melgar, Silvia; Tanabe, Soichi; Shanahan, Fergus; Nally, Kenneth; O'Toole, Paul W
2012-11-01
Enhanced barrier function is one mechanism whereby commensals and probiotic bacteria limit translocation of foreign antigens or pathogens in the gut. However, barrier protection is not exhibited by all probiotic or commensals and the strain-specific molecules involved remain to be clarified. We evaluated the effects of 33 individual Lactobacillus salivarius strains on the hydrogen peroxide (H(2)O(2))-induced barrier impairment in human epithelial Caco-2 cells. These strains showed markedly different effects on H(2)O(2)-induced reduction in transepithelial resistance (TER). The effective strains such as UCC118 and CCUG38008 attenuated H(2)O(2)-induced disassembly and relocalization of tight junction proteins, but the ineffective strain AH43324 did not. Strains UCC118 and CCUG38008 induced phosphorylation of extracellular signal-regulated kinase (ERK) in Caco-2 cells, and the ERK inhibitor U0126 attenuated the barrier-protecting effect of these strains. In contrast, the AH43324 strain induced phosphorylation of Akt and p38, which was associated with an absence of a protective effect. Global transcriptome analysis of UCC118 and AH43324 revealed that some genes in a bacteriocin gene cluster were upregulated in AH43324 under TER assay conditions. A bacteriocin-negative UCC118 mutant displayed significantly greater suppressive effect on H(2)O(2)-induced reduction in TER compared with wild-type UCC118. The wild-type strain augmented H(2)O(2)-induced phosphorylation of Akt and p38, whereas a bacteriocin-negative UCC118 mutant did not. These observations indicate that L. salivarius strains are widely divergent in their capacity for barrier protection, and this is underpinned by differences in the activation of intracellular signaling pathways. Furthermore, bacteriocin production appears to have an attenuating influence on lactobacillus-mediated barrier protection.
Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney
2016-12-01
Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matthaei, Markus; Budt, Matthias; Wolff, Thorsten
2013-01-01
The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN-α/β barrier involve mutations in multiple H5N1 genes. PMID:23451066
Snijders, Antoine M; Marchetti, Francesco; Bhatnagar, Sandhya; Duru, Nadire; Han, Ju; Hu, Zhi; Mao, Jian-Hua; Gray, Joe W; Wyrobek, Andrew J
2012-01-01
High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, <10 cGy) exposures remain highly uncertain. We explored a systems approach that compared LD-induced chromosome damage and transcriptional responses in strains of mice with genetic differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (p<0.0001). There is concordant direction of expression in the LD-exposed sensitive mouse strain, in biomarkers of human DCIS and in biomarkers of human breast tumors. Our findings support the hypothesis that genetic mechanisms that determine susceptibility to LD radiation induced mammary cancer in mice are similar to the tissue mechanisms that determine poor-survival in breast cancer patients. We observed non-linearity of the LD responses providing molecular evidence against the LNT risk model and obtained new evidence that LD responses are strongly influenced by genotype. Our findings suggest that the biological assumptions concerning the mechanisms by which LD radiation is translated into breast cancer risk should be reexamined and suggest a new strategy to identify genetic features that predispose or protect individuals from LD-induced breast cancer.
Tran, Cong Tri; Garcia, Magali; Garnier, Martine; Burucoa, Christophe; Bodet, Charles
2017-02-01
Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.
Matsuzaki, C; Kamishima, K; Matsumoto, K; Koga, H; Katayama, T; Yamamoto, K; Hisa, K
2014-04-01
The present work was aimed to find novel probiotics to enhance the mucosal barrier function of humans. The effectiveness was evaluated in vitro and in vivo. Stimulation of IgA production in mucosal surfaces is one of the most beneficial traits of lactic acid bacteria (LAB) for enhancing the barrier. Therefore, 173 LAB strains were evaluated for the ability to induce IgA production using murine Peyer's patch cells. Strain NTM048 isolated from green peas showed the highest activity and was identified as Leuconostoc mesenteroides subsp. mesenteroides. This strain was found to tolerate gastrointestinal digestion and produce large amounts of exopolysaccharides, which possess IgA-inducing activity. Dietary supplementation with NTM048 induced a significant increase in the faecal IgA content and plasma IgA levels of BALB/cA mice. A gene expression analysis of Peyer's patch cells revealed that the transforming growth factor-β and activation-induced cytidine deaminase genes were upregulated by NTM048 intake. Strain NTM048 stimulates Peyer's patch cells to induce intestinal and systemic immune response, revealing the potential of NTM048 as a probiotic for enhancing the mucosal barrier function. This report demonstrates a food-applicable Leuconostoc mesenteroides strain secreting exopolysaccharide that shows high IgA-inducing ability. © 2013 The Society for Applied Microbiology.
Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor
NASA Astrophysics Data System (ADS)
Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg
2018-03-01
A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.
Comparative In Vitro and In Vivo Studies of Porcine Rotavirus G9P[13] and Human Rotavirus Wa G1P[8
Shao, Lulu; Fischer, David D.; Kandasamy, Sukumar; Rauf, Abdul; Langel, Stephanie N.; Wentworth, David E.; Stucker, Karla M.; Halpin, Rebecca A.; Lam, Ham Ching; Marthaler, Douglas
2015-01-01
ABSTRACT The changing epidemiology of group A rotavirus (RV) strains in humans and swine, including emerging G9 strains, poses new challenges to current vaccines. In this study, we comparatively assessed the pathogenesis of porcine RV (PRV) G9P[13] and evaluated the short-term cross-protection between this strain and human RV (HRV) Wa G1P[8] in gnotobiotic pigs. Complete genome sequencing demonstrated that PRV G9P[13] possessed a human-like G9 VP7 genotype but shared higher overall nucleotide identity with historic PRV strains. PRV G9P[13] induced longer rectal virus shedding and RV RNAemia in pigs than HRV Wa G1P[8] and generated complete short-term cross-protection in pigs challenged with HRV or PRV, whereas HRV Wa G1P[8] induced only partial protection against PRV challenge. Moreover, PRV G9P[13] replicated more extensively in porcine monocyte-derived dendritic cells (MoDCs) than did HRV Wa G1P[8]. Cross-protection was likely not dependent on serum virus-neutralizing (VN) antibodies, as the heterologous VN antibody titers in the sera of G9P[13]-inoculated pigs were low. Thus, our results suggest that heterologous protection by the current monovalent G1P[8] HRV vaccine against emerging G9 strains should be evaluated in clinical and experimental studies to prevent further dissemination of G9 strains. Differences in the pathogenesis of these two strains may be partially attributable to their variable abilities to replicate and persist in porcine immune cells, including dendritic cells (DCs). Additional studies are needed to evaluate the emerging G9 strains as potential vaccine candidates and to test the susceptibility of various immune cells to infection by G9 and other common HRV/PRV genotypes. IMPORTANCE The changing epidemiology of porcine and human group A rotaviruses (RVs), including emerging G9 strains, may compromise the efficacy of current vaccines. An understanding of the pathogenesis and genetic, immunological, and biological features of the new emerging RV strains will contribute to the development of new surveillance and prevention tools. Additionally, studies of cross-protection between the newly identified emerging G9 porcine RV strains and a human G1 RV vaccine strain in a susceptible host (swine) will allow evaluation of G9 strains as potential novel vaccine candidates to be included in porcine or human vaccines. PMID:26468523
Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.
McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping
2017-03-14
Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Glasset, Benjamin; Herbin, Sabine; Guillier, Laurent; Cadel-Six, Sabrina; Vignaud, Marie-Léone; Grout, Joel; Pairaud, Sylvie; Michel, Valérie; Hennekinne, Jacques-Antoine; Ramarao, Nalini; Brisabois, Anne
2016-01-01
The aim of this study was to identify and characterise Bacillus cereus from a unique national collection of 564 strains associated with 140 strong-evidence food-borne outbreaks (FBOs) occurring in France during 2007 to 2014. Starchy food and vegetables were the most frequent food vehicles identified; 747 of 911 human cases occurred in institutional catering contexts. Incubation period was significantly shorter for emetic strains compared with diarrhoeal strains A sub-panel of 149 strains strictly associated to 74 FBOs and selected on Coliphage M13-PCR pattern, was studied for detection of the genes encoding cereulide, diarrhoeic toxins (Nhe, Hbl, CytK1 and CytK2) and haemolysin (HlyII), as well as panC phylogenetic classification. This clustered the strains into 12 genetic signatures (GSs) highlighting the virulence potential of each strain. GS1 (nhe genes only) and GS2 (nhe, hbl and cytK2), were the most prevalent GS and may have a large impact on human health as they were present in 28% and 31% of FBOs, respectively. Our study provides a convenient molecular scheme for characterisation of B. cereus strains responsible for FBOs in order to improve the monitoring and investigation of B. cereus-induced FBOs, assess emerging clusters and diversity of strains. PMID:27934583
Llopis, Silvia; Querol, Amparo; Heyken, Antje; Hube, Bernhard; Jespersen, Lene; Fernández-Espinar, M Teresa; Pérez-Torrado, Roberto
2012-08-23
In recent years an increasing number of yeast infections in humans have been related to certain clinical isolates of Saccharomyces cerevisiae. Some clinical strains showed in vivo and in vitro virulence traits and were able to cause death in mice whereas other clinical strains were avirulent. In this work, we studied the transcriptional profiles of two S. cerevisiae clinical strains showing virulent traits and two control non-virulent strains during a blood incubation model and detected a specific transcriptional response of clinical strains. This response involves an mRNA levels increase of amino acid biosynthesis genes and especially oxidative stress related genes. We observed that the clinical strains were more resistant to reactive oxygen species in vitro. In addition, blood survival of clinical isolates was high, reaching similar levels to pathogenic Candida albicans strain. Furthermore, a virulent strain mutant in the transcription factor Yap1p, unable to grow in oxidative stress conditions, presented decreased survival levels in human blood compared with the wild type or YAP1 reconstituted strain. Our data suggest that this enhanced oxidative stress response in virulent clinical isolates, presumably induced in response to oxidative burst from host defense cells, is important to increase survival in human blood and can help to infect and even produce death in mice models.
Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages.
Rocha-Ramírez, L M; Pérez-Solano, R A; Castañón-Alonso, S L; Moreno Guerrero, S S; Ramírez Pacheco, A; García Garibay, M; Eslava, C
2017-01-01
Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF- κ B pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus . The results obtained from the tested strains ( Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF- α , IL-12p70, and IL-6. However, IL-1 β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus , S. typhimurium , and E. coli , were increased by pretreatment with Lactobacillus . The nuclear translocation NF- κ B pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages.
Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages
Moreno Guerrero, S. S.; Ramírez Pacheco, A.; García Garibay, M.; Eslava, C.
2017-01-01
Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages. PMID:28758133
Bom, Reinier J M; Matser, Amy; Bruisten, Sylvia M; van Rooijen, Martijn S; Heijman, Titia; Morré, Servaas A; de Vries, Henry J C; Schim van der Loeff, Maarten F
2013-09-01
Previous studies identified specific Chlamydia trachomatis strains circulating among men who have sex with men (MSM). This study investigates whether distinct C. trachomatis strains circulate among subpopulations within the MSM community. Participants were recruited at the sexually transmitted infection clinic of the Public Health Service of Amsterdam from 2008 to 2009. C. trachomatis samples were typed using multilocus sequence typing. Epidemiological and clinical data were derived from questionnaires and patient records. Typing of 277 samples from 260 MSM identified distinct C. trachomatis strains circulating concurrently over time. Men with lymphogranuloma venereum (LGV)-inducing strains were more likely to be infected with human immunodeficiency virus, more often had a history of STI, and had a higher frequency of risky sexual behavior. No such associations were found for non-LGV-inducing strains. MSM infected with heterosexual-associated strains were often younger (P = .04) and more often reported sex with women (P = .03), compared with men infected with MSM-associated strains. With the exception of LGV-inducing strains, no evidence was found that different C. trachomatis strains circulated in distinct subpopulations of MSM. This indicates that no separate transmission networks for C. trachomatis among MSM existed. However, younger MSM and bisexuals were more often infected with heterosexual-associated C. trachomatis strains.
Lee, Ji Young; Jun, Do Youn; Park, Ju Eun; Kwon, Gi Hyun; Kim, Jong-Sik; Kim, Young Ho
2017-03-28
To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1 , the yeast ortholog, was compared with that of the wild-type (WT)- MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The moh1 Δ mutant exhibited enhanced cell viability compared with the WT- MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, 100 µ CPT, heat shock at 50°C, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT- MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the moh1 Δ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2- YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT- MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (ΔΨm) loss, and metacaspase activation, occurred to a much lesser extent in the moh1 Δ mutant compared with the WT- MOH1 strain and the mutant strain bearing pYES2- MOH1 or pYES2- YPEL5 . These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.
Wajahat, Muhammad; Lee, Sanghyeon; Kim, Jung Hyun; Chang, Won Suk; Pyo, Jaeyeon; Cho, Sung Ho; Seol, Seung Kwon
2018-06-13
Printed strain sensors have promising potential as a human-machine interface (HMI) for health-monitoring systems, human-friendly wearable interactive systems, and smart robotics. Herein, flexible strain sensors based on carbon nanotube (CNT)-polymer composites were fabricated by meniscus-guided printing using a CNT ink formulated from multiwall nanotubes (MWNTs) and polyvinylpyrrolidone (PVP); the ink was suitable for micropatterning on nonflat (or curved) substrates and even three-dimensional structures. The printed strain sensors exhibit a reproducible response to applied tensile and compressive strains, having gauge factors of 13.07 under tensile strain and 12.87 under compressive strain; they also exhibit high stability during ∼1500 bending cycles. Applied strains induce a contact rearrangement of the MWNTs and a change in the tunneling distance between them, resulting in a change in the resistance (Δ R/ R 0 ) of the sensor. Printed MWNT-PVP sensors were used in gloves for finger movement detection; these can be applied to human motion detection and remote control of robotic equipment. Our results demonstrate that meniscus-guided printing using CNT inks can produce highly flexible, sensitive, and inexpensive HMI devices.
Belibasakis, G. N.; Johansson, A.; Wang, Y.; Chen, C.; Kalfas, S.; Lerner, U. H.
2005-01-01
Actinobacillus actinomycetemcomitans is associated with localized aggressive periodontitis, a disease characterized by rapid loss of the alveolar bone surrounding the teeth. Receptor activator of NF-κB Ligand (RANKL) and osteoprotegerin (OPG) are two molecules that regulate osteoclast formation and bone resorption. RANKL induces osteoclast differentiation and activation, whereas OPG blocks this process by acting as a decoy receptor for RANKL. The purpose of this study was to investigate the effect of A. actinomycetemcomitans on the expression of RANKL and OPG in human gingival fibroblasts and periodontal ligament cells. RANKL mRNA expression was induced in both cell types challenged by A. actinomycetemcomitans extract, whereas OPG mRNA expression remained unaffected. Cell surface RANKL protein was also induced by A. actinomycetemcomitans, whereas there was no change in OPG protein secretion. A cytolethal distending toxin (Cdt) gene-knockout strain of A. actinomycetemcomitans did not induce RANKL expression, in contrast to its wild-type strain. Purified Cdt from Haemophilus ducreyi alone, or in combination with extract from the A. actinomycetemcomitans cdt mutant strain, induced RANKL expression. Pretreatment of A. actinomycetemcomitans wild-type extract with Cdt antiserum abolished RANKL expression. In conclusion, A. actinomycetemcomitans induces RANKL expression in periodontal connective tissue cells. Cdt is crucial for this induction and may therefore be involved in the pathological bone resorption during the process of localized aggressive periodontitis. PMID:15618171
Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo
2014-01-01
Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.
2012-01-01
Background In recent years an increasing number of yeast infections in humans have been related to certain clinical isolates of Saccharomyces cerevisiae. Some clinical strains showed in vivo and in vitro virulence traits and were able to cause death in mice whereas other clinical strains were avirulent. Results In this work, we studied the transcriptional profiles of two S. cerevisiae clinical strains showing virulent traits and two control non-virulent strains during a blood incubation model and detected a specific transcriptional response of clinical strains. This response involves an mRNA levels increase of amino acid biosynthesis genes and especially oxidative stress related genes. We observed that the clinical strains were more resistant to reactive oxygen species in vitro. In addition, blood survival of clinical isolates was high, reaching similar levels to pathogenic Candida albicans strain. Furthermore, a virulent strain mutant in the transcription factor Yap1p, unable to grow in oxidative stress conditions, presented decreased survival levels in human blood compared with the wild type or YAP1 reconstituted strain. Conclusions Our data suggest that this enhanced oxidative stress response in virulent clinical isolates, presumably induced in response to oxidative burst from host defense cells, is important to increase survival in human blood and can help to infect and even produce death in mice models. PMID:22916735
Serological responses in humans to the smallpox vaccine LC16m8
Johnson, Benjamin F.; Kanatani, Yasuhiro; Fujii, Tatsuya; Saito, Tomoya; Yokote, Hiroyuki
2011-01-01
In response to potential bioterrorism with smallpox, members of the Japanese Self-Defense Forces were vaccinated with vaccinia virus (VACV) strain LC16m8, an attenuated smallpox vaccine derived from VACV strain Lister. The serological response induced by LC16m8 to four virion-surface proteins and the intracellular mature virus (IMV) and extracellular enveloped virus (EEV) was investigated. LC16m8 induced antibody response against the IMV protein A27 and the EEV protein A56. LC16m8 also induced IMV-neutralizing antibodies, but unlike the VACV strain Lister, did not induce either EEV-neutralizing antibody or antibody to EEV protein B5, except after revaccination. Given that B5 is the only target for EEV-neutralizing antibody and that neutralization of both IMV and EEV give optimal protection against orthopoxvirus challenge, these data suggest that immunity induced by LC16m8 might be less potent than that deriving from strain Lister. This potential disadvantage should be balanced against the advantage of the greater safety of LC16m8. PMID:21715598
Role of Ultraviolet Radiation in Papillomavirus-Induced Disease
Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.
2016-01-01
Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228
Role of Ultraviolet Radiation in Papillomavirus-Induced Disease.
Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H; Pitot, Henry C; Lambert, Paul F
2016-05-01
Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.
Fink, Lisbeth N; Zeuthen, Louise H; Ferlazzo, Guido; Frøkiaer, Hanne
2007-12-01
The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However, in vitro assessment of the immunomodulatory effects of distinct strains may depend strongly on the cell type used as a model. To select the most appropriate model for screening of beneficial bacteria in human cells, the response to strains of intestinal bacteria of three types of antigen-presenting cells (APC) was compared; blood myeloid dendritic cells (DC), monocyte-derived DC and monocytes, and the effector response of natural killer cells and naïve T cells was characterized. Maturation induced by gut-derived bacteria differed between APC, with blood DC and monocytes responding with the production of IL-6 and tumour necrosis factor-alpha to bacteria, which elicited mainly IL-10 in monocyte-derived DC. In contrast, comparable IFN-gamma production patterns were found in both natural killer cells and T cells induced by all bacteria-matured APC. An inhibitory effect of certain strains on this IFN-gamma production was also mediated by all types of APC. The most potent responses were induced by monocyte-derived DC, which thus constitute a sensitive screening model.
Chen, Ming; Wang, Rui; Luo, Fu-Guang; Huang, Yan; Liang, Wan-Wen; Huang, Ting; Lei, Ai-Ying; Gan, Xi; Li, Li-Ping
2015-10-22
Recent studies have shown that group B streptococcus (GBS) may be infectious across hosts. The purpose of this study is to investigate the pathogenicity of clinical GBS isolates with serotypes Ia, III and V from human and cow to tilapia and the evolutionary relationship among these GBS strains of different sources. A total of 27 clinical GBS isolates from human (n=10), cow (n=2) and tilapia (n=15) were analyzed using serotyping, multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Among them, 15 isolates were tested for their pathogenicity to tilapia. The results showed that five human GBS strains (2 serotype III, 2 serotype Ia and 1 serotype V) infected tilapia with mortality rate ranging from 56.67% to 100%, while the other five human GBS strains tested were unable to infect tilapia. In addition, two cow GBS strains C001 and C003 of serotype III infected tilapia. However, they had significantly lower pathogenicity than the five human strains. Furthermore, human GBS strains H005 and H008, which had very strong ability to infect tilapia, had the same PFGE pattern. MLST analysis showed that the five human and the two cow GBS strains that were able to infect tilapia belonged to clonal complexes CC19, CC23 and CC103. The study for the first time confirmed that human or cow GBS clonal complexes CC19, CC23 and CC103 containing strains with serotypes Ia, III and V could infect tilapia and induce clinical signs under experimental conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Arginine-dependent acid-resistance pathway in Shigella boydii
USDA-ARS?s Scientific Manuscript database
Ability to survive the low pH of the human stomach is considered be an important virulent determinant. Acid tolerance of Shigella boydii 18 CDPH, the strain implicated in an outbreak may have played an important role in surviving the acidic food (bean salad). The strain was capable of inducing arg...
Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A
2006-06-15
Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.
Escherichia coli K1 induces IL-8 expression in human brain microvascular endothelial cells.
Galanakis, Emmanouil; Di Cello, Francescopaolo; Paul-Satyaseela, Maneesh; Kim, Kwang Sik
2006-12-01
Microbial penetration of the blood-brain barrier (BBB) into the central nervous system is essential for the development of meningitis. Considerable progress has been achieved in understanding the pathophysiology of meningitis, however, relatively little is known about the early inflammatory events occurring at the time of bacterial crossing of the BBB. We investigated, using real-time quantitative PCR, the expression of the neutrophil chemoattractants alpha-chemokines CXCL1 (Groalpha) and CXCL8 (IL-8), and of the monocyte chemoattractant beta-chemokine CCL2 (MCP-1) by human brain microvascular endothelial cells (HBMEC) in response to the meningitis-causing E. coli K1 strain RS218 or its isogenic mutants lacking the ability to bind to and invade HBMEC. A nonpathogenic, laboratory E. coli strain HB101 was used as a negative control. CXCL8 was shown to be significantly expressed in HBMEC 4 hours after infection with E. coli K1, while no significant alterations were noted for CXCL1 and CCL2 expression. This upregulation of CXCL8 was induced by E. coli K1 strain RS218 and its derivatives lacking the ability to bind and invade HBMEC, but was not induced by the laboratory strain HB101. In contrast, no upregulation of CXCL8 was observed in human umbilical vein endothelial cells (HUVEC) after stimulation with E. coli RS218. These findings indicate that the CXCL8 expression is the result of the specific response of HBMEC to meningitis-causing E. coli K1.
Kim, Sungchul; Kim, Donghyun; Ahn, Jin-Hyun; Ahn, Kwangseog
2012-01-01
The human cytomegalovirus (HCMV) clinical strain Toledo and the attenuated strain AD169 exhibit a striking difference in pathogenic potential and cell tropism. The virulent Toledo genome contains a 15-kb segment, which is present in all virulent strains but is absent from the AD169 genome. The pathogenic differences between the 2 strains are thought to be associated with this additional genome segment. Cytokines induced during viral infection play major roles in the regulation of the cellular interactions involving cells of the immune and inflammatory systems and consequently determine the pathogenic outcome of infection. The chemokine RANTES (Regulated on activation, normal T-cell expressed and secreted) attracts immune cells during inflammation and the immune response, indicating a role for RANTES in viral pathogenesis. Here, we show that RANTES was downregulated in human foreskin fibroblast (HFF) cells at a later stage after infection with the Toledo strain but not after infection with the AD169 strain. miR-UL148D, the only miRNA predicted from the UL/b' sequences of the Toledo genome, targeted the 3′-untranslated region of RANTES and induced degradation of RANTES mRNA during infection. While wild-type Toledo inhibited expression of RANTES in HFF cells, Toledo mutant virus in which miR-UL148D is specifically abrogated did not repress RANTES expression. Furthermore, miR-UL148D-mediated downregulation of RANTES was inhibited by treatment with a miR-UL148D-specific inhibitor designed to bind to the miR-UL148D sequence via an antisense mechanism, supporting the potential value of antisense agents as therapeutic tools directed against HCMV. Our findings identify a viral microRNA as a novel negative regulator of the chemokine RANTES and provide clues for understanding the pathogenesis of the clinical strains of HCMV. PMID:22412377
Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji
2010-12-01
An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.
Heat shock protein 70 as a biomarker of heat stress in a simulated hot cockpit.
Kumar, Yadunanda; Chawla, Anuj; Tatu, Utpal
2003-07-01
Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. Induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Six healthy volunteers were subjected to heat stress at 55 degrees C in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.
Armstrong, Susan M.; Wang, Changsen; Tigdi, Jayesh; Si, Xiaoe; Dumpit, Carlo; Charles, Steffany; Gamage, Asela; Moraes, Theo J.; Lee, Warren L.
2012-01-01
Severe influenza infections are complicated by acute lung injury, a syndrome of pulmonary microvascular leak. The pathogenesis of this complication is unclear. We hypothesized that human influenza could directly infect the lung microvascular endothelium, leading to loss of endothelial barrier function. We infected human lung microvascular endothelium with both clinical and laboratory strains of human influenza. Permeability of endothelial monolayers was assessed by spectrofluorimetry and by measurement of the transendothelial electrical resistance. We determined the molecular mechanisms of flu-induced endothelial permeability and developed a mouse model of severe influenza. We found that both clinical and laboratory strains of human influenza can infect and replicate in human pulmonary microvascular endothelium, leading to a marked increase in permeability. This was caused by apoptosis of the lung endothelium, since inhibition of caspases greatly attenuated influenza-induced endothelial leak. Remarkably, replication-deficient virus also caused a significant degree of endothelial permeability, despite displaying no cytotoxic effects to the endothelium. Instead, replication-deficient virus induced degradation of the tight junction protein claudin-5; the adherens junction protein VE-cadherin and the actin cytoskeleton were unaffected. Over-expression of claudin-5 was sufficient to prevent replication-deficient virus-induced permeability. The barrier-protective agent formoterol was able to markedly attenuate flu-induced leak in association with dose-dependent induction of claudin-5. Finally, mice infected with human influenza developed pulmonary edema that was abrogated by parenteral treatment with formoterol. Thus, we describe two distinct mechanisms by which human influenza can induce pulmonary microvascular leak. Our findings have implications for the pathogenesis and treatment of acute lung injury from severe influenza. PMID:23115643
NASA Technical Reports Server (NTRS)
Harter, L. V.; Hruska, K. A.; Duncan, R. L.
1995-01-01
Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.
Stretch Injury of Human Induced Pluripotent Stem Cell Derived Neurons in a 96 Well Format
Sherman, Sydney A.; Phillips, Jack K.; Costa, J. Tighe; Cho, Frances S.; Oungoulian, Sevan R.; Finan, John D.
2016-01-01
Traumatic brain injury (TBI) is a major cause of mortality and morbidity with limited therapeutic options. Traumatic axonal injury (TAI) is an important component of TBI pathology. It is difficult to reproduce TAI in animal models of closed head injury, but in vitro stretch injury models reproduce clinical TAI pathology. Existing in vitro models employ primary rodent neurons or human cancer cell line cells in low throughput formats. This in vitro neuronal stretch injury model employs human induced pluripotent stem cell-derived neurons (hiPSCNs) in a 96 well format. Silicone membranes were attached to 96 well plate tops to create stretchable, culture substrates. A custom-built device was designed and validated to apply repeatable, biofidelic strains and strain rates to these plates. A high content approach was used to measure injury in a hypothesis-free manner. These measurements are shown to provide a sensitive, dose-dependent, multi-modal description of the response to mechanical insult. hiPSCNs transition from healthy to injured phenotype at approximately 35% Lagrangian strain. Continued development of this model may create novel opportunities for drug discovery and exploration of the role of human genotype in TAI pathology. PMID:27671211
Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung
2015-09-22
Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.
Measles Virus Persistent Infection of Human Induced Pluripotent Stem Cells.
Naaman, Hila; Rabinski, Tatiana; Yizhak, Avi; Mizrahi, Solly; Avni, Yonat Shemer; Taube, Ran; Rager, Bracha; Weinstein, Yacov; Rall, Glenn; Gopas, Jacob; Ofir, Rivka
2018-02-01
In this study, we found that the measles virus (MV) can infect human-induced pluripotent stem cells (hiPSCs). Wild-type MV strains generally use human signaling lymphocyte activation molecule (SLAM; CD150) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both CD150 and CD46 as receptors. It is not yet known how early in the embryonal differentiation stages these receptors are expressed. We established two hiPSCs (BGU-iPSCs and EMF-iPSCs) which express CD46 and CD150. Both cell types can be infected by MV to form persistent, noncytopathic cell lines that release infectious MV particles. Following MV persistent infection, BGU-iPSCs and EMF-iPSCs remain pluripotent and can differentiate in vitro into the three germ layers. This includes cells expressing the neuronal differentiation markers: NF68 and miRNA-124. Since the MV does not integrate into the cell's genome, it can be utilized as a vehicle to systematically introduce genes into iPSC, to dissect and to define factors regulating lineage differentiation.
Zhang, Xiaolong; Jiang, Quanlong; Xu, Xingli; Wang, Yongrong; Liu, Lei; Lian, Yaru; Li, Hao; Wang, Lichun; Zhang, Ying; Jiang, Guorun; Zeng, Jieyuan; Zhang, Han; Han, Jing-Dong Jackie; Li, Qihan
2018-04-25
Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quinones are growth factors for the human gut microbiota.
Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim
2017-12-20
The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria from the human gut microbiome. These organisms are taxonomically diverse, including members of the genus Faecalibacterium, Bacteroides, Bilophila, Gordonibacter, and Sutterella. This suggests that loss of quinone biosynthesis happened independently in many lineages of the human microbiota. Quinones can be used to improve existing bacterial growth media or modulate the human gut microbiota by encouraging the growth of important symbionts, such as Faecalibacterium species.
Sungur, Tolga; Aslim, Belma; Karaaslan, Cagtay; Aktas, Busra
2017-10-01
Lactobacilli, commonly used as probiotics, have been shown to maintain vaginal health and contribute to host microbiota interaction. Exopolysaccharides (EPSs) produced by lactobacillus have been found to have an important role in probiotic activity; however, there is limited knowledge concerning their impact on cervical cancer and urogenital health. The objective of this study is to investigate and compare EPSs of L. gasseri strains (G10 and H15), isolated from a healthy human vagina, for their capability to inhibit cervical cancer cell (HeLa) growth and modulate immune response. HeLa cells were treated with live culture at ∼10 8 CFU/ml or increasing concentration of lyophilized EPS (L-EPS) (100, 200, or 400 μg/ml) of L. gasseri strains and their ability to adhere to host cells, inhibit proliferation, and modulate immune response were evaluated. Additionally, monosaccharide composition of the L-EPSs produced by L. gasseri strains was determined by HPLC. The sugar component was the same; however, relative proportions of the individual monosaccharides except mannose were different. Although they both produce similar amount of EPS, the most adhesive strain was G10. Both live and L-EPS of L. gasseri strains were capable of inhibiting the cell proliferation of HeLa cells with the impact of L-EPS being strain specific. L-EPSs of L. gasseri strains induced apoptosis in HeLa cells in a strain dependent manner. The ability to induce apoptosis by G10 associated with an upregulation of Bax and Caspase 3. L. gasseri strains showed an anti-inflammatory impact on HeLa cells by decreasing the production of TNF-α and increasing the IL-10 production. In conclusion, diversity in sugar composition of EPS might contribute to adhesion and proliferation properties. Although our results suggest a relationship between the ability of a strain to induce apoptosis and its sugar composition of EPS, further research is required to determine the probiotic mechanisms of action by which L. gasseri strains result in strain specific anti-proliferative activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Segurola, R. J. Jr; Oluwole, B.; Mills, I.; Yokoyama, C.; Tanabe, T.; Kito, H.; Nakajima, N.; Sumpio, B. E.
1997-01-01
Recent studies indicate that hemodynamic forces such as cyclic strain and shear stress can increase prostacyclin (PGI2) secretion by endothelial cells (EC) but the effect of these forces on prostacyclin synthase (PGIS) gene expression remains unclear and is the focus of this study. Bovine aortic EC were seeded onto type I collagen coated flexible membranes and grown to confluence. The membranes and attached EC were subjected to 10% average strain at 60 cpm (0.5 sec deformation alternating with 0.5 sec relaxation) for up to 5 days. PGIS gene expression was determined by Northern blot analysis and protein level by Western blot analysis. The effect of cyclic strain on the PGIS promoter was determined by the transfection of a 1-kb human PGIS gene promoter construct coupled to a luciferase reporter gene into EC, followed by determination of luciferase activity. PGIS gene expression increased 1.7-fold in EC subjected to cyclic strain for 24 hr. Likewise, EC transfected with a pGL3B-PGIS (-1070/-10) construct showed an approximate 1.3-fold elevation in luciferase activity in EC subjected to cyclic strain for 3, 4, 8, and 12 hr. The weak stimulation of PGIS gene expression by cyclic strain was reflected in an inability to detect alterations in PGIS protein levels in EC subjected to cyclic strain for as long as 5 days. These data suggest that strain-induced stimulation of PGIS gene expression plays only a minor role in the ability of cyclic strain to stimulate PGI2 release in EC. These findings coupled with our earlier demonstration of a requisite addition of exogenous arachidonate in order to observe strain-induced PGI2 release, implicates a mechanism that more likely involves strain-induced stimulation of PGIS activity.
Wilson-Welder, Jennifer H.; Frank, Ami T.; Hornsby, Richard L.; Olsen, Steven C.; Alt, David P.
2016-01-01
Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and Leptospira interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia, and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs) and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2) was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of Leptospira strains with bovine PMNs did not affect Leptospira viability as measured by limiting dilution culture. This is in contrast to previously reported results of innate inflammatory activation by Leptospira in human and other animal models, or the activation and interaction of bovine PMNs with Escherichia coli and other bacterial pathogens. While it could be hypothesized that variations in innate receptor recognition, specifically variance in toll-like receptor 2, could underlie the observed reduction of activation in bovine PMNs, additional studies would be needed to explore this possibility. Reduction in neutrophil responses may help to establish nearly asymptomatic chronic Leptospira infection of cattle. This study emphasizes the importance of studying host-pathogen relationships in the appropriate species as extrapolation from other animal models may be incorrect and confounded by differences in the host responses. PMID:27486445
Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, Naohiko; Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp; Furuya, Kishio
Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellularmore » Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.« less
1993-06-20
described based on a hydrostatic column model where the model is assumed to be non distensible and without reflexes. Figure 1 describes this model which...straining maneuvers ( muscular straining while exhaling against a partially closed or fully closed glottis) which increase 11 NAWCADWAR-93089-60 +Gz tolerance
Purohit, S B; Laloraya, M; Kumar, G P
1998-06-01
Spin labeling studies of the lipophilic domains of human spermatozoa during capacitation and during acrosome reaction (AR) under the influence of selected AR-inducers were performed. Significantly enhanced rotational function of molecules was obvious during capacitation, with no significant changes in membrane packaging or the lateral diffusion of molecules. The AR inducers appeared to restrict the rotational freedom of molecules, dramatically enhancing the lateral diffusion and ordering coefficients. A significant decrease in superoxide anion generation was observed in the acrosome reacted groups when compared to the non-acrosome reacted groups. A high level of superoxide anion radical (O2.-) level maintained in capacitated spermatozoa would add to the Van der Waal's repulsive forces at the polar head of phospholipids, holding the membrane in strain where the molecular enjoy little freedom for lateral motion. A sudden drop in the levels of O2.- in spermatozoa upon addition of AR inducers could abruptly release the local hydrophobic repulsive strain within the membrane. This loss of hydration barrier explains the observed enhancement in lateral diffusion profiles of lipids and the packaging of molecules. It is reasonable to assume that these phenomena could be amplified further by interplay of Ca2+ by modifying the local charge aggregation. Thus, we would conclude that AR inducers release the oxyradical load in capacitated spermatozoa, which would modify the repulsive strain and hydration barrier forces in the lipophilic domains permitting vesiculation of the membranes. It appears that various acrosome reaction inducers act as effectors of grossly similar physical alterations in sperm membranes and that the resulting signal cascades proceed through intercalating biochemical sequences.
Meddeb, Mariam; Carpentier, Wassila; Cagnard, Nicolas; Nadaud, Sophie; Grillon, Antoine; Barthel, Cathy; De Martino, Sylvie Josiane; Jaulhac, Benoît; Boulanger, Nathalie
2016-01-01
In Lyme borreliosis, the skin is the key site for bacterial inoculation by the infected tick and for cutaneous manifestations. We previously showed that different strains of Borrelia burgdorferi sensu stricto isolated from tick and from different clinical stages of the Lyme borreliosis (erythema migrans, and acrodermatitis chronica atrophicans) elicited a very similar transcriptional response in normal human dermal fibroblasts. In this study, using whole transcriptome microarray chips, we aimed to compare the transcriptional response of normal human dermal fibroblasts stimulated by 3 Borrelia burgdorferi sensu lato strains belonging to 3 main pathogenic species (B. afzelii, B. garinii and B. burgdorferi sensu stricto) in order to determine whether “species-related” inflammatory pathways could be identified. The three Borrelia strains tested exhibited similar transcriptional profiles, and no species-specific fingerprint of transcriptional changes in fibroblasts was observed. Conversely, a common core of chemokines/cytokines (CCL2, CXCL1, CXCL2, CXCL6, CXCL10, IL-6, IL-8) and interferon-related genes was stimulated by all the 3 strains. Dermal fibroblasts appear to play a key role in the cutaneous infection with Borrelia, inducing a homogeneous inflammatory response, whichever Borrelia species was involved. PMID:27706261
Xiao, Rui; Yang, Xi; Li, Mi; Li, Xiang; Wei, Yanzhang; Cao, Min; Ragauskas, Arthur; Thies, Mark; Ding, Junhuan; Zheng, Yi
2018-09-01
This paper was the first to study extracellular polymeric substances (EPSs) of Thraustochytrium striatum on composition, structure and bioactivities. Two strains of T. striatum including original (ori) and high-biomass (mut) strains (induced by high-nitrogen stress) were compared. The EPSs from both strains mainly contained polysaccharide (41-64%, w/w, dry basis) and protein (25-40%, w/w, dry basis), which was shown by the morphology study with an AFM. The monosaccharide profile of the EPS polysaccharide was consisted of glucose, galactose, arabinose, and trace amount of xylose. Glucose and arabinose took up to 82-90% (w/w, dry basis) of the total polysaccharide. The structure and functional groups of EPSs were determined by FTIR and NMR. The NMR results revealed that the major structural linkages of the polysaccharides of both ori and mut EPSs were 1 → 6-β-glucan and 1 → 4-α-galactan branched with l-α-arabinose. The EPSs were found to have anti-tumor activities against mouse melanoma B16-F0, human prostate carcinoma DU145, human cervical carcinoma HeLa, and human lung carcinoma A549. The EPSs also showed antioxidant and anti-inflammatory activities and antibacterial activity against Pseudomonas aeruginosa. Copyright © 2018 Elsevier Ltd. All rights reserved.
Paulsen, Daniela; Urban, Andreas; Knorr, Andreas; Hirth-Dietrich, Claudia; Siegling, Angela; Volk, Hans-Dieter; Mercer, Andrew A; Limmer, Andreas; Schumak, Beatrix; Knolle, Percy; Ruebsamen-Schaeff, Helga; Weber, Olaf
2013-01-01
Inactivated orf virus (iORFV), strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV) and hepatitis B virus (HBV). Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.
Ha, Sha; Li, Fengsheng; Troutman, Matthew C.; Freed, Daniel C.; Tang, Aimin; Loughney, John W.; Wang, I-Ming; Vlasak, Josef; Nickle, David C.; Rustandi, Richard R.; Hamm, Melissa; DePhillips, Pete A.; Zhang, Ningyan; McLellan, Jason S.; Zhu, Hua; Adler, Stuart P.; McVoy, Michael A.; An, Zhiqiang
2017-01-01
ABSTRACT Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen—the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains. IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen—the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies. PMID:28077654
Jennes, Malgorzata; De Craeye, Stéphane; Devriendt, Bert; Dierick, Katelijne; Dorny, Pierre; Cox, Eric
2017-01-01
Toxoplasma gondii is a worldwide prevalent parasite of humans and animals. The global infection burden exceeds yearly one million disability-adjusted life years (DALY's) in infected individuals. Therefore, effective preventive measures should be taken to decrease the risk of infection in humans. Although human toxoplasmosis is predominantly foodborne by ingestion of tissue cysts in meat from domestic animals such as pigs, the incidence risk is difficult to estimate due to the lack of screening of animals for infection and insights in location and persistence of the parasite in the tissues. Hence, experimental infections in pigs can provide more information on the risk for zoonosis based on the parasite burden in meat products intended for human consumption and on the immune responses induced by infection. In the present study, homo- and heterologous infection experiments with two distinct T. gondii strains (IPB-LR and IPB-Gangji) were performed. The humoral and cellular immune responses, the presence of viable parasites and the parasite load in edible meat samples were evaluated. In homologous infection experiments the parasite persistence was clearly strain-dependent and inversely correlated with the infection dose. The results strongly indicate a change in the amount of parasite DNA and viable cysts in porcine tissues over time. Heterologous challenge infections demonstrated that IPB-G strain could considerably reduce the parasite burden in the subsequent IPB-LR infection. A strong, however, not protective humoral response was observed against GRA7 and TLA antigens upon inoculation with both strains. The in vitro IFN-γ production by TLA-stimulated PBMCs was correlated with the infection dose and predominantly brought about by CD3+CD4−CD8αbright T-lymphocytes. The described adaptive cellular and humoral immune responses in pigs are in line with the induced or natural infections in mice and humans. Previous studies underscored the heterogeneity of T. gondii strains and the corresponding virulence factors. These findings suggest the potential of the IPB-G strain to elicit a partially protective immune response and to reduce the parasite burden upon a challenge infection. The IPB-G strain could be used as a promising tool in limiting the number of viable parasites in edible tissues and, hence, in lowering the risk for human toxoplasmosis. PMID:28642841
NASA Astrophysics Data System (ADS)
Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi
2010-09-01
In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.
Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.
Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai
2015-12-16
We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.
Buommino, Elisabetta; Nocera, Francesca Paola; Parisi, Annamaria; Rizzo, Antonietta; Donnarumma, Giovanna; Mallardo, Karina; Fiorito, Filomena; Baroni, Adone; De Martino, Luisa
2016-07-01
Malassezia pachydermatis is a yeast belonging to the microbiota of the skin and mucous membranes of dog and cat, but it can also act as pathogen, causing dermatitis. The aim of this work was to evaluate the genetic variability of M. pachydermatis strains isolated from symptomatic dogs and cats and determine a correlation between genotype and phenotype. For this purpose eleven strains of M. pachydermatis were molecularly classified by nested-polymerase chain reaction (nested-PCR) based on ITS-1 and ITS-2 regions, specific for fungal rRNA genes. Furthermore, random amplification of polymorphic DNA (RAPD) was applied for genetic typing of M. pachydermatis isolates identifying four different genotypes. Strains belonging to genotype 1 produced the highest amount of biofilm and phospholipase activity. The inflammatory response induced by M. pachydermatis strains in immortalized human keratinocytes (HaCat cells) was significantly different when we compared the results obtained from each strain. In particular, HaCat cells infected with the strains belonging to genotypes 1 and 2 triggered the highest levels of increase in TLR-2, IL-1β, IL-6, IL-8, COX-2 and MMP-9 expression. By contrast, cells infected with the strains of genotype 3 and those of genotype 4 did not significantly induce TLR-2 and cytokines. The results obtained might suggest a possible association between genotype and virulence factors expressed by M. pachydermatis strains. This highlights the need for a more accurate identification of the yeast to improve the therapeutic approach and to monitor the onset of human infections caused by this emergent zoonotic pathogen.
Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants.
Ceretti, E; Zani, C; Zerbini, I; Viola, G; Moretti, M; Villarini, M; Dominici, L; Monarca, S; Feretti, D
2015-02-01
Urban air contains many mutagenic pollutants. This research aimed to investigate the presence of mutagens in the air by short-term mutagenicity tests using bacteria, human cells and plants. Inflorescences of Tradescantia were exposed to air in situ for 6h, once a month from January to May, to monitor volatile compounds and micronuclei frequency was computed. On the same days PM10 was collected continuously for 24h. Half of each filter was extracted with organic solvents and studied by means of the Ames test, using Salmonella typhimurium TA98 and TA100 strains, and the comet assay on human leukocytes. A quarter of each filter was extracted with distilled water in which Tradescantia was exposed. PM10 concentration was particularly high in the winter season (> 50 μg/m(3)). In situ exposure of inflorescences to urban air induced a significant increase in micronuclei frequency at all the sites considered, but only in January (p < 0.01). Aqueous extracts collected in January and February induced genotoxic effects in Tradescantia exposed in the laboratory (p < 0.01). Ames test showed that organic extracts of winter urban air were able to induce genetic mutations in S. typhimurium TA98 strain (± S9), but not in TA100 strain, with a revertants/plate number nine times higher than the negative control. Comet assay showed that winter extracts were more toxic and genotoxic than spring extracts. All the mutagenicity tests performed confirmed that urban air in North Italy in winter contains both volatile and non-volatile genotoxic substances able to induce genetic damage in bacteria, human cells and plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yin, Dan-Ting; Fu, Yu; Zhao, Xin-Huai
2018-01-10
Inulin was fermented by adult faecal microbiota and 10 exogenous strains for 24 or 48 h. The contents of acetate, propionate, butyrate and lactate were quantified in the fermented products, and the growth-inhibitory and apoptosis-inducing effects on a human colon cell line (HCT-116 cells) were assessed. Most of these strains increased contents of acetate, propionate and butyrate, and promoted lactate conversion. Correlation analysis suggested that butyrate and lactate in the fermentation products were positively and negatively correlated with the measured inhibition ratios (p < .05). The results were mostly consistent with the verification trial results using standard acid solutions. The fermentation products could cause apoptosis via inducing DNA fragmentation and increasing total apoptotic populations in the treated cells. Moreover, the fermentation products with higher growth-inhibitory activities demonstrated the increased apoptosis-inducing properties. In conclusion, these strains could cooperate with adult faecal microbiota to confer inulin fermentation products with higher anti-colon cancer activity.
de Vos, Paul; Mujagic, Zlatan; de Haan, Bart J.; Siezen, Roland J.; Bron, Peter A.; Meijerink, Marjolein; Wells, Jerry M.; Masclee, Ad A. M.; Boekschoten, Mark V.; Faas, Marijke M.; Troost, Freddy J.
2017-01-01
Orally ingested bacteria interact with intestinal mucosa and may impact immunity. However, insights in mechanisms involved are limited. In this randomized placebo-controlled cross-over trial, healthy human subjects were given Lactobacillus plantarum supplementation (strain TIFN101, CIP104448, or WCFS1) or placebo for 7 days. To determine whether L. plantarum can enhance immune response, we compared the effects of three stains on systemic and gut mucosal immunity, by among others assessing memory responses against tetanus toxoid (TT)-antigen, and mucosal gene transcription, in human volunteers during induction of mild immune stressor in the intestine, by giving a commonly used enteropathic drug, indomethacin [non-steroidal anti-inflammatory drug (NSAID)]. Systemic effects of the interventions were studies in peripheral blood samples. NSAID was found to induce a reduction in serum CD4+/Foxp3 regulatory cells, which was prevented by L. plantarum TIFN101. T-cell polarization experiments showed L. plantarum TIFN101 to enhance responses against TT-antigen, which indicates stimulation of memory responses by this strain. Cell extracts of the specific L. plantarum strains provoked responses after WCFS1 and TIFN101 consumption, indicating stimulation of immune responses against the specific bacteria. Mucosal immunomodulatory effects were studied in duodenal biopsies. In small intestinal mucosa, TIFN101 upregulated genes associated with maintenance of T- and B-cell function and antigen presentation. Furthermore, L. plantarum TIFN101 and WCFS1 downregulated immunological pathways involved in antigen presentation and shared downregulation of snoRNAs, which may suggest cellular destabilization, but may also be an indicator of tissue repair. Full sequencing of the L. plantarum strains revealed possible gene clusters that might be responsible for the differential biological effects of the bacteria on host immunity. In conclusion, the impact of oral consumption L. plantarum on host immunity is strain dependent and involves responses against bacterial cell components. Some strains may enhance specific responses against pathogens by enhancing antigen presentation and leukocyte maintenance in mucosa. In future studies and clinical settings, caution should be taken in selecting beneficial bacteria as closely related strains can have different effects. Our data show that specific bacterial strains can prevent immune stress induced by commonly consumed painkillers such as NSAID and can have enhancing beneficial effects on immunity of consumers by stimulating antigen presentation and memory responses. PMID:28878772
Debbink, Kari; Lindesmith, Lisa C; Donaldson, Eric F; Swanstrom, Jesica; Baric, Ralph S
2014-07-01
There is currently no licensed vaccine for noroviruses, and development is hindered, in part, by an incomplete understanding of the host adaptive immune response to these highly heterogeneous viruses and rapid GII.4 norovirus molecular evolution. Emergence of a new predominant GII.4 norovirus strain occurs every 2 to 4 years. To address the problem of GII.4 antigenic variation, we tested the hypothesis that chimeric virus-like particle (VLP)-based vaccine platforms, which incorporate antigenic determinants from multiple strains into a single genetic background, will elicit a broader immune response against contemporary and emergent strains. Here, we compare the immune response generated by chimeric VLPs to that of parental strains and a multivalent VLP cocktail. Results demonstrate that chimeric VLPs induce a more broadly cross-blocking immune response than single parental VLPs and a similar response to a multivalent GII.4 VLP cocktail. Furthermore, we show that incorporating epitope site A alone from one strain into the background of another is sufficient to induce a blockade response against the strain donating epitope site A. This suggests a mechanism by which population-wide surveillance of mutations in a single epitope could be used to evaluate antigenic changes in order to identify potential emergent strains and quickly reformulate vaccines against future epidemic strains as they emerge in human populations. Noroviruses are gastrointestinal pathogens that infect an estimated 21 million people per year in the United States alone. GII.4 noroviruses account for >70% of all outbreaks, making them the most clinically important genotype. GII.4 noroviruses undergo a pattern of epochal evolution, resulting in the emergence of new strains with altered antigenicity over time, complicating vaccine design. This work is relevant to norovirus vaccine design as it demonstrates the potential for development of a chimeric VLP-based vaccine platform that may broaden the protective response against multiple GII.4 strains and proposes a potential reformulation strategy to control newly emergent strains in the human population. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Buragohain, Manika; Dhale, Ganesh S; Raut, Chandrashekhar G; Kang, Gagandeep; Chitambar, Shobha D
2011-04-01
Experimental studies of human rotavirus infections in mice are limited and there is lack of information on the quantitative assessment of rotaviral replication and its relationship with histological changes. In the present study, consequences of human rotavirus strain, YO induced gastroenteritis in infant BALB/c mice were analyzed for the occurrence of clinical symptoms, histopathology and virological events. The infected animals developed diarrhea and dehydration and showed accumulation of vacuolated enterocytes with lodging of the rotavirus antigens and shortening of villi in the intestine over a period of 5 days. The ileum was identified as the most susceptible and supportive part of small intestine for perpetuation of rotavirus infection in mice. Rotaviral antigen/RNA in stool and RNA in intestine were detected throughout the clinical disease period. At 48-72 h post inoculation, diarrhea was at the peak (90-95%) in the infected animals with increased load of viral RNA and intense pathological lesions suggesting it as the critical time point in the course of infection. The rising titers of antirotavirus neutralizing antibodies ascertained the replication of human rotavirus strain, YO in mice. These data may contribute to the understanding of pathophysiological, immunological and virological characteristics of rotavirus infections in mice. Copyright © 2010. Published by Elsevier SAS.
Simas, C J A; Silva, D P H; Ponte, C G G; Castello-Branco, L R R; Antas, P R Z
2011-09-02
Mononuclear cells have been implicated in the primary inflammatory response against mycobacteria. Yet, little is known about the interaction of Mycobacterium bovis bacillus Calmette-Guerin (BCG) with human monocytes. Here, we investigated the potential of BCG Moreau strain to induce in vitro specific cell-death utilizing a flow cytometry approach that revealed an increase in apoptosis events in BCG-stimulated monocytes from healthy adults. We also detected a concomitant release of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), but not metalloproteinase (MMP)-9. In addition, annexin V-propidium iodide double staining demonstrated an enhancement of monocytes necrosis, but not apoptosis, following BCG Moreau strain stimulation of umbilical vein cells from naïve, neonate. This pattern was paralleled by different pro-inflammatory cytokine levels, as well as MMP-9 induction when compared to the adults. Our findings support the hypothesis that BCG induces distinct cell-death patterns during the maturation of the immune system and that this pattern might set the stage for a subsequent antimycobacterial immune response that might have profound effects during vaccination. Copyright © 2011 Elsevier Ltd. All rights reserved.
Roh, Eun; Hwang, Byeong-Ung; Kim, Doil; Kim, Bo-Yeong; Lee, Nae-Eung
2015-06-23
Interactivity between humans and smart systems, including wearable, body-attachable, or implantable platforms, can be enhanced by realization of multifunctional human-machine interfaces, where a variety of sensors collect information about the surrounding environment, intentions, or physiological conditions of the human to which they are attached. Here, we describe a stretchable, transparent, ultrasensitive, and patchable strain sensor that is made of a novel sandwich-like stacked piezoresisitive nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate ( PSS). This sensor, which can detect small strains on human skin, was created using environmentally benign water-based solution processing. We attributed the tunability of strain sensitivity (i.e., gauge factor), stability, and optical transparency to enhanced formation of percolating networks between conductive SWCNTs and PEDOT phases at interfaces in the stacked PU-PEDOT:PSS/SWCNT/PU-PEDOT:PSS structure. The mechanical stability, high stretchability of up to 100%, optical transparency of 62%, and gauge factor of 62 suggested that when attached to the skin of the face, this sensor would be able to detect small strains induced by emotional expressions such as laughing and crying, as well as eye movement, and we confirmed this experimentally.
van Dalen, P J; van Deutekom-Mulder, E C; de Graaff, J; van Steenbergen, T J
1998-02-01
Recently, an atypical rough colony morphotype of Peptostreptococcus micros, a species which is found in ulcerating infections, including periodontitis, was isolated. The virulence of morphotypes alone and in combination with Prevotella intermedia and P. nigrescens was investigated both in vivo and in vitro. All strains tested induced abscesses containing fluid pus in a mouse skin model, and lesions caused by monocultures of the rough morphotype strains of P. micros were statistically significantly larger than those induced by the smooth morphotype strains. Inocula containing both morphotypes produced similar sized abscesses compared to mono-inocula containing the same bacterial load. Both Prevotella species induced small abscesses when inoculated alone, and when Pr. nigrescens was inoculated with one of the other strains, the abscesses were not significantly different from the abscesses induced by the mono-infections of this strain. Synergy, in terms of higher numbers of colony forming units (cfu) in the mixed inocula, was found for all combinations of the rough morphotypes of P. micros and both Prevotella spp. Pus from abscesses caused by combinations of Peptostreptococcus and Prevotella spp. transmitted the infection to other mice, but no abscesses were formed in mice inoculated with pus induced by mono-inocula. These results demonstrated synergic activity between both rough and smooth P. micros strains and oral Prevotella strains. The in-vitro co-culture experiments produced no evidence of growth stimulation. The effect of P. micros strains on the immune system was investigated by testing their ability to initiate luminol-dependent chemiluminescence of polymorphonuclear leucocytes in the presence and absence of human serum. In the latter, the rough morphotype strains initiated higher counts than the smooth morphotype strains. Further work is needed to elucidate the difference in virulence between the smooth and the rough morphotype cells of P. micros and the nature of the interaction with the Prevotella spp.
Norberg, Peter; Lindh, Magnus; Olofsson, Sigvard
2015-03-28
Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.
Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques
2013-01-01
Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851
Krishnan, Subramanian; Chang, Alexander C; Hodges, Jacqueline; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Nicholson, Bryon A; Nolan, Lisa K; Prasadarao, Nemani V
2015-01-01
Neonatal meningitis Escherichia coli K1 (NMEC) are thought to be transmitted from mothers to newborns during delivery or by nosocomial infections. However, the source of E. coli K1 causing these infections is not clear. Avian pathogenic E. coli (APEC) have the potential to cause infection in humans while human E. coli have potential to cause colibacillosis in poultry, suggesting that these strains may lack host specificity. APEC strains are capable of causing meningitis in newborn rats; however, it is unclear whether these bacteria use similar mechanisms to that of NMEC to establish disease. Using four representative APEC and NMEC strains that belong to serotype O18, we demonstrate that these strains survive in human serum similar to that of the prototypic NMEC strain E44, a derivative of RS218. These bacteria also bind and enter both macrophages and human cerebral microvascular endothelial cells (HCMEC/D3) with similar frequency as that of E44. The amino acid sequences of the outer membrane protein A (OmpA), an important virulence factor in the pathogenesis of meningitis, are identical within these representative APEC and NMEC strains. Further, these strains also require FcγRI-α chain (CD64) and Ecgp96 as receptors for OmpA in macrophages and HCMEC/D3, respectively, to bind and enter these cells. APEC and NMEC strains induce meningitis in newborn mice with varying degree of pathology in the brains as assessed by neutrophil recruitment and neuronal apoptosis. Together, these results suggest that serotype O18 APEC strains utilize similar pathogenic mechanisms as those of NMEC strains in causing meningitis.
Joy, A; Vogelnest, L; Middleton, D J; Dale, C J; Campagna, D; Purcell, D F; Kent, S J
2001-06-01
A number of monkey species, including African green monkeys and African vervet monkeys (Chlorocebus aethiops), are frequently infected in the wild and in captivity with a Simian immunodeficiency virus strain, SIVagm, a primate lentivirus. Up to 50% of African green monkeys are estimated to be infected with SIVagm. SIV strains are very closely related to HIV-2 strains, which are a cause of AIDS in humans, predominantly in western Africa, although cases in Australia have also been reported. It is generally thought that SIV is non-pathogenic in several natural hosts, including African green monkeys. Nevertheless many SIV strains induce a profound immunodeficiency virtually identical to HIV-1 induced AIDS in humans when administered to Asian macaque species such as rhesus (Macaca mulatta) or pigtailed macaques (M nemestrina). SIV infection of Asian macaque species is frequently employed as an animal model for AIDS vaccine studies. In November 1996 a group of 10 African vervet monkeys were imported from the USA for display at Victoria's Open Range Zoo in Werribee. Two animals in this group of monkeys later developed a fatal gastroenteric illness. These diagnoses led us to initiate SIV testing of the colony.
NASA Technical Reports Server (NTRS)
Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.
2002-01-01
Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.
Crowley, James J.; Ashraf-Khorassani, Mehdi; Castagnoli, Neal; Sullivan, Patrick F.
2013-01-01
The typical antipsychotic haloperidol is a highly effective treatment for schizophrenia but its use is limited by a number of serious, and often irreversible, motor side effects. These adverse drug reactions, termed extrapyramidal syndromes (EPS), result from an unknown pathophysiological mechanism. One theory relates to the observation that the haloperidol metabolite HPP+ (4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]-pyridinium) is structurally similar to MPP+ (1-methyl-4-phenylpyridinium), a neurotoxin responsible for an irreversible neurodegenerative condition similar to Parkinson's disease. To determine whether HPP+ contributes to haloperidol-induced EPS, we measured brain HPP+ and haloperidol levels in strains of mice at high (C57BL/6J and NZO/HILtJ) and low (BALB/cByJ and PWK/PhJ) liability to haloperidol-induced EPS following chronic treatment (7–10 adult male mice per strain). Brain levels of HPP+ and the ratio of HPP+ to haloperidol were not significantly different between the haloperidol-sensitive and haloperidol-resistant strain groups (P = 0.50). Within each group, however, strain differences were seen (P < 0.01), indicating that genetic variation regulating steady-state HPP+ levels exists. Since the HPP+ levels that we observed in mouse brain overlap the range of those detected in post-mortem human brains following chronic haloperidol treatment, the findings from this study are physiologically relevant to humans. The results suggest that strain differences in steady-state HPP+ levels do not explain sensitivity to haloperidol-induced EPS in the mice we studied. PMID:24107597
Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R.; Foster, Timothy J.; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna
2015-01-01
ABSTRACT Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The results reveal that the combination and levels of α-toxin and PVL correlate with tissue pathology and clinical outcome associated with pneumonia. PMID:26398950
Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus.
Samuelsen, Orjan; Haukland, Hanne H; Jenssen, Håvard; Krämer, Manuela; Sandvik, Kjersti; Ulvatne, Hilde; Vorland, Lars H
2005-06-20
This study was designed to investigate inducible intrinsic resistance against lactoferricin B in Staphylococcus aureus. Serial passage of seven S. aureus strains in medium with increasing concentrations of peptide resulted in an induced resistance at various levels in all strains. The induced resistance was unstable and decreased relatively rapidly during passages in peptide free medium but the minimum inhibitory concentration remained elevated after thirty passages. Cross-resistance to penicillin G and low-level cross-resistance to the antimicrobial peptides indolicidin and Ala(8,13,18)-magainin-II amide [corrected] was observed. No cross-resistance was observed to the human cathelicidin LL-37. In conclusion, this study shows that S. aureus has intrinsic resistance mechanisms against antimicrobial peptides that can be induced upon exposure, and that this may confer low-level cross-resistance to other antimicrobial peptides.
GHRICI, MOHAMED; EL ZOWALATY, MOHAMED; OMAR, ABDUL RAHMAN; IDERIS, AINI
2013-01-01
Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications. PMID:23807159
Ghrici, Mohamed; El Zowalaty, Mohamed; Omar, Abdul Rahman; Ideris, Aini
2013-09-01
Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.
Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.
2014-01-01
Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and towards immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. PMID:25435355
Severson, Paul L; Vrba, Lukas; Stampfer, Martha R; Futscher, Bernard W
2014-12-01
Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. Copyright © 2014 Elsevier B.V. All rights reserved.
Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; ...
2014-11-04
Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutationsmore » were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.« less
Sarmiento, Luis; Frisk, Gun; Anagandula, Mahesh; Hodik, Monika; Barchetta, Ilaria; Netanyah, Eitan; Cabrera-Rode, Eduardo; Cilio, Corrado M.
