Sample records for strain rate compression

  1. Deformation behavior of open-cell dry natural rubber foam: Effect of different concentration of blowing agent and compression strain rate

    NASA Astrophysics Data System (ADS)

    Samsudin, M. S. F.; Ariff, Z. M.; Ariffin, A.

    2017-04-01

    Compression and deformation behavior of partially open cell natural rubber (NR) foam produced from dry natural rubber (DNR), were investigated by performing compressive deformation at different strains and strain rates. Different concentrations of sodium bicarbonate as a blowing agent (BA) were utilized, from 4 to 16 phr in order to produce foams with range of cell size and morphology. Overall, increasing of blowing agent concentration had significantly changed relative foam density. Compression stress-strain curves of the foams exhibited that the compression behavior was directly correlated to the foam cells morphology and physical density. Pronounced changes were noticed for foams with bigger cells particularly at 4 phr concentration of BA where the compression stress at plateau region was greater compared to those with higher concentration of BA. Cell deformation progressive images confirmed that the foams demonstrated small degree of struts bending at 15% of strain and followed by continuous severe struts bending and elastic buckling up to 50% of strain. Compression test at different strain rates revealed that the strain rate factor only affected the foams with 4 phr of BA by causing immediate increment in the compression stress value when higher strain rate was applied.

  2. The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde

    2017-12-01

    The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzedmore » the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s -1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.« less

  4. Understanding High Rate Behavior Through Low Rate Analog

    DTIC Science & Technology

    2014-04-28

    uni- axial compression over all rates tested at 20 °C; (b) True yield stress as a function of strain rate...of temperature. (a) (b) Figure 11. Representative behaviour of PPVC-2. (a) True stress-true strain response in uni- axial compression over all...pages 33 of 78 (a) (b) Figure 15. Representative behaviour of PPVC-6. (a) True stress-true strain response in uni- axial compression

  5. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    NASA Astrophysics Data System (ADS)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  6. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    PubMed Central

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  7. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGES

    Song, B.; Nelson, K.; Lipinski, R.; ...

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  8. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.

    PubMed

    Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji

    2016-07-01

    The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters-turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology.

  9. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  10. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    PubMed

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Geodetic Measurement of Deformation East of the San Andreas Fault in Central California

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne M.; Lisowski, Michael; Solomon, Sean C.

    1988-01-01

    Triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas fault have been used to calculate shear strain rates in the Diablo Range and to estimate the slip rate along the Calaveras and Paicines faults in Central California. Within the Diablo Range the average shear strain rate was determined for the time period between 1962 and 1982 to be 0.15 + or - 0.08 microrad/yr, with the orientation of the most compressive strain at N 16 deg E + or - 14 deg. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E. It is inferred that the measured strain is due to compression across the folds of this area: the average shear straining corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. From an examination of wellbore breakout orientations and the azimuths of P-axes from earthquake focal mechanisms the inferred orientation of maximum compressive stress was found to be similar to the direction of maximum compressive strain implied by the trend of local fold structures. Results do not support the hypothesis of uniform fault-normal compression within the Coast Ranges. From trilateration measurements made between 1972 and 1987 on lines that are within 10 km of the San Andreas fault, a slip rate of 10 to 12 mm/yr was calculated for the Calaveras-Paicines fault south of Hollister. The slip rate of the Paicines fault decreases to 4 mm/yr near Bitter.

  12. On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael H.; Nau, Siegfried; Hess, Sebastian

    2017-04-01

    There is increasing evidence that seismogenic fractures can propagate faster than the shear wave velocity of the surrounding rocks. Strain rates within the tip region of such super-shear earthquake ruptures can reach deformation conditions similar to impact processes, resulting in rock pulverization. The physical response of brittle rocks at high strain rates changes dramatically with respect to quasi-static conditions. Rocks become stiffer and their strength increases. A measure for the dynamic behavior of a rock and its strain dependency is the dynamic increase factor (DIF) which is the ratio of the dynamic compressive strength to the quasi-static uniaxial compressive strength. To investigate deformation in the high strain rate regime experimentally, we introduce the split Hopkinson pressure bar technology to the structural geology community, a method that is frequently used by rock and impact engineers. We measure the stress-strain response of homogeneous, fine-grained Seeberger sandstone and Carrara marble in uniaxial compression at strain rates ranging from 10+1 to 10+2 s-1 with respect to tangent modulus and dynamic uniaxial compressive strength. We present full stress-strain response curves of Seeberger sandstone and Carrara marble at high strain rates and an evaluation method to determine representative rates of deformation. Results indicate a rate-dependent elastic behavior of Carrara marble where an average increase of ∼18% could be observed at high strain rates of about 100 s-1. DIF reaches a factor of 2.2-2.4. Seeberger sandstone does not have a rate-dependent linear stress-strain response at high strain rates. Its DIF was found to be about 1.6-1.7 at rates of 100 s-1. The onset of dynamic behavior is accompanied with changes in the fracture pattern from single to multiple fractures to pervasive pulverization for increasing rates of deformation. Seismogenic shear zones and their associated fragment-size spectra should be carefully revisited in the light of dynamic deformation.

  13. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE PAGES

    Song, Bo; Sanborn, Brett

    2018-05-07

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  14. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Sanborn, Brett

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  15. Compressive behavior of fine sand.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Bradley E.; Kabir, Md. E.; Song, Bo

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trendsmore » were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, B.; Nelson, K.; Lipinski, R.

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  17. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Su, Xingya; Zhao, Longmao

    The dynamic compressive behavior of D1 railway wheel steel at high strain rates was investigated using a split Hopkinson pressure bar (SHPB) apparatus. Three types of specimens, which were derived from the different positions (i.e., the rim, web and hub) of a railway wheel, were tested over a wide range of strain rates from 10-3 s-1 to 2.4 × 103 s-1 and temperatures from 213 K to 973 K. Influences of the strain rate and temperature on flow stress were discussed, and rate- and temperature-dependent constitutive relationships were assessed by the Cowper-Symonds model, Johnson-Cook model and a physically-based model, respectively. The experimental results show that the compressive true stress versus true strain response of D1 wheel steel is strain rate-dependent, and the strain hardening rate during the plastic flow stage decreases with the elevation of strain rate. Besides, the D1 wheel steel displays obvious temperature-dependence, and the third-type strain aging (3rd SA) is occurred at the temperature region of 673-973 K at a strain rate of ∼1500 s-1. Comparisons of experimental results with theoretical predictions indicate that the physically-based model has a better prediction capability for the 3rd SA characteristic of the tested D1 wheel steel.

  18. Strain-Rate Dependence of Deformation-Twinning in Tantalum

    NASA Astrophysics Data System (ADS)

    Abeywardhana, Jayalath; Germann, Tim; Ravelo, Ramon

    2017-06-01

    Large-Scale molecular dynamics (MD) simulations are used to model quasi-isentropic compression and expansion (QIC) in tantalum crystals varying the rate of deformation between the range 108 -1012s-1 and compressive pressures up to 100 GPa. The atomic interactions were modeled employing an embedded-atom method (EAM) potential of Ta. Isentropic expansion was done employing samples initially compressed to pressures of 60 and 100 GPa followed by uniaxial and quasi-isentropically expansion to zero pressure. The effect of initial dislocation density on twinning was also examined by varying the initial defect density of the Ta samples (1010 -1012cm-2). At these high-strain rates, a threshold in strain-rate on deformation twining is observed. Under expansion or compression, deformation twinning increases with strain rate for strain-rates >109s-1 . Below this value, small fraction of twins nucleates but anneal out with time. Samples with lower fraction of twins equilibrate to defect states containing higher screw dislocation densities from those with initially higher twinning fractions. This work was supported by the Department of Energy under contract DE-AC52-06NA25396 and by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476.

  19. Tension-compression asymmetry of a rolled Mg-Y-Nd alloy

    NASA Astrophysics Data System (ADS)

    Song, Bo; Pan, Hucheng; Ren, Weijie; Guo, Ning; Wu, Zehong; Xin, Renlong

    2017-07-01

    In this work, tension and compression deformation behaviors of rolled and aged Mg-Y-Nd alloys were investigated. The microstructure evolution and plastic deformation mechanism during tension and compression were analyzed by combined use of electron backscatter diffraction and a visco-plastic self-consistent crystal plasticity model. The results show that both rolled and aged Mg-Y-Nd sheets show an extremely low yield asymmetry. Elimination of yield asymmetry can be ascribed to the tilted basal texture and suppression of {10-12} twinning. The rolled sheet has almost no yield asymmetry, however exhibits a remarkable strain-hardening behavior asymmetry. Compressed sample shows lower initial strain hardening rate and keeps higher strain hardening rate at the later stage compared with tension. The strain-hardening asymmetry can be aggravated by aging at 280 C. It is considered the limited amount of twins in compression plays the critical role in the strain hardening asymmetry. Finally, the relevant mechanism was analyzed and discussed.

  20. Finite Strain Behavior of Polyurea for a Wide Range of Strain Rates

    DTIC Science & Technology

    2010-02-01

    dimensional dynamic compressive behavior of EPDM rubber ," Journal of Engineering Materials and Technology, Transaction of the ASME, 125:294-301. [97] Song, B...and Chen, W. (2004) "Dynamic compressive behavior of EPDM rubber un- der nearly uniaxial strain conditions," Journal of Engineering Materials and... rubber elastic springs to describe the steep initial stiffness of virgin butadiene rubber under tensile and compressive loading at intermediate strain

  1. Mechanical responses, texture evolution, and yield loci of extruded AZ31 magnesium alloy under various loading conditions: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Kabirian, Farhoud

    Mechanical responses and texture evolution of extruded AZ31 Mg are measured under uniaxial (tension-compression) and multiaxial (free-end torsion) loadings. Compression loading is carried out in three different directions at temperature and strain rate ranges of 77-423 K and 10-4 -3000 s -1, respectively. Texture evolution at different intermediate strains reveals that crystal reorientation is exhausted at smaller strains with increase in strain rate while increase in temperature retards twinning. In addition to the well-known tension-compression yield asymmetry, a strong anisotropy in strain hardening response is observed. Strain hardening during the compression experiment is intensified with decreasing and increasing temperature and strain rate, respectively. This complex behavior is explained through understanding the roles of deformation mechanisms using the Visco-Plastic Self Consistent (VPSC) model. In order to calibrate the VPSC model's constants as accurate as possible, a vast number of mechanical responses including stress-strain curves in tension, compression in three directions, and free-end torsion, texture evolution at different strains, lateral strains of compression samples, twin volume fraction, and axial strain during the torsion experiment. Modeling results show that depending on the number of measurements used for calibration, roles of different mechanisms in plastic deformation change significantly. In addition, a precise definition of yield is established for the extruded AZ31magnesium alloy after it is subjected to different loading conditions (uniaxial to multiaxial) at four different plastic strains. The yield response is measured in ?-? space. Several yield criteria are studied to predict yield response of extruded AZ31. This study proposes an asymmetrical fourth-order polynomial yield function. Material constants in this model can be directly calculated using mechanical measurements. Convexity of the proposed model is discussed, and domains of constants where convexity holds are determined. Effects of grain refinement induced by Equal Channel Angular Pressing, ECAP, on mechanical responses and texture evolution are investigated. Yield strength in compression increases after ECAP, however, strain-hardening rate drops with number of ECAP passes while failure strain increases. Texture measurements reveal the higher propensity to twinning in the extruded material compared with ECAPed magnesium. Calculated Schmid factor maps are utilized to connect the observed mechanical responses to the texture.

  2. Effect of Strain Rates on the Compressive Response of Neck Rubber From Humanetics HIII 50th Percentile Male Dummy Under Different Loading Sequences

    DTIC Science & Technology

    2013-02-01

    diene monomer ( EPDM ) rubber under high-rate uniaxial compression using an SHPB (5). Additionally, Song and Chen used a strain energy-based function to...describe a one-dimensional constitutive relation to describe the high strain rate behavior of the EPDM rubber , which agreed with the experimental...intermediate rate to about 6 MPa at 500 s -1 . This behavior and rate dependence was similar to the EPDM rubber studied by Chen and Zhang (2), which

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Nelson, Kevin; Jin, Helena

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension barmore » techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.« less

  4. Micromechanics and poroelasticity of hydrated cellulose networks.

    PubMed

    Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J

    2014-06-09

    The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure.

  5. Strain-rate/temperature behavior of high density polyethylene in compression

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Sherby, O. D.

    1978-01-01

    The compressive strain rate/temperature behavior of highly linear, high density polyethylene was analyzed in terms of the predictive relations developed for metals and other crystalline materials. For strains of 5 percent and above, the relationship between applied strain rate, dotted epsilon, and resulting flow stress, sigma, was found to be: dotted epsilon exp times (Q sub f/RT) = k'(sigma/sigma sub c) to the nth power; the left-hand side is the activation-energy-compensated strain rate, where Q sub f is activation energy for flow, R is gas constant, and T is temperature; k is a constant, n is temperature-independent stress exponent, and sigma/sigma sub c is structure-compensated stress. A master curve resulted from a logarithmic plot of activation-energy-compensated strain rate versus structure-compensated stress.

  6. Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Huanran; Cai Canyuan; Chen Danian

    2012-07-01

    Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From highmore » speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.« less

  7. Microstructure characterization of Al matrix composite reinforced with Ti-6Al-4V meshes after compression by scanning electron microscope and transmission electron microscope.

    PubMed

    Guo, Q; Sun, D L; Han, X L; Cheng, S R; Chen, G Q; Jiang, L T; Wu, G H

    2012-02-01

    Compressive properties of Al matrix composite reinforced with Ti-6Al-4V meshes (TC4(m)/5A06 Al composite) under the strain rates of 10(-3)S(-1) and 1S(-1) at different temperature were measured and microstructure of composites after compression was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Compressive strength decreased with the test temperature increased and the strain-rate sensitivity (R) of composite increased with the increasing temperature. SEM observations showed that grains of Al matrix were elongated severely along 45° direction (angle between axis direction and fracture surface) and TC4 fibres were sheared into several parts in composite compressed under the strain rate of 10(-3)S(-1) at 25°C and 250°C. Besides, amounts of cracks were produced at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases. With the compressive temperature increasing to 400°C, there was no damage at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases, while equiaxed recrystal grains with sizes about 10 μm at the original grain boundaries of Al matrix were observed. However, interface separation of TC4 fibres and Al matrix occurred in composite compressed under the strain rate of 1S(-1) at 250°C and 400°C. With the compressive temperature increasing from 25°C to 100°C under the strain rate of 10(-3) S(-1), TEM microstructure in Al matrix exhibited high density dislocations and slipping bands (25°C), polygonized dislocations and dynamic recovery (100°C), equiaxed recrystals with sizes below 500 μm (250°C) and growth of equiaxed recrystals (400°C), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Dynamic compressive strength of epoxy composites

    NASA Astrophysics Data System (ADS)

    Plastinin, A. V.; Sil'vestrov, V. V.

    1996-11-01

    The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.

  9. Geodetic measurement of deformation east of the San Andreas Fault in Central California

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Solomon, Sean C.; Lisowski, Michael

    1988-01-01

    The shear strain rates in the Diablo Range of California have been calculated, and the slip rate along the Calaveras and Paicines faults in Central California have been estimated, on the basis of triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas Fault. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E, leading to an average shear strain value that corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. It is inferred that the measured strain is due to compression across the fold of this area. The hypothesized uniform, fault-normal compression within the Coast Ranges is not supported by these results.

  10. Complex strain fields

    NASA Astrophysics Data System (ADS)

    Bradshaw, P.

    Computational techniques for accounting for extra strain rates, abnormal distributions of delta-U/delta-y, fluctuating strain rates, and the effects of body forces in modeling shear flows are discussed. Consideration is given to simple shears where the extra strain rate does not affect turbulence, thin shear layers, moderately thin shear layers, and strongly distorted flows. Attention is given to formulations based on the exact transport equations for Reynolds stress as derived from the time-averaged Navier-Stokes equations. Extra strain rates arise from curvature, lateral divergence, and bulk compression, with Coriolis forces accounting for the first, intensification of the spanwise vorticity for the second, and compression or dilation of the shear layer producing the third. The curvature forces, e.g., buoyancy and Coriolis forces, are responsible for hurricanes and tornadoes.

  11. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    NASA Astrophysics Data System (ADS)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  12. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    PubMed Central

    Chen, Tao-Hsing; Tsai, Chih-Kai

    2015-01-01

    In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034

  13. The present state and future direction of second order closure models for compressible flows

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Sarkar, Sutanu; Speziale, Charles G.

    1992-01-01

    The topics are presented in viewgraph form and include: (1) Reynolds stress closure models; (2) Favre averages and governing equations; (3) the model for the deviatoric part of the pressure-strain rate correlation; (4) the SSG pressure-strain correlation model; (5) a compressible turbulent dissipation rate model; (6) variable viscosity effects; (7) near-wall stiffness problems; (8) models of the Reynolds mass and heat flux; and (9) a numerical solution of the compressible turbulent transport equation.

  14. Dynamic Experiments and Constitutive Model Performance for Polycarbonate

    DTIC Science & Technology

    2014-07-01

    phase disabled. Note, positive stress is tensile and negative is compressive ....28 Figure 23. Parameter sensitivity showing numerical contours of axial ... compressive . For the no alpha and no beta cases shown in the axial stress plots of figure 23 at 40 s, an increase in radial compression as compared...traditional Taylor cylinder impact experiment, which achieves large strain and high-strain-rate deformation but under hydrostatic compression

  15. High-Rate Mechanical Properties of JA2 Propellant at Temperatures from -50 to 80 deg C

    DTIC Science & Technology

    2015-07-01

    panorama of postcompression JA2 grain sample (uniaxially compressed at a rate of ~100 s–1, 80 °C, and strain greater than 40%), 50× magnification...19 Fig. 36 SEM panorama of postcompression JA2 grain sample...19 Fig. 37 SEM panorama of postcompression JA2 grain sample (uniaxially compressed at a rate of ~100 s–1, 60 °C, and strain

  16. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    NASA Astrophysics Data System (ADS)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-06-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  17. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    NASA Astrophysics Data System (ADS)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-03-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  18. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-07-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  19. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-03-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  20. SEM and TEM characterization of the microstructure of post-compressed TiB2/2024Al composite.

    PubMed

    Guo, Q; Jiang, L T; Chen, G Q; Feng, D; Sun, D L; Wu, G H

    2012-02-01

    In the present work, 55 vol.% TiB(2)/2024Al composites were obtained by pressure infiltration method. Compressive properties of 55 vol.% TiB(2)/2024Al composite under the strain rates of 10(-3) and 1S(-1) at different temperature were measured and microstructure of post-compressed TiB(2)/2024Al composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). No trace of Al(3)Ti compound flake was found. TiB(2)-Al interface was smooth without significant reaction products, and orientation relationships ( [Formula: see text] and [Formula: see text] ) were revealed by HRTEM. Compressive strength of TiB(2)/2024Al composites decreased with temperature regardless of strain rates. The strain-rate-sensitivity of TiB(2)/2024Al composites increased with the increasing temperature. Fracture surface of specimens compressed at 25 and 250°C under 10(-3)S(-1) were characterized by furrow. Under 10(-3)S(-1), high density dislocations were formed in Al matrix when compressed at 25°C and dynamic recrystallization occurred at 250°C. Segregation of Mg and Cu on the subgrain boundary was also revealed at 550°C. Dislocations, whose density increased with temperature, were formed in TiB(2) particles under 1S(-1). Deformation of composites is affected by matrix, reinforcement and strain rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Time-dependence of the alpha to epsilon phase transformation in iron

    DOE PAGES

    Smith, R. F.; Eggert, J. H.; Swift, D. C.; ...

    2013-12-11

    Here, iron was ramp-compressed over timescales of 3 ≤ t(ns) ≤ 300 to study the time-dependence of the α→ε (bcc→hcp) phase transformation. Onset stresses (σ α→ε) for the transformation ~14.8-38.4 GPa were determined through laser and magnetic ramp-compression techniques where the transition strain-rate was varied between 10 6 ≤more » $$\\dot{μ}$$ α→ε(s ₋1) ≤ 5×10 8. We find σ α→ε= 10.8 + 0.55 ln($$\\dot{μ}$$ α→ε) for $$\\dot{μ}$$ α→ε < 10 6/s and σ α→ε= 1.15($$\\dot{μ}$$ α→ε) 0.18 for $$\\dot{μ}$$ α→ε > 10 6/s. This $$\\dot{μ}$$ response is quite similar to recent results on incipient plasticity in Fe suggesting that under high rate ramp compression the α→ε phase transition and plastic deformation occur through similar mechanisms, e.g., the rate limiting step for $$\\dot{μ}$$ > 10 6/s is due to phonon scattering from defects moving to relieve strain. We show that over-pressurization of equilibrium phase boundaries is a common feature exhibited under high strain-rate compression of many materials encompassing many orders of magnitude of strain-rate.« less

  2. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Akifumi; Kobayashi, Hidetoshi; Horikawa, Keitaro; Tanigaki, Kenichi

    2015-09-01

    These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10-3 to 103 s-1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from - 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  3. The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.

    The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

  4. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  5. The Compressive Behavior of Isocyanate-crosslinked Silica Aerogel at High Strain Rates

    NASA Technical Reports Server (NTRS)

    Luo, H.; Lu, H.; Leventis, N.

    2006-01-01

    Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386/s. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young's moduli (or 0.2% offset compressive yield strengths) at a strain rate approx.350/s were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551,0.628 and 0.731 g/cu cm, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g/cu cm ), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of approx.17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi-static loading condition. The Poisson s ratio was determined to be 0.162 in nonlinear regime under high strain rates. CSA samples failed generally by splitting, but were much more ductile than native silica aerogels.

  6. Molecular dynamics study of strain-induced diffusivity of nitrogen in pure iron nanocrystalline

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Roghayeh; Razmara, Naiyer; Razmara, Fereshteh

    2016-12-01

    In the present study, the self-diffusion process of nitrogen in pure iron nanocrystalline under strain conditions has been investigated by Molecular Dynamics (MD). The interactions between particles are modeled using Modified Embedded Atom Method (MEAM). Mean Square Displacement (MSD) of nitrogen in iron structure under strain is calculated. Strain is applied along [ 11 2 ¯ 0 ] and [ 0001 ] directions in both tensile and compression conditions. The activation energy and pre-exponential diffusion factor for nitrogen diffusion is comparatively high along [ 0001 ] direction of compressed structure of iron. The strain-induced diffusion coefficient at 973 K under the compression rate of 0.001 Å/ps along [ 0001 ] direction is about 6.72E-14 m2/s. The estimated activation energy of nitrogen under compression along [ 0001 ] direction is equal to 12.39 kcal/mol. The higher activation energy might be due to the fact that the system transforms into a more dense state when compressive stress is applied.

  7. On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium

    NASA Astrophysics Data System (ADS)

    Kovtanyuk, L. V.; Panchenko, G. L.

    2017-11-01

    The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.

  8. Synthesis and viscoelastic characterization of microstructurally aligned Silk fibroin sponges.

    PubMed

    Panda, Debojyoti; Konar, Subhajit; Bajpai, Saumendra K; Arockiarajan, A

    2017-07-01

    Silk fibroin (SF) is a model candidate for use in tissue engineering and regenerative medicine owing to its bio-compatible mechanochemical properties. Despite numerous advances made in the fabrication of various biomimetic substrates using SF, relatively few clinical applications have been designed, primarily due to the lack of complete understanding of its constitutive properties. Here we fabricate microstructurally aligned SF sponge using the unidirectional freezing technique wherein a novel solvent-processing technique involving Acetic acid is employed, which obviates the post-treatment of the sponges to induce their water-stability. Subsequently, we quantify the anisotropic, viscoelastic response of the bulk SF sponge samples by performing a series of mechanical tests under uniaxial compression over a wide range of strain rates. Results for these uniaxial compression tests in the finite strain regime through ramp strain and ramp-relaxation loading histories applied over two orders of strain rate magnitude show that microstructural anisotropy is directly manifested in the bulk viscoelastic solid-like response. Furthermore, the experiments reveal a high degree of volume compressibility of the sponges during deformation, and also evince for their remarkable strain recovery capacity under large compressive strains during strain recovery tests. Finally, in order to predict the bulk viscoelastic material properties of the fabricated and pre-characterized SF sponges, a finite strain kinematics-based, nonlinear, continuum model developed within a thermodynamically-consistent framework in a parallel investigation, was successfully employed to capture the viscoelastic solid-like, transversely isotropic, and compressible response of the sponges macroscopically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation

    PubMed Central

    Shi, Cangji; Lai, Jing; Chen, X.-Grant

    2014-01-01

    The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454

  10. Effect of Loading Rate and Orientation on the Compressive Response of Human Cortical Bone

    DTIC Science & Technology

    2014-05-01

    use thereof. Destroy this report when it is no longer needed. Do not return it to the originator. Army Research Laboratory Aberdeen Proving...quasi-static (0.001/s), intermediate (1/s), and dynamic (1000–2000/s) strain rates using a split-Hopkinson pressure bar to determine the strain rate...6 Figure 5. Strain rate and strain histories of human cortical bone specimen at high rate using bar signals

  11. 1200 to 1400 K slow strain rate compressive properties of NiAl/Ni2AlTi-base materials

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Kumar, K. S.

    1989-01-01

    An attempt to apply the Martin Marietta Corporation's XD technology to the fabrication of NiAl-Ni2AlTi materials with improved creep properties is presented. Composite materials, containing from 0 to 30 vol pct of nominally 1-micron-diameter TiB2 particles in the intermetallic matrix have been produced by the XD process and compacted by hot pressing. Such composites demonstrated significant strength increases, approaching 3-fold for the 20 vol pct materials, in comparison to the unreinforced aluminide. This behavior was accomplished without deleterious side effects as the grain boundaries and particle-matrix interfaces were intact after compressive deformation to 10 percent or more strain. Typical true compressive stress-strain diagrams for materials tested in air between 1200 and 1400 K at approximate strain rates of 1.7 x 10 to the -6th/sec are presented.

  12. High-Strain-Rate Compression Testing of Ice

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Lerch, Bradley A.

    2006-01-01

    In the present study a modified split Hopkinson pressure bar (SHPB) was employed to study the effect of strain rate on the dynamic material response of ice. Disk-shaped ice specimens with flat, parallel end faces were either provided by Dartmouth College (Hanover, NH) or grown at Case Western Reserve University (Cleveland, OH). The SHPB was adapted to perform tests at high strain rates in the range 60 to 1400/s at test temperatures of -10 and -30 C. Experimental results showed that the strength of ice increases with increasing strain rates and this occurs over a change in strain rate of five orders of magnitude. Under these strain rate conditions the ice microstructure has a slight influence on the strength, but it is much less than the influence it has under quasi-static loading conditions. End constraint and frictional effects do not influence the compression tests like they do at slower strain rates, and therefore the diameter/thickness ratio of the samples is not as critical. The strength of ice at high strain rates was found to increase with decreasing test temperatures. Ice has been identified as a potential source of debris to impact the shuttle; data presented in this report can be used to validate and/or develop material models for ice impact analyses for shuttle Return to Flight efforts.

  13. Mechanical properties of thermal protection system materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less

  14. Rapid-Rate Compression Testing of Sheet Materials at High Temperatures

    NASA Technical Reports Server (NTRS)

    Bernett, E. C.; Gerberich, W. W.

    1961-01-01

    This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.

  15. Analysis of Crushing Response of Composite Crashworthy Structures

    NASA Astrophysics Data System (ADS)

    David, Matthew; Johnson, Alastair F.; Voggenreiter, H.

    2013-10-01

    The paper describes quasi-static and dynamic tests to characterise the energy absorption properties of polymer composite crash energy absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens are used to identify local compression crush failure mechanisms at the crush front. The varied crushing morphology between the compression strain rates identified in this paper is observed to be due to the differences in the response modes and mechanical properties of the strain dependent epoxy matrix. The importance of understanding the role of strain rate effects in composite crash energy absorbing structures is highlighted in this paper.

  16. An Elevated-Temperature Tension-Compression Test and Its Application to Magnesium AZ31B

    NASA Astrophysics Data System (ADS)

    Piao, Kun

    Many metals, particularly ones with HCP crystal structures, undergo deformation by combinations of twinning and slip, the proportion of which depends on variables such as temperature and strain rate. Typical techniques to reveal such mechanisms rely on metallography, x-ray diffraction, or electron optics. Simpler, faster, less expensive mechanical tests were developed in the current work and applied to Mg AZ31B. An apparatus was designed, simulated, optimized, and constructed to enable the large-strain, continuous tension/compression testing of sheet materials at elevated temperature. Thermal and mechanical FE analyses were used to locate cartridge heaters, thus enabling the attainment of temperatures up to 350°C within 15 minutes of start-up, and ensuring temperature uniformity throughout the gage length within 8°C. The low-cost device also makes isothermal testing possible at strain rates higher than corresponding tests in air. Analysis was carried out to predict the attainable compressive strains using novel finite element (FE) modeling and a single parameter characteristic of the machine and fixtures. The limits of compressive strain vary primarily with the material thickness and the applied-side-force-to-material-strength ratio. Predictions for a range of sheet alloys with measured buckling strains from -0.04 to -0.17 agreed within a standard deviation of 0.025 (0.015 excluding one material that was not initially flat). In order to demonstrate the utility of the new method, several sheet materials were tested over a range of temperatures. Some of the data obtained is the first of its kind. Magnesium AZ31B sheets were tested at temperatures up to 250°C with strain rate of 0.001/s. The inflected stress-strain curve observed in compression at room temperature disappeared between 125°C and 150°C, corresponding to the suppression of twinning, and suggesting a simple method for identifying the deformation mechanism transition temperature. The temperature-dependent behavior of selected advanced high strength steels (TWIP and DP) was revealed by preliminary tests at room temperature, 150°C and 250°C. For Mg AZ31B alloy sheets, the curvature of compressive stress-strain plots over a fixed strain range was found to be a consistent indicator of twinning magnitude, independent of temperature and strain rate. The relationship between curvature and areal fraction of twins is presented. Transition temperatures determined based on stress-strain curvature were consistent with ones determined by metallographic analysis and flow stresses, and depended on strain rate by the Zener-Hollomon parameter, a critical value for which was measured. The transition temperature was found to depend significantly on grain size, a relationship for which was established. Finally, it was shown that the transition temperature can be determined consistently, and much faster, using a single novel "Step-Temperature" test.

  17. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    DOE PAGES

    Johnson, K. L.; Trim, M. W.; Francis, D. K.; ...

    2016-10-01

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less

  18. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. L.; Trim, M. W.; Francis, D. K.

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less

  19. Microstructure and hot compression deformation of the as-cast Mg-5.0Sn-1.5Y-0.1Zr alloy

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoping; Kang, Li; Li, Qiushu; Chai, Yuesheng

    2015-08-01

    The hot compression deformation behavior and microstructure of as-cast Mg-5.0Sn-1.5Y-0.1Zr alloy were investigated by performing isothermal hot compression tests. The tests were conducted using a thermal mechanical simulator at 250-450 °C and strain rates ranging from 0.002 to 2 s-1, with a maximum deformation strain of 50 %. The effects of the deformation parameters on the microstructure evolution of the Mg-5.0Sn-1.5Y-0.1Zr alloy were discussed. The study revealed the flow behavior and the deformation mechanism of the Mg-5.0Sn-1.5Y-0.1Zr alloy. The dependence of flow stress on temperature and strain rate was described by a hyperbolic sine constitutive equation. Through regression analysis, the activation energy of 223.26 kJ mol-1 for plastic deformation was determined by considering flow stress at a strain rate of 0.2. Microstructure observation showed that dynamic recrystallization occurred extensively along grain boundaries at temperatures higher than 300 °C and strain rates lower than 0.02 s-1. This observation provides a theoretical basis for the manufacture and application of the Mg-5.0Sn-1.5Y-0.1Zr alloy.

  20. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads

    PubMed Central

    Ashab, A.S.M. Ayman; Ruan, Dong; Lu, Guoxing; Bhuiyan, Arafat A.

    2016-01-01

    The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE) models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression) have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams. PMID:28773288

  1. Characterization of mechanical damage mechanisms in ceramic composite materials. Technical report, 23 May 1987-24 May 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lankford, J.

    High-strain-rate compressive failure mechanisms in fiber-reinforced ceramic-matrix composite materials were characterized. These are contrasted with composite damage development at low-strain rates, and with the dynamic failure of monolithic ceramics. It is shown that it is possible to derive major strain-rate strengthening benefits if a major fraction of the fiber reinforcement is aligned with the load axis. This effect considerably exceeds the inertial microfracture strengthening observed in monolithic ceramics, and non-aligned composites. Its basis is shown to be the trans-specimen propagation time period for heterogeneously-nucleated, high-strain kink bands. A brief study on zirconia focused on the remarkable inverse strength-strain rate resultmore » previously observed for both fully and partially-stabilized zirconia single crystals, whereby the strength decreased with increasing strain rate. Based on the hypothesis that the suppression of microplastic flow, hence, local stress relaxation, might be responsible for this behavior, fully stabilized (i.e., non-transformable) specimens were strain-gaged and subjected to compressive microstrain. The rather stunning observation was that the crystals are highly microplastic, exhibiting plastic yield on loading and anelasticity and reverse plasticity upon unloading. These results clearly support the hypothesis that with increasing strain rate, microcracking is favored at the expense of microplasticity.« less

  2. Assessment of compressive failure process of cortical bone materials using damage-based model.

    PubMed

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Material Characterization and Computer Model Simulation of Low Density Polyurethane Foam Used in a Rodent Traumatic Brain Injury Model

    PubMed Central

    Zhang, Liying; Gurao, Manish; Yang, King H.; King, Albert I.

    2011-01-01

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou’s impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou’s impact device, has not been fully characterized. The foam used in Marmarou’s device was tested at seven strain rates ranging from quasi-static to dynamic (0.014 ~ 42.86 s−1) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114

  4. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.

    PubMed

    Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I

    2011-05-15

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jingli; Chen, Cun; Wang, Gang

    This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less

  6. Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing.

    PubMed

    Dhillon, A; Schneider, P; Kuhn, G; Reinwald, Y; White, L J; Levchuk, A; Rose, F R A J; Müller, R; Shakesheff, K M; Rahman, C V

    2011-12-01

    The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure-function relationships in scaffolds for bone tissue engineering applications.

  7. Development and comparison of processing maps of Mg-3Sn-1Ca alloy from data obtained in tension versus compression

    NASA Astrophysics Data System (ADS)

    Rao, K. P.; Suresh, K.; Prasad, Y. V. R. K.; Hort, N.

    2018-01-01

    The hot workability of extruded Mg-3Sn-1Ca alloy has been evaluated by developing processing maps with flow stress data from compression and tensile tests with a view to find the effect of the applied state-of-stress. The processing maps developed at a strain of 0.2 are essentially similar irrespective of the mode of deformation - compression or tension, and exhibit three domains in the temperature ranges: (1) 350 - 425 °C, and (2) 450 - 550 °C and (3) 400 - 500 °C, the first two occurring at lower strain rates and the third occurring at higher strain rates. In all the three domains, dynamic recrystallization occurs and is caused by non-basal slip and controlled by lattice self-diffusion in the first and second domains and grain boundary self-diffusion in the third domain. The state-of-stress imposed on the specimen (compression or tension) does not have any significant effect on the processing maps.

  8. Pressure-induced amorphization in plagioclase feldspars: A time-resolved powder diffraction study during rapid compression

    NASA Astrophysics Data System (ADS)

    Sims, M.; Jaret, S.; Carl, E. R.; Schrodt, N.; Rhymer, B.; Mohrholz, V.; Konopkova, Z.; Smith, J.; Liermann, H. P.; Glotch, T. D.; Ehm, L.

    2017-12-01

    Impact cratering is important in planetary body formation and evolution [1]. The pressure and temperature conditions during impacts are classified using systems [2] that stem from 1) petrographic features and 2) the presence of high pressure mineral phases observed in impactites. Maskelynite, amorphous plagioclase ((Na1-x Cax)Al1+x Si2-x O8), is a key indicator of petrographic type S5 (strongly shocked) and forms between 25 and 45 GPa. However, the formation pressure of maskelynite differs substantially depending on the experimental technique producing it. Shock experiments produce amorphization at > 10 GPa higher than static diamond anvil cell (DAC) experiments. We utilize a new technique, fast compression in combination with time-resolved powder diffraction, to study the effect of strain rate on plagioclase amorphization pressure. Anorthite and albite were compressed to 80 GPa at multiple rates from 0.05 GPa/s to 80 GPa/s, and we observed a decrease in amorphization pressure with increasing compression rate for strain rates of about 10-3 s-1. This decrease demonstrates negative strain rate sensitivity, which is likely caused by structural defects. Negative strain rate sensitivity implies that faster rates are more ductile and heterogeneous and slower rates are more brittle and homogeneous. Our results fit into the deformation framework proposed by Huffman and Reimold [3] and are consistent with the formation mechanism for maskelynite by "shear melting" proposed by Grady [4]. [1] Chao, E.C.T., Shock Metamorphism of Natural Materials., Baltimore, Md: Mono Book Corp, 1968; [2] Stöffler, D., J. Geophys. Res, 76(23), 5541, 1971; [3] Huffman, A.R. and W.U. Reimold, Tectonophysics, 256(1-4), 165-217, 1996; [4] Grady, D., J. Geophys. Res. Solid Earth, 85(B2), 913-924, 1980.