2017-01-01
Human enteroviruses (HEV), especially coxsackievirus serotype B (CVB) and echovirus (E), have been associated with diseases of both the exocrine and endocrine pancreas, but so far evidence on HEV infection in human pancreas has been reported only in islets and ductal cells. This study aimed to investigate the capability of echovirus strains to infect human exocrine and endocrine pancreatic cells. Infection of explanted human islets and exocrine cells with seven field strains of E6 caused cytopathic effect, virus titer increase and production of HEV protein VP1 in both cell types. Virus particles were found in islets and acinar cells infected with E6. No cytopathic effect or infectious progeny production was observed in exocrine cells exposed to the beta cell-tropic strains of E16 and E30. Endocrine cells responded to E6, E16 and E30 by upregulating the transcription of interferon-induced with helicase C domain 1 (IF1H1), 2′-5′-oligoadenylate synthetase 1 (OAS1), interferon-β (IFN-β), chemokine (C–X–C motif) ligand 10 (CXCL10) and chemokine (C–C motif) ligand 5 (CCL5). Echovirus 6, but not E16 or E30, led to increased transcription of these genes in exocrine cells. These data demonstrate for the first time that human exocrine cells represent a target for E6 infection and suggest that certain HEV serotypes can replicate in human pancreatic exocrine cells, while the pancreatic endocrine cells are permissive to a wider range of HEV. PMID:28146100
Tsuda, H; Yamashita, Y; Toyoshima, K; Yamaguchi, N; Oho, T; Nakano, Y; Nagata, K; Koga, T
2000-02-01
To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis.
Tsuda, Hiromasa; Yamashita, Yoshihisa; Toyoshima, Kuniaki; Yamaguchi, Noboru; Oho, Takahiko; Nakano, Yoshio; Nagata, Kengo; Koga, Toshihiko
2000-01-01
To clarify the role of cell surface components of Streptococcus mutans in resistance to phagocytosis by human polymorphonuclear leukocytes (PMNs), several isogenic mutants of S. mutans defective in cell surface components were studied with a luminol-enhanced chemiluminescence (CL) assay, a killing assay, and a transmission electron microscope. The CL responses of human PMNs to mutant Xc11 defective in a major cell surface antigen, PAc, and mutant Xc16 defective in two surface glucosyltransferases (GTF-I and GTF-SI) were the same as the response to the wild-type strain, Xc. In contrast, mutant Xc24R, which was defective in serotype c-specific polysaccharide, induced a markedly higher CL response than the other strains. The killing assay showed that human PMNs killed more Xc24R than the parent strain and the other mutants. The transmission electron microscopic observation indicated that Xc24R cells were more internalized by human PMNs than the parental strain Xc. These results may be reflected by the fact that strain Xc24R was more phagocytosed than strain Xc. The CL response of human PMNs to a mutant defective in polysaccharide serotype e or f was similar to the response to Xc24R. Furthermore, mutants defective in serotype-specific polysaccharide were markedly more hydrophobic than the wild-type strains and the other mutants, suggesting that the hydrophilic nature of polysaccharides may protect the bacterium from phagocytosis. We conclude that the serotype-specific polysaccharide, but not the cell surface proteins on the cell surface of S. mutans, may play an important role in the resistance to phagocytosis. PMID:10639428
Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation
Weerasinghe, Sujith V.W.; Singla, Amika; Leonard, Jessica M.; Hanada, Shinichiro; Andrews, Philip C.; Lok, Anna S.; Omary, M. Bishr
2011-01-01
Genetic factors impact liver injury susceptibility and disease progression. Prominent histological features of some chronic human liver diseases are hepatocyte ballooning and Mallory-Denk bodies. In mice, these features are induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in a strain-dependent manner, with the C57BL and C3H strains showing high and low susceptibility, respectively. To identify modifiers of DDC-induced liver injury, we compared C57BL and C3H mice using proteomic, biochemical, and cell biological tools. DDC elevated reactive oxygen species (ROS) and oxidative stress enzymes preferentially in C57BL livers and isolated hepatocytes. C57BL livers and hepatocytes also manifested significant down-regulation, aggregation, and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). GAPDH knockdown depleted bioenergetic and antioxidant enzymes and elevated hepatocyte ROS, whereas GAPDH overexpression decreased hepatocyte ROS. On the other hand, C3H livers had higher expression and activity of the energy-generating nucleoside-diphosphate kinase (NDPK), and knockdown of hepatocyte NDPK augmented DDC-induced ROS formation. Consistent with these findings, cirrhotic, but not normal, human livers contained GAPDH aggregates and NDPK complexes. We propose that GAPDH and NDPK are genetic modifiers of murine DDC-induced liver injury and potentially human liver disease. PMID:22006949
Takimoto, T; Sato, H; Ogura, H
1986-01-01
The appearance of Epstein-Barr virus (EBV)-associated nuclear antigen (EBNA) and induction of EBV-induced early antigen (EA) in human umbilical cord blood lymphocytes (HUCLs) and two EBV genome-negative Burkitt's lymphoma (BL) lines (BJAB and Ramos) were studied by infection with EBVs prepared from three different cell lines: marmoset cell line (B95-8) derived from infections mononucleosis, BL-derived cell line (P3HR-1) and human epithelial hybrid cell line (NPC-KT) derived from nasopharyngeal carcinoma. B95-8 virus can transform HUCLs but cannot superinfect Raji cells. P3HR-1 virus can transform HUCLs cells but cannot transform HUCLs. NPC-KT virus can transform HUCLs and can superinfect Raji cells. We have examined the time sequence of EBNA appearance and EA induction in HUCLs, BJAB cells and Ramos cells, in order to determine if three different strains of EBV differ in their abilities to infect their cells. We found that all three strains of EBV can induce EBNA in HUCLs, BJAB cells and Ramos cells. On the other hand, we found that P3HR-1 virus and NPC-KT virus can induce EA in BJAB cells and Ramos cells, but B95-8 virus cannot induce EA in their cells.
Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M. C.; Valenzuela, Jesus G.
2012-01-01
Introduction Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi–a model sand fly for Leishmania-vector-host molecular interactions–is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. Methods and Findings A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Conclusions Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas. PMID:23139741
Abdeladhim, Maha; Jochim, Ryan C; Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M C; Valenzuela, Jesus G
2012-01-01
Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi-a model sand fly for Leishmania-vector-host molecular interactions-is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas.
Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, J.M.B.D., E-mail: jmanya@terra.com.br; Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro; Seabra, S.H.
Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed inmore » BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.« less
NASA Technical Reports Server (NTRS)
Ochola, Donasian O.; Sharif, Rabab; Bedford, Joel S.; Keefe, Thomas J.; Kato, Takamitsu A.; Fallgren, Christina M.; Demant, Peter; Costes, Sylvain V.; Weil, Michael M.
2018-01-01
The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in their ability to efficiently repair DNA double strand breaks resulting from radiation exposure. We phenotyped mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA double strand breaks during protracted radiation exposures. We monitored persistent gamma-H2AX radiation induced foci (RIF) 24 hours after exposure to chronic gamma-rays as a surrogate marker for repair deficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/cHeN founder strain. We observed a very strong correlation R2 = 79.18%, P < 0.001) between the level of persistent RIF and radiogenic lung cancer percent incidence measured in the same strains. Interestingly, spontaneous levels of foci in non-irradiated strains also showed good correlation with lung cancer incidence (R2=32.74%, P =0.013). These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains and that high levels of spontaneous DNA damage is also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that such phenotyping assay could be used to detect radiogenic lung cancer susceptibility in humans.
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines
Kim, Shin-Hee; Samal, Siba K.
2016-01-01
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens. PMID:27384578
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines.
Kim, Shin-Hee; Samal, Siba K
2016-07-04
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.
Di Luccia, B; D'Apuzzo, E; Varriale, F; Baccigalupi, L; Ricca, E; Pollice, A
2016-09-01
The interaction between the enteric microbiota and intestinal cells often involves signal molecules that affect both microbial behaviour and host responses. Examples of such signal molecules are the molecules secreted by bacteria that induce quorum sensing mechanisms in the producing microorganism and signal transduction pathways in the host cells. The pentapeptide competence and sporulation factor (CSF) of Bacillus subtilis is a well characterized quorum sensing factor that controls competence and spore formation in the producing bacterium and induces cytoprotective heat shock proteins in intestinal epithelial cells. We analysed several Bacillus strains isolated from human ileal biopsies of healthy volunteers and observed that some of them were unable to produce CSF but still able to act in a CSF-like fashion on model intestinal epithelial cells. One of those strains belonging to the Bacillus megaterium species secreted at least two factors with effects on intestinal HT29 cells: a peptide smaller than 3 kDa able to induce heat shock protein 27 (hsp27) and p38-MAPK, and a larger molecule able to induce protein kinase B (PKB/Akt) with a pro-proliferative effect.
Zeng, Zhu; Zuo, Fanglei; Yu, Rui; Zhang, Bo; Ma, Huiqin; Chen, Shangwu
2017-09-01
A novel lactose-responsive promoter of the ATP-binding cassette (ABC) transporter gene Lba1680 of Lactobacillus acidophilus strain 05-172 isolated from a traditionally fermented dairy product koumiss was characterized. In L. acidophilus 05-172, expression of Lba1680 was induced by lactose, with lactose-induced transcription of Lba1680 being 6.1-fold higher than that induced by glucose. This is in contrast to L. acidophilus NCFM, a strain isolated from human feces, in which expression of Lba1680 and Lba1679 is induced by glucose. Both gene expression and enzyme activity assays in L. paracasei transformed with a vector containing the inducible Lba1680 promoter (PLba1680) of strain 05-172 and a heme-dependent catalase gene as reporter confirmed that PLba1680 is specifically induced by lactose. Its regulatory expression could not be repressed by glucose, and was independent of cAMP receptor protein. This lactose-responsive promoter might be used in the expression of functional genes in L. paracasei incorporated into a lactose-rich environment, such as dairy products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Pawar, Santosh N; Mattila, Joshua T; Sturgeon, Timothy J; Lin, Philana Ling; Narayan, Opendra; Montelaro, Ronald C; Flynn, Joanne L
2008-04-01
Factors explaining why human immunodeficiency virus (HIV) enhances the risk of reactivated tuberculosis (TB) are poorly understood. Unfortunately, experimental models of HIV-induced reactivated TB are lacking. We examined whether cynomolgus macaques, which accurately model latent TB in humans, could be used to model pathogenesis of HIV infection in the lungs and associated lymph nodes. These experiments precede studies modeling the effects of HIV infection on latent TB. We infected two groups of macaques with chimeric simian-human immunodeficiency viruses (SHIV-89.6P and SHIV-KU2) and followed viral titers and immunologic parameters including lymphocytes numbers and phenotype in the blood, bronchoalveolar lavage cells, and lymph nodes over the course of infection. Tissues from the lungs, liver, kidney, spleen, and lymph nodes were similarly examined at necropsy. Both strains produced dramatic CD4(+) T cell depletion. Plasma titers were not different between viruses, but we found more SHIV-89.6P in the lungs. Both viruses induced similar patterns of cell activation markers. SHIV-89.6P induced more IFN-gamma expression than SHIV-KU2. These results indicate SHIV-89.6P and SHIV-KU2 infect cynomolgus macaques and may be used to accurately model effects of HIV infection on latent TB.
Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami
2015-08-01
Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Levavasseur, Etienne; Biacabe, Anne-Gaëlle; Comoy, Emmanuel; Culeux, Audrey; Grznarova, Katarina; Privat, Nicolas; Simoneau, Steve; Flan, Benoit; Sazdovitch, Véronique; Seilhean, Danielle; Baron, Thierry; Haïk, Stéphane
2017-01-01
The transmission of classical bovine spongiform encephalopathy (C-BSE) through contaminated meat product consumption is responsible for variant Creutzfeldt-Jakob disease (vCJD) in humans. More recent and atypical forms of BSE (L-BSE and H-BSE) have been identified in cattle since the C-BSE epidemic. Their low incidence and advanced age of onset are compatible with a sporadic origin, as are most cases of Creutzfeldt-Jakob disease (CJD) in humans. Transmissions studies in primates and transgenic mice expressing a human prion protein (PrP) indicated that atypical forms of BSE may be associated with a higher zoonotic potential than classical BSE, and require particular attention for public health. Recently, methods designed to amplify misfolded forms of PrP have emerged as promising tools to detect prion strains and to study their diversity. Here, we validated real-time quaking-induced conversion assay for the discrimination of atypical and classical BSE strains using a large series of bovine samples encompassing all the atypical BSE cases detected by the French Centre of Reference during 10 years of exhaustive active surveillance. We obtained a 100% sensitivity and specificity for atypical BSE detection. In addition, the assay was able to discriminate atypical and classical BSE in non-human primates, and also sporadic CJD and vCJD in humans. The RT-QuIC assay appears as a practical means for a reliable detection of atypical BSE strains in a homologous or heterologous PrP context.
Cappelli, G; Volpe, P; Sanduzzi, A; Sacchi, A; Colizzi, V; Mariani, F
2001-12-01
Mycobacterium tuberculosis is an intracellular pathogen that readily survives and replicates in human macrophages (MPhi). Host cells have developed different mycobactericidal mechanisms, including the production of inflammatory cytokines. The aim of this study was to compare the MPhi response, in terms of cytokine gene expression, to infection with the M. tuberculosis laboratory strain H37Rv and the clinical M. tuberculosis isolate CMT97. Both strains induce the production of interleukin-12 (IL-12) and IL-16 at comparable levels. However, the clinical isolate induces a significantly higher and more prolonged MPhi activation, as shown by reverse transcription-PCR analysis of IL-1beta, IL-6, IL-10, transforming growth factor beta, tumor necrosis factor alpha, and gamma interferon (IFN-gamma) transcripts. Interestingly, when IFN-gamma transcription is high, the number of M. tuberculosis genes expressed decreases and vice versa, whereas no mycobactericidal effect was observed in terms of bacterial growth. Expression of 11 genes was also studied in the two M. tuberculosis strains by infecting resting or activated MPhi and compared to bacterial intracellular survival. In both cases, a peculiar inverse correlation between expression of these genes and multiplication was observed. The number and type of genes expressed by the two strains differed significantly.
Parasa, Venkata Ramanarao; Rose, Jeronimo; Castillo-Diaz, Luis Alberto; Aceves-Sánchez, Michel de Jesús; Vega-Domínguez, Perla Jazmín; Lerm, Maria; Flores-Valdez, Mario Alberto
2018-03-27
Tuberculosis (TB) still remains as an unmet global threat. The current vaccine is not fully effective and novel alternatives are needed. Here, two vaccine candidate strains derived from BCG carrying deletions in the BCG1416c or BCG1419c genes were analysed for their capacity to modulate the cytokine/chemokine profile and granuloma formation in a human lung tissue model (LTM). We show that the clustering of monocytes, reminiscent of early granuloma formation, in LTMs infected with BCG strains was similar for all of them. However, BCGΔBCG1419c, like M. tuberculosis, was capable of inducing the production of IL-6 in contrast to the other BCG strains. This work suggests that LTM could be a useful ex vivo assay to evaluate the potential immunogenicity of novel TB vaccine candidates. Copyright © 2018 Elsevier Ltd. All rights reserved.
Robert, C; Del'Homme, C; Bernalier-Donadille, A
2001-12-18
Interspecies H2 transfer between two newly isolated fibrolytic strains (18P13 and 18P16) and H2-utilizing methanogen or acetogen from the human colon was investigated during in vitro cellulose degradation. Both H2-consuming microorganisms utilized efficiently H2 produced from cellulose fermentation by the fibrolytic species. H2 utilization by Methanobrevibacter smithii did not change the metabolism and the cellulolytic activity of strain 18P16 whereas it induced a metabolic shift in strain 18P13. However, this metabolic shift was not associated with enhancement of cellulose degradation. In contrast, an increase in cellulose breakdown was observed when strain 18P13 was cultivated with Ruminococcus hydrogenotrophicus. This stimulating effect could be attributed to both the autotrophic and the heterotrophic metabolism of the acetogen in the coculture.
Lachance, Claude; Gottschalk, Marcelo; Gerber, Pehuén P; Lemire, Paul; Xu, Jianguo; Segura, Mariela
2013-06-01
Streptococcus suis, a major porcine pathogen, can be transmitted to humans and cause severe symptoms. A large human outbreak associated with an unusual streptococcal toxic shock-like syndrome (STSLS) was described in China. Albeit an early burst of proinflammatory cytokines following Chinese S. suis infection was suggested to be responsible for STSLS case severity, the mechanisms involved are still poorly understood. Using a mouse model, the host response to S. suis infection with a North American intermediately pathogenic strain, a European highly pathogenic strain, and the Chinese epidemic strain was investigated by a whole-genome microarray approach. Proinflammatory genes were expressed at higher levels in mice infected with the Chinese strain than those infected with the European strain. The Chinese strain induced a fast and strong gamma interferon (IFN-γ) response by natural killer (NK) cells. In fact, IFN-γ-knockout mice infected with the Chinese strain showed significantly better survival than wild-type mice. Conversely, infection with the less virulent North American strain resulted in an IFN-β-subjugated, low inflammatory response that might be beneficial for the host to clear the infection. Overall, our data suggest that a highly virulent epidemic strain has evolved to massively activate IFN-γ production, mainly by NK cells, leading to a rapid and lethal STSLS.
Fan, Shengtao; Xu, Xingli; Liao, Yun; Wang, Yongrong; Wang, Jianbin; Feng, Min; Wang, Lichun; Zhang, Ying; He, Zhanlong; Yang, Fengmei; Fraser, Nigel W; Li, Qihan
2018-05-02
Herpes simplex virus type 1(HSV-1) presents a conundrum to public health worldwide because of its specific pathogenicity and clinical features. Some experimental vaccines, such as the recombinant viral glycoproteins, exhibit the viral immunogenicity of a host-specific immune response, but none of these has achieved a valid epidemiological protective efficacy in the human population. In the present study, we constructed an attenuated HSV-1 strain M3 through the partial deletion of UL7, UL41 , and the latency-associated transcript ( LAT ) using the CRISPR/Cas9 system. The mutant strain exhibited lowered infectivity and virulence in macaques. Neutralization testing and ELISpot detection of the specific T-cell responses confirmed the specific immunity induced by M3 immunization and this immunity defended against the challenges of the wild-type strain and restricted the entry of the wild-type strain into the trigeminal ganglion. These results in rhesus macaques demonstrated the potential of the attenuated vaccine for the prevention of HSV-1 in humans.
Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi.
Magalhães, Luísa M D; Viana, Agostinho; Chiari, Egler; Galvão, Lúcia M C; Gollob, Kenneth J; Dutra, Walderez O
2015-01-01
Trypanosoma cruzi strains are currently classified into six discrete typing units (DTUs) named TcI to VI. It is known that these DTUs have different geographical distribution, as well as biological features. TcI and TcII are major DTUs found in patients from northern and southern Latin America, respectively. Our hypothesis is that upon infection of human peripheral blood cells, Y strain (Tc II) and Col cl1.7 (Tc I), cause distinct immunological changes, which might influence the clinical course of Chagas disease. We evaluated the infectivity of CFSE-stained trypomastigotes of Col cl1.7 and Y strain in human monocytes for 15 and 72 hours, and determined the immunological profile of lymphocytes and monocytes exposed to the different isolates using multiparameter flow cytometry. Our results showed a similar percentage and intensity of monocyte infection by Y and Col cl1.7. We also observed an increased expression of CD80 and CD86 by monocytes infected with Col cl1.7, but not Y strain. IL-10 was significantly higher in monocytes infected with Col cl1.7, as compared to Y strain. Moreover, infection with Col cl1.7, but not Y strain, led to an increased expression of IL-17 by CD8+ T cells. On the other hand, we observed a positive correlation between the expression of TNF-alpha and granzyme A only after infection with Y strain. Our study shows that while Col cl1.7 induces higher monocyte activation and, at the same time, production of IL-10, infection with Y strain leads to a lower monocyte activation but higher inflammatory profile. These results show that TcI and TcII have a distinct immunological impact on human cells during early infection, which might influence disease progression.
Okuzaki, Daisuke; Kuwana, Ritsuko; Takamatsu, Hiromu; Fujita, Masaya; Sarker, Mahfuzur R.; Miyake, Masami
2016-01-01
ABSTRACT Clostridium perfringens type A is a common source of foodborne illness (FBI) in humans. Vegetative cells sporulate in the small intestinal tract and produce the major pathogenic factor C. perfringens enterotoxin. Although sporulation plays a critical role in the pathogenesis of FBI, the mechanisms inducing sporulation remain unclear. Bile salts were shown previously to induce sporulation, and we confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 cocultured with human intestinal epithelial Caco-2 cells. In the present study, we performed transcriptome analyses of strain NCTC8239 in order to elucidate the mechanism underlying DCA-induced sporulation. Of the 2,761 genes analyzed, 333 were up- or downregulated during DCA-induced sporulation and included genes for cell division, nutrient metabolism, signal transduction, and defense mechanisms. In contrast, the virulence-associated transcriptional regulators (the VirR/VirS system, the agr system, codY, and abrB) were not activated by DCA. DCA markedly increased the expression of signaling molecules controlled by Spo0A, the master regulator of the sporulation process, whereas the expression of spo0A itself was not altered in the presence or absence of DCA. The phosphorylation of Spo0A was enhanced in the presence of DCA. Collectively, these results demonstrated that DCA induced sporulation, at least partially, by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes in strain NCTC8239 while altering the expression of various genes. IMPORTANCE Disease caused by Clostridium perfringens type A consistently ranks among the most common bacterial foodborne illnesses in humans in developed countries. The sporulation of C. perfringens in the small intestinal tract is a key event for its pathogenesis, but the factors and underlying mechanisms by which C. perfringens sporulates in vivo currently remain unclear. Bile salts, major components of bile, which is secreted from the liver for the emulsification of lipids, were shown to induce sporulation. However, the mechanisms underlying bile salt-induced sporulation have not yet been clarified. In the present study, we demonstrate that deoxycholate (one of the bile salts) induces sporulation by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes using a transcriptome analysis. Thus, this study enhances our understanding of the mechanisms underlying sporulation, particularly that of bile salt-induced sporulation, in C. perfringens. PMID:26969700
Marsova, Maria; Abilev, Serikbay; Poluektova, Elena; Danilenko, Valeriy
2018-01-17
Oxidative stress cause serious damages in human organism resulting in multiple diseases. Antioxidant therapy includes diet, the use of chemical agents or commensal bacteria such as lactobacilli. This study aims to evaluate the antioxidant (AO) activity of cell-free culture supernatants of lactobacilli, isolated from different parts of the human body. A test system based on Escherichia coli MG1655 strains carrying plasmids encoding luminescent biosensors pSoxS-lux and pKatG-lux inducible by superoxide anion and hydrogen peroxide, respectively, was used to analyze cell-free culture supernatants of lactobacilli. Bioluminescent detection systems are suitable for quick screening of AO activity of lactobacilli. The majority of strains (51 out of 81) belonging to six different species demonstrated various levels of antioxidant activity. This activity was confirmed using the trolox equivalent method. The genome of one of the strains showing high AO activity was sequenced, and the genes putatively involved in AO capacity were determined. Potencies of standard AO and CFS from the most active Lactobacillus strains. Percentages of decrease in the detected luminescence (IAO%) in the presence of AO or CFS are presented. L. br.-L. brevis, L. pl. -L. plantarum, L. rh.-L. rhamnosus.
Smith, I M; Baker, A; Arneborg, N; Jespersen, L
2015-11-01
The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics. © 2015 The Society for Applied Microbiology.
Chen, Jun; Han, Han; Wang, Bin; Shi, Liying
2016-07-01
The Sendai virus strain Tianjin is a novel genotype of the Sendai virus. In previous studies, ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) demonstrated antitumor effects on human breast cancer cells. The aim of the present study was to investigate the in vitro antitumor effects of UV-Tianjin on the human cervical carcinoma HeLa, human small cell lung cancer NCI-H446 and human hepatocellular carcinoma Hep 3B cell lines, and the possible underlying mechanisms of these antitumor effects. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that UV-Tianjin treatment inhibited the proliferation of HeLa, NCI-H446 and Hep 3B cells in a dose- and time-dependent manner. Hoechst and Annexin V-fluorescein isothiocyanate/propidium iodide double staining indicated that UV-Tianjin induced dose-dependent apoptosis in all three cell lines with the most significant effect observed in the HeLa cell line. In the HeLa cell line, UV-Tianjin-induced apoptosis was further confirmed by the disruption of the mitochondria membrane potential and the activation of caspases, as demonstrated by fluorescent cationic dye and colorimetric assays, respectively. In addition, western blot analysis revealed that UV-Tianjin treatment resulted in significant upregulation of cytochrome c , apoptosis protease activating factor-1, Fas, Fas ligand and Fas-associated protein with death domain, and activated caspase-9, -8 and -3 in HeLa cells. Based on these results, it is hypothesized that UV-Tianjin exhibits anticancer activity in HeLa, NCI-H446 and Hep 3B cell lines via the induction of apoptosis. In conclusion, the results of the present study indicate that in the HeLa cell line, intrinsic and extrinsic apoptotic pathways may be involved in UV-Tianjin-induced apoptosis.
Zarantonelli, Maria Leticia; Skoczynska, Anna; Antignac, Aude; El Ghachi, Meriem; Deghmane, Ala-Eddine; Szatanik, Marek; Mulet, Céline; Werts, Catherine; Peduto, Lucie; d'Andon, Martine Fanton; Thouron, Françoise; Nato, Faridabano; Lebourhis, Lionel; Philpott, Dana J; Girardin, Stephen E; Vives, Francina Langa; Sansonetti, Philippe; Eberl, Gérard; Pedron, Thierry; Taha, Muhamed-Kheir; Boneca, Ivo G
2013-06-12
Neisseria meningitidis is a life-threatening human bacterial pathogen responsible for pneumonia, sepsis, and meningitis. Meningococcal strains with reduced susceptibility to penicillin G (Pen(I)) carry a mutated penicillin-binding protein (PBP2) resulting in a modified peptidoglycan structure. Despite their antibiotic resistance, Pen(I) strains have failed to expand clonally. We analyzed the biological consequences of PBP2 alteration among clinical meningococcal strains and found that peptidoglycan modifications of the Pen(I) strain resulted in diminished in vitro Nod1-dependent proinflammatory activity. In an influenza virus-meningococcal sequential mouse model mimicking human disease, wild-type meningococci induced a Nod1-dependent inflammatory response, colonizing the lungs and surviving in the blood. In contrast, isogenic Pen(I) strains were attenuated for such response and were out-competed by meningococci sensitive to penicillin G. Our results suggest that antibiotic resistance imposes a cost to the success of the pathogen and may potentially explain the lack of clonal expansion of Pen(I) strains. Copyright © 2013 Elsevier Inc. All rights reserved.
The SGBS cell strain as a model for the in vitro study of obesity and cancer.
Allott, Emma H; Oliver, Elizabeth; Lysaght, Joanne; Gray, Steven G; Reynolds, John V; Roche, Helen M; Pidgeon, Graham P
2012-10-01
The murine adipocyte cell line 3T3-L1 is well characterised and used widely, while the human pre-adipocyte cell strain, Simpson-Golabi-Behmel Syndrome (SGBS), requires validation for use in human studies. Obesity is currently estimated to account for up to 41 % of the worldwide cancer burden. A human in vitro model system is required to elucidate the molecular mechanisms for this poorly understood association. This work investigates the relevance of the SGBS cell strain for obesity and cancer research in humans. Pre-adipocyte 3T3-L1 and SGBS were differentiated according to standard protocols. Morphology was assessed by Oil Red O staining. Adipocyte-specific gene expression was measured by qPCR and biochemical function was assessed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity. Differential gene expression in oesophageal adenocarcinoma cell line OE33 following co-culture with SGBS or primary omental human adipocytes was investigated using Human Cancer Profiler qPCR arrays. During the process of differentiation, SGBS expressed higher levels of adipocyte-specific transcripts and fully differentiated SGBS expressed more similar morphology, transcript levels and biochemical function to primary omental adipocytes, relative to 3T3-L1. Co-culture with SGBS or primary omental adipocytes induced differential expression of genes involved in adhesion (ITGB3), angiogenesis (IGF1, TEK, TNF, VEGFA), apoptosis (GZMA, TERT) and invasion and metastasis (MMP9, TIMP3) in OE33 tumour cells. Comparable adipocyte-specific gene expression, biochemical function and a shared induced gene signature in co-cultured OE33 cells indicate that SGBS is a relevant in vitro model for obesity and cancer research in humans.
Takii, T; Abe, C; Tamura, A; Ramayah, S; Belisle, J T; Brennan, P J; Onozaki, K
2001-03-01
Mycobacteria-induced in vitro events reflecting human tuberculosis can contribute to the evaluation of the pathogenesis of Mycobacterium tuberculosis (MTB). In this study, we propose such an in vitro method based on live mycobacteria-induced cytotoxicity to human cell lines. When human lung-derived normal fibroblast cell line MRC-5 was infected with various strains of mycobacteria (M. tuberculosis H(37)Rv and H(37) Ra, Mycobacterium avium 427S and 2151SmO, and Mycobacterium bovis BCG Pasteur and Tokyo), the fibroblasts were killed by mycobacteria according to the degree of virulence. Other human originated macrophage (U-937, THP-1), myeloid (HL-60), and epithelial carcinoma (A549) cell lines exhibited a similar cytotoxic response to virulent mycobacteria. MRC-5 was most susceptible to virulent mycobacteria among various human cell lines examined. The cytotoxicity was enhanced by the proinflammatory cytokines, interleukin-1 (IL-1) and tumor necrosis factor-a (TNF-alpha), which in the absence of mycobacteria stimulate the growth of normal human fibroblasts. This in vitro evaluation system was applied to clinical isolates of drug-sensitive MTB (DS-MTB), drug-resistant MTB (DR-MTB) including multidrug-resistant (MDR-MTB), and M. avium complex (MAC). MTB strains (n = 24) exhibited strong cytotoxic activity, but MAC strains (n = 5) had only weak activity. Furthermore, there was no significant difference in cytotoxicity between DS-MTB (n = 11) and DR-MTB (n = 13). Collectively, these results suggest that this new in vitro system is useful for evaluating the pathogenesis of mycobacteria and that there was no difference in the pathogenesis between drug-susceptible and drug-resistant clinical isolates.
Smura, Teemu; Natri, Olli; Ylipaasto, Petri; Hellman, Marika; Al-Hello, Haider; Piemonti, Lorenzo; Roivainen, Merja
2015-12-02
Enterovirus infections have been suspected to be involved in the development of type 1 diabetes. However, the pathogenetic mechanism of enterovirus-induced type 1 diabetes is not known. Pancreatic ductal cells are closely associated with pancreatic islets. Therefore, enterovirus infections in ductal cells may also affect beta-cells and be involved in the induction of type 1 diabetes. The aim of this study was to assess the ability of different enterovirus strains to infect, replicate and produce cytopathic effect in human pancreatic ductal cells. Furthermore, the viral factors that affect these capabilities were studied. The pancreatic ductal cells were highly susceptible to enterovirus infections. Both viral growth and cytolysis were detected for several enterovirus serotypes. However, the viral growth and capability to induce cytopathic effect (cpe) did not correlate completely. Some of the virus strains replicated in ductal cells without apparent cpe. Furthermore, there were strain-specific differences in the growth kinetics and the ability to cause cpe within some serotypes. Viral adaptation experiments were carried out to study the potential genetic determinants behind these phenotypic differences. The blind-passage of non-lytic CV-B6-Schmitt strain in HPDE-cells resulted in lytic phenotype and increased progeny production. This was associated with the substitution of a single amino acid (K257E) in the virus capsid protein VP1 and the viral ability to use decay accelerating factor (DAF) as a receptor. This study demonstrates considerable plasticity in the cell tropism, receptor usage and cytolytic properties of enteroviruses and underlines the strong effect of single or few amino acid substitutions in cell tropism and lytic capabilities of a given enterovirus. Since ductal cells are anatomically close to pancreatic islets, the capability of enteroviruses to infect and destroy pancreatic ductal cells may also implicate in respect to enterovirus induced type 1 diabetes. In addition, the capability for rapid adaptation to different cell types suggests that, on occasion, enterovirus strains with different pathogenetic properties may arise from less pathogenic ancestors. Copyright © 2015 Elsevier B.V. All rights reserved.
2011-01-01
Background Evidence in the literature suggests that exopolysaccharides (EPS) produced by bacterial cells are essential for the expression of virulence in these organisms. Secreted EPSs form the framework in which microbial biofilms are built. Methods This study evaluates the role of EPS in Prevotella intermedia for the expression of virulence. This evaluation was accomplished by comparing EPS-producing P. intermedia strains 17 and OD1-16 with non-producing P. intermedia ATCC 25611 and Porphyromonas gingivalis strains ATCC 33277, 381 and W83 for their ability to induce abscess formation in mice and evade phagocytosis. Results EPS-producing P. intermedia strains 17 and OD1-16 induced highly noticeable abscess lesions in mice at 107 colony-forming units (CFU). In comparison, P. intermedia ATCC 25611 and P. gingivalis ATCC 33277, 381 and W83, which all lacked the ability to produce viscous materials, required 100-fold more bacteria (109 CFU) in order to induce detectable abscess lesions in mice. Regarding antiphagocytic activity, P. intermedia strains 17 and OD1-16 were rarely internalized by human polymorphonuclear leukocytes, but other strains were readily engulfed and detected in the phagosomes of these phagocytes. Conclusions These results demonstrate that the production of EPS by P. intermedia strains 17 and OD1-16 could contribute to the pathogenicity of this organism by conferring their ability to evade the host's innate defence response. PMID:21864411
Yamanaka, Takeshi; Yamane, Kazuyoshi; Furukawa, Tomoyo; Matsumoto-Mashimo, Chiho; Sugimori, Chieko; Nambu, Takayuki; Obata, Noboru; Walker, Clay B; Leung, Kai-Poon; Fukushima, Hisanori
2011-08-25
Evidence in the literature suggests that exopolysaccharides (EPS) produced by bacterial cells are essential for the expression of virulence in these organisms. Secreted EPSs form the framework in which microbial biofilms are built. This study evaluates the role of EPS in Prevotella intermedia for the expression of virulence. This evaluation was accomplished by comparing EPS-producing P. intermedia strains 17 and OD1-16 with non-producing P. intermedia ATCC 25611 and Porphyromonas gingivalis strains ATCC 33277, 381 and W83 for their ability to induce abscess formation in mice and evade phagocytosis. EPS-producing P. intermedia strains 17 and OD1-16 induced highly noticeable abscess lesions in mice at 107 colony-forming units (CFU). In comparison, P. intermedia ATCC 25611 and P. gingivalis ATCC 33277, 381 and W83, which all lacked the ability to produce viscous materials, required 100-fold more bacteria (109 CFU) in order to induce detectable abscess lesions in mice. Regarding antiphagocytic activity, P. intermedia strains 17 and OD1-16 were rarely internalized by human polymorphonuclear leukocytes, but other strains were readily engulfed and detected in the phagosomes of these phagocytes. These results demonstrate that the production of EPS by P. intermedia strains 17 and OD1-16 could contribute to the pathogenicity of this organism by conferring their ability to evade the host's innate defence response.
Guirado, Evelyn; Gordillo, Sergi; Gil, Olga; Díaz, Jorge; Tapia, Gustavo; Vilaplana, Cristina; Ausina, Vicenç; Cardona, Pere-Joan
2006-04-01
Intragranulomatous necrosis is a primary feature in the natural history of human tuberculosis (TB). Unfortunately, this phenomenon is not usually seen in the experimental TB murine model. Artificial induction of this necrosis in pulmonary granulomas (INPG) may be achieved through aerosol inoculation of lipopolysaccharide (LPS) 3 weeks after Mycobacterium tuberculosis infection. At week 9 post-infection, the centre of primary granulomas became larger, showing eosinophilic necrosis. Interestingly, INPG induction was related to mice strains C57BL/6 and 129/Sv, but not to BALB/c and DBA/2. Furthermore, the same pattern was obtained with the induction of infection using a clinical M. tuberculosis strain (UTE 0335R) that naturally induces INPG. In all the mice strains tested, the study of pulmonary mRNA expression revealed a tendency to increase or to maintain the expression of RANTES, interferon-gamma, tumour necrosis factor and iNOS, in both LPS- and UTE 0335R-induced INPG, thus suggesting that this response must be necessary but not sufficient for inducing INPG. Our work supports that INPG induction is a local phenomenon unrelated to the resistant (C57BL/6 and BALB/c) or susceptible (129/Sv and DBA/2) background of mice strains against M. tuberculosis infection.
Analysis of the response of human keratinocytes to Malassezia globosa and restricta strains.
Donnarumma, Giovanna; Perfetto, Brunella; Paoletti, Iole; Oliviero, Giovanni; Clavaud, Cécile; Del Bufalo, Aurelia; Guéniche, Audrey; Jourdain, Roland; Tufano, Maria Antonietta; Breton, Lionel
2014-10-01
Malassezia spp. are saprophyte yeasts involved in skin diseases with different degrees of severity. The aim of our study was to analyze the response of human epidermal keratinocytes to Malassezia globosa and restricta strains evaluating the host defence mechanisms induced by Malassezia spp. colonization. Our results showed a different modulation of the inflammatory and immunomodulatory cytokine pathways obtained with the different strains of Malassezia tested. In addition, this expression is altered by blocking the TLR2 receptor. In comparison with M. furfur, M. globosa and restricta displayed an unexpected and striking cytotoxicity on keratinocytes. The differences observed could be related to the different modalities of interaction between keratinocytes and Malassezia strains, but also to their growth condition. Taken together, these results indicate that M. globosa or M. restricta colonization exert a different control on the cytokine inflammatory response activated in the human keratinocyte in which TLR2 might be involved. M. globosa and M. restricta may play a synergistic role in the exacerbation of skin diseases in which both are found.
Enhanced Antibody Responses in a Novel NOG Transgenic Mouse with Restored Lymph Node Organogenesis
Takahashi, Takeshi; Katano, Ikumi; Ito, Ryoji; Goto, Motohito; Abe, Hayato; Mizuno, Seiya; Kawai, Kenji; Sugiyama, Fumihiro; Ito, Mamoru
2018-01-01
Lymph nodes (LNs) are at the center of adaptive immune responses. Various exogenous substances are transported into LNs and a series of immune responses ensue after recognition by antigen–specific lymphocytes. Although humanized mice have been used to reconstitute the human immune system, most lack LNs due to deficiency of the interleukin (IL)-2Rγ gene (cytokine common γ chain, γc). In this study, we established a transgenic strain, NOG-pRORγt-γc, in the NOD/shi-scid-IL-2Rγnull (NOG) background, in which the γc gene was expressed in a lymph-tissue inducer (LTi) lineage by the endogenous promoter of RORγt. In this strain, LN organogenesis was normalized and the number of human T cells substantially increased in the periphery after reconstitution of the human immune system by human hematopoietic stem cell transplantation. The distribution of human T cells differed between NOG-pRORγt-γc Tg and NOG-non Tg mice. About 40% of human T cells resided in LNs, primarily the mesenteric LNs. The LN-complemented humanized mice exhibited antigen-specific immunoglobulin G responses together and an increased number of IL-21+–producing CD4+ T cells in LNs. This novel mouse strain will facilitate recapitulation of human immune responses. PMID:29387068
Fujimichi, Yuki; Hamada, Nobuyuki
2014-01-01
Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that may underlie radiation cataractogenesis, warranting further investigations.
Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.
Amjadi, Morteza; Yoon, Yong Jin; Park, Inkyu
2015-09-18
Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation network-silicone rubber nanocomposite thin films. The applicability of the strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (ϵ > 100%) are required, has been explored. The sensitivity of the strain sensors can be tuned by the number density of the carbon nanotube percolation network. The strain sensors show excellent hysteresis performance at different strain levels and rates with high linearity and small drift. We found that the carbon nanotube-silicone rubber based strain sensors possess super-stretchability and high reliability for strains as large as 500%. The nanocomposite thin films exhibit high robustness and excellent resistance-strain dependency for over ~1380% mechanical strain. Finally, we performed skin motion detection by mounting the strain sensors on different parts of the body. The maximum induced strain by the bending of the finger, wrist, and elbow was measured to be ~ 42%, 45% and 63%, respectively.
Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.
2016-01-01
The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017
Deus, K. M.; Saavedra-rodriguez, K.; Butters, M. P.; Black, W. C.; Foy, B. D.
2014-01-01
Seven different strains of Aedes aegypti (L.), including a genetically diverse laboratory strain, three laboratory-selected permethrin-resistant strains, a standard reference strain, and two recently colonized strains were fed on human blood containing various concentrations of ivermectin. Ivermectin reduced adult survival, fecundity, and hatch rate of eggs laid by ivermectin-treated adults in all seven strains. The LC50 of ivermectin for adults and the concentration that prevented 50% of eggs from hatching was calculated for all strains. Considerable variation in adult survival after an ivermectin-bloodmeal occurred among strains, and all three permethrin-resistant strains were significantly less susceptible to ivermectin than the standard reference strain. The hatch rate after an ivermectin bloodmeal was less variable among strains, and only one of the permethrin-resistant strains differed significantly from the standard reference strain. Our studies suggest that ivermectin induces adult mortality and decreases the hatch rate of eggs through different mechanisms. A correlation analysis of log-transformed LC50 among strains suggests that permethrin and ivermectin cross-resistance may occur. PMID:22493855
Xie, Hang; Wan, Xiu-Feng; Ye, Zhiping; Plant, Ewan P.; Zhao, Yangqing; Xu, Yifei; Li, Xing; Finch, Courtney; Zhao, Nan; Kawano, Toshiaki; Zoueva, Olga; Chiang, Meng-Jung; Jing, Xianghong; Lin, Zhengshi; Zhang, Anding; Zhu, Yanhong
2015-01-01
The poor performance of 2014–15 Northern Hemisphere (NH) influenza vaccines was attributed to mismatched H3N2 component with circulating epidemic strains. Using human serum samples collected from 2009–10, 2010–11 and 2014–15 NH influenza vaccine trials, we assessed their cross-reactive hemagglutination inhibition (HAI) antibody responses against recent H3 epidemic isolates. All three populations (children, adults, and older adults) vaccinated with the 2014–15 NH egg- or cell-based vaccine, showed >50% reduction in HAI post-vaccination geometric mean titers against epidemic H3 isolates from those against egg-grown H3 vaccine strain A/Texas/50/2012 (TX/12e). The 2014–15 NH vaccines, regardless of production type, failed to further extend HAI cross-reactivity against H3 epidemic strains from previous seasonal vaccines. Head-to-head comparison between ferret and human antisera derived antigenic maps revealed different antigenic patterns among representative egg- and cell-grown H3 viruses characterized. Molecular modeling indicated that the mutations of epidemic H3 strains were mainly located in antibody-binding sites A and B as compared with TX/12e. To improve vaccine strain selection, human serologic testing on vaccination-induced cross-reactivity need be emphasized along with virus antigenic characterization by ferret model. PMID:26472175
NASA Astrophysics Data System (ADS)
Xie, Hang; Wan, Xiu-Feng; Ye, Zhiping; Plant, Ewan P.; Zhao, Yangqing; Xu, Yifei; Li, Xing; Finch, Courtney; Zhao, Nan; Kawano, Toshiaki; Zoueva, Olga; Chiang, Meng-Jung; Jing, Xianghong; Lin, Zhengshi; Zhang, Anding; Zhu, Yanhong
2015-10-01
The poor performance of 2014-15 Northern Hemisphere (NH) influenza vaccines was attributed to mismatched H3N2 component with circulating epidemic strains. Using human serum samples collected from 2009-10, 2010-11 and 2014-15 NH influenza vaccine trials, we assessed their cross-reactive hemagglutination inhibition (HAI) antibody responses against recent H3 epidemic isolates. All three populations (children, adults, and older adults) vaccinated with the 2014-15 NH egg- or cell-based vaccine, showed >50% reduction in HAI post-vaccination geometric mean titers against epidemic H3 isolates from those against egg-grown H3 vaccine strain A/Texas/50/2012 (TX/12e). The 2014-15 NH vaccines, regardless of production type, failed to further extend HAI cross-reactivity against H3 epidemic strains from previous seasonal vaccines. Head-to-head comparison between ferret and human antisera derived antigenic maps revealed different antigenic patterns among representative egg- and cell-grown H3 viruses characterized. Molecular modeling indicated that the mutations of epidemic H3 strains were mainly located in antibody-binding sites A and B as compared with TX/12e. To improve vaccine strain selection, human serologic testing on vaccination-induced cross-reactivity need be emphasized along with virus antigenic characterization by ferret model.
Pickar, Joel G.; Khalsa, Partap S.
2012-01-01
High-velocity, low-amplitude spinal manipulation (HVLA-SM) is an efficacious treatment for low back pain, although the physiological mechanisms underlying its effects remain elusive. The lumbar facet joint capsule (FJC) is innervated with mechanically sensitive neurons and it has been theorized that the neurophysiological benefits of HVLA-SM are partially induced by stimulation of FJC neurons. Biomechanical aspects of this theory have been investigated in humans while neurophysiological aspects have been investigated using cat models. The purpose of this study was to determine the relationship between human and cat lumbar spines during HVLA-SM. Cat lumbar spine specimens were mechanically tested, using a displacement-controlled apparatus, during simulated HVLA-SM applied at L5, L6, and L7 that produced preload forces of ~25% bodyweight for 0.5 s and peak forces that rose to 50–100% bodyweight within ~125 ms, similar to that delivered clinically. Joint kinematics and FJC strain were measured optically. Human FJC strain and kinematics data were taken from a prior study. Regression models were established for FJC strain magnitudes as functions of factors species, manipulation site, and interactions thereof. During simulated HVLA-SM, joint kinematics in cat spines were greater in magnitude compared with humans. Similar to human spines, site-specific HVLA-SM produced regional cat FJC strains at distant motion segments. Joint motions and FJC strain magnitudes for cat spines were larger than those for human spine specimens. Regression relationships demonstrated that species, HVLA-SM site, and interactions thereof were significantly and moderately well correlated for HVLA-SM that generated tensile strain in the FJC. The relationships established in the current study can be used in future neurophysiological studies conducted in cats to extrapolate how human FJC afferents might respond to HVLA-SM. The data from the current study warrant further investigation into the clinical relevance of site targeted HVLA-SM. PMID:20590286
Roier, Sandro; Leitner, Deborah R.; Iwashkiw, Jeremy; Schild-Prüfert, Kristina; Feldman, Mario F.; Krohne, Georg; Reidl, Joachim; Schild, Stefan
2012-01-01
Abstract Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections. PMID:22880074
[Changes of biological behavioral of E. coli K1 after ppk1 gene deletion].
Peng, Liang; Pan, Jiayun; Luo, Su; Yang, Zhenghui; Huang, Mufang; Cao, Hong
2014-06-01
To study the changes in biological behaviors of meningitis E. coli K1 strain E44 after deletion of polyphosphate kinase 1 (ppk1) gene and explore the role of ppk1 in the pathogenesis of E. coli K1-induced meningitis. The wild-type strain E. coli K1 and ppk1 deletion mutant were exposed to heat at 56 degrees celsius; for 6 min, and their survival rates were determined. The adhesion and invasion of the bacteria to human brain microvascular endothelial cells (HBMECs) were observed using electron microscopy and quantitative tests. HBMECs were co-incubated with wild-type strain or ppk1 deletion mutant, and the cytoskeleton rearrangement was observed under laser scanning confocal microscope. The survival rate of the ppk1 deletion mutant was significantly lower than that of the wild-type strain after heat exposure. The ppk1 deletion mutant also showed lowered cell adhesion and invasion abilities and weakened ability to induce cytoskeleton rearrangement in HBMECs. ppk1 gene is important for E.coli K1 for heat resistance, cell adhesion and invasion, and for inducing cytoskeletal rearrangement in HBMECs.
Kunsmann, Lisa; Rüter, Christian; Bauwens, Andreas; Greune, Lilo; Glüder, Malte; Kemper, Björn; Fruth, Angelika; Wai, Sun Nyunt; He, Xiaohua; Lloubes, Roland; Schmidt, M Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge; Bielaszewska, Martina
2015-08-18
The highly virulent Escherichia coli O104:H4 that caused the large 2011 outbreak of diarrhoea and haemolytic uraemic syndrome secretes blended virulence factors of enterohaemorrhagic and enteroaggregative E. coli, but their secretion pathways are unknown. We demonstrate that the outbreak strain releases a cocktail of virulence factors via outer membrane vesicles (OMVs) shed during growth. The OMVs contain Shiga toxin (Stx) 2a, the major virulence factor of the strain, Shigella enterotoxin 1, H4 flagellin, and O104 lipopolysaccharide. The OMVs bind to and are internalised by human intestinal epithelial cells via dynamin-dependent and Stx2a-independent endocytosis, deliver the OMV-associated virulence factors intracellularly and induce caspase-9-mediated apoptosis and interleukin-8 secretion. Stx2a is the key OMV component responsible for the cytotoxicity, whereas flagellin and lipopolysaccharide are the major interleukin-8 inducers. The OMVs represent novel ways for the E. coli O104:H4 outbreak strain to deliver pathogenic cargoes and injure host cells.
Antibacterial and antifungal properties of human cerumen.
Lum, C L; Jeyanthi, S; Prepageran, N; Vadivelu, J; Raman, R
2009-04-01
To assess the antibacterial and antifungal properties of human cerumen by studying its effect on the growth of Staphylococcus aureus, Esherichia coli, Pseudomonas aeruginosa and Candida albicans. Cerumen samples were collected from 75 normal, healthy subjects aged from seven to 80 years, without ear pathology, who attended the ear, nose and throat out-patient clinic of the University Malaya Medical Center from May 2006 to October 2006. Of these 75 samples, 31 had no growth when cultured on nutrient agar. Inhibition studies on these 31 samples were performed for Staphylococcus aureus (American Type Culture Collection (ATCC) 25923), Esherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Candida albicans. Nutrient agar was used to conserve all three bacterial strains and Sabouraud dextrose agar was used for Candida albicans. A decrease in Staphylococcus aureus growth was observed for 27 of the 31 samples. All 31 samples induced decreased growth of Pseudomonas aeruginosa, while 29 induced decreased growth of Candida albicans. However, only four samples induced decreased growth of Escherichia coli. Cerumen was demonstrated to have potential antimicrobial effects on strains of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans.
Lindesmith, Lisa C; Ferris, Martin T; Mullan, Clancy W; Ferreira, Jennifer; Debbink, Kari; Swanstrom, Jesica; Richardson, Charles; Goodwin, Robert R; Baehner, Frank; Mendelman, Paul M; Bargatze, Robert F; Baric, Ralph S
2015-03-01
Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an efficacious multivalent NoV VLP vaccine for future use in human populations. ClinicalTrials.gov NCT01168401.
Lindesmith, Lisa C.; Ferris, Martin T.; Mullan, Clancy W.; Ferreira, Jennifer; Debbink, Kari; Swanstrom, Jesica; Richardson, Charles; Goodwin, Robert R.; Baehner, Frank; Mendelman, Paul M.; Bargatze, Robert F.; Baric, Ralph S.
2015-01-01
Background Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. Methods and Findings Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. Conclusions Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an efficacious multivalent NoV VLP vaccine for future use in human populations. Trial Registration ClinicalTrials.gov NCT01168401 PMID:25803642
AFRRI Reports, Fourth Quarter 1991
1992-01-01
Gallin, E. K. Heat induces intracellular acidification in human A-431 cells : role of Na’-H’ exchange and metabolism. SR91-49: MacVittie, T. J., Monroy, R... induced release of DNA front agarose plugs treated with Not I restriction enzyme As above, wild-type and strain 112 cells were exposed to 2 kGy and...times. Ager and co-workers (1990) found that following irradiation of CHO-KI cells , replication forks showed reduced PFGE- induced migration out of the
Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Bonelli, Michael; Lowy, Douglas R.; Schiller, John T.
2014-01-01
The immunocytes that regulate papillomavirus infection and lesion development in humans and animals remain largely undefined. We found that immunocompetent mice with varying H-2 haplotypes displayed asymptomatic skin infection that produced L1 when challenged with 6×1010 MusPV1 virions, the recently identified domestic mouse papillomavirus (also designated “MmuPV1”), but were uniformly resistant to MusPV1-induced papillomatosis. Broad immunosuppression with cyclosporin A resulted in variable induction of papillomas after experimental infection with a similar dose, from robust in Cr:ORL SENCAR to none in C57BL/6 mice, with lesional outgrowth correlating with early viral gene expression and partly with reported strain-specific susceptibility to chemical carcinogens, but not with H-2 haplotype. Challenge with 1×1012 virions in the absence of immunosuppression induced small transient papillomas in Cr:ORL SENCAR but not in C57BL/6 mice. Antibody-induced depletion of CD3+ T cells permitted efficient virus replication and papilloma formation in both strains, providing experimental proof for the crucial role of T cells in controlling papillomavirus infection and associated disease. In Cr:ORL SENCAR mice, immunodepletion of either CD4+ or CD8+ T cells was sufficient for efficient infection and papillomatosis, although deletion of one subset did not inhibit the recruitment of the other subset to the infected epithelium. Thus, the functional cooperation of CD4+ and CD8+ T cells is required to protect this strain. In contrast, C57BL/6 mice required depletion of both CD4+ and CD8+ T cells for infection and papillomatosis, and separate CD4 knock-out and CD8 knock-out C57BL/6 were also resistant. Thus, in C57BL/6 mice, either CD4+ or CD8+ T cell-independent mechanisms exist that can protect this particular strain from MusPV1-associated disease. These findings may help to explain the diversity of pathological outcomes in immunocompetent humans after infection with a specific human papillomavirus genotype. PMID:25121947
Lactobacilli Activate Human Dendritic Cells that Skew T Cells Toward T Helper 1 Polarization
2005-01-06
Species Modulate the Phenotype and Function of MDCs. Previous studies have shown that Lactobacillus plantarum and Lactobacillus rhamnosus can induce...cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded...several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and
Özcan, Ezgi; Sela, David A.
2018-01-01
Human milk contains a high concentration of indigestible oligosaccharides, which likely mediated the coevolution of the nursing infant with its gut microbiome. Specifically, Bifidobacterium longum subsp. infantis (B. infantis) often colonizes the infant gut and utilizes these human milk oligosaccharides (HMOs) to enrich their abundance. In this study, the physiology and mechanisms underlying B. infantis utilization of two HMO isomers lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) was investigated in addition to their carbohydrate constituents. Both LNT and LNnT utilization induced a significant shift in the ratio of secreted acetate to lactate (1.7–2.0) in contrast to the catabolism of their component carbohydrates (~1.5). Inefficient metabolism of LNnT prompts B. infantis to shunt carbon toward formic acid and ethanol secretion. The global transcriptome presents genomic features differentially expressed to catabolize these two HMO species that vary by a single glycosidic linkage. Furthermore, a measure of strain-level variation exists between B. infantis isolates. Regardless of strain, inefficient HMO metabolism induces the metabolic shift toward formic acid and ethanol production. Furthermore, bifidobacterial metabolites reduced LPS-induced inflammation in a cell culture model. Thus, differential metabolism of milk glycans potentially drives the emergent physiology of host-microbial interactions to impact infant health. PMID:29900174
Epidemiologic Consequences of Microvariation in Mycobacterium tuberculosis
Mathema, Barun; Kurepina, Natalia; Yang, Guibin; Shashkina, Elena; Manca, Claudia; Mehaffy, Carolina; Bielefeldt-Ohmann, Helle; Ahuja, Shama; Fallows, Dorothy A.; Izzo, Angelo; Bifani, Pablo; Dobos, Karen; Kaplan, Gilla
2012-01-01
Background. Evidence from genotype-phenotype studies suggests that genetic diversity in pathogens have clinically relevant manifestations that can impact outcome of infection and epidemiologic success. We studied 5 closely related Mycobacterium tuberculosis strains that collectively caused extensive disease (n = 862), particularly among US-born tuberculosis patients. Methods. Representative isolates were selected using population-based genotyping data from New York City and New Jersey. Growth and cytokine/chemokine response were measured in infected human monocytes. Survival was determined in aerosol-infected guinea pigs. Results. Multiple genotyping methods and phylogenetically informative synonymous single nucleotide polymorphisms showed that all strains were related by descent. In axenic culture, all strains grew similarly. However, infection of monocytes revealed 2 growth phenotypes, slower (doubling ∼55 hours) and faster (∼25 hours). The faster growing strains elicited more tumor necrosis factor α and interleukin 1β than the slower growing strains, even after heat killing, and caused accelerated death of infected guinea pigs (∼9 weeks vs 24 weeks) associated with increased lung inflammation/pathology. Epidemiologically, the faster growing strains were associated with human immunodeficiency virus and more limited in spread, possibly related to their inherent ability to induce a strong protective innate immune response in immune competent hosts. Conclusions. Natural variation, with detectable phenotypic changes, among closely related clinical isolates of M. tuberculosis may alter epidemiologic patterns in human populations. PMID:22315279
Khan, M. Nadeem; Coleman, John Robert; Vernatter, Joshua; Varshney, Avanish Kumar; Dufaud, Chad; Pirofski, Liise-anne
2014-01-01
Background. Some Streptococcus pneumoniae serotypes express an ahemolytic pneumolysin (PLYa). Serotypes that commonly express PLYa, including serotype 8 (ST8) and ST1, are often associated with a low prevalence during colonization but a higher propensity to cause invasive disease. We sought to study the host response to ST8 PLYa in a homologous and heterologous capsular background. Methods. We genetically exchanged the PLYa of ST8 strain 6308 with the hemolytic PLY (PLYh) of ST3 A66.1 and vice versa and determined the impact of the exchange on nasopharyngeal colonization in mice. Then, to compare the response of human cells to PLYa-expressing and PLYh-expressing strains, we infected human peripheral blood mononuclear cells (PBMCs) with PLY-switched strains and assessed dendritic cell and CD4+ T-cell responses by intracellular cytokine staining. Result. Mice colonized with PLYa-expressing strains had significantly higher colonization densities than those colonized with PLYh-expressing strains, irrespective of capsular background. Compared with infection of PBMCs with PLYh-expressing strains, infection with PLYa-expressing strains induced diminished innate (dendritic cell cytokines, costimulatory receptor, and apoptotic) and adaptive (CD4+ T-cell proliferative and memory interleukin 17A) responses. Conclusion. Our findings demonstrate that PLYa has the potential to manipulate host immunity irrespective of capsule type. PLY exchange between STs expressing PLYa and PLYh could lead to unexpected colonization or invasion phenotypes. PMID:25001458
Chen, Qian; Pang, Min-Hui; Ye, Xiao-Hong; Yang, Guang; Lin, Chen
2018-05-18
Acute T-lymphocyte leukaemia is a form of haematological malignancy with abnormal activation of NF-κB pathway, which results in high expression of A20 and ABIN1, which constitute a negative feedback mechanism for the regulation of NF-κB activation. Clinical studies have found that acute T-lymphocyte leukaemia patients are susceptible to Toxoplasma gondii infection; however, the effect of T. gondii on the proliferation and apoptosis of human leukaemia T-cells remains unclear. Here, we used the T. gondii ME-49 strain to infect human leukaemia T-cell lines Jurkat and Molt-4, to explore the effect of T. gondii on proliferation and apoptosis, which is mediated by NF-κB in human leukaemia T-cells. The Tunel assay was used to detect cell apoptosis. Cell Counting Kit-8 was used to detect cell proliferation viability. The apoptosis level and the expression level of NF-κB related proteins in human leukaemia T-cells were detected by flow cytometry and Western blotting. Western blotting analyses revealed that the T. gondii ME-49 strain increased the expression of A20 and decreased both ABIN1 expression and NF-κB p65 phosphorylation. By constructing a lentiviral-mediated shRNA to knockdown the A20 gene in Jurkat T-cells and Molt-4 T-cells, the apoptosis levels of the two cell lines decreased after T. gondii ME-49 infection, and levels of NF-κB p65 phosphorylation and ABIN1 were higher than in the non-konckdown group. After knockingdown ABIN1 gene expression by constructing the lentiviral-mediated shRNA and transfecting the recombinant expression plasmid containing the ABIN1 gene into two cell lines, apoptosis levels and cleaved caspase-8 expression increased or decreased in response to T. gondii ME-49 infection, respectively. Our data suggest that ABIN1 protects human leukaemia T-cells by allowing them to resist the apoptosis induced by T. gondii ME-49 and that the T. gondii ME-49 strain induces the apoptosis of human leukaemia T-cells via A20-mediated downregulation of ABIN1 expression.
Wijayalath, Wathsala; Cheesman, Sandra; Tanabe, Kazuyuki; Handunnetti, Shiroma; Carter, Richard; Pathirana, Sisira
2012-01-01
The efficacy of a whole-sporozoite malaria vaccine would partly be determined by the strain-specificity of the protective responses against malarial sporozoites and liver-stage parasites. Evidence from previous reports were inconsistent, where some studies have shown that the protective immunity induced by irradiated or live sporozoites in rodents or humans were cross-protective and in others strain-specific. In the present work, we have studied the strain-specificity of live sporozoite-induced immunity using two genetically and immunologically different strains of Plasmodium cynomolgi, Pc746 and PcCeylon, in toque monkeys. Two groups of monkeys were immunized against live sporozoites of either the Pc746 (n = 5), or the PcCeylon (n = 4) strain, by the bites of 2–4 sporozoite-infected Anopheles tessellates mosquitoes per monkey under concurrent treatments with chloroquine and primaquine to abrogate detectable blood infections. Subsequently, a group of non-immunized monkeys (n = 4), and the two groups of immunized monkeys were challenged with a mixture of sporozoites of the two strains by the bites of 2–5 infective mosquitoes from each strain per monkey. In order to determine the strain-specificity of the protective immunity, the proportions of parasites of the two strains in the challenge infections were quantified using an allele quantification assay, Pyrosequencing™, based on a single nucleotide polymorphism (SNP) in the parasites’ circumsporozoite protein gene. The Pyrosequencing™ data showed that a significant reduction of parasites of the immunizing strain in each group of strain-specifically immunized monkeys had occurred, indicating a stronger killing effect on parasites of the immunizing strain. Thus, the protective immunity developed following a single, live sporozoite/chloroquine immunization, acted specifically against the immunizing strain and was, therefore, strain-specific. As our experiment does not allow us to determine the parasite stage at which the strain-specific protective immunity is directed, it is possible that the target of this immunity could be either the pre-erythrocytic stage, or the blood-stage, or both. PMID:23029282
Krüger, A; Burgán, J; Friedrich, A W; Rossen, J W A; Lucchesi, P M A
2018-06-01
Shiga toxins (Stx) are the main virulence factor of a pathogroup of Escherichia coli strains that cause severe human diseases. These toxins are encoded in prophages (Stx prophages), and generally their expression depends on prophage induction. Several studies have reported high diversity among both Stx prophages and Stx. In particular, the toxin subtype Stx2a is associated with high virulence and HUS. Here, we report the genome of ArgO145, an inducible Stx2a prophage identified in a bovine O145:H- strain which produced high levels of Shiga toxin and Stx phage particles. The ArgO145 genome shared lambda phage organization, with recombination, regulation, replication, lysis, and head and tail structural gene regions, although some lambda genes encoding regulatory proteins could not be identified. Remarkably, some Stx2a phages of strains isolated from patients in other countries showed high similarity to ArgO145. Copyright © 2018 Elsevier B.V. All rights reserved.
Streptococcus mitis Strains Causing Severe Clinical Disease in Cancer Patients
Sahasrabhojane, Pranoti; Saldana, Miguel; Yao, Hui; Su, Xiaoping; Horstmann, Nicola; Thompson, Erika; Flores, Anthony R.
2014-01-01
The genetically diverse viridans group streptococci (VGS) are increasingly recognized as the cause of a variety of human diseases. We used a recently developed multilocus sequence analysis scheme to define the species of 118 unique VGS strains causing bacteremia in patients with cancer; Streptococcus mitis (68 patients) and S. oralis (22 patients) were the most frequently identified strains. Compared with patients infected with non–S. mitis strains, patients infected with S. mitis strains were more likely to have moderate or severe clinical disease (e.g., VGS shock syndrome). Combined with the sequence data, whole-genome analyses showed that S. mitis strains may more precisely be considered as >2 species. Furthermore, we found that multiple S. mitis strains induced disease in neutropenic mice in a dose-dependent fashion. Our data define the prominent clinical effect of the group of organisms currently classified as S. mitis and lay the groundwork for increased understanding of this understudied pathogen. PMID:24750901
Identification of prostate cancer modifier pathways using parental strain expression mapping
Xu, Qing; Majumder, Pradip K.; Ross, Kenneth; Shim, Yeonju; Golub, Todd R.; Loda, Massimo; Sellers, William R.
2007-01-01
Inherited genetic risk factors play an important role in cancer. However, other than the Mendelian fashion cancer susceptibility genes found in familial cancer syndromes, little is known about risk modifiers that control individual susceptibility. Here we developed a strategy, parental strain expression mapping, that utilizes the homogeneity of inbred mice and genome-wide mRNA expression analyses to directly identify candidate germ-line modifier genes and pathways underlying phenotypic differences among murine strains exposed to transgenic activation of AKT1. We identified multiple candidate modifier pathways and, specifically, the glycolysis pathway as a candidate negative modulator of AKT1-induced proliferation. In keeping with the findings in the murine models, in multiple human prostate expression data set, we found that enrichment of glycolysis pathways in normal tissues was associated with decreased rates of cancer recurrence after prostatectomy. Together, these data suggest that parental strain expression mapping can directly identify germ-line modifier pathways of relevance to human disease. PMID:17978178
Translocation of Helicobacter pylori CagA into Gastric Epithelial Cells by Type IV Secretion
NASA Astrophysics Data System (ADS)
Odenbreit, Stefan; Püls, Jürgen; Sedlmaier, Bettina; Gerland, Elke; Fischer, Wolfgang; Haas, Rainer
2000-02-01
The Gram-negative bacterium Helicobacter pylori is a causative agent of gastritis and peptic ulcer disease in humans. Strains producing the CagA antigen (cagA+) induce strong gastric inflammation and are strongly associated with gastric adenocarcinoma and MALT lymphoma. We show here that such strains translocate the bacterial protein CagA into gastric epithelial cells by a type IV secretion system, encoded by the cag pathogenicity island. CagA is tyrosine-phosphorylated and induces changes in the tyrosine phosphorylation state of distinct cellular proteins. Modulation of host cells by bacterial protein translocation adds a new dimension to the chronic Helicobacter infection with yet unknown consequences.
Yasugi, Mayo; Okuzaki, Daisuke; Kuwana, Ritsuko; Takamatsu, Hiromu; Fujita, Masaya; Sarker, Mahfuzur R; Miyake, Masami
2016-05-15
Clostridium perfringens type A is a common source of foodborne illness (FBI) in humans. Vegetative cells sporulate in the small intestinal tract and produce the major pathogenic factor C. perfringens enterotoxin. Although sporulation plays a critical role in the pathogenesis of FBI, the mechanisms inducing sporulation remain unclear. Bile salts were shown previously to induce sporulation, and we confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 cocultured with human intestinal epithelial Caco-2 cells. In the present study, we performed transcriptome analyses of strain NCTC8239 in order to elucidate the mechanism underlying DCA-induced sporulation. Of the 2,761 genes analyzed, 333 were up- or downregulated during DCA-induced sporulation and included genes for cell division, nutrient metabolism, signal transduction, and defense mechanisms. In contrast, the virulence-associated transcriptional regulators (the VirR/VirS system, the agr system, codY, and abrB) were not activated by DCA. DCA markedly increased the expression of signaling molecules controlled by Spo0A, the master regulator of the sporulation process, whereas the expression of spo0A itself was not altered in the presence or absence of DCA. The phosphorylation of Spo0A was enhanced in the presence of DCA. Collectively, these results demonstrated that DCA induced sporulation, at least partially, by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes in strain NCTC8239 while altering the expression of various genes. Disease caused by Clostridium perfringens type A consistently ranks among the most common bacterial foodborne illnesses in humans in developed countries. The sporulation of C. perfringens in the small intestinal tract is a key event for its pathogenesis, but the factors and underlying mechanisms by which C. perfringens sporulates in vivo currently remain unclear. Bile salts, major components of bile, which is secreted from the liver for the emulsification of lipids, were shown to induce sporulation. However, the mechanisms underlying bile salt-induced sporulation have not yet been clarified. In the present study, we demonstrate that deoxycholate (one of the bile salts) induces sporulation by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes using a transcriptome analysis. Thus, this study enhances our understanding of the mechanisms underlying sporulation, particularly that of bile salt-induced sporulation, in C. perfringens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.
Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane
2017-10-06
Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Skin strain patterns provide kinaesthetic information to the human central nervous system.
Edin, B B; Johansson, N
1995-01-01
1. We investigated the contribution of skin strain-related sensory inputs to movement perception and execution in five normal volunteers. The dorsal and palmar skin of the middle phalanx and the proximal interphalangeal (PIP) joint were manipulated to generate specific strain patterns in the proximal part of the index finger. To mask sensations directly related to this manipulation, skin and deeper tissues were blocked distal to the mid-portion of the proximal phalanx of the index finger by local anaesthesia. 2. Subjects were asked to move their normal right index finger either to mimic any perceived movements of the anaesthetized finger or to touch the tip of the insentient finger. 3. All subjects readily reproduced actual movements induced by the experimenter at the anaesthetized PIP joint. However, all subjects also generated flexion movements when the experimenter did not induce actual movement but produced deformations in the sentient proximal skin that were similar to those observed during actual PIP joint flexion. Likewise, the subjects indicated extension movement at the PIP joint when strain patterns corresponding to extension movements were induced. 4. In contrast, when the skin strain in the proximal part of the index finger was damped by a ring applied just proximal to the PIP joint within the anaesthetized skin area, both tested subjects failed to perceive PIP movements that actually took place.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7473253
Lymphocytic choriomeningitis virus (LCMV) infection of macaques: a model for Lassa fever
Zapata, Juan C.; Pauza, C. David; Djavani, Mahmoud M.; Rodas, Juan D.; Moshkoff, Dmitry; Bryant, Joseph; Ateh, Eugene; Garcia, Cybele; Lukashevich, Igor S.; Salvato, Maria S.
2011-01-01
Arenaviruses such as Lassa fever virus (LASV) and lymphocytic choriomeningitis virus (LCMV) are benign in their natural reservoir hosts, and can occasionally cause severe viral hemorrhagic fever (VHF) in non-human primates and in human beings. LCMV is considerably more benign for human beings than Lassa virus, however certain strains, like the LCMV-WE strain, can cause severe disease when the virus is delivered as a high-dose inoculum. Here we describe a rhesus macaque model for Lassa fever that employs a virulent strain of LCMV. Since LASV must be studied within Biosafety Level-4 (BSL-4) facilities, the LCMV-infected macaque model has the advantage that it can be used at BSL-3. LCMV-induced disease is rarely as severe as other VHF, but it is similar in cases where vascular leakage leads to lethal systemic failure. The LCMV-infected macaque has been valuable for describing the course of disease with differing viral strains, doses and routes of infection. By monitoring system-wide changes in physiology and gene expression in a controlled experimental setting, it is possible to identify events that are pathognomonic for developing VHF and potential treatment targets. PMID:21820469
Douglas, Alexander D.; Baldeviano, G. Christian; Lucas, Carmen M.; Lugo-Roman, Luis A.; Crosnier, Cécile; Bartholdson, S. Josefin; Diouf, Ababacar; Miura, Kazutoyo; Lambert, Lynn E.; Ventocilla, Julio A.; Leiva, Karina P.; Milne, Kathryn H.; Illingworth, Joseph J.; Spencer, Alexandra J.; Hjerrild, Kathryn A.; Alanine, Daniel G.W.; Turner, Alison V.; Moorhead, Jeromy T.; Edgel, Kimberly A.; Wu, Yimin; Long, Carole A.; Wright, Gavin J.; Lescano, Andrés G.; Draper, Simon J.
2015-01-01
Summary Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans. PMID:25590760
Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide
Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada
2017-01-01
Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream. PMID:28222125
Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.
Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada
2017-01-01
Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.
Diethylene glycol-induced toxicities show marked threshold dose response in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landry, Greg M., E-mail: Landry.Greg@mayo.edu; Dunning, Cody L., E-mail: cdunni@lsuhsc.edu; Abreo, Fleurette, E-mail: fabreo@lsuhsc.edu
Diethylene glycol (DEG) exposure poses risks to human health because of widespread industrial use and accidental exposures from contaminated products. To enhance the understanding of the mechanistic role of metabolites in DEG toxicity, this study used a dose response paradigm to determine a rat model that would best mimic DEG exposure in humans. Wistar and Fischer-344 (F-344) rats were treated by oral gavage with 0, 2, 5, or 10 g/kg DEG and blood, kidney and liver tissues were collected at 48 h. Both rat strains treated with 10 g/kg DEG had equivalent degrees of metabolic acidosis, renal toxicity (increased BUNmore » and creatinine and cortical necrosis) and liver toxicity (increased serum enzyme levels, centrilobular necrosis and severe glycogen depletion). There was no liver or kidney toxicity at the lower DEG doses (2 and 5 g/kg) regardless of strain, demonstrating a steep threshold dose response. Kidney diglycolic acid (DGA), the presumed nephrotoxic metabolite of DEG, was markedly elevated in both rat strains administered 10 g/kg DEG, but no DGA was present at 2 or 5 g/kg, asserting its necessary role in DEG-induced toxicity. These results indicate that mechanistically in order to produce toxicity, metabolism to and significant target organ accumulation of DGA are required and that both strains would be useful for DEG risk assessments. - Highlights: • DEG produces a steep threshold dose response for kidney injury in rats. • Wistar and F-344 rats do not differ in response to DEG-induced renal injury. • The dose response for renal injury closely mirrors that for renal DGA accumulation. • Results demonstrate the importance of DGA accumulation in producing kidney injury.« less
Zahn, Roland; Gillisen, Gert; Roos, Anna; Koning, Marina; van der Helm, Esmeralda; Spek, Dirk; Weijtens, Mo; Grazia Pau, Maria; Radošević, Katarina; Weverling, Gerrit Jan; Custers, Jerome; Vellinga, Jort; Schuitemaker, Hanneke; Goudsmit, Jaap; Rodríguez, Ariane
2012-01-01
Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years. PMID:23236343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.
Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutationsmore » were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.« less
Krishna, Gopala; Gopalakrishnan, Gopa; Goel, Saryu
2016-05-01
Molindone hydrochloride is a dihydroindolone neuroleptic with dopamine D2 and D5 receptor antagonist activity. As an integral component of its preclinical safety evaluation, molindone hydrochloride was evaluated in a series of in vitro and in vivo genetic toxicology assays. In the bacterial reverse gene mutation assays employing four Salmonella tester strains (TA98, TA100, TA1535, and TA1537) and the E. coli tester strain WP2uvrA, molindone hydrochloride was negative in all strains, except TA100, in which it induced a positive response (up to 3-fold) in the presence of rat liver S9. With human S9, a small (2-fold), but nonreproducible, increase in revertants was observed in TA100 at the highest concentration of molindone tested (5,000 µg/plate). The mutagenicity was completely abrogated by the addition of glutathione and UDP-glucuronic acid to rat liver S9, suggesting detoxification of the mutagenic metabolite(s) by Phase II conjugation reactions, pathways commonly operational in humans. Molindone hydrochloride did not induce chromosomal aberrations in human lymphocyte cultures, did not elicit a positive response in a rat bone marrow micronucleus test for clastogencity/aneugenicity, and did not give a positive response in the rat liver comet assay for DNA damage. Collectively, the weight of evidence from these studies, combined with a large margin of safety and efficient detoxification through Phase II conjugation supports the interpretation that molindone hydrochloride does not pose a genotoxic risk to humans at the anticipated clinical dose levels. © 2016 Wiley Periodicals, Inc.
Senior, D F; deMan, P; Svanborg, C
1992-04-01
Virulence factors were studied in 82 strains of Escherichia coli isolated from the urine of dogs with urinary tract infections. The most frequently expressed O antigens were 2, 4, 6, 25, and 22/83. Most strains were K nontypeable. Mannose-sensitive hemagglutination (MSH) with canine erythrocytes was observed in 71 strains and mannose-resistant hemagglutination (MRH) was observed in 32 strains. Strains that caused MSH of erythrocytes from dogs also caused MSH of erythrocytes from guinea pigs. Most strains that caused MRH of human A1P1 erythrocytes also reacted with erythrocytes of dogs. Of 22 strains (27%) that agglutinated human A1P1 erythrocytes, but not A1p erythrocytes, 17 (77%) had specificity for globo A, but did not react with the galactose alpha 1----4galactose beta disaccharide receptor. The remaining 5 strains and 2 others that simultaneously expressed an X adhesin agglutinated galactose alpha 1----4galactose beta-coated latex beads. Bacterial adherence to canine uroepithelial cells from the bladder was most often observed in strains expressing MSH, less often observed in strains expressing MRH, and least often observed in strains that failed to induce hemagglutination. Adherence of MSH strains to canine uroepithelial cells was inhibited by alpha-methyl-D-mannoside. As a group, MRH strains expressing globo-A- and galactose alpha 1----4galactose beta-specific adhesins did not have strong adherence. Strains of E coli isolated from dogs with urinary tract infections most commonly expressed type-1 fimbriae, and the main mechanism of in vitro adherence to canine uroepithelial cells involved a mannose-sensitive mechanism. Overrepresentation of globo-A-specific adhesins did not appear to be related to adherence of canine uroepithelial cells.
Sangha, Jatinder Singh; Wally, Owen; Banskota, Arjun H; Stefanova, Roumiana; Hafting, Jeff T; Critchley, Alan T; Prithiviraj, Balakrishnan
2015-10-20
We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE), delayed β-amyloid-induced paralysis, whereas the water extract (CCW) was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aβ species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG) that significantly delayed the onset of β-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against β-amyloid-induced toxicity in C. elegans, partly through reduced β-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS).
Wadström, T
1984-08-01
Streptococcus faecium strain M 74 was evaluated as a prophylacticum for enterotoxigenic Escherichia coli (ETEC) diarrhoea with human isolates of E. coli with CFA/I and CFA/II surface fimbrial haemagglutinins (adhesins) in a rabbit model. Young rabbits (3 to 4 days old) were given S. faecium organisms (5 X 10(9)) 15 min before (group A), 6 h before (group B) and 12 h after (group C) challenge with ETEC organisms. Only 4 out of 26 rabbits in group A, 6 out of 21 in group B and 7 out of 23 in group C developed diarrhoea. In conclusion, this S. faecium strain M 74 seems efficiently to protect animals from ETEC diarrhoea when given as a prophylactic agent at a high dose. This animal model seems useful for comparative studies on new preventive methods for ETEC diarrhoea such as testing probiotics and antiadhesive drugs.
Original antigenic sin responses to influenza viruses.
Kim, Jin Hyang; Skountzou, Ioanna; Compans, Richard; Jacob, Joshy
2009-09-01
Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.
Alvarez, Genoveva; Heredia, Norma; García, Santos
2003-12-01
The effects of low pH and human bile juice on Vibrio cholerae were investigated. A mild stress condition (exposure to acid shock at pH 5.5 or exposure to 3 mg of bile per ml for 20 min) slightly decreased (by < or = 1 log unit) V. cholerae cell viability. However, these treatments induced tolerance to subsequent exposures to more severe stress. In the O1 strain, four proteins were induced in response to acid shock (ca. 101, 94, 90, and 75 kDa), whereas only one protein (ca. 101 kDa) was induced in response to acid shock in the O139 strain. Eleven proteins were induced in response to bile shock in the O1 strain (ca. 106, 103, 101, 96, 88, 86, 84, 80, 66, 56, and 46 kDa), whereas only one protein was induced in response to bile shock in the O139 strain (ca. 88 kDa). V. cholerae O1 and O139 cells that had been preexposed to mild acid shock were twofold more resistant to pH 4.5 (with times required to inactivate 90% of the cell population [D-values] of 59 to 73 min) than were control cells (with D-values of 24 to 27 min). Likewise, cells that were preexposed to mild bile shock (3 mg/ml) were almost twofold more tolerant of severe bile shock (30 mg/ml; D-values, 68 to 87 min) than were control cells (with D-values of 37 to 43 min). These protective effects persisted for at least 1 h after the initial shock but were abolished when chloramphenicol was added to the culture during the shock. Cells preexposed to acid shock exhibited cross-protection against subsequent bile shock. However, cells preexposed to bile shock exhibited no changes in acid tolerance. Bile shock induced a modest reduction (0 to 20%) in enterotoxin production in V. cholerae, whereas acid shock had no effect on enterotoxin levels. Adaptation to acid and bile juice and protection against bile shock in response to preexposure to acid shock would be predicted to enhance the survival of V. cholerae in hosts and in foods. Thus, these adaptations may play an important role in the development of cholera disease.
Bhaskaran, Manoj; Cornwell, Paul D; Sorden, Steven D; Elwell, Michael R; Russell, Natalie R; Pritt, Michael L; Vahle, John L
2018-01-01
Inhibitors of Bruton's tyrosine kinase (BTK) are under development as potential therapies for various autoimmune diseases. In repeat-dose toxicity studies, small-molecule BTK inhibitors (BTKi) have been reported to cause a constellation of histologic effects at the pancreatic endocrine-exocrine interface in male rats; however, similar findings were not reported in other species. Since the BTKi-induced pancreatic effect is morphologically similar to well-documented spontaneous changes (predominantly characterized by insular/peri-insular hemorrhage, pigment deposition, chronic inflammation, and fibrosis) that are known to vary by rat strain, we investigated potential strain-dependent differences in the pancreatic effects of a small-molecule BTKi, LY3337641. Following 13 weeks of LY3337641 treatment, Crl:CD(SD) rats were most sensitive, Crl:WI(Han) rats were of intermediate sensitivity, and Hsd:SD rats were least sensitive. These strain differences appear to be related to differences in rate of weight gain across strains and sexes; however, a definitive mechanism was not determined. This study demonstrated that BTKi-induced pancreatic effects were highly dependent on rat strain and correlated with differences in the incidence and severity of the spontaneous background change. When considered with the lack of pancreas effects in nonrat species, these changes in rats are unlikely predictive of similar changes in humans administered a BTK inhibitor.
Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines
2011-01-01
Food-grade Lactic Acid Bacteria (LAB) have been safely consumed for centuries by humans in fermented foods. Thus, they are good candidates to develop novel oral vectors, constituting attractive alternatives to attenuated pathogens, for mucosal delivery strategies. Herein, this review summarizes our research, up until now, on the use of LAB as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Most of our work has been based on the model LAB Lactococcus lactis, for which we have developed efficient genetic tools, including expression signals and host strains, for the heterologous expression of therapeutic proteins such as antigens, cytokines and enzymes. Resulting recombinant lactococci strains have been tested successfully for their prophylactic and therapeutic effects in different animal models: i) against human papillomavirus type 16 (HPV-16)-induced tumors in mice, ii) to partially prevent a bovine β-lactoglobulin (BLG)-allergic reaction in mice and iii) to regulate body weight and food consumption in obese mice. Strikingly, all of these tools have been successfully transposed to the Lactobacillus genus, in recent years, within our laboratory. Notably, anti-oxidative Lactobacillus casei strains were constructed and tested in two chemically-induced colitis models. In parallel, we also developed a strategy based on the use of L. lactis to deliver DNA at the mucosal level, and were able to show that L. lactis is able to modulate the host response through DNA delivery. Today, we consider that all of our consistent data, together with those obtained by other groups, demonstrate and reinforce the interest of using LAB, particularly lactococci and lactobacilli strains, to develop novel therapeutic protein mucosal delivery vectors which should be tested now in human clinical trials. PMID:21995317
DUBEY, J.P.; FERREIRA, L. R.; MARTINS, J.; MCLEOD, RIMA
2013-01-01
SUMMARY Humans and other hosts acquire Toxoplasma gondii infection by ingesting tissue cysts in undercooked meat, or by food or drink contaminated with oocysts. Currently, there is no vaccine to prevent clinical disease due this parasite in humans, although, various T. gondii vaccine candidates are being developed. Mice are generally used to test the protective efficacy of vaccines because they are susceptible, reagents are available to measure immune parameters, in mice, and they are easily managed in the laboratory. In the present study, pathogenesis of toxoplasmosis was studied in mice of different strains, including Human leukocyte antigen(HLA) transgenic mice infected with different doses of T. gondii strains of different genotypes derived from several countries. Based on many experiments, the decreasing order of infectivity and pathogenicity of oocysts was: interferon gamma gene knock out (KO), HLA 3.11, HLA 2.1, HLA B7, Swiss Webster, C57/black, and BALB/c. Mice fed as few as 1 oocyst of Type I and several atypical strains died of acute toxoplasmosis within 21 days p.i. Type II, and III strains were less virulent. The model developed herein should prove to be extremely useful for testing vaccines because it is possible to accurately quantitate a challenge inoculum, test response to different strains of T. gondii using the same preparations of oocysts which are stable for up to a year, and to have highly reproducible responses to the infection. PMID:22078010
Serrano, Rachel; González-Menéndez, Víctor; Rodríguez, Lorena; Martín, Jesús; Tormo, José R; Genilloud, Olga
2017-01-01
New fungal SMs (SMs) have been successfully described to be produced by means of in vitro -simulated microbial community interactions. Co-culturing of fungi has proved to be an efficient way to induce cell-cell interactions that can promote the activation of cryptic pathways, frequently silent when the strains are grown in laboratory conditions. Filamentous fungi represent one of the most diverse microbial groups known to produce bioactive natural products. Triggering the production of novel antifungal compounds in fungi could respond to the current needs to fight health compromising pathogens and provide new therapeutic solutions. In this study, we have selected the fungus Botrytis cinerea as a model to establish microbial interactions with a large set of fungal strains related to ecosystems where they can coexist with this phytopathogen, and to generate a collection of extracts, obtained from their antagonic microbial interactions and potentially containing new bioactive compounds. The antifungal specificity of the extracts containing compounds induced after B. cinerea interaction was determined against two human fungal pathogens ( Candida albicans and Aspergillus fumigatus ) and three phytopathogens ( Colletotrichum acutatum , Fusarium proliferatum , and Magnaporthe grisea ). In addition, their cytotoxicity was also evaluated against the human hepatocellular carcinoma cell line (HepG2). We have identified by LC-MS the production of a wide variety of known compounds induced from these fungal interactions, as well as novel molecules that support the potential of this approach to generate new chemical diversity and possible new therapeutic agents.
Seib, Kate L; Brunelli, Brunella; Brogioni, Barbara; Palumbo, Emmanuelle; Bambini, Stefania; Muzzi, Alessandro; DiMarcello, Federica; Marchi, Sara; van der Ende, Arie; Aricó, Beatrice; Savino, Silvana; Scarselli, Maria; Comanducci, Maurizio; Rappuoli, Rino; Giuliani, Marzia M; Pizza, Mariagrazia
2011-02-01
Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.
NASA Technical Reports Server (NTRS)
Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.
1997-01-01
Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.
Belikov, Sergei I.; Kondratov, Ilya G.; Potapova, Ulyana V.; Leonova, Galina N.
2014-01-01
Tick-borne encephalitis virus (TBEV) is transmitted to vertebrates by taiga or forest ticks through bites, inducing disease of variable severity. The reasons underlying these differences in the severity of the disease are unknown. In order to identify genetic factors affecting the pathogenicity of virus strains, we have sequenced and compared the complete genomes of 34 Far-Eastern subtype (FE) TBEV strains isolated from patients with different disease severity (Primorye, the Russian Far East). We analyzed the complete genomes of 11 human pathogenic strains isolated from the brains of dead patients with the encephalitic form of the disease (Efd), 4 strains from the blood of patients with the febrile form of TBE (Ffd), and 19 strains from patients with the subclinical form of TBE (Sfd). On the phylogenetic tree, pathogenic Efd strains formed two clusters containing the prototype strains, Senzhang and Sofjin, respectively. Sfd strains formed a third separate cluster, including the Oshima strain. The strains that caused the febrile form of the disease did not form a separate cluster. In the viral proteins, we found 198 positions with at least one amino acid residue substitution, of which only 17 amino acid residue substitutions were correlated with the variable pathogenicity of these strains in humans and they authentically differed between the groups. We considered the role of each amino acid substitution and assumed that the deletion of 111 amino acids in the capsid protein in combination with the amino acid substitutions R16K and S45F in the NS3 protease may affect the budding process of viral particles. These changes may be the major reason for the diminished pathogenicity of TBEV strains. We recommend Sfd strains for testing as attenuation vaccine candidates. PMID:24740396
Marchès, Olivier; Nougayrède, Jean-Philippe; Boullier, Séverine; Mainil, Jacques; Charlier, Gérard; Raymond, Isabelle; Pohl, Pierre; Boury, Michèle; De Rycke, Jean; Milon, Alain; Oswald, Eric
2000-01-01
Attaching and effacing (A/E) rabbit enteropathogenic Escherichia coli (REPEC) strains belonging to serogroup O103 are an important cause of diarrhea in weaned rabbits. Like human EPEC strains, they possess the locus of enterocyte effacement clustering the genes involved in the formation of the A/E lesions. In addition, pathogenic REPEC O103 strains produce an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton characterized by the formation of focal adhesion complexes and the reorganization of the actin cytoskeleton into bundles of stress fibers. To investigate the role of intimin and its translocated coreceptor (Tir) in the pathogenicity of REPEC, we have used a newly constructed isogenic tir null mutant together with a previously described eae null mutant. When human HeLa epithelial cells were infected, the tir mutant was still able to induce the formation of stress fibers as previously reported for the eae null mutant. When the rabbit epithelial cell line RK13 was used, REPEC O103 produced a classical fluorescent actin staining (FAS) effect, whereas both the eae and tir mutants were FAS negative. In a rabbit ligated ileal loop model, neither mutant was able to induce A/E lesions. In contrast to the parental strain, which intimately adhered to the enterocytes and destroyed the brush border microvilli, bacteria of both mutants were clustered in the mucus without reaching and damaging the microvilli. The role of intimin and Tir was then analyzed in vivo by oral inoculation of weaned rabbits. Although both mutants were still present in the intestinal flora of the rabbits 3 weeks after oral inoculation, neither mutant strain induced any clinical signs or significant weight loss in the inoculated rabbits whereas the parental strain caused the death of 90% of the inoculated rabbits. Nevertheless, an inflammatory infiltrate was present in the lamina propria of the rabbits infected with both mutants, with an inflammatory response greater for the eae null mutant. In conclusion, we have confirmed the role of intimin in virulence, and we have shown, for the first time, that Tir is also a key factor in vivo for pathogenicity. PMID:10722617
Marchès, O; Nougayrède, J P; Boullier, S; Mainil, J; Charlier, G; Raymond, I; Pohl, P; Boury, M; De Rycke, J; Milon, A; Oswald, E
2000-04-01
Attaching and effacing (A/E) rabbit enteropathogenic Escherichia coli (REPEC) strains belonging to serogroup O103 are an important cause of diarrhea in weaned rabbits. Like human EPEC strains, they possess the locus of enterocyte effacement clustering the genes involved in the formation of the A/E lesions. In addition, pathogenic REPEC O103 strains produce an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton characterized by the formation of focal adhesion complexes and the reorganization of the actin cytoskeleton into bundles of stress fibers. To investigate the role of intimin and its translocated coreceptor (Tir) in the pathogenicity of REPEC, we have used a newly constructed isogenic tir null mutant together with a previously described eae null mutant. When human HeLa epithelial cells were infected, the tir mutant was still able to induce the formation of stress fibers as previously reported for the eae null mutant. When the rabbit epithelial cell line RK13 was used, REPEC O103 produced a classical fluorescent actin staining (FAS) effect, whereas both the eae and tir mutants were FAS negative. In a rabbit ligated ileal loop model, neither mutant was able to induce A/E lesions. In contrast to the parental strain, which intimately adhered to the enterocytes and destroyed the brush border microvilli, bacteria of both mutants were clustered in the mucus without reaching and damaging the microvilli. The role of intimin and Tir was then analyzed in vivo by oral inoculation of weaned rabbits. Although both mutants were still present in the intestinal flora of the rabbits 3 weeks after oral inoculation, neither mutant strain induced any clinical signs or significant weight loss in the inoculated rabbits whereas the parental strain caused the death of 90% of the inoculated rabbits. Nevertheless, an inflammatory infiltrate was present in the lamina propria of the rabbits infected with both mutants, with an inflammatory response greater for the eae null mutant. In conclusion, we have confirmed the role of intimin in virulence, and we have shown, for the first time, that Tir is also a key factor in vivo for pathogenicity.
Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets.
Wang, Yuhuan; Azevedo, Marli; Saif, Linda J; Gentsch, Jon R; Glass, Roger I; Jiang, Baoming
2010-07-26
Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine. Published by Elsevier Ltd.
Ascough, Stephanie; Paterson, Suzanna; Chiu, Christopher
2018-01-01
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines. PMID:29552008
Hernandez Pando, Rogelio; Aguilar, Leon Diana; Smith, Issar; Manganelli, Riccardo
2010-07-01
Tuberculosis is still one of the main challenges to human global health, leading to about two million deaths every year. One of the reasons for its success is the lack of efficacy of the widely used vaccine Mycobacterium bovis BCG. In this article, we analyze the potential use of an attenuated mutant of Mycobacterium tuberculosis H37Rv lacking the sigma factor sigma(E) as a live vaccine. We have demonstrated that BALB/c mice infected by the intratracheal route with this mutant strain showed significantly higher survival rates and less tissue damage than animals infected with the parental or complemented mutant strain. Although animals infected with the sigE mutant had low bacillary loads, their lungs showed significantly higher production of the protective factors gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), and beta-defensins than those of animals infected with the parental or complemented mutant strain. Moreover, we demonstrate that the sigE mutant, when inoculated subcutaneously, was more attenuated than BCG in immunodeficient nude mice, thus representing a good candidate for a novel attenuated live vaccine strain. Finally, when we used the sigE mutant as a subcutaneous vaccine, it was able to induce a higher level of protection than did BCG with both H37Rv and a highly virulent strain of M. tuberculosis (Beijing code 9501000). Taken together, our findings suggest that the sigE mutant is a very promising strain for the development of a new vaccine against tuberculosis.
Norris, Michael H.; Schweizer, Herbert P.
2017-01-01
Burkholderia pseudomallei (Bp) causes the disease melioidosis. The main cause of mortality in this disease is septic shock triggered by the host responding to lipopolysaccharide (LPS) components of the Gram-negative outer membrane. Bp LPS is thought to be a weak inducer of the host immune system. LPS from several strains of Bp were purified and their ability to induce the inflammatory mediators TNF-α and iNOS in murine macrophages at low concentrations was investigated. Innate and adaptive immunity qPCR arrays were used to profile expression patterns of 84 gene targets in response to the different LPS types. Additional qPCR validation confirmed large differences in macrophage response. LPS from a high-virulence serotype B strain 576a and a virulent rough central nervous system tropic strain MSHR435 greatly induced the innate immune response indicating that the immunopathogenesis of these strains is different than in infections with strains similar to the prototype strain 1026b. The accumulation of autophagic vesicles was also increased in macrophages challenged with highly immunogenic Bp LPS. Gene induction and concomitant cytokine secretion profiles of human PBMCs in response to the various LPS were also investigated. MALDI-TOF/TOF was used to probe the lipid A portions of the LPS, indicating substantial structural differences that likely play a role in host response to LPS. These findings add to the evolving knowledge of host-response to bacterial LPS, which can be used to better understand septic shock in melioidosis patients and in the rational design of vaccines. PMID:28453531
Rao, Martin; Vogelzang, Alexis; Kaiser, Peggy; Schuerer, Stefanie; Kaufmann, Stefan H. E.; Gengenbacher, Martin
2013-01-01
Bacillus Calmette–Guérin (BCG), the only approved tuberculosis vaccine, provides only limited protection. Previously, we generated a recombinant derivative (BCG ΔureC::hly), which secretes the pore-forming toxin listeriolysin O (LLO) of Listeria monocytogenes. This vaccine shows superior protection against tuberculosis in preclinical models and is safe in humans. Here we describe two new vaccine strains which express human interleukin-7 (hIL)-7 or hIL-18 in the genetic background of BCG ΔureC::hly to modulate specific T cell immunity. Both strains exhibited an uncompromised in vitro growth pattern, while inducing a proinflammatory cytokine profile in human dendritic cells (DCs). Human DCs harbouring either strain efficiently promoted secretion of IL-2 by autologous T cells in a coculture system, suggesting superior immunogenicity. BALB/c mice vaccinated with BCG ΔureC::hly, BCG ΔureC::hly_hIL7 or BCG ΔureC::hly_hIL18 developed a more robust Th1 response than after vaccination with parental BCG. Both strains provided significantly better protection than BCG in a murine Mycobacterium tuberculosis challenge model but efficacy remained comparable to that afforded by BCG ΔureC::hly. We conclude that expression of hIL-7 or hIL-18 enhanced specific T cell responses but failed to improve protection over BCG ΔureC::hly in mice. PMID:24236077
Study of probiotic potential of four wild Lactobacillus rhamnosus strains.
Tuo, Yanfeng; Zhang, Weiqin; Zhang, Lanwei; Ai, Lianzhong; Zhang, Yingchun; Han, Xue; Yi, Huaxi
2013-06-01
The four wild Lactobacillus rhamnosus strains were examined in vitro for resistance to simulated gastro and intestinal juices, adhesion to HT-29 cells, antagonistic activity against enteric pathogens and immunomodulating activity. The strains L. rhamnosus SB5L, J5L and IN1L were able to survive in simulated gastro juice while the strain L. rhamnosus SB31L lost viability exposed to simulated gastro juice for 3 h. The four strains had high viability in simulated small intestinal juice with little loss (<1.0 cycle reduction). The strains SB5L, J5L and IN1L antagonized against Escherichia coli ATCC 25922, Salmonella enterica serovar Typhimurium ATCC 14028, Shigella sonnei ATCC 25931. The strain L. rhamnosus IN1L had the highest adhesive capability to HT-29 cells in vitro (251 bacteria cells per 100 HT-29 cells) compared to the other three L. rhamnosus strains. The live bacteria, cell wall and DNA of the four L. rhamnosus induced the secretion of pro-inflammatory cytokines IL-12 (p70), IFN-γ and TNF-α by human peripheral blood mononuclear cells (PBMCs). The levels of IL-12 (p70), IFN-γ and TNF-α produced by stimulated PBMCs were significantly higher (P < 0.05) than those of the control. Those data indicated that the four L. rhamnosus strains have the potential as the probiotic for human being use, although further studies are still needed. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.
1999-01-01
Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576
Innate immune response to Mycobacterium tuberculosis Beijing and other genotypes.
Wang, Chongzhen; Peyron, Pascale; Mestre, Olga; Kaplan, Gilla; van Soolingen, Dick; Gao, Qian; Gicquel, Brigitte; Neyrolles, Olivier
2010-10-25
As a species, Mycobacterium tuberculosis is more diverse than previously thought. In particular, the Beijing family of M. tuberculosis strains is spreading and evaluating throughout the world and this is giving rise to public health concerns. Genetic diversity within this family has recently been delineated further and a specific genotype, called Bmyc10, has been shown to represent over 60% of all Beijing clinical isolates in several parts of the world. How the host immune system senses and responds to various M. tuberculosis strains may profoundly influence clinical outcome and the relative epidemiological success of the different mycobacterial lineages. We hypothesised that the success of the Bmyc10 group may, at least in part, rely upon its ability to alter innate immune responses and the secretion of cytokines and chemokines by host phagocytes. We infected human macrophages and dendritic cells with a collection of genetically well-defined M. tuberculosis clinical isolates belonging to various mycobacterial families, including Beijing. We analyzed cytokine and chemokine secretion on a semi-global level using antibody arrays allowing the detection of sixty-five immunity-related soluble molecules. Our data indicate that Beijing strains induce significantly less interleukin (IL)-6, tumor necrosis factor (TNF), IL-10 and GRO-α than the H37Rv reference strain, a feature that is variously shared by other modern and ancient M. tuberculosis families and which constitutes a signature of the Beijing family as a whole. However, Beijing strains did not differ relative to each other in their ability to modulate cytokine secretion. Our results confirm and expand upon previous reports showing that M. tuberculosis Beijing strains in general are poor in vitro cytokine inducers in human phagocytes. The results suggest that the epidemiological success of the Beijing Bmyc10 is unlikely to rely upon any specific ability of this group of strains to impair anti-mycobacterial innate immunity.
An All-Silk-Derived Dual-Mode E-skin for Simultaneous Temperature-Pressure Detection.
Wang, Chunya; Xia, Kailun; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying
2017-11-15
Flexible skin-mimicking electronics are highly desired for development of smart human-machine interfaces and wearable human-health monitors. Human skins are able to simultaneously detect different information, such as touch, friction, temperature, and humidity. However, due to the mutual interferences of sensors with different functions, it is still a big challenge to fabricate multifunctional electronic skins (E-skins). Herein, a combo temperature-pressure E-skin is reported through assembling a temperature sensor and a strain sensor in both of which flexible and transparent silk-nanofiber-derived carbon fiber membranes (SilkCFM) are used as the active material. The temperature sensor presents high temperature sensitivity of 0.81% per centigrade. The strain sensor shows an extremely high sensitivity with a gauge factor of ∼8350 at 50% strain, enabling the detection of subtle pressure stimuli that induce local strain. Importantly, the structure of the SilkCFM in each sensor is designed to be passive to other stimuli, enabling the integrated E-skin to precisely detect temperature and pressure at the same time. It is demonstrated that the E-skin can detect and distinguish exhaling, finger pressing, and spatial distribution of temperature and pressure, which cannot be realized using single mode sensors. The remarkable performance of the silk-based combo temperature-pressure sensor, together with its green and large-scalable fabrication process, promising its applications in human-machine interfaces and soft electronics.
The β-Hemolysin and Intracellular Survival of Streptococcus agalactiae in Human Macrophages
Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara
2013-01-01
S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches. PMID:23593170
The β-hemolysin and intracellular survival of Streptococcus agalactiae in human macrophages.
Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara
2013-01-01
S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.
The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans
Zheng, Ming; Zhang, Haili; Dill, David L.; Clark, J. David; Tu, Susan; Yablonovitch, Arielle L.; Tan, Meng How; Zhang, Rui; Rujescu, Dan; Wu, Manhong; Tessarollo, Lino; Vieira, Wilfred; Gottesman, Michael M.; Deng, Suhua; Eberlin, Livia S.; Zare, Richard N.; Billard, Jean-Martin; Gillet, Jean-Pierre; Li, Jin Billy; Peltz, Gary
2015-01-01
Background We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study. Methods and Findings A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered. Conclusions ABCB5 alleles alter susceptibility to HIT in mouse and humans. This discovery leads to a new model that (at least in part) explains inter-individual differences in susceptibility to a drug-induced CNS toxicity. PMID:25647612
Air puff-induced 22-kHz calls in F344 rats.
Inagaki, Hideaki; Sato, Jun
2016-03-01
Air puff-induced ultrasonic vocalizations in adult rats, termed "22-kHz calls," have been applied as a useful animal model to develop psychoneurological and psychopharmacological studies focusing on human aversive affective disorders. To date, all previous studies on air puff-induced 22-kHz calls have used outbred rats. Furthermore, newly developed gene targeting technologies, which are essential for further advancement of biomedical experiments using air puff-induced 22-kHz calls, have enabled the production of genetically modified rats using inbred rat strains. Therefore, we considered it necessary to assess air puff-induced 22-kHz calls in inbred rats. In this study, we assessed differences in air puff-induced 22-kHz calls between inbred F344 rats and outbred Wistar rats. Male F344 rats displayed similar total (summed) duration of air puff-induced 22 kHz vocalizations to that of male Wistar rats, however, Wistar rats emitted fewer calls of longer duration, while F344 rats emitted higher number of vocalizations of shorter duration. Additionally, female F344 rats emitted fewer air puff-induced 22-kHz calls than did males, thus confirming the existence of a sex difference that was previously reported for outbred Wistar rats. The results of this study could confirm the reliability of air puff stimulus for induction of a similar amount of emissions of 22-kHz calls in different rat strains, enabling the use of air puff-induced 22-kHz calls in inbred F344 rats and derived genetically modified animals in future studies concerning human aversive affective disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Differential Virulence and Pathogenesis of West Nile Viruses
Donadieu, Emilie; Bahuon, Céline; Lowenski, Steeve; Zientara, Stéphan; Coulpier, Muriel; Lecollinet, Sylvie
2013-01-01
West Nile virus (WNV) is a neurotropic flavivirus that cycles between mosquitoes and birds but that can also infect humans, horses, and other vertebrate animals. In most humans, WNV infection remains subclinical. However, 20%–40% of those infected may develop WNV disease, with symptoms ranging from fever to meningoencephalitis. A large variety of WNV strains have been described worldwide. Based on their genetic differences, they have been classified into eight lineages; the pathogenic strains belong to lineages 1 and 2. Ten years ago, Beasley et al. (2002) found that dramatic differences exist in the virulence and neuroinvasion properties of lineage 1 and lineage 2 WNV strains. Further insights on how WNV interacts with its hosts have recently been gained; the virus acts either at the periphery or on the central nervous system (CNS), and these observed differences could help explain the differential virulence and neurovirulence of WNV strains. This review aims to summarize the current state of knowledge on factors that trigger WNV dissemination and CNS invasion as well as on the inflammatory response and CNS damage induced by WNV. Moreover, we will discuss how WNV strains differentially interact with the innate immune system and CNS cells, thus influencing WNV pathogenesis. PMID:24284878
Differential virulence and pathogenesis of West Nile viruses.
Donadieu, Emilie; Bahuon, Céline; Lowenski, Steeve; Zientara, Stéphan; Coulpier, Muriel; Lecollinet, Sylvie
2013-11-22
West Nile virus (WNV) is a neurotropic flavivirus that cycles between mosquitoes and birds but that can also infect humans, horses, and other vertebrate animals. In most humans, WNV infection remains subclinical. However, 20%-40% of those infected may develop WNV disease, with symptoms ranging from fever to meningoencephalitis. A large variety of WNV strains have been described worldwide. Based on their genetic differences, they have been classified into eight lineages; the pathogenic strains belong to lineages 1 and 2. Ten years ago, Beasley et al. (2002) found that dramatic differences exist in the virulence and neuroinvasion properties of lineage 1 and lineage 2 WNV strains. Further insights on how WNV interacts with its hosts have recently been gained; the virus acts either at the periphery or on the central nervous system (CNS), and these observed differences could help explain the differential virulence and neurovirulence of WNV strains. This review aims to summarize the current state of knowledge on factors that trigger WNV dissemination and CNS invasion as well as on the inflammatory response and CNS damage induced by WNV. Moreover, we will discuss how WNV strains differentially interact with the innate immune system and CNS cells, thus influencing WNV pathogenesis.
Nagata, E; Oho, T
2017-04-01
Streptococcus mutans, the primary etiologic agent of dental caries, can gain access to the bloodstream and has been associated with cardiovascular disease. However, the roles of S. mutans in inflammation in cardiovascular disease remain unclear. The aim of this study was to examine cytokine production induced by S. mutans in human aortic endothelial cells (HAECs) and to evaluate the participation of toll-like receptors (TLRs) and cytoplasmic nucleotide-binding oligomerization domain (NOD) -like receptors in HAECs. Cytokine production by HAECs was determined using enzyme-linked immunosorbent assays, and the expression of TLRs and NOD-like receptors was evaluated by real-time polymerase chain reaction, flow cytometry and immunocytochemistry. The involvement of TLR2 and NOD2 in cytokine production by invaded HAECs was examined using RNA interference. The invasion efficiencies of S. mutans strains were evaluated by means of antibiotic protection assays. Five of six strains of S. mutans of various serotypes induced interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production by HAECs. All S. mutans strains upregulated TLR2 and NOD2 mRNA levels in HAECs. Streptococcus mutans Xc upregulated the intracellular TLR2 and NOD2 protein levels in HAECs. Silencing of the TLR2 and NOD2 genes in HAECs invaded by S. mutans Xc led to a reduction in interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production. Cytokine production induced by invasive S. mutans via intracellular TLR2 and NOD2 in HAECs may be associated with inflammation in cardiovascular disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Novel approach to the behavioural characterization of inbred mice: automated home cage observations.
de Visser, L; van den Bos, R; Kuurman, W W; Kas, M J H; Spruijt, B M
2006-08-01
Here we present a newly developed tool for continuous recordings and analysis of novelty-induced and baseline behaviour of mice in a home cage-like environment. Aim of this study was to demonstrate the strength of this method by characterizing four inbred strains of mice, C57BL/6, DBA/2, C3H and 129S2/Sv, on locomotor activity. Strains differed in circadian rhythmicity, novelty-induced activity and the time-course of specific behavioural elements. For instance, C57BL/6 and DBA/2 mice showed a much faster decrease in activity over time than C3H and 129S2/Sv mice. Principal component analysis revealed two major factors within locomotor activity, which were defined as 'level of activity' and 'velocity/stops'. These factors were able to distinguish strains. Interestingly, mice that displayed high levels of activity in the initial phase of the home cage test were also highly active during an open-field test. Velocity and the number of stops during movement correlated positively with anxiety-related behaviour in the elevated plus maze. The use of an automated home cage observation system yields temporal changes in elements of locomotor activity with an advanced level of spatial resolution. Moreover, it avoids the confounding influence of human intervention and saves time-consuming human observations.
Le, Saasha; Martin, Zachary C; Samuelson, David J
2017-06-07
Human breast and rat mammary cancer susceptibility are complex phenotypes where complete sets of risk associated loci remain to be identified for both species. We tested multiple congenic rat strains to physically confirm and positionally map rat Mammary carcinoma susceptibility 3 ( Mcs3 )-a mammary cancer resistance allele previously predicted at Rattus norvegicus chromosome 1 ( RNO1 ). The mammary cancer susceptible Wistar Furth (WF) strain was the recipient, and the mammary cancer resistant Copenhagen (Cop) strain was the RNO1 -segment donor for congenics. Inbred WF females averaged 6.3 carcinogen-induced mammary carcinomas per rat. Two WF.Cop congenic strains averaged 2.8 and 3.4 mammary carcinomas per rat, which confirmed Mcs3 as an independently acting allele. Two other WF.Cop congenic strains averaged 6.6 and 8.1 mammary carcinomas per rat, and, thus, did not contain Mcs3 Rat Mcs3 was delimited to 27.8 Mb of RNO1 from rs8149408 to rs105131702 ( RNO1 :143700228-171517317 of RGSC 6.0/rn6). Human genetic variants with p values for association to breast cancer risk below 10 -7 had not been reported for Mcs3 orthologous loci; however, human variants located in Mcs3 -orthologous regions with potential association to risk (10 -7 < p < 10 -3 ) were listed in some population-based studies. Further, rat Mcs3 contains sequence orthologous to human 11q13/14 -a region frequently amplified in female breast cancer. We conclude that Mcs3 is an independently acting mammary carcinoma resistance allele. Human population-based, genome-targeted association studies interrogating Mcs3 orthologous loci may yield novel breast cancer risk associated variants and genes. Copyright © 2017 Le et al.
Whole exome sequencing of an asbestos-induced wild-type murine model of malignant mesothelioma.
Sneddon, Sophie; Patch, Ann-Marie; Dick, Ian M; Kazakoff, Stephen; Pearson, John V; Waddell, Nicola; Allcock, Richard J N; Holt, Robert A; Robinson, Bruce W S; Creaney, Jenette
2017-06-02
Malignant mesothelioma (MM) is an aggressive cancer of the pleural and peritoneal cavities caused by exposure to asbestos. Asbestos-induced mesotheliomas in wild-type mice have been used extensively as a preclinical model because they are phenotypically identical to their human counterpart. However, it is not known if the genetic lesions in these mice tumours are similar to in the human disease, a prerequisite for any new preclinical studies that target genetic abnormalities. We performed whole exome sequencing of fifteen asbestos-induced murine MM tumour cell lines from BALB/c, CBA and C57BL/6 mouse strains and compared the somatic mutations and copy number variations with those recurrently reported in human MM. We then catalogued and characterised the mutational landscape of the wild-type murine MM tumours. Quantitative RT-PCR was used to interrogate the expression of key MM genes of interest in the mRNA. Consistent with human MM tumours, we identified homozygous loss of the tumour suppressor Cdkn2a in 14/15 tumours. One tumour retained the first exon of both of the p16INK4a and p19ARF isoforms though this tumour also contained genetic amplification of Myc resulting in increased expression of the c-Myc proto-oncogene in the mRNA. There were no chromosomal losses in either the Bap1 or Nf2 regions. One tumour harbored homozygous loss of Trp53 in the DNA. Mutation rates were similar in tumours generated in the CBA and C57BL/6 strains when compared to human MM. Interestingly, all BALB/c tumour lines displayed high mutational loads, consistent with the known mutator phenotype of the host strain. The Wnt, MAPK and Jak-STAT signaling pathways were found to be the most commonly affected biological pathways. Mutations and copy number deletions also occurred in the Hedgehog and Hippo pathways. These data suggest that in the wild-type murine model asbestos causes mesotheliomas in a similar way to in human MM. This further supports the notion that the murine model of MM represents a genuine homologue of the human disease, something uncommon in cancer, and is thus a valuable tool to provide insight into MM tumour development and to aide the search for novel therapeutic strategies.
Vidal, Jorge E; Enríquez-Rincón, Fernando; Giono-Cerezo, Silvia; Ribas-Aparicio, Rosa María; Figueroa-Arredondo, Paula
2009-01-01
To investigate whether the HlyA-induced vacuolating effect is produced by V. cholerae O1 ElTor strains isolated from different geographic origins, including Mexico. Supernatant-induced haemolysis, vacuolating activity and cytotoxicity in Vero cells were recorded. PCR, RFLP analysis and molecular cloning were performed. All ElTor strains analyzed induced cellular vacuolation. Ribotype 2 strains isolates from the U.S. gulf coast yielded the highest titer of vacuolating activity. Eight of nine strains were haemolytic, while all strains were PCR positive for the hlyA gene. We cloned the hlyA gene from two ElTor strains, a toxigenic (2514-88, ctxAB+) and a non-toxigenic Mexican strain (CM 91-3, ctxAB-). Supernatant from those recombinant E. coli strains induced haemolysis, cell vacuolation and cytotoxicity. RFLP-PCR analysis revealed similarities in the hlyA gene from all strains tested. The HlyA-induced vacuolating effect is a widespread phenotype of epidemic V. cholerae O1 ElTor strains.
Beijing Sublineages of Mycobacterium tuberculosis Differ in Pathogenicity in the Guinea Pig
Shanley, Crystal A.; Ackart, David; Jarlsberg, Leah G.; Shang, Shaobin; Obregon-Henao, Andres; Harton, Marisabel; Basaraba, Randall J.; Henao-Tamayo, Marcela; Barrozo, Joyce C.; Rose, Jordan; Kawamura, L. Masae; Coscolla, Mireia; Fofanov, Viacheslav Y.; Koshinsky, Heather; Gagneux, Sebastien; Hopewell, Philip C.; Ordway, Diane J.; Orme, Ian M.
2012-01-01
The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, we tested representative strains with the characteristic Beijing spoligotype from four of the five sublineages of lineage 2 in the guinea pig model and subjected these strains to comparative whole-genome sequencing. The results of these studies showed that all of the clinical strains were capable of growing and causing lung pathology in guinea pigs after low-dose aerosol exposure. Differences between the abilities of the four sublineages to grow in the lungs of these animals were not overt, but members of RD207 were significantly more pathogenic, resulting in severe lung damage. The RD207 strains also induced much higher levels of markers associated with regulatory T cells and showed a significant loss of activated T cells in the lungs over the course of the infections. Whole-genome sequencing of the strains revealed mutations specific for RD207 which may explain this difference. Based on these data, we hypothesize that the sublineages of M. tuberculosis are associated with distinct pathological and clinical phenotypes and that these differences influence the transmissibility of particular M. tuberculosis strains in human populations. PMID:22718126
Zhang, Qingwen; Wang, Qiong; Tian, Guang; Qi, Zhizhen; Zhang, Xuecan; Wu, Xiaohong; Qiu, Yefeng; Bi, Yujing; Yang, Xiaoyan; Xin, Youquan; He, Jian; Zhou, Jiyuan; Zeng, Lin; Yang, Ruifu; Wang, Xiaoyi
2014-01-01
Yersinia pestis biovar Microtus is considered to be a virulent to larger mammals, including guinea pigs, rabbits and humans. It may be used as live attenuated plague vaccine candidates in terms of its low virulence. However, the Microtus strain's protection against plague has yet to be demonstrated in larger mammals. In this study, we evaluated the protective efficacy of the Microtus strain 201 as a live attenuated plague vaccine candidate. Our results show that this strain is highly attenuated by subcutaneous route, elicits an F1-specific antibody titer similar to the EV and provides a protective efficacy similar to the EV against bubonic plague in Chinese-origin rhesus macaques. The Microtus strain 201 could induce elevated secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4, IL-5, and IL-6), as well as chemokines MCP-1 and IL-8. However, the protected animals developed skin ulcer at challenge site with different severity in most of the immunized and some of the EV-immunized monkeys. Generally, the Microtus strain 201 represented a good plague vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses as well as its good protection against high dose of subcutaneous virulent Y. pestis challenge.
Candida albicans-induced inflammatory response in human keratinocytes.
Wollina, U; Künkel, W; Bulling, L; Fünfstück, C; Knöll, B; Vennewald, I; Hipler, U-C
2004-06-01
Candida albicans strains 3153a, ATCC 48867, CBS 2730, DSM 70014, and Vir 13 were cultivated and sterile C. albicans filtrates were produced. The interaction of soluble Candida factors of these infiltrates with human HaCaT keratinocytes was assayed in vitro. The following parameters were analyzed: cell proliferation, protein synthesis, nuclear matrix protein (NMP) 41 release, cytokine release (IL-1beta, soluble IL-2 receptor, IL-6, and IL-8), and reactive oxygen species (ROS). Cell counts at 1, 12, and 24 h were significantly lower for C. albicans strains CBS 2730 and VIR 13 (P < 0.05). There was no significant change for the remaining strains. Neither the protein synthesis nor the NMP-41 release was significantly affected. IL-6 and IL-8 were stimulated by C. albicans filtrates to different amounts with higher levels in strains of low virulence. There was no effect on the other cytokines. The production of ROS by HaCaT keratinocytes was suppressed. The induction of an inflammatory keratinocyte response by soluble C. albicans factors may play a role among the host-yeast interactions.
MULTIPLE-LOCUS VARIABLE-NUMBER TANDEM REPEAT ANALYSIS OF BRUCELLA ISOLATES FROM THAILAND.
Kumkrong, Khurawan; Chankate, Phanita; Tonyoung, Wittawat; Intarapuk, Apiradee; Kerdsin, Anusak; Kalambaheti, Thareerat
2017-01-01
Brucellosis-induced abortion can result in significant economic loss to farm animals. Brucellosis can be transmitted to humans during slaughter of infected animals or via consumption of contaminated food products. Strain identification of Brucella isolates can reveal the route of transmission. Brucella strains were isolated from vaginal swabs of farm animal, cow milk and from human blood cultures. Multiplex PCR was used to identify Brucella species, and owing to high DNA homology among Brucella isolates, multiple-locus variable-number tandem repeat analysis (MLVA) based on the number of tandem repeats at 16 different genomic loci was used for strain identification. Multiplex PCR categorized the isolates into B. abortus (n = 7), B. melitensis (n = 37), B. suis (n = 3), and 5 of unknown Brucella spp. MLVA-16 clustering analysis differentiated the strains into various genotypes, with Brucella isolates from the same geographic region being closely related, and revealed that the Thai isolates were phylogenetically distinct from those in other countries, including within the Southeast Asian region. Thus, MLVA-16 typing has utility in epidemiological studies.
Liévin-Le Moal, Vanessa; Amsellem, Raymonde; Servin, Alain L.
2011-01-01
We report that both culture and the cell-free culture supernatant (CFCS) of Lactobacillus acidophilus strain LB (Lactéol Boucard) have the ability (i) to delay the appearance of Salmonella enterica serovar Typhimurium strain SL1344-induced mobilization of F-actin and, subsequently, (ii) to retard cell entry by S. Typhimurium SL1344. Time-lapse imaging and Western immunoblotting showed that S. Typhimurium SL1344 swimming motility, as represented by cell tracks of various types, was rapidly but temporarily blocked without affecting the expression of FliC flagellar propeller protein. We show that the product(s) secreted by L. acidophilus LB that supports the inhibitory activity is heat stable and of low molecular weight. The product(s) caused rapid depolarization of the S. Typhimurium SL1344 cytoplasmic membrane without affecting bacterial viability. We identified inhibition of swimming motility as a newly discovered mechanism by which the secreted product(s) of L. acidophilus strain LB retards the internalization of the diarrhea-associated pathogen S. enterica serovar Typhimurium within cultured human enterocyte-like cells. PMID:21825295
Evaluation of Brucella abortus Phosphoglucomutase (pgm) Mutant as a New Live Rough-Phenotype Vaccine
Ugalde, Juan Esteban; Comerci, Diego José; Leguizamón, M. Susana; Ugalde, Rodolfo Augusto
2003-01-01
Brucella abortus S19 is the vaccine most frequently used against bovine brucellosis. Although it induces good protection levels, it cannot be administered to pregnant cattle, revaccination is not advised due to interference in the discrimination between infected and vaccinated animals during immune-screening procedures, and the vaccine is virulent for humans. Due to these reasons, there is a continuous search for new bovine vaccine candidates that may confer protection levels comparable to those conferred by S19 but without its disadvantages. A previous study characterized the phenotype associated with the phosphoglucomutase (pgm) gene disruption in Brucella abortus S2308, as well as the possible role for the smooth lipopolysaccharide (LPS) in virulence and intracellular multiplication in HeLa cells (J. E. Ugalde, C. Czibener, M. F. Feldman, and R. A. Ugalde, Infect. Immun. 68:5716-5723, 2000). In this report, we analyze the protection, proliferative response, and cytokine production induced in BALB/c mice by a Δpgm deletion strain. We show that this strain synthesizes O antigen with a size of approximately 45 kDa but is rough. This is due to the fact that the Δpgm strain is unable to assemble the O side chain in the complete LPS. Vaccination with the Δpgm strain induced protection levels comparable to those induced by S19 and generated a proliferative splenocyte response and a cytokine profile typical of a Th1 response. On the other hand, we were unable to detect a specific anti-O-antigen antibody response by using the fluorescence polarization assay. In view of these results, the possibility that the Δpgm mutant could be used as a vaccination strain is discussed. PMID:14573645
Guo, Fen; Carter, David E.; Leask, Andrew
2011-01-01
Unlike skin, oral gingival do not scar in response to tissue injury. Fibroblasts, the cell type responsible for connective tissue repair and scarring, are exposed to mechanical tension during normal and pathological conditions including wound healing and fibrogenesis. Understanding how human gingival fibroblasts respond to mechanical tension is likely to yield valuable insights not only into gingival function but also into the molecular basis of scarless repair. CCN2/connective tissue growth factor is potently induced in fibroblasts during tissue repair and fibrogenesis. We subjected gingival fibroblasts to cyclical strain (up to 72 hours) using the Flexercell system and showed that CCN2 mRNA and protein was induced by strain. Strain caused the rapid activation of latent TGFβ, in a fashion that was reduced by blebbistatin and FAK/src inhibition, and the induction of endothelin (ET-1) mRNA and protein expression. Strain did not cause induction of α-smooth muscle actin or collagen type I mRNAs (proteins promoting scarring); but induced a cohort of pro-proliferative mRNAs and cell proliferation. Compared to dermal fibroblasts, gingival fibroblasts showed reduced ability to respond to TGFβ by inducing fibrogenic mRNAs; addition of ET-1 rescued this phenotype. Pharmacological inhibition of the TGFβ type I (ALK5) receptor, the endothelin A/B receptors and FAK/src significantly reduced the induction of CCN2 and pro-proliferative mRNAs and cell proliferation. Controlling TGFβ, ET-1 and FAK/src activity may be useful in controlling responses to mechanical strain in the gingiva and may be of value in controlling fibroproliferative conditions such as gingival hyperplasia; controlling ET-1 may be of benefit in controlling scarring in response to injury in the skin. PMID:21611193
Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni
USDA-ARS?s Scientific Manuscript database
Background: Campylobacter jejuni clone SA recently emerged as the predominant cause of sheep abortion in the U.S. and is also associated with foodborne gastroenteritis in humans. A distinct phenotype of this clone is its ability to induce bacteremia and abortion. To facilitate understanding the path...
A single dose of the cancer-fighting human papillomavirus (HPV) vaccine Cervarix™ appears to induce an immune response that remains stable in the blood four years after vaccination. This may be enough to protect women from two strains of HPV and, u
Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A; Osman, Nael F
2009-03-01
High-dose dobutamine stress MRI is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, strain-encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC with that provided by conventional wall motion analysis for the detection of inducible ischemia during dobutamine stress MRI. Stress-induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent dobutamine stress MRI in a clinical 1.5-T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (> or =50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86 of 101 versus 71 of 101 diseased coronary vessels (P<0.01 versus cine) and showed normal strain response in 189 of 202 versus 194 of 202 vessels with <50% stenosis (P=NS versus cine). On a patient level, SENC detected inducible ischemia in 63 of 64 versus 55 of 64 patients with CAD (P<0.05 versus cine) and showed normal strain response in 32 of 37 versus 34 of 37 patients without CAD (P=NS versus cine). Quantification analysis demonstrated a significant correlation between strain rate reserve and coronary artery stenosis severity (r(2)=0.56, P<0.001), and a cutoff value of strain rate reserve of 1.64 was deemed as a highly accurate marker for the detection of > or =50% stenosis (area under the curve, 0.96; SE, 0.01; 95% CI, 0.94 to 0.98; P<0.001). The direct color-coded visualization of strain on MR images is a useful adjunct for dobutamine stress MRI, which provides incremental value for the detection of CAD compared with conventional wall motion readings on cine images.