  9. Development of high-temperature Kolsky compression bar techniques for recrystallization investigation

    NASA Astrophysics Data System (ADS)

    Song, B.; Antoun, B. R.; Boston, M.

    2012-05-01

    We modified the design originally developed by Kuokkala's group to develop an automated high-temperature Kolsky compression bar for characterizing high-rate properties of 304L stainless steel at elevated temperatures. Additional features have been implemented to this high-temperature Kolsky compression bar for recrystallization investigation. The new features ensure a single loading on the specimen and precise time and temperature control for quenching to the specimen after dynamic loading. Dynamic compressive stress-strain curves of 304L stainless steel were obtained at 21, 204, 427, 649, and 871 °C (or 70, 400, 800, 1200, and 1600 °F) at the same constant strain rate of 332 s-1. The specimen subjected to specific time and temperature control for quenching after a single dynamic loading was preserved for investigating microstructure recrystallization.

  10. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    NASA Astrophysics Data System (ADS)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  11. Dynamic Recrystallization Kinetics of 690 Alloy During Hot Compression of Double-Cone Samples

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Zhai, Shun-Chao

    2017-03-01

    Hot compression tests of double-cone samples were conducted for 690 alloy to study the kinetic behavior of the complete dynamic recrystallization (DRX) process under low deformation temperatures from 960 to 1080 °C. The microstructure of 82 points in the vertical section of every deformed sample was quantitatively analyzed to determine the DRX fraction. Corresponding strain of these points was calculated by finite element simulations. Kinetic curves of the specimens with different preheating temperatures were then constructed. The features of various boundaries with different misorientation angles were investigated by electron backscatter diffraction technology and transmission electron microscope. The results showed that the strain is continuously and symmetrically distributed along the centerline of the vertical section. Large strain of 1.84 was obtained when the compression amount is 12 mm for double-cone samples. All the fitted kinetic curves display an "S" type, which possess a low growth rate of DRX at the beginning and the end of compression. The critical strain of recrystallization decreases with the increase in preheating temperature, while the completion strain remains around 1.5 for all the samples. The initial and maximum growth rates of DRX fraction have the opposite trend with the change in temperature, which is considered to be attributed to the behaviors of different misorientation boundaries.

  12. Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Yekani Fard, Masoud

    Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.

  13. Compressive Properties of Extruded Polytetrafluoroethylene

    DTIC Science & Technology

    2007-07-01

    against equivalent temperature ( Tmap ) at a single strain rate (3map). This is a pragmatic, empirically based line- arization and extension to large strains...one of the strain rates that was used in the experimental program, and in this case two rates were used: 0.1 s1 and 3200 s1. The value Tmap , is...defined as Tmap ¼ Texp þA log _3map log _3exp ð11Þ where the subscript exp indicates the experimental values of strain rate and temperature. A

  14. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  15. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.

    PubMed

    Bentil, Sarah A; Dupaix, Rebecca B

    2014-02-01

    The ability of the fractional Zener constitutive model to predict the behavior of postmortem swine brain tissue was examined in this work. Understanding tissue behavior attributed to degradation is invaluable in many fields such as the forensic sciences or cases where only cadaveric tissue is available. To understand how material properties change with postmortem age, the fractional Zener model was considered as it includes parameters to describe brain stiffness and also the parameter α, which quantifies the viscoelasticity of a material. The relationship between the viscoelasticity described by α and tissue degradation was examined by fitting the model to data collected in a previous study (Bentil, 2013). This previous study subjected swine neural tissue to in vitro unconfined compression tests using four postmortem age groups (<6h, 24h, 3 days, and 1 week). All samples were compressed to a strain level of 10% using two compressive rates: 1mm/min and 5mm/min. Statistical analysis was used as a tool to study the influence of the fractional Zener constants on factors such as tissue degradation and compressive rate. Application of the fractional Zener constitutive model to the experimental data showed that swine neural tissue becomes less stiff with increased postmortem age. The fractional Zener model was also able to capture the nonlinear viscoelastic features of the brain tissue at low strain rates. The results showed that the parameter α was better correlated with compressive rate than with postmortem age. © 2013 Published by Elsevier Ltd.

  16. Finite Element Analysis of Stresses Developed in the Blood Sac of a Left Ventricular Assist Device

    PubMed Central

    Haut Donahue, T. L.; Dehlin, W.; Gillespie, J.; Weiss, W.J.; Rosenberg, G.

    2009-01-01

    The goal of this research is to develop a 3D finite element (FE) model of a left ventricular assist device (LVAD) to predict stresses in the blood sac. The hyperelastic stress-strain curves for the segmented poly(ether polyurethane urea) blood sac were determined in both tension and compression using a servo-hydraulic testing system at various strain rates. Over the range of strain rates studied, the sac was not strain rate sensitive, however the material response was different for tension versus compression. The experimental tension and compression properties were used in a FE model that consisted of the pusher plate, blood sac and pump case. A quasi-static analysis was used to allow for nonlinearities due to contact and material deformation. The 3D FE model showed that blood sac stresses are not adversely affected by the location of the inlet and outlet ports of the device and that over the systolic ejection phase of the simulation the prediction of blood sac stresses from the full 3D model and an axisymmetric model are the same. Minimizing stresses in the blood sac will increase the longevity of the blood sac in vivo. PMID:19131267

  17. Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakravartty, J. K.

    2013-10-01

    A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range -30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10-3 to 1 s-1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type.

  18. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    NASA Astrophysics Data System (ADS)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-07-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent ( n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent ( n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity ( m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume ( V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  19. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    NASA Astrophysics Data System (ADS)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  20. Compressive Properties of PTFE/Al/Ni Composite Under Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Wang, Huai-xi; Li, Yu-chun; Feng, Bin; Huang, Jun-yi; Zhang, Sheng; Fang, Xiang

    2017-05-01

    To investigate the mechanical properties of pressed and sintered PTFE/Al/Ni (polytetrafluoroethylene/aluminum/nickel) composite, uniaxial quasi-static and dynamic compression experiments were conducted at strain rates from 10-2 to 3 × 103/s. The prepared samples were tested by an electrohydraulic press with 300 kN loading capacity and a split Hopkinson pressure bar (SHPB) device at room temperature. Experimental results show that PTFE/Al/Ni composite exhibits evident strain hardening and strain rate hardening. Additionally, a bilinear relationship between stress and {{log(}}\\dot{ɛ} ) is observed. The experimental data were fit to Johnson-Cook constitutive model, and the results are in well agreement with measured data.

  1. Transition of temporal scaling behavior in percolation assisted shear-branching structure during plastic deformation

    DOE PAGES

    Ren, Jingli; Chen, Cun; Wang, Gang; ...

    2017-03-22

    This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less

  2. Hot forming of silicon sheet, silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Graham, C. D., Jr.; Pope, D. P.; Kulkarni, S.; Wolf, M.

    1978-01-01

    The hot workability of polycrystalline silicon was studied. Uniaxail stress-strain curves are given for strain rates in the range of .0001 to .1/sec and temperatures from 1100 to 1380 C. At the highest strain rates at 1380 C axial strains in excess of 20% were easily obtainable without cracking. After deformations of 36%, recrystallization was completed within 0.1 hr at 1380 C. When the recrystallization was complete, there was still a small volume fraction of unrecyrstallized material which appeared very stable and may degrade the electronic properties of the bulk materials. Texture measurements showed that the as-produced vapor deposited polycrystalline rods have a 110 fiber texture with the 110 direction parallel to the growth direction and no preferred orientation about this axis. Upon axial compression perpendicular to the growth direction, the former 110 fiber axis changed to 111 and the compression axis became 110 . Recrystallization changed the texture to 110 along the former fiber axis and to 100 along the compression axis.

  3. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams.

    PubMed

    Luong, Dung; Lehmhus, Dirk; Gupta, Nikhil; Weise, Joerg; Bayoumi, Mohamed

    2016-02-18

    The present study investigates the mechanical performance of syntactic foams produced by means of the metal powder injection molding process having an Invar (FeNi36) matrix and including cenospheres as hollow particles at weight fractions (wt.%) of 5 and 10, respectively, corresponding to approximately 41.6 and 60.0 vol.% in relation to the metal content and at 0.6 g/cm³ hollow particle density. The synthesis process results in survival of cenospheres and provides low density syntactic foams. The microstructure of the materials is investigated as well as the mechanical performance under quasi-static and high strain rate compressive loads. The compressive stress-strain curves of syntactic foams reveal a continuous strain hardening behavior in the plastic region, followed by a densification region. The results reveal a strain rate sensitivity in cenosphere-based Invar matrix syntactic foams. Differences in properties between cenosphere- and glass microsphere-based materials are discussed in relation to the findings of microstructural investigations. Cenospheres present a viable choice as filler material in iron-based syntactic foams due to their higher thermal stability compared to glass microspheres.

  4. The effect of strain rate on the evolution of microstructure in aluminium alloys.

    PubMed

    Leszczyńska-Madej, B; Richert, M

    2010-03-01

    Intensive deformations influence strongly microstructure. The very well-known phenomenon is the diminishing dimension of grain size by the severe plastic deformation (SPD) methods. The nanometric features of microstructure were discovered after the SPD deformation of various materials, such as aluminium alloys, iron and others. The observed changes depended on the kind of the deformed material, amount of deformation, strain rate, existence of different phases and stacking fault energy. The influence of the strain and strain rate on the microstructure is commonly investigated nowadays. It was found that the high strain rates activate deformation in shear bands, microbands and adiabatic shear bands. It was observed that bands were places of the nucleation of nanograins in the material deformed by SPD methods. In the work, the refinement of microstructure of the aluminium alloys influenced by the high strain rate was investigated. The samples were compressed by a specially designed hammer to the deformation of phi= 0/0.62 with the strain rate in the range of [Formula in text]. The highest reduction of microbands width with the increase of the strain was found in the AlCu4Zr alloy. The influence of the strain rate on the microstructure refinement indicated that the increase of the strain rate caused the reduction of the microbands width in the all investigated materials (Al99.5, AlCu4Zr, AlMg5, AlZn6Mg2.5CuZr). A characteristic feature of the microstructure of the compressed material was large density of the shear bands and microbands. It was found that the microbands show a large misorientation to the surrounds and, except Al99.5, the large density of dislocation.

  5. Effect of high strain rates on peak stress in a Zr-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Sunny, George; Yuan, Fuping; Prakash, Vikas; Lewandowski, John

    2008-11-01

    The mechanical behavior of Zr41.25Ti13.75Cu12.5Ni10Be22.5 (LM-1) has been extensively characterized under quasistatic loading conditions; however, its mechanical behavior under dynamic loading conditions is currently not well understood. A Split-Hopkinson pressure bar (SHPB) and a single-stage gas gun are employed to characterize the mechanical behavior of LM-1 in the strain-rate regime of 102-105/s. The SHPB experiments are conducted with a tapered insert design to mitigate the effects of stress concentrations and preferential failure at the specimen-insert interface. The higher strain-rate plate-impact compression-and-shear experiments are conducted by impacting a thick tungsten carbide (WC) flyer plate with a sandwich sample comprising a thin bulk metallic glass specimen between two thicker WC target plates. Specimens employed in the SHPB experiments failed in the gage-section at a peak stress of approximately 1.8 GPa. Specimens in the high strain-rate plate-impact experiments exhibited a flow stress in shear of approximately 0.9 GPa, regardless of the shear strain-rate. The flow stress under the plate-impact conditions was converted to an equivalent flow stress under uniaxial compression by assuming a von Mises-like material behavior and accounting for the plane strain conditions. The results of these experiments, when compared to the previous work conducted at quasistatic loading rates, indicate that the peak stress of LM-1 is essentially strain rate independent over the strain-rate range up to 105/s.

  6. Constitutive Equation and Hot Compression Deformation Behavior of Homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr Alloy

    PubMed Central

    He, Jianliang; Zhang, Datong; Zhang, Weiweng; Qiu, Cheng; Zhang, Wen

    2017-01-01

    The deformation behavior of homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr alloy has been studied by a set of isothermal hot compression tests, which were carried out over the temperature ranging from 350 °C to 450 °C and the strain rate ranging from 0.001 s−1 to 10 s−1 on Gleeble-3500 thermal simulation machine. The associated microstructure was studied using electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results showed that the flow stress is sensitive to strain rate and deformation temperature. The shape of true stress-strain curves obtained at a low strain rate (≤0.1 s−1) conditions shows the characteristic of dynamic recrystallization (DRX). Two Arrhenius-typed constitutive equation without and with strain compensation were established based on the true stress-strain curves. Constitutive equation with strain compensation has more precise predictability. The main softening mechanism of the studied alloy is dynamic recovery (DRV) accompanied with DRX, particularly at deformation conditions, with low Zener-Holloman parameters. PMID:29057825

  7. Microstructural Evolution and Constitutive Relationship of M350 Grade Maraging Steel During Hot Deformation

    NASA Astrophysics Data System (ADS)

    Chakravarthi, K. V. A.; Koundinya, N. T. B. N.; Narayana Murty, S. V. S.; Nageswara Rao, B.

    2017-03-01

    Maraging steels exhibit extraordinary strength coupled with toughness and are therefore materials of choice for critical structural applications in defense, aerospace and nuclear engineering. Thermo-mechanical processing is an important step in the manufacture of these structural components. This process assumes significance as these materials are expensive and the mechanical properties obtained depend on the microstructure evolved during thermo-mechanical processing. In the present study, M350 grade maraging steel specimens were hot isothermally compressed in the temperature range of 900-1200 °C and in the strain rate range of 0.001-100 s-1, and true stress-true strain curves were generated. The microstructural evolution as a function of strain rate and temperature in the deformed compression specimens was studied. The effect of friction between sample and compression dies was evaluated, and the same was found to be low. The measured flow stress data was used for the development of a constitutive model to represent the hot deformation behavior of this alloy. The proposed equation can be used as an input in the finite element analysis to obtain the flow stress at any given strain, strain rate, and temperature useful for predicting the flow localization or fracture during thermo-mechanical simulation. The activation energy for hot deformation was calculated and is found to be 370.88 kJ/mol, which is similar to that of M250 grade maraging steel.

  8. Determination of friction coefficient in unconfined compression of brain tissue.

    PubMed

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Viscoplastic deformations and compressive damage in an A359/SiC{sub p} metal-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ramesh, K.T.; Chin, E.S.C.

    2000-04-19

    Recent work by the authors has examined the high-strain-rate compression of a metal-matrix composite consisting of an A359 Al alloy matrix reinforced by 20 vol.% of silicon carbide particulates (SiC{sub p}). The work-hardening that is observed in the experiments is much lower than that predicted by analytical and computational models which assume perfect particle-matrix interfaces and undamaged particles. In this work, the authors show that the discrepancy is a result of particle damage that develops within the A359/SiC{sub p} composite under compression. The evolution of particle damage has been characterized using quantitative microscopy, and is shown to be a functionmore » of the applied strain. A simple analytical model that incorporates evolving damage within the composite is proposed, and it is shown that the analytical predictions are consistent with the experimental observations over a wide range of strain rates.« less

  10. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    NASA Astrophysics Data System (ADS)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-06-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  11. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    NASA Astrophysics Data System (ADS)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-02-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  12. Flow Stress and Processing Map of a PM 8009Al/SiC Particle Reinforced Composite During Hot Compression

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Teng, Jie; Chen, Shuang; Wang, Yu; Zhang, Hui

    2017-10-01

    Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s-1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s-1 by combining the processing map with microstructural observation.

  13. Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression

    PubMed Central

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-01-01

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01 s−1–1 s−1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot. PMID:29547570

  14. Experimental study on dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Ye, Nan; Huang, Wei; Li, Dacheng

    2017-01-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compressive and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D Digital Image Correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates in both dynamic compression and tension tests. The same phenomenon was similar to elasticity modulus at different strain rate. A constitutive model was used to describe the mechanical behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method.

  15. Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties

    NASA Astrophysics Data System (ADS)

    Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.

    A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.

  16. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei

    2016-06-01

    A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.

  17. Spatial Distribution of Amorphization Intensity in Boron Carbide During Rate-Dependent Indentation and Impact Processes

    NASA Astrophysics Data System (ADS)

    Parsard, Gregory G.

    Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.

  18. Simulation of Thermo-viscoplastic Behaviors for AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Li, Hong-Bin; Feng, Yun-Li

    2016-04-01

    The thermo-viscoplastic behaviors of AISI 4140 steel are investigated over wide ranges of strain rate and deformation temperature by isothermal compression tests. Based on the experimental results, a unified viscoplastic constitutive model is proposed to describe the hot compressive deformation behaviors of the studied steel. In order to reasonably evaluate the work hardening behaviors, a strain hardening material constant (h0) is expressed as a function of deformation temperature and strain rate in the proposed constitutive model. Also, the sensitivity of initial value of internal variable s to the deformation temperature is discussed. Furthermore, it is found that the initial value of internal variable s can be expressed as a linear function of deformation temperature. Comparisons between the measured and predicted results confirm that the proposed constitutive model can give an accurate and precise estimate of the inelastic stress-strain relationships for the studied high-strength steel.

  19. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: A study with simultaneous in situ synchrotron x-ray imaging and diffraction

    DOE PAGES

    Lu, L.; Huang, J. W.; Fan, D.; ...

    2016-08-29

    In situ synchrotron x-ray imaging and diffraction are used to investigate anisotropic deformation of an extruded magnesium alloy AZ31 under uniaxial compression along two different directions, with the loading axis (LA) either parallel or perpendicular to the extrusion direction (ED), referred to as LA∥ED and LAED, respectively. Multiscale measurements including stress–strain curves (macroscale), x-ray digital image correlation (mesoscale), and diffraction (microscale) are obtained simultaneously. Electron backscatter diffraction is performed on samples collected at various strains to characterize deformation twins. The rapid increase in strain hardening rate for the LA∥ED loading is attributed to marked {101¯2} extension twinning and subsequent homogenizationmore » of deformation, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate.« less

  20. Phenomenological study of a cellular material behaviour under dynamic loadings

    NASA Astrophysics Data System (ADS)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  1. Carbon nanofiber reinforced epoxy matrix composites and syntactic foams - mechanical, thermal, and electrical properties

    NASA Astrophysics Data System (ADS)

    Poveda, Ronald Leonel

    The tailorability of composite materials is crucial for use in a wide array of real-world applications, which range from heat-sensitive computer components to fuselage reinforcement on commercial aircraft. The mechanical, electrical, and thermal properties of composites are highly dependent on their material composition, method of fabrication, inclusion orientation, and constituent percentages. The focus of this work is to explore carbon nanofibers (CNFs) as potential nanoscale reinforcement for hollow particle filled polymer composites referred to as syntactic foams. In the present study, polymer composites with high weight fractions of CNFs, ranging from 1-10 wt.%, are used for quasi-static and high strain rate compression analysis, as well as for evaluation and characterization of thermal and electrical properties. It is shown that during compressive characterization of vapor grown carbon nanofiber (CNF)/epoxy composites in the strain rate range of 10-4-2800 s-1, a difference in the fiber failure mechanism is identified based on the strain rate. Results from compression analyses show that the addition of fractions of CNFs and glass microballoons varies the compressive strength and elastic modulus of epoxy composites by as much as 53.6% and 39.9%. The compressive strength and modulus of the syntactic foams is also shown to generally increase by a factor of 3.41 and 2.96, respectively, with increasing strain rate when quasi-static and high strain rate testing data are compared, proving strain rate sensitivity of these reinforced composites. Exposure to moisture over a 6 month period of time is found to reduce the quasi-static and high strain rate strength and modulus, with a maximum of 7% weight gain with select grades of CNF/syntactic foam. The degradation of glass microballoons due to dealkalization is found to be the primary mechanism for reduced mechanical properties, as well as moisture diffusion and weight gain. In terms of thermal analysis results, the coefficient of thermal expansion (CTE) of CNF/epoxy and CNF/syntactic foam composites reinforced with glass microballoons decrease by as much as 11.6% and 38.4%. The experimental CTE values for all of the composites also fit within the bounds of established analytical models predicting the CTE of fiber and particle-reinforced composites. Further thermal studies through dynamic mechanical analysis demonstrated increased thermal stability and damping capability, where the maximum use and glass transition temperatures increase as much as 27.1% and 25.0%, respectively. The electrical properties of CNF reinforced composites are evaluated as well, where the electrical impedance decreases and the dielectric constant increases with addition of CNFs. Such behavior occurs despite the presence of epoxy and glass microballoons, which serve as insulative phases. Such results are useful in design considerations of lightweight composite materials used in weight saving, compressive strength, and damage tolerance applications, such as lightweight aircraft structure reinforcement, automobile components, and buoyancy control with marine submersibles. The results of the analyses have also evaluated certain factors for environmental exposure and temperature extremes, as well as considerations for electronics packaging, all of which have also played a role in shaping avant-garde composite structure designs for efficient, versatile, and long-life service use.

  2. High Strain Rate and Shock-Induced Deformation in Metals

    NASA Astrophysics Data System (ADS)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as results from density functional theory calculations.

  3. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) - an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  4. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  5. Simultaneous multiscale measurements on dynamic deformation of a magnesium alloy with synchrotron x-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Sun, T.; Fezzaa, K.

    Dynamic split Hopkinson pressure bar experiments with in situ synchrotron x-ray imaging and diffraction are conducted on a rolled magnesium alloy at high strain rates of ~5500 s-1. High speed multiscale measurements including stress–strain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously, revealing strong anisotropy in deformation across different length scales. {1012} extension twinning induces homogenized strain fields and gives rise to rapid increase in strain hardening rate, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate. During the early stage of plastic deformation, twinning is dominant in dynamic compression, whilemore » dislocation motion prevails in quasi-static loading, manifesting a strain-rate dependence of deformation.« less

  6. Analysis of Clinicians' Perceptual Cough Evaluation.

    PubMed

    Laciuga, Helena; Brandimore, Alexandra E; Troche, Michelle S; Hegland, Karen W

    2016-08-01

    This study examined the relationships between subjective descriptors and objective airflow measures of cough. We hypothesized that coughs with specific airflow characteristics would share common subjective perceptual descriptions. Thirty clinicians (speech-language pathologists, otolaryngologists, and neurologists) perceptually evaluated ten cough audio samples with specific airflow characteristics determined by peak expiratory flow rate, cough expired volume, cough duration, and number of coughs in the cough epoch. Participants rated coughs by strength, duration, quality, quantity, and overall potential effectiveness for airway protection. Perception of cough strength and effectiveness was determined by the combination of presence of pre-expulsive compression phase, short peak expiratory airflow rate rise time, high peak expiratory flow rates, and high cough volume acceleration. Perception of cough abnormality was defined predominantly by descriptors of breathiness and strain. Breathiness was characteristic for coughs with either absent compression phases and relatively high expiratory airflow rates or coughs with significantly low expired volumes and reduced peak flow rates. In contrast, excessive strain was associated with prolonged compression phases and low expiratory airflow rates or the absence of compression phase with high peak expiratory rates. The study participants reached greatest agreement in distinguishing between single and multiple coughs. Their assessment of cough strength and effectiveness was less consistent. Finally, the least agreement was shown in determining the quality categories. Modifications of cough airflow can influence perceptual cough evaluation outcomes. However, the inconsistency of cough ratings among our participants suggests that a uniform cough rating system is required.

  7. Unusual plasticity and strength of metals at ultra-short load durations

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Ashitkov, S. I.; Fortov, V. E.

    2017-08-01

    This paper briefly reviews recent experimental results on the temperature-rate dependences of flow and fracture stresses in metals under high strain rate conditions for pulsed shock-wave loads with durations from tens of picoseconds up to microseconds. In the experiments, ultimate (‘ideal’) values of the shear and tensile strengths have been approached and anomalous growth of the yield stress with temperature at high strain rates has been confirmed for some metals. New evidence is obtained for the intense dislocation multiplication immediately originating in the elastic precursor of a compression shock wave. It is found that under these conditions inclusions and other strengthening factors may have a softening effect. Novel and unexpected features are observed in the evolution of elastoplastic compression shock waves.

  8. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2013-10-01

    mechanical loading (months 6-18): 2a. Strain gage analysis of bone strain during tibial compression (months 6-7) 2b. Capsaicin or vehicle treatment...of neonatal mice (months 6-8) 2c. Tibial compression of capsaicin- and vehicle-injected mice (months 8-10) 2d. Micro-computed tomography of mouse...the endosteal and periosteal surfaces. Capsaicin treatment altered bone formation rate parameters in the tibias of treated mice (Table 2). There

  9. Strain-rate dependence of ramp-wave evolution and strength in tantalum

    DOE PAGES

    Lane, J. Matthew D.; Foiles, Stephen M.; Lim, Hojun; ...

    2016-08-25

    We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 10 11 down to 10 8 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. Wemore » show good overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. As a result, this enhanced elastic response is less pronounced at higher pressures and at lower strain rates.« less

  10. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

    NASA Astrophysics Data System (ADS)

    Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.

    2018-02-01

    This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.

  11. Constitutive Behavior and Processing Map of T2 Pure Copper Deformed from 293 to 1073 K

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xiong, Wei; Yang, Qing; Zeng, Ji-Wei; Zhu, Wen; Sunkulp, Goel

    2018-02-01

    The deformation behavior of T2 pure copper compressed from 293 to 1073 K with strain rates from 0.01 to 10 s-1 was investigated. The constitutive equations were established by the Arrhenius constitutive model, which can be expressed as a piecewise function of temperature with two sections, in the ranges 293-723 K and 723-1073 K. The processing maps were established according to the dynamic material model for strains of 0.2, 0.4, 0.6, and 0.8, and the optimal processing parameters of T2 copper were determined accordingly. In order to obtain a better understanding of the deformation behavior, the microstructures of the compressed samples were studied by electron back-scattered diffraction. The grains tend to be more refined with decreases in temperature and increases in strain rate.

  12. Modeling the Flow Behavior, Recrystallization, and Crystallographic Texture in Hot-Deformed Fe-30 Wt Pct Ni Austenite

    NASA Astrophysics Data System (ADS)

    Abbod, M. F.; Sellars, C. M.; Cizek, P.; Linkens, D. A.; Mahfouf, M.

    2007-10-01

    The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s-1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s-1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.

  13. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  14. A High Strain-Rate Investigation of a Zr-Based Bulk Metallic Glass and an HTPB Polymer Composite

    DTIC Science & Technology

    2011-03-01

    95 8. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791-796. 9...Letters 45, 615-616. 59. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791

  15. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy

    PubMed Central

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-01-01

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al4Sr and Al2Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress–strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al4Sr phases and spheroidal Al2Y particles, which can accelerate the nucleation. The continuous Al4Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion. PMID:29522473

  16. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy.

    PubMed

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-03-09

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al₄Sr and Al₂Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress-strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al₄Sr phases and spheroidal Al₂Y particles, which can accelerate the nucleation. The continuous Al₄Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  17. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    PubMed Central

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  18. Poroelastic mechanical effects of hemicelluloses on cellulosic hydrogels under compression.

    PubMed

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R; Gidley, Michael J

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials.

  19. Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains

    NASA Astrophysics Data System (ADS)

    Ding, Zong-ye; Hu, Qiao-dan; Zeng, Long; Li, Jian-guo

    2016-11-01

    Isothermal hot compression tests of as-cast high-Cr ultra-super-critical (USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s-1. The softening mechanism was dynamic recovery (DRV) at 950°C and the strain rate of 1 s-1, whereas it was dynamic recrystallization (DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ•mol-1. The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate ( θ)-flow stress ( σ) and -∂ θ/∂ σ-σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s-1, with a power dissipation efficiency η greater than 31%.

  20. Strain energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1983-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 2 and mode 2 strain energy release rates G sub/1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth apparently was due to a large value of G sub 2.

  1. Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgari, H., E-mail: hamed.asgari@usask.ca; Odeshi, A.G.; Szpunar, J.A.

    2015-08-15

    The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found tomore » decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.« less

  2. Characterization of Mechanical Damage Mechanisms in Ceramic and Polymeric Matrix Composite Materials

    DTIC Science & Technology

    1991-11-01

    microplasticity is a vital factor in the compressive failure of even these very hard materials under essentially all conditions (temperature, strain rate...OF CONTENTS Pag= The Compressive Strength of Strong Ceramics: Microplasticity Versus 1 Microfracture Abstract 1 1. Introduction 2 2. Hardness 3 3...Acknowledgements 51 References 51 COATVANOORD1 24-91CDXC 11. LIST OF FIGURES Figure Page The Compressive Strength of Strong Ceramics: Microplasticity Versus

  3. Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel

    NASA Astrophysics Data System (ADS)

    Suarez, L.; Vanden Eynde, X.; Lamberigts, M.; Houbaert, Y.

    2007-04-01

    An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 μm) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050°C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050°C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050°C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.

  4. Microstructure and critical strain of dynamic recrystallization of 6082 aluminum alloy in thermal deformation

    NASA Astrophysics Data System (ADS)

    Ren, W. W.; Xu, C. G.; Chen, X. L.; Qin, S. X.

    2018-05-01

    Using high temperature compression experiments, true stress true strain curve of 6082 aluminium alloy were obtained at the temperature 460°C-560°C and the strain rate 0.01 s-1-10 s-1. The effects of deformation temperature and strain rate on the microstructure are investigated; (‑∂lnθ/∂ε) ‑ ε curves are plotted based on σ-ε curve. Critical strains of dynamic recrystallization of 6082 aluminium alloy model were obtained. The results showed lower strain rates were beneficial to increase the volume fraction of recrystallization, the average recrystallized grain size was coarse; High strain rates are beneficial to refine average grain size, the volume fraction of dynamic recrystallized grain is less than that by using low strain rates. High temperature reduced the dislocation density and provided less driving force for recrystallization so that coarse grains remained. Dynamic recrystallization critical strain model and thermal experiment results can effectively predict recrystallization critical point of 6082 aluminium alloy during thermal deformation.

  5. Study on Mechanical Properties of Barite Concrete under Impact Load

    NASA Astrophysics Data System (ADS)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  6. Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis

    2015-09-01

    The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.

  7. Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.

    PubMed

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-03-21

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.

  8. Large Strain Behaviour of ZEK100 Magnesium Alloy at Various Strain Rates

    NASA Astrophysics Data System (ADS)

    Lévesque, Julie; Kurukuri, Srihari; Mishra, Raja; Worswick, Michael; Inal, Kaan

    A constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate large strain deformation in hexagonal closed-packed metals that deform by slip and twinning. The model allows the twinned zones and the parent matrix to rotate independently. ZEK100 magnesium alloy sheets which significant texture weakening compared to AZ31 sheets are investigated using the model. There is considerable in-plane anisotropy and tension compression asymmetry in the flow behavior of ZEK100. Simulations of uniaxial tension in different directions at various strain rates and the accompanying texture evolution are performed and they are in very good agreement with experimental measurements. The effect of strain rate on the activation of the various slip systems and twinning show that differences in the strain rate dependence of yield stress and Rvalues in ZEK100 have their origin in the activation of different deformation mechanisms.

  9. Present-day crustal motion around eastern margin of the Pamir plateau from GPS measurements

    NASA Astrophysics Data System (ADS)

    Pan, Z.; He, J.; Zhou, Y.; Wang, W.

    2017-12-01

    The Pamir plateau is featured mainly by northward convex thrust faults in its center and by strike-slip faults on its western and eastern sides. To better describe the deformation pattern of the Pamir plateau, a new campaign-mode GPS network has been deployed with 18 stations around the boundary between the Pamir and the Tarim since 2012. The network has been surveyed 3 times, and each site has been surveyed for at least 48 hours with Trimble NetR8 receivers and zephyr geodetic antennas. By combining the nearest Continuous GPS sites (GUAO KIT3 POL2 CHUM URUM ARTU BJFS IISC IRKT LHAZ SHAO ULAB WUHN YIBL), we then processed the observing data with GAMIT/GLOBK software to obtain the velocity field of the network. Results show that, unlike the western margin of the Pamir plateau where significant ( 9mm/yr) left-lateral motion between the Tajik basin and the Pamir was observed, the eastern margin between the Pamir and the Tarim exists negligible strike-slip motion along the boundary. However, perpendicular to the Pamir-Tarim boundary, we observed clearly coeval extension and compression strain across this boundary. By calibrating the strain distribution and the simplified structure profiles, it can be seen that the extension rate locates mainly around the Tashkurghan basin; while the compression strain around the Tashkurghan basin and the Tarim basin. We also predicted that among the total strain rate, the extension rate is about 4-6mm/yr and the compression rate about 2-3mm/yr. This suggests that the general tectonic stress across the eastern margin of the Pamir plateau is extension, in agreement with previous result of anti-clockwise rotation of the Pamir. Finally, the possible mechanics on co-existence of extension and compression along same direction has been discussed by building a two-dimensional viscoelastic finite model.

  10. Experimental investigation of time dependent behavior of welded Topopah Spring Tuff

    NASA Astrophysics Data System (ADS)

    Ma, Lumin

    Four types of laboratory tests have been performed. Specimens were attained from four lithophysal zones of the welded Topopah Spring Tuff unit at Yucca Mountain, Nevada: upper lithophysal, middle nonlithophysal, lower lithophysal and lower nonlithophysal zones. Two types of tests are conducted to study time-dependent behavior: constant strain rate and creep tests. Sixty-five specimens from the middle nonlithophysal zone were tested at six strain rates: 10-2, 10-4, 10-5, 10-6, 10-7, and 10-8 s-1. Test durations range from 2 seconds to 7 days. Fourteen specimens from middle nonlithophysal, lower lithophysal and lower nonlithophysal zones are creep tested by incremental stepwise loading. All the tests are conducted under uniaxial compression at room temperature and humidity. Specimens exhibit extremely brittle fracture and fail by axial splitting, and show very little dilatancy if any. It is assumed that microfracturing dominates the inelastic deformation and failure of the tuff. Nonlinear regression is applied to the results of the constant strain rate tests to estimate the relations between peak strength, peak axial strain, secant modulus and strain rate. All three these parameters decrease with a decrease of strain rate and follow power functions: sigmapeak = 271.37 3˙0.0212 0.0212, epsilonpeak = 0.006 3˙0.0083 , ES = 41985.4 3˙0.015 . Secant modulus is introduced mainly as a tool to analyze strain rate dependent axial strain. Two threshold stresses define creep behavior. Below about 50% of peak strength, a specimen does not creep. Above about 94% of peak strength, a specimen creeps at an accelerating rate. Between the two threshold stresses, a power law relates strain rate and stress. One hundred fifty-eight Brazilian (Indirect tensile splitting) tests have been performed at six different constant strain rates. Nineteen lithophysal specimens were tested in uniaxial compression to study their fracture pattern. These specimens have a far less brittle failure mode. They slowly crumble, collapse, and maintain considerable relative strength beyond the peak. Due to the presence of multiple relatively large lithophysal cavities, they are far weaker and softer than the nonlithophysal specimens.

  11. Elasticity of excised dog lung parenchyma

    NASA Technical Reports Server (NTRS)

    Vawter, D. L.; Fung, Y. C.; West, J. B.

    1978-01-01

    An optical-electromechanical system is used to measure the force-deformation behavior of biaxially loaded rectangular slabs of excised dog lung parenchyma. In the course of the study, the effects of time, the consistency of reference lengths and areas, the presence of hysteresis, the necessity of preconditioning, the repeatability of results, the effects of lateral load, the effect of strain rate, the effect of pH, the influence of temperature, and the variations among specimens are considered. A new finding is that there is a change in elastic behavior when the tissue undergoes a compressive strain. When the tissue is in tension, increasing the lateral load decreases the compliance, whereas the opposite is true when compressive strain is present.

  12. Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas

    2006-01-01

    We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.

  13. A Modified Split Hopkinson Pressure Bar Approach for Mimicking Dynamic Oscillatory Stress Fluctuations During Earthquake Rupture

    NASA Astrophysics Data System (ADS)

    Braunagel, M. J.; Griffith, W. A.

    2017-12-01

    Past experimental work has demonstrated that rock failure at high strain rates occurs by fragmentation rather than discrete fracture and is accompanied by a dramatic increase in rock strength. However, these observations are difficult to reconcile with the assertion that pulverized rocks in fault zones are the product of impulsive stresses during the passage of earthquake ruptures, as the distance from the principal slip zones of some pulverized rock is too great to exceed fragmentation transition. One potential explanation to this paradox that has been suggested is that repeated loading over the course of multiple earthquake ruptures may gradually reduce the pulverization threshold, in terms of both strain rate and strength. We propose that oscillatory loading during a single earthquake rupture may further lower these pulverization thresholds, and that traditional dynamic experimental approaches, such as the Split Hopkinson Pressure Bar (SHPB) wherein load is applied as a single, smooth, sinusoidal compressive wave, may not reflect natural loading conditions. To investigate the effects of oscillatory compressive loading expected during earthquake rupture propagation, we develop a controlled cyclic loading model on a SHPB apparatus utilizing two striker bars connected by an elastic spring. Unlike traditional SHPB experiments that utilize a gas gun to fire a projectile bar and generate a single compressive wave on impact with the incident bar, our modified striker bar assembly oscillates while moving down the gun barrel and generates two separate compressive pulses separated by a lag time. By modeling the modified assembly as a mass-spring-mass assembly accelerating due to the force of the released gas, we can predict the compression time of the spring upon impact and therefore the time delay between the generation of the first and second compressive waves. This allows us to predictably control load cycles with durations of only a few hundred microseconds. Initial experimental results demonstrate that fragmentation of Westerly Granite samples occurs at lower stresses and strain rates than those expected from traditional SHPB experiments.

  14. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 2: NASA 1.1, Glidcop, and sputtered copper alloys

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for five advance copper-base alloys: Sputtered Zr-Cu as received, sputtered Zr-Cu heat-treated, Glidcop AL-10, and NASA alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 C using an axial strain rate of 0.002/sec. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538C using an axial strain rate of 0.002/sec to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. It was found that the fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatique life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/sec was evaluated along with the effect of strain rates of 0.0004 and 0.01/sec at 538 C. Hold-time data are reported for the NASA 1-1B alloy at 538 C using 5 minute hold periods in tension only and compression only at two different strain range values. Hold periods in tension were much more detrimental than hold periods in compression.

  15. Mechanical property determination of high conductivity metals and alloys

    NASA Technical Reports Server (NTRS)

    Harrod, D. L.; Vandergrift, E.; France, L.

    1973-01-01

    Pertinent mechanical properties of three high conductivity metals and alloys; namely, vacuum hot pressed grade S-200E beryllium, OFHC copper and beryllium-copper alloy no. 10 were determined. These materials were selected based on their possible use in rocket thrust chamber and nozzle hardware. They were procured in a form and condition similar to that which might be ordered for actual hardware fabrication. The mechanical properties measured include (1) tension and compression stress strain curves at constant strain rate (2) tensile and compressive creep, (3) tensile and compressive stress-relaxation behavior and (4) elastic properties. Tests were conducted over the temperature range of from 75 F to 1600 F. The resulting data is presented in both graphical and tabular form.

  16. High-rate deformation and fracture of steel 09G2S

    NASA Astrophysics Data System (ADS)

    Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.

    2014-11-01

    The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.

  17. Longitudinal compressive behaviour of 3D braided composite under various temperatures and strain rates

    NASA Astrophysics Data System (ADS)

    Pan, Zhongxiang; Gu, Bohong; Sun, Baozhong

    2015-03-01

    This paper reports the longitudinal compressive behaviour of 3D braided basalt fibre tows/epoxy composite materials under strain-rate range of 1,200-2,400 s-1 and temperature range of 23-210 °C both in experimental and finite element analyses (FEA). A split Hopkinson pressure bar system with a heating device was designed to test the longitudinal compressive behaviour of 3D braided composite materials. Testing results indicate that longitudinal compression modulus, specific energy absorption and peak stress decreased with elevated temperatures, whereas the failure strain increased with elevated temperatures. At some temperatures above the T g of epoxy resin, such as at 120 and 150 °C, strain distributions and deformations in fibre tows and epoxy resin tended to be the same. It results in relatively slighter damage status of the 3D braided composite material. The FEA results reveal that heating of the material due to the dissipative energy of the inelastic deformation and damage processes generated in resin is more than that in fibre tows. The braiding structure has a significant influence on thermomechanical failure via two aspects: distribution and accumulation of the heating leads to the development of the shear band paths along braiding angle; the buckling inflection segment rather than the straight segment generates the maximum of the heating in each fibre tows. The damage occurs at the early stage when the temperature is below T g, while at the temperature above T g, damage stage occurs at the rear of plastic deformation.

  18. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales.

    PubMed

    Loveridge-Smith, A; Allen, A; Belak, J; Boehly, T; Hauer, A; Holian, B; Kalantar, D; Kyrala, G; Lee, R W; Lomdahl, P; Meyers, M A; Paisley, D; Pollaine, S; Remington, B; Swift, D C; Weber, S; Wark, J S

    2001-03-12

    We have used x-ray diffraction with subnanosecond temporal resolution to measure the lattice parameters of orthogonal planes in shock compressed single crystals of silicon (Si) and copper (Cu). Despite uniaxial compression along the (400) direction of Si reducing the lattice spacing by nearly 11%, no observable changes occur in planes with normals orthogonal to the shock propagation direction. In contrast, shocked Cu shows prompt hydrostaticlike compression. These results are consistent with simple estimates of plastic strain rates based on dislocation velocity data.

  19. Modeling the Nonlinear, Strain Rate Dependent Deformation of Woven Ceramic Matrix Composites With Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites with a plain weave fiber architecture. In the developed model, the differences in the tension and compression response have also been considered. State variable based viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear stiffness is independent of the stiffness in the normal directions. The developed equations have been implemented into a commercially available transient dynamic finite element code, LS-DYNA, through the use of user defined subroutines (UMATs). The tensile, compressive, and shear deformation of a representative plain weave woven ceramic matrix composite are computed and compared to experimental results. The computed values correlate well to the experimental data, demonstrating the ability of the model to accurately compute the deformation response of woven ceramic matrix composites.

  20. Static vs dynamic loads as an influence on bone remodelling.

    PubMed

    Lanyon, L E; Rubin, C T

    1984-01-01

    Remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulnar preparation consisted of the 110mm section of the bone shaft between two submetaphyseal osteotomies. Each end of the preparation was transfixed by a stainless steel pin and the shaft either protected from normal functional loading with the pins joined by external fixators, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression for a single 100s period per day by engaging the pins in an Instron machine. Similar loads (525 N) were used in both static and dynamic cases. The strains engendered were determined by strain gauges, and at their maximum around the bone's midshaft were -0.002. The intermittent load was applied at a frequency of 1 Hz as a ramped square wave, with a rate of change of strain during the ramp of 0.01 s-1. Peak strain at the midshaft of the ulna during wing flapping in the intact bone was recorded from bone bonded strain gauges in vivo as -0.0033 with a maximum rate of change of strain of 0.056 s-1. Examination of bone sections from the midpoint of the preparation after an 8 week period indicated that in both non-loaded and statically loaded bones there was an increase in both endosteal diameter and intra cortical porosity. These changes produced a decrease in cross sectional area which was similar in the two groups (-13%).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xuan

    To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2,more » respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.« less

  2. Investigating coseismic fracture damage using a new high speed triaxial apparatus

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Aben, F. M.; Pricci, R.; Brantut, N.; Rockwell, T. K.; Boon, S.

    2017-12-01

    The occurence of pulverized rocks, a type of intensely damaged fault rock which has undergone minimal shear strain, has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. While the physical mechanisms for pulverized rock generation are still not yet fully understood, it is likely that they are in some way related to a combination of the dynamic compressive and tensional stresses imparted on the rock surrounding a fault at the tip of a propagating earthquake rupture. Typical triaxial rock deformation apparatuses are limited by their loading systems to strain rates on the order of 10-4 s-1, which in terms of the seismic cycle, is only applicable to processes operating within the inter-seismic period. In order to achieve strain rates in excess of 100 s-1 under confined conditions with pore fluids (currently unachievable with conventional deformation apparatus such as split bar Hopkinson), we have designed, manufactured and constructed a new high strain rate triaxial rock deformation apparatus, with a unique innovative hydraulic loading system that allows samples to be deformed in compression and tension at strain rates from 10-7 up to 200 s-1 . We present preliminary data demonstrating the unique capability of this apparatus to produce co-seismic experimental conditions not previously acheived.

  3. Modeling constitutive behavior of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel under hot compression using artificial neural network

    NASA Astrophysics Data System (ADS)

    Mandal, Sumantra

    2006-11-01

    ABSTRACT In this paper, an artificial neural network (ANN) model has been suggested to predict the constitutive flow behavior of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel under hot deformation. Hot compression tests in the temperature range 850°C- 1250°C and strain rate range 10-3-102 s-1 were carried out. These tests provided the required data for training the neural network and for subsequent testing. The inputs of the neural network are strain, log strain rate and temperature while flow stress is obtained as output. A three layer feed-forward network with ten neurons in a single hidden layer and back-propagation learning algorithm has been employed. A very good correlation between experimental and predicted result has been obtained. The effect of temperature and strain rate on flow behavior has been simulated employing the ANN model. The results have been found to be consistent with the metallurgical trend. Finally, a monte carlo analiysis has been carried out to find out the noise sensitivity of the developed model.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model wasmore » developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.« less

  5. The failure of brittle materials under overall compression: Effects of loading rate and defect distribution

    NASA Astrophysics Data System (ADS)

    Paliwal, Bhasker

    The constitutive behaviors and failure processes of brittle materials under far-field compressive loading are studied in this work. Several approaches are used: experiments to study the compressive failure behavior of ceramics, design of experimental techniques by means of finite element simulations, and the development of micro-mechanical damage models to analyze and predict mechanical response of brittle materials under far-field compression. Experiments have been conducted on various ceramics, (primarily on a transparent polycrystalline ceramic, aluminum oxynitride or AlON) under loading rates ranging from quasi-static (˜ 5X10-6) to dynamic (˜ 200 MPa/mus), using a servo-controlled hydraulic test machine and a modified compression Kolsky bar (MKB) technique respectively. High-speed photography has also been used with exposure times as low as 20 ns to observe the dynamic activation, growth and coalescence of cracks and resulting damage zones in the specimen. The photographs were correlated in time with measurements of the stresses in the specimen. Further, by means of 3D finite element simulations, an experimental technique has been developed to impose a controlled, homogeneous, planar confinement in the specimen. The technique can be used in conjunction with a high-speed camera to study the in situ dynamic failure behavior of materials under confinement. AlON specimens are used for the study. The statically pre-compressed specimen is subjected to axial dynamic compressive loading using the MKB. Results suggest that confinement not only increases the load carrying capacity, it also results in a non-linear stress evolution in the material. High-speed photographs also suggest an inelastic deformation mechanism in AlON under confinement which evolves more slowly than the typical brittle-cracking type of damage in the unconfined case. Next, an interacting micro-crack damage model is developed that explicitly accounts for the interaction among the micro-cracks in brittle materials. The model incorporates pre-existing defect distributions and a crack growth law. The damage is defined as a scalar parameter which is a function of the micro-crack density, the evolution of which is a function of the existing defect distribution and the crack growth dynamics. A specific case of a uniaxial compressive loading under constant strain-rate has been studied to predict the effects of the strain-rate, defect distribution and the crack growth dynamics on the constitutive response and failure behavior of brittle materials. Finally, the effects of crack growth dynamics on the strain-rate sensitivity of brittle materials are studied with the help of the micro-mechanical damage model. The results are compared with the experimentally observed damage evolution and the rate-sensitive behavior of the compressive strength of several engineering ceramics. The dynamic failure of armor-grade hot-pressed boron carbide (B 4C) under loading rates of ˜ 5X10-6 to 200 MPa/mus is also discussed.

  6. Creep of a Silicon Nitride Under Various Specimen/Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Powers, Lynn M.; Holland, Frederic A.; Gyekenyesi, John P.; Holland, F. A. (Technical Monitor)

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC132) was performed at 1300 C in air using five different specimen/loading configurations, including pure tension, pure compression, four-point uniaxial flexure, ball-on-ring biaxial flexure, and ring-on-ring biaxial flexure. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compressive loading, nominal creep strain generally decreased with time, resulting in less-defined steady-state condition. Of the four different creep formulations - power-law, hyperbolic sine, step, redistribution models - the conventional power-law model still provides the most convenient and reasonable means to estimate simple, quantitative creep parameters of the material. Predictions of creep deformation for the case of multiaxial stress state (biaxial flexure) were made based on pure tension and compression creep data by using the design code CARES/Creep.

  7. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed localized transverse compression at low loads (muN to mN) and small displacements (nm to a few mum). Force, strain, stiffness, and electrical resistance were monitored simultaneously during compression experiments. The results showed that CNT/CF possess a high sensing capability between force and resistance. Hysteresis in both force-displacement and resistance-displacement curves was observed with CNT/CF, but was more evident as maximum strain increased and did not depend on strain rate. Force was higher and resistance was lower during compression as compared to decompression. A model is proposed to explain hysteresis where van der Waals forces between deformed and entangled nanotubes hinder decompression of some of the compressed tubes that are in contact with each other. This study provides a new understanding of the mechanical and electrical behavior of CNT/CF that will facilitate usage as stress and strain sensors in both stand-alone and composite materials applications. A novel method for in situ observation of nano-micro scale CNT/CF mechanical behavior by SEM has been developed in this study. The results indicated that deformation of vertical aligned CNT (VACNT) forest followed a column-like bending mechanism under localized radial (axial) compression. No fracture was observed even at very high compression strain on a VACNT forest. In order to fully understand CNT forest properties, the viscous creep behavior of VACNT arrays grown on flat Si substrate has also been characterized using a nanoindentation method. Resulting creep response was observed to consist of a short transient stage and a steady state stage in which the rate of displacement was constant. The strain rate sensitivity depended on the density of the nanotube arrays, but it was independent of the ramping (compression) rate of the indenter.

  8. The Effect of Strain Rate on the Evolution of Plane Wakes Subjected to Irrotational Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of irrotational plane strain applied at three different strain rates have been generated. The strain geometry is such that the flow is compressed in the streamwise direction and expanded in the cross-stream direction with the spanwise direction being unstrained. This geometry is the temporally evolving analogue of a spatially evolving wake in an adverse pressure gradient. A pseudospectral numerical method with up to 16 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, Re, of about 2,000. Although the evolutions of many statistics are nearly collapsed when plotted against total strain, there are some differences owing to the different strain rate histories. The impact of strain-rate on the wake spreading rate, the peak velocity deficit, the Reynolds stress profiles, and the flow structure is examined.

  9. GPS-derived crustal deformation in Azerbaijan

    NASA Astrophysics Data System (ADS)

    Safarov, Rafig; Mammadov, Samir; Kadirov, Fakhraddin

    2017-04-01

    Crustal deformations of the Earth's crust in Azerbaijan were studied based on GPS measurements. The GPS velocity vectors for Azerbaijan, Iran, Georgia, and Armenia were used in order to estimate the deformation rates. It is found that compression is observable along the Greater Caucasus, in Gobustan, the Kura depression, Nakhchyvan Autonomous Republic, and adjacent areas of Iran. The axes of compression/contraction of the crust in the Greater Caucasus region are oriented in the S-NE direction. The maximum strain rate is observed in the zone of mud volcanism at the SHIK site (Shykhlar), which is marked by a sharp change in the direction of the compression axes (SW-NE). It is revealed that the deformation field also includes the zones where strain rates are very low. These zones include the Caspian-Guba and northern Gobustan areas, characterized by extensive development of mud volcanism. The extension zones are confined to the Lesser Caucasus and are revealed in the Gyadabei (GEDA) and Shusha (SHOU) areas. The analysis of GPS data for the territory of Azerbaijan and neighboring countries reveals the heterogeneous patterns of strain field in the region. This fact suggests that the block model is most adequate for describing the structure of the studied region. The increase in the number of GPS stations would promote increasing the degree of detail in the reconstructions of the deformation field and identifying the microplate boundaries.It is concluded that the predominant factor responsible for the eruption of mud volcanoes is the intensity of gasgeneration processes in the earth's interior, while deformation processes play the role of a trigger. The zone of the epicenters of strong earthquakes is correlated to the gradient zone in the crustal strain rates.

  10. Towards a damage tolerance philosophy for composite materials and structures

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin

    1990-01-01

    A damage-threshold/fail-safe approach is proposed to ensure that composite structures are both sufficiently durable for economy of operation, as well as adequately fail-safe or damage tolerant for flight safety. Matrix cracks are assumed to exist throughout the off-axis plies. Delamination onset is predicted using a strain energy release rate characterization. Delamination growth is accounted for in one of three ways: either analytically, using delamination growth laws in conjunction with strain energy release rate analyses incorporating delamination resistance curves; experimentally, using measured stiffness loss; or conservatively, assuming delamination onset corresponds to catastrophic delamination growth. Fail-safety is assessed by accounting for the accumulation of delaminations through the thickness. A tension fatigue life prediction for composite laminates is presented as a case study to illustrate how this approach may be implemented. Suggestions are made for applying the damage-threshold/fail-safe approach to compression fatigue, tension/compression fatigue, and compression strength following low velocity impact.

  11. Towards a damage tolerance philosophy for composite materials and structures

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1988-01-01

    A damage-threshold/fail-safe approach is proposed to ensure that composite structures are both sufficiently durable for economy of operation, as well as adequately fail-safe or damage tolerant for flight safety. Matrix cracks are assumed to exist throughout the off-axis plies. Delamination onset is predicted using a strain energy release rate characterization. Delamination growth is accounted for in one of three ways: either analytically, using delamination growth laws in conjunction with strain energy release rate analyses incorporating delamination resistance curves; experimentally, using measured stiffness loss; or conservatively, assuming delamination onset corresponds to catastrophic delamination growth. Fail-safety is assessed by accounting for the accumulation of delaminations through the thickness. A tension fatigue life prediction for composite laminates is presented as a case study to illustrate how this approach may be implemented. Suggestions are made for applying the damage-threshold/fail-safe approach to compression fatigue, tension/compression fatigue, and compression strength following low velocity impact.

  12. Material Properties Measurements for Selected Materials

    NASA Technical Reports Server (NTRS)

    Green, S. J.; Isbell, W. M.; Jones, A. H.; Maiden, C. J.; Perkins, R. D.; Shipman, F. H.

    1968-01-01

    Hugoniot equation of state measurements were made on Coconino sandstone, Vacaville basalt, Kaibab limestone, Mono Crater, pumice and Zelux (a polycarbonate resin) for pressures to 2 Mb. A single data point was obtained for fused quartz at 1.6 Mb. In addition to the hugoniot studies, the uniaxial compressive stress behavior of Vacaville basalt and Zelux was investigated at strain rates from about 10(exp -5)/sec to 10(exp 3)/second. The data presented include the stress - strain relations as a function of strain rate for these two materials.

  13. Plastic flow modeling in glassy polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, Brad

    2010-12-13

    Glassy amorphous and semi-crystalline polymers exhibit strong rate, temperature, and pressure dependent polymeric yield. As a rule of thumb, in uniaxial compression experiments the yield stress increases with the loading rate and applied pressure, and decreases as the temperature increases. Moreover, by varying the loading state itself complex yield behavior can be observed. One example that illustrates this complexity is that most polymers in their glassy regimes (i.e., when the temperature is below their characteristic glass transition temperature) exhibit very pronounced yield in their uniaxial stress stress-strain response but very nebulous yield in their uniaxial strain response. In uniaxial compression,more » a prototypical glassy-polymer stress-strain curve has a stress plateau, often followed by softening, and upon further straining, a hardening response. Uniaxial compression experiments of this type are typically done from rates of 10{sup -5} s{sup -1} up to about 1 s{sup -1}. At still higher rates, say at several thousands per second as determined from Split Hopkinson Pressure Bar experiments, the yield can again be measured and is consistent with the above rule of thumb. One might expect that that these two sets of experiments should allow for a successful extrapolation to yet higher rates. A standard means to probe high rates (on the order of 105-107 S-I) is to use a uniaxial strain plate impact experiment. It is well known that in plate impact experiments on metals that the yield stress is manifested in a well-defined Hugoniot Elastic Limit (HEL). In contrast however, when plate impact experiments are done on glassy polymers, the HEL is arguably not observed, let alone observed at the stress estimated by extrapolating from the lower strain rate experiments. One might argue that polymer yield is still active but somehow masked by the experiment. After reviewing relevant experiments, we attempt to address this issue. We begin by first presenting our recently developed glassy polymer model. While polymers are well known for their non-equilibrium deviatoric behavior we have found the need for incorporating both equilibrium and non-equilibrium volumetric behavior into our theory. Experimental evidence supporting the notion of non-equilibrium volumetric behavior will be summarized. Our polymer yield model accurately captures the stress plateau, softening and hardening and its yield stress predictions agree well with measured values for several glassy polymers including PMMA, PC, and an epoxy resin. We then apply our theory to plate impact experiments in an attempt to address the questions associated with high rate polymer yield in uniaxial strain configurations.« less

  14. Experimental observations and finite element analysis of the initiation of fiber microbuckling in notched composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.

  15. Large strain dynamic compression for soft materials using a direct impact experiment

    NASA Astrophysics Data System (ADS)

    Meenken, T.; Hiermaier, S.

    2006-08-01

    Measurement of strain rate dependent material data of low density low strength materials like polymeric foams and rubbers still poses challenges of a different kind to the experimental set up. For instance, in conventional Split Hopkinson Pressure Bar tests the impedance mismatch between the bars and the specimen makes strain measurement almost impossible. Application of viscoelastic bars poses new problems with wave dispersion. Also, maximum achievable strains and strain rates depend directly on the bar lengths, resulting in large experimental set ups in order to measure relevant data for automobile crash applications. In this paper a modified SHPB will be presented for testing low impedance materials. High strains can be achieved with nearly constant strain rate. A thin film stress measurement has been applied to the specimen/bar interfaces to investigate the initial sample ring up process. The process of stress homogeneity within the sample was investigated on EPDM and PU rubber.

  16. The Microstructural Evolution and Special Flow Behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr During Isothermal Compression at a Low Strain Rate

    NASA Astrophysics Data System (ADS)

    Sun, J. Z.; Li, M. Q.; Li, H.

    2017-09-01

    The microstructural evolution and special flow behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr during isothermal compression at a strain rate of 0.0001 s-1 were investigated. The dislocation climbs in elongated α grains resulted in the formation of low-angle boundaries that transform into high-angle boundaries with greater deformation, and the elongated α grains subsequently separated into homogenous globular α grains with the penetration of the β phase. The simultaneous occurrence of discontinuous dynamic recrystallization and continuous dynamic recrystallization in the primary β grains resulted in a trimode grain distribution. The β grains surrounded by dislocations presented an equilateral-hexagonal morphology, which suggests that grain boundary sliding through dislocation climbs was the main deformation mechanism. The true stress-strain curves for 1073 and 1113 K abnormally intersect at a strain of 0.35, related to the α → β phase transformation and distinct growth of the β grain size.

  17. Compressive mechanical characterization of non-human primate spinal cord white matter.

    PubMed

    Jannesar, Shervin; Allen, Mark; Mills, Sarah; Gibbons, Anne; Bresnahan, Jacqueline C; Salegio, Ernesto A; Sparrey, Carolyn J

    2018-05-02

    The goal of developing computational models of spinal cord injury (SCI) is to better understand the human injury condition. However, finite element models of human SCI have used rodent spinal cord tissue properties due to a lack of experimental data. Central nervous system tissues in non human primates (NHP) closely resemble that of humans and therefore, it is expected that material constitutive models obtained from NHPs will increase the fidelity and the accuracy of human SCI models. Human SCI most often results from compressive loading and spinal cord white matter properties affect FE predicted patterns of injury; therefore, the objectives of this study were to characterize the unconfined compressive response of NHP spinal cord white matter and present an experimentally derived, finite element tractable constitutive model for the tissue. Cervical spinal cords were harvested from nine male adult NHPs (Macaca mulatta). White matter biopsy samples (3 mm in diameter) were taken from both lateral columns of the spinal cord and were divided into four strain rate groups for unconfined dynamic compression and stress relaxation (post-mortem <1-hour). The NHP spinal cord white matter compressive response was sensitive to strain rate and showed substantial stress relaxation confirming the viscoelastic behavior of the material. An Ogden 1st order model best captured the non-linear behavior of NHP white matter in a quasi-linear viscoelastic material model with 4-term Prony series. This study is the first to characterize NHP spinal cord white matter at high (>10/sec) strain rates typical of traumatic injury. The finite element derived material constitutive model of this study will increase the fidelity of SCI computational models and provide important insights for transferring pre-clinical findings to clinical treatments. Spinal cord injury (SCI) finite element (FE) models provide an important tool to bridge the gap between animal studies and human injury, assess injury prevention technologies (e.g. helmets, seatbelts), and provide insight into the mechanisms of injury. Although, FE model outcomes depend on the assumed material constitutive model, there is limited experimental data for fresh spinal cords and all was obtained from rodent, porcine or bovine tissues. Central nervous system tissues in non human primates (NHP) more closely resemble humans. This study characterizes fresh NHP spinal cord material properties at high strains rates and large deformations typical of SCI for the first time. A constitutive model was defined that can be readily implemented in finite strain FE analysis of SCI. Copyright © 2018. Published by Elsevier Ltd.

  18. On the compressibility and temperature boundary of warm frozen soils

    NASA Astrophysics Data System (ADS)

    Qi, Jilin; Dang, Boxiang; Guo, Xueluan; Sun, Xiaoyu; Yan, Xu

    2017-04-01

    A silty-clay obtained along the Qinghai-Tibetan railway and a standard Chinese sand were taken as study objects. Saturated frozen soil samples were prepared for testing. Step-load was used and confined compression was carried out on the soils under different temperatures. Compression index and pseudo-preconsolidation pressure (PPC) were obtained. Unlike unfrozen soils, PPC is not associated with stress history. However, it is still the boundary of elastic and plastic deformations. Different compression indexes can be obtained from an individual compression curve under pressures before and after PPC. The parameters at different thermal and stress conditions were analyzed. It is found that temperature plays a critical role in mechanical behaviours of frozen soils. Efforts were then made on the silty-clay in order to suggest a convincing temperature boundary in defining warm frozen soil. Three groups of ice-rich samples with different ice contents were prepared and tested under confined compression. The samples were compressed under a constant load and with 5 stepped temperatures. Strain rates at different temperatures were examined. It was found that the strain rate at around -0.6°C increased abruptly. Analysis of compression index was performed on the data both from our own testing program and from the literature, which showed that at about -1°C was a turning point in the curves for compression index against temperature. Based on both our work and taking into account the unfrozen water content vs. temperature, the range of -1°C to -0.5°C seems to be the temperature where the mechanical properties change greatly. For convenience, -1.0°C can be defined as the boundary for warm frozen soils.

  19. Dynamic compressive properties of bovine knee layered tissue

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Hino, Yuki; Todo, Mitsugu

    2015-09-01

    In Japan, the most common articular disease is knee osteoarthritis. Among many treatment methodologies, tissue engineering and regenerative medicine have recently received a lot of attention. In this field, cells and scaffolds are important, both ex vivo and in vivo. From the viewpoint of effective treatment, in addition to histological features, the compatibility of mechanical properties is also important. In this study, the dynamic and static compressive properties of bovine articular cartilage-cancellous bone layered tissue were measured using a universal testing machine and a split Hopkinson pressure bar method. The compressive behaviors of bovine articular cartilage-cancellous bone layered tissue were examined. The effects of strain rate on the maximum stress and the slope of stress-strain curves of the bovine articular cartilage-cancellous bone layered tissue were discussed.

  20. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.

    PubMed

    Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin

    2015-09-22

    The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.

  1. Hierarchical Engineered Materials and Structures

    DTIC Science & Technology

    2012-11-30

    May 30th to June 1st, Chicago, IL, 2011. 5) D’Mello R. J. and Waas A. M., “Synergistic energy absorption in the axial static compressive response of...For the macroscopic strain (end crushing over initial length) of 0.25 onwards, prominent barreling was observed. The specimen was compressed up to 90...Presentations 1) L. Hansen, S. Guntupalli, R.J. D’Mello, A. Salvi and A. Waas, “The Effects of Defects and Loading Rate on the Compressive Crushing Response of

  2. Creep Damage Analysis of a Lattice Truss Panel Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen

    2017-01-01

    The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.

  3. Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression

    PubMed Central

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-01-01

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01/s–1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot. PMID:29561826

  4. Magnesium for Crashworthy Components

    NASA Astrophysics Data System (ADS)

    Abbott, T.; Easton, M.; Schmidt, R.

    Most applications of magnesium in automobiles are for nonstructural components. However, the light weight properties of magnesium make it attractive in structural applications where energy absorption in a crash is critical. Because most deformation in a crash occurs as bending rather than simple tension or compression, the advantages of magnesium are greater than anticipated simply from tensile strength to weight ratios. The increased thickness possible with magnesium strongly influences bending behavior and theoretical calculations suggest almost an order of magnitude greater energy absorption with magnesium compared to the same weight of steel. The strain rate sensitivity of steel is of concern for energy absorption. Mild steels exhibit a distinct yield point which increases with strain rate. At strain rates typical of vehicle impact, this can result in strain localization and poor energy absorption. Magnesium alloys with relatively low aluminum contents exhibit strain rate sensitivity, however, this is manifest as an increase in work hardening and tensile / yield ratio. This behavior suggests that the performance of magnesium alloys in terms of energy absorption actually improves at high strain rates.

  5. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 2: Zirconium-copper at 482, 538 and 593 C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Zirconium-copper (1/2 hard) was tested in argon over the temperature range from 482 to 593 C in an evaluation of short-term tensile and low-cycle fatigue behavior. The effect of strain rate on the tensile properties was evaluated at 538 C and in general it was found that the yield and ultimate strengths increased as the strain rate was increased from 0.0004 to 0.01/sec. Ductility was essentially insensitive to strain rate in the case of the zirconium-copper alloy. Strain-rate and hold-time effects on the low cycle fatigue behavior of zirconium-copper were evaluated in argon at 538 C. These effects were as expected in that decreased fatigue life was noted as the strain rate decreased and when hold times were introduced into the tension portion of the strain-cycle. Hold times in compression were much less detrimental than hold times in tension.

  6. Femtosecond visualization of lattice dynamics in shock-compressed matter.

    PubMed

    Milathianaki, D; Boutet, S; Williams, G J; Higginbotham, A; Ratner, D; Gleason, A E; Messerschmidt, M; Seibert, M M; Swift, D C; Hering, P; Robinson, J; White, W E; Wark, J S

    2013-10-11

    The ultrafast evolution of microstructure is key to understanding high-pressure and strain-rate phenomena. However, the visualization of lattice dynamics at scales commensurate with those of atomistic simulations has been challenging. Here, we report femtosecond x-ray diffraction measurements unveiling the response of copper to laser shock-compression at peak normal elastic stresses of ~73 gigapascals (GPa) and strain rates of 10(9) per second. We capture the evolution of the lattice from a one-dimensional (1D) elastic to a 3D plastically relaxed state within a few tens of picoseconds, after reaching shear stresses of 18 GPa. Our in situ high-precision measurement of material strength at spatial (<1 micrometer) and temporal (<50 picoseconds) scales provides a direct comparison with multimillion-atom molecular dynamics simulations.

  7. Contemporary Crustal Deformation Within the Pamir Plateau Constrained by Geodetic Observations and Focal Mechanism Solutions

    NASA Astrophysics Data System (ADS)

    Pan, Zhengyang; He, Jiankun; Li, Jun

    2018-04-01

    We used an updated data set of 192 GPS-derived surface velocities and 393 earthquake focal mechanisms (Mw > 3.0, hypocenter depths < 30 km) to evaluate the spatial variations in the surface strain rate and crustal stress regime throughout the Pamir Plateau and its surrounding regions. The strain rate field was estimated using the spline in tension approach that solves for the surface velocity in a rectangular grid and the stress field was predicted from focal mechanism solutions using the damped regional-scale stress inversion (DRSSI) method of Hardebeck and Michael (Journal of Geophysical Research, https://doi.org/10.1029/2005jb004144, 2006). The results show that the crustal stress field around the Pamir Plateau is predominantly characterized by NNW-SSE compression and E-W extension, which is consistent with the principal orientations of the two-dimensional surface strain rate tensor. This agreement supports the notion that the Pamir and southwestern Tien Shan are uniformly strained blocks. In particular, the fan-shaped rotational pattern between {Shmax} and the strain rate from the western Pamir to the Tajik Basin shows that the counterclockwise rotation of the {Shmax} orientation is associated with vertical deformation, which is consistent with the idea of Schurr et al. (Tectonics 33(8):2014TC003576, 2014) concerning the gravitational collapse and westward extrusion of the crust in the western Pamir. We propose that such a stress-strain pattern, dominated by NNW-ESE oriented compression and E-W trending extension, originated from a combination of the northward push of the Indian continent and the southward subduction of the Tien Shan.

  8. Compressible homogeneous shear: Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1992-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  9. Compressible homogeneous shear - Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1991-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  10. Structure-Property Relationships of Solid State Additive Manufactured Aluminum Alloy 2219 and Inconel 625

    NASA Astrophysics Data System (ADS)

    Rivera Almeyda, Oscar G.

    In this investigation, the processing-structure-property relations are correlated for solid state additively manufactured (SSAM) Inconel 625 (IN 625) and a SSAM aluminum alloy 2219 (AA2219). This is the first research of these materials processed by a new SSAM method called additive friction stir (AFS). The AFS process results in a refined grain structure by extruding solid rod through a rotating tool generating heat and severe plastic deformation. In the case of the AFS IN625, the IN625 alloy is known for exhibiting oxidation resistance and temperature mechanical stability, including strength and ductility. This study is the first to investigate the beneficial grain refinement and densification produced by AFS in IN625 that results in advantageous mechanical properties (YS, UTS, epsilonf) at both quasi-static and high strain rate. Electron Backscatter Diffraction (EBSD) observed dynamic recrystallization and grain refinement during the layer deposition in the AFS specimens, where the results identified fine equiaxed grain structures formed by dynamic recrystallization (DRX) with even finer grain structures forming at the layer interfaces. The EBSD quantified grains as fine as 0.27 microns in these interface regions while the average grain size was approximately 1 micron. Additionally, this is the first study to report on the strain rate dependence of AFS IN625 through quasi-static (QS) (0.001/s) and high strain rate (HR) (1500/s) tensile experiments using a servo hydraulic frame and a direct tension-Kolsky bar, respectively, which captured both yield and ultimate tensile strengths increasing as strain rate increased. Fractography performed on specimens showed a ductile fracture surface on both QS, and HR. Alternatively, the other AFS material system investigated in this study, AA2219, is mostly used for aerospace applications, specifically for rocket fuel tanks. EBSD was performed in the cross-section of the AA2219, also exhibiting DRX with equiaxed microstructure in the three directions and an average grain size of 2.5 microns. EBSD PFs showed that the material has a strong torsional fiber A texture in the top of the build, and this texture gets weaker in the middle and bottom sections. TEM showed that there are no theta' precipitates in the as-deposited cross-section, therefore no precipitation strengthening should be expected. Strain rate and stress state dependence was study, and in both tension and compression, with an increase in strain rate, the YS increase and the UTS decreased. Ductile fracture surface was observed on specimens tested to failure in both QS and HR. The AFS AA2219 processing-structure-property relations are being studied in this investigation to address the stress-state and strain rate dependence of AFS AA2219 with an internal sate variable (ISV) plasticity-damage model to capture the different yield stress, work hardening and failure strain in the AFS AA2219 for high fidelity modeling of AFS components. The ISV plasticity model successfully captured the material behavior in tension, compression, tension-followed-by-compression and compression-followed-by-tension experiments. Furthermore, the damage parameters of the model were calibrated using the final void density measured from the fracture surfaces.

  11. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.

    PubMed

    Römgens, Anne M; van Donkelaar, Corrinus C; Ito, Keita

    2013-11-01

    Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.