Saxami, G; Karapetsas, A; Chondrou, P; Vasiliadis, S; Lamprianidou, E; Kotsianidis, I; Ypsilantis, P; Botaitis, S; Simopoulos, C; Galanis, A
2017-08-24
Lactobacillus pentosus B281 and Lactobacillus plantarum B282 are two Lactobacillus strains previously isolated from fermented table olives. Both strains were found to possess probiotic properties and displayed desirable technological characteristics for application as starters in novel functional food production. In the present study the anti-proliferative and immunostimulatory activities of the two strains were investigated. Firstly, we demonstrated that live L. pentosus B281 and L. plantarum B282 significantly inhibited the growth of human colon cancer cells (Caco-2) in a time- and dose-dependent manner. By employing the air pouch system in mice, we showed that administration of both strains led to a rapid and statistically significant infiltration of leukocytes in the air pouch exudates. The phenotypical characterisation of the recruited immune cells was performed by flow cytometry analysis. We demonstrated that the majority of the infiltrated leukocytes were neutrophils. Finally by using the Mouse Cytokine Array Panel A Detection Antibody cocktail, we showed that both strains induced the expression of granulocyte-colony stimulating factor, interleukin (IL)-1α, IL-1β, IL-6, chemokine (C-X-C motif) ligand (CXCL)-1, chemokine (C-C motif) ligand (CCL)-3, CCL-4, and CXCL-2 and diminished the expression levels of soluble intercellular adhesion molecule, macrophage colony-stimulating factor and metallopeptidase inhibitor 1. Our results showed that both strains display anti-proliferative and immunostimulatory properties equal or even better in some cases than those of established and commonly used probiotic strains. These findings further support the probiotic character of the two strains.
Skin-Based DNA Repair Phenotype for Cancer Risk from GCR in Genetically Diverse Populations
NASA Technical Reports Server (NTRS)
Guiet, Elodie; Viger, Louise; Snijders, Antoine; Costes, Sylvian V.
2017-01-01
Predicting cancer risk associated with cosmic radiation remains a mission-critical challenge for NASA radiation health scientists and mission planners. Epidemiological data are lacking and risk methods do not take individual radiation sensitivity into account. In our approach we hypothesize that genetic factors strongly influence risk of cancer from space radiation and that biomarkers reflecting DNA damage and cell death are ideal tools to predict risk and monitor potential health effects post-flight. At this workshop, we will be reporting the work we have done over the first 9 months of this proposal. Skin cells from 15 different strains of mice already characterized for radiation-induced cancer sensitivity (B6C3F; BALB/cByJ, C57BL/6J, CBA/CaJ, C3H/HeMsNrsf), and 10 strains from the DOE collaborative cross-mouse model were expanded from ear biopsy and cultivated until Passage 3. On average, 3 males and 3 females for each strain were expanded and frozen for further characterization at the NSRL beam line during the NSRL16C run for three LET (350 MeV/n Si, 350 MeV/n Ar and 600 MeV/n Fe) and two ion fluences (1 and 3 particles per cell). The mice work has established new metrics for the usage of Radiation Induced Foci as a marker for various aspect of DNA repair deficiencies. In year 2, we propose to continue characterization of the mouse lines with low LET to identify loci specific to high- versus low- LET and establish genetic linkage for the various DNA repair biomarkers. Correlation with cancer risk from each animals strain and gender will also be investigated. On the human side, we will start characterizing the DNA damage response induced ex-vivo in 200 human's blood donors for radiation sensitivity with a tentative 500 donors by the end of this project. All ex-vivo phenotypic data will be correlated to genetic characterization of each individual human donors using SNP arrays characterization as done for mice. Similarly, ex-vivo phenotypic features from mice will be associated to cancer risk, to identify which biomarkers correlate the most with cancer risk. Genetic traits across humans will also be associated to radiation phenotypic features as a function of age and gender.
Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit
2017-10-12
The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24-36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection.
Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit
2017-01-01
The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904
Mimoz, O; Jacolot, A; Padoin, C; Tod, M; Samii, K; Petitjean, O
1998-03-01
The activities of cefepime and amikacin alone or in combination against an isogenic pair of Enterobacter cloacae strains (wild type and stably derepressed, ceftazidime-resistant mutant) were compared using an experimental model of pneumonia in non-leucopenic rats. Animals were infected by administering 8.4 log10 cfu of E. cloacae intratracheally, and therapy was initiated 12 h later. At that time, the animals' lungs showed bilateral pneumonia and contained more than 7 log10 E. cloacae cfu/g tissue. Because rats eliminate amikacin and cefepime much more rapidly than humans, renal impairment was induced in all animals to simulate the pharmacokinetic parameters of humans. In-vitro susceptibilities showed an inoculum effect with cefepime proportional to the bacterial titre against the two strains, but more pronounced with the stably derepressed mutant strain, whereas with bacterial concentrations of up to 7 log10 cfu/mL, no inoculum effect was observed with amikacin. In-vitro killing indicated that antibiotic combinations were synergic only at intermediate concentrations. At peak concentrations, the combination was merely as effective as amikacin alone. At trough concentrations, a non-significant trend towards the superiority of the combination over each antibiotic alone was noted. Moreover, cefepime was either bacteriostatic or permitted regrowth of the organisms in the range of antibiotic concentrations tested. Although each antibiotic alone failed to decrease bacterial counts in the lungs, regardless of the susceptibility of the strain used, the combination of both antibiotics was synergic and induced a significant decrease in the lung bacterial count 24 h after starting therapy when compared with tissue bacterial numbers in untreated animals or animals treated with either antibiotic alone. No resistant clones emerged during treatment with any of the antibiotic regimens studied.
Silva, C R; Caldeira-de-Araújo, A; Leitão, A C; Pádula, M
2014-11-27
Cassia angustifolia Vahl. (senna) is commonly used in self-medication and is frequently used to treat intestine constipation. A previous study involving bacteria and plasmid DNA suggested the possible toxicity of the aqueous extract of senna (SAE). The aim of this study was to extend the knowledge concerning SAE genotoxicity mechanisms because of its widespread use and its risks to human health. We investigated the impact of SAE on nuclear DNA and on the stability of mitochondrial DNA in Saccharomyces cerevisiae (wt, ogg1, msh6, and ogg1msh6) strains, monitoring the formation of petite mutants. Our results demonstrated that SAE specifically increased Can(R) mutagenesis only in the msh6 mutant, supporting the view that SAE can induce misincorporation errors in DNA. We observed a significant increase in the frequency of petite colonies in all studied strains. Our data indicate that SAE has genotoxic activity towards both mitochondrial and nuclear DNA.
CHARACTERIZATION OF VIRULENCE OF Leptospira ISOLATES IN A HAMSTER MODEL
Silva, Éverton F.; Santos, Cleiton S.; Athanazio, Daniel A.; Seyffert, Núbia; Seixas, Fabiana K.; Cerqueira, Gustavo M.; Fagundes, Michel Q.; Brod, Claudiomar S.; Reis, Mitermayer G.; Dellagostin, Odir A.; Ko, Albert I.
2008-01-01
Effort has been made to identify protective antigens in order to develop a recombinant vaccine against leptospirosis. Several attempts failed to conclusively demonstrate efficacy of vaccine candidates due to the lack of an appropriate model of lethal leptospirosis. The purposes of our study were: (i) to test the virulence of leptospiral isolates from Brazil, which are representative of important serogroups that cause disease in humans and animals; and (ii) to standardize the lethal dose 50% (LD50) for each of the virulent strains using a hamster (Mesocricetus auratus) model. Five of seven Brazilian isolates induced lethality in a hamster model, with inocula lower than 200 leptospires. Histopathological examination of infected animals showed typical lesions found in both natural and experimental leptospirosis. Results described here demonstrated the potential use of Brazilian isolates as highly virulent strains in challenge experiments using hamster as an appropriate animal model for leptospirosis. Furthermore these strains may be useful in heterologous challenge studies which aim to evaluate cross-protective responses induced by subunit vaccine candidates. PMID:18547690
Highly Virulent Leptospira borgpetersenii Strain Characterized in the Hamster Model
Diniz, Juliana Alcoforado; Félix, Samuel Rodrigues; Bonel-Raposo, Josiane; Seixas Neto, Amilton Clair Pinto; Vasconcellos, Flávia Aleixo; Grassmann, André Alex; Dellagostin, Odir Antônio; Aleixo, José Antonio Guimarães; da Silva, Éverton Fagonde
2011-01-01
A recent study by our group reported the isolation and partial serological and molecular characterization of four Leptospira borgpetersenii serogroup Ballum strains. Here, we reproduced experimental leptospirosis in golden Syrian hamsters (Mesocricetus auratus) and carried out standardization of lethal dose 50% (LD50) of one of these strains (4E). Clinical disease features and histopathologic analyses of tissue lesions were also observed. As results, strain 4E induced lethality in the hamster model with inocula lower than 10 leptospires, and histopathological examination of animals showed typical lesions found in severe leptospirosis. Gross pathological findings were peculiar; animals that died early had more chance of presenting severe jaundice and less chance of presenting pulmonary hemorrhages (P < 0.01). L. borgpetersenii serogroup Ballum has had a considerable growth in human leptospirosis cases in recent years. This strain has now been thoroughly characterized and can be used in more studies, especially evaluations of vaccine candidates. PMID:21813846
Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe
2016-01-01
The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.
AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer
Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe
2016-01-01
The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676
Racioethnic Differences in Human Posterior Scleral and Optic Nerve Stump Deformation
Tamimi, Ehab A.; Pyne, Jeffrey D.; Muli, Dominic K.; Axman, Katelyn F.; Howerton, Stephen J.; Davis, Matthew R.; Girkin, Christopher A.; Vande Geest, Jonathan P.
2017-01-01
Purpose The purpose of this study was to quantify the biomechanical response of human posterior ocular tissues from donors of various racioethnic groups to better understand how differences in these properties may play a role in the racioethnic health disparities known to exist in glaucoma. Methods Sequential digital image correlation (S-DIC) was used to measure the pressure-induced surface deformations of 23 normal human posterior poles from three racioethnic groups: African descent (AD), European descent (ED), and Hispanic ethnicity (HIS). Regional in-plane principal strains were compared across three zones: the optic nerve stump (ONS), the peripapillary (PP) sclera, and non-PP sclera. Results The PP scleral tensile strains were found to be lower for ED eyes compared with AD and HIS eyes at 15 mm Hg (P = 0.024 and 0.039, respectively). The mean compressive strains were significantly higher for AD eyes compared with ED eyes at 15 mm Hg (P = 0.018). We also found that the relationship between tensile strain and pressure was significant for those of ED and HIS eyes (P < 0.001 and P = 0.004, respectively), whereas it was not significant for those of AD (P = 0.392). Conclusions Our results suggest that, assuming glaucomatous nerve loss is caused by mechanical strains in the vicinity of the optic nerve head, the mechanism of increased glaucoma prevalence may be different in those of AD versus HIS. Our ONS strain analysis also suggested that it may be important to account for ONS geometry and material properties in future scleral biomechanical analysis. PMID:28846773
Serrano, Rachel; González-Menéndez, Víctor; Rodríguez, Lorena; Martín, Jesús; Tormo, José R.; Genilloud, Olga
2017-01-01
New fungal SMs (SMs) have been successfully described to be produced by means of in vitro-simulated microbial community interactions. Co-culturing of fungi has proved to be an efficient way to induce cell–cell interactions that can promote the activation of cryptic pathways, frequently silent when the strains are grown in laboratory conditions. Filamentous fungi represent one of the most diverse microbial groups known to produce bioactive natural products. Triggering the production of novel antifungal compounds in fungi could respond to the current needs to fight health compromising pathogens and provide new therapeutic solutions. In this study, we have selected the fungus Botrytis cinerea as a model to establish microbial interactions with a large set of fungal strains related to ecosystems where they can coexist with this phytopathogen, and to generate a collection of extracts, obtained from their antagonic microbial interactions and potentially containing new bioactive compounds. The antifungal specificity of the extracts containing compounds induced after B. cinerea interaction was determined against two human fungal pathogens (Candida albicans and Aspergillus fumigatus) and three phytopathogens (Colletotrichum acutatum, Fusarium proliferatum, and Magnaporthe grisea). In addition, their cytotoxicity was also evaluated against the human hepatocellular carcinoma cell line (HepG2). We have identified by LC-MS the production of a wide variety of known compounds induced from these fungal interactions, as well as novel molecules that support the potential of this approach to generate new chemical diversity and possible new therapeutic agents. PMID:28469610
Morici, P; Florio, W; Rizzato, C; Ghelardi, E; Tavanti, A; Rossolini, G M; Lupetti, A
2017-10-01
The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook
2015-06-23
The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.
Jariwala, Ruchi; Mandal, Hemanti; Bagchi, Tamishraha
2017-09-01
The aim of the study was to investigate the neutralizing effect of lactobacilli isolated from indigenous food and human sources on enteropathogenic Escherichia coli (EPEC) O26 : H11-induced epithelial barrier dysfunction in vitro. This was assessed by transepithelial electrical resistance (TEER) and permeability assays using intestinal cell lines, HT-29 and Caco-2. Furthermore, the expression and distribution of tight junction (TJ) proteins were analysed by qRT-PCR and immunofluorescence assay, respectively. The nine strains used in the study were from different species viz. Lactobacillus fermentum, Lactobacillushelveticus, Lactobacillus salivarius and Lactobacillus plantarum. All strains were able to reverse the decrease in TEER and corresponding increase in permeability across E. coli-infected monolayers. Maximum reversal was observed after 18 h [up to 93.8±2.0 % by L. rhamnosus GG followed by L. fermentum IIs11.2 (92.6±2.2 %) and L. plantarum GRI-2 (91.9±0.9 %)] of lactobacilli exposure following EPEC O26 : H11 infection. All strains were able to redistribute the TJ proteins to the cell periphery either partially or completely. Moreover, L. helveticus FA-7 was also able to significantly increase the mRNA expression of ZO-1 and claudin-1 (2.5-fold and 3.0-fold, respectively; P<0.05). The rapid reversal observed by these strains could be mostly because of the redistribution rather than increased mRNA expression of TJ proteins. In conclusion, L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 were good in all the aspects studied, and the other strains were good in some aspects. L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 can therefore be used for potential therapeutic purpose against intestinal epithelial dysfunction.
Seib, K L; Serruto, D; Oriente, F; Delany, I; Adu-Bobie, J; Veggi, D; Aricò, B; Rappuoli, R; Pizza, M
2009-01-01
Factor H-binding protein (fHBP; GNA1870) is one of the antigens of the recombinant vaccine against serogroup B Neisseria meningitidis, which has been developed using reverse vaccinology and is the basis of a meningococcal B vaccine entering phase III clinical trials. Binding of factor H (fH), an inhibitor of the complement alternative pathway, to fHBP enables N. meningitidis to evade killing by the innate immune system. All fHBP null mutant strains analyzed were sensitive to killing in ex vivo human whole blood and serum models of meningococcal bacteremia with respect to the isogenic wild-type strains. The fHBP mutant strains of MC58 and BZ83 (high fHBP expressors) survived in human blood and serum for less than 60 min (decrease of >2 log(10) CFU), while NZ98/254 (intermediate fHBP expressor) and 67/00 (low fHBP expressor) showed decreases of >1 log(10) CFU after 60 to 120 min of incubation. In addition, fHBP is important for survival in the presence of the antimicrobial peptide LL-37 (decrease of >3 log(10) CFU after 2 h of incubation), most likely due to electrostatic interactions between fHBP and the cationic LL-37 molecule. Hence, the expression of fHBP by N. meningitidis strains is important for survival in human blood and human serum and in the presence of LL-37, even at low levels. The functional significance of fHBP in mediating resistance to the human immune response, in addition to its widespread distribution and its ability to induce bactericidal antibodies, indicates that it is an important component of the serogroup B meningococcal vaccine.
In vivo Metabolism of Hydrolyzed Fumonisin B1 and Fumonisin B1
USDA-ARS?s Scientific Manuscript database
Fumonisin B1 (FB1) is the most prevalent fumonisin mycotoxin found in corn and corn-based foods. It inhibits ceramide synthase, disrupts sphingolipid metabolism and function, is toxic to animals, causes cancer in rodents, and induces neural tube defects in some mouse strains. Its human health effect...
Levi, M; Sällberg, M; Rudén, U; Herlyn, D; Maruyama, H; Wigzell, H; Marks, J; Wahren, B
1993-01-01
A complementarity-determining region (CDR) of the mouse monoclonal antibody (mAb) F58 was constructed with specificity to a neutralization-inducing region of human immunodeficiency virus type 1 (HIV-1). The mAb has its major reactivity to the amino acid sequence I--GPGRA in the V3 viral envelope region. All CDRs including several framework amino acids were synthesized from the sequence deduced by cloning and sequencing mAb F58 heavy- and light-chain variable domains. Peptides derived from the third heavy-chain domain (CDR-H3) alone or in combination with the other CDR sequences competed with F58 mAb for the V3 region. The CDR-H3 peptide was chemically modified by cyclization and then inhibited HIV-1 replication as well as syncytium formation by infected cells. Both the homologous IIIB viral strain to which the F58 mAb was induced and the heterologous SF2 strain were inhibited. This synthetic peptide had unexpectedly potent antiviral activity and may be a potential tool for treatment of HIV-infected persons. PMID:7685100
Universal influenza vaccines: Shifting to better vaccines.
Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J
2016-06-03
Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.
Orrú, Christina D; Groveman, Bradley R; Raymond, Lynne D; Hughson, Andrew G; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron
2015-06-01
Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested.
Zhang, Qingwen; Wang, Qiong; Tian, Guang; Qi, Zhizhen; Zhang, Xuecan; Wu, Xiaohong; Qiu, Yefeng; Bi, Yujing; Yang, Xiaoyan; Xin, Youquan; He, Jian; Zhou, Jiyuan; Zeng, Lin; Yang, Ruifu; Wang, Xiaoyi
2014-01-01
Yersinia pestis biovar Microtus is considered to be a virulent to larger mammals, including guinea pigs, rabbits and humans. It may be used as live attenuated plague vaccine candidates in terms of its low virulence. However, the Microtus strain’s protection against plague has yet to be demonstrated in larger mammals. In this study, we evaluated the protective efficacy of the Microtus strain 201 as a live attenuated plague vaccine candidate. Our results show that this strain is highly attenuated by subcutaneous route, elicits an F1-specific antibody titer similar to the EV and provides a protective efficacy similar to the EV against bubonic plague in Chinese-origin rhesus macaques. The Microtus strain 201 could induce elevated secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4, IL-5, and IL-6), as well as chemokines MCP-1 and IL-8. However, the protected animals developed skin ulcer at challenge site with different severity in most of the immunized and some of the EV-immunized monkeys. Generally, the Microtus strain 201 represented a good plague vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses as well as its good protection against high dose of subcutaneous virulent Y. pestis challenge. PMID:24225642
Wu, Kaiyu; Conly, John; Surette, Michael; Sibley, Christopher; Elsayed, Sameer; Zhang, Kunyan
2012-11-23
Staphylococcus aureus strains with distinct genetic backgrounds have shown different virulence in animal models as well as associations with different clinical outcomes, such as causing infection in the hospital or the community. With S. aureus strains carrying diverse genetic backgrounds that have been demonstrated by gene typing and genomic sequences, it is difficult to compare these strains using mammalian models. Invertebrate host models provide a useful alternative approach for studying bacterial pathogenesis in mammals since they have conserved innate immune systems of biological defense. Here, we employed Drosophila melanogaster as a host model for studying the virulence of S. aureus strains. Community-associated methicillin-resistant S. aureus (CA-MRSA) strains USA300, USA400 and CMRSA2 were more virulent than a hospital-associated (HA)-MRSA strain (CMRSA6) and a colonization strain (M92) in the D. melanogaster model. These results correlate with bacterial virulence in the Caenorhabditis elegans host model as well as human clinical data. Moreover, MRSA killing activities in the D. melanogaster model are associated with bacterial replication within the flies. Different MRSA strains induced similar host responses in D. melanogaster, but demonstrated differential expression of common bacterial virulence factors, which may account for the different killing activities in the model. In addition, hemolysin α, an important virulence factor produced by S. aureus in human infections is postulated to play a role in the fly killing. Our results demonstrate that the D. melanogaster model is potentially useful for studying S. aureus pathogenicity. Different MRSA strains demonstrated diverse virulence in the D. melanogaster model, which may be the result of differing expression of bacterial virulence factors in vivo.
Wang, Ge; Romero-Gallo, Judith; Benoit, Stéphane L.; Piazuelo, M. Blanca; Dominguez, Ricardo L.; Morgan, Douglas R.; Peek, Richard M.
2016-01-01
ABSTRACT A known virulence factor of Helicobacter pylori that augments gastric cancer risk is the CagA cytotoxin. A carcinogenic derivative strain, 7.13, that has a greater ability to translocate CagA exhibits much higher hydrogenase activity than its parent noncarcinogenic strain, B128. A Δhyd mutant strain with deletion of hydrogenase genes was ineffective in CagA translocation into human gastric epithelial AGS cells, while no significant attenuation of cell adhesion was observed. The quinone reductase inhibitor 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) was used to specifically inhibit the H2-utilizing respiratory chain of outer membrane-permeabilized bacterial cells; that level of inhibitor also greatly attenuated CagA translocation into AGS cells, indicating the H2-generated transmembrane potential is a contributor to toxin translocation. The Δhyd strain showed a decreased frequency of DNA transformation, suggesting that H. pylori hydrogenase is also involved in energizing the DNA uptake apparatus. In a gerbil model of infection, the ability of the Δhyd strain to induce inflammation was significantly attenuated (at 12 weeks postinoculation), while all of the gerbils infected with the parent strain (7.13) exhibited a high level of inflammation. Gastric cancer developed in 50% of gerbils infected with the wild-type strain 7.13 but in none of the animals infected with the Δhyd strain. By examining the hydrogenase activities from well-defined clinical H. pylori isolates, we observed that strains isolated from cancer patients (n = 6) have a significantly higher hydrogenase (H2/O2) activity than the strains isolated from gastritis patients (n = 6), further supporting an association between H. pylori hydrogenase activity and gastric carcinogenesis in humans. PMID:27531909
Lee, Hae-Dong; Finni, Taija; Hodgson, John A; Lai, Alex M; Edgerton, V Reggie; Sinha, Shantanu
2006-06-01
The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techniques. Following ULLS, volumes of the soleus and the medial gastrocnemius and the maximum isometric ankle plantar flexion (maximum voluntary contraction) decreased by 5.5+/-1.9, 7.5+/-2.7, and 48.1+/-6.1%, respectively. The strain of the aponeurosis along the length of the muscle before the ULLS was 0.3+/-0.3%, ranging from -1.5 to 2.7% in different locations of the aponeurosis. Following ULLS, the mean strain was -6.4+/-0.3%, ranging from -1.6 to 1.3%. The strain distribution of the midregion of the aponeurosis was significantly influenced by the ULLS, whereas the more distal component showed no consistent changes. Achilles tendon strain was not affected by the ULLS. These results raise the issue as to whether these changes in strain distribution affect the functional properties of the triceps surae and whether the probability of strain injuries within the triceps surae increases following chronic unloading in those regions of this muscle complex in which unusual strains occur.
Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A.; Osman, Nael F.
2009-01-01
Background High-dose dobutamine stress magnetic resonance imaging (DS-MRI) is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, Strain-Encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC to that provided by conventional wall motion analysis for the detection of inducible ischemia during DS-MRI. Methods and Results Stress induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent DS-MRI in a clinical 1.5T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (≥50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86/101 versus 71/101 diseased coronary vessels (p<0.01 versus cine), and showed normal strain response in 189/202 versus 194/202 vessels with <50% stenosis (p=NS versus cine). On a patient level, SENC detected inducible ischemia in 63/64 versus 55/64 patients with CAD (p<0.05 versus cine), and showed normal strain response in 32/37 versus 34/37 patients without CAD (p=NS versus cine).Quantification analysis demonstrated a significant correlation between strain rate reserve (SRreserve) and coronary artery stenosis severity (r²=0.56, p<0.001), and a cut-off value of SRreserve=1.64 deemed as a highly accurate marker for the detection of stenosis≥50% (AUC=0.96, SE=0.01, 95% CI = 0.94–0.98, p<0.001). Conclusions The direct color-coded visualization of strain on MR-images is a useful adjunct for DS-MRI, which provides incremental value for the detection of CAD compared to conventional wall motion readings on cine images. PMID:19808579
Nami, Y; Abdullah, N; Haghshenas, B; Radiah, D; Rosli, R; Yari Khosroushahi, A
2014-08-01
This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future. © 2014 The Society for Applied Microbiology.
RAPID CLONING OF HIGH AFFINITY HUMAN MONOCLONAL ANTIBODIES AGAINST INFLUENZA VIRUS
Wrammert, Jens; Smith, Kenneth; Miller, Joe; Langley, Trey; Kokko, Kenneth; Larsen, Christian; Zheng, Nai-Ying; Mays, Israel; Garman, Lori; Helms, Christina; James, Judith; Air, Gillian M.; Capra, J. Donald; Ahmed, Rafi; Wilson, Patrick C.
2008-01-01
Pre-existing neutralizing antibody provides the first line of defense against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14 to 21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B cell receptor (BCR) repertoire that in some donors were dominated by only a few B cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over fifty human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high affinity mAbs from humans within a month after vaccination. The panel of influenza virus specific human mAbs allowed us to address the issue of original antigenic sin (OAS) - the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared to the virus strain present in the vaccine1. However, we found that the vast majority of the influenza virus specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal healthy adults receiving influenza vaccination. PMID:18449194
Rapid cloning of high-affinity human monoclonal antibodies against influenza virus.
Wrammert, Jens; Smith, Kenneth; Miller, Joe; Langley, William A; Kokko, Kenneth; Larsen, Christian; Zheng, Nai-Ying; Mays, Israel; Garman, Lori; Helms, Christina; James, Judith; Air, Gillian M; Capra, J Donald; Ahmed, Rafi; Wilson, Patrick C
2008-05-29
Pre-existing neutralizing antibody provides the first line of defence against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14-21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B-cell receptor (BCR) repertoire that in some donors was dominated by only a few B-cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over 50 human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high-affinity mAbs from humans within a month after vaccination. The panel of influenza-virus-specific human mAbs allowed us to address the issue of original antigenic sin (OAS): the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared with the virus strain present in the vaccine. However, we found that most of the influenza-virus-specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal, healthy adults receiving influenza vaccination.
Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A; Qiu, Weiliang; Glass, Kimberly; Lao, Taotao; Jiang, Zhiqiang; Perrella, Mark A; Silverman, Edwin K; Zhou, Xiaobo; Hersh, Craig P
2017-07-01
Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip +/- , and Fam13a -/- murine strains exposed chronically to CS. The CS-resistant Fam13a -/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a -/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.
Paoletti, Iole; Buommino, Elisabetta; Fusco, Alessandra; Baudouin, Caroline; Msika, Philippe; Tufano, Maria Antonietta; Baroni, Adone; Donnarumma, Giovanna
2012-10-01
Keratinocytes stimulated by microbial organisms secrete not only a variety of cytokines, chemokines and growth factors, but also antimicrobial peptides such as beta-defensins (HBDs) such as HBD-2 and HBD-3. AV119, a patented blend of avocado sugar, triggers the up-regulation of HBD-2 in skin epithelia upon contact with AV119, but the signalling mechanisms involved are not completely understood. The purpose of this study was to determine if AV119 was able to induce also the expression of HBD-3 in human keratinocytes. In addition, the receptor and intracellular pathways involved in the AV119 up-regulation of HBD-2 and HBD-3 were investigated. Our results demonstrated that AV119 induces a significantly increase of the expression of HBD-3. In addition, the HBD-2 and HBD-3 AV119-induced gene expression and release are TLR-2 dependent. Finally, we demonstrated that AV119 induced ERK/MAPK phosphorylation in human keratinocytes, thus providing evidence that HBD-2 and HBD-3 secretion is through the same transductional pathway. The ability of AV119 to induce also HBD-3 may amplify its therapeutic potential against a broader spectrum of bacterial and yeast strains responsible for human skin disorders.
Heylen, Elisabeth; Zeller, Mark; Ciarlet, Max; Lawrence, Jody; Steele, Duncan; Van Ranst, Marc; Matthijnssens, Jelle
2015-10-06
RotaTeqTM is a pentavalent rotavirus vaccine based on a bovine rotavirus genetic backbone in vitro reassorted with human outer capsid genes. During clinical trials of RotaTeqTM in Sub-Saharan Africa, the vaccine efficacy over a 2-year follow-up was lower against the genotypes contained in the vaccine than against the heterotypic G8P[6] and G8P[1] rotavirus strains of which the former is highly prevalent in Africa. Complete genome analyses of 43 complete rotavirus genomes collected during phase III clinical trials of RotaTeqTM in Sub-Saharan Africa, were conducted to gain insight into the high level of cross-protection afforded by RotaTeqTM against these G8 strains. Phylogenetic analysis revealed the presence of a high number of bovine rotavirus gene segments in these human G8 strains. In addition, we performed an in depth analysis on the individual amino acid level which showed that G8 rotaviruses were more similar to the RotaTeqTM vaccine than non-G8 strains. Because RotaTeqTM possesses a bovine genetic backbone, the high vaccine efficacy against G8 strains might be partially explained by the fact that all these strains contain a complete or partial bovine-like backbone. Altogether, this study supports the hypothesis that gene segments other than VP7 and VP4 play a role in vaccine-induced immunity.
MARTX Toxin in the Zoonotic Serovar of Vibrio vulnificus Triggers an Early Cytokine Storm in Mice
Murciano, Celia; Lee, Chung-Te; Fernández-Bravo, Ana; Hsieh, Tsung-Han; Fouz, Belén; Hor, Lien-I; Amaro, Carmen
2017-01-01
Vibrio vulnificus biotype 2-serovar E is a zoonotic clonal complex that can cause death by sepsis in humans and fish. Unlike other biotypes, Bt2 produces a unique type of MARTXVv (Multifunctional-Autoprocessive-Repeats-in-Toxin; RtxA13), which is encoded by a gene duplicated in the pVvBt2 plasmid and chromosome II. In this work, we analyzed the activity of this toxin and its role in human sepsis by performing in vitro, ex vivo, and in vivo assays. First, we demonstrated that the ACD domain, present exclusively in this toxin variant, effectively has an actin-cross-linking activity. Second, we determined that the whole toxin caused death of human endotheliocytes and monocytes by lysis and apoptosis, respectively. Finally, we tested the hypothesis that RtxA13 contributes to human death caused by this zoonotic serovar by triggering an early cytokine storm in blood. To this end, we used a Bt2-SerE strain (R99) together with its rtxA13 deficient mutant, and a Bt1 strain (YJ016) producing RtxA11 (the most studied MARTXVv) together with its rtxA11 deficient mutant, as controls. Our results showed that RtxA13 was essential for virulence, as R99ΔΔrtxA13 was completely avirulent in our murine model of infection, and that R99, but not strain YJ016, induced an early, strong and dysregulated immune response involving the up-regulation of a high number of genes. This dysregulated immune response was directly linked to RtxA13. Based on these results and those obtained ex vivo (human blood), we propose a model of infection for the zoonotic serovar of V. vulnificus, in which RtxA13 would act as a sepsis-inducing toxin. PMID:28775962
NASA Astrophysics Data System (ADS)
Khaleghi, Morteza; Furlong, Cosme; Cheng, Jeffrey Tao; Rosowski, John J.
2014-07-01
The eardrum or Tympanic Membrane (TM) transfers acoustic energy from the ear canal (at the external ear) into mechanical motions of the ossicles (at the middle ear). The acousto-mechanical-transformer behavior of the TM is determined by its shape and mechanical properties. For a better understanding of hearing mysteries, full-field-of-view techniques are required to quantify shape, nanometer-scale sound-induced displacement, and mechanical properties of the TM in 3D. In this paper, full-field-of-view, three-dimensional shape and sound-induced displacement of the surface of the TM are obtained by the methods of multiple wavelengths and multiple sensitivity vectors with lensless digital holography. Using our developed digital holographic systems, unique 3D information such as, shape (with micrometer resolution), 3D acoustically-induced displacement (with nanometer resolution), full strain tensor (with nano-strain resolution), 3D phase of motion, and 3D directional cosines of the displacement vectors can be obtained in full-field-ofview with a spatial resolution of about 3 million points on the surface of the TM and a temporal resolution of 15 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie
2012-05-25
The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, butmore » porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.« less
Perrott, Kevin M; Wiley, Christopher D; Desprez, Pierre-Yves; Campisi, Judith
2017-04-01
Apigenin (4',5,7,-trihydroxyflavone) is a flavonoid found in certain herbs, fruits, and vegetables. Apigenin can attenuate inflammation, which is associated with many chronic diseases of aging. Senescent cells-stressed cells that accumulate with age in mammals-display a pro-inflammatory senescence-associated secretory phenotype (SASP) that can drive or exacerbate several age-related pathologies, including cancer. Flavonoids, including apigenin, were recently shown to reduce the SASP of a human fibroblast strain induced to senesce by bleomycin. Here, we confirm that apigenin suppresses the SASP in three human fibroblast strains induced to senesce by ionizing radiation, constitutive MAPK (mitogen-activated protein kinase) signaling, oncogenic RAS, or replicative exhaustion. Apigenin suppressed the SASP in part by suppressing IL-1α signaling through IRAK1 and IRAK4, p38-MAPK, and NF-κB. Apigenin was particularly potent at suppressing the expression and secretion of CXCL10 (IP10), a newly identified SASP factor. Further, apigenin-mediated suppression of the SASP substantially reduced the aggressive phenotype of human breast cancer cells, as determined by cell proliferation, extracellular matrix invasion, and epithelial-mesenchymal transition. Our results support the idea that apigenin is a promising natural product for reducing the impact of senescent cells on age-related diseases such as cancer.
Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather; ...
2017-10-30
Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less
Dossani, Zain Y.; Reider Apel, Amanda; Szmidt‐Middleton, Heather; Hillson, Nathan J.; Deutsch, Samuel; Keasling, Jay D.
2017-01-01
Abstract Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain. PMID:29084380
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather
Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less
Wu, Yaqin; Zhuang, Jiabao; Zhao, Dan; Zhang, Fuqiang; Ma, Jiayin; Xu, Chun
2017-10-01
This study aimed to explore the mechanism of the stretch-induced cell realignment and cytoskeletal rearrangement by identifying several mechanoresponsive genes related to cytoskeletal regulators in human PDL cells. After the cells were stretched by 1, 10 and 20% strains for 0.5, 1, 2, 4, 6, 12 or 24 h, the changes of the morphology and content of microfilaments were recorded and calculated. Meanwhile, the expression of 84 key genes encoding cytoskeletal regulators after 6 and 24 h stretches with 20% strain was detected by using real-time PCR array. Western blot was applied to identify the protein expression level of several cytoskeletal regulators encoded by these differentially expressed genes. The confocal fluorescent staining results confirmed that stretch-induced realignment of cells and rearrangement of microfilaments. Among the 84 genes screened, one gene was up-regulated while two genes were down-regulated after 6 h stretch. Meanwhile, three genes were up-regulated while two genes were down-regulated after 24 h stretch. These genes displaying differential expression included genes regulating polymerization/depolymerization of microfilaments (CDC42EP2, FNBP1L, NCK2, PIKFYVE, WASL), polymerization/depolymerization of microtubules (STMN1), interacting between microfilaments and microtubules (MACF1), as well as a phosphatase (PPP1R12B). Among the proteins encoded by these genes, the protein expression level of Cdc42 effector protein-2 (encoded by CDC42EP2) and Stathmin-1 (encoded by STMN1) was down-regulated, while the protein expression level of N-WASP (encoded by WASL) was up-regulated. The present study confirmed the cyclic stretch-induced cellular realignment and rearrangement of microfilaments in the human PDL cells and indicated several force-sensitive genes with regard to cytoskeletal regulators.
Sharma, Arun; Marceau, Caleb; Hamaguchi, Ryoko; Burridge, Paul W; Rajarajan, Kuppusamy; Churko, Jared M; Wu, Haodi; Sallam, Karim I; Matsa, Elena; Sturzu, Anthony C; Che, Yonglu; Ebert, Antje; Diecke, Sebastian; Liang, Ping; Red-Horse, Kristy; Carette, Jan E; Wu, Sean M; Wu, Joseph C
2014-08-29
Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. This study examined whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferonβ1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferonβ1 treatment. This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion. © 2014 American Heart Association, Inc.
Characterization of trh2 harbouring Vibrio parahaemolyticus strains isolated in Germany.
Bechlars, Silke; Jäckel, Claudia; Diescher, Susanne; Wüstenhagen, Doreen A; Kubick, Stefan; Dieckmann, Ralf; Strauch, Eckhard
2015-01-01
Vibrio parahaemolyticus is a recognized human enteropathogen. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) as well as the type III secretion system 2 (T3SS2) are considered as major virulence factors. As tdh positive strains are not detected in coastal waters of Germany, we focused on the characterization of trh positive strains, which were isolated from mussels, seawater and patients in Germany. Ten trh harbouring V. parahaemolyticus strains from Germany were compared to twenty-one trh positive strains from other countries. The complete trh sequences revealed clustering into three different types: trh1 and trh2 genes and a pseudogene Ψtrh. All German isolates possessed alleles of the trh2 gene. MLST analysis indicated a close relationship to Norwegian isolates suggesting that these strains belong to the autochthonous microflora of Northern Europe seawaters. Strains carrying the pseudogene Ψtrh were negative for T3SS2β effector vopC. Transcription of trh and vopC genes was analyzed under different growth conditions. Trh2 gene expression was not altered by bile while trh1 genes were inducible. VopC could be induced by urea in trh2 bearing strains. Most trh1 carrying strains were hemolytic against sheep erythrocytes while all trh2 positive strains did not show any hemolytic activity. TRH variants were synthesized in a prokaryotic cell-free system and their hemolytic activity was analyzed. TRH1 was active against sheep erythrocytes while TRH2 variants were not active at all. Our study reveals a high diversity among trh positive V. parahaemolyticus strains. The function of TRH2 hemolysins and the role of the pseudogene Ψtrh as pathogenicity factors are questionable. To assess the pathogenic potential of V. parahaemolyticus strains a differentiation of trh variants and the detection of T3SS2β components like vopC would improve the V. parahaemolyticus diagnostics and could lead to a refinement of the risk assessment in food analyses and clinical diagnostics.
Divergent H7 immunogens offer protection from H7N9 virus challenge.
Krammer, Florian; Albrecht, Randy A; Tan, Gene S; Margine, Irina; Hai, Rong; Schmolke, Mirco; Runstadler, Jonathan; Andrews, Sarah F; Wilson, Patrick C; Cox, Rebecca J; Treanor, John J; García-Sastre, Adolfo; Palese, Peter
2014-04-01
The emergence of avian H7N9 viruses in humans in China has renewed concerns about influenza pandemics emerging from Asia. Vaccines are still the best countermeasure against emerging influenza virus infections, but the process from the identification of vaccine seed strains to the distribution of the final product can take several months. In the case of the 2009 H1N1 pandemic, a vaccine was not available before the first pandemic wave hit and therefore came too late to reduce influenza morbidity. H7 vaccines based on divergent isolates of the Eurasian and North American lineages have been tested in clinical trials, and seed strains and reagents are already available and can potentially be used initially to curtail influenza-induced disease until a more appropriately matched H7N9 vaccine is ready. In a challenge experiment in the mouse model, we assessed the efficacy of both inactivated virus and recombinant hemagglutinin vaccines made from seed strains that are divergent from H7N9 from each of the two major H7 lineages. Furthermore, we analyzed the cross-reactive responses of sera from human subjects vaccinated with heterologous North American and Eurasian lineage H7 vaccines to H7N9. Vaccinations with inactivated virus and recombinant hemagglutinin protein preparations from both lineages raised hemagglutination-inhibiting antibodies against H7N9 viruses and protected mice from stringent viral challenges. Similar cross-reactivity was observed in sera of human subjects from a clinical trial with a divergent H7 vaccine. Existing H7 vaccine candidates based on divergent strains could be used as a first line of defense against an H7N9 pandemic. In addition, this also suggests that H7N9 vaccines that are currently under development might be stockpiled and used for divergent avian H7 strains that emerge in the future. Sporadic human infections with H7N9 viruses started being reported in China in the early spring of 2013. Despite a significant drop in the number of infections during the summer months of 2013, an increased number of cases has already been reported for the 2013-2014 winter season. The high case fatality rate, the ability to bind to receptors in the human upper respiratory tract in combination with several family clusters, and the emergence of neuraminidase inhibitor-resistant variants that show no loss of pathogenicity and the ability to transmit in animal models have raised concerns about a potential pandemic and have spurred efforts to produce vaccine candidates. Here we show that antigen preparations from divergent H7 strains are able to induce protective immunity against H7N9 infection.
Controlling Influenza by Cytotoxic T-Cells: Calling for Help from Destroyers
Schotsaert, Michael; Ibañez, Lorena Itatí; Fiers, Walter; Saelens, Xavier
2010-01-01
Influenza is a vaccine preventable disease that causes severe illness and excess mortality in humans. Licensed influenza vaccines induce humoral immunity and protect against strains that antigenically match the major antigenic components of the vaccine, but much less against antigenically diverse influenza strains. A vaccine that protects against different influenza viruses belonging to the same subtype or even against viruses belonging to more than one subtype would be a major advance in our battle against influenza. Heterosubtypic immunity could be obtained by cytotoxic T-cell (CTL) responses against conserved influenza virus epitopes. The molecular mechanisms involved in inducing protective CTL responses are discussed here. We also focus on CTL vaccine design and point to the importance of immune-related databases and immunoinformatics tools in the quest for new vaccine candidates. Some techniques for analysis of T-cell responses are also highlighted, as they allow estimation of cellular immune responses induced by vaccine preparations and can provide correlates of protection. PMID:20508820
Kwon, Young-Yon; Lee, Sung-Keun; Lee, Cheol-Koo
2017-04-01
Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defects in 17 of these 33 ETC gene-deleted strains showed loss of both respiratory function and CR-induced CLS extension. On the contrary, the other 16 respiration-capable mutants showed increased CLS upon CR along with increased mitochondrial membrane potential (MMP) and intracellular adenosine triphosphate (ATP) levels, with decreased mitochondrial superoxide generation. We measured the same parameters in the 17 non-respiratory mutants upon CR. CR simultaneously increased MMP and mitochondrial superoxide generation without altering intracellular ATP levels. In conclusion, respiration is essential for CLS extension by CR and is important for balancing MMP, ROS, and ATP levels.
Study on induced strain in direct nanoimprint lithography
NASA Astrophysics Data System (ADS)
Watanabe, Kenta; Iida, Tatsuya; Yasuda, Masaaki; Kawata, Hiroaki; Hirai, Yoshihiko
2018-06-01
The induced shear strain distribution in a polymer film is investigated by computational study in a direct nanoimprint process. The effects of the polymer thickness, mold pattern shape such as rectangular, triangular or overcut pattern shape, and the coefficient of friction between the mold and the polymer are studied by computational work. As the coefficient of friction increases, the induced shear strain increases along the mold surface. Depending on the polymer thickness, the shear strain is induced in the residual and/or pattern area. In the triangular pattern, the strain is induced in the pattern central area. The results suggest that shear stress remains in the triangular pattern area in the direct nanoimprint process. On the other hand, the rectangular pattern is suitable for suppressing the induced strain inside the pattern.
Auger, Jean-Philippe; Santinón, Agustina; Roy, David; Mossman, Karen; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo
2017-01-01
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis, with exacerbated inflammation being a hallmark of the infection. However, serotype 2 strains are genotypically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies: the virulent ST1 (Eurasia), highly virulent ST7 (responsible for the human outbreaks in China), and intermediate virulent ST25 (North America) are the most important worldwide. Even though type I interferons (IFNs) are traditionally associated with important antiviral functions, recent studies have demonstrated that they may also play an important role during infections with extracellular bacteria. Upregulation of IFN-β levels was previously observed in mice following infection with this pathogen. Consequently, the implication of IFN-β in the S. suis serotype 2 pathogenesis, which has always been considered a strict extracellular bacterium, was evaluated using strains of varying virulence. This study demonstrates that intermediate virulent strains are significantly more susceptible to phagocytosis than virulent strains. Hence, subsequent localization of these strains within the phagosome results in recognition of bacterial nucleic acids by Toll-like receptors 7 and 9, leading to activation of the interferon regulatory factors 1, 3, and 7 and production of IFN-β. Type I IFN, whose implication depends on the virulence level of the S. suis strain, is involved in host defense by participating in the modulation of systemic inflammation, which is responsible for the clearance of blood bacterial burden. As such, when induced by intermediate, and to a lesser extent, virulent S. suis strains, type I IFN plays a beneficial role in host survival. The highly virulent ST7 strain, however, hastily induces a septic shock that cannot be controlled by type I IFN, leading to rapid death of the host. A better understanding of the underlying mechanisms involved in the control of inflammation and subsequent bacterial burden could help to develop control measures for this important porcine and zoonotic agent. PMID:28894449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne
2012-10-15
Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with themore » latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.« less
Courtney, S C; Scherbik, S V; Stockman, B M; Brinton, M A
2012-04-01
West Nile virus (WNV) recently became endemic in the United States and is a significant cause of human morbidity and mortality. Natural WNV strain infections do not induce stress granules (SGs), while W956IC (a lineage 2/1 chimeric WNV infectious clone) virus infections produce high levels of early viral RNA and efficiently induce SGs through protein kinase R (PKR) activation. Additional WNV chimeric viruses made by replacing one or more W956IC genes with the lineage 1 Eg101 equivalent in the W956IC backbone were analyzed. The Eg-NS4b+5, Eg-NS1+3+4a, and Eg-NS1+4b+5 chimeras produced low levels of viral RNA at early times of infection and inefficiently induced SGs, suggesting the possibility that interactions between viral nonstructural proteins and/or between viral nonstructural proteins and cell proteins are involved in suppressing early viral RNA synthesis and membrane remodeling during natural WNV strain infections. Detection of exposed viral double-stranded RNA (dsRNA) in W956IC-infected cells suggested that the enhanced early viral RNA synthesis surpassed the available virus-induced membrane protection and allowed viral dsRNA to activate PKR.
Gilbert, Hamish T. J.; Nagra, Navraj S.; Freemont, Anthony J.; Millward-Sadler, Sarah J.; Hoyland, Judith A.
2013-01-01
Intervertebral disc (IVD) cells derived from degenerate tissue respond aberrantly to mechanical stimuli, potentially due to altered mechanotransduction pathways. Elucidation of the altered, or alternative, mechanotransduction pathways operating with degeneration could yield novel targets for the treatment of IVD disease. Our aim here was to investigate the involvement of RGD-recognising integrins and associated signalling molecules in the response to cyclic tensile strain (CTS) of human annulus fibrosus (AF) cells derived from non-degenerate and degenerate IVDs. AF cells from non-degenerate and degenerate human IVDs were cyclically strained with and without function blocking RGD – peptides with 10% strain, 1.0 Hz for 20 minutes using a Flexercell® strain device. QRT-PCR and Western blotting were performed to analyse gene expression of type I collagen and ADAMTS -4, and phosphorylation of focal adhesion kinase (FAK), respectively. The response to 1.0 Hz CTS differed between the two groups of AF cells, with decreased ADAMTS -4 gene expression and decreased type I collagen gene expression post load in AF cells derived from non-degenerate and degenerate IVDs, respectively. Pre-treatment of non-degenerate AF cells with RGD peptides prevented the CTS-induced decrease in ADAMTS -4 gene expression, but caused an increase in expression at 24 hours, a response not observed in degenerate AF cells where RGD pre-treatment failed to inhibit the mechano-response. In addition, FAK phosphorylation increased in CTS stimulated AF cells derived from non-degenerate, but not degenerate IVDs, with RGD pre-treatment inhibiting the CTS – dependent increase in phosphorylated FAK. Our findings suggest that RGD -integrins are involved in the 1.0 Hz CTS – induced mechano-response observed in AF cells derived from non-degenerate, but not degenerate IVDs. This data supports our previous work, suggesting an alternative mechanotransduction pathway may be operating in degenerate AF cells. PMID:24039840
Clemente, Ann Maria; Castronovo, Giuseppe; Antonelli, Alberto; D’Andrea, Marco Maria; Tanturli, Michele; Perissi, Eloisa; Paccosi, Sara; Parenti, Astrid; Cozzolino, Federico; Rossolini, Gian Maria
2017-01-01
The spread of KPC-type carbapenemases is mainly attributed to the global dissemination of Klebsiella pneumoniae (KP) strains belonging to the clonal group (CG) 258, including sequence type (ST) 258 and other related STs. Two distinct clades of CG258-KP have evolved, which differ mainly for the composition of their capsular polysaccharides, and recent studies indicate that clade 1 evolved from an ancestor of clade 2 by recombination of a genomic fragment carrying the capsular polysaccharide (cps) locus. In this paper, we investigated the ability of two ST258-KP strains, KKBO-1 and KK207-1, selected as representatives of ST258-KP clade 2 and clade 1, respectively, to activate an adaptive immune response using ex vivo-stimulation of PBMC from normal donors as an experimental model. Our data showed that KKBO-1 (clade 2) induces a Th17 response more efficiently than KK207-1 (clade 1): the percentage of CD4+IL17+ cells and the production of IL-17A were significantly higher in cultures with KKBO-1 compared to cultures with KK207-1. While no differences in the rate of bacterial internalization or in the bacteria-induced expression of CD86 and HLA-DR by monocytes and myeloid dendritic cells were revealed, we found that the two strains significantly differ in inducing the production of cytokines involved in the adaptive immune response, as IL-1β, IL-23 and TNF-α, by antigen-presenting cells, with KKBO-1 being a more efficient inducer than KK207-1. The immune responses elicited by KK207-1 were comparable to those elicited by CIP 52.145, a highly virulent K. pneumoniae reference strain known to escape immune-inflammatory responses. Altogether, present results suggest that CG258-KP of the two clades are capable of inducing a different response of adaptive immunity in the human host. PMID:28586386
Niedelman, Wendy; Gold, Daniel A.; Rosowski, Emily E.; Sprokholt, Joris K.; Lim, Daniel; Farid Arenas, Ailan; Melo, Mariane B.; Spooner, Eric; Yaffe, Michael B.; Saeij, Jeroen P. J.
2012-01-01
The obligate intracellular parasite Toxoplasma gondii secretes effector proteins into the host cell that manipulate the immune response allowing it to establish a chronic infection. Crosses between the types I, II and III strains, which are prevalent in North America and Europe, have identified several secreted effectors that determine strain differences in mouse virulence. The polymorphic rhoptry protein kinase ROP18 was recently shown to determine the difference in virulence between type I and III strains by phosphorylating and inactivating the interferon-γ (IFNγ)-induced immunity-related GTPases (IRGs) that promote killing by disrupting the parasitophorous vacuole membrane (PVM) in murine cells. The polymorphic pseudokinase ROP5 determines strain differences in virulence through an unknown mechanism. Here we report that ROP18 can only inhibit accumulation of the IRGs on the PVM of strains that also express virulent ROP5 alleles. In contrast, specific ROP5 alleles can reduce IRG coating even in the absence of ROP18 expression and can directly interact with one or more IRGs. We further show that the allelic combination of ROP18 and ROP5 also determines IRG evasion and virulence of strains belonging to other lineages besides types I, II and III. However, neither ROP18 nor ROP5 markedly affect survival in IFNγ-activated human cells, which lack the multitude of IRGs present in murine cells. These findings suggest that ROP18 and ROP5 have specifically evolved to block the IRGs and are unlikely to have effects in species that do not have the IRG system, such as humans. PMID:22761577
Rodrigues, Ramila Cristiane; Pocheron, Anne-Lise; Cappelier, Jean-Michel; Tresse, Odile; Haddad, Nabila
2018-06-01
Campylobacter jejuni is the most prevalent foodborne bacterial infection agent. This pathogen seems also involved in inflammatory bowel diseases in which pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), play a major role. C. jejuni pathogenicity has been extensively studied using in vitro cell culture methods, and more precisely "healthy" cells. In fact, no information is available regarding the behavior of C. jejuni in contact with TNFα-stimulated cells. Therefore, this research was designed to investigate the effect of TNFα on C. jejuni interaction with human intestinal epithelial cells (HT29 and HT29-MTX). To ensure IL-8 production induced by TNFα, human rtTNFα was added to HT29 and HT29-MTX before adhesion and invasion assays. About 10 8 CFU bacteria of C. jejuni strains cells were added to measure their adherence and invasion abilities using TNFα-stimulated cells versus non stimulated cells. Exposure to TNFα results in IL-8 overproduction by intestinal epithelial cells. In addition, the effect of TNFα pre-treatment on C. jejuni adhesion and internalization into eukaryotic cells is strain-dependent. Indeed, the adhesion/invasion process is affected in <50% of the strains tested when TNFα is added to the intestinal cells. Interestingly, TNFα affects more strains in their ability to adhere to and invade the mucus-secreting HT29-MTX cells. Among the 10 strains tested, the aero-tolerant C. jejuni Bf strain is one of the most virulent. These results suggest that the TNFα signalling pathway could participate in the internalization of C. jejuni in human intestinal cells and can help in understanding the pathogenicity of this microorganism in contact with TNFα-stimulated cells. Copyright © 2018. Published by Elsevier B.V.
Shibata, Shin-ichiro; Kawahara, Makoto; Rikihisa, Yasuko; Fujita, Hiromi; Watanabe, Yuriko; Suto, Chiharu; Ito, Tadahiko
2000-01-01
Seven Ehrlichia strains (six HF strains and one Anan strain) that were obtained from laboratory mice by intraperitoneally inoculating homogenates of adult Ixodes ovatus collected in Japan were characterized. 16S rRNA sequences of all six HF strains were identical, and the sequences were 99.7, 98.2, and 97.7% identical to those of Anan strain, Ehrlichia chaffeensis (human monocytic ehrlichiosis agent), and E. muris, respectively. Partial GroEL amino acid sequencing also revealed that the six HF strains had identical sequences, which were 99.0, 98.5, and 97.3% identical to those of E. chaffeensis, the Anan strain, and E. canis, respectively. All HF strains were lethal to mice at higher dosages and intraperitoneal inoculation, whereas the Anan or E. muris strain induced only mild clinical signs. Light and electron microscopy of moribund mice inoculated with one of the HF strains revealed severe liver necrosis and the presence of numerous ehrlichial inclusions (morulae) in various organs. The study revealed that members of E. canis genogroup are naturally present in Ixodes ticks. HF strains that can cause severe illness in immunocompetent laboratory mice would be valuable in studying the pathogenesis and the roles of both cellular and humoral immune responses in ehrlichiosis caused by E. canis genogroup. PMID:10747103
Douillard, François P.; Ritari, Jarmo; Paulin, Lars; Järvinen, Hanna M.; Rasinkangas, Pia; Haapasalo, Karita; Meri, Seppo; Jarva, Hanna; de Vos, Willem M.
2017-01-01
Lactobacillus rhamnosus strains are ubiquitous in fermented foods, and in the human body where they are commensals naturally present in the normal microbiota composition of gut, vagina and skin. However, in some cases, Lactobacillus spp. have been implicated in bacteremia. The aim of the study was to examine the genomic and immunological properties of 16 clinical blood isolates of L. rhamnosus and to compare them to the well-studied L. rhamnosus probiotic strain GG. Blood cultures from bacteremic patients were collected at the Helsinki University Hospital laboratory in 2005–2011 and L. rhamnosus strains were isolated and characterized by genomic sequencing. The capacity of the L. rhamnosus strains to activate serum complement was studied using immunological assays for complement factor C3a and the terminal pathway complement complex (TCC). Binding of complement regulators factor H and C4bp was also determined using radioligand assays. Furthermore, the isolated strains were evaluated for their ability to aggregate platelets and to form biofilms in vitro. Genomic comparison between the clinical L. rhamnosus strains showed them to be clearly different from L. rhamnosus GG and to cluster in two distinct lineages. All L. rhamnosus strains activated complement in serum and none of them bound complement regulators. Four out of 16 clinical blood isolates induced platelet aggregation and/or formed more biofilms than L. rhamnosus GG, which did not display platelet aggregation activity nor showed strong biofilm formation. These findings suggest that clinical L. rhamnosus isolates show considerable heterogeneity but are clearly different from L. rhamnosus GG at the genomic level. All L. rhamnosus strains are still normally recognized by the human complement system. PMID:28493885
Diversity in bacterium-host interactions within the species Helicobacter heilmannii sensu stricto
2013-01-01
Helicobacter (H.) heilmannii sensu stricto (s.s.) is a zoonotic bacterium that naturally colonizes the stomach of dogs and cats. In humans, this microorganism has been associated with gastritis, peptic ulcer disease and mucosa associated lymphoid tissue (MALT) lymphoma. Little information is available about the pathogenesis of H. heilmannii s.s. infections in humans and it is unknown whether differences in virulence exist within this species. Therefore, a Mongolian gerbil model was used to study bacterium-host interactions of 9 H. heilmannii s.s. strains. The colonization ability of the strains, the intensity of gastritis and gene expression of various inflammatory cytokines in the stomach were determined at 9 weeks after experimental infection. The induction of an antrum-dominant chronic active gastritis with formation of lymphocytic aggregates was shown for 7 strains. High-level antral colonization was seen for 4 strains, while colonization of 4 other strains was more restricted and one strain was not detected in the stomach at 9 weeks post infection. All strains inducing a chronic active gastritis caused an up-regulation of the pro-inflammatory cytokine IL-1β in the antrum. A reduced antral expression of H+/K+ ATPase was seen in the stomach after infection with 3 highly colonizing strains and 2 highly colonizing strains caused an increased gastrin expression in the fundus. In none of the H. heilmannii s.s.-infected groups, IFN-γ expression was up-regulated. This study demonstrates diversity in bacterium-host interactions within the species H. heilmannii s.s. and that the pathogenesis of gastric infections with this microorganism is not identical to that of an H. pylori infection. PMID:23895283
USDA-ARS?s Scientific Manuscript database
Background: We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were rep...
Stoddart, Martin; Lezuo, Patrick; Forkmann, Christoph; Wimmmer, Markus A.; Alini, Mauro; Van Oosterwyck, Hans
2014-01-01
Fibrin–polyurethane composite scaffolds support chondrogenesis of human mesenchymal stem cells (hMSCs) derived from bone marrow and due to their robust mechanical properties allow mechanical loading in dynamic bioreactors, which has been shown to increase the chondrogenic differentiation of MSCs through the transforming growth factor beta pathway. The aim of this study was to use the finite element method, mechanical testing, and dynamic in vitro cell culture experiments on hMSC-enriched fibrin–polyurethane composite scaffolds to quantitatively decipher the mechanoregulation of chondrogenesis within these constructs. The study identified compressive principal strains as the key regulator of chondrogenesis in the constructs. Although dynamic uniaxial compression did not induce chondrogenesis, multiaxial loading by combined application of dynamic compression and interfacial shear induced significant chondrogenesis at locations where all the three principal strains were compressive and had a minimum magnitude of 10%. In contrast, no direct correlation was identified between the level of pore fluid velocity and chondrogenesis. Due to the high permeability of the constructs, the pore fluid pressures could not be increased sufficiently by mechanical loading, and instead, chondrogenesis was induced by triaxial compressive deformations of the matrix with a minimum magnitude of 10%. Thus, it can be concluded that dynamic triaxial compressive deformations of the matrix is sufficient to induce chondrogenesis in a threshold-dependent manner, even where the pore fluid pressure is negligible. PMID:24199606
Kumar, Mukesh; O'Connell, Maile; Namekar, Madhuri; Nerurkar, Vivek R
2014-06-06
Herein we demonstrate that infection of mice with West Nile virus (WNV) Eg101 provides protective immunity against lethal challenge with WNV NY99. Our data demonstrated that WNV Eg101 is largely non-virulent in adult mice when compared to WNV NY99. By day 6 after infection, WNV-specific IgM and IgG antibodies, and neutralizing antibodies were detected in the serum of all WNV Eg101 infected mice. Plaque reduction neutralization test data demonstrated that serum from WNV Eg101 infected mice neutralized WNV Eg101 and WNV NY99 strains with similar efficiency. Three weeks after infection, WNV Eg101 immunized mice were challenged subcutaneously or intracranially with lethal dose of WNV NY99 and observed for additional three weeks. All the challenged mice were protected against disease and no morbidity and mortality was observed in any mice. In conclusion, our data for the first time demonstrate that infection of mice with WNV Eg101 induced high titers of WNV specific IgM and IgG antibodies, and cross-reactive neutralizing antibodies, and the resulting immunity protected all immunized animals from both subcutaneous and intracranial challenge with WNV NY99. These observations suggest that WNV Eg101 may be a suitable strain for the development of a vaccine in humans against virulent strains of WNV.
Lohberger, Birgit; Kaltenegger, Heike; Stuendl, Nicole; Rinner, Beate; Leithner, Andreas; Sadoghi, Patrick
2016-12-01
Mechanical stimulation plays an important role in the development and remodelling of tendons. The aim of the study was to evaluate the effects of mechanical stimulation on the expression of extracellular matrix proteins in human primary rotator cuff (RC) fibroblasts. RC fibroblasts were isolated from patients with degenerative RC tears and characterized using flow cytometry and immunohistochemistry. Cells were stimulated using the Flexcell FX5K™ Tension System. The stimulation regime was a uniaxial sinusoidal waveform with 10 % elongation and a frequency of 0.5 Hz, whereby each cycle consists of 10-s strain and 30-s relaxation. Data were normalized to mechanically unstimulated control groups for every experimental condition. RT-qPCR was performed to determine relative mRNA levels, and collagen production was measured by a colorimetric assay. The positive expression of CD91 and CD10, and negativity for CD45 and CD4 confirmed the fibroblast phenotype of RC primary cells. RT-qPCR revealed that 10 % continuous cyclic strain for 7 and 14 days induced a significant increase in the mRNA expression both on the matrix metalloproteinases MMP1, MMP3, MMP13, and MMP14 and on the extracellular matrix proteins decorin, tenascin-C, and scleraxis. Furthermore, mechanically stimulated groups produced significantly higher amounts of total collagen. These results may contribute to a better understanding of strain-induced tendon remodelling and will form the basis for the correct choice of applied force in rehabilitation after orthopaedic surgery. These findings underline the fact that early passive motion of the joint in order to induce remodelling of the tendon should be included within a rehabilitation protocol for rotator cuff repair.
Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola
2015-01-01
Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944
Liu, Zhi; Liu, Wenshu; Ran, Chao; Hu, Jun; Zhou, Zhigang
2016-01-01
In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A. hydrophila. We further observed that suspension of JCM1149 resulted in host gut microbiota dysbiosis and the subsequent disorder in the intestinal metabolites (bile acids, amino acids, and glucose) and damage in the intestinal epithelium, giving rise to a condition similar to antibiotics-induced gut dysbiosis, which collectively impaired tilapia’s gut health and resistance to pathogenic challenges. Additionally, we determined that JCM1149 adhered relatively poorly to tilapia intestinal mucosa and was rapidly released from the gastrointestinal tract (GIT) after suspension, with the rapid loss of probiotic strain probably being the direct cause of gut dysbiosis. Finally, three other probiotic Lactobacillus strains with low intestinal mucosa binding activity showed similar rapid loss phenotype following administration suspension, and induced higher host susceptibility to infection, indicating that the risk is a generic phenomenon in Lactobacillus. PMID:26983596
Arena, Mattia P; Russo, Pasquale; Capozzi, Vittorio; López, Paloma; Fiocco, Daniela; Spano, Giuseppe
2014-09-01
The probiotic potential of Lactobacillus plantarum and Lactobacillus fermentum strains, capable of overproducing riboflavin, was investigated. The riboflavin production was quantified in co-cultures of lactobacilli and human intestinal epithelial cells, and the riboflavin overproduction ability was confirmed. When milk and yogurt were used as carrier matrices, L. plantarum and L. fermentum strains displayed a significant ability to survive through simulated gastrointestinal transit. Adhesion was studied on both biotic and abiotic surfaces. Both strains adhered strongly on Caco-2 cells, negatively influenced the adhesion of Escherichia coli O157:H7, and strongly inhibited the growth of three reference pathogenic microbial strains. Resistance to major antibiotics and potential hemolytic activity were assayed. Overall, this study reveals that these Lactobacillus stains are endowed with promising probiotic properties and thus are candidates for the development of novel functional food which would be both enriched in riboflavin and induce additional health benefits, including a potential in situ riboflavin production, once the microorganisms colonize the host intestine.
New vaccines against influenza virus
Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong
2014-01-01
Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759
NASA Astrophysics Data System (ADS)
Yuan, Lijian
This thesis investigates the structure-property relations for the calcium silicate hydrate (C-S-H) gel phase in hardened cement pastes (HCP). Studies were performed with the purpose of gaining insight into the origin of the electromechanical behavior and exploring the dynamic nature of the pore structures of HCP during water transport by using an electrically induced strain method. Emphasis was placed on the fundamental characteristics of the electrically induced strains, the role that electrically stimulated water transport through the interconnecting pore structures in HCP plays, as well as the mechanism underlying the induced strains. Reversible and irreversible components of the induced strains were distinguished under ac electric field. Evidence showed that the reversible strains were due to redistribution of water along the structure of the pore network of specimens, whereas the irreversible strains were related to long-range water transport toward the surface of specimens. In contrast, the contractive strains were found following the water loss during measurements. Investigations as a function of measurement frequency revealed a strong relaxation of the induced strains in the frequency range from 6.7 × 10sp{-3} to 1 Hz. The strong relaxation in the induced strains with electric field was found to be due to space charge polarization and a creep-like deformation. The induced strains were shown to be strongly affected by changes in the gel pore structures. The magnitude of the induced strains was found to be significantly dependent on the moisture content adsorbed. Evidence of a critical percolation of pore solution was also observed. A strong decrease in the induced strains was observed with decreasing temperature due to the influence of ice formation. This decrease was interpreted in terms of a decrease in the electroosmotic volumetric flux and hydraulic permeability with decreasing temperature. The strong non-linearity in the induced strains was found with respect to the electric field strength. The presence of non-linear electric streaming current vs. electric field characteristics was examined, which was modeled by using an electrokinetic equation of state. Evidence of an anomalous temperature dependence in both electrical conductivity and dielectric permitivity was observed, indicating the presence of anomalies associated with a percolation-like transition.
Ulusoy, Canan; Çavuş, Filiz; Yılmaz, Vuslat; Tüzün, Erdem
2017-07-01
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ), characterized with muscle weakness. While MG develops due to acetylcholine receptor (AChR) antibodies in most patients, antibodies to muscle-specific receptor tyrosine kinase (MuSK) or low-density lipoprotein receptor-related protein 4 (LRP4) may also be identified. Experimental autoimmune myasthenia gravis (EAMG) has been previously induced by both LRP4 immunization and passive transfer of LRP4 antibodies. Our aim was to confirm previous results and to test the pathogenic effects of LRP4 immunization in a commonly used mouse strain C57BL/6 (B6) using a recombinantly expressed human LRP4 protein. B6 mice were immunized with human LRP4 in CFA, Torpedo Californica AChR in CFA or only CFA. Clinical and pathogenic aspects of EAMG were compared among groups. LRP4- and AChR-immunized mice showed comparable EAMG clinical severity. LRP4-immunized mice displayed serum antibodies to LRP4 and NMJ IgG and complement factor C3 deposits. IgG2 was the dominant anti-LRP4 isotype. Cultured lymph node cells of LRP4- and AChR-immunized mice gave identical pro-inflammatory cytokine (IL-6, IFN-γ and IL-17) responses to LRP4 and AChR stimulation, respectively. Our results confirm the EAMG-inducing action of LRP4 immunization and identify B6 as a LRP4-EAMG-susceptible mouse strain. Demonstration of complement fixing anti-LRP4 antibodies in sera and complement/IgG deposits at the NMJ of LRP4-immunized mice indicates complement activation as a putative pathogenic mechanism. We have thus developed a practical LRP4-induced EAMG model using a non-conformational protein and a widely available mouse strain for future investigation of LRP4-related MG.
Effect of lactobacilli on paracellular permeability in the gut.
Ahrne, Siv; Hagslatt, Marie-Louise Johansson
2011-01-01
Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells.
Zawadzki, Paweł J.; Starościak, Bohdan; Baltaza, Wanda; Dybicz, Monika; Pionkowski, Krzysztof; Pawłowski, Witold; Kłyś, Małgorzata; Chomicz, Lidia
World-wide distributed pests of Plodia interpunctella occur with increasing frequency also in Poland, in areas where food is prepared and stored, in dwellings, buildings of public use, hospitals. Larvae damage various products causing economic losses. There were no data about microbiota transmission by pests. The aim of our systematic studies firstly conducted in Poland was to explain a role of pests as reservoirs of microbiota and assess health risk induced by them in human environments. 300 adults and 200 larvae, collected in households and health facilities by traps and directly from products, were examined by light microscopy, in vitro cultivations, molecular techniques; the susceptibility /resistance of microbiota to chemicals was also assessed. Gram+ bacteriae of genera Enterococcus, Micrococcus, Bacillus, Gram-: Klebsiella, Escherichia, mold fungi: Aspergillus, Penicillium and yeast-like fungi were identified, including strains potentially pathogenic for humans. In the European Union countries, the food circulation is audited by the law; chemicals are applied to eliminate P.interpunctella pests causing economic losses. Our successive studies showed that pyralids may generate health problems as food pests and as reservoirs of microbiota. Sources of the pathogenic, drug-resistant strains revealed by us, not identified earlier, may be particularly dangerous for elder persons, with weakened immune system, persons from groups of high risk of infections. The increased awareness of the problem is necessary for more efficacy of preventive measures. A monitoring of consequences of the health risk induced by the pests may supply data useful for adequate practical approach.
Mansour, Nahla M; Heine, Holger; Abdou, Sania M; Shenana, Mohamed E; Zakaria, Mohamed K; El-Diwany, Ahmed
2014-10-01
Probiotics, defined as living bacteria that are beneficial for human health, mainly function through their immunomodulatory abilities. Hence, these microorganisms have proven successful for treating diseases resulting from immune deregulation. The aim of this study was to find novel candidates to improve on and complement current probiotic treatment strategies. Of 60 lactic acid bacterial strains that were isolated from fecal samples of healthy, full-term, breast-fed infants, three were chosen because of their ability to activate human immune cells. These candidates were then tested with regard to immunomodulatory properties, antimicrobial effects on pathogens, required pharmacological properties and their safety profiles. To identify the immunomodulatory structures of the selected isolates, activation of specific innate immune receptors was studied. The three candidates for probiotic treatment were assigned Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512. Compared with the established allergy-protective strain Lactococcus lactis G121, these isolates induced release of similar amounts of IL-12, a potent inducer of T helper 1 cells. In addition, all three neonatal isolates had antimicrobial activity against pathogens. Analysis of pharmacological suitability showed high tolerance of low pH, bile salts and pancreatic enzymes. In terms of safe application in humans, the isolates were sensitive to three antibiotics (chloramphenicol, tetracycline and erythromycin). In addition, the Enterococcus isolates were free from the four major virulence genes (cylA, agg, efaAfs and ccf). Moreover, the isolates strongly activated Toll-like receptor 2, which suggests lipopeptides as their active immunomodulatory structure. Thus, three novel bacterial strains with great potential as probiotic candidates and promising immunomodulatory properties have here been identified and characterized. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. Y.; Sun, Yinan; An, Ke
2010-01-01
Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less
NASA Astrophysics Data System (ADS)
Haidemenopoulos, G. N.; Constantinou, M.; Kamoutsi, H.; Krizan, D.; Bellas, I.; Koutsokeras, L.; Constantinides, G.
2018-06-01
X-ray diffraction analysis, magnetic force microscopy, and the saturation magnetization method have been employed to study the evolution of the percentage and size of retained austenite (RA) particles during strain-induced transformation in a transformation-induced plasticity (TRIP) steel. A low-alloy TRIP-700 steel with nominal composition Fe-0.2C-0.34Si-1.99Mn-1Al (mass%) was subjected to interrupted tensile testing at strain levels of 0-22% and the microstructure subsequently studied. The results of the three experimental techniques were in very good agreement regarding the estimated austenite volume fraction and its evolution with strain. Furthermore, this multitechnique approach revealed that the average particle size of RA reduced as the applied strain was increased, suggesting that larger particles are less stable and more susceptible to strain-induced phase transformation. Such experimentally determined evolution of the austenite size with strain could serve as an input to kinetic models that aim to predict the strain-induced transformation in low-alloy TRIP steels.
Ramos, Nubia L; Lamprokostopoulou, Agaristi; Chapman, Toni A; Chin, James C; Römling, Ute; Brauner, Annelie; Katouli, Mohammad
2011-02-01
Four efficiently translocating Escherichia coli (TEC) strains isolated from the blood of humans (HMLN-1), pigs (PC-1) and rats (KIC-1 and KIC-2) were tested for their ability to adhere and translocate across human gut epithelial Caco-2 and HT-29 cells, to elicit a proinflammatory response and for the presence of 47 pathogenic E. coli virulence genes. HMLN-1 and PC-1 were more efficient in adhesion and translocation than rat strains, had identical biochemical phenotype (BPT) and serotype (O77:H18) and phylogenetic group (D). KIC-2 adhered more than KIC-1, belonged to different BPT and serotype but the same phylogenetic group as KIC-1. TEC strains elicited significantly higher IL-8 response in both cell lines (P < 0.05) and monocytic THP-1 (P < 0.0001) cells than non-TEC strains. KIC-2 induced the highest IL-8 response which may be associated with its immunostimulatory flagellin. Apart from adhesin genes fimH and bmaE that were carried by all strains, HMLN-1 and PC-1 carried capsule synthesis gene kpsMT III and KIC-2 carried the EAST1 toxin gene. The lack of known virulence genes and the ability of TEC to efficiently adhere and translocate whilst causing proinflammatory response suggests that these strains may carry as yet unidentified genes that enable their translocating ability. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ciacci, C; Manti, A; Canonico, B; Campana, R; Camisassi, G; Baffone, W; Canesi, L
2017-06-01
Marine bivalves are exposed to different types of bacteria in the surrounding waters, in particular of the Vibrio genus. In the hemocytes of the mussel Mytilus spp. immune responses to different vibrios have been largely characterized. However, little information is available on the hemocyte responses to human pathogenic vibrios commonly detected in coastal waters and bivalve tissues that are involved in seafood-borne diseases. In this work, functional parameters of the hemocytes from the Mediterranean mussel M. galloprovincialis were evaluated in response to in vitro challenge with different vibrios isolated from environmental samples of the Adriatic sea (Italy): V. parahaemolyticus Conero, V. alginolyticus 1513 and V. vulnificus 509. V. parahaemolyticus ATCC 43996 was used for comparison. At the 50:1 bacteria hemocyte ratio, only V. parahaemolyticus strains induced significant lysosomal membrane destabilisation. Stimulation of extracellular lysozyme release, total ROS, O 2 - and NO production were observed, although to different extents and with distinct time courses for different vibrios, V. vulnificus 509 in particular. Further comparisons between V. parahaemolyticus Conero and V. vulnificus 509 showed that only the latter induced dysregulation of the phosphorylation state of p38 MAP Kinase and apoptotic processes. The results indicate that mussel hemocytes can mount an efficient immune response towards V. parahaemolyticus and V. alginolyticus strains, whereas V. vulnificus 509 may affect the hemocyte function. This is the first report on immune responses of mussels to local environmental isolates of human pathogenic vibrios. These data reinforce the hypothesis that Mytilus hemocytes show specific responses to different vibrio species and strains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Original antigenic sin: A comprehensive review.
Vatti, Anup; Monsalve, Diana M; Pacheco, Yovana; Chang, Christopher; Anaya, Juan-Manuel; Gershwin, M Eric
2017-09-01
The concept of "original antigenic sin" was first proposed by Thomas Francis, Jr. in 1960. This phenomenon has the potential to rewrite what we understand about how the immune system responds to infections and its mechanistic implications on how vaccines should be designed. Antigenic sin has been demonstrated to occur in several infectious diseases in both animals and humans, including human influenza infection and dengue fever. The basis of "original antigenic sin" requires immunological memory, and our immune system ability to autocorrect. In the context of viral infections, it is expected that if we are exposed to a native strain of a pathogen, we should be able to mount a secondary immune response on subsequent exposure to the same pathogen. "Original antigenic sin" will not contradict this well-established immunological process, as long as the subsequent infectious antigen is identical to the original one. But "original antigenic sin" implies that when the epitope varies slightly, then the immune system relies on memory of the earlier infection, rather than mount another primary or secondary response to the new epitope which would allow faster and stronger responses. The result is that the immunological response may be inadequate against the new strain, because the immune system does not adapt and instead relies on its memory to mount a response. In the case of vaccines, if we only immunize to a single strain or epitope, and if that strain/epitope changes over time, then the immune system is unable to mount an accurate secondary response. In addition, depending of the first viral exposure the secondary immune response can result in an antibody-dependent enhancement of the disease or at the opposite, it could induce anergy. Both of them triggering loss of pathogen control and inducing aberrant clinical consequences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brammer, Ingo; Herskind, Carsten; Haase, Oliver; Rodemann, H Peter; Dikomey, Ekkehard
2004-02-03
It was studied for human skin fibroblasts, whether the induction or repair of DNA double-strand breaks (dsb) depend on the differentiation status. These studies were performed (a) with a fibroblast strain (HSF1) kept in progenitor state (mitotic fibroblasts, MF) or triggered to premature terminal differentiation (postmitotic fibrocytes, PMF) by exposure to mitomycin C or (b) with 20 fibroblast strains differing intrinsically in their differentiation status. The differentiation status was quantified by determining the fraction of postmitotic fibrocytes by light microscopy. DNA dsb were measured by constant-field gel electrophoresis, and the fraction of apoptotic cells by comet assay. MF and PMF cultures of HSF1 cells were irradiated with X-ray doses up to 160 Gy, and dsb were measured either immediately after irradiation or after a repair incubation of 4 or 24 h. There were a difference neither in the number of initial nor residual dsb. PMF cultures, however, showed a slightly higher number of dsb already present in non-irradiated cells, which was measured to result from a small fraction of 5% apoptotic cells. The 20 analysed fibroblast strains showed a substantial variation in the fraction of postmitotic fibrocytes (9-51%) as well as in the number of dsb remaining at 24 h after irradiation (1.9-4.9%), but there was no correlation between these two parameters. These data demonstrate that for fibroblasts the terminal differentiation has an effect neither on the induction nor the repair of radiation-induced dsb. This result indicates that the variation in dsb-repair capacity previously observed for fibroblast strains and which was considered to be the main cause for the variation in the cellular radiosensitivity, cannot be ascribed to differences in the differentiation status.
Arjunan, P; El-Awady, A; Dannebaum, R O; Kunde-Ramamoorthy, G; Cutler, C W
2016-02-01
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Serratia marcescens internalization and replication in human bladder epithelial cells
Hertle, Ralf; Schwarz, Heinz
2004-01-01
Background Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains. Methods Elektronmicroscopy and the common gentamycin protection assay was used to assess intracellular bacteria. Via site directed mutagenesis, an hemolytic negative isogenic Serratia strain was generated to point out the importance of hemolysin production. Results We identified an important bacterial factor mediating the internalization of S. marcescens, and lysis of epithelial cells, as the secreted cytolysin ShlA. Microtubule filaments and actin filaments were shown to be involved in internalization. However, cytolysis of eukaryotic cells by ShlA was an interfering factor, and therefore hemolytic-negative mutants were used in subsequent experiments. Isogenic hemolysin-negative mutant strains were still adhesive, but were no longer cytotoxic, did not disrupt the cell culture monolayer, and were no longer internalized by HEp-2 and RT112 bladder epithelial cells under the conditions used for the wild-type strain. After wild-type S. marcescens became intracellular, the infected epithelial cells were lysed by extended vacuolation induced by ShlA. In late stages of vacuolation, highly motile S. marcescens cells were observed in the vacuoles. S. marcescens was also able to replicate in cultured HEp-2 cells, and replication was not dependent on hemolysin production. Conclusion The results reported here showed that the pore-forming toxin ShlA triggers microtubule-dependent invasion and is the main factor inducing lysis of the epithelial cells to release the bacteria, and therefore plays a major role in the development of S. marcescens infections. PMID:15189566
Davis, Catherine M; Rice, Kenner C; Riley, Anthony L
2009-10-01
The Fischer 344 (F344) and Lewis (LEW) inbred rat strains react differently to morphine in a number of behavioral and physiological preparations, including the acquisition of aversions induced by this compound. The present experiment tested the ability of various compounds with relative selectivity at kappa, delta and mu receptor subtypes to assess the relative roles of these subtypes in mediating the differential aversive effects of morphine in the two strains. In the assessment of the role of the kappa receptor in morphine-induced aversions, animals in both strains were given access to saccharin followed by varying doses of the kappa agonist (-)-U50,488H (0.0, 0.28, 0.90 and 1.60 mg/kg). Although (-)-U50,488H induced aversions in both strains, no strain differences emerged. A separate subset of subjects was trained with the selective delta opioid agonist, SNC80 (0.0, 5.6, 10.0 and 18.0 mg/kg), and again although SNC80 induced aversions, there were no strain differences. Finally, a third subset of subjects was trained with heroin (0.0, 3.2, 5.6 and 10.0 mg/kg), a compound with activity at all three opiate receptor subtypes. Although heroin induced aversions in both strains, the aversions were significantly greater in the F344 strain, suggesting that differential activation of the mu opioid receptor likely mediates the reported strain differences in morphine-induced aversion learning. These data were discussed in terms of strain differences in opioid system functioning and the implications of such differences for other morphine-induced behavioral effects reported in F344 and LEW rats.
Choi, Hyun Seok; Sul, Jin Gon; Yi, Kyung Sik; Seo, Jeong-Min; Chung, Ki Young
2010-07-01
Gravity-induced loss of consciousness (G-LOC) is caused by loss of cerebral blood flow during high +Gz (head-to-foot inertial forces). The resistance of the jugular vein is a significant factor in decrease in cerebral blood flow. Ultrasonography of thoracic inlet veins, including internal jugular vein, is feasible to visualize the internal jugular vein and hemodynamic information. Anti-gravity straining maneuver (AGSM) was widely recognized as one of the important factors in preventing G-LOC. The purpose of this study was to evaluate the relationship between the ultrasonographic shape and size of internal jugular vein during AGSM and G-LOC. 47 trainee pilots who participated in human centrifuge education program were enrolled. They were all men, and their mean age was 23.9 +/- 1.38 years. Questionnaire sheets were used to collect information about well-being sensation, smoking, drinking, height, and weight. Using ultrasonography, we monitored shape and size of internal jugular vein during AGSM. After ultrasonographic examination, 47 subjects underwent human centrifuge on the same day. The protocol of human centrifuge training was maximal 6G with sustaining time of 30 s. G-LOC occurred to ten out of 47 subjects in human centrifuge. To find presumptive variable associated with G-LOC, we performed logistic regression analysis. Concave contour and smaller cross-sectional area of internal jugular vein during AGSM were associated with G-LOC.
Bloksgaard, Maria; Leurgans, Thomas M; Spronck, Bart; Heusinkveld, Maarten H G; Thorsted, Bjarne; Rosenstand, Kristoffer; Nissen, Inger; Hansen, Ulla M; Brewer, Jonathan R; Bagatolli, Luis A; Rasmussen, Lars M; Irmukhamedov, Akhmadjon; Reesink, Koen D; De Mey, Jo G R
2017-07-01
The impact of disease-related changes in the extracellular matrix (ECM) on the mechanical properties of human resistance arteries largely remains to be established. Resistance arteries from both pig and human parietal pericardium (PRA) display a different ECM microarchitecture compared with frequently used rodent mesenteric arteries. We hypothesized that the biaxial mechanics of PRA mirror pressure-induced changes in the ECM microarchitecture. This was tested using isolated pig PRA as a model system, integrating vital imaging, pressure myography, and mathematical modeling. Collagenase and elastase digestions were applied to evaluate the load-bearing roles of collagen and elastin, respectively. The incremental elastic modulus linearly related to the straightness of adventitial collagen fibers circumferentially and longitudinally (both R 2 ≥ 0.99), whereas there was a nonlinear relationship to the internal elastic lamina elastin fiber branching angles. Mathematical modeling suggested a collagen recruitment strain (means ± SE) of 1.1 ± 0.2 circumferentially and 0.20 ± 0.01 longitudinally, corresponding to a pressure of ~40 mmHg, a finding supported by the vital imaging. The integrated method was tested on human PRA to confirm its validity. These showed limited circumferential distensibility and elongation and a collagen recruitment strain of 0.8 ± 0.1 circumferentially and 0.06 ± 0.02 longitudinally, reached at a distending pressure below 20 mmHg. This was confirmed by vital imaging showing negligible microarchitectural changes of elastin and collagen upon pressurization. In conclusion, we show here, for the first time in resistance arteries, a quantitative relationship between pressure-induced changes in the extracellular matrix and the arterial wall mechanics. The strength of the integrated methods invites for future detailed studies of microvascular pathologies. NEW & NOTEWORTHY This is the first study to quantitatively relate pressure-induced microstructural changes in resistance arteries to the mechanics of their wall. Principal findings using a pig model system were confirmed in human arteries. The combined methods provide a strong tool for future hypothesis-driven studies of microvascular pathologies. Copyright © 2017 the American Physiological Society.
Liu, Qiang; Liu, Dong-ying; Yang, Zhan-qiu
2013-01-01
Since 1997, several epizootic avian influenza viruses (AIVs) have been transmitted to humans, causing diseases and even deaths. The recent emergence of severe human infections with AIV (H7N9) in China has raised concerns about efficient interpersonal viral transmission, polygenic traits in viral pathogenicity and the management of newly emerging strains. The symptoms associated with viral infection are different in various AI strains: H5N1 and newly emerged H7N9 induce severe pneumonia and related complications in patients, while some H7 and H9 subtypes cause only conjunctivitis or mild respiratory symptoms. The virulence and tissue tropism of viruses as well as the host responses contribute to the pathogenesis of human AIV infection. Several preventive and therapeutic approaches have been proposed to combat AIV infection, including antiviral drugs such as M2 inhibitors, neuraminidase inhibitors, RNA polymerase inhibitors, attachment inhibitors and signal-transduction inhibitors etc. In this article, we summarize the recent progress in researches on the epidemiology, clinical features, pathogenicity determinants, and available or potential antivirals of AIV. PMID:24096642
Bennett, Richard A. O.
1999-01-01
The recently sequenced Saccharomyces cerevisiae genome was searched for a gene with homology to the gene encoding the major human AP endonuclease, a component of the highly conserved DNA base excision repair pathway. An open reading frame was found to encode a putative protein (34% identical to the Schizosaccharomyces pombe eth1+ [open reading frame SPBC3D6.10] gene product) with a 347-residue segment homologous to the exonuclease III family of AP endonucleases. Synthesis of mRNA from ETH1 in wild-type cells was induced sixfold relative to that in untreated cells after exposure to the alkylating agent methyl methanesulfonate (MMS). To investigate the function of ETH1, deletions of the open reading frame were made in a wild-type strain and a strain deficient in the known yeast AP endonuclease encoded by APN1. eth1 strains were not more sensitive to killing by MMS, hydrogen peroxide, or phleomycin D1, whereas apn1 strains were ∼3-fold more sensitive to MMS and ∼10-fold more sensitive to hydrogen peroxide than was the wild type. Double-mutant strains (apn1 eth1) were ∼15-fold more sensitive to MMS and ∼2- to 3-fold more sensitive to hydrogen peroxide and phleomycin D1 than were apn1 strains. Elimination of ETH1 in apn1 strains also increased spontaneous mutation rates 9- or 31-fold compared to the wild type as determined by reversion to adenine or lysine prototrophy, respectively. Transformation of apn1 eth1 cells with an expression vector containing ETH1 reversed the hypersensitivity to MMS and limited the rate of spontaneous mutagenesis. Expression of ETH1 in a dut-1 xthA3 Escherichia coli strain demonstrated that the gene product functionally complements the missing AP endonuclease activity. Thus, in apn1 cells where the major AP endonuclease activity is missing, ETH1 offers an alternate capacity for repair of spontaneous or induced damage to DNA that is normally repaired by Apn1 protein. PMID:10022867
Ignatova, Tseteslava; Iliev, Ilia; Kirilov, Nikolai; Vassileva, Tonka; Dalgalarrondo, Michèle; Haertlé, Thomas; Chobert, Jean-Marc; Ivanova, Iskra
2009-10-28
Eighteen lactic acid bacteria (LAB) strains isolated from dairy products, all identified as Lactobacillus delbrueckii subsp. bulgaricus, were tested for their ability to grow on three different oligosaccharides: fructo-oligosaccharides (FOS), gluco-oligosaccharides (GOS) and galacto-oligosaccharides (GalOS). The growth of LAB on different oligosaccharides was very different. Study of the antimicrobial activities of these LAB indicated that the system of uptake of unusual sugars influenced in a specific way the production of antimicrobial substances (bacteriocins) specific against gram-negative bacteria. The added oligosaccharides induced LAB to form end-products of a typical mixed acid fermentation. The utilization of different types of oligosaccharides may help to explain the ability of Lactobacillus strains to compete with other bacteria in the ecosystem of the human gastro-intestinal tract.
Switching the mode of metabolism in the yeast Saccharomyces cerevisiae
Otterstedt, Karin; Larsson, Christer; Bill, Roslyn M; Ståhlberg, Anders; Boles, Eckhard; Hohmann, Stefan; Gustafsson, Lena
2004-01-01
The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose-induced signal transduction. PMID:15071495
Biological effects of Trichoderma harzianum peptaibols on mammalian cells.
Peltola, Joanna; Ritieni, Alberto; Mikkola, Raimo; Grigoriev, Pavel A; Pócsfalvi, Gabriella; Andersson, Maria A; Salkinoja-Salonen, Mirja S
2004-08-01
Trichoderma species isolated from water-damaged buildings were screened for toxicity by using boar sperm cells as indicator cells. The crude methanolic cell extract from Trichoderma harzianum strain ES39 inhibited the boar sperm cell motility at a low exposure concentration (50% effective concentration, 1 to 5 microg [dry weight] ml of extended boar semen(-1)). The same exposure concentration depleted the boar sperm cells of NADH(2). Inspection of the exposed boar sperm cells by transmission electron microscopy revealed damage to the plasma membrane. By using the black lipid membrane technique, it was shown that the semipurified metabolites (eluted from a SepPak C(18) cartridge) of T. harzianum strain ES39 induced voltage-dependent conductivity. The high-performance liquid chromatography-purified metabolites of T. harzianum strain ES39 dissipated the mitochondrial membrane potential (Deltapsi(m)) of human lung epithelial carcinoma cells (cell line A549). The semipurified metabolites (eluted from a SepPak C(18) cartridge) of T. harzianum strain ES39 were analyzed by mass spectrometry (MS). Matrix-assisted laser desorption ionization and nanoflow electrospray ionization MS revealed five major peptaibols, each of which contained 18 residues and had a mass ranging from 1,719 to 1,775 Da. Their partial amino acid sequences were determined by collision-induced dissociation tandem MS.
Biological Effects of Trichoderma harzianum Peptaibols on Mammalian Cells
Peltola, Joanna; Ritieni, Alberto; Mikkola, Raimo; Grigoriev, Pavel A.; Pócsfalvi, Gabriella; Andersson, Maria A.; Salkinoja-Salonen, Mirja S.
2004-01-01
Trichoderma species isolated from water-damaged buildings were screened for toxicity by using boar sperm cells as indicator cells. The crude methanolic cell extract from Trichoderma harzianum strain ES39 inhibited the boar sperm cell motility at a low exposure concentration (50% effective concentration, 1 to 5 μg [dry weight] ml of extended boar semen−1). The same exposure concentration depleted the boar sperm cells of NADH2. Inspection of the exposed boar sperm cells by transmission electron microscopy revealed damage to the plasma membrane. By using the black lipid membrane technique, it was shown that the semipurified metabolites (eluted from a SepPak C18 cartridge) of T. harzianum strain ES39 induced voltage-dependent conductivity. The high-performance liquid chromatography-purified metabolites of T. harzianum strain ES39 dissipated the mitochondrial membrane potential (Δψm) of human lung epithelial carcinoma cells (cell line A549). The semipurified metabolites (eluted from a SepPak C18 cartridge) of T. harzianum strain ES39 were analyzed by mass spectrometry (MS). Matrix-assisted laser desorption ionization and nanoflow electrospray ionization MS revealed five major peptaibols, each of which contained 18 residues and had a mass ranging from 1,719 to 1,775 Da. Their partial amino acid sequences were determined by collision-induced dissociation tandem MS. PMID:15294840
Measurement of vibration-induced volumetric strain in the human lung.
Hirsch, Sebastian; Posnansky, Oleg; Papazoglou, Sebastian; Elgeti, Thomas; Braun, Jürgen; Sack, Ingolf
2013-03-01
Noninvasive image-based measurement of intrinsic tissue pressure is of great interest in the diagnosis and characterization of diseases. Therefore, we propose to exploit the capability of phase-contrast MRI to measure three-dimensional vector fields of tissue motion for deriving volumetric strain induced by external vibration. Volumetric strain as given by the divergence of mechanical displacement fields is related to tissue compressibility and is thus sensitive to the state of tissue pressure. This principle is demonstrated by the measurement of three-dimensional vector fields of 50-Hz oscillations in a compressible agarose phantom and in the lungs of nine healthy volunteers. In the phantom, the magnitude of the oscillating divergence increased by about 400% with 4.8 bar excess air pressure, corresponding to an effective-medium compression modulus of 230 MPa. In lungs, the averaged divergence magnitude increased in all volunteers (N = 9) between 7 and 78% from expiration to inspiration. Measuring volumetric strain by MRI provides a compression-sensitive parameter of tissue mechanics, which varies with the respiratory state in the lungs. In future clinical applications for diagnosis and characterization of lung emphysema, fibrosis, or cancer, divergence-sensitive MRI may serve as a noninvasive marker sensitive to disease-related alterations of regional elastic recoil pressure in the lungs. Copyright © 2012 Wiley Periodicals, Inc.
Schulte, Ralf; Autenrieth, Ingo B.
1998-01-01
In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting β1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer’s patch tissue remains to be shown. PMID:9488416
Amorim, Jaime Henrique; Pereira Bizerra, Raíza Sales; dos Santos Alves, Rúbens Prince; Sbrogio-Almeida, Maria Elisabete; Levi, José Eduardo; Capurro, Margareth Lara; de Souza Ferreira, Luís Carlos
2012-01-01
Dengue virus (DENV) is the causative agent of dengue fever (DF), a mosquito-borne illness endemic to tropical and subtropical regions. There is currently no effective drug or vaccine formulation for the prevention of DF and its more severe forms, i.e., dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). There are two generally available experimental models for the study of DENV pathogenicity as well as the evaluation of potential vaccine candidates. The first model consists of non-human primates, which do not develop symptoms but rather a transient viremia. Second, mouse-adapted virus strains or immunocompromised mouse lineages are utilized, which display some of the pathological features of the infection observed in humans but may not be relevant to the results with regard to the wild-type original virus strains or mouse lineages. In this study, we describe a genetic and pathological study of a DENV2 clinical isolate, named JHA1, which is naturally capable of infecting and killing Balb/c mice and reproduces some of the symptoms observed in DENV-infected subjects. Sequence analyses demonstrated that the JHA1 isolate belongs to the American genotype group and carries genetic markers previously associated with neurovirulence in mouse-adapted virus strains. The JHA1 strain was lethal to immunocompetent mice following intracranial (i.c.) inoculation with a LD(50) of approximately 50 PFU. Mice infected with the JHA1 strain lost weight and exhibited general tissue damage and hematological disturbances, with similarity to those symptoms observed in infected humans. In addition, it was demonstrated that the JHA1 strain shares immunological determinants with the DENV2 NGC reference strain, as evaluated by cross-reactivity of anti-envelope glycoprotein (domain III) antibodies. The present results indicate that the JHA1 isolate may be a useful tool in the study of DENV pathogenicity and will help in the evaluation of anti-DENV vaccine formulations as well as potential therapeutic approaches.
Rossi, Raffaella; Beernink, Peter T; Giuntini, Serena; Granoff, Dan M
2015-12-01
In 2013 and 2014, two U.S. universities had meningococcal serogroup B outbreaks (a total of 14 cases) caused by strains from two different clonal complexes. To control the outbreaks, students were immunized with a serogroup B meningococcal vaccine (Novartis) that was not yet licensed in the United States. The vaccine (referred to as MenB-4C) contains four components capable of eliciting bactericidal activity. Both outbreak strains had high expression levels of two of the vaccine antigens (subfamily B factor H binding protein [FHbp] and neisserial heparin binding antigen [NHba]); the university B outbreak strain also had moderate expression of a third antigen, NadA. We investigated the bactericidal activity of sera from mice immunized with FHbp, NHba, or NadA and sera from MenB-4C-immunized infant macaques and an adult human. The postimmunization bactericidal activity of the macaque or human serum against isolates from university B with FHbp identification (ID) 1 that exactly matched the vaccine FHbp sequence variant was 8- to 21-fold higher than that against isolates from university A with FHbp ID 276 (96% identity to the vaccine antigen). Based on the bactericidal activity of mouse antisera to FHbp, NadA, or NHba and macaque or human postimmunization serum that had been depleted of anti-FHbp antibody, the bactericidal activity against both outbreak strains largely or entirely resulted from antibodies to FHbp. Thus, despite the high level of strain expression of FHbp from a subfamily that matched the vaccine antigen, there can be large differences in anti-FHbp bactericidal activity induced by MenB-4C vaccination. Further, strains with moderate to high NadA and/or NHba expression can be resistant to anti-NadA or anti-NHba bactericidal activity elicited by MenB-4C vaccination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cross-species malaria immunity induced by chemically attenuated parasites
Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia
2013-01-01
Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622
Serum Amyloid P Is a Sialylated Glycoprotein Inhibitor of Influenza A Viruses
Job, Emma R.; Bottazzi, Barbara; Gilbertson, Brad; Edenborough, Kathryn M.; Brown, Lorena E.; Mantovani, Alberto; Brooks, Andrew G.; Reading, Patrick C.
2013-01-01
Members of the pentraxin family, including PTX3 and serum amyloid P component (SAP), have been reported to play a role in innate host defence against a range of microbial pathogens, yet little is known regarding their antiviral activities. In this study, we demonstrate that human SAP binds to human influenza A virus (IAV) strains and mediates a range of antiviral activities, including inhibition of IAV-induced hemagglutination (HA), neutralization of virus infectivity and inhibition of the enzymatic activity of the viral neuraminidase (NA). Characterization of the anti-IAV activity of SAP after periodate or bacterial sialidase treatment demonstrated that α(2,6)-linked sialic acid residues on the glycosidic moiety of SAP are critical for recognition by the HA of susceptible IAV strains. Other proteins of the innate immune system, namely human surfactant protein A and porcine surfactant protein D, have been reported to express sialylated glycans which facilitate inhibition of particular IAV strains, yet the specific viral determinants for recognition of these inhibitors have not been defined. Herein, we have selected virus mutants in the presence of human SAP and identified specific residues in the receptor-binding pocket of the viral HA which are critical for recognition and therefore susceptibility to the antiviral activities of SAP. Given the widespread expression of α(2,6)-linked sialic acid in the human respiratory tract, we propose that SAP may act as an effective receptor mimic to limit IAV infection of airway epithelial cells. PMID:23544079
Distler, Eva; Dass, Martin; Wagner, Eva M.; Plachter, Bodo; Probst, Hans Christian; Strand, Dennis; Hartwig, Udo F.; Karner, Anita; Aichinger, Gerald; Kistner, Otfried; Landfester, Katharina; Herr, Wolfgang
2014-01-01
Pandemic and seasonal influenza viruses cause considerable morbidity and mortality in the general human population. Protection from severe disease may result from vaccines that activate antigen-presenting DC for effective stimulation of influenza-specific memory T cells. Special attention is paid to vaccine-induced CD8+ T-cell responses, because they are mainly directed against conserved internal influenza proteins thereby presumably mediating cross-protection against circulating seasonal as well as emerging pandemic virus strains. Our study showed that influenza whole virus vaccines of major seasonal A and B strains activated DC more efficiently than those of pandemic swine-origin H1N1 and pandemic-like avian H5N1 strains. In contrast, influenza split virus vaccines had a low ability to activate DC, regardless which strain was investigated. We also observed that whole virus vaccines stimulated virus-specific CD8+ memory T cells much stronger compared to split virus counterparts, whereas both vaccine formats activated CD4+ Th cell responses similarly. Moreover, our data showed that whole virus vaccine material is delivered into the cytosolic pathway of DC for effective activation of virus-specific CD8+ T cells. We conclude that vaccines against seasonal and pandemic (-like) influenza strains that aim to stimulate cross-reacting CD8+ T cells should include whole virus rather than split virus formulations. PMID:25072749
Hoe, Nancy P; Ireland, Robin M; DeLeo, Frank R; Gowen, Brian B; Dorward, David W; Voyich, Jovanka M; Liu, Mengyao; Burns, Eugene H; Culnan, Derek M; Bretscher, Anthony; Musser, James M
2002-05-28
Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.
Potent Innate Immune Response to Pathogenic Leptospira in Human Whole Blood
Hartskeerl, Rudy A.; van Gorp, Eric C. M.; Schuller, Simone; Monahan, Avril M.; Nally, Jarlath E.; van der Poll, Tom; van 't Veer, Cornelis
2011-01-01
Background Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. Methodology/Principal Findings We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. Conclusions/Significance Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response. PMID:21483834
Potent innate immune response to pathogenic leptospira in human whole blood.
Goris, Marga G A; Wagenaar, Jiri F P; Hartskeerl, Rudy A; van Gorp, Eric C M; Schuller, Simone; Monahan, Avril M; Nally, Jarlath E; van der Poll, Tom; van 't Veer, Cornelis
2011-03-31
Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.
Zeller, Mark; Patton, John T.; Heylen, Elisabeth; De Coster, Sarah; Ciarlet, Max; Van Ranst, Marc
2012-01-01
Two live-attenuated rotavirus group A (RVA) vaccines, Rotarix (G1P[8]) and RotaTeq (G1-G4, P[8]), have been successfully introduced in many countries worldwide, including Belgium. The parental RVA strains used to generate the vaccines were isolated more than 20 years ago in France (G4 parental strain in RotaTeq) and the United States (all other parental strains). At present, little is known about the relationship between currently circulating human RVAs and the vaccine strains. In this study, we determined sequences for the VP7 and VP4 outer capsid proteins of representative G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8] RVAs circulating in Belgium during 2007 to 2009. The analyses showed that multiple amino acid differences existed between the VP7 and VP4 antigenic epitopes of the vaccine viruses and the Belgian isolates, regardless of their G and P genotypes. However, the highest variability was observed among the circulating G1P[8] RVA strains and the G1 and P[8] components of both RVA vaccines. In particular, RVA strains of the P[8] lineage 4 (OP354-like) showed a significant number of amino acid differences with the P[8] VP4 of both vaccines. In addition, the circulating Belgian G3 RVA strains were found to possibly possess an extra N-linked glycosylation site compared to the G3 RVA vaccine strain of RotaTeq. These results indicate that the antigenic epitopes of RVA strains contained in the vaccines differ substantially from those of the currently circulating RVA strains in Belgium. Over time, these differences might result in selection for strains that escape the RVA neutralizing-antibody pressure induced by vaccines. PMID:22189107
Zeller, Mark; Patton, John T; Heylen, Elisabeth; De Coster, Sarah; Ciarlet, Max; Van Ranst, Marc; Matthijnssens, Jelle
2012-03-01
Two live-attenuated rotavirus group A (RVA) vaccines, Rotarix (G1P[8]) and RotaTeq (G1-G4, P[8]), have been successfully introduced in many countries worldwide, including Belgium. The parental RVA strains used to generate the vaccines were isolated more than 20 years ago in France (G4 parental strain in RotaTeq) and the United States (all other parental strains). At present, little is known about the relationship between currently circulating human RVAs and the vaccine strains. In this study, we determined sequences for the VP7 and VP4 outer capsid proteins of representative G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8] RVAs circulating in Belgium during 2007 to 2009. The analyses showed that multiple amino acid differences existed between the VP7 and VP4 antigenic epitopes of the vaccine viruses and the Belgian isolates, regardless of their G and P genotypes. However, the highest variability was observed among the circulating G1P[8] RVA strains and the G1 and P[8] components of both RVA vaccines. In particular, RVA strains of the P[8] lineage 4 (OP354-like) showed a significant number of amino acid differences with the P[8] VP4 of both vaccines. In addition, the circulating Belgian G3 RVA strains were found to possibly possess an extra N-linked glycosylation site compared to the G3 RVA vaccine strain of RotaTeq. These results indicate that the antigenic epitopes of RVA strains contained in the vaccines differ substantially from those of the currently circulating RVA strains in Belgium. Over time, these differences might result in selection for strains that escape the RVA neutralizing-antibody pressure induced by vaccines.
Characterization of the RpoS Status of Clinical Isolates of Salmonella enterica
Robbe-Saule, Véronique; Algorta, Gabriela; Rouilhac, Isabelle; Norel, Françoise
2003-01-01
The stationary-phase-inducible sigma factor, σS (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella. We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the σS protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of σS, showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease. PMID:12902215
NASA Astrophysics Data System (ADS)
Wei, Shiyin; Zhang, Zhaohui; Li, Shunlong; Li, Hui
2017-10-01
Strain is a direct indicator of structural safety. Therefore, strain sensors have been used in most structural health monitoring systems for bridges. However, until now, the investigation of strain response has been insufficient. This paper conducts a comprehensive study of the strain features of the U ribs and transverse diaphragm on an orthotropic steel deck and proposes a statistical paradigm for crack detection based on the features of vehicle-induced strain response by using the densely distributed optic fibre Bragg grating (FBG) strain sensors. The local feature of strain under vehicle load is highlighted, which enables the use of measurement data to determine the vehicle loading event and to make a decision regarding the health status of a girder near the strain sensors via technical elimination of the load information. Time-frequency analysis shows that the strain contains three features: the long-term trend item, the short-term trend item, and the instantaneous vehicle-induced item (IVII). The IVII is the wheel-induced strain with a remarkable local feature, and the measured wheel-induced strain is only influenced by the vehicle near the FBG sensor, while other vehicles slightly farther away have no effect on the wheel-induced strain. This causes the local strain series, among the FBG strain sensors in the same transverse locations of different cross-sections, to present similarities in shape to some extent and presents a time delay in successive order along the driving direction. Therefore, the strain series induced by an identical vehicle can be easily tracked and compared by extracting the amplitude and calculating the mutual ratio to eliminate vehicle loading information, leaving the girder information alone. The statistical paradigm for crack detection is finally proposed, and the detection accuracy is then validated by using dense FBG strain sensors on a long-span suspension bridge in China.
Escaffre, Olivier; Saito, Tais B; Juelich, Terry L; Ikegami, Tetsuro; Smith, Jennifer K; Perez, David D; Atkins, Colm; Levine, Corri B; Huante, Matthew B; Nusbaum, Rebecca J; Endsley, Janice J; Freiberg, Alexander N; Rockx, Barry
2017-08-01
Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets. Copyright © 2017 American Society for Microbiology.
Escaffre, Olivier; Saito, Tais B.; Juelich, Terry L.; Ikegami, Tetsuro; Smith, Jennifer K.; Perez, David D.; Atkins, Colm; Levine, Corri B.; Huante, Matthew B.; Nusbaum, Rebecca J.; Endsley, Janice J.
2017-01-01
ABSTRACT Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets. PMID:28539439
The effect of simulated microgravity on lumbar spine biomechanics: an in vitro study.
Laws, Cory J; Berg-Johansen, Britta; Hargens, Alan R; Lotz, Jeffrey C
2016-09-01
Disc herniation risk is quadrupled following spaceflight. This study tested the hypothesis that swelling-induced disc height increases (comparable to those reported in spaceflight) stiffen the spine and elevate annular strain and nuclear pressure during forward bending. Eight human lumbar motion segments were secured to custom-designed testing jigs and subjected to baseline flexion and compression and pure moment flexibility tests. Discs were then free-swelled in saline to varying supraphysiologic heights consistent with prolonged weightlessness and re-tested to assess biomechanical changes. Swelling-induced disc height changes correlated positively with intradiscal pressure (p < 0.01) and stiffening in flexion (p < 0.01), and negatively with flexion range of motion (p < 0.05). Swelling-induced increases in disc height also led to increased annular surface strain under combined flexion with compression. Disc wedge angle decreased with swelling (p < 0.05); this loss of wedge angle correlated with decreased flexion range of motion (R (2) = 0.94, p < 0.0001) and decreased stiffness fold change in extension (p < 0.05). Swelling-induced increases in disc height decrease flexibility and increase annular strain and nuclear pressure during forward bending. These changes, in combination with the measured loss of lordotic curvature with disc swelling, may contribute toward increased herniation risk. This is consistent with clinical observations of increased disc herniation rates after microgravity exposure and may provide the basis for future countermeasure development.
The effect of simulated microgravity on lumbar spine biomechanics: an in vitro study
Laws, Cory J.; Berg-Johansen, Britta; Hargens, Alan R.; Lotz, Jeffrey C.
2015-01-01
Purpose Disc herniation risk is quadrupled following spaceflight. This study tested the hypothesis that swelling-induced disc height increases (comparable to those reported in spaceflight) stiffen the spine and elevate annular strain and nuclear pressure during forward bending. Methods Eight human lumbar motion segments were secured to custom-designed testing jigs and subjected to baseline flexion and compression and pure moment flexibility tests. Discs were then free-swelled in saline to varying supraphysiologic heights consistent with prolonged weightlessness and re-tested to assess biomechanical changes. Results Swelling-induced disc height changes correlated positively with intradiscal pressure (p < 0.01) and stiffening in flexion (p < 0.01), and negatively with flexion range of motion (p < 0.05). Swelling-induced increases in disc height also led to increased annular surface strain under combined flexion with compression. Disc wedge angle decreased with swelling (p < 0.05); this loss of wedge angle correlated with decreased flexion range of motion (R2 = 0.94, p < 0.0001) and decreased stiffness fold change in extension (p < 0.05). Conclusion Swelling-induced increases in disc height decrease flexibility and increase annular strain and nuclear pressure during forward bending. These changes, in combination with the measured loss of lordotic curvature with disc swelling, may contribute toward increased herniation risk. This is consistent with clinical observations of increased disc herniation rates after microgravity exposure and may provide the basis for future countermeasure development. PMID:26403291
Insights from engraftable immunodeficient mouse models of hyperinsulinaemia.
Maugham, Michelle L; Thomas, Patrick B; Crisp, Gabrielle J; Philp, Lisa K; Shah, Esha T; Herington, Adrian C; Chen, Chen; Gregory, Laura S; Nelson, Colleen C; Seim, Inge; Jeffery, Penny L; Chopin, Lisa K
2017-03-28
Hyperinsulinaemia, obesity and dyslipidaemia are independent and collective risk factors for many cancers. Here, the long-term effects of a 23% Western high-fat diet (HFD) in two immunodeficient mouse strains (NOD/SCID and Rag1 -/- ) suitable for engraftment with human-derived tissue xenografts, and the effect of diet-induced hyperinsulinaemia on human prostate cancer cell line xenograft growth, were investigated. Rag1 -/- and NOD/SCID HFD-fed mice demonstrated diet-induced impairments in glucose tolerance at 16 and 23 weeks post weaning. Rag1 -/- mice developed significantly higher fasting insulin levels (2.16 ± 1.01 ng/ml, P = 0.01) and increased insulin resistance (6.70 ± 1.68 HOMA-IR, P = 0.01) compared to low-fat chow-fed mice (0.71 ± 0.12 ng/ml and 2.91 ± 0.42 HOMA-IR). This was not observed in the NOD/SCID strain. Hepatic steatosis was more extensive in Rag1 -/- HFD-fed mice compared to NOD/SCID mice. Intramyocellular lipid storage was increased in Rag1 -/- HFD-fed mice, but not in NOD/SCID mice. In Rag1 -/- HFD-fed mice, LNCaP xenograft tumours grew more rapidly compared to low-fat chow-fed mice. This is the first characterisation of the metabolic effects of long-term Western HFD in two mouse strains suitable for xenograft studies. We conclude that Rag1 -/- mice are an appropriate and novel xenograft model for studying the relationship between cancer and hyperinsulinaemia.
Bäuerl, Christine; Llopis, Marta; Antolín, María; Monedero, Vicente; Mata, Manuel; Zúñiga, Manuel; Guarner, Francisco; Pérez Martínez, Gaspar
2013-03-01
Significant health benefits have been demonstrated for certain probiotic strains through intervention studies; however, there is a shortage of experimental evidence relative to the mechanisms of action. Here, noninvasive experimental procedure based on a colon organ culture system has been used that, in contrast to most experimental in vitro models reported, can preserve natural immunohistochemical features of the human mucosa. This system has been used to test whether commensal lactobacilli (Lactobacillus paracasei BL23, Lactobacillus plantarum 299v and L. plantarum 299v (A(-))) were able to hinder inflammation-like signals induced by phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO). Whole genome microarrays have been applied to analyze expression differences, from which mRNA markers could be inferred to monitor the effect of putative probiotic strains under such conditions. Regarding the gene expression, PMA/IO treatment induced not only interleukin (IL)-2 and interferon gamma (IFN-γ), as expected, but also other relevant genes related to immune response and inflammation, such as IL-17A, chemokine (C-X-C motif) ligand (CXCL) 9 and CXCL11. The ex vivo culturing did not modify the pattern of expression of those genes or others related to inflammation. Interestingly, this study demonstrated that lactobacilli downregulated those genes and triggered a global change of the transcriptional profile that indicated a clear homeostasis restoring effect and a decrease in signals produced by activated T cells.
Allovahlkampfia spelaea Causing Keratitis in Humans
Tolba, Mohammed Essa Marghany; Huseein, Enas Abdelhameed Mahmoud; Farrag, Haiam Mohamed Mahmoud; Mohamed, Hanan El Deek; Kobayashi, Seiki; Suzuki, Jun; Ali, Tarek Ahmed Mohamed; Sugano, Sumio
2016-01-01
Background Free-living amoebae are present worldwide. They can survive in different environment causing human diseases in some instances. Acanthamoeba sp. is known for causing sight-threatening keratitis in humans. Free-living amoeba keratitis is more common in developing countries. Amoebae of family Vahlkampfiidae are rarely reported to cause such affections. A new genus, Allovahlkampfia spelaea was recently identified from caves with no data about pathogenicity in humans. We tried to identify the causative free-living amoeba in a case of keratitis in an Egyptian patient using morphological and molecular techniques. Methods Pathogenic amoebae were culture using monoxenic culture system. Identification through morphological features and 18S ribosomal RNA subunit DNA amplification and sequencing was done. Pathogenicity to laboratory rabbits and ability to produce keratitis were assessed experimentally. Results Allovahlkampfia spelaea was identified as a cause of human keratitis. Whole sequence of 18S ribosomal subunit DNA was sequenced and assembled. The Egyptian strain was closely related to SK1 strain isolated in Slovenia. The ability to induce keratitis was confirmed using animal model. Conclusions This the first time to report Allovahlkampfia spelaea as a human pathogen. Combining both molecular and morphological identification is critical to correctly diagnose amoebae causing keratitis in humans. Use of different pairs of primers and sequencing amplified DNA is needed to prevent misdiagnosis. PMID:27415799
Mechanisms of pathogenesis of emerging adenoviruses.
Cook, James; Radke, Jay
2017-01-01
Periodic outbreaks of human adenovirus infections can cause severe illness in people with no known predisposing conditions. The reasons for this increased viral pathogenicity are uncertain. Adenoviruses are constantly undergoing mutation during circulation in the human population, but related phenotypic changes of the viruses are rarely detected because of the infrequency of such outbreaks and the limited biological studies of the emergent strains. Mutations and genetic recombinations have been identified in these new strains. However, the linkage between these genetic changes and increased pathogenicity is poorly understood. It has been observed recently that differences in virus-induced immunopathogenesis can be associated with altered expression of non-mutant viral genes associated with changes in viral modulation of the host innate immune response. Initial small animal studies indicate that these changes in viral gene expression can be associated with enhanced immunopathogenesis in vivo . Available evidence suggests the hypothesis that there is a critical threshold of expression of certain viral genes that determines both the sustainability of viral transmission in the human population and the enhancement of immunopathogenesis. Studies of this possibility will require extension of the analysis of outbreak viral strains from a sequencing-based focus to biological studies of relationships between viral gene expression and pathogenic responses. Advances in this area will require increased coordination among public health organizations, diagnostic microbiology laboratories, and research laboratories to identify, catalog, and systematically study differences between prototype and emergent viral strains that explain the increased pathogenicity that can occur during clinical outbreaks.
NASA Technical Reports Server (NTRS)
Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.
1999-01-01
The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.
Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines.
Peng, Jiaojiao; Zhu, Shenghe; Hu, Lili; Ye, Pingping; Wang, Yifei; Tian, Qin; Mei, Mingzhu; Chen, Hao; Guo, Xiaofeng
2016-10-02
Different rabies virus (RABV) strains have their own biological characteristics, but little is known about their respective impact on autophagy. Therefore, we evaluated whether attenuated RABV HEP-Flury and wild-type RABV GD-SH-01 strains triggered autophagy. We found that GD-SH-01 infection significantly increased the number of autophagy-like vesicles, the accumulation of enhanced green fluorescent protein (EGFP)-LC3 fluorescence puncta and the conversion of LC3-I to LC3-II, while HEP-Flury was not able to induce this phenomenon. When evaluating autophagic flux, we found that GD-SH-01 infection triggers a complete autophagic response in the human neuroblastoma cell line (SK), while autophagosome fusion with lysosomes was inhibited in a mouse neuroblastoma cell line (NA). In these cells, GD-SH-01 led to apoptosis and mitochondrial dysfunction while triggering autophagy, and apoptosis could be decreased by enhancing autophagy. To further identify the virus constituent causing autophagy, 5 chimeric recombinant viruses carrying single genes of HEP-Flury instead of those of GD-SH-01 were rescued. While the HEP-Flury virus carrying the wild-type matrix protein (M) gene of RABV triggered LC3-I to LC3-II conversion in SK and NA cells, replacement of genes of nucleoprotein (N), phosphoprotein (P) and glycoprotein (G) produced only minor autophagy. But no one single structural protein of GD-SH-01 induced autophagy. Moreover, the AMPK signaling pathway was activated by GD-SH-01 in SK. Therefore, our data provide strong evidence that autophagy is induced by GD-SH-01 and can decrease apoptosis in vitro. Furthermore, the M gene of GD-SH-01 may cooperatively induce autophagy.
Strain-induced negative differential resistance in ultrasmall carbon nanotube
NASA Astrophysics Data System (ADS)
Fang, Hui; Zhang, Fei-Peng; Ruan, Xing-Xiang; Huang, Can-Sheng; Jiang, Zhi-Nian; Peng, Jin-Yun; Wang, Ru-Zhi
2017-08-01
The transport properties in ultrasmall single-wall carbon nanotubes (SWCNTs) under tensile strain have been theoretically investigated. The regular negative differential resistance (NDR) induced by the strain undergoes a process from enhancement to weakening in the zigzag (3,0) SWCNT. The NDR achieves maximum with applying 4% tensile strain. Compared to the case of (3,0) SWCNT, that NDR cannot be manipulated by applying strain clearly in (4,0) and (5,0) ultrasmall SWCNTs with tensile strain lower than 10%. It proposes this strain-induced NDR effect to demonstrate the possibility of finding potential applications in SWCNT-based NDR nanodevices such as in memory devices, oscillators and fast switching devices.
Xing, Li; Li, Zhiwei; Wang, Wei; Zhao, Yan; Yan, Yiwu; Gu, Hongjing; Liu, Xin; Zhao, Zhongpeng; Zhang, Shaogeng; Wang, Xiliang; Jiang, Chengyu
2012-01-01
Background A novel 2009 swine-origin influenza A H1N1 virus (S-OIV H1N1) has been transmitted among humans worldwide. However, the pathogenesis of this virus in human airway epithelial cells and mammals is not well understood. Methodology/Principal Finding In this study, we showed that a 2009 A (H1N1) influenza virus strain, A/Beijing/501/2009, isolated from a human patient, caused typical influenza-like symptoms including weight loss, fluctuations in body temperature, and pulmonary pathological changes in ferrets. We demonstrated that the human lung adenocarcinoma epithelial cell line A549 was susceptible to infection and that the infected cells underwent apoptosis at 24 h post-infection. In contrast to the seasonal H1N1 influenza virus, the 2009 A (H1N1) influenza virus strain A/Beijing/501/2009 induced more cell death involving caspase-3-dependent apoptosis in A549 cells. Additionally, ferrets infected with the A/Beijing/501/2009 H1N1 virus strain exhibited increased body temperature, greater weight loss, and higher viral titers in the lungs. Therefore, the A/Beijing/501/2009 H1N1 isolate successfully infected the lungs of ferrets and caused more pathological lesions than the seasonal influenza virus. Our findings demonstrate that the difference in virulence of the 2009 pandemic H1N1 influenza virus and the seasonal H1N1 influenza virus in vitro and in vivo may have been mediated by different mechanisms. Conclusion/Significance Our understanding of the pathogenesis of the 2009 A (H1N1) influenza virus infection in both humans and animals is broadened by our findings that apoptotic cell death is involved in the cytopathic effect observed in vitro and that the pathological alterations in the lungs of S-OIV H1N1-infected ferrets are much more severe. PMID:23049974
Brain tissue deforms similarly to filled elastomers and follows consolidation theory
NASA Astrophysics Data System (ADS)
Franceschini, G.; Bigoni, D.; Regitnig, P.; Holzapfel, G. A.
2006-12-01
Slow, large deformations of human brain tissue—accompanying cranial vault deformation induced by positional plagiocephaly, occurring during hydrocephalus, and in the convolutional development—has surprisingly received scarce mechanical investigation. Since the effects of these deformations may be important, we performed a systematic series of in vitro experiments on human brain tissue, revealing the following features. (i) Under uniaxial (quasi-static), cyclic loading, brain tissue exhibits a peculiar nonlinear mechanical behaviour, exhibiting hysteresis, Mullins effect and residual strain, qualitatively similar to that observed in filled elastomers. As a consequence, the loading and unloading uniaxial curves have been found to follow the Ogden nonlinear elastic theory of rubber (and its variants to include Mullins effect and permanent strain). (ii) Loaded up to failure, the "shape" of the stress/strain curve qualitatively changes, evidencing softening related to local failure. (iii) Uniaxial (quasi-static) strain experiments under controlled drainage conditions provide the first direct evidence that the tissue obeys consolidation theory involving fluid migration, with properties similar to fine soils, but having much smaller volumetric compressibility. (iv) Our experimental findings also support the existence of a viscous component of the solid phase deformation. Brain tissue should, therefore, be modelled as a porous, fluid-saturated, nonlinear solid with very small volumetric (drained) compressibility.
Mvubu, Nontobeko E; Pillay, Balakrishna; McKinnon, Lyle R; Pillay, Manormoney
2018-04-01
M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ruan, Xiaosai; Sack, David A.; Zhang, Weiping
2015-01-01
Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent vaccine development. PMID:25803825
Ruan, Xiaosai; Sack, David A; Zhang, Weiping
2015-01-01
Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent vaccine development.
N-acetyltransferase 2 activity and folate levels
Cao, Wen; Strnatka, Diana; McQueen, Charlene A.; Hunter, Robert J.; Erickson, Robert P.