  12. Compressive strain induced dynamical stability of monolayer 1T-MX2 (M  =  Mo, W; X  =  S, Se)

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyong; Wu, Musheng; Xu, Bo; Liu, Ruifan; Ouyang, Chuying

    2017-11-01

    The lattice dynamical properties of 1T-MX2 (M  =  Mo, W; X  =  S, Se) under different strains were studied by using density functional perturbation theory method. Our results show that all MX2 with 1T phase in our calculations are dynamical instable under zero strain or tensile strain as obvious imaginary frequencies (soft modes) exist. When 3% biaxial compressive strains are applied, the imaginary frequencies remain except that the absolute values of maximum imaginary frequency decrease. With the increase of compressive strain to be 6%, 1T-MoS2, 1T-MoSe2, 1T-WS2 become stable, whereas 1T-WSe2 has small imaginary frequencies. When biaxial compressive strain reaches 9%, all 1T-MX2 are dynamical stable without imaginary frequencies in the phonon dispersion curves. Energy band structures show that all 1T-MX2 are metallic, regardless of zero strain or compressive strain. Therefore, compressive strain could be a practical approach to enhance the stability of 1T-MX2 while maintaining the metallic property.

  13. A study of the topology of dissipating motions in direct numerical simulations of time-developing compressible and incompressible mixing layers

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Chong, M. S.; Soria, J.; Sondergaard, R.; Perry, A. E.; Rogers, M.; Moser, R.; Cantwell, B. J.

    1990-01-01

    A preliminary investigation of the geometry of flow patterns in numerically simulated compressible and incompressible mixing layers was carried out using 3-D critical point methodology. Motions characterized by high rates of kinetic energy dissipation and/or high enstrophy were of particular interest. In the approach the partial derivatives of the velocity field are determined at every point in the flow. These are used to construct the invariants of the velocity gradient tensor and the rate-of-strain tensor (P, Q, R, and P(sub s), Q(sub s), R(sub s) respectively). For incompressible flow the first invariant is zero. For the conditions of the compressible simulation, the first invariant is found to be everywhere small, relative to the second and third invariants, and so in both cases the local topology at a point is mainly determined by the second and third invariants. The data at every grid point is used to construct scatter plots of Q versus R and Q(sub s) versus R(sub s). Most points map to a cluster near the origin in Q-R space. However, fine scale motions, that is motions which are characterized by velocity derivatives which scale with the square root of R(sub delta), tend to map to regions which lie far from the origin. Definite trends are observed for motions characterized by high enstrophy and/or high dissipation. The observed trends suggest that, for these motions, the second and third invariants of the velocity gradient and rate-of-strain tensors are strongly correlated. The second and third invariants of the rate-of-strain tensor are related by K(-Q(sub s))(exp 3/2), which is consistent with the above scaling of velocity derivatives. The quantity K appears to depend on Reynolds number with an upper limit K = 2(the square root of 3)/9 corresponding to locally axisymmetric flow. For both the compressible and incompressible mixing layer, regions corresponding to high rates of dissipation are found to be characterized by comparable magnitudes of R(sub ij)R(sub ij) and S(sub ij)S(sub ij). For the incompressible mixing layer, regions characterized by the highest values of enstrophy are found to have relatively low strain rates.

  14. Strain distribution in the lumbar vertebrae under different loading configurations.

    PubMed

    Cristofolini, Luca; Brandolini, Nicola; Danesi, Valentina; Juszczyk, Mateusz M; Erani, Paolo; Viceconti, Marco

    2013-10-01

    The stress/strain distribution in the human vertebrae has seldom been measured, and only for a limited number of loading scenarios, at few locations on the bone surface. This in vitro study aimed at measuring how strain varies on the surface of the lumbar vertebral body and how such strain pattern depends on the loading conditions. Eight cadaveric specimens were instrumented with eight triaxial strain gauges each to measure the magnitude and direction of principal strains in the vertebral body. Each vertebra was tested in a three adjacent vertebrae segment fashion. The loading configurations included a compressive force aligned with the vertebral body but also tilted (15°) in each direction in the frontal and sagittal planes, a traction force, and torsion (both directions). Each loading configuration was tested six times on each specimen. The strain magnitude varied significantly between strain measurement locations. The strain distribution varied significantly when different loading conditions were applied (compression vs. torsion vs. traction). The strain distribution when the compressive force was tilted by 15° was also significantly different from the axial compression. Strains were minimal when the compressive force was applied coaxial with the vertebral body, compared with all other loading configurations. Also, strain was significantly more uniform for the axial compression, compared with all other loading configurations. Principal strains were aligned within 19° to the axis of the vertebral body for axial-compression and axial-traction. Conversely, when the applied force was tilted by 15°, the direction of principal strain varied by a much larger angle (15° to 28°). This is the first time, to our knowledge, that the strain distribution in the vertebral body is measured for such a variety of loading configurations and a large number of strain sensors. The present findings suggest that the structure of the vertebral body is optimized to sustain compressive forces, whereas even a small tilt angle makes the vertebral structure work under suboptimal conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Development of steel foam processing methods and characterization of metal foam

    NASA Astrophysics Data System (ADS)

    Park, Chanman

    2000-10-01

    Steel foam was synthesized by a powder metallurgical route, resulting in densities less than half that of steel. Process parameters for foam synthesis were investigated, and two standard powder formulations were selected consisting of Fe-2.5% C and 0.2 wt% foaming agent (either MgCO3 or SrCO3). Compression tests were performed on annealed and pre-annealed foam samples of different density to determine mechanical response and energy absorption behavior. The stress-strain response was strongly affected by annealing, which reduced the carbon content and converted much of the pearlitic structure to ferrite. Different powder blending methods and melting times were employed and the effects on the geometric structure of steel foam were examined. Dispersion of the foaming agent affected the pore size distribution of the expanded foams. With increasing melt time, pores coalesced, leading to the eventual collapse of the foam. Inserting interlayer membranes in the powder compacts inhibited coalescence of pores and produced foams with more uniform cell size and distribution. The closed-cell foam samples exhibited anisotropy in compression, a phenomenon that was caused primarily by the ellipsoidal cell shapes within the foam. Yield strengths were 3x higher in the transverse direction than in the longitudinal direction. Yield strength also showed a power-law dependence on relative density (n ≅ 1.8). Compressive strain was highly localized and occurred in discrete bands that extended transverse to the loading direction. The yield strength of foam samples showed stronger strain rate dependence at higher strain rates. The increased strain rate dependence was attributed to microinertial hardening. Energy absorption was also observed to increase with strain rate. Measurements of cell wall curvature showed that an increased mean curvature correlated with a reduced yield strength, and foam strengths generally fell below predictions of Gibson-Ashby theory. Morphological defects reduced yield strength and altered the dependence on density. Microstructural analysis was performed on a porous Mg and AZ31 Mg alloy synthesized by the GASAR process. The pore distribution depended on the distance from the chill end of ingots. TEM observations revealed apparent gas tracks neat the pores and ternary intermetallic phases in the alloy.

  16. High-strain rate tensile characterization of graphite platelet reinforced vinyl ester based nanocomposites using split-Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Pramanik, Brahmananda

    The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both strength and energy absorbing capacity of these candidate material systems are distinctively less under dynamic tension than under compressive loading. Nano-reinforcement appears to marginally improve these properties for pure vinyl ester under dynamic tension, although it is found to be detrimental under dynamic compression.

  17. The rate of the exciton self-trapping in KI and RbI at different temperatures

    NASA Astrophysics Data System (ADS)

    Zhanturina, N.; Shunkeev, K.

    2012-12-01

    The article disclosed the theory of the kinetics of excitons self-trapping in alkali halide crystals. On the example of KI and RbI crystals the time of excitons self-trapping and the length of free path before self-trapping were calculated. Also, the theory of self-trapping rate was revealed. According to the Arrhenius law the dependence of excitons self-trapping rate on the temperature and the degree of depth and uniaxial compression was analyzed. The increase of the rate of excitons self-trapping by temperature increasing was shown; while increasing the degree of compression at the full rate of strain localization decreases under uniaxial - is increasing. These data are good agreed with the experimental fact of luminescencei increasing under uniaxial compression and allow to make a conclusion about weakening of the luminescence by applying hydrostatic pressure.

  18. Evaluation of Varying Ductile Fracture Criteria for 42CrMo Steel by Compressions at Different Temperatures and Strain Rates

    PubMed Central

    Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen

    2014-01-01

    Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s−1 are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture. PMID:24592175

  19. Evaluation of varying ductile fracture criteria for 42CrMo steel by compressions at different temperatures and strain rates.

    PubMed

    Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen

    2014-01-01

    Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s(-1) are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.

  20. Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507

    NASA Astrophysics Data System (ADS)

    Kingklang, Saranya; Uthaisangsuk, Vitoon

    2017-01-01

    Recently, duplex stainless steels (DSSs) are being increasingly employed in chemical, petro-chemical, nuclear, and energy industries due to the excellent combination of high strength and corrosion resistance. Better understanding of deformation behavior and microstructure evolution of the material under hot working process is significant for achieving desired mechanical properties. In this work, plastic flow curves and microstructure development of the DSS grade 2507 were investigated. Cylindrical specimens were subjected to hot compression tests for different elevated temperatures and strain rates by a deformation dilatometer. It was found that stress-strain responses of the examined steel strongly depended on the forming rate and temperature. The flow stresses increased with higher strain rates and lower temperatures. Subsequently, predictions of the obtained stress-strain curves were done according to the Zener-Hollomon equation. Determination of material parameters for the constitutive model was presented. It was shown that the calculated flow curves agreed well with the experimental results. Additionally, metallographic examinations of hot compressed samples were performed by optical microscope using color tint etching. Area based phase fractions of the existing phases were determined for each forming condition. Hardness of the specimens was measured and discussed with the resulted microstructures. The proposed flow stress model can be used to design and optimize manufacturing process at elevated temperatures for the DSS.

  1. Compact, compression-free, displaceable, and resealable vacuum feedthrough with built-in strain relief for sensitive components such as optical fibers.

    PubMed

    Buchholz, B; Ebert, V

    2014-05-01

    For the direct fiber coupling of small optical measurement cells, we developed a new compact vacuum feedthrough for glass fibers and other similarly shaped objects that are compact and that offer the possibility of adjusting the fiber in longitudinal and in circular direction. The feedthrough assembly avoids compression or torsion on the fiber and thus protects, e.g., highly frangible fiber materials. In the following, we will present a brief simulation of the tightness requirements for low-pressure and low-concentration water vapor measurements and we will explain an integrated concept for a displaceable and self-adjustable, compression-free, compact, ultra-high vacuum, resealable feedthrough with good strain relief. The feedthrough has been successfully tested in a laboratory test facility and in several extractive airborne tunable diode laser absorption spectroscopy hygrometers. The leakage rate of the feedthrough presented here was tested via a helium leak searcher and was quantified further in an 8-week vacuum measurement campaign. The leakage rate is determined to be 0.41 ± 0.04 × 10(-9) hPa l/s, which--to our knowledge--is the first time a leakage rate for such a feedthrough has been quantified.

  2. Mapping and load response of overload strain fields: Synchrotron X-ray measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, V; Jisrawi, N M; Sadangi, R K

    High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation 'overload effect'. Detailed, 2D, {epsilon}{gamma}{gamma}-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardationmore » following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, F{sub c}, phenomenon in their strain response. At loads below F{sub c} the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F{sub c} the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F{sub c} values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.« less

  3. High-temperature slow-strain-rate compression studies on CoAl-TiB2 composites

    NASA Technical Reports Server (NTRS)

    Mannan, S. K.; Kumar, K. S.; Whittenberger, J. D.

    1990-01-01

    Results are presented of compressive deformation tests performed on particulate-reinforced CoAl-TiB2 composites in the temperature range 1100-1300 K. Hot-pressed and postdeformation microstructures were characterized by TEM and by optical microscopy. It was found that the addition of TiB2 particles improves the deformation resistance of the matrix, due to dislocation-particle interactions.

  4. On the behaviour of lung tissue under tension and compression

    NASA Astrophysics Data System (ADS)

    Andrikakou, Pinelopi; Vickraman, Karthik; Arora, Hari

    2016-11-01

    Lung injuries are common among those who suffer an impact or trauma. The relative severity of injuries up to physical tearing of tissue have been documented in clinical studies. However, the specific details of energy required to cause visible damage to the lung parenchyma are lacking. Furthermore, the limitations of lung tissue under simple mechanical loading are also not well documented. This study aimed to collect mechanical test data from freshly excised lung, obtained from both Sprague-Dawley rats and New Zealand White rabbits. Compression and tension tests were conducted at three different strain rates: 0.25, 2.5 and 25 min-1. This study aimed to characterise the quasi-static behaviour of the bulk tissue prior to extending to higher rates. A nonlinear viscoelastic analytical model was applied to the data to describe their behaviour. Results exhibited asymmetry in terms of differences between tension and compression. The rabbit tissue also appeared to exhibit stronger viscous behaviour than the rat tissue. As a narrow strain rate band is explored here, no conclusions are being drawn currently regarding the rate sensitivity of rat tissue. However, this study does highlight both the clear differences between the two tissue types and the important role that composition and microstructure can play in mechanical response.

  5. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  6. Study of high strain rate plastic deformation of low carbon microalloyed steels using experimental observation and computational modeling

    NASA Astrophysics Data System (ADS)

    Majta, J.; Zurek, A. K.; Trujillo, C. P.; Bator, A.

    2003-09-01

    This work presents validation of the integrated computer model to predict the impact of the microstructure evolution on the mechanical behavior of niobium-microalloyed steels under dynamic loading conditions. The microstructurally based constitutive equations describing the mechanical behavior of the mixed α and γ phases are proposed. It is shown that for a given finishing temperature and strain, the Nb steel exhibits strong influence of strain rate on the flow stress and final structure. This tendency is also observed in calculated results obtained using proposed modeling procedures. High strain rates influence the deformation mechanism and reduce the extent of recovery occurring during and after deformation and, in turn, increase the driving force for transformation. On the other hand, the ratio of nucleation rate to growth rate increases for lower strain rates (due to the higher number of nuclei that can be produced during an extended loading time) leading to the refined ferrite structure. However, as it was expected such behavior produces higher inhomogeneity in the final product. Multistage quasistatic compression tests and test using the Hopkinson Pressure Bar under different temperature, strain, and strain rate conditions, are used for verification of the proposed models.

  7. Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.

    2010-01-01

    The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.

  8. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    PubMed Central

    Qian, Suxin; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g−1 for the CuAlZn alloy and 5.0 J g−1 for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402936

  9. Copper Tube Compression in Z-Current Geometry, Numerical Simulations and Comparison with Cyclope Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A.; L'Eplattenier, P.; Burger, M.

    2006-02-13

    Metallic tubes compressions in Z-current geometry were performed at the Cyclope facility from Gramat Research Center in order to study the behavior of metals under large strain at high strain rate. 3D configurations of cylinder compressions have been calculated here to benchmark the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the Cyclope experiments. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. The Maxwell equations are solved using a Finite Element Method (FEM) for the solid conductorsmore » coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less

  10. The mechanical properties of fluoride salts at elevated temperatures. [candidate thermal energy storage materials for solar dynamic systems

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Whittenberger, J. D.

    1989-01-01

    The deformation behavior of CaF2 and LiF single crystals compressed in the 111 and the 100 line directions, respectively, are compared with the mechanical properties of polycrystalline LiF-22 (mol pct) CaF2 eutectic mixture in the temperature range 300 to 1275 K for strain rates varying between 7 x 10 to the -7th and 0.2/s. The true stress-strain curves for the single crystals were found to exhibit three stages in an intermediate range of temperatures and strain rates, whereas those for the eutectic showed negative work-hardening rates after a maximum stress. The true stress-strain rate data for CaF2 and LiF-22 CaF2 could be represented by a power-law relation with the strain rate sensitivities lying between 0.05 and 0.2 for both materials. A similar relation was found to be unsatisfactory in the case of LiF.

  11. Inferring Strength of Tantalum from Hydrodynamic Instability Recovery Experiments

    NASA Astrophysics Data System (ADS)

    Sternberger, Z.; Maddox, B.; Opachich, Y.; Wehrenberg, C.; Kraus, R.; Remington, B.; Randall, G.; Farrell, M.; Ravichandran, G.

    2018-05-01

    Hydrodynamic instability experiments allow access to material properties at extreme conditions, where strain rates exceed 105 s-1 and pressures reach 100 GPa. Current hydrodynamic instability experimental methods require in-flight radiography to image the instability growth at high pressure and high strain rate, limiting the facilities where these experiments can be performed. An alternate approach, recovering the sample after loading, allows measurement of the instability growth with profilometry. Tantalum samples were manufactured with different 2D and 3D initial perturbation patterns and dynamically compressed by a blast wave generated by laser ablation. The samples were recovered from peak pressures between 30 and 120 GPa and strain rates on the order of 107 s-1, providing a record of the growth of the perturbations due to hydrodynamic instability. These records are useful validation points for hydrocode simulations using models of material strength at high strain rate. Recovered tantalum samples were analyzed, providing an estimate of the strength of the material at high pressure and strain rate.

  12. Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Najafizadeh, Abbas; Moazeny, Mohammad

    2009-12-01

    The hot compression behavior of a 17-4 PH stainless steel (AISI 630) has been investigated at temperatures of 950 °C to 1150 °C and strain rates of 10-3 to 10 s-1. Glass powder in the Rastegaev reservoirs of the specimen was used as a lubricant material. A step-by-step procedure for data analysis in the hot compression test was given. The work hardening rate analysis was performed to reveal if dynamic recrystallization (DRX) occurred. Many samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall toward the steady-state stress. At low Zener-Hollomon ( Z) parameter, this material showed a new DRX flow behavior, which was called multiple transient steady state (MTSS). At high Z, as a result of adiabatic deformation heating, a drop in flow stress was observed. The general constitutive equations were used to determine the hot working constants of this material. Moreover, after a critical discussion, the deformation activation energy of 17-4 PH stainless steel was determined as 337 kJ/mol.

  13. The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release

    NASA Astrophysics Data System (ADS)

    Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.

    2017-06-01

    The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Development of a Low Strain-Rate Gun Propellant Bed Compression Test and its Use in Evaluating Mechanical Response

    DTIC Science & Technology

    2016-09-01

    heuristics, die and propellant geometries from similar facilities reported in the literature [2,3] and the DST Group design .  bed* (mm) φbed...compliance curves from the experimental data. In UNCLASSIFIED DST- Group -TR-3291 UNCLASSIFIED 18 Figure 13, the red axial compliance traces were...UNCLASSIFIED DST- Group -TR-3291 UNCLASSIFIED 46 At a test temperature of -60˚C, the equivalent strain rates are within the 10 to 500 s-1 given in

  15. High temperature deformation of Vitreloy bulk metallic glasses and their composite

    NASA Astrophysics Data System (ADS)

    Tao, Min

    A complete understanding of the deformation mechanisms of BMGs and their composites requires investigation of the microstructural changes and their interplay with the mechanical behavior. In this dissertation, the deformation mechanisms of a series of Vitreloy glasses and their composites are experimentally investigated over a wide range of strain rates and temperatures, with focus on the supercooled liquid regime, by combining uniaxial mechanical testing with calorimetric and microscopic examinations. Various theories of deformation of metallic glasses and the composites are examined in light of the experimental data. A comparative structural relaxation study was performed on two closely related Vitreloy alloys, Zr41.2Ti13.8Cu12.5Ni 10Be22.5 (Vit 1) and Zr46.7Ti8.3Cu 7.5Ni10Be27.5 (Vit 4). Differential scanning calorimetric studies on the specimens deformed in compression at constant-strain-rate in supercooled liquid regime showed that mechanical loading accelerated the spinodal phase separation and nanocrystallization process in Vit 1, while the relaxation in Vit 4 featured local chemical composition fluctuation accompanied by annealing out of free volume. The effect of the structural relaxation on their mechanical behavior was further studied via single and multiple jump-in-strain-rate tests. The deformation and viscosity of a new Vitreloy alloy were characterized using uniaxial compression tests in its supercooled liquid regime. A new theoretical model named Cooperative Shear Model, which correlates the evolution of the macroscopic mechanical/thermal variables such as shear modulus and viscosity with the configurational energies of atom clusters in an amorphous alloy, was critically examined in this investigation. The model was successful in predicting the Newtonian and non-Newtonian viscosities of the material, as well as the shear moduli of the deformed specimens, in a self-consistent manner. The plastic flow of an in-situ metallic glass composite, beta-Vitreloy, was investigated under uniaxial compression in its supercooled liquid regime and at various strain rates (10-4 ˜ 10-1 s-1). The composite, with ˜ 25% volume fraction of crystalline beta-phase dendrites exhibited superplastic behavior similar to that of amorphous Vit 1. Significant strain hardening was observed when the material was deformed at high temperatures and low strain rates. A dual-phase composite model was employed in finite element simulations to understand the effect of the composite microstructure on its mechanical behavior.

  16. Elastic behavior of brain simulants in comparison to porcine brain at different loading velocities.

    PubMed

    Falland-Cheung, Lisa; Scholze, Mario; Hammer, Niels; Waddell, J Neil; Tong, Darryl C; Brunton, Paul A

    2018-01-01

    Blunt force impacts to the head and the resulting internal force transmission to the brain and other cranial tissue are difficult to measure. To model blunt force impact scenarios, the compressive properties resembling tissue elasticity are of importance. Therefore, this study investigated and compared the elastic behavior of gelatin, alginate, agar/glycerol and agar/glycerol/water simulant materials to that of porcine brain in a fresh and unfixed condition. Specimens, 10 × 10 × 10mm 3 , were fabricated and tested at 22°C, apart from gelatin which was conditioned to 4°C prior to testing. For comparison, fresh porcine brains were sourced and prepared to the same dimensions as the simulants. Specimens underwent compression tests at crosshead displacement rates of 2.5, 10 and 16mms -1 (equivalent to strain rates of 0.25, 1 and 1.6s -1 ), obtaining apparent elastic moduli values at different strain rate intervals (0-0.2, 0.2-0.4 and 0.4-0.5). The results of this study indicate that overall all simulant materials had an apparent elastic moduli similar in magnitude across all strain ranges compared to brain, even though comparatively higher, especially the apparent elastic moduli values of alginate. In conclusion, while agar/glycerol/water and agar/glycerol had similar apparent elastic moduli in magnitude and the closest apparent elastic moduli in the initial strain range (E 1 ), gelatin showed the most similar values to fresh porcine brain at the transitional (E 2 ) and higher strain range (E 3 ). The simulant materials and the fresh porcine brain exhibited strain rate dependent behavior, with increasing elastic moduli upon increasing loading velocities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Atomistic simulations to characterize the influence of applied strain and PKA energy on radiation damage evolution in pure aluminum

    NASA Astrophysics Data System (ADS)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-05-01

    Knowledge of defects generation, their mobility, growth rate, and spatial distribution is the cornerstone for understanding the surface and structural evolution of a material used under irradiation conditions. In this study, molecular dynamics simulations were used to investigate the coupled effect of primary knock-on atom (PKA) energy and applied strain (uniaxial and hydrostatic) fields on primary radiation damage evolution in pure aluminum. Cascade damage simulations were carried out for PKA energy ranging between 1 and 20 keV and for applied strain values ranging between -2% and 2% at the fixed temperature of 300 K. Simulation results showed that as the atomic displacement cascade proceeds under uniaxial and hydrostatic strains, the peak and surviving number of Frenkel point defects increases with increasing tension; however, these increments were more prominent under larger volume changing deformations (hydrostatic strain). The percentage fraction of point defects that aggregate into clusters increases under tension conditions; compared to the reference conditions with no strain, these increases are around 13% and 7% for interstitials and vacancies, respectively (under 2% uniaxial strain), and 19% and 11% for interstitials and vacancies, respectively (under 2% hydrostatic strain). Clusters formed of vacancies and interstitials were both larger under tensile strain conditions, with increases in both the average and maximum cluster sizes. The rate of increase/decrease in the number of Frenkel pairs, their clustering, and their size distributions under expansion/compression strain conditions were higher for higher PKA energies. Overall, the present results suggest that strain effects should be considered carefully in radiation damage environments, specifically for conditions of low temperature and high radiation energy. Compressive strain conditions could be beneficial for materials used in nuclear reactor power systems.

  18. Mechanical Behavior of a Low-Cost Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Casem, D. T.; Weerasooriya, T.; Walter, T. R.

    2018-01-01

    Mechanical compression tests were performed on an economical Ti-6Al-4V alloy over a range of strain-rates and temperatures. Low rate experiments (0.001-0.1/s) were performed with a servo-hydraulic load frame and high rate experiments (1000-80,000/s) were performed with the Kolsky bar (Split Hopkinson pressure bar). Emphasis is placed on the large strain, high-rate, and high temperature behavior of the material in an effort to develop a predictive capability for adiabatic shear bands. Quasi-isothermal experiments were performed with the Kolsky bar to determine the large strain response at elevated rates, and bars with small diameters (1.59 mm and 794 µm, instrumented optically) were used to study the response at the higher strain-rates. Experiments were also conducted at temperatures ranging from 81 to 673 K. Two constitutive models are used to represent the data. The first is the Zerilli-Armstrong recovery strain model and the second is a modified Johnson-Cook model which uses the recovery strain term from the Zerilli-Armstrong model. In both cases, the recovery strain feature is critical for capturing the instability that precedes localization.

  19. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    PubMed

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  20. Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Lu, Shi-hong; Zhang, Jia-bin; Li, Zheng-fang; Chen, Peng; Gong, Hai; Wu, Yun-xin

    2017-09-01

    In order to simulate the flow behavior and microstructure evolution during the pass interval period of the multi-pass deformation process, models of static recovery (SR) and static recrystallization (SRX) by the cellular automaton (CA) method for the 7055 aluminum alloy were established. Double-pass hot compression tests were conducted to acquire flow stress and microstructure variation during the pass interval period. With the basis of the material constants obtained from the compression tests, models of the SR, incubation period, nucleation rate and grain growth were fitted by least square method. A model of the grain topology and a statistical computation of the CA results were also introduced. The effects of the pass interval time, temperature, strain, strain rate and initial grain size on the microstructure variation for the SRX of the 7055 aluminum alloy were studied. The results show that a long pass interval time, large strain, high temperature and large strain rate are beneficial for finer grains during the pass interval period. The stable size of the static recrystallized grain is not concerned with the initial grain size, but mainly depends on the strain rate and temperature. The SRX plays a vital role in grain refinement, while the SR has no effect on the variation of microstructure morphology. Using flow stress and microstructure comparisons of the simulated and experimental CA results, the established CA models can accurately predict the flow stress and microstructure evolution during the pass interval period, and provide guidance for the selection of optimized parameters for the multi-pass deformation process.

  1. The dynamic properties behavior of high strength concrete under different strain rate

    NASA Astrophysics Data System (ADS)

    Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul

    2005-04-01

    This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.

  2. Constitutive behavior and processing maps of low-expansion GH909 superalloy

    NASA Astrophysics Data System (ADS)

    Yao, Zhi-hao; Wu, Shao-cong; Dong, Jian-xin; Yu, Qiu-ying; Zhang, Mai-cang; Han, Guang-wei

    2017-04-01

    The hot deformation behavior of GH909 superalloy was studied systematically using isothermal hot compression tests in a temperature range of 960 to 1040°C and at strain rates from 0.02 to 10 s-1 with a height reduction as large as 70%. The relations considering flow stress, temperature, and strain rate were evaluated via power-law, hyperbolic sine, and exponential constitutive equations under different strain conditions. An exponential equation was found to be the most appropriate for process modeling. The processing maps for the superalloy were constructed for strains of 0.2, 0.4, 0.6, and 0.8 on the basis of the dynamic material model, and a total processing map that includes all the investigated strains was proposed. Metallurgical instabilities in the instability domain mainly located at higher strain rates manifested as adiabatic shear bands and cracking. The stability domain occurred at 960-1040°C and at strain rates less than 0.2 s-1; these conditions are recommended for optimum hot working of GH909 superalloy.

  3. Impact and Blast Resistance of Sandwich Plates

    NASA Astrophysics Data System (ADS)

    Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.

    Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.

  4. The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue.

    PubMed

    Pai, Shruti; Ledoux, William R

    2010-06-18

    Diabetic subjects are at an increased risk of developing plantar ulcers. Knowledge of the physiologic compressive properties of the plantar soft tissue is critical to understanding the possible mechanisms of ulcer formation and improving treatment options. The purpose of this study was to determine the compressive mechanical properties of the plantar soft tissue in both diabetic and non-diabetic specimens from six relevant locations beneath the foot, namely the hallux (big toe), first, third, and fifth metatarsal heads, lateral midfoot, and calcaneus (heel). Cylindrical specimens (1.905 cm diameter) from these locations were excised and separated from the skin and bone from 4 diabetic and 4 non-diabetic age-matched, elderly, fresh-frozen cadaveric feet. Specimens were then subjected to biomechanically realistic strains of approximately 50% in compression using triangle wave tests conducted at five frequencies ranging from 1 to 10 Hz to determine tissue modulus, energy loss, and strain rate dependence. Diabetic vs. non-diabetic results across all specimens, locations, and testing frequencies demonstrated altered mechanical properties with significantly increased modulus (1146.7 vs. 593.0 kPa) but no change in energy loss (68.5 vs. 67.9%). All tissue demonstrated strain rate dependence and tissue beneath the calcaneus was found to have decreased modulus and energy loss compared to other areas. The results of this study could be used to generate material properties for all areas of the plantar soft tissue in diabetic or non-diabetic feet, with implications for foot computational modeling efforts and potentially for pressure alleviating footwear that could reduce plantar ulcer incidence. Published by Elsevier Ltd.

  5. The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue

    PubMed Central

    Pai, Shruti; Ledoux, William R.

    2010-01-01

    Diabetic subjects are at an increased risk of developing plantar ulcers. Knowledge of the physiologic compressive properties of the plantar soft tissue is critical to understanding possible mechanisms of ulcer formation and improving treatment options. The purpose of this study was to determine the compressive mechanical properties of the plantar soft tissue in both diabetic and non-diabetic specimens from six relevant locations beneath the foot, namely the hallux (big toe), first, third, and fifth metatarsal heads, lateral midfoot, and calcaneus (heel). Cylindrical specimens (1.905cm diameter) from these locations were excised and separated from the skin and bone from 4 diabetic and 4 non-diabetic age-matched, elderly, fresh-frozen cadaveric feet. Specimens were then subjected to biomechanically realistic strains of ∼50% in compression using triangle wave tests conducted at five frequencies ranging from 1 to 10 Hz to determine tissue modulus, energy loss, and strain rate dependence. Diabetic vs. non-diabetic results across all specimens, locations, and testing frequencies demonstrated altered mechanical properties with significantly increased modulus (1146.7 vs. 593.0kPa) but no change in energy loss (68.5 vs. 67.9%). All tissue demonstrated strain rate dependence and tissue beneath the calcaneus was found to have decreased modulus and energy loss compared to other areas. The results of this study could be used to generate material properties for all areas of the plantar soft tissue in diabetic or non-diabetic feet, with implications for foot computational modeling efforts and potentially for pressure alleviating footwear that could reduce plantar ulcer incidence. PMID:20207359

  6. The Effects of Specimen Geometry on the Plastic Deformation of AA 2219-T8 Aluminum Alloy Under Dynamic Impact Loading

    NASA Astrophysics Data System (ADS)

    Owolabi, G. M.; Bolling, D. T.; Odeshi, A. G.; Whitworth, H. A.; Yilmaz, N.; Zeytinci, A.

    2017-12-01

    The effects of specimen geometry on shear strain localization in AA 2219-T8 aluminum alloy under dynamic impact loading were investigated. The alloy was machined into cylindrical, cuboidal and conical (frustum) test specimens. Both deformed and transformed adiabatic shear bands developed in the alloy during the impact loading. The critical strain rate for formation of the deformed band was determined to be 2500 s-1 irrespective of the specimen geometry. The critical strain rate required for formation of transformed band is higher than 3000 s-1 depending on the specimen geometry. The critical strain rate for formation of transformed bands is lowest (3000 s-1) in the Ø5 mm × 5 mm cylindrical specimens and highest (> 6000 s-1) in the conical specimens. The cylindrical specimens showed the greatest tendency to form transformed bands, whereas the conical specimen showed the least tendency. The shape of the shear bands on the impacted plane was also observed to be dependent on the specimen geometry. Whereas the shear bands on the compression plane of the conical specimens formed elongated cycles, two elliptical shaped shear bands facing each other were observed on the cylindrical specimens. Two parallel shear bands were observed on the compression planes of the cuboidal specimens. The dynamic stress-strain curves vary slightly with the specimen geometry. The cuboidal specimens exhibit higher tendency for strain hardening and higher maximum flow stress than the other specimens. The microstructure evolution leading to the formation of transformed bands is also discussed in this paper.

  7. Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading

    DOE PAGES

    Sanborn, Brett; Song, Bo

    2018-06-03

    Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less

  8. Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Brett; Song, Bo

    Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less

  9. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGES

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  10. Production and Assessment of Damaged High Energy Propellant Samples,

    DTIC Science & Technology

    1980-05-08

    and (c) -69.8% ...... 14 3 Longitudinal Velocity one hour after Compressing Versus Applied Engineering Compressive Strain for Propellant Samples...LONGITUDINAL VELOCITY ONE HOUR AFTER COMPRESSING VERSUS APPLIED ENGINEERING COMPRESSIVE STRAIN FOR PROPELLANT SAMPLES (NOMINAL 40 mm DIA x 13 mm HIGH

  11. Slow plastic strain rate compressive flow in binary CoAl intermetallics

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1985-01-01

    Constant-velocity elevated temperature compression tests have been conducted on a series of binary CoAl intermetallics produced by hot extrusion of blended prealloyed powders. The as-extruded materials were polycrystalline, and they retained their nominal 10-micron grain size after being tested between 1100 and 1400 K at strain rates ranging from 2 x 10 to the -4th to 2 x 10 to the -7th per sec. Significant plastic flow was obtained in all cases; while cracking was observed, much of this could be due to failure at matrix-oxide interfaces along extrusion stringers rather than to solely intergranular fracture. A maximum in flow strength occurs at an aluminum-to-cobalt ratio of 0.975, and the stress exponent appears to be constant for aluminum-to-cobalt ratios of 0.85 or more. It is likely that very aluminum-deficient materials deform by a different mechanism than do other compositions.

  12. Modeling the Nonlinear, Strain Rate Dependent Deformation of Shuttle Leading Edge Materials with Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites, such as the Reinforced Carbon Carbon (RCC) material used on the leading edges of the Space Shuttle. In the developed model, the differences in the tension and compression deformation behaviors have also been accounted for. State variable viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear response is independent of the stiffness in the normal directions. The developed equations have been implemented into LS-DYNA through the use of user defined subroutines (UMATs). Several sample qualitative calculations have been conducted, which demonstrate the ability of the model to qualitatively capture the features of the deformation response present in woven ceramic matrix composites.

  13. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading

    DOE PAGES

    Koohbor, Behrad; Mallon, Silas; Kidane, Addis; ...

    2015-04-07

    The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digitalmore » image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.« less

  14. Carbon nanotube film interlayer for strain and damage sensing in composites during dynamic compressive loading

    NASA Astrophysics Data System (ADS)

    Wu, A. S.; Na, W.-J.; Yu, W.-R.; Byun, J.-H.; Chou, T.-W.

    2012-11-01

    A major challenge in the damage assessment of materials under dynamic, high strain rate loading lies in the inability to apply most health monitoring methodologies to the analysis and evaluation of damage incurred on short timescales. Here, we present a resistance-based sensing method utilizing an electrically conductive carbon nanotube film in a fiberglass/vinyl ester composite. This method reveals that applied strain and damage in the form of matrix cracking and delamination give rise to electrical resistance increases across the composite specimen; these can be measured in real-time during high strain rate loading. Damage within the composite specimens is confirmed through pre- and post-mortem x-ray micro computed tomography imaging.

  15. Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading

    NASA Astrophysics Data System (ADS)

    Berezvai, Szabolcs; Kossa, Attila

    2017-05-01

    This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software Abaqus. The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in Abaqus using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.

  16. Self-diffusion in compressively strained Ge

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoko; Uematsu, Masashi; Hoshi, Yusuke; Sawano, Kentarou; Myronov, Maksym; Shiraki, Yasuhiro; Haller, Eugene E.; Itoh, Kohei M.

    2011-08-01

    Under a compressive biaxial strain of ˜ 0.71%, Ge self-diffusion has been measured using an isotopically controlled Ge single-crystal layer grown on a relaxed Si0.2Ge0.8 virtual substrate. The self-diffusivity is enhanced by the compressive strain and its behavior is fully consistent with a theoretical prediction of a generalized activation volume model of a simple vacancy mediated diffusion, reported by Aziz et al. [Phys. Rev. B 73, 054101 (2006)]. The activation volume of (-0.65±0.21) times the Ge atomic volume quantitatively describes the observed enhancement due to the compressive biaxial strain very well.

  17. Effect of compressibility on the hypervelocity penetration

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  18. Measurement of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique

    DTIC Science & Technology

    2013-05-01

    Measurement of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC...of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique Todd C...Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  19. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing

    PubMed Central

    Bažant, Zdeněk P.; Caner, Ferhun C.

    2013-01-01

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the −2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the −1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow. PMID:24218624

  20. Spall response of single-crystal copper

    NASA Astrophysics Data System (ADS)

    Turley, W. D.; Fensin, S. J.; Hixson, R. S.; Jones, D. R.; La Lone, B. M.; Stevens, G. D.; Thomas, S. A.; Veeser, L. R.

    2018-02-01

    We performed a series of systematic spall experiments on single-crystal copper in an effort to determine and isolate the effects of crystal orientation, peak stress, and unloading strain rate on the tensile spall strength. Strain rates ranging from 0.62 to 2.2 × 106 s-1 and peak shock stresses in the 5-14 GPa range, with one additional experiment near 50 GPa, were explored as part of this work. Gun-driven impactors, called flyer plates, generated flat top shocks followed by spall. This work highlights the effect of crystal anisotropy on the spall strength by showing that the spall strength decreases in the following order: [100], [110], and [111]. Over the range of stresses and strain rates explored, the spall strength of [100] copper depends strongly on both the strain rate and shock stress. Except at the very highest shock stress, the results for the [100] orientation show linear relationships between the spall strength and both the applied compressive stress and the strain rate. In addition, hydrodynamic computer code simulations of the spall experiments were performed to calculate the relationship between the strain rate near the spall plane in the target and the rate of free surface velocity release during the pullback. As expected, strain rates at the spall plane are much higher than the strain rates estimated from the free surface velocity release rate. We have begun soft recovery experiments and molecular dynamics calculations to understand the unusual recompression observed in the spall signature for [100] crystals.

  1. Electronic and phononic modulation of MoS2 under biaxial strain

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Roknabadi, M. R.; Ghorbani, S. R.; Modarresi, M.

    2017-12-01

    Dichalcogenides of transition metals are attractive material due to its unique properties. In this work, it has been investigated the electronic band structure, phonon spectrum and heat capacity of MoS2 under the applied tensile and compressive biaxial strain using the density functional theory. The Molybdenum disulfide under compressive (tensile) strain up to 6% (10%) has stable atomic structure without any negative frequency in the phonon dispersion curves. The tensile biaxial strain reduces the energy gap in the electronic band structure and the optical-acoustic gap in phonon dispersion curves. The tensile biaxial strain also increases the specific heat capacity. On the other hand, the compressive biaxial strain in this material increases phonon gap and reduces the heat capacity and the electronic band gap. The phonon softening/hardening is reported for tensile/compressive biaxial strain in MoS2. We report phonon hardening for out of plane ZA mode in the presence of both tensile and compressive strains. Results show that the linear variation of specific heat with strain (CV ∝ε) and square dependency of specific heat with the temperature (CV ∝T2) for low temperature regime. The results demonstrate that the applied biaxial strain tunes the electronic energy gap and modifies the phonon spectrum of MoS2.

  2. Impact of heat release on strain rate field in turbulent premixed Bunsen flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coriton, Bruno Rene Leon; Frank, Jonathan H.

    2016-08-10

    The effects of combustion on the strain rate field are investigated in turbulent premixed CH 4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts ofmore » heat release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the divergence.« less

  3. Numerical study of the intrinsic recombination carriers lifetime in extended short-wavelength infrared detector materials: A comparison between InGaAs and HgCdTe

    NASA Astrophysics Data System (ADS)

    Wen, Hanqing; Bellotti, Enrico

    2016-05-01

    Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for InxGa1-xAs grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.

  4. Numerical study of the intrinsic recombination carriers lifetime in extended short-wavelength infrared detector materials: A comparison between InGaAs and HgCdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Hanqing; Bellotti, Enrico, E-mail: bellotti@bu.edu

    2016-05-28

    Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for In{sub x}Ga{submore » 1−x}As grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.« less

  5. Texture studies of hot compressed near alpha titanium alloy (IMI 834) at 1000°C with different strain rates

    NASA Astrophysics Data System (ADS)

    Kodli, B. K.; Saxena, K. K.; Dey, S. R.; Pancholi, V.; Bhattacharjee, A.

    2015-04-01

    IMI 834 Titanium alloy is a near alpha (hcp) titanium alloy used for high temperature applications with the service temperature up to 600°C. Generally, this alloy is widely used in gas turbine engine applications such as low pressure compressor discs. For these applications, good fatigue and creep properties are required, which have been noticed better in a bimodal microstructure, containing 15-20% volume fraction of primary alpha grains (αp) and remaining bcc beta (β) grains transformed secondary alpha laths (αs). The bimodal microstructure is achieved during processing of IMI 834 in the high temperature α+β region. The major issue of bimodal IMI 834 during utilization is its poor dwell fatigue life time caused by textured macrozones. Textured macrozone is the spatial accumulation of similar oriented grains in the microstructure generated during hot processing in the high temperature α+β region. Textured macrozone can be mitigated by controlling the hot deformation with certain strain rate under stable plastic conditions having β grains undergoing dynamic recrystallization. Hence, a comprehensive study is required to understand the deformation behavior of α and β grains at different strain rates in that region. Hot compression tests up to 5°% strain of the samples are performed with five different strain rates i.e. 10-3 s-1, 10-2 s-1, 10-1 s-1, 1 s-1 and 10 s-1 at 1000°C using Gleeble 3800. The resultant bimodal microstructure and the texture studies of primary alpha grains (αp) and secondary alpha laths (αs) are carried out using scanning electron microscopy (SEM)-electron back scattered diffraction (EBSD) method.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corona, Edmundo

    The Kolsky compression bar, or split Hopkinson pressure bar (SHPB), is an ex- perimental apparatus used to obtain the stress-strain response of material specimens at strain rates in the order of 10 2 to 10 4 1/s. Its operation and associated data re- duction are based on principles of one-dimensional wave propagation in rods. Second order effects such as indentation of the bars by the specimen and wave dispersion in the bars, however, can significantly affect aspects of the measured material response. Finite element models of the experimental apparatus were used here to demonstrate these two effects. A proceduremore » proposed by Safa and Gary (2010) to account for bar indentation was also evaluated and shown to improve the estimation of the strain in the bars significantly. The use of pulse shapers was also shown to alleviate the effects of wave dispersion. Combining the two can lead to more reliable results in Kolsky compression bar testing.« less

  7. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction

    DOE PAGES

    Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; ...

    2015-09-29

    We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa.more » The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.« less

  8. Effects of temperature on serrated flows of Al 0.5CoCrCuFeNi high-entropy alloy

    DOE PAGES

    Chen, Shuying; Xie, Xie; Chen, Bilin; ...

    2015-08-14

    Compression behavior of the Al 0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673 K to 873 K at a low strain rate of 5 x 10 –5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered-cubic (fcc) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed fcc and body-centered cubic (bcc) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron x-ray diffraction. As a result, by comparing the stress–strain curves at different temperatures, two opposite directions ofmore » serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  9. Compression, bend, and tension studies on forged Al67Ti25Cr8 and Al66Ti25Mn(g) L1(2) compounds

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    Cast, homogenized, and isothermally forged aluminum-rich L1(2) compounds Al67Ti25Cr8 and Al66Ti25Mn(g) were tested in compression as a function of temperature and as a function of strain rate at elevated temperatures (1000 K and 1100 K). Three-point bend specimens were tested as a function of temperature in the range 300 K to 873 K. Strain gages glued on the tensile side of the ambient and 473 K specimens enabled direct strain measurements. A number of 'buttonhead' tensile specimens were electro-discharge machined, fine polished, and tested between ambient and 1073 K for yield strength and ductility as a function of temperature. Scanning electron microscope (SEM) examination of fracture surfaces from both the bend and tensile specimens revealed a gradual transition from transgranular cleavage to intergranular failure with increasing temperature.

  10. Dynamic Uniaxial Compression of HSLA-65 Steel at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Dike, Shweta; Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas

    2017-12-01

    In the present study, the dynamic response of a high-strength, low alloy Grade 65 (HSLA-65) steel, used by the United States Navy for ship hull construction, is investigated under dynamic uniaxial compression at temperatures ranging from room temperature to 1000 °C using a novel elevated temperature split-Hopkinson pressure bar. These experiments are designed to probe the dynamic response of HSLA-65 steel in its single α-ferrite phase, mixed α + γ-austenite phase, and the single γ-austenite phase, as a function of temperature. The investigation is conducted at two different average strain rates—1450 and 2100/s. The experimental results indicate that at test temperatures in the range from room temperature to lower than 600 °C, i.e. prior to the development of the mixed α + γ phase, a net softening in flow strength is observed at all levels of plastic strain with increase in test temperatures. As the test temperatures are increased, the rate of this strain softening with temperature is observed to decrease, and at 600 °C the trend reverses itself resulting in an increase in flow stress at all strains tested. This increase in flow stress is understood be due to dynamic strain aging, where solute atoms play a distinctive role in hindering dislocation motion. At 800 °C, a (sharp) drop in the flow stress, equivalent to one-half of its value at room temperature, is observed. As the test temperature are increased to 900 and 1000 °C, further drop in flow stress are observed at all plastic strain levels. In addition, strain hardening in flow stress is observed at all test temperatures up to 600 °C; beyond 800 °C the rate of strain hardening is observed to decrease, with strain softening becoming dominant at temperatures of 900 °C and higher. Moreover, comparing the high strain rate stress versus strain data gathered on HSLA 65 in the current investigation with those available in the literature at quasi-static strain rates, strain-rate hardening can be inferred. The flow stress increases from 700 MPa at 8 × 10-4/s to 950 MPa at 1450/s and then to 1000 MPa at 2100/s at a strain of 0.1. Optical microscopy is used to understand evolution of microstructure in the post-test samples at the various test temperatures employed in the present study.

  11. Progress in turbulence modeling for complex flow fields including effects of compressibility

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Rubesin, M. W.

    1980-01-01

    Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.

  12. Strain-controlled fatigue of acrylic bone cement.

    PubMed

    Carter, D R; Gates, E I; Harris, W H

    1982-09-01

    Monotonic tensile tests and tension-compression fatigue tests were conducted of wet acrylic bone cement specimens at 37 degrees C. All testing was conducted in strain control at a strain rate of 0.02/s. Weibull analysis of the tensile tests indicated that monotonic fracture was governed more strongly by strain than stress. The number of cycles to fatigue failure was also more strongly controlled by strain amplitude than stress amplitude. Specimen porosity distribution played a major role in determining the tensile and fatigue strengths. The degree of data scatter suggests that Weibull analysis of fatigue data may be useful in developing design criteria for the surgical use of bone cement.

  13. Constitutive Modeling of the Flow Stress of GCr15 Continuous Casting Bloom in the Heavy Reduction Process

    NASA Astrophysics Data System (ADS)

    Ji, Cheng; Wang, Zilin; Wu, Chenhui; Zhu, Miaoyong

    2018-04-01

    According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s-1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress-strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s-1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).

  14. Strain Hardening of Hadfield Manganese Steel

    NASA Astrophysics Data System (ADS)

    Adler, P. H.; Olson, G. B.; Owen, W. S.

    1986-10-01

    The plastic flow behavior of Hadfield manganese steel in uniaxial tension and compression is shown to be greatly influenced by transformation plasticity phenomena. Changes in the stress-strain (σ-ɛ) curves with temperature correlate with the observed extent of deformation twinning, consistent with a softening effect of twinning as a deformation mechanism and a hardening effect of the twinned microstructure. The combined effects give upward curvature to the σ-ɛ curve over extensive ranges of plastic strain. A higher strain hardening in compression compared with tension appears to be consistent with the observed texture development. The composition dependence of stacking fault energy computed using a thermodynamic model suggests that the Hadfield composition is optimum for a maximum rate of deformation twinning. Comparisons of the Hadfield steel with a Co-33Ni alloy exhibiting similar twinning kinetics, and an Fe-21Ni-lC alloy deforming by slip indicate no unusual strain hardening at low strains where deformation is controlled by slip, but an unusual amount of structural hardening associated with the twin formation in the Hadfield steel. A possible mechanism of anomalous twin hardening is discussed in terms of modified twinning behavior (pseudotwinning) in nonrandom solid solutions.

  15. An equivalent-time-lines model for municipal solid waste based on its compression characteristics.

    PubMed

    Gao, Wu; Bian, Xuecheng; Xu, Wenjie; Chen, Yunmin

    2017-10-01

    Municipal solid waste (MSW) demonstrates a noticeable time-dependent stress-strain behavior, which contributes greatly to the settlement of landfills and therefore influences both the storage capacity of landfills and the integrity of internal structures. The long-term compression tests for MSW under different biodegradation conditions were analyzed. It showed that the primary compression can affect the secondary compression due to the biodegradation and mechanical creep. Based on the time-lines model for clays and the compression characteristics of MSW, relationships between MSW's viscous strain rate and equivalent time were established, and then the viscous strain functions of MSW under different biodegradation conditions were deduced, and an equivalent-time-lines model for MSW settlement for two biodegradation conditions was developed, including the Type I model for the enhanced biodegradation condition and the Type II model for the normal biodegradation condition. The simulated compression results of laboratory and field compression tests under different biodegradation conditions were consistent with the measured data, which showed the reliability of both types of the equivalent-time-lines model for MSW. In addition, investigations of the long-term settlement of landfills from the literature indicated that the Type I model is suitable for predicting settlement in MSW landfills with a distinct biodegradation progress of MSW, a high content of organics in MSW, a short fill age or under an enhanced biodegradation environment; while the Type II model is good at predicting settlement in MSW landfills with a distinct progress of mechanical creep compression, a low content of organics in MSW, a long fill age or under a normal biodegradation condition. Furthermore, relationships between model parameters and the fill age of landfills were summarized. Finally, the similarities and differences between the equivalent-time-lines model for MSW and the stress-biodegradation model for MSW were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  17. Deformation Behavior of a Coarse-Grained Mg-8Al-1.5Ca-0.2Sr Magnesium Alloy at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lou, Yan; Liu, Xiao

    2018-02-01

    The compression tests were carried out on a coarse-grained Mg-8Al-1.5Ca-0.2Sr magnesium alloy samples at temperatures from 300 to 450 °C and strain rates from 0.001 to 10 s-1. The flow stress curves were analyzed using the double-differentiation method, and double minima were detected on the flow curves. The first set of minima is shown to identify the critical strain for twinning, while the second set indicates the critical strain for the initiation of dynamic recrystallization (DRX). Twin variant selection was numerically identified by comprehensive analysis of the Schmid factors for different deformation modes and the accommodation strains imposed on neighboring grains. It was found that twinning is initiated before DRX. Dynamic recrystallization volume increases with strain rate at a given deformation temperature. At high strain rate, various twin variants are activated to accommodate deformation, leading to the formation of twin intersections and high DRX volume. Fully dynamic recrystallized structure can be obtained at both high and low strain rates due to the high mobility of the grain and twin boundaries at the temperature of 400 °C.

  18. Effect of mechanical properties on erosion resistance of ductile materials

    NASA Astrophysics Data System (ADS)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By incorporating this parameter into a new erosion model, good correlation was observed with experimentally measured erosion rates. An increase in area under the microhardness curve led to an increase in erosion resistance. It was shown that an increase in hardness below the eroded surface occurs mainly due to the strain-rate hardening effect. Strain-rate sensitivities of tested materials were estimated from the nanoindentation tests and showed a decrease with an increase in materials hardness. Also, materials combining high hardness and strain-rate sensitivity may offer good erosion resistance. A methodology is presented to determine the proper mechanical properties to incorporate into the erosion parameter based on the physical model of the erosion mechanism in ductile materials.

  19. On the Processing of Spalling Experiments. Part I: Identification of the Dynamic Tensile Strength of Concrete

    NASA Astrophysics Data System (ADS)

    Forquin, P.; Lukić, B.

    2017-11-01

    The spalling technique based on the use of a single Hopkinson bar put in contact with the tested sample has been widely adopted as a reliable method for obtaining the tensile response of concrete and rock-like materials at strain rates up-to 200 s- 1. However, the traditional processing method, based on the use of Novikov acoustic approach and the rear face velocity measurement, remains quite questionable due to strong approximations of this data processing method. Recently a new technique for deriving cross-sectional stress fields of a spalling sample filmed with an ultra-high speed camera and based on using the full field measurements and the virtual fields method (VFM) was proposed. In the present work, this topic is perused by performing several spalling tests on ordinary concrete at high acquisition speed of 1Mfps to accurately measure the tensile strength, Young's modulus, strain-rate at failure and stress-strain response of concrete at high strain-rate. The stress-strain curves contain more measurement points for a more reliable identification. The observed tensile stiffness is up-to 50% lower than the initial compressive stiffness and the obtained peak stress was about 20% lower than the one obtained by applying the Novikov method. In order to support this claim, numerical simulations were performed to show that the change of stiffness between compression and tension highly affects the rear-face velocity profile. This further suggests that the processing based only on the velocity "pullback" is quite sensitive and can produce an overestimate of the tensile strength in concrete and rock-like materials.

  20. Modeling Strain Rate Effect of Heterogeneous Materials Using SPH Method

    NASA Astrophysics Data System (ADS)

    Ma, G. W.; Wang, X. J.; Li, Q. M.

    2010-11-01

    The strain rate effect on the dynamic compressive failure of heterogeneous material based on the smoothed particle hydrodynamics (SPH) method is studied. The SPH method employs a rate-insensitive elasto-plastic damage model incorporated with a Weibull distribution law to reflect the mechanical behavior of heterogeneous rock-like materials. A series of simulations are performed for heterogeneous specimens by applying axial velocity conditions, which induce different strain-rate loadings to the specimen. A detailed failure process of the specimens in terms of microscopic crack-activities and the macro-mechanical response are discussed. Failure mechanisms between the low and high strain rate cases are compared. The result shows that the strain-rate effects on the rock strength are mainly caused by the changing internal pressure due to the inertial effects as well as the material heterogeneity. It also demonstrates that the inertial effect becomes significant only when the induced strain rate exceeds a threshold, below which, the dynamic strength enhancement can be explained due to the heterogeneities in the material. It also shows that the dynamic strength is affected more significantly for a relatively more heterogeneous specimen, which coincides with the experimental results showing that the poor quality specimen had a relatively larger increase in the dynamic strength.

  1. Strain driven sequential magnetic transitions in strained GdTiO3 on compressive substrates: a first-principles study.

    PubMed

    Yang, Li-Juan; Weng, Ya-Kui; Zhang, Hui-Min; Dong, Shuai

    2014-11-26

    The compressive strain effect on the magnetic ground state and electronic structure of strained GdTiO3 has been studied using the first-principles method. Unlike the cases of congeneric YTiO3 and LaTiO3, both of which become the A-type antiferromagnetism on the (0 0 1) LaAlO3 substrate despite their contrastive magnetism, the ground state of strained GdTiO3 on the LaAlO3 substrate changes from the original ferromagnetism to a G-type antiferromagnetim, instead of the A-type one although Gd(3+) is between Y(3+) and La(3+). It is only when the in-plane compressive strain is large enough, e.g. on the (0 0 1) YAlO3 substrate, that the ground state finally becomes the A-type. The band structure calculation shows that the compressive strained GdTiO3 remains insulating, although the band gap changes a little in the strained GdTiO3.

  2. Development of a multi-cycle shear-compression testing for the modeling of severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Pesin, A.; Pustovoytov, D.; Lokotunina, N.

    2017-12-01

    The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.

  3. Application of viscoelastic, viscoplastic, and rate-and-state friction constitutive laws to the deformation of unconsolidated sands

    NASA Astrophysics Data System (ADS)

    Hagin, Paul N.

    Laboratory experiments on dry, unconsolidated sands from the Wilmington field, CA, reveal significant viscous creep strain under a variety of loading conditions. In hydrostatic compression tests between 10 and 50 MPa of pressure, the creep strain exceeds the magnitude of the instantaneous strain and follows a power law function of time. Interestingly, the viscous effects only appear when loading a sample beyond its preconsolidation pressure. Cyclic loading tests (at quasi-static frequencies of 10-6 to 10 -2 Hz) show that the bulk modulus increases by a factor of two with increasing frequency while attenuation remains constant. I attempt to fit these observations using three classes of models: linear viscoelastic, viscoplastic, and rate-and-state friction models. For the linear viscoelastic modeling, I investigated two types of models; spring-dashpot (exponential) and power law models. I find that a combined power law-Maxwell solid creep model adequately fits all of the data. Extrapolating the power law-Maxwell creep model out to 30 years (to simulate the lifetime of a reservoir) predicts that the static bulk modulus is 25% of the dynamic modulus, in good agreement with field observations. Laboratory studies also reveal that a large portion of the deformation is permanent, suggesting that an elastic-plastic model is appropriate. However, because the viscous component of deformation is significant, an elastic-viscoplastic model is necessary. An appropriate model for unconsolidated sands is developed by incorporating Perzyna (power law) viscoplasticity theory into the modified Cambridge clay cap model. Hydrostatic compression tests conducted as a function of volumetric strain rate produced values for the required model parameters. As a result, by using an end cap model combined with power law viscoplasticity theory, changes in porosity in both the elastic and viscoplastic regimes can be predicted as a function of both stress path and strain rate. To test whether rate-and-state friction laws can be used to model creep strain, I expand the rate-and-state formulation to include deformation under hydrostatic stress boundary conditions. Results show that the expanded rate-and-state formulation successfully describes the creep strain of unconsolidated sand. Finally, I show that the viscoplastic end cap and rate-and-state models are mathematically similar.

  4. A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows

    NASA Astrophysics Data System (ADS)

    Khlifi, Hechmi; Abdallah, J.; Aïcha, H.; Taïeb, L.

    2011-01-01

    In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the mean part of the pressure-strain correlation is used for the computation of compressible homogeneous at high-speed shear flow. Several studies concerning the compressible homogeneous shear flow show that the changes of the turbulence structures are principally due to the structural compressibility effects which significantly affect the pressure field and then the pressure-strain correlation. Eventually, this term appears as the main term responsible for the changes in the magnitude of the Reynolds stress anisotropies. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model of the pressure strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible Launder, Reece and Rodi model on compressible homogeneous shear flow is the major aim of the present work. From this extension, the standard coefficients C become a function of the extra compressibility parameters (the turbulent Mach number M and the gradient Mach number M) through the Pantano and Sarkar model. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar. The observed trend of the dramatic increase in the normal Reynolds stress anisotropies, the significant decrease in the Reynolds shear stress anisotropy and the increase of the turbulent kinetic energy amplification rate with increasing the gradient Mach number are well predicted by the model. The ability of the model to predict the equilibrium states for the flow in cases A to A from DNS results of Sarkar is examined, the results appear to be very encouraging. Thus, both parameters M and M should be used to model significant structural compressibility effects at high-speed shear flow.

  5. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.

    PubMed

    Prabhu, Rajkumar; Whittington, Wilburn R; Patnaik, Sourav S; Mao, Yuxiong; Begonia, Mark T; Williams, Lakiesha N; Liao, Jun; Horstemeyer, M F

    2015-05-18

    This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.) when exposed to high strain rates. This study utilized a Split-Hopkinson Pressure Bar (SHPB) to generate strain rates of 100-1,500 sec(-1). The SHPB employed a striker bar consisting of a viscoelastic material (polycarbonate). A sample of the biomaterial was obtained shortly postmortem and prepared for SHPB testing. The specimen was interposed between the incident and transmitted bars, and the pneumatic components of the SHPB were activated to drive the striker bar toward the incident bar. The resulting impact generated a compressive stress wave (i.e. incident wave) that traveled through the incident bar. When the compressive stress wave reached the end of the incident bar, a portion continued forward through the sample and transmitted bar (i.e. transmitted wave) while another portion reversed through the incident bar as a tensile wave (i.e. reflected wave). These waves were measured using strain gages mounted on the incident and transmitted bars. The true stress-strain behavior of the sample was determined from equations based on wave propagation and dynamic force equilibrium. The experimental stress-strain response was three dimensional in nature because the specimen bulged. As such, the hydrostatic stress (first invariant) was used to generate the stress-strain response. In order to extract the uniaxial (one-dimensional) mechanical response of the tissue, an iterative coupled optimization was performed using experimental results and Finite Element Analysis (FEA), which contained an Internal State Variable (ISV) material model used for the tissue. The ISV material model used in the FE simulations of the experimental setup was iteratively calibrated (i.e. optimized) to the experimental data such that the experiment and FEA strain gage values and first invariant of stresses were in good agreement.

  6. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials

    PubMed Central

    Prabhu, Rajkumar; Whittington, Wilburn R.; Patnaik, Sourav S.; Mao, Yuxiong; Begonia, Mark T.; Williams, Lakiesha N.; Liao, Jun; Horstemeyer, M. F.

    2015-01-01

    This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.) when exposed to high strain rates. This study utilized a Split-Hopkinson Pressure Bar (SHPB) to generate strain rates of 100-1,500 sec-1. The SHPB employed a striker bar consisting of a viscoelastic material (polycarbonate). A sample of the biomaterial was obtained shortly postmortem and prepared for SHPB testing. The specimen was interposed between the incident and transmitted bars, and the pneumatic components of the SHPB were activated to drive the striker bar toward the incident bar. The resulting impact generated a compressive stress wave (i.e. incident wave) that traveled through the incident bar. When the compressive stress wave reached the end of the incident bar, a portion continued forward through the sample and transmitted bar (i.e. transmitted wave) while another portion reversed through the incident bar as a tensile wave (i.e. reflected wave). These waves were measured using strain gages mounted on the incident and transmitted bars. The true stress-strain behavior of the sample was determined from equations based on wave propagation and dynamic force equilibrium. The experimental stress-strain response was three dimensional in nature because the specimen bulged. As such, the hydrostatic stress (first invariant) was used to generate the stress-strain response. In order to extract the uniaxial (one-dimensional) mechanical response of the tissue, an iterative coupled optimization was performed using experimental results and Finite Element Analysis (FEA), which contained an Internal State Variable (ISV) material model used for the tissue. The ISV material model used in the FE simulations of the experimental setup was iteratively calibrated (i.e. optimized) to the experimental data such that the experiment and FEA strain gage values and first invariant of stresses were in good agreement. PMID:26067742

  7. Influence of strain rate on indentation response of porcine brain.

    PubMed

    Qian, Long; Zhao, Hongwei; Guo, Yue; Li, Yuanshang; Zhou, Mingxing; Yang, Liguo; Wang, Zhiwei; Sun, Yifan

    2018-06-01

    Knowledge of brain tissue mechanical properties may be critical for formulating hypotheses about some specific diseases mechanisms and its accurate simulations such as traumatic brain injury (TBI) and tumor growth. Compared to traditional tests (e.g. tensile and compression), indentation shows superiority by virtue of its pinpoint and nondestructive/quasi-nondestructive. As a viscoelastic material, the properties of brain tissue depend on the strain rate by definition. However most efforts focus on the aspect of velocity in the field of brain indentation, rather than strain rate. The influence of strain rate on indentation response of brain tissue is taken little attention. Further, by comparing different results from literatures, it is also obvious that strain rate rather than velocity is more appropriate to characterize mechanical properties of brain. In this paper, to systematically characterize the influence of strain rate, a series of indentation-relaxation tests n = 210) are performed on the cortex of porcine brain using a custom-designed indentation device. The mechanical response that correlates with indenter diameters, depths of indentation and velocities, is revealed for the indentation portion, and elastic behavior of brain tissue is analyzed as the function of strain rate. Similarly, a linear viscoelastic model with a Prony series is employed for the indentation-relaxation portion, wherein the brain tissue shows more viscous and responds more quickly with increasing strain rate. Understanding the effect of strain rate on mechanical properties of brain indentation may be far-reaching for brain injury biomechanics and accurate simulations, but be important for bridging between indentation results of different literatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paggi, A., E-mail: alpaggi@tenaris.com; Angella, G.; Donnini, R.

    Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10{sup −} {sup 2} s{sup −} {sup 1} strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: ε{sub f} = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along themore » directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages.« less

  9. Rotation and strain rate of Sulawesi from geometrical velocity field

    NASA Astrophysics Data System (ADS)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    One of methods that can be used to determine the tectonic deformation status is rate estimation from geometric rotation and strain using quantitative velocity data from GPS observations. Microplate Sulawesi region located in the zone of triple junction (Eurasia, Australia and Philippine Sea Plates) has very complex tectonic and seismic condition, which is why become very important to know its recent deformation status in order to study neo-tectonic and disaster mitigation. Deformation rate quantification is estimated in two parameters: rotation and geodetic strain rate of each GPS station Delaunay triangle in the study area. The analysis in this study is not done using the grids since there is no rheological information at location that can be used as the interpolation-extrapolation constraints. Our analysis reveals that Sulawesi is characterized by rapid rotation in several different domains and compression-strain pattern that varies depending on the type and boundary conditions of microplate. This information is useful for studying neo tectonic deformation status and earthquake disaster mitigation.

  10. Hot deformation constitutive equation and processing map of Alloy 690

    NASA Astrophysics Data System (ADS)

    Feng, Han; Zhang, Songchuang; Ma, Mingjuan; Song, Zhigang

    The hot deformation behavior of alloy 690 was studied in the temperature range of 800-1300 C and strain rate range of 0.1-10 s-1 by hot compression tests in a Gleeble 1500+ thermal mechanical simulator. The results indicated that flow stress of alloy 690 is sensitive to deformation temperature and strain rate and peak stress increases with decreasing of temperature and increasing of strain rate. In addition, the hot deformation parameters of deformation activation were calculated and the apparent activation energy of this alloy is about 300 kJ/mol. The constitutive equation which can be used to relate peak stress to the absolute temperature and strain rate was obtained. It's further found that the processing maps exhibited two domains which are considered as the optimum windows for hot working. The microstructure observations of the specimens deformed in this domain showed the full dynamic recrystallization (DRX) structure. There was a flow instability domain in the processing map where hot working should be avoided.

  11. Modeling of grain size strengthening in tantalum at high pressures and strain rates

    DOE PAGES

    Rudd, Robert E.; Park, H. -S.; Cavallo, R. M.; ...

    2017-01-01

    Laser-driven ramp wave compression experiments have been used to investigate the strength (flow stress) of tantalum and other metals at high pressures and high strain rates. Recently this kind of experiment has been used to assess the dependence of the strength on the average grain size of the material, finding no detectable variation with grain size. The insensitivity to grain size has been understood theoretically to result from the dominant effect of the high dislocation density generated at the extremely high strain rates of the experiment. Here we review the experiments and describe in detail the multiscale strength model usedmore » to simulate them. The multiscale strength model has been extended to include the effect of geometrically necessary dislocations generated at the grain boundaries during compatible plastic flow in the polycrystalline metal. Lastly, we use the extended model to make predictions of the threshold strain rates and grain sizes below which grain size strengthening would be observed in the laser-driven Rayleigh-Taylor experiments.« less

  12. Mechanical response of the south flank of kilauea volcano, hawaii, to intrusive events along the rift systems

    USGS Publications Warehouse

    Dvorak, J.J.; Okamura, A.T.; English, T.T.; Koyanagi, R.Y.; Nakata, J.S.; Sako, M.K.; Tanigawa, W.T.; Yamashita, K.M.

    1986-01-01

    Increased earthquake activity and compression of the south flank of Kilauea volcano, Hawaii, have been recognized by previous investigators to accompany rift intrusions. We further detail the temporal and spatial changes in earthquake rates and ground strain along the south flank induced by six major rift intrusions which occurred between December 1971 and January 1981. The seismic response of the south flank to individual rift intrusions is immediate; the increased rate of earthquake activity lasts from 1 to 4 weeks. Horizontal strain measurements indicate that compression of the south flank usually accompanies rift intrusions and eruptions. Emplacement of an intrusion at a depth greater than about 4 km, such as the June 1982 southwest rift intrusion, however, results in a slight extension of the subaerial portion of the south flank. Horizontal strain measurements along the south flank are used to locate the January 1983 east-rift intrusion, which resulted in eruptive activity. The intrusion is modeled as a vertical rectangular sheet with constant displacement perpendicular to the plane of the sheet. This model suggests that the intrusive body that compressed the south flank in January 1983 extended from the surface to about 2.4 km depth, and was aligned along a strike of N66??E. The intrusion is approximately 11 km in length, extended beyond the January 1983 eruptive fissures, which are 8 km in length and is contained within the 14-km-long region of shallow rift earthquakes. ?? 1986.

  13. Investigation of precipitate refinement in Mg alloys by an analytical composite failure model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabei, Ali; Li, Dongsheng; Lavender, Curt A.

    2015-10-01

    An analytical model is developed to simulate precipitate refinement in second phase strengthened magnesium alloys. The model is developed based on determination of the stress fields inside elliptical precipitates embedded in a rate dependent inelastic matrix. The stress fields are utilized to determine the failure mode that governs the refinement behavior. Using an AZ31 Mg alloy as an example, the effects the applied load, aspect ratio and orientation of the particle is studied on the macroscopic failure of a single α-Mg17Al12 precipitate. Additionally, a temperature dependent version of the corresponding constitutive law is used to incorporate the effects of temperature.more » In plane strain compression, an extensional failure mode always fragments the precipitates. The critical strain rate at which the precipitates start to fail strongly depends on the orientation of the precipitate with respect to loading direction. The results show that the higher the aspect ratio is, the easier the precipitate fractures. Precipitate shape is another factor influencing the failure response. In contrast to elliptical precipitates with high aspect ratio, spherical precipitates are strongly resistant to sectioning. In pure shear loading, in addition to the extensional mode of precipitate failure, a shearing mode may get activated depending on orientation and aspect ratio of the precipitate. The effect of temperature in relation to strain rate was also verified for plane strain compression and pure shear loading cases.« less

  14. Electronic and optical properties of α-InX (X = S, Se and Te) monolayer: Under strain conditions

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Safari, Mandana

    2017-04-01

    Using ab initio study, the structural, electronic and optical properties of α-InX (X = S, Se and Te) are investigated under tensile and compressive strain conditions. The results illustrate that exerting biaxial tensile and compressive strain conditions can lead to a tunable energy gap with a linear trend. The shape of valence band maximum (VBM) and conduction band minimum (CBM) is so sensitive to applying tensile and compressive strain. Besides, a shift in optical spectra toward shorter wavelength (blue shift) occurs under compression. The exerting tensile strain, on the other hand, gives rise to a red shift in optical spectra correspondingly. The results have been presented that InX monolayers can be good candidates for optoelectronic applications as well.

  15. Microstructure evolution and dynamic recrystallization behavior of a powder metallurgy Ti-22Al-25Nb alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jianbo

    The flow behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy during hot compression tests has been investigated at a strain rate of 0.01 s{sup −1} and a temperature range of 980–1100 °C up to various true strains from 0.1 to 0.9. The effects of deformation temperature and strain on microstructure characterization and nucleation mechanisms of dynamic recrystallization (DRX) were assessed by means of Optical microscope (OM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques, respectively. The results indicated that the process of DRX was promoted by increasing deformation temperature and strain. By regression analysis, a power exponent relationshipmore » between peak stresses and sizes of stable DRX grains was developed. In addition, it is suggested that the discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) controlled nucleation mechanisms for DRX grains operated simultaneously during the whole hot process, and which played the leading role varied with hot process parameters of temperature and strain. It was further demonstrated that the CDRX featured by progressive subgrain rotation was weakened by elevating deformation temperatures. - Highlights: •Flow behavior of a P/M Ti-22Al-25Nb is studied by hot compression tests. •Microstructure evolution of alloy is affected by deformation temperature and strain. •The relationship between peak stress and stable DRX grain size was developed. •The process of DRX was promoted by increasing deformation temperature and strain. •Nucleation mechanisms of DRX were identified by EBSD analysis and TEM observation.« less

  16. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  17. Characterization of Hot Deformation Behavior of a Fe-Cr-Ni-Mo-N Superaustenitic Stainless Steel Using Dynamic Materials Modeling

    NASA Astrophysics Data System (ADS)

    Pu, Enxiang; Zheng, Wenjie; Song, Zhigang; Feng, Han; Zhu, Yuliang

    2017-03-01

    Hot deformation behavior of a Fe-24Cr-22Ni-7Mo-0.5N superaustenitic stainless steel was investigated by hot compression tests in a wide temperature range of 950-1250 °C and strain rate range of 0.001-10 s-1. The flow curves show that the flow stress decreases as the deformation temperature increases or the strain rate decreases. The processing maps developed on the basis of the dynamic materials model and flow stress data were adopted to optimize the parameters of hot working. It was found that the strain higher than 0.2 has no significant effect on the processing maps. The optimum processing conditions were in the temperature range of 1125-1220 °C and strain rate range of 0.1-3 s-1. Comparing to other stable domains, microstructural observations in this domain revealed the complete dynamic recrystallization (DRX) with finer and more uniform grain size. Flow instability occurred in the domain of temperature lower than 1100 °C and strain rate higher than 0.1 s-1.