2010-01-01
Aims To determine whether increased N-acetyltransferase (NAT) activity might have a toxic effect during development and an influence on folate levels since previous work has shown that only low levels of exogenous NAT can be achieved in constitutionally transgenic mice (Cao, et al, 2005) Main Methods A human NAT1 tet-inducible construct was used that would not be expressed until the inducer was delivered. Human NAT1 cDNA was cloned into pTRE2 and injected into mouse oocytes. Two transgenic lines were crossed to mouse line TgN(rtTahCMV)4Uh containing the CMV promoted “teton.”Measurements of red blood cell folate levels in inbred strains of mice were performed. Key findings Only low levels of human NAT1 could be achieved in kidney (highly responsive in other studies) whether the inducer, doxycycline, was given by gavage or in drinking water.An inverse correlation of folate levels with Nat2 enzyme activity was found. Significance Since increasing NAT1 activity decrease folate in at least one tissue, the detrimental effect of expression of human NAT1 in combination with endogenous mouse Nat2 may be a consequence of increased catabolism of folate. PMID:19932120
Fois, Giorgio; Wittekindt, Oliver; Zheng, Xing; Felder, Erika Tatiana; Miklavc, Pika; Frick, Manfred; Dietl, Paul; Felder, Edward
2012-09-01
A commonly used technique to investigate strain-induced responses of adherent cells is culturing them on an elastic membrane and globally stretching the membrane. However, it is virtually impossible to acquire microscopic images immediately after the stretch with this method. Using a newly developed technique, we recorded the strain-induced increase of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) in rat primary alveolar type II (ATII) cells at an acquisition rate of 30ms and without any temporal delay. We can show that the onset of the mechanically induced rise in [Ca(2+)](c) was very fast (<30 ms), and Ca(2+) entry was immediately abrogated when the stimulus was withdrawn. This points at a direct mechanical activation of an ion channel. RT-PCR revealed high expression of TRPV2 in ATII cells, and silencing TRPV2, as well as blocking TRPV channels with ruthenium red, significantly reduced the strain-induced Ca(2+) response. Moreover, the usually homogenous pattern of the strain-induced [Ca(2+)](c) increase was converted into a point-like response after both treatments. Also interfering with actin/myosin and integrin binding inhibited the strain-induced increase of [Ca(2)](c). We conclude that TRPV2 participates in strain-induced Ca(2+) entry in ATII cells and suggest a direct mechanical activation of the channel that depends on FAs and actin/myosin. Furthermore, our results underline the importance of cell strain systems that allow high temporal resolution.
Jacouton, Elsa; Mach, Núria; Cadiou, Julie; Lapaque, Nicolas; Clément, Karine; Doré, Joël; van Hylckama Vlieg, Johan E. T.; Smokvina, Tamara; Blottière, Hervé M
2015-01-01
Background and Objectives Identification of new targets for metabolic diseases treatment or prevention is required. In this context, FIAF/ANGPTL4 appears as a crucial regulator of energy homeostasis. Lactobacilli are often considered to display beneficial effect for their hosts, acting on different regulatory pathways. The aim of the present work was to study the effect of several lactobacilli strains on Fiaf gene expression in human intestinal epithelial cells (IECs) and on mice tissues to decipher the underlying mechanisms. Subjects and Methods Nineteen lactobacilli strains have been tested on HT–29 human intestinal epithelial cells for their ability to regulate Fiaf gene expression by RT-qPCR. In order to determine regulated pathways, we analysed the whole genome transcriptome of IECs. We then validated in vivo bacterial effects using C57BL/6 mono-colonized mice fed with normal chow. Results We identified one strain (Lactobacillus rhamnosus CNCMI–4317) that modulated Fiaf expression in IECs. This regulation relied potentially on bacterial surface-exposed molecules and seemed to be PPAR-γ independent but PPAR-α dependent. Transcriptome functional analysis revealed that multiple pathways including cellular function and maintenance, lymphoid tissue structure and development, as well as lipid metabolism were regulated by this strain. The regulation of immune system and lipid and carbohydrate metabolism was also confirmed by overrepresentation of Gene Ontology terms analysis. In vivo, circulating FIAF protein was increased by the strain but this phenomenon was not correlated with modulation Fiaf expression in tissues (except a trend in distal small intestine). Conclusion We showed that Lactobacillus rhamnosus CNCMI–4317 induced Fiaf expression in human IECs, and increased circulating FIAF protein level in mice. Moreover, this effect was accompanied by transcriptome modulation of several pathways including immune response and metabolism in vitro. PMID:26439630
Mirnejad, Reza; Jazi, Faramarz Masjedian; Mostafaei, Shayan; Sedighi, Mansour
2017-08-01
Brucella is zoonotic pathogen that induces abortion and sterility in domestic mammals and chronic infections in humans called Malta fever. It is a facultative intracellular potential pathogen with high infectivity. The virulence of Brucella is dependent upon its potential virulence factors such as enzymes and cell envelope associated virulence genes. The aim of this study was to investigate the Brucella virulence factors among strains isolated from humans and animals in different parts of Iran. Seventy eight strains of Brucella species isolated from suspected human and animal cases from several provinces of Iran during 2015-2016 and identified by phenotypic and molecular methods. The multiplex-PCR (M-PCR) assay was performed in order to detect the ure, wbkA, omp19, mviN, manA and perA genes by using gene specific primers. Out of 78 isolates of Brucella spp., 57 (73%) and 21 (27%) isolates were detected as B. melitensis and B. abortus, respectively, by molecular method. The relative frequency of virulence genes ure, wbkA, omp19, mviN, manA and perA were 74.4%, 89.7%, 93.6%, 94.9%, 100% and 92.3%, respectively. Our results indicate that the most of Brucella strains isolated from this region possess high percent of virulence factor genes (ure, wbkA, omp19, mviN, manA and perA) in their genome. So, each step of infection can be mediated by a number of virulence factors and each strain may have a unique combination of these factors that affected the rate of bacterial pathogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Diedrich, Jonathan; Rehse, Steven J.; Palchaudhuri, Sunil
2007-04-01
Three strains of Escherichia coli, one strain of environmental mold, and one strain of Candida albicans yeast have been analyzed by laser-induced breakdown spectroscopy using nanosecond laser pulses. All microorganisms were analyzed while still alive and with no sample preparation. Nineteen atomic and ionic emission lines have been identified in the spectrum, which is dominated by calcium, magnesium, and sodium. A discriminant function analysis has been used to discriminate between the biotypes and E. coli strains. This analysis showed efficient discrimination between laser-induced breakdown spectroscopy spectra from different strains of a single bacteria species.
A Safe Bacterial Microsyringe for In Vivo Antigen Delivery and Immunotherapy
Le Gouëllec, Audrey; Chauchet, Xavier; Laurin, David; Aspord, Caroline; Verove, Julien; Wang, Yan; Genestet, Charlotte; Trocme, Candice; Ahmadi, Mitra; Martin, Sandrine; Broisat, Alexis; Cretin, François; Ghezzi, Catherine; Polack, Benoit; Plumas, Joël; Toussaint, Bertrand
2013-01-01
The industrial development of active immunotherapy based on live-attenuated bacterial vectors has matured. We developed a microsyringe for antigen delivery based on the type III secretion system (T3SS) of P. aeruginosa. We applied the “killed but metabolically active” (KBMA) attenuation strategy to make this bacterial vector suitable for human use. We demonstrate that attenuated P. aeruginosa has the potential to deliver antigens to human antigen-presenting cells in vitro via T3SS with considerable attenuated cytotoxicity as compared with the wild-type vector. In a mouse model of cancer, we demonstrate that this KBMA strain, which cannot replicate in its host, efficiently disseminates into lymphoid organs and delivers its heterologous antigen. The attenuated strain effectively induces a cellular immune response to the cancerous cells while lowering the systemic inflammatory response. Hence, a KBMA P. aeruginosa microsyringe is an efficient and safe tool for in vivo antigen delivery. PMID:23531551
Molecular determinants of Ebola virus virulence in mice.
Ebihara, Hideki; Takada, Ayato; Kobasa, Darwyn; Jones, Steven; Neumann, Gabriele; Theriault, Steven; Bray, Mike; Feldmann, Heinz; Kawaoka, Yoshihiro
2006-07-01
Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection.
Effect of Lactobacilli on Paracellular Permeability in the Gut
Ahrne, Siv; Hagslatt, Marie-Louise Johansson
2011-01-01
Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells. PMID:22254077
Running and cocaine both upregulate dynorphin mRNA in medial caudate putamen.
Werme, M; Thorén, P; Olson, L; Brené, S
2000-08-01
Physical activities such as long-distance running can be habit forming and associated with a sense of well-being to a degree that justifies comparison with drug-induced addictive behaviours. To understand molecular similarities and dissimilarities controlling these behaviours in humans we compared the effects of running in running wheels to the effects of chronic cocaine or morphine administration on mRNA levels in brain reward pathways in the inbred Fischer and Lewis rat strains. These strains are both inbred from the Sprague-Dawley strain; Lewis rats display a higher preference towards addictive drugs and running than do Fischer rats. After chronic cocaine or running a similar increase of dynorphin mRNA in medial caudate putamen was found in the Lewis rat, suggesting common neuronal adaptations in this brain region to both cocaine and running. Fischer and Lewis rats both responded to cocaine with increased dynorphin mRNA levels in medial caudate putamen. However, only Lewis rats increased dynorphin mRNA after running, possibly reflecting the much higher degree of running by the Lewis strain as compared to the Fischer strain. Moreover, the running-induced upregulation of dynorphin mRNA was blocked by the opioid receptor antagonist naloxone. We suggest that running increases dynorphin mRNA by a mechanism that involves endogenous opioids. The voluntary wheel-running model in rats might be used to study natural reward and compulsive behaviours and possibly also to screen candidate drugs for treatment of compulsive disorders.
Elliott, Margaret K.; Alt, David P.; Zuerner, Richard L.
2007-01-01
Papillomatous digital dermatitis (PDD), also known as hairy heel wart, is a growing cause of lameness of cows in the U.S. dairy industry. Farms with PDD-afflicted cows experience economic loss due to treatment costs, decreased milk production, lower reproductive efficiency, and premature culling. While the exact cause of PDD is unknown, lesion development is associated with the presence of anaerobic spirochetes. This study was undertaken to investigate the virulence and antigenic relatedness of four previously isolated Treponema phagedenis-like spirochetes (1A, 3A, 4A, and 5B) by using a mouse abscess model with subcutaneous inoculation of 109, 1010, and 1011 spirochetes. Each of the PDD isolates induced abscess formation, with strain 3A causing cutaneous ulceration. Lesion development and antibody responses were dose dependent and differed significantly from those seen with the nonpathogenic human T. phagedenis strain. Strains 3A, 4A, and 5B showed two-way cross-reactivity with each other and a one-way cross-reaction with T. phagedenis. Strain 5B showed one-way cross-reactivity with 1A. None of the isolates showed cross-reactivity with T. denticola. In addition, distinct differences in immunoglobulin G subclass elicitation occurred between the PDD strains and T. phagedenis. From these data, we conclude that spirochetes isolated from PDD lesions have differential virulence and antigenic traits in vivo. Continuing investigation of these properties is important for the elucidation of virulence mechanisms and antigenic targets for vaccine development. PMID:17591787
NASA Astrophysics Data System (ADS)
Cios, G.; Tokarski, T.; Żywczak, A.; Dziurka, R.; Stępień, M.; Gondek, Ł.; Marciszko, M.; Pawłowski, B.; Wieczerzak, K.; Bała, P.
2017-10-01
This paper presents a comprehensive study on the strain-induced martensitic transformation and reversion transformation of the strain-induced martensite in AISI 304 stainless steel using a number of complementary techniques such as dilatometry, calorimetry, magnetometry, and in-situ X-ray diffraction, coupled with high-resolution microstructural transmission Kikuchi diffraction analysis. Tensile deformation was applied at temperatures between room temperature and 213 K (-60 °C) in order to obtain a different volume fraction of strain-induced martensite (up to 70 pct). The volume fraction of the strain-induced martensite, measured by the magnetometric method, was correlated with the total elongation, hardness, and linear thermal expansion coefficient. The thermal expansion coefficient, as well as the hardness of the strain-induced martensitic phase was evaluated. The in-situ thermal treatment experiments showed unusual changes in the kinetics of the reverse transformation (α' → γ). The X-ray diffraction analysis revealed that the reverse transformation may be stress assisted—strains inherited from the martensitic transformation may increase its kinetics at the lower annealing temperature range. More importantly, the transmission Kikuchi diffraction measurements showed that the reverse transformation of the strain-induced martensite proceeds through a displacive, diffusionless mechanism, maintaining the Kurdjumov-Sachs crystallographic relationship between the martensite and the reverted austenite. This finding is in contradiction to the results reported by other researchers for a similar alloy composition.
Characterization of trh2 Harbouring Vibrio parahaemolyticus Strains Isolated in Germany
Bechlars, Silke; Jäckel, Claudia; Diescher, Susanne; Wüstenhagen, Doreen A.; Kubick, Stefan; Dieckmann, Ralf; Strauch, Eckhard
2015-01-01
Background Vibrio parahaemolyticus is a recognized human enteropathogen. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) as well as the type III secretion system 2 (T3SS2) are considered as major virulence factors. As tdh positive strains are not detected in coastal waters of Germany, we focused on the characterization of trh positive strains, which were isolated from mussels, seawater and patients in Germany. Results Ten trh harbouring V. parahaemolyticus strains from Germany were compared to twenty-one trh positive strains from other countries. The complete trh sequences revealed clustering into three different types: trh1 and trh2 genes and a pseudogene Ψtrh. All German isolates possessed alleles of the trh2 gene. MLST analysis indicated a close relationship to Norwegian isolates suggesting that these strains belong to the autochthonous microflora of Northern Europe seawaters. Strains carrying the pseudogene Ψtrh were negative for T3SS2β effector vopC. Transcription of trh and vopC genes was analyzed under different growth conditions. Trh2 gene expression was not altered by bile while trh1 genes were inducible. VopC could be induced by urea in trh2 bearing strains. Most trh1 carrying strains were hemolytic against sheep erythrocytes while all trh2 positive strains did not show any hemolytic activity. TRH variants were synthesized in a prokaryotic cell-free system and their hemolytic activity was analyzed. TRH1 was active against sheep erythrocytes while TRH2 variants were not active at all. Conclusion Our study reveals a high diversity among trh positive V. parahaemolyticus strains. The function of TRH2 hemolysins and the role of the pseudogene Ψtrh as pathogenicity factors are questionable. To assess the pathogenic potential of V. parahaemolyticus strains a differentiation of trh variants and the detection of T3SS2β components like vopC would improve the V. parahaemolyticus diagnostics and could lead to a refinement of the risk assessment in food analyses and clinical diagnostics. PMID:25799574
Mora, Azucena; Blanco, Miguel; Blanco, Jesús E.; Alonso, M. Pilar; Dhabi, Ghizlane; Thomson-Carter, Fiona; Usera, Miguel A.; Bartolomé, Rosa; Prats, Guillermo; Blanco, Jorge
2004-01-01
Phage typing and DNA macrorestriction fragment analysis by pulsed-field electrophoresis (PFGE) were used for the epidemiological subtyping of a collection of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains isolated in Spain between 1980 and 1999. Phage typing distinguished a total of 18 phage types among 171 strains isolated from different sources (67 humans, 82 bovines, 12 ovines, and 10 beef products). However, five phage types, phage type 2 (PT2; 42 strains), PT8 (33 strains), PT14 (14 strains), PT21/28 (11 strains), and PT54 (16 strains), accounted for 68% of the study isolates. PT2 and PT8 were the most frequently found among strains from both humans (51%) and bovines (46%). Interestingly, we detected a significant association between PT2 and PT14 and the presence of acute pathologies. A group of 108 of the 171 strains were analyzed by PFGE, and 53 distinct XbaI macrorestriction patterns were identified, with 38 strains exhibiting unique PFGE patterns. In contrast, phage typing identified 15 different phage types. A total of 66 phage type-PFGE subtype combinations were identified among the 108 strains. PFGE subtyping differentiated between unrelated strains that exhibited the same phage type. The most common phage type-PFGE pattern combinations were PT2-PFGE type 1 (1 human and 11 bovine strains), PT8-PFGE type 8 (2 human, 6 bovine, and 1 beef product strains), PT2-PFGE subtype 4A (1 human, 3 bovine, and 1 beef product strains). Nine (29%) of 31 human strains showed phage type-PFGE pattern combinations that were detected among the bovine strains included in this study, and 26 (38%) of 68 bovine strains produced phage type-PFGE pattern combinations observed among human strains included in this study, confirming that cattle are a major reservoir of strains pathogenic for humans. PT2 and PT8 strains formed two groups which differed from each other in their motilities, stx genotypes, PFGE patterns, and the severity of the illnesses that they caused. PMID:15364983
Hamada, S; Ooshima, T; Torii, M; Imanishi, H; Masuda, N; Sobue, S; Kotani, S
1978-01-01
Oral implantation and the cariogenic activity of clinical strains of Streptococcus mutans which had been isolated from Japanese children and labeled with streptomycin-resistance were examined in specific pathogen-free Sprague-Dawley rats. All the seven strains tested were easily implanted and persisted during the experimental period. Extensive carious lesions were produced in rats inoculated with clinical strains of S. mutans belonging to serotypes c, d, e, and f, and maintained on caries-inducing diet no. 2000. Noninfected rats did not develop dental caries when fed diet no. 2000. Type d S. mutans preferentially induced smooth surface caries in the rats. Strains of other serotypes primarily developed caries of pit and fissure origin. Caries also developed in rats inoculated with reference S. mutans strains BHTR and FAIR (type b) that had been maintained in the laboratories for many years. However, the cariogenicity of the laboratory strains was found to have decreased markedly. All three S. sanguis strains could be implanted, but only one strain induced definite fissure caries. Two S. salivarius strains could not be implanted well in the rats and therefore they were not cariogenic. Four different species of lactobacilli also failed to induce dental caries in rats subjected to similar caries test regimen on diet no. 200. S. mutans strain MT6R (type c) also induce caries in golden hamsters and ICR mice, but of variable degrees.
Hudspeth, M. K.; Gerardo, S. Hunt; Maiden, M. F. J.; Citron, D. M.; Goldstein, E. J. C.
1999-01-01
Bacteroides forsythus strains recovered from cat and dog bite wound infections in humans (n = 3), monkey oral strains (n = 3), and the human oral ATCC 43037 type strain were characterized by using phenotypic characteristics, enzymatic tests, whole cell fatty acid analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, PCR fingerprinting, and 16S rDNA (genes coding for rRNA) sequencing. All three bite wound isolates grew on brucella agar supplemented with 5% sheep blood, vitamin K1, and hemin. These strains, unlike the ATCC strain and previously described monkey oral and human clinical strains, did not require N-acetylmuramic acid supplementation for growth as pure cultures. However, their phenotypic characteristics, except for catalase production, were similar to those of previously identified strains. PCR fingerprinting analysis showed differences in band patterns from the ATCC strain. Also, SDS-PAGE and whole cell fatty acid analysis indicated that the dog and cat bite wound strains were similar but not identical to the human B. forsythus ATCC 43037 type strain and the monkey oral strains. The rDNA sequence analysis indicated that the three bite wound isolates had 99.93% homology with each other and 98.9 and 99.22% homology with the human ATCC 43037 and monkey oral strains, respectively. These results suggest that there are host-specific variations within each group. PMID:10325363
Foligné, Benoît; Dewulf, Joëlle; Vandekerckove, Pascal; Pignède, Georges; Pot, Bruno
2010-01-01
AIM: To evaluate the in vitro immunomodulation capacity of various non-pathogenic yeast strains and to investigate the ability of some of these food grade yeasts to prevent experimental colitis in mice. METHODS: In vitro immunomodulation was assessed by measuring cytokines [interleukin (IL)-12p70, IL-10, tumor necrosis factor and interferon γ] released by human peripheral blood mononuclear cells after 24 h stimulation with 6 live yeast strains (Saccharomyces ssp.) and with bacterial reference strains. A murine model of acute 2-4-6-trinitrobenzene sulfonic acid (TNBS)-colitis was next used to evaluate the distinct prophylactic protective capacities of three yeast strains compared with the performance of prednisolone treatment. RESULTS: The six yeast strains all showed similar non-discriminating anti-inflammatory potential when tested on immunocompetent cells in vitro. However, although they exhibited similar colonization patterns in vivo, some yeast strains showed significant anti-inflammatory activities in the TNBS-induced colitis model, whereas others had weaker or no preventive effect at all, as evidenced by colitis markers (body-weight loss, macroscopic and histological scores, myeloperoxidase activities and blood inflammatory markers). CONCLUSION: A careful selection of strains is required among the biodiversity of yeasts for specific clinical studies, including applications in inflammatory bowel disease and other therapeutic uses. PMID:20440854
Preventing Drug-Induced Liver Injury: How Useful Are Animal Models?
Ballet, François
2015-01-01
Drug-induced liver injury (DILI) is the most common organ toxicity encountered in regulatory animal toxicology studies required prior to the clinical development of new drug candidates. Very few reports have evaluated the value of these studies for predicting DILI in humans. Indeed, compounds inducing liver toxicity in regulatory toxicology studies are not always correlated with a risk of DILI in humans. Conversely, compounds associated with the occurrence of DILI in phase 3 studies or after market release are often tested negative in regulatory toxicology studies. Idiosyncratic DILI is a rare event that is precipitated in an individual by the simultaneous occurrence of several critical factors. These factors may relate to the host (e.g. human leukocyte antigen polymorphism, inflammation), the drug (e.g. reactive metabolites) or the environment (e.g. diet/microbiota). This type of toxicity therefore cannot be detected in conventional animal toxicology studies. Several animal models have recently been proposed for the identification of drugs with the potential to cause idiosyncratic DILI: rats treated with lipopolysaccharide, Sod2(+/-) mice, panels of inbred mouse strains or chimeric mice with humanized livers. These models are not suitable for use in the prospective screening of new drug candidates. Humans therefore constitute the best model for predicting and assessing idiopathic DILI. © 2015 S. Karger AG, Basel.
Rescue and serotypic characterization of noncultivable human rotavirus by gene reassortment.
Greenberg, H B; Wyatt, R G; Kapikian, A Z; Kalica, A R; Flores, J; Jones, R
1982-01-01
Thirty-three of 50 noncultivable human rotavirus strains from a variety of locations were successfully rescued by gene reassortment. The serotype of each of the 33 strains was investigated by a qualitative cytopathic effect neutralization assay. Nineteen strains resembled the previously characterized human rotavirus serotype Wa, whereas three strains were serologically related to the DS-1 strain. Eleven strains appeared to be serotypically distinct from the Wa and DS-1 strains and thus apparently represent one or more new human rotavirus serotypes. Images PMID:6286486
Streptococcus pyogenes CAMP factor attenuates phagocytic activity of RAW 264.7 cells.
Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Saitoh, Issei; Hayasaki, Haruaki; Terao, Yutaka
2016-02-01
Streptococcus pyogenes produces molecules that inhibit the function of human immune system, thus allowing the pathogen to grow and spread in tissues. It is known that S. pyogenes CAMP factor increases erythrocytosis induced by Staphylococcus aureus β-hemolysin. However, the effects of CAMP factor for immune cells are unclear. In this study, we investigated the effects of CAMP factor to macrophages. Western blotting analysis demonstrated that all examined strains expressed CAMP factor protein. In the presence of calcium or magnesium ion, CAMP factor was significantly released in the supernatant. In addition, both culture supernatant from S. pyogenes strain SSI-9 and recombinant CAMP factor dose-dependently induced vacuolation in RAW 264.7 cells, but the culture supernatant from Δcfa isogenic mutant strain did not. CAMP factor formed oligomers in RAW 264.7 cells in a time-dependent manner. CAMP factor suppressed cell proliferation via G2 phase cell cycle arrest without inducing cell death. Furthermore, CAMP factor reduced the uptake of S. pyogenes and phagocytic activity indicator by RAW 264.7 cells. These results suggest that CAMP factor works as a macrophage dysfunction factor. Therefore, we conclude that CAMP factor allows S. pyogenes to escape the host immune system, and contribute to the spread of streptococcal infection. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang
2015-09-01
The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.
Lam, Jian Hang; Chua, Yen Leong; Lee, Pei Xuan; Martínez Gómez, Julia María; Ooi, Eng Eong; Alonso, Sylvie
2017-12-21
Declining levels of maternal antibodies were shown to sensitize infants born to dengue-immune mothers to severe disease during primary infection, through the process of antibody-dependent enhancement of infection (ADE). With the recent approval for human use of Sanofi-Pasteur's chimeric dengue vaccine CYD-TDV and several vaccine candidates in clinical development, the scenario of infants born to vaccinated mothers has become a reality. This raises 2 questions: will declining levels of maternal vaccine-induced antibodies cause ADE; and, will maternal antibodies interfere with vaccination efficacy in the infant? To address these questions, the above scenario was modeled in mice. Type I IFN-deficient female mice were immunized with live attenuated DENV2 PDK53, the core component of the tetravalent DENVax candidate currently under clinical development. Pups born to PDK53-immunized dams acquired maternal antibodies that strongly neutralized parental strain 16681, but not the heterologous DENV2 strain D2Y98P-PP1, and instead caused ADE during primary infection with this strain. Furthermore, pups failed to seroconvert after PDK53 vaccination, owing to maternal antibody interference. However, a cross-protective multifunctional CD8+ T cell response did develop. Thus, our work advocates for the development of dengue vaccine candidates that induce protective CD8+ T cells despite the presence of enhancing, interfering maternal antibodies.
Stress reduction in an isotropic plate with a hole by applied induced strains
NASA Technical Reports Server (NTRS)
Sensharma, Pradeep K.; Palantera, Markku J.; Haftka, Raphael T.
1992-01-01
Recently there has been much interest in adaptive structures that can respond to a varying environment by changing their properties. Shape memory alloys and piezoelectric materials can be used as induced strain actuators to reduce stresses in the regions of stress concentration. The objective of the work was to find the maximum possible reduction in the stress concentration factor in an isotropic plate with a hole by applying induced strains in a small area near the hole. Induced strains were simulated by thermal expansion.
USDA-ARS?s Scientific Manuscript database
Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...
Martín, Rebeca; Miquel, Sylvie; Benevides, Leandro; Bridonneau, Chantal; Robert, Véronique; Hudault, Sylvie; Chain, Florian; Berteau, Olivier; Azevedo, Vasco; Chatel, Jean M.; Sokol, Harry; Bermúdez-Humarán, Luis G.; Thomas, Muriel; Langella, Philippe
2017-01-01
Faecalibacterium prausnitzii is a major member of the Firmicutes phylum and one of the most abundant bacteria in the healthy human microbiota. F. prausnitzii depletion has been reported in several intestinal disorders, and more consistently in Crohn's disease (CD) patients. Despite its importance in human health, only few microbiological studies have been performed to isolate novel F. prausnitzii strains in order to better understand the biodiversity and physiological diversity of this beneficial commensal species. In this study, we described a protocol to isolate novel F. prausnitzii strains from feces of healthy volunteers as well as a deep molecular and metabolic characterization of these isolated strains. These F. prausnitzii strains were classified in two phylogroups and three clusters according to 16S rRNA sequences and results support that they would belong to two different genomospecies or genomovars as no genome sequencing has been performed in this work. Differences in enzymes production, antibiotic resistance and immunomodulatory properties were found to be strain-dependent. So far, all F. prausnitzii isolates share some characteristic such as (i) the lack of epithelial cells adhesion, plasmids, anti-microbial, and hemolytic activity and (ii) the presence of DNAse activity. Furthermore, Short Chain Fatty Acids (SCFA) production was assessed for the novel isolates as these products influence intestinal homeostasis. Indeed, the butyrate production has been correlated to the capacity to induce IL-10, an anti-inflammatory cytokine, in peripheral blood mononuclear cells (PBMC) but not to the ability to block IL-8 secretion in TNF-α-stimulated HT-29 cells, reinforcing the hypothesis of a complex anti-inflammatory pathway driven by F. prausnitzii. Altogether, our results suggest that some F. prausnitzii strains could represent good candidates as next-generation probiotic. PMID:28713353
Chlorinated metronidazole as a promising alternative for treating trichomoniasis.
Chacon, M O; Fonseca, T H S; Oliveira, S B V; Alacoque, M A; Franco, L L; Tagliati, C A; Cassali, G D; Campos-Mota, G P; Alves, R J; Capettini, L S A; Gomes, Maria Aparecida
2018-05-01
Trichomoniasis is the most common non-viral, sexually transmitted infection affecting humans worldwide. The main treatment for trichomoniasis is metronidazole (MTZ). However, adverse effects and reports of resistance have stimulated the development of therapeutic alternatives. The ease of manipulation of the side chains of MTZ coupled with its safety makes this molecule attractive for the development of new drugs. In this context, we evaluated the activity of the chlorinated MTZ derivative, MTZ-Cl, on sensitive and resistant strains of Trichomonas vaginalis. MTZ-Cl presented a remarkable activity against both sensitive and resistant strains. In vitro and in vivo toxicity assays indicated that the new molecule is safe for future clinical trials. Furthermore, we noticed different rates of free radical production between the sensitive and resistant strains. MTZ-Cl induced a higher release of nitric oxide (NO, ~ 9000 a.u.) by both sensitive and resistant strains. However, the sensitive strain produced a greater amount of H 2 O 2 (~ 1,800,000 a.u.) and superoxide radicals (~ 350,000 a.u.) in the presence of MTZ. In the resistant strain, production of these radicals was more prominent when MTZ-Cl was used. Collectively, these results suggest that NO is an important molecule in the trichomonacidal activity against resistant and sensitive strains, suggesting an alternative pathway for MTZ-Cl activation. We highlight the high trichomonacidal potential of MTZ-Cl, improving the effectiveness of treatment and reducing side effects. In addition, MTZ-Cl is derived from a well-established drug on the world market that presents low toxicity to human cells, suggesting its safety to proceed with future clinical trials.
Kim, Shin-Hee; Paldurai, Anandan; Xiao, Sa; Collins, Peter L.; Samal, Siba K.
2016-01-01
Naturally-occurring attenuated strains of Newcastle disease virus (NDV) are being developed as vaccine vectors for use in poultry and humans. However, some NDV strains, such as Beaudette C (BC), may retain too much virulence in poultry for safe use, and more highly attenuated strains may be suboptimally immunogenic. We therefore modified the BC strain by changing the multibasic cleavage site sequence of the F protein to the dibasic sequence of avirulent strain LaSota. Additionally, the BC, F, and HN proteins were modified in several ways to enhance virus replication. These modified BC-derived vectors and the LaSota strain were engineered to express the hemagglutin (HA) protein of H5N1 highly pathogenic influenza virus (HPAIV). In general, the modified BC-based vectors expressing HA replicated better than LaSota/HA, and expressed higher levels of HA protein. Pathogenicity tests indicated that all the modified viruses were highly attenuated in chickens. Based on in vitro characterization, two of the modified BC vectors were chosen for evaluation in chickens as vaccine vectors against H5N1 HPAIV A/Vietnam/1203/04. Immunization of chickens with rNDV vector vaccines followed by challenge with HPAIV demonstrated high levels of protection against clinical disease and mortality. However, only those chickens immunized with modified BC/HA in which residues 271–330 from the F protein had been replaced with the corresponding sequence from the NDV AKO strain conferred complete protection against challenge virus shedding. Our findings suggest that this modified rNDV can be used safely as a vaccine vector with enhanced replication, expression, and protective efficacy in avian species, and potentially in humans. PMID:24968158
Hancock, Viktoria; Nielsen, Eva Møller; Krag, Louise; Engberg, Jørgen; Klemm, Per
2009-11-01
Urinary tract infections (UTIs) are one of the most common infectious diseases in humans and domestic animals such as pigs. The most frequent infectious agent in such infections is Escherichia coli. Virulence characteristics of E. coli UTI strains range from highly virulent pyelonephritis strains to relatively benign asymptomatic bacteriuria strains. Here we analyse a spectrum of porcine and human UTI E. coli strains with respect to their antibiotic resistance patterns and their phylogenetic groups, determined by multiplex PCR. The clonal profiles of the strains differed profoundly; whereas human strains predominantly belonged to clonal types B2 and D, these were not seen among the porcine strains, which all belonged to the E. coli clonal groups A and B1. Contrary to the human strains, the majority of the porcine strains were multidrug resistant. The distinct profiles of the porcine strains suggest selective pressure due to extensive antibiotic use.
Costafreda, M. Isabel; Ribes, Enric; Franch, Àngels; Bosch, Albert
2012-01-01
Hepatitis A virus (HAV) has previously been reported to bind to human red blood cells through interaction with glycophorin A. Residue K221 of VP1 and the surrounding VP3 residues are involved in such an interaction. This capsid region is specifically recognized by the monoclonal antibody H7C27. A monoclonal antibody-resistant mutant with the mutation G1217D has been isolated. In the present study, the G1217D mutant was characterized physically and biologically in comparison with the parental HM175 43c strain. The G1217D mutant is more sensitive to acid pH and binds more efficiently to human and rat erythrocytes than the parental 43c strain. In a rat model, it is eliminated from serum more rapidly and consequently reaches the liver with a certain delay compared to the parental 43c strain. In competition experiments performed in vivo in the rat model, the G1217D mutant was efficiently outcompeted by the parental 43c strain. Only in the presence of antibodies reacting specifically with the parental 43c strain could the G1217D mutant outcompete the parental 43c strain in serum, although the latter still showed a remarkable ability to reach the liver. Altogether, these results indicate that the G1217D mutation induces a low fitness phenotype which could explain the lack of natural antigenic variants of the glycophorin A binding site. PMID:22593170
Lenzo, Jason C; O'Brien-Simpson, Neil M; Orth, Rebecca K; Mitchell, Helen L; Dashper, Stuart G; Reynolds, Eric C
2016-09-01
Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals-P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa-for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Lenzo, Jason C.; O'Brien-Simpson, Neil M.; Orth, Rebecca K.; Mitchell, Helen L.; Dashper, Stuart G.
2016-01-01
Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals—P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa—for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis. Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals. PMID:27354442
Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.
2014-01-01
A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (−LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. PMID:25452551
Biot, Fabrice V.; Valade, Eric; Garnotel, Eric; Chevalier, Jacqueline; Villard, Claude; Thibault, François M.; Vidal, Dominique R.; Pagès, Jean-Marie
2011-01-01
Burkholderia is a bacterial genus comprising several pathogenic species, including two species highly pathogenic for humans, B. pseudomallei and B. mallei. B. thailandensis is a weakly pathogenic species closely related to both B. pseudomallei and B. mallei. It is used as a study model. These bacteria are able to exhibit multiple resistance mechanisms towards various families of antibiotics. By sequentially plating B. thailandensis wild type strains on chloramphenicol we obtained several resistant variants. This chloramphenicol-induced resistance was associated with resistance against structurally unrelated antibiotics including quinolones and tetracyclines. We functionally and proteomically demonstrate that this multidrug resistance phenotype, identified in chloramphenicol-resistant variants, is associated with the overexpression of two different efflux pumps. These efflux pumps are able to expel antibiotics from several families, including chloramphenicol, quinolones, tetracyclines, trimethoprim and some β-lactams, and present a partial susceptibility to efflux pump inhibitors. It is thus possible that Burkholderia species can develop such adaptive resistance mechanisms in response to antibiotic pressure resulting in emergence of multidrug resistant strains. Antibiotics known to easily induce overexpression of these efflux pumps should be used with discernment in the treatment of Burkholderia infections. PMID:21347382
Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines.
Lee, Yu-Na; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Kang, Sang-Moo
2015-10-01
Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to develop effective vaccines and vaccination strategies conferring a broad range of cross protection. The extracellular domain of M2 (M2e) is highly conserved among human influenza A viruses and has been utilized to develop new vaccines inducing cross protection against different subtypes of influenza A virus. However, immune mechanisms of cross protection by M2e-based vaccines still remain to be fully elucidated. Here, we review immune correlates and mechanisms conferring cross protection by M2e-based vaccines. Molecular and cellular immune components that are known to be involved in M2 immune-mediated protection include antibodies, B cells, T cells, alveolar macrophages, Fc receptors, complements, and natural killer cells. Better understanding of protective mechanisms by immune responses induced by M2e vaccination will help facilitate development of broadly cross protective vaccines against influenza A virus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo
By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less
Youn, S Y; Kwon, Y K; Song, C S; Lee, H J; Jeong, O M; Choi, B K; Jung, S C; Kang, M S
2016-08-01
Salmonella enterica serovar Typhimurium has been a major causative agent of food-borne human disease, mainly due to consumption of contaminated food animal products. In particular, ducks serve as a reservoir of serovar Typhimurium, and are one of the common sources of human infection. To prevent infection of ducks, and therefore minimize human infection, it is critical to control the persistent epidemic strains in ducks. Here, we analyzed the genetic diversity and virulence of serovar Typhimurium isolates from ducks in Korea to identify the predominant strains that might be used as efficient vaccine candidates for ducks. Among the isolates, 2 representative isolates (ST26 and ST76) of predominant genotypes were selected as vaccine strains on the basis of genotypic analysis by pulsed-field gel electrophoresis and DNA microarrays. Two-week-old ducks were then injected intramuscularly with inactivated vaccine candidates prepared using ST26 or ST76 (10(8) cfu/0.5 mL/duck or 10(9) cfu/0.5 mL/duck), and oral challenge with a highly virulent serovar Typhimurium strain (10(9) cfu/0.5 mL/duck) was carried out 2 wk later. Shedding of the challenge strain was significantly decreased in group 2 after vaccination. The antibody levels by enzyme-linked immunosorbent assay in all vaccinated groups were enhanced significantly (P < 0.05) compared to the unvaccinated control group. Overall, vaccination with ST26 or ST76 reduced bacterial shedding and colonization in internal organs, and induced elevated antibody response. In particular, serovar Typhimurium ST26 (10(8) cfu/0.5 mL/duck) was the most effective vaccine candidate, which can provide efficient protection against serovar Typhimurium in ducks with higher effectiveness compared to a commercial vaccine currently used worldwide. © 2016 Poultry Science Association Inc.
Arihara, K; Itoh, M
2000-06-01
Lactobacillus gasseri, one of the predominant lactobacilli in human intestinal tracts, is utilized for probiotics and dairy starter cultures. However, since L. gasseri is relatively sensitive to sodium chloride and sodium nitrite (essential compounds for meat products), it is difficult to utilize this species for conventional fermented meat products. In this study, efforts were directed to generate mutants of L. gasseri resisting sodium chloride and sodium nitrite. UV irradiation of the strain of L. gasseri JCM1131(T) generated several mutants resisting these compounds. A mutant strain 1131-M8 demonstrated satisfactory growth in meat containing 3.3% sodium chloride and 200 ppm sodium nitrite. Although proteins extracted from the cell surface of 1131-M8 were slightly different from those of the original strain, other biochemical characteristics of both strains were indistinguishable. These results suggest that the L. gasseri mutant obtained in this study could be utilized as a starter culture to develop probiotic meat products.
Lockyer, Anne E; Noble, Leslie R; Rollinson, David; Jones, Catherine S
2004-01-01
The freshwater tropical snail Biomphalaria glabrata is an intermediate host for Schistosoma mansoni, the causative agent of human intestinal schistosomiasis, and strains differ in their susceptibility to parasite infection. Changes in gene expression in response to parasite infection have been simultaneously examined in a susceptible strain (NHM1742) and a resistant strain (NHM1981) using a newly developed fluorescent-based differential display method. Such RNA profiling techniques allow the examination of changes in gene expression in response to parasite infection, without requiring previous sequence knowledge, or selecting candidate genes that may be involved in the complex neuroendocrine or defence systems of the snail. Thus, novel genes may be identified. Ten transcripts were initially identified, present only in the profiles derived from snails of the resistant strain when exposed to infection. The differential expression of five of these genes, including HSP70 and several novel transcripts with one containing at least two globin-like domains, has been confirmed by semi-quantitative RT-PCR.
Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E
2003-09-01
Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the expression of caspase-1, caspase-3 and caspase-10, was inhibited. Inhibition of replication of intracellular bacteria resulted in an increase in apoptosis in both cell types. Our results showed that the differential induction of apoptosis between macrophages and alveolar epithelial cells represents specific strategies of M. tuberculosis for survival in the host.
Xu, Xuefang; McAteer, Sean P.; Tree, Jai J.; Shaw, Darren J.; Wolfson, Eliza B. K.; Beatson, Scott A.; Roe, Andrew J.; Allison, Lesley J.; Chase-Topping, Margo E.; Mahajan, Arvind; Tozzoli, Rosangela; Woolhouse, Mark E. J.; Morabito, Stefano; Gally, David L.
2012-01-01
Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. PMID:22615557
Proudfoot, Owen; Esparon, Sandra; Tang, Choon-Kit; Laurie, Karen; Barr, Ian; Pietersz, Geoffrey
2015-02-26
H1N1 influenza viruses mutate rapidly, rendering vaccines developed in any given year relatively ineffective in subsequent years. Thus it is necessary to generate new vaccines every year, but this is time-consuming and resource-intensive. Should a highly virulent influenza strain capable of human-to-human transmission emerge, these factors will severely limit the number of people that can be effectively immunised against that strain in time to prevent a pandemic. An adjuvant and mode of administration capable of rendering ordinarily unprotective vaccine doses protective would thus be highly advantageous. The carbohydrate mannan was conjugated to whole inactivated H1N1 influenza virus at a range of ratios, and mixed with it at a range of ratios, and various doses of the resulting preparations were administered to mice via the intranasal (IN) route. Serum immunity was assessed via antigen-specific IgG ELISA and the haemagglutination-inhibition (HI) assay, and mucosal immunity was assessed via IgA ELISA of bronchio-alveolar lavages. IN-administered inactivated H1N1 mixed with mannan induced higher serum IgG and respiratory-tract IgA than inactivated H1N1 conjugated to mannan, and HIN1 alone. Adjuvantation was mannan-dose-dependent, with 100 μg of mannan adjuvanting 1 μg of H1N1 more effectively than 10 or 50 μg of mannan. Serum samples from mice immunised with 1 μg H1N1 adjuvanted with 10 μg mannan did not inhibit agglutination of red blood cells (RBCs) at a dilution factor of 10 in the HI assay, but samples resulting from adjuvantation with 50 and 100 μg mannan inhibited agglutination at dilution factors of ≥ 40. Both serum IgG1 and IgG2a were induced by IN mannan-adjuvanted H1N1 vaccination, suggesting the induction of humoral and cellular immunity. Mixing 100 μg of mannan with 1 μg of inactivated H1N1 adjuvanted the vaccine in mice, such that IN immunisation induced higher serum IgG and respiratory tract IgA than immunisation with virus alone. The serum from mice thus immunised inhibited H1N1-mediated RBC agglutination strongly in vitro. If mannan similarly adjuvants low doses of influenza vaccine in humans, it could potentially be used for vaccine 'dose-sparing' in the event that a vaccine shortage arises from an epidemic involving a highly virulent human-to-human transmissable influenza strain.
Microbial and human heat shock proteins as 'danger signals' in sarcoidosis.
Dubaniewicz, Anna
2013-12-01
In the light of the Matzinger's model of immune response, human heat shock proteins (HSPs) as main 'danger signals' (tissue damage-associated molecular patterns-DAMPs) or/and microbial HSPs as pathogen-associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRR), may induce sarcoid granuloma by both infectious and non-infectious factors in genetically different predisposed host. Regarding infectious causes of sarcoid models, low-virulence strains of, e.g. mycobacteria and propionibacteria recognized through changed PRR and persisting in altered host phagocytes, generate increased release of both human and microbial HSPs with their molecular and functional homology. High chronic spread of human and microbial HSPs altering cytokines, co-stimulatory molecules, and Tregs expression, apoptosis, oxidative stress, induces the autoimmunity, considered in sarcoidosis. Regarding non-infectious causes of sarcoidosis, human HSPs may be released at high levels during chronic low-grade exposure to misfolding amyloid precursor protein in stressed cells, phagocyted metal fumes, pigments with/without aluminum in tattoos, and due to heat shock in firefighters. Therefore, human HSPs as DAMPs and/or microbial HSPs as PAMPs produced as a result of non-infectious and infectious factors may induce different models of sarcoidosis, depending on the genetic background of the host. The number/expression of PRRs/ligands may influence the occurrence of sarcoidosis in particular organs. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Steady and unsteady blade stresses within the SSME ATD/HPOTP inducer
NASA Technical Reports Server (NTRS)
Gross, R. Steven
1994-01-01
There were two main goals of the ATD HPOTP (alternate turbopump development)(high pressure oxygen turbopump). First, determine the steady and unsteady inducer blade surface strains produced by hydrodynamic sources as a function of flow capacity (Q/N), suction specific speed (Nss), and Reynolds number (Re). Second, to identify the hydrodynamic source(s) of the unsteady blade strains. The reason the aforementioned goals are expressed in terms of blade strains as opposed to blade hydrodynamic pressures is because of the interest regarding the high cycle life of the inducer blades. This report focuses on the first goal of the test program which involves the determination of the steady and unsteady strain (stress) values at various points within the inducer blades. Strain gages were selected as the strain measuring devices. Concurrent with the experimental program, an analytical study was undertaken to produce a complete NASTRAN finite-element model of the inducer. Computational fluid dynamics analyses were utilized to provide the estimated steady-state blade surface pressure loading needed as load input to the NASTRAN inducer model.
Nakano, V; Ignacio, A; Llanco, L; Bueris, V; Sircili, M P; Avila-Campos, M J
2017-04-01
Clostridium perfringens is an anaerobic bacterium ubiquitous in various environments, especially in soil and the gastrointestinal tract of healthy humans and animals. In this study, multilocus sequence typing protocol was used to investigate genotypic relationships among 40 C. perfringens strains isolated from humans and broiler chicken with necrotic enteritis [NE]. The results indicated a few clonal populations, mainly observed in human strains, with 32.5% of all strains associated with one of three clonal complexes and 30 sequences types. The CC-1 cluster showed an interesting and unexpected result because it contained seven strains [six from animals and one of human origin]. Detection assays for toxin genes tpeL and netB were also performed. The netB gene was only observed in 7.5% of the strains from healthy human. The toxin gene tpeL was detected in 22.5% of the C. perfringens strains isolated from three individuals and in six broilers with NE. Our study describes the role of some C. perfringens strains of human origin acting as reservoirs of virulence genes and sources of infection. In addition, the strains of human and animal origin were found to be genetically distinct but phylogenetically close, and the human strains showed more diversity than the animal strains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bwogi, Josephine; Jere, Khuzwayo C; Karamagi, Charles; Byarugaba, Denis K; Namuwulya, Prossy; Baliraine, Frederick N; Desselberger, Ulrich; Iturriza-Gomara, Miren
2017-01-01
Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.
Liu, Yingru; Hammer, Laura A.; Liu, Wensheng; Hobbs, Marcia M.; Zielke, Ryszard A.; Sikora, Aleksandra E.; Jerse, Ann E.; Egilmez, Nejat K.; Russell, Michael W.
2017-01-01
Female mice were immunized intravaginally with gonococcal outer membrane vesicles (OMV) plus microencapsulated IL-12, and challenged using an established model of genital infection with Neisseria gonorrhoeae. Whereas sham-immunized and control animals cleared the infection in 10–13 days, those immunized with OMV plus IL-12 cleared infection with homologous gonococcal strains in 6–9 days. Significant protection was also seen after challenge with antigenically distinct strains of N. gonorrhoeae, and protective anamnestic immunity persisted for at least 6 months after immunization. Serum and vaginal IgG and IgA antibodies were generated against antigens expressed by homologous and heterologous strains. Iliac lymph node CD4+ T cells secreted IFNγ, but not IL-4, in response to immunization, and produced IL-17 in response to challenge regardless of immunization. Antigens recognized by immunized mouse serum included several shared between gonococcal strains, including two identified by immunoproteomics approaches as EF-Tu and PotF3. Experiments with immunodeficient mice showed that protective immunity depended upon IFNγ and B cells, presumably to generate antibodies. The results demonstrated that immunity to gonococcal infection can be induced by immunization with a non-living gonococcal antigen, and suggest that efforts to develop a human vaccine should focus on strategies to generate Th1-driven immune responses in the genital tract. PMID:28272393
Heemskerk, A E; Huisman, E; van Lambalgen, A A; Appelmelk, B J; van den Bos, G C; Thijs, L G; Tangelder, G J
1996-12-01
To develop a hyperdynamic sepsis model in rats, four Escherichia coli strains were used, which differed in the presence or absence of a capsule or K antigen (K1 and K-, respectively) and/or in O serogroup (O9 and O18). Of the two clinical isolates, O9K- did not survive in rat serum, whereas O18K1 and two isogenic laboratory strains (O18K1 and O18K-) were able to resist serum bacteriolysis. Pentobarbital-anesthetized rats (n = 21) received an intravenous bolus of 10(9) bacteria. In contrast to the two noncapsulated strains, both capsulated strains induced hyperdynamic shock; arterial lactate rose from a mean value of .91 to 3.09 mmol.L-1, systemic vascular resistance dropped from 1.15 to .78 mmHg.min.mL-1, and cardiac output transiently increased from 98 to 115 mL.min-1; renal plasma flow remained at 3-4 mL.min-1, whereas glomerular filtration rate decreased from 1.3 to .7 mL.min-1. Laparotomy, which is often performed to study kidney function, completely abolished the hyperdynamic condition, while glomerular filtration rate was still decreased. We conclude that in rats, in contrast to humans, capsulated bacteria are required to induce a hyperdynamic septic shock; the hyperdynamic characteristics of the shock do not occur in animals subjected to a laparotomy.
Petersen, Henning; Mostafa, Ahmed; Tantawy, Mohamed A.; Iqbal, Azeem A.; Hoffmann, Donata; Tallam, Aravind; Selvakumar, Balachandar; Pessler, Frank; Beer, Martin; Rautenschlein, Silke; Pleschka, Stephan
2018-01-01
The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species. PMID:29623073
Yokota, Shin-ichi; Yokosawa, Noriko; Okabayashi, Tamaki; Suzutani, Tatsuo; Miura, Shunsuke; Jimbow, Kowichi; Fujii, Nobuhiro
2004-01-01
We showed previously that herpes simplex virus type 1 (HSV-1) suppresses the interferon (IFN) signaling pathway during the early infection stage in the human amnion cell line FL. HSV-1 inhibits the IFN-induced phosphorylation of Janus kinases (JAK) in infected FL cells. In the present study, we showed that the suppressor of cytokine signaling-3 (SOCS3), a host negative regulator of the JAK/STAT pathway, is rapidly induced in FL cells after HSV-1 infection. Maximal levels of SOCS3 protein were detected at around 1 to 2 h after infection. This is consistent with the occurrence of HSV-1-mediated inhibition of IFN-induced JAK phosphorylation. The HSV-1 wild-type strain VR3 induced SOCS3 more efficiently than did mutants that are defective in UL41 or UL13 and that are hyperresponsive to IFN. Induction of the IRF-7 protein and transcriptional activation of IFN-α4, which occur in a JAK/STAT pathway-dependent manner, were poorly induced by VR3 but efficiently induced by the mutant viruses. In contrast, phosphorylation of IRF-3 and transcriptional activation of IFN-β, which are JAK/STAT pathway-independent process, were equally well induced by the wild-type strain and the mutants. In conclusion, the SOCS3 protein appears to be mainly responsible for the suppression of IFN signaling and IFN production that occurs during HSV-1 infection. PMID:15163721
The nicorandil-induced vasodilation in humans is inhibited by miconazole.
Ueda, Keiko; Goto, Chikara; Jitsuiki, Daisuke; Umemura, Takashi; Nishioka, Kenji; Kimura, Masashi; Noma, Kensuke; Nakagawa, Keigo; Oshima, Tetsuya; Yoshizumi, Masao; Chayama, Kazuaki; Higashi, Yukihito
2005-04-01
Nicorandil, N-(2-hydroxyethyl)-nicotinamide nitrate, exerts its vasodilatory effects by opening ATP-sensitive potassium (K-ATP) channels and by acting as the exogenous nitric oxide (NO). It is not clear, however, whether the actions of other endothelium-dependent vasodilators, such as NO, endothelium-derived hyperpolarizing factor (EDHF), and prostaglandins, contribute to nicorandil-induced vasodilation in the vasculature in humans. We evaluated forearm blood flow (FBF) response to intraarterial infusion of nicorandil alone and in the presence of glibenclamide, a K-ATP channel inhibitor, N(G)-monomethyl-L-arginine, an NO synthase inhibitor, indomethacin, a cyclooxygenase inhibitor, or miconazol, a cytochrome P-450 inhibitor, in 24 healthy male subjects. FBF was measured using strain-gauge plethysmography. Infusion of nicorandil significantly increased the FBF response in a dose-dependent manner. Intraarterial infusion of glibenclamide attenuated nicorandil-induced vasodilation (160.9 +/- 21.2% versus 90.2 +/- 19.4%, P < 0.01), and miconazole also attenuated the FBF response to nicorandil (160.9 +/- 21.2% versus 66.1 +/- 9.2%, P < 0.001). N-monomethyl-L-arginine or indomethacin did not alter the FBF response to nicorandil. These findings suggest that nicorandil causes vasodilation in forearm circulation in humans, at least in part through a pathway that is dependent on K-ATP channels and cytochrome P-450, but not on endogenous NO and prostaglandins. EDHF may contribute to nicorandil-induced vasodilation in humans.
Mechanism of Cell Culture Adaptation of an Enteric Calicivirus, the Porcine Sapovirus Cowden Strain.
Lu, Zhongyan; Yokoyama, Masaru; Chen, Ning; Oka, Tomoichiro; Jung, Kwonil; Chang, Kyeong-Ok; Annamalai, Thavamathi; Wang, Qiuhong; Saif, Linda J
2016-02-01
The porcine sapovirus (SaV) (PoSaV) Cowden strain is one of only a few culturable enteric caliciviruses. Compared to the wild-type (WT) PoSaV Cowden strain, tissue culture-adapted (TC) PoSaV has two conserved amino acid substitutions in the RNA-dependent RNA polymerase (RdRp) and six in the capsid protein (VP1). By using the reverse-genetics system, we identified that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328), but not the substitutions in the RdRp region, were critical for the cell culture adaptation of the PoSaV Cowden strain. The other two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro. Three-dimensional (3D) structural analysis of VP1 showed that residue 178 was located near the dimer-dimer interface, which may affect VP1 assembly and oligomerization; residues 289, 291, 324, and 328 were located at protruding subdomain 2 (P2) of VP1, which may influence virus binding to cellular receptors; and residue 295 was located at the interface of two monomeric VP1 proteins, which may influence VP1 dimerization. Although reversion of the mutation at residue 291 or 295 from that of the TC strain to that of the WT reduced virus replication in vitro, it enhanced virus replication in vivo, and the revertants induced higher-level serum and mucosal antibody responses than those induced by the TC PoSaV Cowden strain. Our findings reveal the molecular basis for PoSaV adaptation to cell culture. These findings may provide new, critical information for the cell culture adaptation of other PoSaV strains and human SaVs or noroviruses. The tissue culture-adapted porcine sapovirus Cowden strain is one of only a few culturable enteric caliciviruses. We discovered that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328) were critical for its adaptation to LLC-PK cells. Two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro but enhanced virus replication and induced higher-level serum and mucosal antibody responses in gnotobiotic pigs than those induced by the tissue culture-adapted strain. Structural modeling analysis of VP1 suggested that residue 178 may affect VP1 assembly and oligomerization; residues 289, 291, 324, and 328 may influence virus binding to cellular receptors; and residue 295 may influence VP1 dimerization. Our findings will provide new information for the cell culture adaptation of other sapoviruses and possibly noroviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J; Romero, Fernando; Gil, Angel
2013-01-01
Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory pathways.
Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J.; Romero, Fernando; Gil, Angel
2013-01-01
Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory pathways. PMID:23555025
Son, Ho Anh; Zhang, LiFeng; Cuong, Bui Khac; Van Tong, Hoang; Cuong, Le Duy; Hang, Ngo Thu; Nhung, Hoang Thi My; Yamamoto, Naoki; Toan, Nguyen Linh
2018-02-07
Oncolytic measles and mumps viruses (MeV, MuV) have a potential for anti-cancer treatment. We examined the anti-tumor activity of MeV, MuV, and MeV-MuV combination (MM) against human solid malignancies (HSM). MeV, MuV, and MM targeted and significantly killed various cancer cell lines of HSM but not normal cells. MM demonstrated a greater anti-tumor effect and prolonged survival in a human prostate cancer xenograft tumor model compared to MeV and MuV. MeV, MuV, and MM significantly induced the expression of immunogenic cell death markers and enhanced spleen-infiltrating immune cells. In conclusion, MM combination significantly improves the treatment of human solid malignancies.
Kumar, Ashish; Das, Sushmita; Purkait, Bidyut; Sardar, Abul Hasan; Ghosh, Ayan Kumar; Dikhit, Manas Ranjan; Abhishek, Kumar
2014-01-01
Amphotericin B (AmB), a polyene macrolide, is now a first-line treatment of visceral leishmaniasis cases refractory to antimonials in India. AmB relapse cases and the emergence of secondary resistance have now been reported. To understand the mechanism of AmB, differentially expressed genes in AmB resistance strains were identified by a DNA microarray and real-time reverse transcriptase PCR (RT-PCR) approach. Of the many genes functionally overexpressed in the presence of AmB, the ascorbate peroxidase gene from a resistant Leishmania donovani strain (LdAPx gene) was selected because the gene is present only in Leishmania, not in humans. Apoptosis-like cell death after exposure to AmB was investigated in a wild-type (WT) strain in which the LdAPx gene was overexpressed and in AmB-sensitive and -resistant strains. A higher percentage of apoptosis-like cell death after AmB treatment was noticed in the sensitive strain than in both the resistant isolate and the strain sensitive to LdAPx overexpression. This event is preceded by AmB-induced formation of reactive oxygen species and elevation of the cytosolic calcium level. Enhanced cytosolic calcium was found to be responsible for depolarization of the mitochondrial membrane potential and the release of cytochrome c (Cyt c) into the cytosol. The redox behavior of Cyt c showed that it has a role in the regulation of apoptosis-like cell death by activating metacaspase- and caspase-like proteins and causing concomitant nuclear alterations, as determined by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and DNA fragmentation in the resistant strain. The present study suggests that constitutive overexpression of LdAPx in the L. donovani AmB-resistant strain prevents cells from the deleterious effect of oxidative stress, i.e., mitochondrial dysfunction and cellular death induced by AmB. PMID:25114128
Kumar, Ashish; Das, Sushmita; Purkait, Bidyut; Sardar, Abul Hasan; Ghosh, Ayan Kumar; Dikhit, Manas Ranjan; Abhishek, Kumar; Das, Pradeep
2014-10-01
Amphotericin B (AmB), a polyene macrolide, is now a first-line treatment of visceral leishmaniasis cases refractory to antimonials in India. AmB relapse cases and the emergence of secondary resistance have now been reported. To understand the mechanism of AmB, differentially expressed genes in AmB resistance strains were identified by a DNA microarray and real-time reverse transcriptase PCR (RT-PCR) approach. Of the many genes functionally overexpressed in the presence of AmB, the ascorbate peroxidase gene from a resistant Leishmania donovani strain (LdAPx gene) was selected because the gene is present only in Leishmania, not in humans. Apoptosis-like cell death after exposure to AmB was investigated in a wild-type (WT) strain in which the LdAPx gene was overexpressed and in AmB-sensitive and -resistant strains. A higher percentage of apoptosis-like cell death after AmB treatment was noticed in the sensitive strain than in both the resistant isolate and the strain sensitive to LdAPx overexpression. This event is preceded by AmB-induced formation of reactive oxygen species and elevation of the cytosolic calcium level. Enhanced cytosolic calcium was found to be responsible for depolarization of the mitochondrial membrane potential and the release of cytochrome c (Cyt c) into the cytosol. The redox behavior of Cyt c showed that it has a role in the regulation of apoptosis-like cell death by activating metacaspase- and caspase-like proteins and causing concomitant nuclear alterations, as determined by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and DNA fragmentation in the resistant strain. The present study suggests that constitutive overexpression of LdAPx in the L. donovani AmB-resistant strain prevents cells from the deleterious effect of oxidative stress, i.e., mitochondrial dysfunction and cellular death induced by AmB. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Musculotendon and fascicle strains in anterior and posterior neck muscles during whiplash injury.
Vasavada, Anita N; Brault, John R; Siegmund, Gunter P
2007-04-01
A biomechanical neck model combined with subject-specific kinematic and electromyographic data were used to calculate neck muscle strains during whiplash. To calculate the musculotendon and fascicle strains during whiplash and to compare these strains to published muscle injury thresholds. Previous work has shown potentially injurious musculotendon strains in sternocleidomastoid (SCM) during whiplash, but neither the musculotendon strains in posterior cervical muscles nor the fascicle strains in either muscle group have been examined. Experimental human subject data from rear-end automobile impacts were integrated with a biomechanical model of the neck musculoskeletal system. Subject-specific head kinematic data were imposed on the model, and neck musculotendon and fascicle strains and strain rates were computed. Electromyographic data from the sternocleidomastoid and the posterior cervical muscles were compared with strain data to determine which muscles were being eccentrically contracted. SCM experienced lengthening during the retraction phase of head/neck kinematics, whereas the posterior muscles (splenius capitis [SPL], semispinalis capitis [SEMI], and trapezius [TRAP]) lengthened during the rebound phase. Peak SCM fascicle lengthening strains averaged (+/-SD) 4% (+/-3%) for the subvolumes attached to the mastoid process and 7% (+/-5%) for the subvolume attached to the occiput. Posteriorly, peak fascicle strains were 21% (+/-14%) for SPL, 18% (+/-16%) for SEMI, and 5% (+/-4%) for TRAP, with SPL strains significantly greater than calculated in SCM or TRAP. Fascicle strains were, on average, 1.2 to 2.3 times greater than musculotendon strains. SCM and posterior muscle activity occurred during intervals of muscle fascicle lengthening. The cervical muscle strains induced during a rear-end impact exceed the previously-reported injury threshold for a single stretch of active muscle. Further, the larger strains experienced by extensor muscles are consistent with clinical reports of pain primarily in the posterior cervical region following rear-end impacts.