  18. Stress-Strain Properties of SIFCON in Uniaxial Compression and Tension

    DTIC Science & Technology

    1988-08-01

    direction act as contacting beams whereas fibers aligned parallel to the loading direction act as individual columns . The combination of fiber-to-fiber...applicable to the study of SIFCON. These include such topics as the influence of strain rate on composite behavior, cyclic loading response, fiber-to-matrix...the specimen are shown in Figure 17. The grips consisted of self-clamping steel plates and a universal joint connection to the loading machine which

  19. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wang, Tianmeng; Wu, Meng; Cao, Ting; Chen, Yanwen; Sankar, Raman; Ulaganathan, Rajesh K.; Chou, Fangcheng; Wetzel, Christian; Xu, Cheng-Yan; Louie, Steven G.; Shi, Su-Fei

    2018-04-01

    InSe, a member of the layered materials family, is a superior electronic and optical material which retains a direct bandgap feature from the bulk to atomically thin few-layers and high electronic mobility down to a single layer limit. We, for the first time, exploit strain to drastically modify the bandgap of two-dimensional (2D) InSe nanoflakes. We demonstrated that we could decrease the bandgap of a few-layer InSe flake by 160 meV through applying an in-plane uniaxial tensile strain to 1.06% and increase the bandgap by 79 meV through applying an in-plane uniaxial compressive strain to 0.62%, as evidenced by photoluminescence (PL) spectroscopy. The large reversible bandgap change of ~239 meV arises from a large bandgap change rate (bandgap strain coefficient) of few-layer InSe in response to strain, ~154 meV/% for uniaxial tensile strain and ~140 meV/% for uniaxial compressive strain, representing the most pronounced uniaxial strain-induced bandgap strain coefficient experimentally reported in 2D materials. We developed a theoretical understanding of the strain-induced bandgap change through first-principles DFT and GW calculations. We also confirmed the bandgap change by photoconductivity measurements using excitation light with different photon energies. The highly tunable bandgap of InSe in the infrared regime should enable a wide range of applications, including electro-mechanical, piezoelectric and optoelectronic devices.

  1. 1000 to 1300 K slow plastic compression properties of Al-deficient NiAl

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Kumar, K. S.; Mannan, S. K.

    1991-01-01

    Nickel aluminides containing 37, 38.5 and 40 at. pct Al have been fabricated by XD synthesis and hot pressing. Such materials were compression tested in air under constant velocity conditions between 1000 and 1300 K. Examination of the microstructures of hot pressed and compression tested aluminides indicated that the structure consisted of two phases, gamma-prime and NiAl, for essentially all conditions, where gamma-prime was usually found on the NiAl grain boundaries. The stress-strain behavior of all three intermetallics was similar where flow at a nominally constant stress occurred after about two-percent plastic deformation. Furthermore, the 1000 to 1300 K flow stress-strain rate properties are nearly identical for these materials, and they are much lower than those for XD processed Ni-50Al. The overall deformation of the two phase nickel aluminides appears to be controlled by dislocation climb in NiAl rather than processes in gamma-prime.

  2. Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Gates, Thomas S.

    1995-01-01

    An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.

  3. Silicon Nitride Creep Under Various Specimen-Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Holland, Frederic A.

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC 132) was performed at 1300 C in air using five different specimen-loading configurations: (1) pure tension, (2) pure compression, (3) four-point uniaxial flexure, (4) ball-on-ring biaxial flexure, and (5) ring-on-ring biaxial flexure. This paper reports experimental results as well as test techniques developed in this work. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compression loading, nominal creep strain generally decreased with time, resulting in a less-defined steady-state condition. Of the four creep formulations-power-law, hyperbolic sine, step, and redistribution--the conventional power-law formulation still provides the most convenient and reasonable estimation of the creep parameters of the NC 132 material. The data base to be obtained will be used to validate the NASA Glenn-developed design code CARES/Creep (ceramics analysis and reliability evaluation of structures and creep).

  4. Modeling the impact behavior of high strength ceramics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, A.M.

    1993-12-01

    An advanced constitutive model is used to describe the shock and high strain rate behaviors of silicon carbide (SC), boron carbide B4C, and titanium diboride (TiB2) under impact loading conditions. The model's governing equations utilize a set of microphysically-based constitutive relationships to model the deformation and damage processes in a ceramic. The total strain is decomposed into elastic, plastic, and microcracking components. The plastic strain component was calculated using conventional viscoplastic equations. The strain components due to microcracking utilized relationships derived for a penny-shaped crack containing elastic solids. The main features of the model include degradation of strength and stiffnessmore » under both compressive and tensile loading conditions. When loaded above the Hugoniot elastic limit (HEL), the strength is limited by the strain rate dependent strength equation. However, below the HEL, the strength variation with respect to strain rate and pressure is modeled through microcracking relationships assuming no plastic flow. The ceramic model parameters were determined using a set of VISAR data from the plate impact experiments.« less

  5. Hot deformation behavior of uniform fine-grained GH4720Li alloy based on its processing map

    NASA Astrophysics Data System (ADS)

    Yu, Qiu-ying; Yao, Zhi-hao; Dong, Jian-xin

    2016-01-01

    The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130°C and the strain-rate range from 0.005 to 0.5 s-1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s-1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100°C or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130°C. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener-Hollomon parameters are induced by local plastic flow and primary γ' local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090-1130°C with 0.08-0.5 s-1 and 0.005-0.008 s-1 and 1040-1085°C with 0.005-0.06 s-1.

  6. Identification marking by means of laser peening

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  7. Electronic structure in 1T-ZrS2 monolayer by strain

    NASA Astrophysics Data System (ADS)

    Xin, Qianqian; Zhao, Xu; Ma, Xu; Wu, Ninghua; Liu, Xiaomeng; Wei, Shuyi

    2017-09-01

    We report electronic structure of 1T-ZrS2 monolayer with biaxial strain from -10% to 15%, basing the first principles calculations. Our calculation results indicate that the band structure of ZrS2 monolayer was changed clearly. The location of conduction band minimum (CBM) and valence band maximum (VBM) changed with the variation of isotropic strain. At compressive strain, the location of CBM and VBM retains at M and Γ point, respectively. The band gap of ZrS2 monolayer decreases from 1.111 eV to 0 eV when compressive strain increases from 0% to -8%, which means that the ZrS2 monolayer turns to metal at -8% compressive strain. Under the tensile strain, the ZrS2 monolayer also retains be an indirect band gap semiconductor. The location of CBM moves from M to Γ point and the location of VBM moves along Γ-A-K-Γ direction. The band gap of ZrS2 monolayer firstly increases and then decreases and the biggest band gap is 1.577 eV at tensile strain 6%. We can see the compression strain is more effective than tensile strain in modulating band gap of 1T-ZrS2 monolayer.

  8. Plastic flow and microstructure of cast nickel aluminides at 1273 K

    NASA Astrophysics Data System (ADS)

    Schneibel, J. H.; Porter, W. D.; Horton, J. A.

    1987-12-01

    Chill-cast nickel aluminides based on Ni3Al were compression-tested in vacuum at 1273 K at strain rates ranging from 10-5 s-1 to 10-1 s-1. As the strain rate increases, the propensity for intergranular cracking increases. The ductile-to-brittle transition strain rate (DBTS) of as-cast Ni-22.5Al-0.5Hf-0.1B (at. pct) is approximately 10-1 s-1. Homogenization lowers this value by three orders of magnitude, to 10-4 s-1 (a homogenized specimen disintegrated completely at a rate of 10-3 s-1). The fine-grained structure of the as-cast alloy plays an important role in its relatively high DBTS. A hafnium-free alloy, Ni-24A1-0.1B, on the other hand, shows only a weak dependence of the DBTS on prior homogenization, and possible reasons for this finding are discussed.

  9. Dynamic recrystallization behavior of a biomedical Ti-13Nb-13Zr alloy.

    PubMed

    Bobbili, Ravindranadh; Madhu, V

    2016-06-01

    The dynamic recrystallization (DRX) behavior of a biomedical titanium Ti-13Nb-13Zr alloy has been investigated using the high temperature compression tests under wide range of strain rates (0.001-1/s) and temperatures 900-1050°C. A constitutive equation represented as a function of temperature, strain rate and true strain is developed and the hot deformation apparent activation energy is calculated about 534kJ/mol. By considering the exponential relationship between work-hardening rate (θ) and stress, a new mathematical model was proposed for predicting flow stress up to the critical strain during hot deformation. The mathematical model for predicting flow stress up to the critical strain exhibits better consistency and accuracy. The DRX kinetic equation of Ti-13Nb-13Zr alloy is described as XDRX=1-exp[-0.32(Ɛ-ƐcƐ(*))(2.3)] . The DRX kinetic model was validated by microstructure observation. It was also found that the process of DRX was promoted by decreasing strain rate and increasing deformation temperature. Eventually, the continuous dynamic recrystallization (CDRX) was identified to be the DRX mechanism using transmission electron microscope (TEM). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dynamic behaviors of various volume rate steel-fiber reinforced reactive powder concrete after high temperature burnt

    NASA Astrophysics Data System (ADS)

    Pang, Baojun; Wang, Liwen; Yang, Zhenqi; Chi, Runqiang

    2009-06-01

    Dynamic strain-stress curves of reactive powder concrete under high strain rate (10/s-100/s) were determined by improved split Hopkinson pressure bar (SHPB) system. A plumbum pulse shaper was used to ensure the symmetrical stress in the specimens before fracture and avoid the fluctuation of test data due to input shaky stress pulse. A time modified method was induced for data processing in order to get accurate SHPB results. The results of experiment showed after high temperature burnt, different volume rate (0.0%, 0.5%, 1.0%, 1.5%) steel-fiber reinforced reactive power concrete had the same changing tendency of residual mechanics behaviors, e.g. after 400 centigrade burnt, the residual compression strength was about 70% of material strength without burnt under 100/s. After 800 centigrade burnt, the compression strength is about 30% under 100/s while the deformation ability increased. At meanwhile, steel fiber had improved the mechanism of reinforcing effect and toughening effect of concrete material after burnt. With increasing of steel fiber volume rate, dynamic residual behavior of samples was improved. Microcosmic characteristics and energy absorption were induced for explaining the experiment results.

  11. Strain Rate Dependency of Fracture Toughness, Energy Release Rate and Geomechanical Attributes of Select Indian Shales

    NASA Astrophysics Data System (ADS)

    Mahanta, B.; Vishal, V.; Singh, T. N.; Ranjith, P.

    2016-12-01

    In addition to modern improved technology, it requires detailed understanding of rock fractures for the purpose of enhanced energy extraction through hydraulic fracturing of gas shales and geothermal energy systems. The understanding of rock fracture behavior, patterns and properties such as fracture toughness; energy release rate; strength and deformation attributes during fracturing hold significance. Environmental factors like temperature, pressure, humidity, water vapor and experimental condition such as strain rate influence the estimation of these properties. In this study, the effects of strain rates on fracture toughness, energy release rate as well as geomechanical properties like uniaxial compressive strength, Young's modulus, failure strain, tensile strength, and brittleness index of gas shales were investigated. In addition to the rock-mechanical parameters, the fracture toughness and the energy release rates were measured for three different modes viz. mode I, mixed mode (I-II) and mode II. Petrographic and X-ray diffraction (XRD) analyses were performed to identify the mineral composition of the shale samples. Scanning electron microscope (SEM) analyses were conducted to have an insight about the strain rate effects on micro-structure of the rock. The results suggest that the fracture toughness; the energy release rate as well as other geomechanical properties are a function of strain rates. At high strain rates, the strength and stiffness of shale increases which in turn increases the fracture toughness and the energy release rate of shale that may be due to stress redistribution during grain fracturing. The fracture toughness and the strain energy release rates for all the modes (I/I-II/II) are comparable at lower strain rates, but they vary considerably at higher strain rates. In all the cases, mode I and mode II fracturing requires minimum and maximum applied energy, respectively. Mode I energy release rate is maximum, compared to the other modes.

  12. Strain driven sequential magnetic transitions in strained GdTiO3 on compressive substrates: a first-principles study

    NASA Astrophysics Data System (ADS)

    Yang, Li-Juan; Weng, Ya-Kui; Zhang, Hui-Min; Dong, Shuai

    2014-11-01

    The compressive strain effect on the magnetic ground state and electronic structure of strained GdTiO3 has been studied using the first-principles method. Unlike the cases of congeneric YTiO3 and LaTiO3, both of which become the A-type antiferromagnetism on the (0 0 1) LaAlO3 substrate despite their contrastive magnetism, the ground state of strained GdTiO3 on the LaAlO3 substrate changes from the original ferromagnetism to a G-type antiferromagnetim, instead of the A-type one although Gd3+ is between Y3+ and La3+. It is only when the in-plane compressive strain is large enough, e.g. on the (0 0 1) YAlO3 substrate, that the ground state finally becomes the A-type. The band structure calculation shows that the compressive strained GdTiO3 remains insulating, although the band gap changes a little in the strained GdTiO3.

  13. Compression and Instrumented Indentation Measurements on Biomimetic Polymers

    DTIC Science & Technology

    2006-09-01

    styrene- isoprene triblock copolymer gels are tested and compared using both macro-scale and micro-scale measurements. A methodology is presented to...at stress states and strain rates not available to bulk measurement equipment. In this work, a ballistic gelatin and two styrene- isoprene triblock

  14. Numerical Assessment of the Role of Slip and Twinning in Magnesium Alloy AZ31B During Loading Path Reversal

    NASA Astrophysics Data System (ADS)

    Wang, Huamiao; Wu, Peidong; Wang, Jian

    2015-07-01

    Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC-TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension-compression-tension along rolling direction, (2) tension-compression-tension along transverse direction, (3) compression-tension-compression along rolling direction, and (4) compression-tension-compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimental observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Such significant effect is mainly ascribed to the activity of twinning and detwinning.

  15. Experimental analysis and constitutive modelling of steel of A-IIIN strength class

    NASA Astrophysics Data System (ADS)

    Kruszka, Leopold; Janiszewski, Jacek

    2015-09-01

    Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.

  16. Characterization of the behavior under impact loading of a maraging steel strengthened by nano-precipitates

    NASA Astrophysics Data System (ADS)

    Lach, E.; Redjaïmia, A.; Leitner, H.; Clemens, H.

    2006-08-01

    Nanometer-sized precipitates are responsible for the high strength of steel alloys well known as maraging steels. The term maraging relates to aging reactions in very low-carbon martensitic steels. Due to precipitation hardening 0.2% yield stress values of up to 2.4 GPa can be achieved. The class of stainless maraging steels exhibits an excellent combination of very high strength and hardness, ductility and toughness, combined with good corrosion resistance. In many applications like crash worthiness or ballistic protection the materials are loaded at high strain-rates. The most important characteristic of material behavior under dynamic load is the dynamic yield stress. In this work compression tests had been conducted at strain-rates in the order of 5 x 10 - 3 s - 1 up to 3 x 103 s - 1 to study the materials behaviour. Additionally high dynamic compression tests had been performed in the temperature range from -40circC up to 300circC.

  17. Tuned critical avalanche scaling in bulk metallic glasses

    DOE PAGES

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; ...

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr 64.13Cu 15.75Ni 10.12Al 10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanchemore » depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.« less

  18. Modeling Deformation Flow Curves and Dynamic Recrystallization of BA-160 Steel During Hot Compression

    NASA Astrophysics Data System (ADS)

    Shahriari, Babak; Vafaei, Reza; Mohammad Sharifi, Ehsan; Farmanesh, Khosro

    2018-03-01

    The hot deformation behavior of a high strength low carbon steel was investigated using hot compression test at the temperature range of 850-1100 °C and under strain rates varying from 0.001 to 1 s-1. It was found that the flow curves of the steel were typical of dynamic recrystallization at the temperature of 950 °C and above; at tested strain rates lower than 1 s-1. A very good correlation between the flow stress and Zener-Hollomon parameter was obtained using a hyperbolic sine function. The activation energy of deformation was found to be around 390 kJ mol-1. The kinetics of dynamic recrystallization of the steel was studied by comparing it with a hypothetical dynamic recovery curve, and the dynamically fraction recrystallized was modeled by the Kolmogorov-Johnson-Mehl-Avrami relation. The Avrami exponent was approximately constant around 1.8, which suggested that the type of nucleation was one of site saturation on grain boundaries and edges.

  19. The role of surface diffusion and wing tilt in the formation of localized stacking faults in high In-content InGaN MQW nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Yoshitake; Dapkus, P. Daniel

    Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I{sub 1} type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaNmore » QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.« less

  20. The role of surface diffusion and wing tilt in the formation of localized stacking faults in high In-content InGaN MQW nanostructures

    NASA Astrophysics Data System (ADS)

    Nakajima, Yoshitake; Dapkus, P. Daniel

    2016-08-01

    Yellow and green emitting multiple quantum well structures are grown on nanostripe templates with {10-11} facets. SEM and cathodoluminescence measurements show a correlation between rough surface morphology near the bottom of the stripes and non-radiative recombination centers. Transmission electron microscopy (TEM) analysis shows that these surface instabilities are a result of stacking faults generated from the quantum well (QW) regions near the bottom of the pyramid that propagate to the surface. HRTEM images show that the stacking faults are I1 type which is formed by removal of one half basal plane to relieve the compressive strain in the InGaN QW. Thicker QWs near the bottom as a result of growth rate enhancement due to the surface diffusion of the precursors from the mask regions cause increased strain. Additionally, the compressive strain induced by the bending of the nanostructure towards the growth mask further increases the strain experienced by the QW thereby causing the localized defect generation.

  1. Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa

    NASA Astrophysics Data System (ADS)

    Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.

    2014-05-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  2. Artificial Neural Network-Based Three-dimensional Continuous Response Relationship Construction of 3Cr20Ni10W2 Heat-Resisting Alloy and Its Application in Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Li, Le; Wang, Li-yong

    2018-04-01

    The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which plays a critical role in process design and optimization. In this investigation, the true stress-strain data of 3Cr20Ni10W2 heat-resisting alloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1203-1403 K and strain rate range of 0.01-10 s-1 on a Gleeble 1500 testing machine. Then the constitutive relationship was modeled by an optimally constructed and well-trained back-propagation artificial neural network (BP-ANN). The evaluation of the BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of 3Cr20Ni10W2 heat-resisting alloy. Meanwhile, a comparison between improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the three-dimensional continuous response relationship for temperature, strain rate, strain, and stress. Finally, the three-dimensional continuous response relationship was applied to the numerical simulation of isothermal compression tests. The results show that such constitutive relationship can significantly promote the accuracy improvement of numerical simulation for hot forming processes.

  3. Stress analysis of mandibular implant overdenture with locator and bar/clip attachment: Comparative study with differences in the denture base length.

    PubMed

    Yoo, Jin Suk; Kwon, Kung-Rock; Noh, Kwantae; Lee, Hyeonjong; Paek, Janghyun

    2017-06-01

    The design of the attachment must provide an optimum stress distribution around the implant. In this study, for implant overdentures with a bar/clip attachment or a locator attachment, the stress transmitted to the implant in accordance with the change in the denture base length and the vertical pressure was measured and analyzed. Test model was created with epoxy resin. The strain gauges made a tight contact with implant surfaces. A universal testing machine was used to exert a vertical pressure on the mandibular implant overdenture and the strain rate of the implants was measured. Means and standard deviations of the maximum micro-deformation rates were determined. 1) Locator attachment: The implants on the working side generally showed higher strain than those on the non-working side. Tensile force was observed on the mesial surface of the implant on the working side, and the compressive force was applied to the buccal surface and on the surfaces of the implant on the non-working side. 2) Bar/clip attachment: The implants on the both non-working and working sides showed high strain; all surfaces except the mesial surface of the implant on the non-working side showed a compressive force. To minimize the strain on implants in mandibular implant overdentures, the attachment of the implant should be carefully selected and the denture base should be extended as much as possible.

  4. High strain rate behaviour of polypropylene microfoams

    NASA Astrophysics Data System (ADS)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  5. Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.

    1977-01-01

    The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.

  6. A compressibility correction of the pressure strain correlation model in turbulent flow

    NASA Astrophysics Data System (ADS)

    Klifi, Hechmi; Lili, Taieb

    2013-07-01

    This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects on the homogeneous turbulence shear flow are parameterized by the gradient Mach number. Several experiment and DNS results suggest that the convective Mach number is appropriate to study the compressibility effects on the mixing layers. The extension of the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure-strain correlation gives results that are in disagreement with the DNS results of Sarkar for high-speed shear flows. This extension is revised to derive a turbulence model for the pressure-strain correlation in which the compressibility is included in the turbulent Mach number, the gradient Mach number and then the convective Mach number. The behavior of the proposed model is compared to the compressible model of Adumitroiae et al. for the pressure-strain correlation in two turbulent compressible flows: homogeneous shear flow and mixing layers. In compressible homogeneous shear flows, the predicted results are compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility, the two compressible models are similar, but they become substantially different at high compressibilities. The proposed model shows good agreement with all cases of DNS results. Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al. and with the experimental results of Goebel et al. shows good qualitative agreement.

  7. In Situ Time-Resolved Measurements of Extension Twinning During Dynamic Compression of Polycrystalline Magnesium

    NASA Astrophysics Data System (ADS)

    Hustedt, C. J.; Lambert, P. K.; Kannan, V.; Huskins-Retzlaff, E. L.; Casem, D. T.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Gruner, S. M.; Ramesh, K. T.; Hufnagel, T. C.

    2018-04-01

    We report in situ time-resolved measurements of the dynamic evolution of the volume fraction of extension twins in polycrystalline pure magnesium and in the AZ31B magnesium alloy, using synchrotron x-ray diffraction during compressive loading at high strain rates. The dynamic evolution of the twinning volume fraction leads to a dynamic evolution of the texture. Although both the pure metal and the alloy had similar initial textures, we observe that the evolution of texture is slower in the alloy. We also measured the evolution of the lattice strains in each material during deformation which, together with the twin volume fractions, allows us to place some constraints on the relative contributions of dislocation-based slip and deformation twinning to the overall plastic deformation during the dynamic deformations.

  8. High strain rate behavior of a SiC particulate reinforced Al{sub 2}O{sub 3} ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, I.W.; Guden, M.

    The high strain rate deformation behavior of composite materials is important for several reasons. First, knowledge of the mechanical properties of composites at high strain rates is needed for designing with these materials in applications where sudden changes in loading rates are likely to occur. Second, knowledge of both the dynamic and quasi-static mechanical responses can be used to establish the constitutive equations which are necessary to increase the confidence limits of these materials, particularly if they are to be used in critical structural applications. Moreover, dynamic studies and the knowledge gained form them are essential for the further developmentmore » of new material systems for impact applications. In this study, the high strain rate compressive deformation behavior of a ceramic matrix composite (CMC) consisting of SiC particles and an Al{sub 2}O{sub 3} matrix was studied and compared with its quasi-static behavior. Microscopic observations were conducted to investigate the deformation and fracture mechanism of the composite.« less

  9. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    NASA Astrophysics Data System (ADS)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  10. Measurement at low strain rates of the elastic properties of dental polymeric materials.

    PubMed

    Chabrier, F; Lloyd, C H; Scrimgeour, S N

    1999-01-01

    To evaluate a simple static test (i.e. a slow strain rate test) designed to measure Young's modulus and the bulk modulus of polymeric materials (The NOL Test). Though it is a 'mature' test as yet it has never been applied to dental materials. A small cylindrical specimen is contained in a close-fitting steel constraining ring and compressive force applied to the ends by steel pistons. The initial (unconstrained) deformation is controlled by Young's modulus. Lateral spreading leads to constraint from the ring and subsequent deformation is controlled by the bulk modulus. A range of dental materials and reference polymers were selected and both moduli measured. From these data Poisson's ratios were calculated. The test proved be a simple reliable method for obtaining values for these properties. For composite the value of Young's modulus was lower, bulk modulus relatively similar and Poisson's ratio higher than that obtained from high strain rate techniques (as expected for a strain rate sensitive material). This test does fulfil a requirement for a simple test to define fully the elastic properties of dental polymeric materials. Measurements are made at the strain rates used in conventional static tests and values reflect this test condition. The higher values obtained for Poisson's ratio at this slow strain rate has implications for FEA, in that analysis is concerned with static or slow rate loading situations.

  11. In situ control of synchronous germanide/silicide reactions with Ge/Si core/shell nanowires to monitor formation and strain evolution in abrupt 2.7 nm channel length

    DOE PAGES

    Chen, Renjie; Nguyen, Binh-Minh; Tang, Wei; ...

    2017-05-22

    The metal-semiconductor interface in self-aligned contact formation can determine the overall performance of nanoscale devices. This interfacial morphology is predicted and well researched in homogenous semiconductor nanowires (NWs) but was not pursued in heterostructured core/shell nanowires. Here, we found here that the solid-state reactions between Ni and Ge/Si core/shell nanowires resulted in a protruded and a leading NiSiy segment into the channel. A single Ni 2Ge/NiSi y to Ge/Si core/shell interface was achieved by the selective shell removal near the Ni source/drain contact areas. In using in situ transmission electron microscopy, we measured the growth rate and anisotropic strain evolutionmore » in ultra-short channels. We also found elevated compressive strains near the interface between the compound contact and the NW and relatively lower strains near the center of the channel which increased exponentially below the 10 nm channel length to exceed 10% strain at ~3 nm lengths. These compressive strains are expected to result in a non-homogeneous energy band structure in Ge/Si core/shell NWs below 10 nm and potentially benefit their transistor performance.« less

  12. In situ control of synchronous germanide/silicide reactions with Ge/Si core/shell nanowires to monitor formation and strain evolution in abrupt 2.7 nm channel length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Renjie; Nguyen, Binh-Minh; Tang, Wei

    The metal-semiconductor interface in self-aligned contact formation can determine the overall performance of nanoscale devices. This interfacial morphology is predicted and well researched in homogenous semiconductor nanowires (NWs) but was not pursued in heterostructured core/shell nanowires. Here, we found here that the solid-state reactions between Ni and Ge/Si core/shell nanowires resulted in a protruded and a leading NiSiy segment into the channel. A single Ni 2Ge/NiSi y to Ge/Si core/shell interface was achieved by the selective shell removal near the Ni source/drain contact areas. In using in situ transmission electron microscopy, we measured the growth rate and anisotropic strain evolutionmore » in ultra-short channels. We also found elevated compressive strains near the interface between the compound contact and the NW and relatively lower strains near the center of the channel which increased exponentially below the 10 nm channel length to exceed 10% strain at ~3 nm lengths. These compressive strains are expected to result in a non-homogeneous energy band structure in Ge/Si core/shell NWs below 10 nm and potentially benefit their transistor performance.« less

  13. The influence of void and porosity on deformation behaviour of nanocrystalline Ni under tensile followed by compressive loading

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Nayak, Shradha; Krishanjeet, Kumar; Pal, Snehanshu

    2018-03-01

    In this paper, we present a lucid understanding about the deformation behaviour of nanocrystalline (NC) Ni with and without defects subjected to tensile followed by compressive loading using molecular dynamic (MD) simulations. The embedded atom method (EAM) potential have been incorporated in the simulation for three kinds of samples-i.e. for NC Ni (without any defect), porous NC Ni and NC Ni containing a centrally located void. All the three samples, which have been prepared by implementing the Voronoi method and using Atom Eye software, consist of 16 uniform grains. The total number of atoms present in NC Ni, porous NC Ni and NC Ni containing a void are 107021, 105968 and 107012 respectively. The stress-strain response of NC Ni under tensile followed by compressive loading are simulated at a high strain rate of 107 s-1 and at a constant temperature of 300K. The stress-strain curves for the NC Ni with and without defects have been plotted for three different types of loading: (a) tensile loading (b) compressive loading (c) forward tensile loading followed by reverse compressive loading. Prominent change in yield strength of the NC Ni is observed due to the introduction of defects. For tensile followed by compressive loading (during forward loading), the yield point for NC Ni with void is lesser than the yield point of NC Ni and porous NC Ni. The saw tooth shape or serration portion of the stress-strain curve is mainly due to three characteristic phenomena, dislocation generation and its movement, dislocation pile-up at the junctions, and dislocation annihilation. Both twins and stacking faults are observed due to plastic deformation as the deformation mechanism progresses. The dislocation density, number of clusters and number of vacancy of the NC sample with and without defects are plotted against the strain developed in the sample. It is seen that introduction of defects brings about change in mechanical properties of the NC Ni. The crystalline nature of NC Ni is found to decrease with introduction of defects. The findings of this work can thus be extended in bringing a whole new insight related to the deformation behaviour and properties of Nano- materials during cyclic deformation at various temperatures.

  14. An extensometer for global measurement of bone strain suitable for use in vivo in humans

    NASA Technical Reports Server (NTRS)

    Perusek, G. P.; Davis, B. L.; Sferra, J. J.; Courtney, A. C.; D'Andrea, S. E.

    2001-01-01

    An axial extensometer able to measure global bone strain magnitudes and rates encountered during physiological activity, and suitable for use in vivo in human subjects, is described. The extensometer uses paired capacitive sensors mounted to intraosseus pins and allows measurement of strain due to bending in the plane of the extensometer as well as uniaxial compression or tension. Data are presented for validation of the device against a surface-mounted strain gage in an acrylic specimen under dynamic four-point bending, with square wave and sinusoidal loading inputs up to 1500 mu epsilon and 20 Hz, representative of physiological strain magnitudes and frequencies. Pearson's correlation coefficient (r) between extensometer and strain gage ranged from 0.960 to 0.999. Mean differences between extensometer and strain gage ranged up to 15.3 mu epsilon. Errors in the extensometer output were directly proportional to the degree of bending that occurs in the specimen, however, these errors were predictable and less than 1 mu epsilon for the loading regime studied. The device is capable of tracking strain rates in excess of 90,000 mu epsilon/s.

  15. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge.

    PubMed

    Niu, Zhiqiang; Zhou, Weiya; Chen, Xiaodong; Chen, Jun; Xie, Sishen

    2015-10-21

    Based on polyaniline-single-walled carbon nanotubes -sponge electrodes, highly compressible all-solid-state supercapacitors are prepared with an integrated configuration using a poly(vinyl alcohol) (PVA)/H2 SO4 gel as the electrolyte. The unique configuration enables the resultant supercapacitors to be compressed as an integrated unit arbitrarily during 60% compressible strain. Furthermore, the performance of the resultant supercapacitors is nearly unchanged even under 60% compressible strain. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mathematical Model Relating Uniaxial Compressive Behavior of Manufactured Sand Mortar to MIP-Derived Pore Structure Parameters

    PubMed Central

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257

  17. Mathematical model relating uniaxial compressive behavior of manufactured sand mortar to MIP-derived pore structure parameters.

    PubMed

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.

  18. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    PubMed

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  19. Origin of texture development in orthorhombic uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  20. Origin of texture development in orthorhombic uranium

    DOE PAGES

    Zecevic, Miroslav; Knezevic, Marko; Beyerlein, Irene Jane; ...

    2016-04-09

    We study texture evolution of alpha-uranium (α-U) during plane strain compression and uniaxial compression to high strains at different temperatures. We combine a multiscale polycrystal constitutive model and detailed analysis of texture data to uncover the slip and twinning modes responsible for the formation of individual texture components. The analysis indicates that during plane strain compression, floor slip (001)[100] results in the formation of two pronounced {001}{001} texture peaks tilted 10–15° away from the normal toward the rolling direction. During both high-temperature (573 K) through-thickness compression and plane strain compression, the active slip modes are floor slip (001)[100] and chimneymore » slip 1/2{110} <11¯0> with slightly different ratios. {130} <31¯0> deformation twinning is profuse during rolling and in-plane compression and decreases with increasing temperature, but is not as active for through-thickness compression. Lastly, we comment on some similarities between rolling textures of α-U, which has a c/a ratio of 1.734, and those that develop in hexagonal close packed metals with similarly high c/a ratios like Zn (1.856) and Cd (1.885) and are dominated by basal slip.« less

  1. Comparison of epoxy-based encapsulating materials over temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Khan, Amnah S.; Wilgeroth, James; Balzer, Jens; Proud, William G.

    2017-01-01

    The highly insulating, adhesive and bonding properties of thermosetting epoxies, their ability to be injection moulded in an uncured state, as well as their presence in a wide number of composites, has resulted in their widespread use in both electrical and aerospace applications. There is thus a need to understand the compressive response of epoxies over the range of temperatures likely to be experienced within their working environment. The effects of varying strain rates and temperatures on an epoxy resin (Scotchcast 8) and an epoxy-based syntactic foam (Stycast 1090) were investigated. The samples were studied from -20 °C to +80 °C over a range of strain rates (10-4 - 10+3 s-1). Stress-strain data was obtained, with further analysis from high-speed images. Dynamic Mechanical Analysis (DMA) was also performed on the two materials. Data obtained from these experiments demonstrated key differences in the behaviour of the two materials, forming a basis for comparison with numerical simulations.

  2. Influence of primary α-phase volume fraction on the mechanical properties of Ti-6Al-4V alloy at different strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing

    2018-03-01

    Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.

  3. On the formation of adiabatic shear bands in titanium alloy Ti17 under severe loading conditions

    NASA Astrophysics Data System (ADS)

    Boubaker, H. Ben; Ayed, Y.; Mareau, C.; Germain, G.

    2018-05-01

    For metallic materials, fabrication processes (e.g. machining and forging) may involve important strain rates and high temperatures. For such severe loading conditions, the development of damage is often associated with the formation of Adiabatic Shear Bands (ASB). In this work, the impact of loading conditions (strain rate, temperature) on the formation of ASB in a beta rich titanium alloy (Ti17) is investigated. In this perspective, uniaxial compression tests have been conducted on cylindrical samples with a Gleeble-3500 thermo-mechanical simulator at temperatures ranging from 25°C to 800°C and strain rates ranging from 0.1 to 50 s-1 with axial strains of approximately 50 %. According to the experimental results, the flow curves exhibit hardening from 25°C to 550°C and softening from 600°C to 800°C. When looking at the evolution of flow stress, the strain rate sensitivity is found to increase significantly with increasing temperatures. Also, adiabatic shear bands are preferably observed for high strain rates and low temperatures. The formation of ASB thus seems to be quite dependent on the evolution of the strain rate sensitivity of Ti17. Finally, metallographic observations have been carried out to better understand the process leading to the formation of ASB. Such observations demonstrate that the average width of ASB increases with increasing temperatures and decreasing strain rates. However, such observations do not allow for identifying whether some specific microstructural transformations (e.g recrystallization or phase transformation) could explain the formation of ASB or not.

  4. Deformation modeling and constitutive modeling for anisotropic superalloys

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    A study of deformation mechanisms in the single crystal superalloy PWA 1480 was conducted. Monotonic and cyclic tests were conducted from 20 to 1093 C. Both (001) and near-(123) crystals were tested, at strain rates of 0.5 and 50 percent/minute. The deformation behavior could be grouped into two temperature regimes: low temperatures, below 760 C; and high temperatures, above 820 to 950 C depending on the strain rate. At low temperatures, the mechanical behavior was very anisotropic. An orientation dependent CRSS, a tension-compression asymmetry, and anisotropic strain hardening were all observed. The material was deformed by planar octahedral slip. The anisotropic properties were correlated with the ease of cube cross-slip, as well as the number of active slip systems. At high temperatures, the material was isotropic, and deformed by homogeneous gamma by-pass. It was found that the temperature dependence of the formation of superlattice-intrinsic stacking faults was responsible for the local minimum in the CRSS of this alloy at 400 C. It was proposed that the cube cross-slip process must be reversible. This was used to explain the reversible tension-compression asymmetry, and was used to study models of cross-slip. As a result, the cross-slip model proposed by Paidar, Pope and Vitek was found to be consistent with the proposed slip reversibility. The results were related to anisotropic viscoplastic constitutive models. The model proposed by Walter and Jordan was found to be capable of modeling all aspects of the material anisotropy. Temperature and strain rate boundaries for the model were proposed, and guidelines for numerical experiments were proposed.

  5. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  6. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.

    PubMed

    Moran, Richard; Smith, Joshua H; García, José J

    2014-11-28

    The mechanical properties of human brain tissue are the subject of interest because of their use in understanding brain trauma and in developing therapeutic treatments and procedures. To represent the behavior of the tissue, we have developed hyperelastic mechanical models whose parameters are fitted in accordance with experimental test results. However, most studies available in the literature have fitted parameters with data of a single type of loading, such as tension, compression, or shear. Recently, Jin et al. (Journal of Biomechanics 46:2795-2801, 2013) reported data from ex vivo tests of human brain tissue under tension, compression, and shear loading using four strain rates and four different brain regions. However, they do not report parameters of energy functions that can be readily used in finite element simulations. To represent the tissue behavior for the quasi-static loading conditions, we aimed to determine the best fit of the hyperelastic parameters of the hyperfoam, Ogden, and polynomial strain energy functions available in ABAQUS for the low strain rate data, while simultaneously considering all three loading modes. We used an optimization process conducted in MATLAB, calling iteratively three finite element models developed in ABAQUS that represent the three loadings. Results showed a relatively good fit to experimental data in all loading modes using two terms in the energy functions. Values for the shear modulus obtained in this analysis (897-1653Pa) are in the range of those presented in other studies. These energy-function parameters can be used in brain tissue simulations using finite element models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Time-Temperature Dependent Response of Filament Wound Composites for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.; Thompson, Richard C.

    2004-01-01

    Flywheel energy storage offers an attractive alternative to battery systems used in space applications such as the International Space Station. Rotor designs capable of high specific energies benefit from the load carrying capacity of hoop wound carbon fibers but their long-term durability may be limited by time-temperature dependent radial deformations. This was investigated for the carbon/epoxy rotor material, IM7/8552. Coupon specimens were sectioned from filament wound panels. These were tested in compression and tension at room temperature (RT), 95 and 135 C for strain rates from 5x10(exp -6) per second to 5x10(exp -3) per second. Time, temperature and load sign dependent effects were significant transverse to the fiber. At -0.5 percent strain for 72 hr, compressive stresses relaxed 16.4 percent at 135 C and 13 percent at 95 C. Tensile stresses relaxed only 7 percent in 72 hr at 135 C for 0.5 percent strain. Using linear hereditary material response and Boltzmann s principle of superposition to describe this behavior is problematic if not intractable. Micromechanics analysis including the effects of processing residual stresses is needed to resolve the paradoxes. Uniaxial compressive stress relaxation data may be used to bound the loss of radial pre-load stresses in flywheel rotors.

  8. Enhancement of orientation gradients during simple shear deformation by application of simple compression

    NASA Astrophysics Data System (ADS)

    Jahedi, Mohammad; Ardeljan, Milan; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Knezevic, Marko

    2015-06-01

    We use a multi-scale, polycrystal plasticity micromechanics model to study the development of orientation gradients within crystals deforming by slip. At the largest scale, the model is a full-field crystal plasticity finite element model with explicit 3D grain structures created by DREAM.3D, and at the finest scale, at each integration point, slip is governed by a dislocation density based hardening law. For deformed polycrystals, the model predicts intra-granular misorientation distributions that follow well the scaling law seen experimentally by Hughes et al., Acta Mater. 45(1), 105-112 (1997), independent of strain level and deformation mode. We reveal that the application of a simple compression step prior to simple shearing significantly enhances the development of intra-granular misorientations compared to simple shearing alone for the same amount of total strain. We rationalize that the changes in crystallographic orientation and shape evolution when going from simple compression to simple shearing increase the local heterogeneity in slip, leading to the boost in intra-granular misorientation development. In addition, the analysis finds that simple compression introduces additional crystal orientations that are prone to developing intra-granular misorientations, which also help to increase intra-granular misorientations. Many metal working techniques for refining grain sizes involve a preliminary or concurrent application of compression with severe simple shearing. Our finding reveals that a pre-compression deformation step can, in fact, serve as another processing variable for improving the rate of grain refinement during the simple shearing of polycrystalline metals.

  9. Effect of strain on the electronic structure and optical properties of germanium

    NASA Astrophysics Data System (ADS)

    Wen, Shumin; Zhao, Chunwang; Li, Jijun; Hou, Qingyu

    2018-05-01

    The effects of biaxial strain parallel to the (001) plane on the electronic structures and optical properties of Ge are calculated using the first-principles plane-wave pseudopotential method based on density functional theory. The screened-exchange local-density approximation function was used to obtain more reliable band structures, while strain was changed from ‑4% to +4%. The results show that the bandgap of Ge decreases with the increase of strain. Ge becomes a direct-bandgap semiconductor when the tensile strain reaches to 2%, which is in good agreement with the experimental results. The density of electron states of strained Ge becomes more localized. The tensile strain can increase the static dielectric constant distinctly, whereas the compressive strain can decrease the static dielectric constant slightly. The strain makes the absorption band edge move toward low energy. Both the tensile strain and compressive strain can significantly increase the reflectivity in the range from 7 eV to 14 eV. The tensile strain can decrease the optical conductivity, but the compressive strain can increase the optical conductivity significantly.

  10. Predicting the shock compression response of heterogeneous powder mixtures

    NASA Astrophysics Data System (ADS)

    Fredenburg, D. A.; Thadhani, N. N.

    2013-06-01

    A model framework for predicting the dynamic shock-compression response of heterogeneous powder mixtures using readily obtained measurements from quasi-static tests is presented. Low-strain-rate compression data are first analyzed to determine the region of the bulk response over which particle rearrangement does not contribute to compaction. This region is then fit to determine the densification modulus of the mixture, σD, an newly defined parameter describing the resistance of the mixture to yielding. The measured densification modulus, reflective of the diverse yielding phenomena that occur at the meso-scale, is implemented into a rate-independent formulation of the P-α model, which is combined with an isobaric equation of state to predict the low and high stress dynamic compression response of heterogeneous powder mixtures. The framework is applied to two metal + metal-oxide (thermite) powder mixtures, and good agreement between the model and experiment is obtained for all mixtures at stresses near and above those required to reach full density. At lower stresses, rate-dependencies of the constituents, and specifically those of the matrix constituent, determine the ability of the model to predict the measured response in the incomplete compaction regime.

  11. Assessment and application of Reynolds stress closure models to high-speed compressible flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Sarkar, S.; Speziale, C. G.; Balakrishnan, L.; Abid, R.; Anderson, E. C.

    1990-01-01

    The paper presents results from the development of higher order closure models for the phenomological modeling of high-speed compressible flows. The work presented includes the introduction of an improved pressure-strain correlationi model applicable in both the low- and high-speed regime as well as modifications to the isotropic dissipation rate to account for dilatational effects. Finally, the question of stiffness commonly associated with the solution of two-equation and Reynolds stress transport equations in wall-bounded flows is examined and ways of relaxing these restrictions are discussed.

  12. Experimental study on the dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Cai, Xuanming; Ye, Nan; Huang, Wei; Hypervelocity Impact Research Center Team

    2015-06-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compress and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D digital speckle correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates. The strain softening occurred when the stress over yield point except the tensile tests in the strain rates of 1076s-1 and 1279s-1. The ZWT model can describe the constitutive behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method. And the final results showed more closely to Cater and Mash than other previous data.

  13. Flow Behavior and Constitutive Equation of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Xuemei; Guo, Hongzhen; Liang, Houquan; Yao, Zekun; Yuan, Shichong

    2016-04-01

    In order to get a reliable constitutive equation for the finite element simulation, flow behavior of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si alloy under high temperature was investigated by carrying a series of isothermal compression tests at temperatures of 1153-1293 K and strain rates of 0.01-10.0 s-1 on the Gleeble-1500 simulator. Results showed that the true stress-strain curves exhibited peaks at small strains, after which the flow stress decreased monotonically. Ultimately, the flow curves reached steady state at the strain of 0.6, showing a dynamic flow softening phenomenon. The effects of strain rate, temperature, and strain on the flow behavior were researched by establishing a constitutive equation. The relations among stress exponent, deformation activation energy, and strain were preliminarily discussed by using strain rate sensitivity exponent and dynamic recrystallization kinetics curve. Stress values predicted by the modified constitutive equation showed a good agreement with the experimental ones. The correlation coefficient ( R) and average absolute relative error (AARE) were 98.2% and 4.88%, respectively, which confirmed that the modified constitutive equation could give an accurate estimation of the flow stress for BT25y titanium alloy.

  14. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    NASA Astrophysics Data System (ADS)

    Wereley, Norman M.; Perez, Colette; Choi, Young T.

    2018-05-01

    This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  15. Long-Bone Injury Criteria for Use with the Articulated Total Body Model

    DTIC Science & Technology

    1981-01-01

    bone - human, canine, bovine, etc.; condition of bone - dry, wet , embalmed , fresh; subject variations - height, weight, health, sex, age, etc; whole bone...stress strain curves ob- tained by McElhaney for various strain rates in compression. This is for embalmed human compact bone. Ultimate stress, ultimate...reported for fresh human bone of 25,000 psi (see Table 1). Recall that the McElhaney data is from embalmed subjects. If it is assumed, for lack of any real

  16. Laser shocking of materials: Toward the national ignition facility

    DOE PAGES

    Meyers, M. A.; Remington, B. A.; Maddox, B.; ...

    2010-01-16

    In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. In this paper, this technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 10 7–10 8 s -1 and resolving details of themore » kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Finally, other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.« less

  17. An internal variable constitutive model for the large deformation of metals at high temperatures

    NASA Technical Reports Server (NTRS)

    Brown, Stuart; Anand, Lallit

    1988-01-01

    The advent of large deformation finite element methodologies is beginning to permit the numerical simulation of hot working processes whose design until recently has been based on prior industrial experience. Proper application of such finite element techniques requires realistic constitutive equations which more accurately model material behavior during hot working. A simple constitutive model for hot working is the single scalar internal variable model for isotropic thermal elastoplasticity proposed by Anand. The model is recalled and the specific scalar functions, for the equivalent plastic strain rate and the evolution equation for the internal variable, presented are slight modifications of those proposed by Anand. The modified functions are better able to represent high temperature material behavior. The monotonic constant true strain rate and strain rate jump compression experiments on a 2 percent silicon iron is briefly described. The model is implemented in the general purpose finite element program ABAQUS.

  18. High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading

    NASA Astrophysics Data System (ADS)

    Garkushin, G. V.; Kanel', G. I.; Razorenov, S. V.

    2012-05-01

    This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s-1 at a distance of 0.25 mm to 103 s-1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.

  19. Finite Element Simulations to Explore Assumptions in Kolsky Bar Experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Justin

    2015-08-05

    The chief purpose of this project has been to develop a set of finite element models that attempt to explore some of the assumptions in the experimental set-up and data reduction of the Kolsky bar experiment. In brief, the Kolsky bar, sometimes referred to as the split Hopkinson pressure bar, is an experimental apparatus used to study the mechanical properties of materials at high strain rates. Kolsky bars can be constructed to conduct experiments in tension or compression, both of which are studied in this paper. The basic operation of the tension Kolsky bar is as follows: compressed air ismore » inserted into the barrel that contains the striker; the striker accelerates towards the left and strikes the left end of the barrel producing a tensile stress wave that propogates first through the barrel and then down the incident bar, into the specimen, and finally the transmission bar. In the compression case, the striker instead travels to the right and impacts the incident bar directly. As the stress wave travels through an interface (e.g., the incident bar to specimen connection), a portion of the pulse is transmitted and the rest reflected. The incident pulse, as well as the transmitted and reflected pulses are picked up by two strain gauges installed on the incident and transmitted bars as shown. By interpreting the data acquired by these strain gauges, the stress/strain behavior of the specimen can be determined.« less

  20. Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet

    NASA Astrophysics Data System (ADS)

    Dimple; Jena, Nityasagar; De Sarkar, Abir

    2017-06-01

    Strain and temperature induced tunability in the thermoelectric properties in monolayer MoS2 (ML-MoS2) has been demonstrated using density functional theory coupled to semi-classical Boltzmann transport theory. Compressive strain, in general and uniaxial compressive strain (along the zig-zag direction), in particular, is found to be most effective in enhancing the thermoelectric power factor, owing to the higher electronic mobility and its sensitivity to lattice compression along this direction. Variation in the Seebeck coefficient and electronic band gap with strain is found to follow the Goldsmid-Sharp relation. n-type doping is found to raise the relaxation time-scaled thermoelectric power factor higher than p-type doping and this divide widens with increasing temperature. The relaxation time-scaled thermoelectric power factor in optimally n-doped ML-MoS2 is found to undergo maximal enhancement under the application of 3% uniaxial compressive strain along the zig-zag direction, when both the (direct) electronic band gap and the Seebeck coefficient reach their maximum, while the electron mobility drops down drastically from 73.08 to 44.15 cm2 V-1 s-1. Such strain sensitive thermoelectric responses in ML-MoS2 could open doorways for a variety of applications in emerging areas in 2D-thermoelectrics, such as on-chip thermoelectric power generation and waste thermal energy harvesting.

  1. Acoustic Emission Characteristics of Red Sandstone Specimens Under Uniaxial Cyclic Loading and Unloading Compression

    NASA Astrophysics Data System (ADS)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Chen, Yanlong

    2018-04-01

    To explore the acoustic emission (AE) characteristics of rock materials during the deformation and failure process under periodic loads, a uniaxial cyclic loading and unloading compression experiment was conducted based on an MTS 815 rock mechanics test system and an AE21C acoustic emissions test system. The relationships among stress, strain, AE activity, accumulated AE activity and duration for 180 rock specimens under 36 loading and unloading rates were established. The cyclic AE evolutionary laws with rock stress-strain variation at loading and unloading stages were analyzed. The Kaiser and Felicity effects of rock AE activity were disclosed, and the impact of the significant increase in the scale of AE events on the Felicity effect was discussed. It was observed that the AE characteristics are closely related to the stress-strain properties of rock materials and that they are affected by the developmental state and degree of internal microcracks. AE events occur in either the loading or unloading stages if the strain is greater than zero. Evolutionary laws of AE activity agree with changes in rock strain. Strain deformation is accompanied by AE activity, and the density and intensity of AE events directly reflect the damage degree of the rock mass. The Kaiser effect exists in the linear elastic stage of rock material, and the Felicity effect is effective in the plastic yield and post-peak failure stages, which are divided by the elastic yield strength. This study suggests that the stress level needed to determine a significant increase in AE activity was 70% of the i + 1 peak stress. The Felicity ratio of rock specimens decreases with the growth of loading-unloading cycles. The cycle magnitude and variation of the Felicity effect, in which loading and unloading rates play a weak role, are almost consistent.

  2. Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianbo, E-mail: lijianbo1205@163.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Wang, Yan, E-mail: wangyan@csu.edu.cn

    2014-11-15

    High temperature compressive deformation behaviors of as-cast Ti–43Al–4Nb–1.4W–0.6B alloy were investigated at temperatures ranging from 1050 °C to 1200 °C, and strain rates from 0.001 s{sup −1} to 1 s{sup −1}. Electron back scattered diffraction technique, scanning electron microscopy and transmission electron microscopy were employed to investigate the microstructural evolutions and nucleation mechanisms of the dynamic recrystallization. The results indicated that the true stress–true strain curves show a dynamic flow softening behavior. The dependence of the peak stress on the deformation temperature and the strain rate can well be expressed by a hyperbolic-sine type equation. The activation energy decreases withmore » increasing the strain. The size of the dynamically recrystallized β grains decreases with increasing the value of the Zener–Hollomon parameter (Z). When the flow stress reaches a steady state, the size of β grains almost remains constant with increasing the deformation strain. The continuous dynamic recrystallization plays a dominant role in the deformation. In order to characterize the evolution of dynamic recrystallization volume fraction, the dynamic recrystallization kinetics was studied by Avrami-type equation. Besides, the role of β phase and the softening mechanism during the hot deformation was also discussed in details. - Highlights: • The size of DRXed β grains decreases with increasing the value of the Z. • The CDRX plays a dominant role in the deformation. • The broken TiB{sub 2} particles can promote the nucleation of DRX.« less

  3. Effect of pre-straining on the evolution of material anisotropy in rolled magnesium alloy AZ31 sheet

    NASA Astrophysics Data System (ADS)

    Qiao, H.; Guo, X. Q.; Wu, P. D.

    2013-12-01

    The large strain Elastic Visco-Plastic Self-Consistent (EVPSC) model and the recently developed Twinning and De-Twinning (TDT) model are applied to study the mechanical behavior of rolled magnesium alloy AZ31 sheet. Three different specimen orientations with tilt angles of 0°, 45° and 90° between the rolling direction and longitudinal specimen axis are used to study the mechanical anisotropy under both uniaxial tension and compression. The effect of pre-strain in uniaxial compression along the rolling direction on subsequent uniaxial tension/compression along the three directions is also investigated. It is demonstrated that the twinning during pre-strain in compression and the detwinning in the subsequent deformation have a significant influence on the mechanical anisotropy. Numerical results are in good agreement with the experimental observations found in the literature.

  4. A Modified Double Multiple Nonlinear Regression Constitutive Equation for Modeling and Prediction of High Temperature Flow Behavior of BFe10-1-2 Alloy

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying

    2018-01-01

    Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.

  5. Deformation behavior of TC6 alloy in isothermal forging

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Li, Miaoquan; Zhu, Dasong; Xiong, Aiming

    2005-10-01

    Isothermal compression of the TC6 alloy was carried out in a Thermecmaster-Z (Wuhan Iron and Steel Corporation, P.R. China) simulator at deformation temperatures of 800˜1040 °C, strain rates of 0.001˜50.0 s-1, and maximum height reduction of 50%. The deformation behavior of the TC6 alloy in isothermal forging was characterized based on stress-strain behavior and kinetic analysis. The activation energy of deformation obtained in the isothermal forging of the TC6 alloy was 267.49 kJ/mol in the β phase region and 472.76 kJ/mol in the α+β phase region. The processing map was constructed based on the dynamic materials model, and the optimal deformation parameters were obtained. Constitutive equations describing the flow stress as a function of strain rate, strain, and deformation temperature were proposed for the isothermal forging of the TC6 alloy, and a good agreement between the predicted and experimental stress-strain curves was achieved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, K.M.; Manson, J.A.E.; Seferis, J.C.

    Consolidation of thermoplastic prepregs was measured with an integrally-heated parallel platen apparatus attached to a servo-hydraulic mechanical testing machine. The apparatus was designed as a small-scale, well-instrumented press. The lamination or consolidation process was viewed as a superposition of three distinctly occurring events identified as void volume reduction, fiber spreading, and autohesion. Consolidation was measured in relation to the original prepreg thickness and was reported as compressive or consolidation strain as a function of temperature. The derivative of the consolidation strain, the consolidation strain rate, was found to be qualitatively descriptive of viscoelastic phenomena occurring in the prepreg stack duringmore » consolidation. The apparatus was sensitive enough to identify glass and melt transitions of the polymer matrix, and to provide a measure of the net consolidation for a given processing cycle. The strain and the strain rate data were compared to thermoanalytical prepreg data obtained by Differential Scanning Calorimetry, and Dynamic Mechanical Analysis. Three different thermoplastic matrix composite systems were examined with this apparatus: Poly (etheretherketone), Poly(etherimide), and Poly(ethylene terephthalate). 21 refs.« less

  7. Dynamic Recrystallization Behavior of AISI 422 Stainless Steel During Hot Deformation Processes

    NASA Astrophysics Data System (ADS)

    Ahmadabadi, R. Mohammadi; Naderi, M.; Mohandesi, J. Aghazadeh; Cabrera, Jose Maria

    2018-02-01

    In this work, hot compression tests were performed to investigate the dynamic recrystallization (DRX) process of a martensitic stainless steel (AISI 422) at temperatures of 950, 1000, 1050, 1100 and 1150 °C and strain rates of 0.01, 0.1 and 1 s-1. The dependency of strain-hardening rate on flow stress was used to estimate the critical stress for the onset of DRX. Accordingly, the critical stress to peak stress ratio was calculated as 0.84. Moreover, the effect of true strain was examined by fitting stress values to an Arrhenius type constitutive equation, and then considering material constants as a function of strain by using a third-order polynomial equation. Finally, two constitutive models were used to investigate the competency of the strain-dependent constitutive equations to predict the flow stress curves of the studied steel. It was concluded that one model offers better precision on the flow stress values after the peak stress, while the other model gives more accurate results before the peak stress.

  8. Shock structures at ultrahigh strain rates: what can they tell us about material behavior on very fast time scales?

    NASA Astrophysics Data System (ADS)

    Crowhurst, Jonathan

    2013-06-01

    In recent years, techniques based on table-top laser systems have shown promise for investigating dynamic material behavior at high rates of both compressive and tensile strain. Common to these techniques is a laser pulse that is used in some manner to rapidly deliver energy to the sample; while the energy itself is often comparatively very small, the intensity can be made high by tightly focusing the pump light. In this way pressures or stresses can be obtained that are sufficiently large to have relevance to a wide range of basic and applied fields. Also, when combined with established ultrafast diagnostics these experiments provide very high time resolution which is particularly desirable when studying, for example shock waves, in which the time for the material to pass from undisturbed to fully compressed (the ``rise time'') can be extremely short (order 10 ps or less) even at fairly small peak stresses. Since much of the most interesting physics comes into play during this process it is important to be able to adequately resolve the shock rise. In this context I will discuss our measurements on aluminum and iron thin films and compare the results with known behavior observed at lower strain rates. Specifically, for aluminum, I will compare our assumed steady wave data at strain rates of up to 1010 s-1 to literature data up to ~107 s-1 and show that the well-known fourth power scaling relation of strain rate to shock stress is maintained even at these very high strain rates. For iron, I will show how we have used our nonsteady data (up to ~109 s-1) to infer a number of important properties of the alpha to epsilon polymorphic transition: 1. The transition can occur on the tens of ps time scale at sufficiently high strain rates and corresponding very large deviatoric stresses, and 2, most of the material appears to transform at a substantially higher stress than the nominal value usually inferred from shock wave experiments of about 13 GPa. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with Laboratory directed Research and Development funding (12ERD042), as well as being based on work supported as part of the EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DESC0001057.

  9. Modeling of High-Strain-Rate Deformation, Fracture, and Impact Behavior of Advanced Gas Turbine Engine Materials at Low and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Nathenson, David; Prakash, Vikas

    2003-01-01

    Gamma titanium aluminides have received considerable attention over the last decade. These alloys are known to have low density, good high temperature strength retention, and good oxidation and corrosion resistance. However, poor ductility and low fracture toughness have been the key limiting factors in the full utilization of these alloys. More recently, Gamma-met PX has been developed by GKSS, Germany. These alloys have been observed to have superior strengths at elevated temperatures and quasi-static deformation rates and good oxidation resistance at elevated temperatures when compared with other gamma titanium aluminides. The present paper discusses results of a study to understand dynamic response of gamma-met PX in uniaxial compression. The experiments were conducted by using a modified split Hopkinson pressure bar between room temperature and 900 C and strain rates of up to 3500 per second. The Gamma met PX alloy showed superior strength when compared to nickel based superalloys and other gamma titanium aluminides at all test temperatures. It also showed strain and strain-rate hardening at all levels of strain rates and temperatures and without yield anomaly up to 900 C. After approximately 600 C, thermal softening is observed at all strain rates with the rate of thermal softening increasing dramatically between 800 and 900 C. However, these flow stress levels are comparatively higher in Gamma met PX than those observed for other TiAl alloys.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Cindy Xiaohui; Lim, Chao Voon; Castagne, Sylvie

    Titanium and its alloys have a wide range of applications in various industries such as aerospace, medical, automotive and even commercial products. However, formability of titanium alloys has always been an issue. This study presents the results of an investigation on the workability and response of Ti-6Al-4V deformed at different strain rates and lower elevated temperatures with different initial microstructures. Compression tests of cylindrical specimens were performed at various temperatures (300 deg. C, 400 deg. C, 450 deg. C, 500 deg. C) and at different strain rates (0.001 s{sup -1}, 0.02 s{sup -1} and 0.1 s{sup -1}). The effects ofmore » strain rate, temperature and initial microstructure on the workability of the Ti alloy were investigated. Based on these experimental results, workability maps for the respective initial microstructures were developed. Results showed that temperature played an important role in the formability of Ti-6Al-4V titanium alloys unlike strain rate. In addition, feasibility study on Multi-Directional Forging (MDF) was performed and positive results were obtained. It was demonstrated that Ti-6Al-4V titanium alloys can undergo severe plastic deformation at lower elevated temperature (400-500 deg. C) and at a higher strain rate of 0.1 s{sup -1}.« less

  11. Lattice-level measurement of material strength with LCLS during ultrafast dynamic compression

    NASA Astrophysics Data System (ADS)

    Milathianaki, Despina; Boutet, Sebastien; Ratner, Daniel; White, William; Williams, Garth; Gleason, Arianna; Swift, Damian; Higginbotham, Andrew; Wark, Justin

    2013-10-01

    An in-depth understanding of the stress-strain behavior of materials during ultrafast dynamic compression requires experiments that offer in-situ observation of the lattice at the pertinent temporal and spatial scales. To date, the lattice response under extreme strain-rate conditions (>108 s-1) has been inferred predominantly from continuum-level measurements and multi-million atom molecular dynamics simulations. Several time-resolved x-ray diffraction experiments have captured important information on plasticity kinetics, while limited to nanosecond timescales due to the lack of high brilliance ultrafast x-ray sources. Here we present experiments at LCLS combining ultrafast laser-shocks and serial femtosecond x-ray diffraction. The high spectral brightness (~1012 photons per pulse, ΔE/E = 0.2%) and subpicosecond temporal resolution (<100 fs pulsewidth) of the LCLS x-ray free electron laser allow investigations that link simulations and experiments at the fundamental temporal and spatial scales for the first time. We present movies of the lattice undergoing rapid shock-compression, composed by a series of single femtosecond x-ray snapshots, demonstrating the transient behavior while successfully decoupling the elastic and plastic response in polycrystalline Cu.

  12. Integrated experimental platforms to study blast injuries: a bottom-up approach

    NASA Astrophysics Data System (ADS)

    Bo, C.; Williams, A.; Rankin, S.; Proud, W. G.; Brown, K. A.

    2014-05-01

    We are developing experimental models of blast injury using data from live biological samples. An integrated research strategy is followed to study material and biological properties of cells, tissues and organs, that are subjected to dynamic and static pressures, relevant to those of battlefield blast. We have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows cells, either in suspension or as a monolayer, to be subjected to compression waves with pressures on the order of a few MPa and durations of hundreds of microseconds. The chamber design enables recovery of biological samples for cellular and molecular analysis. The SHPB platform, coupled with Quasi-Static experiments, is used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Tissue samples are examined, using histological techniques, to study macro- and microscopic changes induced by compression waves. In addition, a shock tube enables application of single or multiple air blasts with pressures on the order of kPa and a few milliseconds duration; this platform was used for initial studies on mesenchymal stem cells responses to blast pressures.

  13. Static versus dynamic loads as an influence on bone remodelling

    NASA Technical Reports Server (NTRS)

    Lanyon, L. E.; Rubin, C. T.

    1983-01-01

    Bone remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulna preparation is made by two submetaphyseal osteotomies, the cut ends of the bone being covered with stainless steel caps which, together with the bone they enclosed, are pierced by pins emerging transcutaneously on the dorsal and ventral surfaces of the wing. The 110 mm long undisturbed section of the bone shaft can be protected from functional loading, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression by engaging the pins in an Instron machine. Similar loads (525 n) were used in both static and dynamic cases engendering similar peak strains at the bone's midshaft (-2000 x 10-6). The intermitent load was applied at a frequency of 1 Hz during a single 100 second period per day as a ramped square wave, with a rate of change of strain during the ramp of 0.01 per second.

  14. Method for enhancing the solubility of dopants in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz

    2003-09-30

    A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.

  15. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    PubMed Central

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-01-01

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011

  16. Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel-Cobalt Sulfide Nanosheets.

    PubMed

    Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin

    2018-03-28

    The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.

  17. High-temperature deformation and processing maps of Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang

    2018-06-01

    High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.

  18. Comparison of mechanical compressive properties of commercial and autologous fibrin glues for tissue engineering applications.

    PubMed

    Cravens, Matthew G; Behn, Anthony W; Dragoo, Jason L

    2017-11-01

    Fibrin glues are widely used in orthopedic surgery as adhesives and hemostatic agents. We evaluated the compressive properties of selected fibrin glues in order to identify which are appropriate for tissue regeneration applications subject to compression. Uniaxial unconfined compression tests were performed on fibrin gels prepared from commercial and autologous products: (1) Evicel (Ethicon), (2) Tisseel (Baxter), (3) Angel (Arthrex), and (4) ProPlaz (Biorich). Cyclic loads were applied from 0 to 30% strain for 100cycles at 0.5Hz. Following cyclic testing, specimens were subjected to ramp displacement of 1% strain per second to 80% strain. Throughout cyclic loading, Evicel and Tisseel deformed (shortened) less than Angel at all but one time point, and deformed less than ProPlaz at cycles 10 and 20. The dynamic moduli, peak stress, and strain energy were significantly greater in Tisseel than all other groups. Evicel displayed significantly greater dynamic moduli, peak stress, and strain energy than Angel and ProPlaz. Following cyclic testing, Tisseel and Evicel were significantly less deformed than Angel. No specimens exhibited gross failure during ramp loading to 80% strain. Ramp loading trends mirrored those of cyclic loading. The tested commercial glues were significantly more resistant to compression than the autologous products. The compressive properties of Tisseel were approximately twice those of Evicel. All preparations displayed moduli multiple orders of magnitude less than that of native articular cartilage. We conclude that in knee surgeries requiring fibrin glue to undergo compression of daily activity, commercial products are preferable to autologous preparations from platelet-poor plasma, though both will deform significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chondron curvature mapping in growth plate cartilage under compressive loading.

    PubMed

    Vendra, Bhavya B; Roan, Esra; Williams, John L

    2018-05-18

    The physis, or growth plate, is a layer of cartilage responsible for long bone growth. It is organized into reserve, proliferative and hypertrophic zones. Unlike the reserve zone where chondrocytes are randomly arranged, either singly or in pairs, the proliferative and hypertrophic chondrocytes are arranged within tubular structures called chondrons. In previous studies, the strain patterns within the compressed growth plate have been reported to be nonuniform and inhomogeneous, with an apparent random pattern in compressive strains and a localized appearance of tensile strains. In this study we measured structural deformations along the entire lengths of chondrons when the physis was subjected to physiological (20%) and hyper-physiological (30% and 40%) levels of compression. This provided a means to interpret the apparent random strain patterns seen in texture correlation maps in terms of bending deformations of chondron structures and provided a physical explanation for the inhomogeneous and nonuniform strain patterns reported in previous studies. We observed relatively large bending deformations (kinking) of the chondron structures at the interface of the reserve and proliferative zones during compression. Bending in this region may induce dividing cells to align longitudinally to maintain column formation and drive longitudinal growth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  1. Rheology of the lithosphere and the folding caused by horizontal compression

    NASA Astrophysics Data System (ADS)

    Birger, B. I.

    2015-05-01

    The laboratory tests of rock specimens show that transient creep, at which deformations increase with time whereas strain rate decreases occurs when creep strains are sufficiently small. Since plate tectonics only permits small deformations in the lithospheric plates, the creep of the lithosphere is transient (non-steady-state). In this work, we study how the rheology of the lithosphere that possesses elasticity, brittleness (pseudo-plasticity), and creep affects the folding in the Earth's crust. Folding is caused by horizontal compression that results from the collision between the lithospheric plates. The effective viscosity characterizing the transient creep is lower than in the case of a steady-state creep and depends on the characteristic time of the considered process. The allowance for transient creep gives the distribution of the rheological properties of the horizontally compressed lithosphere in which the upper crust is brittle, whereas the lower crust and mantle lithosphere are dominated by transient creep. It is shown that the flows that arise in the lithosphere due to the instability under horizontal compression and cause folding are small-scale. These flows are concentrated in the upper brittle crust, they determine the short-wave Earth's surface topography, penetrate into the lower, creep-dominated crust to a shallow depth, and do not penetrate into the mantle. Therefore, these flows do not deform the Moho.

  2. Twin-variant reorientation strain in Ni-Mn-Ga single crystal during quasi-static mechanical compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanick, Abhijit; An, Ke; Stoica, Alexandru Dan

    2011-01-01

    Twin variant reorientation in single crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in-situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that during compressive loading, ~85% of the twins were reoriented parallel to the loading direction resulting in a maximum macroscopic strain of ~5.5%, which is in agreement with measured macroscopic strain.

  3. Measurement of the through thickness compression of a battery separator

    NASA Astrophysics Data System (ADS)

    Yan, Shutian; Huang, Xiaosong; Xiao, Xinran

    2018-04-01

    The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.

  4. Anomaly in the dynamic strength of austenitic stainless steel 12Cr19Ni10Ti under shock wave loading

    NASA Astrophysics Data System (ADS)

    Garkushin, G. V.; Kanel, G. I.; Razorenov, S. V.; Savinykh, A. S.

    2017-07-01

    Measurement results for the shock wave compression profiles of 12Cr19Ni10Ti steel and its dynamic strength in the strain rate range 105-106 s-1 are presented. The protracted viscous character of the spall fracture is revealed. With the previously obtained data taken into account, the measurement results are described by a polynomial relation, which can be used to construct the fracture kinetics. On the lower boundary of the range, the resistance to spall fracture is close to the value of the true strength of the material under standard low-rate strain conditions; on the upper boundary, the spall strength is more than twice greater than this quantity. An increase in the temperature results in a decrease in both the dynamic limit of elasticity and the spall fracture strength of steel. The most interesting result is the anomaly in the dependence of the spall fracture strength on the duration of the shock wave compression pulse, which is related to the formation of deformation martensite near the growing discontinuities.

  5. Feeling stretched or compressed? The multiple mechanosensitive responses of wood formation to bending.

    PubMed

    Roignant, Jeanne; Badel, Éric; Leblanc-Fournier, Nathalie; Brunel-Michac, Nicole; Ruelle, Julien; Moulia, Bruno; Decourteix, Mélanie

    2018-05-11

    Trees constantly experience wind, perceive resulting mechanical cues, and modify their growth and development accordingly. Previous studies have demonstrated that multiple bending treatments trigger ovalization of the stem and the formation of flexure wood in gymnosperms, but ovalization and flexure wood have rarely been studied in angiosperms, and none of the experiments conducted so far has used multidirectional bending treatments at controlled intensities. Assuming that bending involves tensile and compressive strain, we hypothesized that different local strains may generate specific growth and wood differentiation responses. Basal parts of young poplar stems were subjected to multiple transient controlled unidirectional bending treatments during 8 weeks, which enabled a distinction to be made between the wood formed under tensile or compressive flexural strains. This set-up enabled a local analysis of poplar stem responses to multiple stem bending treatments at growth, anatomical, biochemical and molecular levels. In response to multiple unidirectional bending treatments, poplar stems developed significant cross-sectional ovalization. At the tissue level, some aspects of wood differentiation were similarly modulated in the compressed and stretched zones (vessel frequency and diameter of fibres without a G-layer), whereas other anatomical traits (vessel diameter, G-layer formation, diameter of fibres with a G-layer and microfibril angle) and the expression of fasciclin-encoding genes were differentially modulated in the two zones. This work leads us to propose new terminologies to distinguish the 'flexure wood' produced in response to multiple bidirectional bending treatments from wood produced under transient tensile strain (tensile flexure wood; TFW) or under transient compressive strain (compressive flexure wood; CFW). By highlighting similarities and differences between tension wood and TFW and by demonstrating that plants could have the ability to discriminate positive strains from negative strains, this work provides new insight into the mechanisms of mechanosensitivity in plants.

  6. Macroscopic strain controlled ion current in an elastomeric microchannel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven

    We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hystereticmore » (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.« less

  7. A knitted glove sensing system with compression strain for finger movements

    NASA Astrophysics Data System (ADS)

    Ryu, Hochung; Park, Sangki; Park, Jong-Jin; Bae, Jihyun

    2018-05-01

    Development of a fabric structure strain sensor has received considerable attention due to its broad application in healthcare monitoring and human–machine interfaces. In the knitted textile structure, it is critical to understand the surface structural deformation from a different body motion, inducing the electrical signal characteristics. Here, we report the electromechanical properties of the knitted glove sensing system focusing on the compressive strain behavior. Compared with the electrical response of the tensile strain, the compressive strain shows much higher sensitivity, stability, and linearity via different finger motions. Additionally, the sensor exhibits constant electrical properties after repeated cyclic tests and washing processes. The proposed knitted glove sensing system can be readily extended to a scalable and cost-effective production due to the use of a commercialized manufacturing system.

  8. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads

    PubMed Central

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Krüger, Lutz; Martin, Ulrich

    2018-01-01

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading. PMID:29695107

  9. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads.

    PubMed

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Waske, Anja; Krüger, Lutz; Martin, Ulrich

    2018-04-24

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α ′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α ′ -martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading.