Whole Genomic Analysis of Human G12P[6] and G12P[8] Rotavirus Strains that Have Emerged in Myanmar
Ide, Tomihiko; Komoto, Satoshi; Higo-Moriguchi, Kyoko; Htun, Khaing Win; Myint, Yi Yi; Myat, Theingi Win; Thant, Kyaw Zin; Thu, Hlaing Myat; Win, Mo Mo; Oo, Htun Naing; Htut, Than; Wakuda, Mitsutaka; Dennis, Francis Ekow; Haga, Kei; Fujii, Yoshiki; Katayama, Kazuhiko; Rahman, Shofiqur; Nguyen, Sa Van; Umeda, Kouji; Oguma, Keiji; Tsuji, Takao; Taniguchi, Koki
2015-01-01
G12 rotaviruses are emerging rotavirus strains causing severe diarrhea in infants and young children worldwide. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed. In this study, we sequenced and characterized the complete genomes of six G12 strains (RVA/Human-tc/MMR/A14/2011/G12P[8], RVA/Human-tc/MMR/A23/2011/G12P[6], RVA/Human-tc/MMR/A25/2011/G12P[8], RVA/Human-tc/MMR/P02/2011/G12P[8], RVA/Human-tc/MMR/P39/2011/G12P[8], and RVA/Human-tc/MMR/P43/2011/G12P[8]) detected in six stool samples from children with acute gastroenteritis in Myanmar. On whole genomic analysis, all six Myanmarese G12 strains were found to have a Wa-like genetic backbone: G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strains A14, A25, P02, P39, and P43, and G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strain A23. Phylogenetic analysis showed that most genes of the six strains examined in this study were genetically related to globally circulating human G1, G3, G9, and G12 strains. Of note is that the NSP4 gene of strain A23 exhibited the closest relationship with the cognate genes of human-like bovine strains as well as human strains, suggesting the occurrence of reassortment between human and bovine strains. Furthermore, strains A14, A25, P02, P39, and P43 were very closely related to one another in all the 11 gene segments, indicating derivation of the five strains from a common origin. On the other hand, strain A23 consistently formed distinct clusters as to all the 11 gene segments, indicating a distinct origin of strain A23 from that of strains A14, A25, P02, P39, and P43. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Myanmar. Our observations will provide important insights into the evolutionary dynamics of spreading G12 rotaviruses in Asia. PMID:25938434
A universal vaccine for serogroup B meningococcus.
Giuliani, Marzia M; Adu-Bobie, Jeannette; Comanducci, Maurizio; Aricò, Beatrice; Savino, Silvana; Santini, Laura; Brunelli, Brunella; Bambini, Stefania; Biolchi, Alessia; Capecchi, Barbara; Cartocci, Elena; Ciucchi, Laura; Di Marcello, Federica; Ferlicca, Francesca; Galli, Barbara; Luzzi, Enrico; Masignani, Vega; Serruto, Davide; Veggi, Daniele; Contorni, Mario; Morandi, Maurizio; Bartalesi, Alessandro; Cinotti, Vanda; Mannucci, Donatella; Titta, Francesca; Ovidi, Elisa; Welsch, Jo Anne; Granoff, Dan; Rappuoli, Rino; Pizza, Mariagrazia
2006-07-18
Meningitis and sepsis caused by serogroup B meningococcus are two severe diseases that still cause significant mortality. To date there is no universal vaccine that prevents these diseases. In this work, five antigens discovered by reverse vaccinology were expressed in a form suitable for large-scale manufacturing and formulated with adjuvants suitable for human use. The vaccine adjuvanted by aluminum hydroxide induced bactericidal antibodies in mice against 78% of a panel of 85 meningococcal strains representative of the global population diversity. The strain coverage could be increased to 90% and above by the addition of CpG oligonucleotides or by using MF59 as adjuvant. The vaccine has the potential to conquer one of the most devastating diseases of childhood.
Jakeman, K J; Bird, C R; Thorpe, R; Smith, H; Sweet, C
1991-03-01
Fever in influenza results from the release of endogenous pyrogen (EP) following virus-phagocyte interaction and its level correlates with the differing virulence of virus strains. However, the different levels of fever produced in ferrets by intracardial inoculation of EP obtained from the interaction of different virus strains with ferret of human phagocytes did not correlate with the levels of interleukin 1 (IL-1), IL-6 or tumour necrosis factor in the same samples as assayed by conventional in vitro methods. Hence, the EP produced by influenza virus appears to be different to these cytokines.
Zhang, Ming; Qiao, Xuewei; Zhao, Liang; Jiang, Lu; Ren, Fazheng
2011-12-01
Probiotics and carcinogens both have a significant effect on the microfloral composition of the human intestine. The objective of this study was to investigate the impact of an important carcinogen, 4-Nitroquinoline-1-Oxide on colonic microflora and the efficacy of the probiotic Lactobacillus salivarius REN as an agent of counteracting these effects. Using denaturing gradient gel electrophoresis (DGGE) combined with redundancy analysis, we demonstrated that both 4-Nitroquinoline-1-Oxide and L. salivarius REN significantly altered the bacterial communities of rat colons. A total of 27 bacterial strains were identified as being affected by treatment with 4-Nitroquinoline-1-Oxide or L. salivarius REN using a t-value biplot combined with band sequencing. 4-Nitroquinoline-1-Oxide treatment increased the abundance of two potential pathogens (one Helicobacter strain and one Desulfovibrio strain), as well as reducing the abundance of two potentially beneficial strains (one Ruminococcaceae strain and one Rumen bacteria). The Helicobacter strain was initally detected in carcinogen-treated rat intestinal microflora, but L. salivarius REN treatment effectively suppressed the growth of the Helicobacter strain. These results suggested that L. salivarius REN may be a potential probiotic, efficiently acting against the initial infection with, and the growth of pathogenic bacteria.
Mechanical signaling in the development of postmenopausal osteoporosis
NASA Technical Reports Server (NTRS)
Turner, R. T.
1999-01-01
Estrogen deficiency results in increased bone turnover and net bone loss in rats as well as humans. The respective roles of bone turnover and mechanical strain in mediating estrogen deficiency-induced cancellous bone loss were investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in long bones. However, cancellous bone was preferentially lost in the metaphysis, a site that experiences low strain energy during normal physical activity. No bone loss was observed in the epiphysis, a site experiencing higher strain energy, despite a similar increase in bone turnover. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased or decreased in long bones of ovariectomized rats by treadmill exercise or functional unloading, respectively. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing weight bearing accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in unloaded limbs and prevented bone loss in the loaded limbs. These results suggest that estrogen alters the mechanosensory (mechanostat) set point for skeletal adaptation, effectively reducing the minimum strain energy levels at which bone is added. Additionally, these studies suggest that physical activity as well as endocrine status play an important role in maintenance of the female skeleton during aging.
Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M
2016-02-01
The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the inhibition of the signalling via NF-κB that in turn led to the attenuation of the inflammatory response.
The 3-NBA (3-nitro-7H- benz[d,e]antracen-7-one) is extremely potent in the Ames test an useful test for mutagenicity, being a possible inducer of tumors in animals and possible carcinogen for human beings. 3-NBA was previously identified in the exhausts of diesel, particulate mat...
A respiratory syncytial virus (RSV) vaccine based on parainfluenza virus 5 (PIV5)
Phan, Shannon I.; Chen, Zhenhai; Xu, Pei; Li, Zhuo; Gao, Xiudan; Foster, Stephanie L.; Teng, Michael N.; Tripp, Ralph A.; Sakamoto, Kaori; He, Biao
2014-01-01
Human respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease and hospitalizations in infants and young children. It also causes significant morbidity and mortality in elderly and immune compromised individuals. No licensed vaccine currently exists. Parainfluenza virus 5 (PIV5) is a paramyxovirus that causes no known human illness and has been used as a platform for vector-based vaccine development. To evaluate the efficacy of PIV5 as a RSV vaccine vector, we generated two recombinant PIV5 viruses - one expressing the fusion (F) protein and the other expressing the attachment glycoprotein (G) of RSV strain A2 (RSV A2). The vaccine strains were used separately for single-dose vaccinations in BALB/c mice. The results showed that both vaccines induced RSV antigen-specific antibody responses, with IgG2a/IgG1 ratios similar to those seen in wild-type RSV A2 infection. After challenging the vaccinated mice with RSV A2, histopathology of lung sections showed that the vaccines did not exacerbate lung lesions relative to RSV A2-immunized mice. Importantly, both F and G vaccines induced protective immunity. Therefore, PIV5 presents an attractive platform for vector-based vaccines against RSV infection. PMID:24717150
Li, Liping; Wang, Rui; Huang, Yan; Huang, Ting; Luo, Fuguang; Huang, Weiyi; Yang, Xiuying; Lei, Aiying; Chen, Ming; Gan, Xi
2018-01-01
Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia. PMID:29467722
Benga, L; Goethe, R; Rohde, M; Valentin-Weigand, P
2004-09-01
Streptococcus suis is a porcine and human pathogen causing invasive diseases, such as meningitis or septicaemia. Host cell interactions of S. suis have been studied mainly with serotype 2 strains, but multiple capsular serotypes as well as non-typeable strains exist with diverse virulence features. At present, S. suis is considered an extracellular pathogen. However, whether or not it can also invade host cells is a matter of controversial discussions. We have assessed adherence and invasion of S. suis for HEp-2 epithelial cells by comparing 10 serotype 2 strains and four non-typeable (NT) strains. Only the NT strains and a non-encapsulated serotype 2 mutant strain, but none of the serotype 2 strains, adhered strongly and were invasive. Invasion seemed to be affected by environmental signals, as suggested from comparison of strains grown in different media. Further phenotypic and genotypic characterization revealed a high diversity among the different strains. Electron microscopic analysis of invasion of selected invasive NT strains indicated different uptake mechanisms. One strain induced large invaginations comparable to those seen in 'caveolae' mediated uptake, whereas invasion of the other strains was accompanied by formation of filipodia-like membrane protrusions. Invasion of all strains, however, was similarly susceptible to hypertonic sucrose, which inhibits receptor-mediated endocytosis. Irrespective of the uptake pathway, streptococci resided in acidified phago-lysosome like vacuoles. All strains, except one, survived intracellularly as well as extracellular acidic conditions. Survival seemed to be associated with the AdiS protein, an environmentally regulated arginine deiminase of S. suis. Concluding, invasion and survival of NT strains of S. suis in epithelial cells revealed novel evidence that S. suis exhibits a broad variety of virulence-associated features depending on genetic variation and regulation.
Johnson, Timothy J; Kariyawasam, Subhashinie; Wannemuehler, Yvonne; Mangiamele, Paul; Johnson, Sara J; Doetkott, Curt; Skyberg, Jerod A; Lynne, Aaron M; Johnson, James R; Nolan, Lisa K
2007-04-01
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.
Siddappa, Nagadenahalli B; Hemashettar, Girish; Wong, Yin Ling; Lakhashe, Samir; Rasmussen, Robert A; Watkins, Jennifer D; Novembre, Francis J; Villinger, François; Else, James G; Montefiori, David C; Ruprecht, Ruth M
2011-04-01
While some recently transmitted HIV clade C (HIV-C) strains exhibited tier 1 neutralization phenotypes, most were tier 2 strains (J Virol 2010; 84:1439). Because induction of neutralizing antibodies (nAbs) through vaccination against tier 2 viruses has proven difficult, we have generated a tier 1, clade C simian-human immunodeficiency virus (SHIV-C) to permit efficacy testing of candidate AIDS vaccines against tier 1 viruses. SHIV-1157ipEL was created by swapping env of a late-stage virus with that of a tier 1, early form. After adaptation to rhesus macaques (RM), passaged SHIV-1157ipEL-p replicated vigorously in vitro and in vivo while maintaining R5 tropism. The virus was reproducibly transmissible intrarectally. Phylogenetically, SHIV-1157ipEL-p Env clustered with HIV-C sequences. All RM chronically infected with SHIV-1157ipEL-p developed high nAb titers against autologous as well as heterologous tier 1 strains. SHIV-1157ipEL-p was reproducibly transmitted in RM, induced cross-clade nAbs, and represents a tool to evaluate anti-HIV-C nAb responses in primates. © 2010 John Wiley & Sons A/S.
Nicolson, M O; Gilden, R V; Charman, H; Rice, N; Heberling, R; McAllister, R M
1978-06-15
DNA was extracted from two human sarcoma cell lines, TE-32 and TE-418, and the leukemic cells from five children with acute myelocytic leukemia, three children with acute lymphocytic leukemia and four adults with acute myelocytic leukemia. The DNAs, assayed for infectivity by transfection techniques, induced no measurable virus by methods which would detect known mammalian C-type antigens or RNA-directed DNA polymerase in TE-32, D-17 dog cells and other indicator cells, nor did they recombine with or rescue endogenous human or exogenous murine or baboon type-C virus. Model systems used as controls were human sarcoma cells, TE-32 and HT-1080, and human lymphoma cells TE-543, experimentally infected with KiMuLV, GaLV or baboon type-C virus, all of which released infectious virus and whose DNAs were infectious for TE-32 and D-17 dog cells. Other model systems included two baboon placentas and one embryonic cell strain spontaneously releasing infectious endogenous baboon virus and yielding DNAs infectious for D-17 dog cells but not for TE-32 cells. Four other baboon embryonic tissues and two embryonic cell strains, releasing either low levels of virus or no virus, did not yield infectious DNA.
NASA Astrophysics Data System (ADS)
Daniels, John E.; Jo, Wook; Rödel, Jürgen; Jones, Jacob L.
2009-07-01
The electric-field-induced strain in 93%(Bi0.5Na0.5)TiO3-7%BaTiO3 polycrystalline ceramic is shown to be the result of an electric-field-induced phase transformation from a pseudocubic to tetragonal symmetry. High-energy x-ray diffraction is used to illustrate the microstructural nature of the transformation. A combination of induced unit cell volumetric changes, domain texture, and anisotropic lattice strains are responsible for the observed macroscopic strain. This strain mechanism is not analogous to the high electric-field-induced strains observed in lead-based morphotropic phase boundary systems. Thus, systems which appear cubic under zero field should not be excluded from the search for lead-free piezoelectric compositions.
Gastrointestinal motor inhibition by exogenous human, salmon, and eel calcitonin in conscious dogs.
Nakamura, H; Asano, T; Haruta, K; Takeda, K
1995-01-01
Effects of synthetic eel (E-), salmon (S-), and human (H-) calcitonin (CT) on gastrointestinal motility were studied in conscious beagle dogs, which had been implanted with strain gauge force transducers. Intramuscular administration of E-, S-, or H-CT interrupted gastric migrating motor complexes, digestive pattern, and gastric emptying. The order of potency was E-CT = S-CT > H-CT. Motor inhibition induced by CT occurred independently of plasma immunoreactive motilin levels or hypocalcemia. In addition, E-CT and S-CT induced vomiting without a retrograde giant contraction (RGC) during the postprandial state. Apomorphine or CuSO4 initiated RGC prior to vomiting. RGC induced by apomorphine was inhibited by pretreatment with E-CT as well as hexamethonium, atropine, or surgical vagotomy. E-CT showed no inhibitory effect on nicotine stimulated contraction of isolated guinea-pig ileum. These results suggest that peripherally administered CT inhibits canine gastrointestinal motility at the central nervous system level by lowering vagal activity.
NASA Technical Reports Server (NTRS)
Clarke, M. S.; Feeback, D. L.
1996-01-01
The transduction mechanism (or mechanisms) responsible for converting a mechanical load into a skeletal muscle growth response are unclear. In this study we have used a mechanically active tissue culture model of differentiated human skeletal muscle cells to investigate the relationship between mechanical load, sarcolemma wounding, fibroblast growth factor release, and skeletal muscle cell growth. Using the Flexcell Strain Unit we demonstrate that as mechanical load increases, so too does the amount of sarcolemma wounding. A similar relationship was also observed between the level of mechanical load inflicted on the cells and the amount of bFGF (FGF2) released into the surrounding medium. In addition, we demonstrate that the muscle cell growth response induced by chronic mechanical loading in culture can be inhibited by the presence of an antibody capable of neutralizing the biological activity of FGF. This study provides direct evidence that mechanically induced, sarcolemma wound-mediated FGF release is an important autocrine mechanism for transducing the stimulus of mechanical load into a skeletal muscle growth response.
Ten years since the discovery of iPS cells: The current state of their clinical application.
Aznar, J; Tudela, J
On the 10-year anniversary of the discovery of induced pluripotent stem cells, we review the main results from their various fields of application, the obstacles encountered during experimentation and the potential applications in clinical practice. The efficacy of induced pluripotent cells in clinical experimentation can be equated to that of human embryonic stem cells; however, unlike stem cells, induced pluripotent cells do not involve the severe ethical difficulties entailed by the need to destroy human embryos to obtain them. The finding of these cells, which was in its day a true scientific milestone worthy of a Nobel Prize in Medicine, is currently enveloped by light and shadow: high hopes for regenerative medicine versus the, as of yet, poorly controlled risks of unpredictable reactions, both in the processes of dedifferentiation and subsequent differentiation to the cell strains employed for therapeutic or experimentation goals. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Creamer, Kaitlin E.; Ditmars, Frederick S.; Basting, Preston J.; Kunka, Karina S.; Hamdallah, Issam N.; Bush, Sean P.; Scott, Zachary; He, Amanda; Penix, Stephanie R.; Gonzales, Alexandra S.; Eder, Elizabeth K.; Camperchioli, Dominic W.; Berndt, Adama; Clark, Michelle W.; Rouhier, Kerry A.
2016-01-01
ABSTRACT Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA. Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. IMPORTANCE Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to favor salicylate tolerance at the expense of drug resistance. Similar aspirin-associated loss of drug resistance might occur in bacterial pathogens found in arterial plaques. PMID:27793830
Yang, Feng-Juan; Cheng, Li-Li; Zhang, Ling; Dai, Wei-Jun; Liu, Zhe; Yao, Nan; Xie, Zhi-Ping; Staehelin, Christian
2009-01-01
Type 3 (T3) effector proteins, secreted by nitrogen-fixing rhizobia with a bacterial T3 secretion system, affect the nodulation of certain host legumes. The open reading frame y4lO of Rhizobium sp. strain NGR234 encodes a protein with sequence similarities to T3 effectors from pathogenic bacteria (the YopJ effector family). Transcription studies showed that the promoter activity of y4lO depended on the transcriptional activator TtsI. Recombinant Y4lO protein expressed in Escherichia coli did not acetylate two representative mitogen-activated protein kinase kinases (human MKK6 and MKK1 from Medicago truncatula), indicating that YopJ-like proteins differ with respect to their substrate specificities. The y4lO gene was mutated in NGR234 (strain NGRΩy4lO) and in NGRΩnopL, a mutant that does not produce the T3 effector NopL (strain NGRΩnopLΩy4lO). When used as inoculants, the symbiotic properties of the mutants differed. Tephrosia vogelii, Phaseolus vulgaris cv. Yudou No. 1, and Vigna unguiculata cv. Sui Qing Dou Jiao formed pink effective nodules with NGR234 and NGRΩnopLΩy4lO. Nodules induced by NGRΩy4lO were first pink but rapidly turned greenish (ineffective nodules), indicating premature senescence. An ultrastructural analysis of the nodules induced by NGRΩy4lO revealed abnormal formation of enlarged infection droplets in ineffective nodules, whereas symbiosomes harboring a single bacteroid were frequently observed in effective nodules induced by NGR234 or NGRΩnopLΩy4lO. It is concluded that Y4lO is a symbiotic determinant involved in the differentiation of symbiosomes. Y4lO mitigated senescence-inducing effects caused by the T3 effector NopL, suggesting synergistic effects for Y4lO and NopL in nitrogen-fixing nodules. PMID:19060155
Yang, Feng-Juan; Cheng, Li-Li; Zhang, Ling; Dai, Wei-Jun; Liu, Zhe; Yao, Nan; Xie, Zhi-Ping; Staehelin, Christian
2009-02-01
Type 3 (T3) effector proteins, secreted by nitrogen-fixing rhizobia with a bacterial T3 secretion system, affect the nodulation of certain host legumes. The open reading frame y4lO of Rhizobium sp. strain NGR234 encodes a protein with sequence similarities to T3 effectors from pathogenic bacteria (the YopJ effector family). Transcription studies showed that the promoter activity of y4lO depended on the transcriptional activator TtsI. Recombinant Y4lO protein expressed in Escherichia coli did not acetylate two representative mitogen-activated protein kinase kinases (human MKK6 and MKK1 from Medicago truncatula), indicating that YopJ-like proteins differ with respect to their substrate specificities. The y4lO gene was mutated in NGR234 (strain NGROmegay4lO) and in NGR Omega nopL, a mutant that does not produce the T3 effector NopL (strain NGR Omega nopLOmegay4lO). When used as inoculants, the symbiotic properties of the mutants differed. Tephrosia vogelii, Phaseolus vulgaris cv. Yudou No. 1, and Vigna unguiculata cv. Sui Qing Dou Jiao formed pink effective nodules with NGR234 and NGR Omega nopL Omega y4lO. Nodules induced by NGR Omega y4lO were first pink but rapidly turned greenish (ineffective nodules), indicating premature senescence. An ultrastructural analysis of the nodules induced by NGR Omega y4lO revealed abnormal formation of enlarged infection droplets in ineffective nodules, whereas symbiosomes harboring a single bacteroid were frequently observed in effective nodules induced by NGR234 or NGR Omega nopL Omega y4lO. It is concluded that Y4lO is a symbiotic determinant involved in the differentiation of symbiosomes. Y4lO mitigated senescence-inducing effects caused by the T3 effector NopL, suggesting synergistic effects for Y4lO and NopL in nitrogen-fixing nodules.
Gonano, M; Hein, I; Zangerl, P; Rammelmayr, A; Wagner, M
2009-05-01
Austrian veterinary (n=91), dairy (n=86), and human strains (n=48) of Staphylococcus aureus were tested for various phenotypic properties including clumping factor, egg-yolk reaction, production of thermonuclease and susceptibility to 14 antibiotics. In addition the expression of enterotoxins (A-E), and the presence of enterotoxin genes sea to sej and tst was determined. Significant differences in antimicrobial susceptibility were found with 84.6% of veterinary, 57.0% of dairy, and 20.8% of human strains susceptible to all antibiotics tested (P<0.0005). More human strains produced enterotoxins (41.7%) than veterinary (9.9%) and dairy strains (12.6%) while 40.7% and 38.5% of veterinary, 47.7% and 52.3% of dairy, and 77.1% and 87.5% of human strains were se- and tst-positive, respectively. AFLP analysis revealed nine clusters with over- or under-representation of strains with specific characteristics. Strains clustered according to origin (veterinary, dairy, and human) and/or presence of toxin genes and antimicrobial resistance.
Screening Pesticides for Neuropathogenicity
Doherty, John D.
2006-01-01
Pesticides are routinely screened in studies that follow specific guidelines for possible neuropathogenicity in laboratory animals. These tests will detect chemicals that are by themselves strong inducers of neuropathogenesis if the tested strain is susceptible relative to the time of administration and methodology of assessment. Organophosphate induced delayed neuropathy (OPIDN) is the only known human neurodegenerative disease associated with pesticides and the existing study guidelines with hens are a standard for predicting the potential for organophosphates to cause OPIDN. Although recent data have led to the suggestion that pesticides may be risk factors for Parkinsonism syndrome, there are no specific protocols to evaluate this syndrome in the existing study guidelines. Ideally additional animal models for human neurodegenerative diseases need to be developed and incorporated into the guidelines to further assure the public that limited exposure to pesticides is not a risk factor for neurodegenerative diseases. PMID:17047311
Kalenova, L F; Kolyvanova, S S; Bazhin, A S; Besedin, I M; Mel'nikov, V P
2017-06-01
We studied the effects of secondary metabolites of Bacillus sp. isolated from late Neogene permafrost on secretion of proinflammatory (TNF-α, IL-1β, IL-8, IL-2, and IFNγ) and antiinflammatory (IL-4 and IL-10) cytokines by human peripheral blood mononuclear cells. It was found that metabolites of Bacillus sp. produced more potent effect on cytokine secretion than mitogen phytohemagglutinin and metabolites of Bacillus cereus, medicinal strain IP5832. Activity of metabolites depended on the temperature of bacteria incubation. "Cold" metabolites of Bacillus sp. (isolated at -5°C) primarily induced Th1-mediated secretion of IFNγ, while "warm" metabolites (obtained at 37°C) induced Th2-mediated secretion of IL-4. The results suggest that Bacillus sp. metabolites are promising material for the development of immunomodulating drugs.
Propionic Acid Produced by Propionibacterium acnes Strains Contri-butes to Their Pathogenicity.
Tax, Gábor; Urbán, Edit; Palotás, Zsuzsanna; Puskás, Róbert; Kónya, Zoltán; Bíró, Tamás; Kemény, Lajos; Szabó, Kornélia
2016-01-01
Propionibacterium acnes is an important member of the skin microbiome. The bacterium can initiate signalling events and changes in cellular properties in keratinocytes. The aim of this study was to analyse the effect of the bacterium on an immortalized human keratinocyte cell line. The results show that various P. acnes strains affect the cell-growth properties of these cells differentially, inducing cytotoxicity in a strain-specific and dose-dependent manner. We propose that bacterially secreted propionic acid may contribute to the cytotoxic effect. This acid has a role in maintaining skin pH and exhibits antimicrobial properties, but may also have deleterious effects when the local concentration rises due to excessive bacterial growth and metabolism. These results, together with available data from the literature, may provide insight into the dual role of P. acnes in healthy skin and during pathogenic conditions, as well as the key molecules involved in these functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yedowitz, Jamie C.; Blaho, John A.
2005-11-25
Virus-mediated apoptosis is well documented in various systems, including herpes simplex virus 1 (HSV-1). HSV-2 is closely related to HSV-1 but its apoptotic potential during infection has not been extensively scrutinized. We report that (i) HEp-2 cells infected with HSV-2(G) triggered apoptosis, assessed by apoptotic cellular morphologies, oligosomal DNA laddering, chromatin condensation, and death factor processing when a translational inhibitor (CHX) was added at 3 hpi. Thus, HSV-2 induced apoptosis but was unable to prevent the process from killing cells. (ii) Results from a time course of CHX addition experiment indicated that infected cell protein produced between 3 and 5more » hpi, termed the apoptosis prevention window, are required for blocking virus-induced apoptosis. This corresponds to the same prevention time frame as reported for HSV-1. (iii) Importantly, CHX addition prior to 3 hpi led to less apoptosis than that at 3 hpi. This suggests that proteins produced immediately upon infection are needed for efficient apoptosis induction by HSV-2. This finding is different from that observed previously with HSV-1. (iv) Infected cell factors produced during the HSV-2(G) prevention window inhibited apoptosis induced by external TNF{alpha} plus cycloheximide treatment. (v) NF-{kappa}B translocated to nuclei and its presence in nuclei correlated with apoptosis prevention during HSV-2(G) infection. (vi) Finally, clinical HSV-2 isolates induced and prevented apoptosis in HEp-2 cells in a manner similar to that of laboratory strains. Thus, while laboratory and clinical HSV-2 strains are capable of modulating apoptosis in human HEp-2 cells, the mechanism of HSV-2 induction of apoptosis differs from that of HSV-1.« less
Gurung, Sunam; Agbaga, Martin-Paul; Myers, Dean A
2016-09-15
Epidemiological studies have shown strong correlations between high fat diets, diet-induced obesity and cognitive impairment, primarily focusing on cognitive defects after the onset of obesity. A remaining question is whether cognitive impairment precedes obesity in individuals metabolically prone to diet-induced obesity. The inbred diet-induced obesity sensitive (DIO) and resistant (DR) strains of Sprague-Dawley rats serve as models for human polygenic obesity. DIO rats become overweight on a standard rat chow and have metabolic symptoms similar to overweight humans. We hypothesized that cognitive impairment pre-exists in adult male DIO rats prior to exposure to high fat diet. Male DIO and DR rats were fed a standard rat chow diet from 4 through 20 weeks of age and subjected to the Morris water maze at 12 weeks of age. At 5 and 20 weeks of age, brains of DIO and DR males were examined for indices of inflammation, lipid peroxidation and neuroproliferation. DIO rats showed significant memory impairment on water maze and increased indices of hippocampal inflammation at 20 weeks of age compared to DR rats. At 5 weeks of age, DIO rats exhibited significantly less neural progenitor cell (NPCs) proliferation in the dentate gyrus and increased hippocampal lipid peroxidation compared to DR rats. Therefore, we conclude that DIO rats exhibit early post-weaning indices of hippocampal inflammation, lipid peroxidation and decreased NPC proliferation, as well as impaired hippocampal dependent memory by early adulthood suggesting that inherent metabolic differences predispose the DIO strain to cognitive deficit prior to exposure to high fat diet and/or obesity. Copyright © 2016. Published by Elsevier B.V.
Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko
2016-01-01
Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (P<0.001). In addition, CBP-positive strains induced HDPF proliferation, which is a possible mechanism related to development of hyperplastic pulpitis. The distribution of S. mutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases.
Itoh, Hiroshi; Matsuo, Hidemasa; Kitamura, Naoko; Yamamoto, Sho; Higuchi, Takeshi; Takematsu, Hiromu; Kamikubo, Yasuhiko; Kondo, Tadakazu; Yamashita, Kouhei; Sasada, Masataka; Takaori-Kondo, Akifumi; Adachi, Souichi
2015-07-01
Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O(2)(-) release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains. © Society for Leukocyte Biology.
Itoh, Hiroshi; Matsuo, Hidemasa; Kitamura, Naoko; Yamamoto, Sho; Higuchi, Takeshi; Takematsu, Hiromu; Kamikubo, Yasuhiko; Kondo, Tadakazu; Yamashita, Kouhei; Sasada, Masataka; Takaori-Kondo, Akifumi; Adachi, Souichi
2015-01-01
Autophagy occurs in human neutrophils after the phagocytosis of multidrug-resistant bacteria and drug-sensitive strains, including Escherichia coli and Pseudomonas aeruginosa. The present study detected autophagy by immunoblot analysis of LC3B conversion, by confocal scanning microscopic examination of LC3B aggregate formation and by transmission electron microscopic examination of bacteria-containing autophagosomes. Patients with severe bacterial infections are often treated with IVIG alongside antimicrobial agents. Here, we showed that IVIG induced neutrophil-mediated phagocytosis of multidrug-resistant strains. Compared with untreated neutrophils, neutrophils exposed to IVIG showed increased levels of bacterial cell killing, phagocytosis, O2− release, MPO release, and NET formation. IVIG also increased autophagy in these cells. Inhibiting the late phase of autophagy (fusion of lysosomes with autophagosomes) with bafilomycin A1-reduced, neutrophil-mediated bactericidal activity. These findings indicate that autophagy plays a critical role in the bactericidal activity mediated by human neutrophils. Furthermore, the autophagosomes within the neutrophils contained bacteria only and their organelles only, or both bacteria and their organelles, a previously undocumented observation. Taken together, these results suggest that the contents of neutrophil autophagosomes may be derived from specific autophagic systems, which provide the neutrophil with an advantage. Thus, IVIG promotes the neutrophil-mediated killing of multidrug-resistant bacteria as well as drug-sensitive strains. PMID:25908735
Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed
2015-01-01
Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed. PMID:26005349
Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed
2015-01-01
Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed.
Outer membrane vesicles enhance the carcinogenic potential of Helicobacter pylori.
Chitcholtan, Kenny; Hampton, Mark B; Keenan, Jacqueline I
2008-12-01
Chronic Helicobacter pylori infection is associated with an increased risk of gastric carcinogenesis. These non-invasive bacteria colonize the gastric mucosa and constitutively shed small outer membrane vesicles (OMV). In this study, we investigated the direct effect of H.pylori OMV on cellular events associated with carcinogenesis. We observed increased micronuclei formation in AGS human gastric epithelial cells treated with OMV isolated from a toxigenic H.pylori strain (60190). This effect was absent in OMV from strain 60190v:1 that has a mutant vacA, indicating VacA-dependent micronuclei formation. VacA induces intracellular vacuolation, and reduced acridine orange staining indicated disruption in the integrity of these vacuoles. This was accompanied by an alteration in iron metabolism and glutathione (GSH) loss, suggesting a role for oxidative stress in genomic damage. Increasing intracellular GSH levels with a GSH ester abrogated the VacA-mediated increase in micronuclei formation. In conclusion, OMV-mediated delivery of VacA to the gastric epithelium may constitute a new mechanism for H.pylori-induced gastric carcinogenesis.
Haddad-Boubaker, S; Ould-Mohamed-Abdallah, M V; Ben-Yahia, A; Triki, H
2010-12-01
Recombination is one of the major mechanisms of evolution in poliovirus. In this work, recombination was assessed in children during vaccination with OPV and among circulating vaccine strains isolated in Tunisia during the last 15 years in order to identify a possible role of recombination in the response to the vaccine or the acquisition of an increased transmissibility. This study included 250 poliovirus isolates: 137 vaccine isolates, excreted by children during primary vaccination with OPV and 113 isolates obtained from acute flaccid paralytic (AFP) cases and healthy contacts. Recombination was first assessed using a double PCR-RFLP, and sequencing. Nineteen per cent of recombinant strains were identified: 20% of strains excreted by vaccinees among 18% of circulating strains. The proportion of recombinant in isolates of serotype1 was very low in the two groups while the proportions of recombinants in serotypes 2 and 3 were different. In vaccinees, the frequency of recombinants in serotype3 decreased during the course of vaccination: 54% after the first dose, 32% after the second and 14% after the third dose. These results suggest that recombination enhances the ability of serotype3 vaccine strains to induce an immune response. Apart from recent vaccination, it may contribute to a more effective transmissibility of vaccine strains among human population. Copyright © 2009 Elsevier Masson SAS. All rights reserved.
Takenaka, Akiko; Yoneda, Misako; Seki, Takahiro; Uema, Masashi; Kooriyama, Takanori; Nishi, Toshiya; Fujita, Kentaro; Miura, Ryuichi; Tsukiyama-Kohara, Kyoko; Sato, Hiroki; Kai, Chieko
2014-12-05
Recently, several new strains of canine distemper virus (CDV) have been isolated in Japan. To investigate their pathogenesis in dogs, the Yanaka and Bunkyo-K strains were investigated by infecting dogs and determining clinical signs, amount of virus, and antibody responses. The Yanaka strain is avirulent and induced an antibody response. The Bunkyo-K strain induced typical CDV clinical signs in infected dogs and virulence was enhanced by brain passage. Molecular and phylogenetic analyses of H genes demonstrated the Bunkyo-K strains were of a different lineage from Asia-1 group including the Yanaka strain and Asia-2 group that contain recent Japanese isolates, which were recently identified as major prevalent strains worldwide but distinct from old vaccine strains. Based on these data, we tested the ability of the Yanaka strain for vaccination. Inoculation with the Yanaka strain efficiently induced CDV neutralizing antibodies with no clinical signs, and the protection effects against challenge with either old virulent strain or Bunkyo-K strain were equal or greater when compared with vaccination by an original vaccine strain. Thus, the Yanaka strain is a potential vaccine candidate against recent prevalent CDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.
Animals are key to human toxoplasmosis.
Schlüter, Dirk; Däubener, Walter; Schares, Gereon; Groß, Uwe; Pleyer, Uwe; Lüder, Carsten
2014-10-01
Toxoplasma gondii is an extremely sucessfull protozoal parasite which infects almost all mamalian species including humans. Approximately 30% of the human population worldwide is chronically infected with T. gondii. In general, human infection is asymptomatic but the parasite may induce severe disease in fetuses and immunocompromised patients. In addition, T. gondii may cause sight-threatening posterior uveitis in immunocompetent patients. Apart from few exceptions, humans acquire T. gondii from animals. Both, the oral uptake of T. gondii oocysts released by specific hosts, i.e. felidae, and of cysts persisting in muscle cells of animals result in human toxoplasmosis. In the present review, we discuss recent new data on the cell biology of T. gondii and parasite diversity in animals. In addition, we focus on the impact of these various parasite strains and their different virulence on the clinical outcome of human congenital toxoplasmosis and T. gondii uveitis. Copyright © 2014 Elsevier GmbH. All rights reserved.
Lee, Y W; Jin, S; Sim, W S; Nester, E W
1995-01-01
The virulence (vir) genes of Agrobacterium tumefaciens are induced by low-molecular-weight phenolic compounds and monosaccharides through a two-component regulatory system consisting of the VirA and VirG proteins. However, it is not clear how the phenolic compounds are sensed by the VirA/VirG system. We tested the vir-inducing abilities of 15 different phenolic compounds using four wild-type strains of A. tumefaciens--KU12, C58, A6, and Bo542. We analyzed the relationship between structures of the phenolic compounds and levels of vir gene expression in these strains. In strain KU12, vir genes were not induced by phenolic compounds containing 4'-hydroxy, 3'-methoxy, and 5'-methoxy groups, such as acetosyringone, which strongly induced vir genes of the other three strains. On the other hand, vir genes of strain KU12 were induced by phenolic compounds containing only a 4'-hydroxy group, such as 4-hydroxyacetophenone, which did not induce vir genes of the other three strains. The vir genes of strains KU12, A6, and Bo542 were all induced by phenolic compounds containing 4'-hydroxy and 3'-methoxy groups, such as acetovanillone. By transferring different Ti plasmids into isogenic chromosomal backgrounds, we showed that the phenolic-sensing determinant is associated with Ti plasmid. Subcloning of Ti plasmid indicates that the virA locus determines which phenolic compounds can function as vir gene inducers. These results suggest that the VirA protein directly senses the phenolic compounds for vir gene activation. PMID:8618878
Intracellular staphylococcus aureus: Live-in and let die
Fraunholz, Martin; Sinha, Bhanu
2012-01-01
Staphylococcus aureus uses a plethora of virulence factors to accommodate a diversity of niches in its human host. Aside from the classical manifestations of S. aureus-induced diseases, the pathogen also invades and survives within mammalian host cells.The survival strategies of the pathogen are as diverse as strains or host cell types used. S. aureus is able to replicate in the phagosome or freely in the cytoplasm of its host cells. It escapes the phagosome of professional and non-professional phagocytes, subverts autophagy, induces cell death mechanisms such as apoptosis and pyronecrosis, and even can induce anti-apoptotic programs in phagocytes. The focus of this review is to present a guide to recent research outlining the variety of intracellular fates of S. aureus. PMID:22919634
Prieto, Monica; Xu, Jianguo; Zielinski, Gustavo; Auger, Jean-Philippe
2016-01-01
Introduction: Streptococcus suis serotype 2 is an important swine pathogen and emerging zoonotic agent causing meningitis and septicemia/septic shock. Strains are usually virulent (Eurasia) or of intermediate/low virulence (North America). Very few data regarding human and swine isolates from South America are available. Case presentation: Seventeen new human S. suis cases in Argentina (16 serotype 2 strains and a serotype 5 strain) are reported. Alongside, 14 isolates from pigs are analyzed: 12 from systemic disease, one from lungs and one from tonsils of a healthy animal. All human serotype 2 strains and most swine isolates are sequence type (ST) 1, as determined by multilocus sequence typing and present a mrp+/epf+/sly+ genotype typical of virulent Eurasian ST1 strains. The remaining two strains (recovered from swine lungs and tonsils) are ST28 and possess a mrp+/epf−/sly− genotype typical of low virulence North American strains. Representative human ST1 strains as well as one swine ST28 strain were analyzed by whole-genome sequencing and compared with genomes from GenBank. ST1 strains clustered together with three strains from Vietnam and this cluster is close to another one composed of 11 strains from the United Kingdom. Conclusion: Close contact with pigs/pork products, a good surveillance system, and the presence of potentially virulent Eurasian-like serotype 2 strains in Argentina may be an important factor contributing to the higher number of human cases observed. In fact, Argentina is now fifth among Western countries regarding the number of reported human cases after the Netherlands, France, the UK and Poland. PMID:28348788
Arts, Rob J W; Moorlag, Simone J C F M; Novakovic, Boris; Li, Yang; Wang, Shuang-Yin; Oosting, Marije; Kumar, Vinod; Xavier, Ramnik J; Wijmenga, Cisca; Joosten, Leo A B; Reusken, Chantal B E M; Benn, Christine S; Aaby, Peter; Koopmans, Marion P; Stunnenberg, Hendrik G; van Crevel, Reinout; Netea, Mihai G
2018-01-10
The tuberculosis vaccine bacillus Calmette-Guérin (BCG) has heterologous beneficial effects against non-related infections. The basis of these effects has been poorly explored in humans. In a randomized placebo-controlled human challenge study, we found that BCG vaccination induced genome-wide epigenetic reprograming of monocytes and protected against experimental infection with an attenuated yellow fever virus vaccine strain. Epigenetic reprogramming was accompanied by functional changes indicative of trained immunity. Reduction of viremia was highly correlated with the upregulation of IL-1β, a heterologous cytokine associated with the induction of trained immunity, but not with the specific IFNγ response. The importance of IL-1β for the induction of trained immunity was validated through genetic, epigenetic, and immunological studies. In conclusion, BCG induces epigenetic reprogramming in human monocytes in vivo, followed by functional reprogramming and protection against non-related viral infections, with a key role for IL-1β as a mediator of trained immunity responses. Copyright © 2017 Elsevier Inc. All rights reserved.
An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.
Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang
2015-01-01
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.
Casali, Nicola; Clark, Simon O.; Hooper, Richard; Williams, Ann; Velji, Preya; Gonzalo, Ximena
2015-01-01
Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established. PMID:25776753
An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain
Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang
2014-01-01
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398
Equid Herpesvirus Type 1 Activates Platelets
Stokol, Tracy; Yeo, Wee Ming; Burnett, Deborah; DeAngelis, Nicole; Huang, Teng; Osterrieder, Nikolaus; Catalfamo, James
2015-01-01
Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in clinically infected horses and provides a new mechanism by which viruses activate hemostasis. PMID:25905776
Smura, Teemu; Ylipaasto, Petri; Klemola, Päivi; Kaijalainen, Svetlana; Kyllönen, Lauri; Sordi, Valeria; Piemonti, Lorenzo; Roivainen, Merja
2010-11-01
Enterovirus 94 (EV-94) is an enterovirus serotype described recently which, together with EV-68 and EV-70, forms human enterovirus D species. This study investigates the seroprevalences of these three serotypes and their abilities to infect, replicate, and damage cell types considered to be essential for enterovirus-induced diseases. The cell types studied included human leukocyte cell lines, primary endothelial cells, and pancreatic islets. High prevalence of neutralizing antibodies against EV-68 and EV-94 was found in the Finnish population. The virus strains studied had wide leukocyte tropism. EV-94 and EV-68 were able to produce infectious progeny in leukocyte cell lines with monocytic, granulocytic, T-cell, or B-cell characteristics. EV-94 and EV-70 were capable of infecting primary human umbilical vein endothelial cells, whereas EV-68 had only marginal progeny production and did not induce cytopathic effects in these cells. Intriguingly, EV-94 was able to damage pancreatic islet β-cells, to infect, replicate, and cause necrosis in human pancreatic islets, and to induce proinflammatory and chemoattractive cytokine expression in endothelial cells. These results suggest that HEV-D viruses may be more prevalent than has been thought previously, and they provide in vitro evidence that EV-94 may be a potent pathogen and should be considered a potentially diabetogenic enterovirus type. © 2010 Wiley-Liss, Inc.
Devine, T E; Kuykendall, L D; O'Neill, J J
1990-07-01
To determine the relationship between nodulation restriction by the Rj4 allele of soybean, rhizobitoxine-induced chlorosis, and taxonomic grouping of bradyrhizobia, 119 bradyrhizobial isolates were tested in Leonard jar culture for nodulation response and chlorosis induction. In addition to strain USDA 61, the strain originally reported as defining the Rj4 response, eight other isolates (i.e., USDA 62, 83, 94, 238, 252, 259, 260, and 340) were discovered to elicit the nodulation interdiction of the Rj4 allele. Only 16% of all the bradyrhizobial strains tested induced chlorosis, but seven of the nine strains (78%) interdicted by the Rj4 allele were chlorosis-inducing strains. Furthermore, in tests for antibiotic resistance profile, eight of the nine interdicted strains (89%) were classed in DNA homology group II. This evidence suggests that the Rj4 allele has a positive value to the host plant in shielding it from nodulation by certain chlorosis-inducing bradyrhizobia of a DNA homology group with impaired efficiency of nitrogen fixation with soybean.
Sun, Chenjing; Zhang, Hongliang; Xu, Jiang; Gao, Jie
2013-01-01
Introduction Human myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular system. Experimental autoimmune myasthenia gravis (EAMG) is a well-established animal model for MG that can be induced by active immunization with the Torpedo californica-derived acetylcholine receptor (AChR). Due to the expensive cost of purifying AChR from Torpedo californica, the development of an easier and more economical way of inducing EAMG remains critically needed. Material and methods Full-length cDNA of the human skeletal muscle AChR α1 subunit was obtained from TE671 cells. The DNA fragment encoding the extracellular domain (ECD) was then amplified by polymerase chain reaction (PCR) and inserted into pET-16b. The reconstructed plasmid was transformed into the host strain BL21(DE3)pLysS, which was derived from Escherichia coli. Isopropyl-β-D-thiogalactopyranoside (IPTG) was used to induce the expression of the N-terminal ECD. The produced protein was purified with immobilized Ni2+ affinity chromatography and refolded by dialysis. Results The recombinant protein was efficiently refolded to soluble active protein, which was verified by ELISA. After immunization with the recombinant ECD, all rats acquired clinical signs of EAMG. The titer of AChR antibodies in the serum was significantly higher in the EAMG group than in the control group, indicating successful induction of EAMG. Conclusions We describe an improved procedure for refolding recombinant ECD of human muscle AChR. This improvement allows for the generation of large quantities of correctly folded recombinant ECD of human muscle AChR, which provides for an easier and more economical way of inducing the animal model of MG. PMID:24904677
Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M
2017-01-01
Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn-Rotnycki-Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1 β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1 β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1 β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.
Frazer, Lauren C; Darville, Toni; Chandra-Kuntal, Kumar; Andrews, Charles W; Zurenski, Matthew; Mintus, Margaret; AbdelRahman, Yasser M; Belland, Robert J; Ingalls, Robin R; O'Connell, Catherine M
2012-01-01
Loss of the conserved "cryptic" plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid-independent glucose response in this species. In contrast to plasmid-cured C. muridarum and C. trachomatis, plasmid-cured C. caviae strain CC13 signaled via TLR2 in vitro and elicited cytokine production in vivo similar to wild-type C. caviae. Furthermore, inflammatory pathology induced by infection of guinea pigs with CC13 was similar to that induced by GPIC, although we observed more rapid resolution of CC13 infection in estrogen-treated guinea pigs. These data indicate that either the plasmid is not involved in expression or regulation of virulence in C. caviae or that redundant effectors prevent these phenotypic changes from being observed in C. caviae plasmid-cured strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasgekar, N.N.; Pendse, A.M.; Lalitha, V.S.
1989-01-01
The effect of low-dose (2 Gy) radiation on ethylnitrosourea (ENU)-induced neoplasms was studied in Sprague-Dawley and Holtzman strains of rats. With a 60 mg/kg dose of ENU administered on day 1 in Sprague-Dawley rats, 18.4% of the neoplasms induced were found in the kidney. When the same dose of ENU was given on day 10, the incidence of kidney tumors fell to 2.8%. Prior (2 Gy) radiation on day 9 enhanced kidney tumor induction to 16.1%, a trend also observed in the case of ENU-induced neural tumors. In Holtzman rats, 40 mg/kg ENU induced more kidney tumors (12.5%) when givenmore » on day 4 than on day 0, and prior irradiation enhanced the ENU-induced kidney tumors even though the interval between irradiation and carcinogen administration was fairly long--4 days.« less
Strain-Gradient Modulated Exciton Emission in Bent ZnO Wires Probed by Cathodoluminescence.
Fu, Xue-Wen; Li, Cai-Zhen; Fang, Liang; Liu, Da-Meng; Xu, Jun; Yu, Da-Peng; Liao, Zhi-Min
2016-12-27
Photoelectrical properties of semiconductor nanostructures are expected to be improved significantly by strain engineering. Besides the local strain, the strain gradient is promising to tune the luminescence properties by modifying the crystal symmetry. Here, we report the investigation of strain-gradient induced symmetry-breaking effect on excitonic states in pure bending ZnO microwires by high spatial-resolved cathodoluminescence at low temperature of 80 K. In addition to the local-strain induced light emission peak shift, the bound exciton emission photon energy shows an extraordinary jump of ∼16.6 meV at a high strain-gradient of 1.22% μm -1 , which is ascribed to the strain gradient induced symmetry-breaking. Such a symmetry-breaking lifts the energy degeneracy of the electronic band structures, which significantly modifies the electron-hole interactions and the fine structures of the bound exciton states. These results provide a further understanding of the strain gradient effect on the excitonic states and possess a potential for the applications in optoelectronic devices.
Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yang; Dmowski, W.; Bei, Hongbin
Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.
Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep
Tong, Yang; Dmowski, W.; Bei, Hongbin; ...
2018-02-16
Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.
Sabharwal, Harshana; Cichon, Christoph; Ölschläger, Tobias A; Sonnenborn, Ulrich; Schmidt, M Alexander
2016-09-01
Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan
2014-01-01
The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147
Cytomegalovirus Reinfections Stimulate CD8 T-Memory Inflation.
Trgovcich, Joanne; Kincaid, Michelle; Thomas, Alicia; Griessl, Marion; Zimmerman, Peter; Dwivedi, Varun; Bergdall, Valerie; Klenerman, Paul; Cook, Charles H
2016-01-01
Cytomegalovirus (CMV) has been shown to induce large populations of CD8 T-effector memory cells that unlike central memory persist in large quantities following infection, a phenomenon commonly termed "memory inflation". Although murine models to date have shown very large and persistent CMV-specific T-cell expansions following infection, there is considerable variability in CMV-specific T-memory responses in humans. Historically such memory inflation in humans has been assumed a consequence of reactivation events during the life of the host. Because basic information about CMV infection/re-infection and reactivation in immune competent humans is not available, we used a murine model to test how primary infection, reinfection, and reactivation stimuli influence memory inflation. We show that low titer infections induce "partial" memory inflation of both mCMV specific CD8 T-cells and antibody. We show further that reinfection with different strains can boost partial memory inflation. Finally, we show preliminary results suggesting that a single strong reactivation stimulus does not stimulate memory inflation. Altogether, our results suggest that while high titer primary infections can induce memory inflation, reinfections during the life of a host may be more important than previously appreciated.
Gastric and enterohepatic non-Helicobacter pylori Helicobacters.
Flahou, Bram; Haesebrouck, Freddy; Smet, Annemieke; Yonezawa, Hideo; Osaki, Takako; Kamiya, Shigeru
2013-09-01
A substantial number of reports published in the last year have contributed to a better understanding of both human and animal infection with non-Helicobacter pylori Helicobacter species (NHPH). Gastric infection of humans with Helicobacter suis and Helicobacter felis as well as unidentified NHPH has been described to cause a chronic gastritis and a variety of clinical symptoms, whereas enterohepatic NHPH, including Helicobacter cinaedi, Helicobacter bilis, and Helicobacter canis, have been reported to be associated with human diseases such as bacteremia, cellulitis, cutaneous diseases, and fever of unknown origin in immunocompromised hosts. In various animal species, including dogs and laboratory mice, high rates of infection with NHPH were described. For gastric NHPH, mainly H. suis and H. felis infection was studied, revealing that differences in the immune response evoked in the host do exist when compared to Helicobacter pylori. Pathogenic mechanisms of infection with Helicobacter pullorum, H. bilis, and Helicobacter hepaticus were investigated, as well as immune responses involved in H. bilis-, Helicobacter typhlonius-, and H. hepaticus-induced intestinal inflammation. Complete genome sequences of Helicobacter heilmannii strain ASB1 and a H. cinaedi strain isolated in a case of human bacteremia were published, as well as comparative genomics of a human-derived Helicobacter bizzozeronii strain and proteome or secretome analyses for H. hepaticus and Helicobacter trogontum, respectively. Molecular analysis has revealed a function for type VI secretion systems of H. hepaticus and H. pullorum, the Helicobacter mustelae iron urease, and several other functional components of NHPH. In each section of this chapter, new findings on gastric NHPH will first be discussed, followed by those on enterohepatic Helicobacter species. © 2013 John Wiley & Sons Ltd.
Yoo, Dae-goon; Winn, Matthew; Pang, Lan; Moskowitz, Samuel M; Malech, Harry L; Leto, Thomas L; Rada, Balázs
2014-05-15
Cystic fibrosis (CF) airways are characterized by bacterial infections, excess mucus production, and robust neutrophil recruitment. The main CF airway pathogen is Pseudomonas aeruginosa. Neutrophils are not capable of clearing the infection. Neutrophil primary granule components, myeloperoxidase (MPO) and human neutrophil elastase (HNE), are inflammatory markers in CF airways, and their increased levels are associated with poor lung function. Identifying the mechanism of MPO and HNE release from neutrophils is of high clinical relevance for CF. In this article, we show that human neutrophils release large amounts of neutrophil extracellular traps (NETs) in the presence of P. aeruginosa. Bacteria are entangled in NETs and colocalize with extracellular DNA. MPO, HNE, and citrullinated histone H4 are all associated with DNA in Pseudomonas-triggered NETs. Both laboratory standard strains and CF isolates of P. aeruginosa induce DNA, MPO, and HNE release from human neutrophils. The increase in peroxidase activity of neutrophil supernatants after Pseudomonas exposure indicates that enzymatically active MPO is released. P. aeruginosa induces a robust respiratory burst in neutrophils that is required for extracellular DNA release. Inhibition of the cytoskeleton prevents Pseudomonas-initiated superoxide production and DNA release. NADPH oxidase inhibition suppresses Pseudomonas-induced release of active MPO and HNE. Blocking MEK/ERK signaling results in only minimal inhibition of DNA release induced by Pseudomonas. Our data describe in vitro details of DNA, MPO, and HNE release from neutrophils activated by P. aeruginosa. We propose that Pseudomonas-induced NET formation is an important mechanism contributing to inflammatory conditions characteristic of CF airways.
Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.
Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko
2011-06-01
Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.
Mora, Azucena; Herrera, Alexandra; Mamani, Rosalia; López, Cecilia; Alonso, María Pilar; Blanco, Jesús E; Blanco, Miguel; Dahbi, Ghizlane; García-Garrote, Fernando; Pita, Julia María; Coira, Amparo; Bernárdez, María Isabel; Blanco, Jorge
2010-11-01
To discern the possible spread of the Escherichia coli O25b:H4-ST131 clonal group in poultry and the zoonotic potential of avian strains, we made a retrospective search of our strain collection and compared the findings for those strains with the findings for current strains. Thus, we have characterized a collection of 19 avian O25b:H4-ST131 E. coli strains isolated from 1995 to 2010 which, interestingly, harbored the ibeA gene. Using this virulence gene as a criterion for selection, we compared those 19 avian strains with 33 human O25b:H4-ST131 ibeA-positive E. coli strains obtained from patients with extraintestinal infections (1993 to 2009). All 52 O25b:H4-ST131 ibeA-positive E. coli strains shared the fimH, kpsMII, malX, and usp genes but showed statistically significant differences in nine virulence factors, namely, papGIII, cdtB, sat, and kpsMII K5, which were associated with human strains, and iroN, kpsMII K1, cvaC, iss, and tsh, which were associated with strains of avian origin. The XbaI macrorestriction profiles of the 52 E. coli O25b:H4-ST131 ibeA-positive strains revealed 11 clusters (clusters I to XI) of >85% similarity, with four clusters including strains of human and avian origin. Cluster VII (90.9% similarity) grouped 10 strains (7 avian and 3 human strains) that mostly produced CTX-M-9 and that also shared the same virulence profile. Finally, we compared the macrorestriction profiles of the 12 CTX-M-9-producing O25b:H4-ST131 ibeA strains (7 avian and 5 human strains) identified among the 52 strains with those of 15 human O25b:H4-ST131 CTX-M-14-, CTX-M-15-, and CTX-M-32-producing strains that proved to be negative for ibeA and showed that they clearly differed in the level of similarity from the CTX-M-9-producing strains. In conclusion, E. coli clonal group O25b:H4-ST131 ibeA has recently emerged among avian isolates with the new acquisition of the K1 capsule antigen and includes CTX-M-9-producing strains. This clonal group represents a real zoonotic risk that has crossed the barrier between human and avian hosts.
Hoshino, Y; Wyatt, R G; Greenberg, H B; Kalica, A R; Flores, J; Kapikian, A Z
1983-01-01
By the plaque reduction neutralization test, the CU-1 strain of canine rotavirus was similar, if not identical, to three strains (no. 14, no. 15, and P) of the tentatively designated third human rotavirus serotype. In addition, strain CU-1 demonstrated a one-way antigenic relationship with two other strains (M and B) of the third human rotavirus serotype. The CU-1 strain of canine rotavirus hemagglutinated human group O, rhesus monkey, dog, sheep, and guinea pig erythrocytes. A two-way antigenic relationship between canine (CU-1) and simian (MMU 18006 and SA11) rotaviruses demonstrated previously by the plaque reduction neutralization test was confirmed further with two additional isolates (A79-10 and LSU 79C-36) of canine rotavirus by the plaque reduction neutralization test and the hemagglutination inhibition test. The CU-1 strain of canine rotavirus, which is known to be distinct from two well-characterized human rotavirus serotypes (Wa and DS-1), was also found to be distinct from the St. Thomas no. 4 strain, which is a newly defined fourth human rotavirus serotype. Thus, this canine strain, which is related antigenically to one of four human rotavirus serotypes, is another example of an animal rotavirus which shares serotype specificity with a human rotavirus. Images PMID:6190752
MacPherson, Chad W; Shastri, Padmaja; Mathieu, Olivier; Tompkins, Thomas A; Burguière, Pierre
2017-01-01
Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria, Lactobacillus helveticus R0052 (Lh-R0052), Bifidobacterium longum subsp. infantis R0033 (Bl-R0033) and Bifidobacterium bifidum R0071 (Bb-R0071) individually and in combination, and of a surface-layer protein (SLP) purified from Lh-R0052, on HT-29 cells' transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of Lh-R0052 and Bb-R0071 diverged from those of Bl-R0033 and Lh-R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and Lh-R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and Lh-R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and Lh-R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic.
MacPherson, Chad W.; Shastri, Padmaja; Mathieu, Olivier; Tompkins, Thomas A.; Burguière, Pierre
2017-01-01
Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria, Lactobacillus helveticus R0052 (Lh-R0052), Bifidobacterium longum subsp. infantis R0033 (Bl-R0033) and Bifidobacterium bifidum R0071 (Bb-R0071) individually and in combination, and of a surface-layer protein (SLP) purified from Lh-R0052, on HT-29 cells’ transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of Lh-R0052 and Bb-R0071 diverged from those of Bl-R0033 and Lh-R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and Lh-R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and Lh-R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and Lh-R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic. PMID:28099447
Anthrax Vaccines: Pasteur to the Present
2006-01-01
pathogenesis Anthrax is most often a disease of ruminants that can afflict a wide variety of mammals, including humans. Three forms of the disease are...91 Sloat, B. R. and Cui , Z. (2005) Strong mucosal and systemic immunities induced by nasal immunization with anthrax pro- tective antigen protein...strains with variant plasmid contents . Infect. Immun. 73, 3646–3658. 115 Wang, J., Ying, T., Wang, H., Shi, Z., Li, M., He, K., Feng, E., Wang, J
Pathogenicity of Exopolysaccharide-Producing Actinomyces oris Isolated from an Apical Abscess Lesion
2013-01-01
sugars with man- nose constituting 77.5% of the polysaccharides . Strain K20 induced persistent abscesses in mice lasting at least 5 days at a... polysaccharides (EPSs) could contribute to their survival and the development of persistent infections in the human body (Costerton et al. 1999). For example...High-performance liquid chromatography (HPLC) analysis of EPSs Neutral monosaccharides were released from purified EPS (5 mg) by hydrolysis in a
NASA Astrophysics Data System (ADS)
Li, Bo; Cai Ren, Fa; Tang, Xiao Ying
2018-03-01
The manufacture of pressure vessels with austenitic stainless steel strain strengthening technology has become an important technical means for the light weight of cryogenic pressure vessels. In the process of increasing the strength of austenitic stainless steel, strain can induce the martensitic phase transformation in austenite phase. There is a quantitative relationship between the transformation quantity of martensitic phase and the basic mechanical properties. Then, the martensitic phase variables can be obtained by means of detection, and the mechanical properties and safety performance are evaluated and calculated. Based on this, the quantitative relationship between strain hardening and deformation induced martensite phase content is studied in this paper, and the mechanism of deformation induced martensitic transformation of austenitic stainless steel is detailed.
The Phage Lysin PlySs2 Decolonizes Streptococcus suis from Murine Intranasal Mucosa.
Gilmer, Daniel B; Schmitz, Jonathan E; Thandar, Mya; Euler, Chad W; Fischetti, Vincent A
2017-01-01
Streptococcus suis infects pigs worldwide and may be zoonotically transmitted to humans with a mortality rate of up to 20%. S. suis has been shown to develop in vitro resistance to the two leading drugs of choice, penicillin and gentamicin. Because of this, we have pursued an alternative therapy to treat these pathogens using bacteriophage lysins. The bacteriophage lysin PlySs2 is derived from an S. suis phage and displays potent lytic activity against most strains of that species including serotypes 2 and 9. At 64 μg/ml, PlySs2 reduced multiple serotypes of S. suis by 5 to 6-logs within 1 hour in vitro and exhibited a minimum inhibitory concentration (MIC) of 32 μg/ml for a S. suis serotype 2 strain and 64 μg/ml for a serotype 9 strain. Using a single 0.1-mg dose, the colonizing S. suis serotype 9 strain was reduced from the murine intranasal mucosa by >4 logs; a 0.1-mg dose of gentamicin reduced S. suis by <3-logs. A combination of 0.05 mg PlySs2 + 0.05 mg gentamicin reduced S. suis by >5-logs. While resistance to gentamicin was induced after systematically increasing levels of gentamicin in an S. suis culture, the same protocol resulted in no observable resistance to PlySs2. Thus, PlySs2 has both broad and high killing activity against multiple serotypes and strains of S. suis, making it a possible tool in the control and prevention of S. suis infections in pigs and humans.
The Phage Lysin PlySs2 Decolonizes Streptococcus suis from Murine Intranasal Mucosa
Gilmer, Daniel B.; Schmitz, Jonathan E.; Thandar, Mya; Euler, Chad W.; Fischetti, Vincent A.
2017-01-01
Streptococcus suis infects pigs worldwide and may be zoonotically transmitted to humans with a mortality rate of up to 20%. S. suis has been shown to develop in vitro resistance to the two leading drugs of choice, penicillin and gentamicin. Because of this, we have pursued an alternative therapy to treat these pathogens using bacteriophage lysins. The bacteriophage lysin PlySs2 is derived from an S. suis phage and displays potent lytic activity against most strains of that species including serotypes 2 and 9. At 64 μg/ml, PlySs2 reduced multiple serotypes of S. suis by 5 to 6-logs within 1 hour in vitro and exhibited a minimum inhibitory concentration (MIC) of 32 μg/ml for a S. suis serotype 2 strain and 64 μg/ml for a serotype 9 strain. Using a single 0.1-mg dose, the colonizing S. suis serotype 9 strain was reduced from the murine intranasal mucosa by >4 logs; a 0.1-mg dose of gentamicin reduced S. suis by <3-logs. A combination of 0.05 mg PlySs2 + 0.05 mg gentamicin reduced S. suis by >5-logs. While resistance to gentamicin was induced after systematically increasing levels of gentamicin in an S. suis culture, the same protocol resulted in no observable resistance to PlySs2. Thus, PlySs2 has both broad and high killing activity against multiple serotypes and strains of S. suis, making it a possible tool in the control and prevention of S. suis infections in pigs and humans. PMID:28046082
Electromechanical properties of Na0.5Bi0.5TiO3-SrTiO3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Svirskas, Šarūnas; Dunce, Marija; Birks, Eriks; Sternberg, Andris; Banys, Jūras
2018-03-01
Thorough studies of electric field-induced strain are presented in 0.4Na1/2Bi1/2TiO3-(0.6-x)SrTiO3-xPbTiO3 (NBT-ST-PT) ternary solid solutions. The increase of concentration of lead x induces crossover from relaxor to ferroelectric. Strain in a relaxor state can be described by electrostrictive behavior. The electrostrictive coefficients correspond to other well-known relaxor ferroelectrics. The concentration region with a stable ferroelectric phase revealed that the polarization dependence of strain does not exhibit nonlinearity, although they are inherent to the electric field dependence of strain. In this case, electric field dependence of strain is described in terms of the Rayleigh law and the role of domain wall contribution is extracted. Finally, the character of strain at the electric field-induced phase transition between the nonpolar and the ferroelectric states is studied. The data shows that in the vicinity of the electric field induced phase transition the strain vs. electric field displays electrostrictive character.
Jupille, Henri J.; Oko, Lauren; Stoermer, Kristina A.; Heise, Mark T.; Mahalingam, Suresh; Gunn, Bronwyn M.; Morrison, Thomas E.
2010-01-01
The viral determinants of Alphavirus-induced rheumatic disease have not been elucidated. We identified an RRV strain (DC5692) which, in contrast to the T48 strain, does not induce musculoskeletal inflammation in a mouse model of RRV disease. Substitution of the RRV T48 strain nonstructural protein 1 (nsP1) coding sequence with that from strain DC5692 generated a virus that was attenuated in vivo despite similar viral loads in tissues. In contrast, substitution of the T48 PE2 coding region with the PE2 coding region from DC5692 resulted in attenuation in vivo and reduced viral loads in tissues. In gain of virulence experiments, substitution of the DC5692 strain nsP1 and PE2 coding regions with those from the T48 strain was sufficient to restore full virulence to the DC5692 strain. These findings indicate that determinants in both nsP1 and PE2 have critical and distinct roles in the pathogenesis of RRV-induced musculoskeletal inflammatory disease in mice. PMID:21131014
Liu, Zhi; Sui, Wen; Zhao, Minglang; Li, Zhuowei; Li, Ning; Thresher, Randy; Giudice, George J.; Fairley, Janet A.; Sitaru, Cassian; Zillikens, Detlef; Ning, Gang; Marinkovich, Peter; Diaz, Luis A.
2008-01-01
Bullous pemphigoid (BP) is a cutaneous autoimmune inflammatory disease associated with subepidermal blistering and autoantibodies against BP180, a transmembrane collagen and major component of the hemidesmosome. Numerous inflammatory cells infiltrate the upper dermis in BP. IgG autoantibodies in BP fix complement and target multiple BP180 epitopes that are highly clustered within a non-collagen linker domain, termed NC16A. Anti-BP180 antibodies induce BP in mice. In this study, we generated a humanized mouse strain, in which the murine BP180NC14A is replaced with the homologous human BP180NC16A epitope cluster region. We show that the humanized NC16A (NC16A+/+) mice injected with anti-BP180NC16A autoantibodies develop BP-like subepidermal blisters. The F(ab′)2 fragments of pathogenic IgG fail to activate complement cascade and are no longer pathogenic. The NC16A+/+ mice pretreated with mast cell activation blocker or depleting of complement or neutrophils become resistant to BP. These findings suggest that the humoral response in BP critically depends on innate immune system players. PMID:18922680
Molecular Determinants of Ebola Virus Virulence in Mice
Ebihara, Hideki; Takada, Ayato; Kobasa, Darwyn; Jones, Steven; Neumann, Gabriele; Theriault, Steven; Bray, Mike; Feldmann, Heinz; Kawaoka, Yoshihiro
2006-01-01
Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection. PMID:16848640
Jernberg, Cecilia; Sullivan, Asa; Edlund, Charlotta; Jansson, Janet K
2005-01-01
Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic.
Jernberg, Cecilia; Sullivan, Åsa; Edlund, Charlotta; Jansson, Janet K.
2005-01-01
Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic. PMID:15640226
Pathogenesis of novel reassortant avian influenza virus A (H5N8) Isolates in the ferret.
Kim, Heui Man; Kim, Chi-Kyeong; Lee, Nam-Joo; Chu, Hyuk; Kang, Chun; Kim, Kisoon; Lee, Joo-Yeon
2015-07-01
Outbreaks of avian influenza virus H5N8 first occurred in 2014, and spread to poultry farms in Korea. Although there was no report of human infection by this subtype, it has the potential to threaten human public health. Therefore, we evaluated the pathogenesis of H5N8 viruses in ferrets. Two representative Korean H5N8 strains did not induce mortality and significant respiratory signs after an intranasal challenge in ferrets. However, ferrets intratracheally infected with A/broiler duck/Korea/Buan2/2014 virus showed dose-dependent mortality. Although the Korean H5N8 strains were classified as the HPAI virus, possessing multiple basic amino acids in the cleavage site of the hemagglutinin sequence, they did not produce pathogenesis in ferrets challenged intranasally, similar to the natural infection route. These results could be useful for public health by providing the pathogenic characterization of H5N8 viruses. Copyright © 2015 Elsevier Inc. All rights reserved.
Bröker, M; Bäuml, O; Göttig, A; Ochs, J; Bodenbenner, M; Amann, E
1991-03-01
The human blood coagulation protein Factor XIIIa (FXIIIa) was expressed in Saccharomyces cerevisiae employing Escherichia coli-yeast shuttle vectors based on a 2-mu plasmid. Several factors affecting high production yield of recombinant FXIIIa were analysed. The use of the regulatable GAL-CYC1 hybrid promoter resulted in higher FXIIIa expression when compared with the constitutive ADCI promoter. Screening for suitable yeast strains for expression of FXIIIa under the transcriptional control of the GAL-CYC1 hybrid promoter revealed a broad spectrum of productivity. No obvious correlation between the expression rate and the genetic markers of the strains could be identified. The medium composition markedly influenced the FXIIIa expression rates. The expression of FXIIIa was strictly regulated by the carbon source. Glucose as the only sugar and energy source repressed the synthesis of FXIIIa, whereas addition of galactose induced FXIIIa expression. Special feeding schemes resulted in a productivity of up to 100 mg FXIIIa/l in shake flasks.
Sims, Emily K; Hatanaka, Masayuki; Morris, David L; Tersey, Sarah A; Kono, Tatsuyoshi; Chaudry, Zunaira Z; Day, Kathleen H; Moss, Dan R; Stull, Natalie D; Mirmira, Raghavendra G; Evans-Molina, Carmella
2013-12-01
Impaired glucose tolerance (IGT) and type 2 diabetes (T2DM) are polygenic disorders with complex pathophysiologies; recapitulating them with mouse models is challenging. Despite 70% genetic homology, C57BL/6J (BL6) and C57BLKS/J (BLKS) inbred mouse strains differ in response to diet- and genetic-induced obesity. We hypothesized these differences would yield insight into IGT and T2DM susceptibility and response to pharmacological therapies. To this end, male 8-wk-old BL6 and BLKS mice were fed normal chow (18% kcal from fat), high-fat diet (HFD; 42% kcal from fat), or HFD supplemented with the PPARγ agonist pioglitazone (PIO; 140 mg PIO/kg diet) for 16 wk. Assessments of body composition, glucose homeostasis, insulin production, and energy metabolism, as well as histological analyses of pancreata were undertaken. BL6 mice gained weight and adiposity in response to HFD, leading to peripheral insulin resistance that was met with increased β-cell proliferation and insulin production. By contrast, BLKS mice responded to HFD by restricting food intake and increasing activity. These behavioral responses limited weight gain and protected against HFD-induced glucose intolerance, which in this strain was primarily due to β-cell dysfunction. PIO treatment did not affect HFD-induced weight gain in BL6 mice, and decreased visceral fat mass, whereas in BLKS mice PIO increased total fat mass without improving visceral fat mass. Differences in these responses to HFD and effects of PIO reflect divergent human responses to a Western lifestyle and underscore the careful consideration needed when choosing mouse models of diet-induced obesity and diabetes treatment.
Molecular characterization of two rare human G8P[14] rotavirus strains, detected in Italy in 2012.
Delogu, Roberto; Ianiro, Giovanni; Morea, Anna; Chironna, Maria; Fiore, Lucia; Ruggeri, Franco M
2016-10-01
Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis. We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012. Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed. These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.
Miyamoto, T; Fujiyama, R; Okada, Y; Sato, T
1999-12-17
The chorda tympani nerve responses to NaCl in a mouse strain, C57BL/6 are known to be much more sensitive than those in BALB/c. We compared the NaCl-induced responses obtained from taste cells of the fungiform papillae in these two strains of mice. Amiloride inhibited, in the same degree, the responses induced by a bath-application of normal extracellular solution (NES) containing 140 mM NaCl in either taste cells of C57BL/6 and BALB/c mice. In contrast, amiloride inhibited 62% of responses induced by an apically applied 0.5 M NaCl in the C57BL/6 strain, but only 33% of responses in the BALB/c strain. These results suggest that the difference in amiloride-sensitivity between taste cells in both strains mainly derives from the difference in density of functional amiloride sensitive Na+ channels at the apical receptive membrane but not at the basolateral membrane.
Anomalous low strain induced by surface charge in nanoporous gold with low relative density.
Liu, Feng; Ye, Xing-Long; Jin, Hai-Jun
2017-07-26
The surface stress induced axial strain in a fiber-like solid is larger than its radical strain, and is also greater than the radical strain in similar-sized spherical solids. It is thus envisaged that the surface-induced macroscopic dimension change (i.e., actuation strain) in nanoporous gold (NPG) increases with decreasing relative density, or alternatively, with an increasing ratio between volumes of fiber-like ligaments and sphere-like nodes. In this study, electrochemical actuations of NPG with similar structure sizes, same (oxide-covered) surface state but different relative densities were characterized in situ in response to surface charging/discharging. We found that the actuation strain amplitude did not increase, but decreased dramatically with decreasing relative density of NPG, in contrast to the above prediction. The actuation strain decreased abruptly when the relative density of NPG was decreased to below 0.25, when the Au content in the AuAg precursor was below 20 at%. Further studies indicate that this anomalous behavior cannot be explained by potential- or size-dependences of the elasticity, the structure difference arising from different dealloying rates, or additional strain induced by the external load during dilatometry experiments. In NPG with low relative density, mutual movements of nano-ligaments may occur in the pore space and disconnected regions, which may compensate the local strain in ligaments and account for the anomalous low actuation strain in macroscopic NPG samples.
Gregoret, V; Perezlindo, M J; Vinderola, G; Reinheimer, J; Binetti, A
2013-05-01
Specific strains should only be regarded as probiotics if they fulfill certain safety, technological and functional criteria. The aim of this work was to study, from a comprehensive point of view (in vitro and in vivo tests), three Lactobacillus strains (Lactobacillus paracasei JP1, Lactobacillus rhamnosus 64 and Lactobacillus gasseri 37) isolated from feces of local newborns, determining some parameters of technological, biological and functional relevance. All strains were able to adequately grow in different economic culture media (cheese whey, buttermilk and milk), which were also suitable as cryoprotectants. As selective media, LP-MRS was more effective than B-MRS for the enumeration of all strains. The strains were resistant to different technological (frozen storage, high salt content) and biological (simulated gastrointestinal digestion after refrigerated storage in acidified milk, bile exposure) challenges. L. rhamnosus 64 and L. gasseri 37, in particular, were sensible to chloramphenicol, erythromycin, streptomycin, tetracycline and vancomycin, increased the phagocytic activity of peritoneal macrophage and induced the proliferation of IgA producing cells in small intestine when administered to mice. Even when clinical trails are still needed, both strains fulfilled the main criteria proposed by FAO/WHO to consider them as potential probiotics for the formulation of new foods. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jia, Xiaodong; Zhang, Xi; Hu, Yingsong; Hu, Mandong; Tian, Shuguang; Han, Xuelin; Sun, Yansong; Han, Li
2018-06-01
Aspergillus fumigatus is a major fungal pathogen that is responsible for approximately 90% of human aspergillosis. Cofilin is an actin depolymerizing factor that plays crucial roles in multiple cellular functions in many organisms. However, the functions of cofilin in A. fumigatus are still unknown. In this study, we constructed an A. fumigatus strain overexpressing cofilin (cofilin OE). The cofilin OE strain displayed a slightly different growth phenotype, significantly increased resistance against H 2 O 2 and diamide, and increased activation of the high osmolarity glycerol pathway compared to the wild-type strain (WT). The cofilin OE strain internalized more efficiently into lung epithelial A549 cells, and induced increased transcription of inflammatory factors (MCP-1, TNF-α and IL-8) compared to WT. Cofilin overexpression also resulted in increased polysaccharides including β-1, 3-glucan and chitin, and increased transcription of genes related to oxidative stress responses and polysaccharide synthesis in A. fumigatus. However, the cofilin OE strain exhibited similar virulence to the wild-type strain in murine and Galleria mellonella infection models. These results demonstrated for the first time that cofilin, a regulator of actin cytoskeleton dynamics, might play a critical role in the regulation of oxidative stress responses and cell wall polysaccharide synthesis in A. fumigatus.
Scorza, T.; Grubb, K.; Smooker, P.; Rainczuk, A.; Proll, D.; Spithill, T. W.
2005-01-01
A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami. PMID:15845504
Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.
Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee
2016-01-01
Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.
Thermodynamics of strain-induced crystallization of random copolymers.
Nie, Yijing; Gao, Huanhuan; Wu, Yixian; Hu, Wenbing
2014-01-14
Industrial semi-crystalline polymers contain various kinds of sequence defects, which behave like non-crystallizable comonomer units on random copolymers. We performed dynamic Monte Carlo simulations of strain-induced crystallization of random copolymers with various contents of comonomers at high temperatures. We observed that the onset strains of crystallization shift up with the increase of comonomer contents and temperatures. The behaviors can be predicted well by a combination of Flory's theories on the melting-point shifting-down of random copolymers and on the melting-point shifting-up of strain-induced crystallization. Our thermodynamic results are fundamentally important for us to understand the rubber strain-hardening, the plastic molding, the film stretching as well as the fiber spinning.
Croisier, Delphine; Benoit, Martha; Durand, David; Lequeu, Catherine; Piroth, Lionel; Portier, Henri; Chavanet, Pascal
2007-01-01
We investigated the efficacy of 2 formulations of Augmentin on experimental pneumonia due to Haemophilus influenzae (HI) in rabbits. Two strains were used (H128 and 401285) with amoxicillin/clavulanic acid MICs of 1/0.5 mg/l and 4/2 mg/l. Pneumonia was induced in immunocompetent rabbits by inoculation of 10 log(10) CFU HI. The treatments were infused by using computer controlled pumps in order to mimic the human pharmacokinetic (PK) profile of either conventional Augmentin treatment (875/125 mg twice daily) or the sustained release formulation (SR: 2000/125 mg twice daily). After 2 d of treatment, the bacterial concentrations in the lungs were similar for both strains and both treatments: isolate H128, conventional Augmentin reduced bacterial numbers to 3.8+/-2.1 log(10) CFU/g and Augmentin SR to 3.1+/-2.4 log(10) CFU/g; isolate 401285, conventional Augmentin to 3.5+/-2. Thus, both treatments demonstrated similar efficacy against H. influenzae pneumonia in this model, even when induced by a strain with an amoxicillin/clavulanic acid MIC of 4/2 mg/l. These results support current breakpoints for conventional Augmentin against H. influenzae and suggest that Augmentin SR is at least as effective against these isolates.
Sharma, Vijay K; Schaut, Robert G; Loving, Crystal L
2018-06-01
Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaughter. Vaccination is an important strategy to reduce fecal shedding of O157 in cattle. In this study, we evaluated the immunogenicity and efficacy of an inactivated vaccine strain of O157 formulated with an adjuvant. This vaccine strain was deleted of the hha gene enabling high level expression of the locus of enterocyte effacement (LEE) encoded proteins required for O157 colonization in cattle. The inactivated vaccine strain emulsified with the adjuvant or suspended in the phosphate-buffered saline (PBS) was injected in the neck muscles of two groups of weaned calves followed by a booster three weeks later with the corresponding formulation. Animals in groups 3 and 4 were injected similarly with the adjuvant and PBS, respectively. All animals were orally inoculated three weeks post-booster vaccination with a live culture of O157. The animals vaccinated with the adjuvanted vaccine showed higher serum antibody titers to the vaccine strain and shed O157 for a shorter duration and at lower numbers compared to the animals vaccinated with the non-adjuvanted vaccine, adjuvant-only, or PBS. Western blotting of the vaccine strain lysates showed higher immunoreactivity of serum IgG in vaccinated animals to several O157-specific proteins and lipopolysaccharides (LPS). The vaccination induced IgG showed specificity to LEE-encoded proteins and outer membrane LPS as LEE and waaL deletion mutants, unable to produce LEE proteins and synthesize high molecular weight LPS, respectively, yielded significantly lower antibody titers compared to the parent vaccine strain. The positive reactivity of the immune serum was also observed for purified LEE-encoded proteins EspA and EspB. In conclusion, the results of this animal study showed that a two-dose regimen of an adjuvanted vaccine is capable of inducing O157-specific immune response that directly or indirectly reduced fecal shedding of O157 in cattle. Published by Elsevier B.V.
Makino, Seiya; Sato, Asako; Goto, Ayako; Nakamura, Marie; Ogawa, Miho; Chiba, Yoshika; Hemmi, Jun; Kano, Hiroshi; Takeda, Kazuyoshi; Okumura, Ko; Asami, Yukio
2016-02-01
Yogurt is generally recognized as a beneficial food for our health, but research into its physiological effects has focused mainly on intestinal dysfunctions such as constipation and diarrhea. We previously found yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (hereafter OLL1073R-1) could reduce risks of catching the common cold and flu in human trials. It was assumed that immunostimulatory exopolysaccharide (EPS) produced from OLL1073R-1 play an important role in this context. However, few studies have examined the immunostimulatory effects of traditional Bulgarian yogurts fermented with different strains of lactobacilli and their metabolites. Therefore, we screened 139 L. delbrueckii ssp. bulgaricus strains and identified OLL1073R-1 as the most robust producer of EPS. This strain was also the only strain that induced the production of IFN-γ in vitro. Oral administration of the EPS or yogurt fermented with OLL1073R-1 and Streptococcus thermophilus OLS3059 (OLL1073R-1 yogurt) augmented natural killer (NK) cell activity and induced IFN-γ production in spleen cells in mice, whereas 2 other yogurts fermented with other strains had no effect on NK cell activity. Cellular preparations of the OLL1073R-1 strain also slightly augmented NK cell activity, but were less effective than EPS itself. The EPS-dependent stimulation of NK cell activity was abrogated in IFN-γ knockout mice and in myeloid differentiation factor 88 knockout mice. Furthermore, IFN-γ production from spleen cells stimulated with EPS was completely blocked with both anti-IL-12 and anti-IL-18 antibodies in vitro. These findings suggest that NK cell activation by OLL1073R-1 yogurt is EPS-dependent, occurs via IL-12- and IL-18-mediated IFN-γ production, and requires myeloid differentiation factor 88. We showed that traditional Bulgarian yogurt could exert immunostimulatory effects by selecting starter strains and part of the mechanisms depend on IFN-γ inducible EPS produced from L. delbrueckii ssp. bulgaricus. Further investigations on processes of fermentation to increase of the EPS may lead to the development of new functional foods that keep our immune functions stable. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A universal vaccine for serogroup B meningococcus
Giuliani, Marzia M.; Adu-Bobie, Jeannette; Comanducci, Maurizio; Aricò, Beatrice; Savino, Silvana; Santini, Laura; Brunelli, Brunella; Bambini, Stefania; Biolchi, Alessia; Capecchi, Barbara; Cartocci, Elena; Ciucchi, Laura; Di Marcello, Federica; Ferlicca, Francesca; Galli, Barbara; Luzzi, Enrico; Masignani, Vega; Serruto, Davide; Veggi, Daniele; Contorni, Mario; Morandi, Maurizio; Bartalesi, Alessandro; Cinotti, Vanda; Mannucci, Donatella; Titta, Francesca; Ovidi, Elisa; Welsch, Jo Anne; Granoff, Dan; Rappuoli, Rino; Pizza, Mariagrazia
2006-01-01
Meningitis and sepsis caused by serogroup B meningococcus are two severe diseases that still cause significant mortality. To date there is no universal vaccine that prevents these diseases. In this work, five antigens discovered by reverse vaccinology were expressed in a form suitable for large-scale manufacturing and formulated with adjuvants suitable for human use. The vaccine adjuvanted by aluminum hydroxide induced bactericidal antibodies in mice against 78% of a panel of 85 meningococcal strains representative of the global population diversity. The strain coverage could be increased to 90% and above by the addition of CpG oligonucleotides or by using MF59 as adjuvant. The vaccine has the potential to conquer one of the most devastating diseases of childhood. PMID:16825336
Quilodrán-Vega, Sandra Rayén; Villena, Julio; Valdebenito, José; Salas, María José; Parra, Cristian; Ruiz, Alvaro; Kitazawa, Haruki; García, Apolinaria
2016-06-01
Probiotics are usually isolated from the gastrointestinal tract of humans and animals. The search of probiotics in human milk is a recent field of research, as the existence of the human milk microbiome was discovered only about a decade ago. To our knowledge, no reports regarding the potential probiotic effect of bacteria from swine milk have been published. In this work, we isolated several lactic acid bacteria from swine milk and evaluated them for them potential as probiotics. Among the isolated strains, Lactobacillus curvatus TUCO-5E showed antagonistic effects against swine-associated gastrointestinal pathogens. TUCO-5E was able to reduce the growth of enterotoxigenic and enterohemorrhagic Escherichia coli strains as well as pathogenic salmonella. In vitro exclusion and displacement assays in intestinal epithelial cells showed a remarkable antagonistic effect for L. curvatus TUCO-5E against Salmonella sp. strain TUCO-I7 and Salmonella enterica ATCC 13096. Moreover, by using a mouse model of Salmonella infection, we were able to demonstrate that preventative administration of L. curvatus TUCO-5E for 5 consecutive days was capable of decreasing the number of Salmonella enterica serovar Typhimurium in the liver and spleen of treated mice, compared with the controls, and prevented dissemination of the pathogen to the blood stream. Therefore, we have demonstrated here that swine milk is an interesting source of beneficial bacteria. In addition, the results of this work suggest that L. curvatus TUCO-5E is a good candidate to study in vivo the protective effect of probiotics against intestinal infection and damage induced by Salmonella infection in the porcine host.
Rask, C; Adlerberth, I; Berggren, A; Ahrén, I L; Wold, A E
2013-01-01
Probiotics are live microorganisms which have beneficial effects on the host when ingested in adequate amounts. Probiotic bacteria may stimulate immune effector functions in a strain-specific manner. In this blind placebo-controlled trial, we investigated the effects on the immune system following daily intake of six different strains of lactobacilli or the Gram-negative bacterium Pseudomonas lundensis for 2 or 5 weeks. Blood lymphocyte subsets were quantified by fluorescence activated cell sorter and the expression of activation and memory markers was determined. The bacterial strains were also examined for their capacity to adhere to human intestinal cells and to be phagocytosed by human peripheral blood mononuclear cells. Intake of Lactobacillus plantarum strain 299v increased the expression of the activation marker CD25 (P = 0·01) on CD8+ T cells and the memory cell marker CD45RO on CD4+ T cells (P = 0·03), whereas intake of L. paracasei tended to expand the natural killer T (NK T) cell population (P = 0·06). The phagocytic activity of granulocytes was increased following intake of L. plantarum 299v, L. plantarum HEAL, L. paracasei or L. fermentum. In contrast, ingestion of L. rhamnosus decreased the expression of CD25 and CD45RO significantly within the CD4+ cell population. The observed immune effects after in-vivo administration of the probiotic bacteria could not be predicted by either their adherence capacity or the in-vitro-induced cytokine production. The stimulation of CD8+ T cells and NK T cells suggests that intake of probiotic bacteria may enhance the immune defence against, e.g. viral infections or tumours. PMID:23574328
Rask, C; Adlerberth, I; Berggren, A; Ahrén, I L; Wold, A E
2013-05-01
Probiotics are live microorganisms which have beneficial effects on the host when ingested in adequate amounts. Probiotic bacteria may stimulate immune effector functions in a strain-specific manner. In this blind placebo-controlled trial, we investigated the effects on the immune system following daily intake of six different strains of lactobacilli or the Gram-negative bacterium Pseudomonas lundensis for 2 or 5 weeks. Blood lymphocyte subsets were quantified by fluorescence activated cell sorter and the expression of activation and memory markers was determined. The bacterial strains were also examined for their capacity to adhere to human intestinal cells and to be phagocytosed by human peripheral blood mononuclear cells. Intake of Lactobacillus plantarum strain 299v increased the expression of the activation marker CD25 (P = 0·01) on CD8(+) T cells and the memory cell marker CD45RO on CD4(+) T cells (P = 0·03), whereas intake of L. paracasei tended to expand the natural killer T (NK T) cell population (P = 0·06). The phagocytic activity of granulocytes was increased following intake of L. plantarum 299v, L. plantarum HEAL, L. paracasei or L. fermentum. In contrast, ingestion of L. rhamnosus decreased the expression of CD25 and CD45RO significantly within the CD4(+) cell population. The observed immune effects after in-vivo administration of the probiotic bacteria could not be predicted by either their adherence capacity or the in-vitro-induced cytokine production. The stimulation of CD8(+) T cells and NK T cells suggests that intake of probiotic bacteria may enhance the immune defence against, e.g. viral infections or tumours. © 2012 British Society for Immunology.
Plested, Joyce S; Welsch, Jo Anne; Granoff, Dan M
2009-06-01
The binding of complement factor H (fH) to meningococci was recently found to be specific for human fH. Therefore, passive protective antibody activity measured in animal models of meningococcal bacteremia may overestimate protection in humans, since in the absence of bound fH, complement activation is not downregulated. We developed an ex vivo model of meningococcal bacteremia using nonimmune human blood to measure the passive protective activity of stored sera from 36 adults who had been immunized with an investigational meningococcal multicomponent recombinant protein vaccine. Before immunization, human complement-mediated serum bactericidal activity (SBA) titers of > or = 1:4 against group B strains H44/76, NZ98/254, and S3032 were present in 19, 11, and 8% of subjects, respectively; these proportions increased to 97, 22, and 36%, respectively, 1 month after dose 3 (P < 0.01 for H44/76 and S3032). Against the two SBA-resistant strains, NZ98/254 and S3032, passive protective titers of > or = 1:4 were present in 11 and 42% of sera before immunization, respectively, and these proportions increased to 61 and 94% after immunization (P < 0.001 for each strain). Most of the sera with SBA titers of <1:4 and passive protective activity showed a level of killing in the whole-blood assay (>1 to 2 log(10) decreases in CFU/ml during a 90-min incubation) similar to that of sera with SBA titers of > or = 1:4. In conclusion, passive protective activity was 2.6- to 2.8-fold more frequent than SBA after immunization. The ability of SBA-negative sera to kill Neisseria meningitidis in human blood where fH is bound to the bacteria provides further evidence that SBA titers of > or = 1:4 measured with human complement may underestimate meningococcal immunity.
Cole, Stephanie J.; Records, Angela R.; Orr, Mona W.; Linden, Sara B.
2014-01-01
Pseudomonas aeruginosa is an opportunistic human pathogen that is especially adept at forming surface-associated biofilms. P. aeruginosa causes catheter-associated urinary tract infections (CAUTIs) through biofilm formation on the surface of indwelling catheters. P. aeruginosa encodes three extracellular polysaccharides, PEL, PSL, and alginate, and utilizes the PEL and PSL polysaccharides to form biofilms in vitro; however, the requirement of these polysaccharides during in vivo infections is not well understood. Here we show in a murine model of CAUTI that PAO1, a strain harboring pel, psl, and alg genes, and PA14, a strain harboring pel and alg genes, form biofilms on the implanted catheters. To determine the requirement of exopolysaccharide during in vivo biofilm infections, we tested isogenic mutants lacking the pel, psl, and alg operons and showed that PA14 mutants lacking these operons can successfully form biofilms on catheters in the CAUTI model. To determine the host factor(s) that induces the ΔpelD mutant to form biofilm, we tested mouse, human, and artificial urine and show that urine can induce biofilm formation by the PA14 ΔpelD mutant. By testing the major constituents of urine, we show that urea can induce a pel-, psl-, and alg-independent biofilm. These pel-, psl-, and alg-independent biofilms are mediated by the release of extracellular DNA. Treatment of biofilms formed in urea with DNase I reduced the biofilm, indicating that extracellular DNA supports biofilm formation. Our results indicate that the opportunistic pathogen P. aeruginosa utilizes a distinct program to form biofilms that are independent of exopolysaccharides during CAUTI. PMID:24595142
Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai
2014-12-01
Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Ahl, D; Liu, H; Schreiber, O; Roos, S; Phillipson, M; Holm, L
2016-08-01
The aim of this study was to investigate whether two Lactobacillus reuteri strains (rat-derived R2LC and human-derived ATCC PTA 4659 (4659)) could protect mice against colitis, as well as delineate the mechanisms behind this protection. Mice were given L. reuteri R2LC or 4659 by gavage once daily for 14 days, and colitis was induced by addition of 3% DSS (dextran sulphate sodium) to drinking water for the last 7 days of this period. The severity of disease was assessed through clinical observations, histological evaluation and ELISA measurements of myeloperoxidase (MPO) and pro-inflammatory cytokines from colonic samples. Mucus thickness was measured in vivo with micropipettes, and tight junction protein expression was assessed using immunohistochemistry. Colitis severity was significantly reduced by L. reuteri R2LC or 4659 when evaluated both clinically and histologically. The inflammation markers MPO, IL-1β, IL-6 and mKC (mouse keratinocyte chemoattractant) were increased by DSS and significantly reduced by the L. reuteri strains. The firmly adherent mucus thickness was reduced by DSS, but significantly increased by L. reuteri in both control and DSS-treated mice. Expression of the tight junction proteins occludin and ZO-1 was significantly increased in the bottom of the colonic crypts by L. reuteri R2LC. These results demonstrate that each of the two different L. reuteri strains, one human-derived and one-rat-derived, protects against colitis in mice. Mechanisms behind this protection could at least partly be explained by the increased mucus thickness as well as a tightened epithelium in the stem cell area of the crypts. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Evolution of dealloying induced strain in nanoporous gold crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen-Wiegart, Yu-chen Karen; Harder, Ross; Dunand, David C.
For this paper, we studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent x-ray diffractive imaging. The maximum strain magnitude in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is located 60-80 nm deep within the crystal. Dealloying induced a compressive strain in this region, indicating volume shrinkage occurred during pore formation. The crystal interior showed a small tensile strain, which can be explained by 'pulling' of themore » dealloyed region by the non-dealloyed region during volume reduction. A surface strain relaxation developed, attributed to atomic rearrangement during dealloying. This clearer understanding of the role of strain in the initial stages of formation of nanoporous gold by dealloying can be exploited for development of new sensors, battery electrodes, and materials for catalysis.« less
Evolution of dealloying induced strain in nanoporous gold crystals
Chen-Wiegart, Yu-chen Karen; Harder, Ross; Dunand, David C.; ...
2017-04-10
For this paper, we studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent x-ray diffractive imaging. The maximum strain magnitude in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is located 60-80 nm deep within the crystal. Dealloying induced a compressive strain in this region, indicating volume shrinkage occurred during pore formation. The crystal interior showed a small tensile strain, which can be explained by 'pulling' of themore » dealloyed region by the non-dealloyed region during volume reduction. A surface strain relaxation developed, attributed to atomic rearrangement during dealloying. This clearer understanding of the role of strain in the initial stages of formation of nanoporous gold by dealloying can be exploited for development of new sensors, battery electrodes, and materials for catalysis.« less
Breyne, K; De Vliegher, S; De Visscher, A; Piepers, S; Meyer, E
2015-02-01
Coagulase-negative staphylococci (CNS) are a group of bacteria classified as either minor mastitis pathogens or commensal microbiota. Recent research suggests species- and even strain-related epidemiological and genetic differences within the large CNS group. The current pilot study investigated in 2 experiments whether a mouse mastitis model validated for bovine Staphylococcus aureus can be used to explore further differences between CNS species and strains. In a first dose titration experiment, a low inoculum dose of S. aureus Newbould 305 (positive control) was compared with increasing inoculum doses of a Staphylococcus chromogenes strain originating from a chronic bovine intramammary infection to a sham-inoculated mammary glands (negative control). In contrast to the high bacterial growth following inoculation with S. aureus, S. chromogenes was retrieved in very low levels at 24 h postinduction (p.i.). In a second experiment, the inflammation inflicted by 3 CNS strains was studied in mice. The host immune response induced by the S. chromogenes intramammary strain was compared with the one induced by a Staphylococcus fleurettii strain originating from cow bedding sawdust and by a S. chromogenes strain originating from a teat apex of a heifer. As expected, at 28 and 48 h p.i., low bacterial growth and local neutrophil influx in the mammary gland were induced by all CNS strains. As hypothesized, bacterial growth p.i. was the lowest for S. fleurettii compared with that induced by the 2 S. chromogenes strains, and the overall immune response established by the 3 CNS strains was less pronounced compared with the one induced by S. aureus. Proinflammatory cytokine profiling revealed that S. aureus locally induced IL-6 and IL-1β but not TNF-α, whereas, overall, CNS-inoculated glands lacked a strong cytokine host response but also induced IL-1β locally. Compared with both other CNS strains, S. chromogenes from the teat apex inflicted a more variable IL-1β response characterized by a more intense local reaction in several mice. This pilot study suggests that an intraductal mouse model can mimic bovine CNS mastitis and has potential as a complementary in vivo tool for future CNS mastitis research. Furthermore, it indicates that epidemiologically different bovine CNS species or strains induce a differential host innate immune response in the murine mammary gland. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kefiran protects Caco-2 cells from cytopathic effects induced by Bacillus cereus infection.
Medrano, Micaela; Hamet, Maria F; Abraham, Analía G; Pérez, Pablo F
2009-11-01
The aim of this work was to evaluate the ability of kefiran to antagonize cytopathic effects triggered by Bacillus cereus strain B10502 on cultured human enterocytes (Caco-2 cells). Cell damage was evaluated by F-actin labelling, scanning electron microscopy and determination of ratios of necrotic and detached cells. To assess the interaction between kefiran and bacteria or eukaryotic cells, flow cytometric analysis was conducted with FITC-labelled kefiran. Kefiran significantly protected infected cells from cytopathic effects induced by B. cereus such as cell necrosis, F-actin disorganisation and microvilli effacement, although presence of kefiran did not modify the adhesion of microorganisms to cultured human enterocytes. Results could be ascribed to the ability of kefiran to interact with both bacteria and eukaryotic cells thus antagonizing interactions necessary for maximal biological effects. Our findings encourage further research on the use of bacterial exopolysaccharides to antagonize virulence factors associated to direct bacteria-cell interactions.
Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C
1992-01-01
Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988
Impact of Quillaja saponaria saponins on grapevine ecosystem organisms.
Fischer, Marc J C; Pensec, Flora; Demangeat, Gérard; Farine, Sibylle; Chong, Julie; Ramírez-Suero, Montserrat; Mazet, Flore; Bertsch, Christophe
2011-08-01
The control of grapevine pathogens is a rising concern in Vitis vinifera culture. The current international trend is toward banning chemicals that are highly toxic to the environment and human workers, and adopting tighter regulations. We evaluated the impact of saponins on three kinds of organisms found in grapevine culture. The ectoparasitic nematode Xiphinema index, the parasitic fungus Botrytis cinerea and various yeast strains representative of the must fermentation population were incubated on synthetic media supplemented with variable concentrations of Quillaja saponaria saponins. Saponins induced reduction in the growth of B. cinerea and showed nematicide effects on X. index. The control of X. index and Botrytis cinerea is discussed in the context of the potential use of these chemicals as environmentally-friendly grapevine treatments. With Saccharomyces cerevisiae and other yeasts, saponins showed higher toxicity against S. cerevisiae strains isolated from wine or palm wine whereas laboratory strains or strains isolated from oak exhibited better resistance. This indicates that Q. saponaria saponins effects against yeast microflora should be assessed in the field before they can be considered an environmentally-safe new molecule against B. cinerea and X. index.
Leuzzi, Rosanna; Nesta, Barbara; Monaci, Elisabetta; Cartocci, Elena; Serino, Laura; Soriani, Marco; Rappuoli, Rino; Pizza, Mariagrazia
2013-11-09
Protein PIII is one of the major outer membrane proteins of Neisseria gonorrhoeae, 95% identical to RmpM (reduction modifiable protein M) or class 4 protein of Neisseria meningitidis. RmpM is known to be a membrane protein associated by non-covalent bonds to the peptidoglycan layer and interacting with PorA/PorB porin complexes resulting in the stabilization of the bacterial membrane. The C-terminal domain of PIII (and RmpM) is highly homologous to members of the OmpA family, known to have a role in adhesion/invasion in many bacterial species. The contribution of PIII in the membrane architecture and its role in the interaction with epithelial cells has never been investigated. We generated a ΔpIII knock-out mutant strain and evaluated the effects of the loss of PIII expression on bacterial morphology and on outer membrane composition. Deletion of the pIII gene does not cause any alteration in bacterial morphology or sensitivity to detergents. Moreover, the expression profile of the main membrane proteins remains the same for the wild-type and knock-out strains, with the exception of the NG1873 which is not exported to the outer membrane and accumulates in the inner membrane in the ΔpIII knock-out mutant strain.We also show that purified PIII protein is able to bind human cervical and urethral cells and that the ΔpIII knock-out mutant strain has a lower ability to adhere to human cervical and urethral cells. Here we demonstrated that the PIII protein does not play a key structural role in the membrane organization of gonococcus and does not induce major effects on the expression of the main outer membrane proteins. However, in the PIII knock-out strain, the NG1873 protein is not localized in the outer membrane as it is in the wild-type strain suggesting a possible interaction of PIII with NG1873. The evidence that PIII binds to human epithelial cells derived from the female and male genital tract highlights a possible role of PIII in the virulence of gonococcus and suggests that the structural homology to OmpA is conserved also at functional level.
Meessen-Pinard, Mathieu; Le Coupanec, Alain
2016-01-01
ABSTRACT Human coronaviruses (HCoV) are respiratory pathogens with neuroinvasive, neurotropic, and neurovirulent properties, highlighting the importance of studying the potential implication of these viruses in neurological diseases. The OC43 strain (HCoV-OC43) was reported to induce neuronal cell death, which may participate in neuropathogenesis. Here, we show that HCoV-OC43 harboring two point mutations in the spike glycoprotein (rOC/Us183–241) was more neurovirulent than the wild-type HCoV-OC43 (rOC/ATCC) in mice and induced more cell death in murine and human neuronal cells. To evaluate the role of regulated cell death (RCD) in HCoV-OC43-mediated neural pathogenesis, we determined if knockdown of Bax, a key regulator of apoptosis, or RIP1, a key regulator of necroptosis, altered the percentage of neuronal cell death following HCoV-OC43 infection. We found that Bax-dependent apoptosis did not play a significant role in RCD following infection, as inhibition of Bax expression mediated by RNA interference did not confer cellular protection against the cell death process. On the other hand, we demonstrated that RIP1 and MLKL were involved in neuronal cell death, as RIP1 knockdown and chemical inhibition of MLKL significantly increased cell survival after infection. Taken together, these results indicate that RIP1 and MLKL contribute to necroptotic cell death after HCoV-OC43 infection to limit viral replication. However, this RCD could lead to neuronal loss in the mouse CNS and accentuate the neuroinflammation process, reflecting the severity of neuropathogenesis. IMPORTANCE Because they are naturally neuroinvasive and neurotropic, human coronaviruses are suspected to participate in the development of neurological diseases. Given that the strain OC43 is neurovirulent in mice and induces neuronal cell death, we explored the neuronal response to infection by characterizing the activation of RCD. Our results revealed that classical apoptosis associated with the Bax protein does not play a significant role in HCoV-OC43-induced neuronal cell death and that RIP1 and MLKL, two cellular proteins usually associated with necroptosis (an RCD back-up system when apoptosis is not adequately induced), both play a pivotal role in the process. As necroptosis disrupts cellular membranes and allows the release of damage-associated molecular patterns (DAMP) and possibly induces the production of proinflammatory cytokines, it may represent a proinflammatory cell death mechanism that contributes to excessive neuroinflammation and neurodegeneration and eventually to neurological disorders after a coronavirus infection. PMID:27795420
Mondon, P; Shahin, M M
1992-05-01
Genetic effects of UV-A, UV-B, UV-C, and the combination of 8-methoxypsoralen (8-MOP) with UV-A or visible light were studied in the haploid strain XV185-14C and diploid strain D5 of Saccharomyces cerevisiae. The induction of his+, lys+, and hom+ reverse mutations was measured in strain XV185-14C. In strain D5 we measured the induction of genetically altered colonies, particularly twin spot colonies arising from a mitotic crossing-over. UV-C and UV-B induced point mutations at the three loci in the haploid strain and mitotic crossing-over and other genetic alterations in the diploid strain. UV-C was more mutagenic and recombinogenic than UV-B. UV-A or visible light alone did not induce genotoxic effects at the doses tested. However, UV-A plus 8-MOP produced lethal and mutagenic effects in the haploid strain XV185-14C, although mutagenic activity was less than that of UV-B. Visible light plus 8-MOP also induced genotoxic effects in strain XV185-14C. In the diploid strain D5, UV-A plus 8-MOP induced a higher frequency of genetic alterations than UV-B at comparative doses. Visible light plus 8-MOP was also genetically active in strain D5. The haploid strain was more sensitive to the lethal effects of UV-C, UV-B, UV-A, and impure visible light plus 8-MOP than the diploid strain.
Nanoporous carbon actuator and methods of use thereof
Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE
2012-07-31
An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.
Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans.
Hangler, Martin; Jensen, Bo; Rønhede, Stig; Sørensen, Sebastian R
2007-03-01
A screening of 27 fungal strains for degradation of the phenylurea herbicide isoproturon was performed and yielded 15 strains capable of converting the herbicide to polar metabolites. The zygomycete fungus Cunninghamella elegans strain JS/2 isolated from an agricultural soil converted isoproturon to several known hydroxylated metabolites. In addition, unknown metabolites were produced in minor amounts. Inducible degradation was indicated by comparing resting cells pregrown with or without isoproturon. This shows that strain JS/2 is capable of partially degrading isoproturon and that one or more of the enzymes involved are inducible upon isoproturon exposure.
Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence
Benanti, Jennifer A.; Galloway, Denise A.
2004-01-01
Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated β-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS. PMID:15024073
Nakagomi, O; Nakagomi, T; Hoshino, Y; Flores, J; Kapikian, A Z
1987-01-01
We have previously found (O. Nakagomi, T. Nakagomi, H. Oyamada, and T. Suto, J. Med. Virol. 17:29-34, 1985), during an epidemiological study in Japan, a novel human rotavirus that belongs to subgroup I but has a long RNA pattern typical of subgroup II human rotaviruses. From the stool specimen containing this virus, we successfully isolated in MA104 cells a rotavirus, designated AU-1, which possesses these novel characteristics. The possibility that strain AU-1 was a laboratory contaminant of an animal rotavirus previously adapted to tissue culture cells was ruled out, and the identity of the AU-1 strain was established. Genetic analysis by RNA-RNA hybridization revealed that the AU-1 strain is not a simple reassortant between subgroup I and II human rotaviruses but that it shares a high level of sequence homology only with the gene encoding VP7 (the major neutralization protein) of serotype 3 human rotaviruses. Weak homology of the genomic RNA segments was also observed between the AU-1 strain and animal rotavirus strains, including rhesus rotavirus strain RRV and bovine rotavirus strain NCDV. These results suggest that the AU-1 strain may be an animal rotavirus that infected a human. Images PMID:3038947
A strain-cue hypothesis for biological network formation
Cox, Brian N.
2011-01-01
The direction of migration of a cell invading a host population is assumed to be controlled by the magnitude of the strains in the host medium (cells plus extracellular matrix) that arise as the host medium deforms to accommodate the invader. The single assumption that invaders are cued by strains external to themselves is sufficient to generate network structures. The strain induced by a line of invaders is greatest at the extremity of the line and thus the strain field breaks symmetry, stabilizing branch formation. The strain cue also triggers sprouting from existing branches, with no further model assumption. Network characteristics depend primarily on the ratio of the rate of advance of the invaders to the rate of relaxation of the host cells after their initial deformation. Intra-cell mechanisms that govern these two rates control network morphology. The strain field that cues an individual invader is a collective response of the combined cell populations, involving the nearest 100 cells, to order of magnitude, to any invader. The mechanism does not rely on the pre-existence of the entire host medium prior to invasion; the host cells need only maintain a layer several cells thick around each invader. Consistent with recent experiments, networks result only from a strain cue that is based on strain magnitudes. Spatial strain gradients do not break symmetry and therefore cannot stabilize branch formation. The theory recreates most of the geometrical features of the nervous network in the mouse gut when the most influential adjustable parameter takes a value consistent with one inferred from human and mouse amelogenesis. Because of similarity in the guiding local strain fields, strain cues could also be a participating factor in the formation of vascular networks. PMID:20671068
NASA Astrophysics Data System (ADS)
Li, Tianzhi; Chang, De; Xu, Huiwen; Chen, Jiapeng; Su, Longxiang; Guo, Yinghua; Chen, Zhenhong; Wang, Yajuan; Wang, Li; Wang, Junfeng; Fang, Xiangqun; Liu, Changting
2015-07-01
Escherichia coli (E. coli) is the most widely applied model organism in current biological science. As a widespread opportunistic pathogen, E. coli can survive not only by symbiosis with human, but also outside the host as well, which necessitates the evaluation of its response to the space environment. Therefore, to keep humans safe in space, it is necessary to understand how the bacteria respond to this environment. Despite extensive investigations for a few decades, the response of E. coli to the real space environment is still controversial. To better understand the mechanisms how E. coli overcomes harsh environments such as microgravity in space and to investigate whether these factors may induce pathogenic changes in E. coli that are potentially detrimental to astronauts, we conducted detailed genomics, transcriptomic and proteomic studies on E. coli that experienced 17 days of spaceflight. By comparing two flight strains LCT-EC52 and LCT-EC59 to a control strain LCT-EC106 that was cultured under the same temperature conditions on the ground, we identified metabolism changes, polymorphism changes, differentially expressed genes and proteins in the two flight strains. The flight strains differed from the control in the utilization of more than 30 carbon sources. Two single nucleotide polymorphisms (SNPs) and one deletion were identified in the flight strains. The expression level of more than 1000 genes altered in flight strains. Genes involved in chemotaxis, lipid metabolism and cell motility express differently. Moreover, the two flight strains also differed extensively from each other in terms of metabolism, transcriptome and proteome, indicating the impact of space environment on individual cells is heterogeneous and probably genotype-dependent. This study presents the first systematic profile of E. coli genome, transcriptome and proteome after spaceflight, which helps to elucidate the mechanism that controls the adaptation of microbes to the space environment.
2013-01-01
Background Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. Results We observed a parallel activation of the p53/p21WAF1 and p16INK4a/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. Conclusion We performed a comprehensive screen for UVB-regulated microRNAs in human diploid fibroblasts, and identified a network of miRNA-mRNA interactions mediating UVB-induced senescence. In addition, miR-101 and Ezh2 were identified as key players in UVB-induced senescence of HDF. PMID:23557329
Submicron mapping of strained silicon-on-insulator features induced
NASA Astrophysics Data System (ADS)
Murray, Conal E.; Sankarapandian, M.; Polvino, S. M.; Noyan, I. C.; Lai, B.; Cai, Z.
2007-04-01
Real-space maps of strain within silicon-on-insulator (SOI) features induced by adjacent, embedded shallow-trench-isolation (STI) SiO2 regions were obtained using x-ray microbeam diffraction. The quantitative strain mapping indicated that the SOI strain was largest at the SOI/STI interface and decreased as a function of distance from this interface. An out-of-plane residual strain of approximately -31μɛ was observed in the blanket regions of the SOI. A comparison of the depth-averaged strain distributions to the strain profiles calculated from an Eshelby inclusion model indicated an equivalent eigenstrain of -0.55% in the STI regions acting on the SOI features.
Strain hypothesis of Toxoplasma gondii infection on the outcome of human diseases
Xiao, Jianchun; Yolken, Robert H.
2015-01-01
The intracellular protozoan Toxoplasma gondii is an exceptionally successful food- and waterborne parasite that infects approximately 1 billion people worldwide. Genotyping of T. gondii isolates from all continents revealed a complex population structure. Recent research supports the notion that T. gondii genotype may be associated with disease severity. Here, we (1) discuss molecular and serological approaches for designation of T. gondii strain type, (2) overview the literatures on the association of T. gondii strain type and the outcome of human disease, and (3) explore possible mechanisms underlying these strain specific pathology and severity of human toxoplasmosis. Although no final conclusions can be drawn, it is clear that virulent strains (e. g. strains containing type I or atypical alleles) are significantly more often associated with increased frequency and severity of human toxoplasmosis. The significance of highly virulent strains can cause severe diseases in immunocompetent patients and might implicated in brain disorders such as schizophrenia should led to reconsideration of toxoplasmosis. Further studies that combine parasite strain typing and human factor analysis (e.g. immune status and genetic background) are required for better understanding of human susceptibility or resistance to toxoplasmosis. PMID:25600911
A mouse model of paralytic myelitis caused by enterovirus D68
Yu, Guixia; Leser, J. Smith; Yagi, Shigeo; Tyler, Kenneth L.
2017-01-01
In 2014, the United States experienced an epidemic of acute flaccid myelitis (AFM) cases in children coincident with a nationwide outbreak of enterovirus D68 (EV-D68) respiratory disease. Up to half of the 2014 AFM patients had EV-D68 RNA detected by RT-PCR in their respiratory secretions, although EV-D68 was only detected in cerebrospinal fluid (CSF) from one 2014 AFM patient. Given previously described molecular and epidemiologic associations between EV-D68 and AFM, we sought to develop an animal model by screening seven EV-D68 strains for the ability to induce neurological disease in neonatal mice. We found that four EV-D68 strains from the 2014 outbreak (out of five tested) produced a paralytic disease in mice resembling human AFM. The remaining 2014 strain, as well as 1962 prototype EV-D68 strains Fermon and Rhyne, did not produce, or rarely produced, paralysis in mice. In-depth examination of the paralysis caused by a representative 2014 strain, MO/14-18947, revealed infectious virus, virion particles, and viral genome in the spinal cords of paralyzed mice. Paralysis was elicited in mice following intramuscular, intracerebral, intraperitoneal, and intranasal infection, in descending frequency, and was associated with infection and loss of motor neurons in the anterior horns of spinal cord segments corresponding to paralyzed limbs. Virus isolated from spinal cords of infected mice transmitted disease when injected into naïve mice, fulfilling Koch’s postulates in this model. Finally, we found that EV-D68 immune sera, but not normal mouse sera, protected mice from development of paralysis and death when administered prior to viral challenge. These studies establish an experimental model to study EV-D68-induced myelitis and to better understand disease pathogenesis and develop potential therapies. PMID:28231269
Tavanti, Arianna; Pardini, Giacomo; Campa, Daniele; Davini, Paola; Lupetti, Antonella; Senesi, Sonia
2004-01-01
Two karyotypes of oral Candida albicans isolates, named b and c, constituted >80% of a collection from healthy carriers (22 b and 16 c isolates) and oral candidiasis patients who were either infected (31 b and 16 c isolates) or uninfected (13 b and 38 c isolates) with human immunodeficiency virus (HIV). The prevalence of the b and c karyotypes within HIV-positive and HIV-negative patients, respectively, who were suffering from oral candidiasis (P ≤ 0.0001) suggested that these two types possessed different virulence potentials. Since C. albicans proteinases (Saps) are virulence factors in oral candidiasis, we evaluated whether the b and c karyotypes secreted different levels of Saps and expressed different patterns of Sap-encoding genes (SAP1-10). We found that the mean value of Sap activity was significantly lower (P = 0.003) in the commensal type than in the infectious b karyotype, whereas Sap activity in the commensal c type was as high as that registered for the infectious c strains. Marked differences in SAP mRNA expression were observed in commensal strains under non-Sap-inducing conditions, with all SAP genes being expressed only by strains with the c karyotype; interestingly, none of the commensal b strains expressed SAP2. In addition, while all of the SAP1-10 genes were detectable under Sap-inducing conditions, the timing of their expression during growth differed significantly, with mRNAs of SAP1-10 genes detected at 8 and 24 h postinoculation in c and b commensal strains, respectively. This provides the first evidence that commensal oral C. albicans isolates with distinct karyotypes are characterized by different patterns of SAP1-10 gene expression and different levels of Sap secretion. PMID:15472333
Bifidobacterium breve - HT-29 cell line interaction: modulation of TNF-α induced gene expression.
Boesten, R J; Schuren, F H J; Willemsen, L E M; Vriesema, A; Knol, J; De Vos, W M
2011-06-01
To provide insight in the molecular basis for intestinal host-microbe interactions, we determined the genome-wide transcriptional response of human intestinal epithelial cells following exposure to cells of Bifidobacterium breve. To select an appropriate test system reflecting inflammatory conditions, the responsiveness to TNF-α was compared in T84, Caco-2 and HT-29 cells. The highest TNF-α response was observed in HT-29 cells and this cell line was selected for exposure to the B. breve strains M-16V, NR246 and UCC2003. After one hour of bacterial pre-incubation followed by two hours of additional TNF-α stimulation, B. breve M-16V (86%), but to a much lesser extent strains NR246 (50%) or UCC2003 (32%), showed a strain-specific reduction of the HT-29 transcriptional response to the inflammatory treatment. The most important functional groups of genes that were transcriptionally suppressed by the presence of B. breve M-16V, were found to be involved in immune regulation and apoptotic processes. About 54% of the TNF-α induced genes were solely suppressed by the presence of B. breve M-16V. These included apoptosis-related cysteine protease caspase 7 (CASP7), interferon regulatory factor 3 (IRF3), amyloid beta (A4) precursor proteinbinding family A member 1 (APBA1), NADPH oxidase (NOX5), and leukemia inhibitory factor receptor (LIFR). The extracellular IL-8 concentration was determined by an immunological assay but did not change significantly, indicating that B. breve M-16V only partially modulates the TNF-α pathway. In conclusion, this study shows that B. breve strains modulate gene expression in HT-29 cells under inflammatory conditions in a strain-specific way.
Watanabe, Tomoya; Mlakar, Logan; Heywood, Jonathan; Malaab, Maya; Hoffman, Stanley
2017-01-01
The murine bleomycin (BLM)-induced fibrosis model is the most widely used in systemic sclerosis (SSc) studies. It has been reported that systemic delivery of BLM via continuous diffusion from subcutaneously implanted osmotic minipumps can cause fibrosis of the skin, lungs, and other internal organs. However, the mouse strain, dosage of BLM, administration period, and additional important features differ from one report to the next. In this study, by employing the pump model in C57BL/6J mice, we show a dose-dependent increase in lung fibrosis by day 28 and a transient increase in dermal thickness. Dermal thickness and the level of collagen in skin treated with high-dose BLM was significantly higher than in skin treated with low dose BLM or vehicle. A reduction in the thickness of the adipose layer was noted in both high and low dose groups at earlier time points suggesting that the loss of the fat layer precedes the onset of fibrosis. High-dose BLM also induced dermal fibrosis and increased expression of fibrosis-associated genes ex vivo in human skin, thus confirming and extending the in vivo findings, and demonstrating that a human organ culture model can be used to assess the effect of BLM on skin. In summary, our findings suggest that the BLM pump model is an attractive model to analyze the underlying mechanisms of fibrosis and test the efficacy of potential therapies. However, the choice of mouse strain, duration of BLM administration and dose must be carefully considered when using this model. PMID:28651005
Watanabe, Tomoya; Nishimoto, Tetsuya; Mlakar, Logan; Heywood, Jonathan; Malaab, Maya; Hoffman, Stanley; Feghali-Bostwick, Carol
2017-01-01
The murine bleomycin (BLM)-induced fibrosis model is the most widely used in systemic sclerosis (SSc) studies. It has been reported that systemic delivery of BLM via continuous diffusion from subcutaneously implanted osmotic minipumps can cause fibrosis of the skin, lungs, and other internal organs. However, the mouse strain, dosage of BLM, administration period, and additional important features differ from one report to the next. In this study, by employing the pump model in C57BL/6J mice, we show a dose-dependent increase in lung fibrosis by day 28 and a transient increase in dermal thickness. Dermal thickness and the level of collagen in skin treated with high-dose BLM was significantly higher than in skin treated with low dose BLM or vehicle. A reduction in the thickness of the adipose layer was noted in both high and low dose groups at earlier time points suggesting that the loss of the fat layer precedes the onset of fibrosis. High-dose BLM also induced dermal fibrosis and increased expression of fibrosis-associated genes ex vivo in human skin, thus confirming and extending the in vivo findings, and demonstrating that a human organ culture model can be used to assess the effect of BLM on skin. In summary, our findings suggest that the BLM pump model is an attractive model to analyze the underlying mechanisms of fibrosis and test the efficacy of potential therapies. However, the choice of mouse strain, duration of BLM administration and dose must be carefully considered when using this model.
Live attenuated influenza vaccine (LAIV) impacts innate and adaptive immune responses.
Lanthier, Paula A; Huston, Gail E; Moquin, Amy; Eaton, Sheri M; Szaba, Frank M; Kummer, Lawrence W; Tighe, Micheal P; Kohlmeier, Jacob E; Blair, Patrick J; Broderick, Michael; Smiley, Stephen T; Haynes, Laura
2011-10-13
Influenza A infection induces a massive inflammatory response in the lungs that leads to significant illness and increases the susceptibility to secondary bacterial pneumonia. The most efficient way to prevent influenza infection is through vaccination. While inactivated vaccines induce protective levels of serum antibodies to influenza hemaglutinin (HA) and neuraminidase (NA) surface proteins, these are strain specific and offer little protection against heterosubtypic influenza viruses. In contrast, live attenuated influenza vaccines (LAIVs) induce a T cell response in addition to antibody responses against HA and NA surface proteins. Importantly, LAIV vaccination induces a response in a mouse model that protects against illness due to heterosubtypic influenza strains. While it is not completely clear what is the mechanism of action of LAIV heterosubtypic protection in humans, it has been shown that LAIV induces heterosubtypic protection in mice that is dependent upon a Type 1 immune response and requires CD8 T cells. In this study, we show that LAIV-induced immunity leads to significantly reduced viral titers and inflammatory responses in the lungs of mice following heterosubtypic infection. Not only are viral titers reduced in LAIV vaccinated mice, the amounts of inflammatory cytokines and chemokines in lung tissue are significantly lower. Additionally, we show that LAIV vaccination of healthy adults also induces a robust Type 1 memory response including the production of chemokines and cytokines involved in T cell activation and recruitment. Thus, our results indicate that LAIV vaccination functions by inducing immune memory which can act to modulate the immune response to subsequent heterosubtypic challenge by influencing both innate and adaptive responses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Maneekarn, Niwat; Khamrin, Pattara; Chan-it, Wisoot; Peerakome, Supatra; Sukchai, Sujin; Pringprao, Kidsadagon; Ushijima, Hiroshi
2006-01-01
Among 175 fecal specimens collected from diarrheic piglets during a surveillance of porcine rotavirus (PoRV) strains in Chiang Mai, Thailand, 39 (22.3%) were positive for group A rotaviruses. Of these, 33.3% (13 of 39) belonged to G3P[19], which was a rare P genotype seldom reported. Interestingly, their VP4 nucleotide sequences were most closely related to human P[19] strains (Mc323 and Mc345) isolated in 1989 from the same geographical area where these PoRV strains were isolated. These P[19] PoRV strains were also closely related to another human P[19] strain (RMC321), isolated from India in 1990. The VP4 sequence identities with human P[19] were 95.4% to 97.4%, while those to a porcine P[19] strain (4F) were only 87.6 to 89.1%. Phylogenetic analysis of the VP4 gene revealed that PoRV P[19] strains clustered with human P[19] strains in a monophyletic branch separated from strain 4F. Analysis of the VP7 gene confirmed that these strains belonged to the G3 genotype and shared 97.7% to 98.3% nucleotide identities with other G3 PoRV strains circulating in the regions. This close genetic relationship was also reflected in the phylogenetic analysis of their VP7 genes. Altogether, the findings provided peculiar evidence that supported the porcine origin of VP4 genes of Mc323 and Mc345 human rotaviruses. PMID:16988014
Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S
2015-12-22
Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hao, Wen-Rui; Sung, Li-Chin; Chen, Chun-Chao; Chen, Jin-Jer
2018-01-01
Moderate coffee consumption is inversely associated with cardiovascular disease mortality; however, mechanisms underlying this causal effect remain unclear. Cafestol, a diterpene found in coffee, has various properties, including an anti-inflammatory property. This study investigated the effect of cafestol on cyclic-strain-induced inflammatory molecule secretion in vascular endothelial cells. Cells were cultured under static or cyclic strain conditions, and the secretion of inflammatory molecules was determined using enzyme-linked immunosorbent assay. The effects of cafestol on mitogen-activated protein kinases (MAPK), heme oxygenase-1 (HO-1), and sirtuin 1 (Sirt1) signaling pathways were examined using Western blotting and specific inhibitors. Cafestol attenuated cyclic-strain-stimulated intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 8 secretion. Cafestol inhibited the cyclic-strain-induced phosphorylation of extracellular signal-regulated kinase and p38 MAPK. By contrast, cafestol upregulated cyclic-strain-induced HO-1 and Sirt1 expression. The addition of zinc protoporphyrin IX, sirtinol, or Sirt1 silencing (transfected with Sirt1 siRNA) significantly attenuated cafestol-mediated modulatory effects on cyclic-strain-stimulated ICAM-1, MCP-1, and IL-8 secretion. This is the first study to report that cafestol inhibited cyclic-strain-induced inflammatory molecule secretion, possibly through the activation of HO-1 and Sirt1 in endothelial cells. The results provide valuable insights into molecular pathways that may contribute to the effects of cafestol. PMID:29854096