  10. Computational modeling indicates that surface pressure can be reliably conveyed to tactile receptors even amidst changes in skin mechanics

    PubMed Central

    Wang, Yuxiang; Baba, Yoshichika; Lumpkin, Ellen A.

    2016-01-01

    Distinct patterns in neuronal firing are observed between classes of cutaneous afferents. Such differences may be attributed to end-organ morphology, distinct ion-channel complements, and skin microstructure, among other factors. Even for just the slowly adapting type I afferent, the skin's mechanics for a particular specimen might impact the afferent's firing properties, especially given the thickness and elasticity of skin can change dramatically over just days. Here, we show computationally that the skin can reliably convey indentation magnitude, rate, and spatial geometry to the locations of tactile receptors even amid changes in skin's structure. Using finite element analysis and neural dynamics models, we considered the skin properties of six mice that span a representative cohort. Modeling the propagation of the surface stimulus to the interior of the skin demonstrated that there can be large variance in stresses and strains near the locations of tactile receptors, which can lead to large variance in static firing rate. However, variance is significantly reduced when the stimulus tip is controlled by surface pressure and compressive stress is measured near the end organs. This particular transformation affords the least variability in predicted firing rates compared with others derived from displacement, force, strain energy density, or compressive strain. Amid changing skin mechanics, stimulus control by surface pressure may be more naturalistic and optimal and underlie how animals actively explore the tactile environment. PMID:27098029

  11. Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion

    NASA Astrophysics Data System (ADS)

    Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Grundestam, O.; Johansson, A. V.

    2016-02-01

    A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. ["A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation," Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with "local mean acceleration" which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper formulation of the rapid pressure-strain correlation and accounting for the coupling with turbulent density flux, can be an important element in CFD tools for compressible flows.

  12. Effect of the Rate of Hot Compressive Deformation on the Kinetics of Dynamic and Static Recrystallization of Novel Medium-Carbon Medium-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Khlusova, E. I.; Zisman, A. A.; Knyazyuk, T. V.; Novoskol'tsev, N. N.

    2018-03-01

    Dynamic and static recrystallization occurring under hot deformation at a rate of 1 and 100 sec - 1 in high-strength medium-carbon wear-resistant steels developed at CRISM "Prometey" for die forming of parts of driven elements of tillage machines is studied. The critical strain of dynamic recrystallization and the threshold temperatures and times of finish of static recrystallization are determined for the studied deformation rates at various temperatures.

  13. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  14. Evolution of passive scalar statistics in a spatially developing turbulence

    NASA Astrophysics Data System (ADS)

    Paul, I.; Papadakis, G.; Vassilicos, J. C.

    2018-02-01

    We investigate the evolution of passive scalar statistics in a spatially developing turbulence using direct numerical simulation. Turbulence is generated by a square grid element, which is heated continuously, and the passive scalar is temperature. The square element is the fundamental building block for both regular and fractal grids. We trace the dominant mechanisms responsible for the dynamical evolution of scalar-variance and its dissipation along the bar and grid-element centerlines. The scalar-variance is generated predominantly by the action of the mean scalar gradient behind the bar and is transported laterally by turbulent fluctuations to the grid-element centerline. The scalar-variance dissipation (proportional to the scalar-gradient variance) is produced primarily by the compression of the fluctuating scalar-gradient vector by the turbulent strain rate, while the contribution of mean velocity and scalar fields is negligible. Close to the grid element the scalar spectrum exhibits a well-defined -5 /3 power-law, even though the basic premises of the Kolmogorov-Obukhov-Corrsin theory are not satisfied (the fluctuating scalar field is highly intermittent, inhomogeneous, and anisotropic, and the local Corrsin-microscale-Péclet number is small). At this location, the PDF of scalar gradient production is only slightly skewed towards positive, and the fluctuating scalar-gradient vector aligns only with the compressive strain-rate eigenvector. The scalar-gradient vector is stretched or compressed stronger than the vorticity vector by turbulent strain rate throughout the grid-element centerline. However, the alignment of the former changes much earlier in space than that of the latter, resulting in scalar-variance dissipation to decay earlier along the grid-element centerline compared to the turbulent kinetic energy dissipation. The universal alignment behavior of the scalar-gradient vector is found far downstream, although the local Reynolds and Péclet numbers (based on the Taylor and Corrsin length scales, respectively) are low.

  15. Selected engineering properties and applications of EPS geofoam

    NASA Astrophysics Data System (ADS)

    Elragi, Ahmed Fouad

    Expanded polystyrene (EPS) geofoam is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of soil. It has good thermal insulation properties with stiffness and compression strength comparable to medium clay. It is utilized in reducing settlement below embankments, sound and vibration damping, reducing lateral pressure on substructures, reducing stresses on rigid buried conduits and related applications. This study starts with an overview on EPS geofoam. EPS manufacturing processes are described followed by a review of engineering properties found in previous research work done so far. Standards and design manuals applicable to EPS are presented. Selected EPS geofoam-engineering applications are discussed with examples. State-of-the-art of experimental work is done on different sizes of EPS specimens under different loading rates for better understanding of the behavior of the material. The effects of creep, sample size, strain rate and cyclic loading on the stress strain response are studied. Equations for the initial modulus and the strength of the material under compression for different strain rates are presented. The initial modulus and Poisson's ratio are discussed in detail. Sample size effect on creep behavior is examined. Three EPS projects are shown in this study. The creep behavior of the largest EPS geofoam embankment fill is shown. Results from laboratory tests, mathematical modeling and field records are compared to each other. Field records of a geofoam-stabilized slope are compared to finite difference analysis results. Lateral stress reduction on an EPS backfill retaining structure is analyzed. The study ends with a discussion on two promising properties of EPS geofoam. These are the damping ability and the compressibility of this material. Finite element analysis, finite difference analysis and lab results are included in this discussion. The discussion with the rest of the study points towards the main conclusion that EPS geofoam is the future material of promise in various civil engineering applications.

  16. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films

    NASA Astrophysics Data System (ADS)

    Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.

    2016-10-01

    Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.

  17. Evolution of Residual-Strain Distribution through an Overload-Induced Retardation Period during Fatigue Crack Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Sun, Yinan; An, Ke

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less

  18. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    DOE PAGES

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s 2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s 2 tangential to the shear layer. The extensive and compressive principal strain rates, s 1 and s 3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s 1¯-s 2¯ plane and orthogonal to s 3¯.« less

  19. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running

    PubMed Central

    McDonald, Kirsty A.; Stearne, Sarah M.; Alderson, Jacqueline A.; North, Ian; Pires, Neville J.; Rubenson, Jonas

    2016-01-01

    Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running. PMID:27054319

  20. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running.

    PubMed

    McDonald, Kirsty A; Stearne, Sarah M; Alderson, Jacqueline A; North, Ian; Pires, Neville J; Rubenson, Jonas

    2016-01-01

    Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.

  1. A maximum entropy fracture model for low and high strain-rate fracture in TinSilverCopper alloys

    NASA Astrophysics Data System (ADS)

    Chan, Dennis K.

    SnAgCu solder alloys exhibit significant rate-dependent constitutive behavior. Solder joints made of these alloys exhibit failure modes that are also rate-dependent. Solder joints are an integral part of microelectronic packages and are subjected to a wide variety of loading conditions which range from thermo-mechanical fatigue to impact loading. Consequently, there is a need for non-empirical rate-dependent failure theory that is able to accurately predict fracture in these solder joints. In the present thesis, various failure models are first reviewed. But, these models are typically empirical or are not valid for solder joints due to limiting assumptions such as elastic behavior. Here, the development and validation of a maximum entropy fracture model (MEFM) valid for low strain-rate fracture in SnAgCu solders is presented. To this end, work on characterizing SnAgCu solder behavior at low strain-rates using a specially designed tester to estimate parameters for constitutive models is presented. Next, the maximum entropy fracture model is reviewed. This failure model uses a single damage accumulation parameter and relates the risk of fracture to accumulated inelastic dissipation. A methodology is presented to extract this model parameter through a custom-built microscale mechanical tester for Sn3.8Ag0.7Cu solder. This single parameter is used to numerically simulate fracture in two solder joints with entirely different geometries. The simulations are compared to experimentally observed fracture in these same packages. Following the simulations of fracture at low strain rate, the constitutive behavior of solder alloys across nine decades of strain rates through MTS compression tests and split-Hopkinson bar are presented. Preliminary work on using orthogonal machining as novel technique of material characterization at high strain rates is also presented. The resultant data from the MTS compression and split-Hopkinson bar tester is used to demonstrate the localization of stress to the interface of solder joints at high strain rates. The MEFM is further extended to predict failure in brittle materials. Such an extension allows for fracture prediction within intermetallic compounds (IMCs) in solder joints. It has been experimentally observed that the failure mode shifts from bulk solder to the IMC layer with increasing loading rates. The extension of the MEFM would allow for prediction of the fracture mode within the solder joint under different loading conditions. A fracture model capable of predicting failure modes at higher strain rates is necessary, as mobile electronics are becoming ubiquitous. Mobile devices are prone to being dropped which can induce loading rates within solder joints that are much larger than experienced under thermo-mechanical fatigue. A range of possible damage accumulation parameters for Cu6Sn 5 is determined for the MEFM. A value within the aforementioned range is used to demonstrate the increasing likelihood of IMC fracture in solder joints with larger loading rates. The thesis is concluded with remarks about ongoing work that include determining a more accurate damage accumulation parameter for Cu6Sn 5 IMC, and on using machining as a technique for extracting failure parameters for the MEFM.

  2. Mechanical Properties of Lightweight Porous Magnesium Processed Through Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Zou, Ning; Li, Qizhen

    2018-02-01

    Porous magnesium (Mg) samples with various overall porosities (28.4 ± 1.8%, 35.5 ± 2.5%, 45.4 ± 1.9%, and 62.4 ± 2.2%) were processed through powder metallurgy and characterized to study their mechanical properties. Different porosities were obtained by utilizing different mass fractions of space holder camphene. Camphene was removed by sublimation before sintering and contributed to processing porous Mg with high purity and small average pore size. The average pore size increased from 5.2 µm to 15.1 µm with increase of the porosity from 28.4 ± 1.8% to 62.4 ± 2.2%. Compressive strain-stress data showed that the strain hardening rate, yield strength, and ultimate compressive strength decreased with increase of the porosity. The theoretical yield strength of porous Mg obtained using the Gibson-Ashby model agreed with experimental data.

  3. A simplified orthotropic formulation of the viscoplasticity theory based on overstress

    NASA Technical Reports Server (NTRS)

    Sutcu, M.; Krempl, E.

    1988-01-01

    An orthotropic, small strain viscoplasticity theory based on overstress is presented. In each preferred direction the stress is composed of time (rate) independent (or plastic) and viscous (or rate dependent) contributions. Tension-compression asymmetry can depend on direction and is included in the model. Upon a proper choice of a material constant one preferred direction can exhibit linear elastic response while the other two deform in a viscoplastic manner.

  4. Loading Rate Effects on the One-Dimensional Compressibility of Four Partially Saturated Soils

    DTIC Science & Technology

    1986-12-01

    representations are referred to as constitutive models. Numerous constitutive models incorporating loading rate effects have been developed ( Baladi and Rohani...and probably more indicative of the true values of applied pressure and average strain produced during the test. A technique developed by Baladi and...Sand," Technical Report No. AFWL-TR-66-146, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, June, 1967. 4. Baladi , George Y., and

  5. Dynamic deformation of soft soil media: Experimental studies and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Balandin, V. V.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Kotov, V. L.; Lomunov, A. K.

    2015-05-01

    A complex experimental-theoretical approach to studying the problem of high-rate strain of soft soil media is presented. This approach combines the following contemporary methods of dynamical tests: the modified Hopkinson-Kolsky method applied tomedium specimens contained in holders and the method of plane wave shock experiments. The following dynamic characteristics of sand soils are obtained: shock adiabatic curves, bulk compressibility curves, and shear resistance curves. The obtained experimental data are used to study the high-rate strain process in the system of a split pressure bar, and the constitutive relations of Grigoryan's mathematical model of soft soil medium are verified by comparing the results of computational and natural test experiments of impact and penetration.

  6. 1000 to 1200 K time-dependent compressive deformation of single-crystalline and polycrystalline B2 Ni-40Al

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Noebe, R. D.; Kumar, K. S.; Mannan, S. K.; Cullers, C. L.

    1991-01-01

    The 1000-K and 1200-K time-dependent deformation of 100-line-oriented and non-100-line-oriented single crystals of Ni-40Al (made by a modified Bridgman technique) was examined over a large range of strain rates (from 0.1 to 10 to the -7th per sec). The results were compared with those for polycrystalline Ni-40Al made by hot pressing XD synthesized powder. The results from measurements of slow-plastic-strain-rate properties of the two materials show that single crystals offer no strength advantage over polycrystalline material. Both forms were found to deform via a dislocation climb mechanism.

  7. Internal stress-assisted epitaxial lift-off process for flexible thin film (In)GaAs solar cells on metal foil

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Kim, Kangho; Jung, Sang Hyun; Kim, Chang Zoo; Shin, Hyun-Beom; Choi, JeHyuk; Kang, Ho Kwan

    2017-12-01

    Flexible thin film (In)GaAs solar cells are grown by metalorganic chemical vapor deposition on GaAs substrates and transferred to 30 μm thick Au foil by internal stress-assisted epitaxial lift-off processes. The internal stress is induced by replacing the solar cell epi-layers from GaAs to In0.015Ga0.985As, which has a slightly larger lattice constant. The compressive strained layer thickness was varied from 0 to 4.5 μm to investigate the influence of the internal stress on the epitaxial lift-off time. The etching time in the epitaxial lift-off process was reduced from 36 to 4 h by employing a GaAs/In0.015Ga0.985As heterojunction structure that has a compressive film stress of -59.0 MPa. We found that the partially strained epi-structure contributed to the much faster lateral etching rate with spontaneous bending. Although an efficiency degradation problem occurred in the strained solar cell, it was solved by optimizing the epitaxial growth conditions.

  8. Chewing as a forming application: A viscoplastic damage law in modelling food oral breakdown

    NASA Astrophysics Data System (ADS)

    Skamniotis, C. G.; Charalambides, M. N.; Elliott, M.

    2017-10-01

    The first bite mechanical response of a food item resembles compressive forming processes, where a tool is pressed into a workpiece. The present study addresses ongoing interests in the deformations and damage of food products, particularly during the first bite, in relation to their mechanical properties. Uniaxial tension, compression and shear tests on a starch based food reveal stress-strain response and fracture strains strongly dependent on strain rate and stress triaxiality, while damage mechanisms are identified in the form of stress softening. A pressure dependent viscoplastic constitutive law reproduces the behavior with the aid of ABAQUS subroutines, while a ductile damage initiation and evolution framework based on fracture toughness data enables accurate predictions of the product breakdown. The material model is implemented in a Finite Element (FE) chewing model based on digital pet teeth geometry where the first bite of molar teeth against a food item is simulated. The FE force displacement results match the experimental data obtained by a physical replicate of the bite model, lending weight to the approach as a powerful tool in understanding of food breakdown and product development.

  9. Modeling the mechanical response of PBX 9501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragaswamy, Partha; Lewis, Matthew W; Liu, Cheng

    2010-01-01

    An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the formmore » of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.« less

  10. Twinning behaviors of a rolled AZ31 magnesium alloy under multidirectional loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dewen

    The microstructure and texture evolution of an AZ31 magnesium rolled sheet during quasi-static compression at strain rates of 10{sup −3} s{sup −1} has been investigated by in situ electron backscattered diffraction. The influence of the initial and pre-deformed texture on the predominant deformation mechanisms during compression has been examined. It has been found that extensive grain reorientation due to (10 − 12) tensile twinning appeared when compressed along transverse direction. Tensile twin variants were observed under this loading condition, and different variants will cause an effect to the following deformation. Several twinning modes occurred with continuative loading along rolling direction.more » - Highlights: •Twinning behaviors were investigated through in situ multidirectional compressive tests. •Deformation behavior was affected by the twin variants. •Four types of twinning behaviors were observed during deformation process.« less

  11. Application of Porous Polydimethylsiloxane (PDMS) in oil absorption

    NASA Astrophysics Data System (ADS)

    Norfatriah, Abdullah; Syamaizar, Ahmad Sabli Ahmad; Samah Zuruzi, Abu

    2018-04-01

    Porous polydimethysiloxane (PDMS) displays both hydrophobic and oleophilic behaviour which makes it a suitable material to absorb oil in an aqueous stream. Furthermore, its elastomeric nature means that porous PDMS can be a reusable sorbent for oil. For such application, porous PDMS has to (i) absorb oil from aqueous stream quickly and (ii) discharge oil rapidly when compressed. In this study, porous polydimethylsiloxane (PDMS) has been fabricated using sugar templating method. The ability of porous PDMS to absorb olive, sunflower and vegetable oils with and without vibration was investigated. Small amplitude vibration was found to accelerate the oil uptake process and accelerates the absorption of olive and vegetable oil by 2.5 and 3 times, respectively. Compressive stress-strain curves over compression rates between 2 and 100 mm per min are similar and indicate mechanical property of porous PDMS does not vary significantly and can be rapidly compressed.

  12. Combining Digital Image Correlation and Acoustic Emission for Monitoring of the Strain Distribution until Yielding During Compression of Bovine Cancellous Bone

    NASA Astrophysics Data System (ADS)

    Tsirigotis, Athanasios; Deligianni, Despoina D.

    2017-12-01

    In this work, the surface heterogeneity in mechanical compressive strain of cancellous bone was investigated with digital image correlation (DIC). Moreover, the onset and progression of failure was studied by acoustic emission (AE). Cubic cancellous bone specimens, with side of 15 mm, were obtained from bovine femur and kept frozen at -20ºC until testing. Specimen strain was analyzed by measuring the change of distance between the platens (crosshead) and via an optical method, by following the strain evolution with a camera. Simultaneously, AE monitoring was performed. The experiments showed that compressive Young’s modulus determined by crosshead strain is underestimated at 23% in comparison to optically determined strain. However, surface strain fields defined by DIC displayed steep strain gradients, which can be attributed to cancellous bone porosity and inhomogeneity. The cumulative number of events for the total AE activity recorded from the sensors showed that the activity started at a mean load level of 36% of the maximum load and indicated the initiation of micro-cracking phenomena. Further experiments, determining 3D strain with μCT apart from surface strain, are necessary to clarify the issue of strain inhomogeneity in cancellous bone.

  13. The effect of muscle fatigue on in vivo tibial strains.

    PubMed

    Milgrom, Charles; Radeva-Petrova, Denitsa R; Finestone, Aharon; Nyska, Meir; Mendelson, Stephen; Benjuya, Nisim; Simkin, Ariel; Burr, David

    2007-01-01

    Stress fracture is a common musculoskeletal problem affecting athletes and soldiers. Repetitive high bone strains and strain rates are considered to be its etiology. The strain level necessary to cause fatigue failure of bone ex vivo is higher than the strains recorded in humans during vigorous physical activity. We hypothesized that during fatiguing exercises, bone strains may increase and reach levels exceeding those measured in the non-fatigued state. To test this hypothesis, we measured in vivo tibial strains, the maximum gastrocnemius isokinetic torque and ground reaction forces in four subjects before and after two fatiguing levels of exercise: a 2km run and a 30km desert march. Strains were measured using strain-gauged staples inserted percutaneously in the medial aspect of their mid-tibial diaphysis. There was a decrease in the peak gastrocnemius isokinetic torque of all four subjects' post-march as compared to pre-run (p=0.0001), indicating the presence of gastrocnemius muscle fatigue. Tension strains increased 26% post-run (p=0.002, 95 % confidence interval (CI) and 29% post-march (p=0.0002, 95% CI) as compared to the pre-run phase. Tension strain rates increased 13% post-run (p=0.001, 95% CI) and 11% post-march (p=0.009, 95% CI) and the compression strain rates increased 9% post-run (p=0.0004, 95% CI) and 17% post-march (p=0.0001, 95% CI). The fatigue state increases bone strains well above those recorded in rested individuals and may be a major factor in the stress fracture etiology.

  14. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion.

    PubMed

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H; Zalzal, Paul; Clarkin, Owen M; Papini, Marcello; Towler, Mark R

    2016-12-01

    Silica-based and borate-based glass series, with increasing amounts of TiO₂ incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate's (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO₂ in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO₂ to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO₂ incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass ® and Pyrex.

  15. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    PubMed Central

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H.; Zalzal, Paul; Clarkin, Owen M.; Papini, Marcello; Towler, Mark R.

    2016-01-01

    Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate’s (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex. PMID:27916951

  16. Mechanisms Inducing Jet Rotation in Shear-Formed Shaped-Charge Liners.

    DTIC Science & Technology

    1990-03-01

    of deviatoric strain, and compressibility affects only the equation of state , not the deviatoric stress /strain relation. An anisotropic formulation is...strains, a more accurate scalar equation of state should simultaneously be employed to account for non-linear compressibility effects . A4 A.3 Elastic... obtainable knowing the previous and present cycles’ average stress . However, many non-linear equations

  17. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network.

    PubMed

    Shakiba, Mohammad; Parson, Nick; Chen, X-Grant

    2016-06-30

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s -1 ). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.

  18. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network

    PubMed Central

    Shakiba, Mohammad; Parson, Nick; Chen, X.-Grant

    2016-01-01

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002–0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C–550 °C) and strain rates (0.01–10 s−1). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress. PMID:28773658

  19. Microstructure and Texture Evolution in Double-Cone Samples of Ti-6Al-4V Alloy with Colony Preform Microstructure

    NASA Astrophysics Data System (ADS)

    Yang, Kun Vanna; Lim, Chao Voon Samuel; Zhang, Kai; Sun, Jifeng; Yang, Xiaoguang; Huang, Aijun; Wu, Xinhua; Davies, Christopher H.

    2015-12-01

    Heat-treated Ti-6Al-4V forged bar with colony microstructure was machined into double-cone-shaped samples for a series of isothermal uniaxial compression test at 1223 K (950 °C) with varying constant crosshead speeds of 12.5, 1.25, and 0.125 mms-1 to a height reduction of 70 pct. Another set of samples deformed under the same conditions were heat treated at 1173 K (900 °C) for an hour followed by water quench. Finite element modeling was used to provide the strains, strain rates, and temperature profiles of the hot compression samples, and the microstructure and texture evolution was examined at four positions on each sample, representative of different strain ranges. Lamellae fragmentation and kinking are the dominant microstructural features at lower strain range up to a maximum of 2.0, whereas globularization dominates at strains above 2.0 for the as-deformed samples. The globularization fraction generally increases with strain, or by post-deformation heat treatment, but fluctuates at lower strain. The grain size of the globular α is almost constant with strain and maximizes for samples with the lowest crosshead speed due to the longer deformation time. The globular α grain also coarsens because of post-deformation heat treatment, with its size increasing with strain level. With respect to texture evolution, a basal transverse ring and another component 30 deg from ND is determined for samples deformed at 12.5 mms-1, which is consistent with the temperature increase to close to β-transus from simulation results. The texture type remains unchanged with its intensity increased and spreads with increasing strain.

  20. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain rate dependent behavior with strongly increasing strength and changing fracturing process has not been consequently considered in modeling of geo-hazards such as earthquakes, rock falls, landslides or even meteorite impacts [5]. Incorporation of dynamic material data therefore will contribute to improvements of forecast models and the understanding of fast geodynamic processes. References [1] Zhang, Q. B. & Zhao, J. (2013). A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech Rock Eng. DOI 10.1007/s00603-013-0463-y [2] Doan, M. L., & Gary, G. (2009). Rock pulverization at high strain rate near the San Andreas fault. Nature Geosci., 2, 709-712. [3] Reches, Z. E., & Dewers, T. A. (2005). Gouge formation by dynamic pulverization during earthquake rupture. Earth Planet. Sci. Lett., 235, 361-374. [4] Fondriest, M., Aretusini, S., Di Toro, G., & Smith, S. A. (2015). Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophys.654, 56-74. [5] Kenkmann, T., Poelchau, M. H., & Wulf, G. (2014). Structural Geology of impact craters. J. .Struct. Geol., 62, 156-182.

  1. Longitudinally Jointed Edge-Wise Compression HoneyComb Composite Sandwich Coupon Testing And Fe Analysis: Three Methods of Strain Measurement, And Comparison

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; Rahim, Nur Aida Abul; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex

    2013-01-01

    Three distinct strain measurement methods (i.e., foil resistance strain gages, fiber optic strain sensors, and a three-dimensional digital image photogrammetry that gives full field strain and displacement measurements) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The foil resistance strain gages and fiber optic strain sensors were bonded on the specimen at locations with nearly the same analytically predicted strain values, and as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the three-dimensional digital image photogrammetric system are relevant. The test article was loaded to failure (at 167 kN), at the compressive strain value of 10,000 micro epsilon. As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the foil resistance strain gages and the three-dimensional digital image photogrammetric data, and comprehensive comparisons are made with FEA predictions.

  2. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part II: high rate or 'surprise' loading.

    PubMed

    Shan, Zhi; Wade, Kelly R; Schollum, Meredith L; Robertson, Peter A; Thambyah, Ashvin; Broom, Neil D

    2017-10-01

    Part I of this study explored mechanisms of disc failure in a complex posture incorporating physiological amounts of flexion and shear at a loading rate considerably lower than likely to occur in a typical in vivo manual handling situation. Given the strain-rate-dependent mechanical properties of the heavily hydrated disc, loading rate will likely influence the mechanisms of disc failure. Part II investigates the mechanisms of failure in healthy discs subjected to surprise-rate compression while held in the same complex posture. 37 motion segments from 13 healthy mature ovine lumbar spines were compressed in a complex posture intended to simulate the situation arising when bending and twisting while lifting a heavy object at a displacement rate of 400 mm/min. Seven of the 37 samples reached the predetermined displacement prior to a reduction in load and were classified as early stage failures, providing insight to initial areas of disc disruption. Both groups of damaged discs were then analysed microstructurally using light microscopy. The average failure load under high rate complex loading was 6.96 kN (STD 1.48 kN), significantly lower statistically than for low rate complex loading [8.42 kN (STD 1.22 kN)]. Also, unlike simple flexion or low rate complex loading, direct radial ruptures and non-continuous mid-wall tearing in the posterior and posterolateral regions were commonly accompanied by disruption extending to the lateral and anterior disc. This study has again shown that multiple modes of damage are common when compressing a segment in a complex posture, and the load bearing ability, already less than in a neutral or flexed posture, is further compromised with high rate complex loading.

  3. Compounding effects of fluid confinement and surface strain on the wet–dry transition, thermodynamic response, and dynamics of water–graphene systems

    DOE PAGES

    Chialvo, Ariel A.; Vlcek, Lukas; Cummings, Peter T.

    2014-10-17

    We studied the link between the water-mediated (tensile or compressive) strain-driven hydration free energy changes in the association process involving finite-size graphene surfaces, the resulting water-graphene interfacial behavior, and the combined effect of surface strain and fluid confinement on the thermodynamic response functions and the dynamics of water. In this study, we found that either small surface corrugation (compressive strain) or surface stretching (tensile strain) is able to enhance significantly the water-graphene hydrophobicity relative to that of the unstrained surface, an effect that exacerbates the confinement impact on the isothermal compressibility and isobaric thermal expansivity of confined water, as wellmore » as on the slowing down of its dynamics that gives rise to anomalous diffusivity.« less

  4. Tensile and compressive stress-strain behavior of heat treated boron-aluminum

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Tenney, D. R.; Herakovich, C. T.

    1978-01-01

    An experimental study was conducted to assess the effects of heat treatment and cyclic mechanical loading on the tensile and compressive stress-strain behavior of six boron-aluminum composites having different laminate orientations and being subjected to different heat treatments. The heat treatments were as-fabricated, T6, and T6N consisting of T6 treatment followed by cryogenic quench in liquid nitrogen prior to testing. All laminates were tested in monotonic and cyclic compression, while the tensile-test data are taken from the literature for comparison purposes. It is shown that the linear elastic range of the T6- and T6N-condition specimens is larger than that of the as-fabricated specimens, and that cyclic loading in tension or compression strain hardens the specimens and extends the linear elastic range. For laminates containing 0-deg plies, the stress-strain behavior upon unloading is found to be nonlinear, whereas the other laminates exhibit a linear behavior upon unloading. Specimens in the T6 and T6N conditions show higher strain hardening than the as-fabricated specimens.

  5. Hot Deformation Behavior of 1Cr12Ni3Mo2VN Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    He, Xiaomao; Jiang, Peng; Zhou, Leyu; Chen, Chao; Deng, Xiaochun

    2017-08-01

    1Cr12Ni3Mo2VN is a new type of martensitic stainless steel for the last-stage blades of large-capacity nuclear and thermal power turbines. The deformation behavior of this steel was studied by thermal compression experiments that performed on a Gleeble-3500 thermal simulator at a temperature range of 850°C to 1200°C and a strain rate of 0.01s-1 to 20s-1. When the deformation was performed at high temperature and low strain rate, a necklace type of microstructures was observed, the plastic deformation mechanism is grain boundary slip and migration, when at low temperature and lower strain rate, the slip bands were observed, the mechanism is intracrystalline slips, and when at strain rate of 20s-1, twins were observed, the mechanism are slips and twins. The Arrhenius equation was applied to describe the constitutive equation of the flow stress. The accuracy of the equation was verified by using the experimental data and the correlation coefficient R2 = 0.9786, and the equation can provide reasonable data for the design and numerical simulation of the forging process.

  6. The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang

    2017-03-01

    Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

  7. Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression

    NASA Astrophysics Data System (ADS)

    Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming

    2018-05-01

    High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.

  8. The influence of the compression interface on the failure behavior and size effect of concrete

    NASA Astrophysics Data System (ADS)

    Kampmann, Raphael

    The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.

  9. Dynamic Evaluation of Acrylonitrile Butadiene Styrene Subjected to High-Strain-Rate Compressive Loads

    DTIC Science & Technology

    2014-12-01

    Riddick, J. C.; Hall, A. J.; Haile, M. A.; Von Wahlde, R.; Cole, D. P.; Biggs S. J. Effect of Manufacturing Parameters on Failure in Acrylonitrile...for Tensile Properties of Plastics Annu. Book ASTM Stand. 2004, 1–15. 17. Zukas, J. High Velocity Impact Dynamics; John Wiley & Sons, Inc.: New York

  10. Johnson-Cook Strength Model for Automotive Steels

    NASA Astrophysics Data System (ADS)

    Vedantam, K.

    2005-07-01

    Over the last few years most automotive companies are engaged in performing simulations of the capability of individual components or entire structure of a motor vehicle to adequately sustain the shock (impacts) and to protect the occupants from injuries during crashes. These simulations require constitutive material models (e.g., Johnson-Cook) of the sheet steel and other components based on the compression/tension data obtained in a series of tests performed at quasi-static (˜1/s) to high strain rates (˜2000/s). One such study is undertaken by the recently formed IISI (International Iron and Steel Institute) in organizing the round robin tests to compare the tensile data generated at our Laboratory at strain rates of ˜1/s, ˜300/s, ˜800/s, and ˜2000/s on two grades of automotive steel (Mild steel and Dual Phase-DP 590) using split Hopkinson bar with those generated at high strain rate testing facilities in Germany and Japan. Our tension data on mild steel (flow stress ˜ 500 MPa) suggest a relatively small strain rate sensitivity of the material. The second steel grade (DP-590) tested exhibits significant strain rate sensitivity in that the flow stress increases from about 700 MPa (at ˜1/s) to 900 MPa (at ˜2000/s). J-C strength model constants (A, B, n, and C) for the two steel grades will be presented.

  11. Effect of Mo on dynamic recrystallization and microstructure development of microalloyed steels

    NASA Astrophysics Data System (ADS)

    Schambron, Thomas; Dehghan-Manshadi, Ali; Chen, Liang; Gooch, Taliah; Killmore, Chris; Pereloma, Elena

    2017-07-01

    The dynamic recrystallization (DRX) behaviour, mechanical properties and microstructure development of four low carbon, Nb-Ti-containing micro-alloyed steels with Mo contents from 0 to 0.27 wt% were studied. Plane strain compression tests were performed in a Gleeble 3500 thermomechanical simulator. The effects of composition, deformation temperature and strain rate on the DRX parameters and resultant microstructures were examined. The volume fraction of recrystallised grains was estimated from micrographs and a DRX model. The stress-strain curves showed the typical signs of DRX over a wide range of deformation conditions. Dynamic recovery was only observed for higher strain rates (5 s-1) and/or lower deformation temperatures (below 1000 °C). It was shown that Mo increases the hot strength by around 100 MPa per weight percent. In addition, it has an effect on retarding recrystallization in microalloyed steels by increasing the activation energy for DRX by 320 kJ/molK per weight percent. This was attributed to solute drag and the interaction with other microalloying elements.

  12. Flow behavior of Ti-24Al-11Nb at high strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbison, L.S.; Koss, D.A.; Bourcier, R.J.

    The deformation and crack initiation behavior of Ti-24Al-11Nb has been examined over a temperature range of 298 to 923 K and for strain rates from 10{sup {minus}4}/s to 10{sup 2}/s. Tests performed in compression indicate much lower strain hardening at 10{sup 2}/s than at either 10{sup {minus}1}/s or 10{sup {minus}4}/s at all temperatures. Associated with this behavior is the occurrence of non-uniform, localized deformation bands at 10{sup 2}/s. An analysis indicates that adiabatic deformation conditions predominate at 10{sup 2}/s and that these result in adiabatic softening. Furthermore, as a result of non-uniform deformation and adiabatic heating, this Ti{sub 3}-Al-based alloymore » is actually more resistant to strain-induced microcrack initiation at 10{sup 2}/s than at 10{sup {minus}4}/s during room temperature testing. 16 refs., 7 figs.« less

  13. The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biomedical application.

    PubMed

    Liu, Debao; Liu, Yichi; Zhao, Yue; Huang, Y; Chen, Minfang

    2017-08-01

    The hot deformation behavior of nano-sized hydroxylapatite (HA) reinforced Mg-3Zn-0.8Zr composites were performed by means of Gleeble-1500D thermal simulation machine in a temperature range of 523-673K and a strain rate range of 0.001-1s -1 , and the microstructure evolution during hot compression deformation were also investigated. The results show that the flow stress increases increasing strain rates at a constant temperature, and decreases with increasing deforming temperatures at a constant strain rate. Under the same processing conditions, the flow stresses of the 1HA/Mg-3Zn-0.8Zr specimens are higher than those of the Mg-3Zn-0.8Zr alloy specimens, and the difference is getting closer with increasing deformation temperature. The hot deformation behaviors of Mg-3Zn-0.8Zr and 1HA/Mg-3Zn-0.8Zr can be described by constitutive equation of hyperbolic sine function with the hot deformation activation energy being 124.6kJ/mol and 125.3kJ/mol, respectively. Comparing with Mg-3Zn-0.8Zr alloy, the instability region in the process map of 1HA/Mg-3Zn-0.8Zr expanded to a bigger extent at the same conditions. The optimum process conditions of 1HA/Mg-3Zn-0.8Zr composite is concluded as between the temperature window of 573-623K with a strain rate range of 0.001-0.1s -1 . A higher volume fraction and smaller grain size of dynamic recrystallization (DRX) grains was observed in 1HA/Mg-3Zn-0.8Zr specimens after the hot compression deformation compared with Mg-3Zn-0.8Zr alloy, which was ascribed to the presence of the HA particles that play an important role in particle-stimulated nucleation (PSN) mechanism and can effectively hinder the migration of interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Elevated Temperature Creep Deformation in Solid Solution <001> NiAL-3.6Ti Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Noebe, Ronald D.; Darolia, Ram

    2003-01-01

    The 1100 to 1500 K slow plastic strain rate compressive properties of <001> oriented NiAl-3.6Ti single crystals have been measured, and the results suggests that two deformation processes exist. While the intermediate temperature/faster strain rate mechanism is uncertain, plastic flow at elevated temperature/slower strain rates in NiAl-3.6Ti appears to be controlled by solute drag as described by the Cottrell-Jaswon solute drag model for gliding b = a(sub 0)<101> dislocations. While the calculated activation energy of deformation is much higher (approximately 480 kJ/mol) than the activation energy for diffusion (approximately 290 kJ/mol) used in the Cottrell-Jaswon creep model, a forced temperature compensated - power law fit using the activation energy for diffusion was able to adequately (greater than 90%) predict the observed creep properties. Thus we conclude that the rejection of a diffusion controlled mechanism can not be simply based on a large numerical difference between the activation energies for deformation and diffusion.

  15. Combination of Universal Mechanical Testing Machine with Atomic Force Microscope for Materials Research

    PubMed Central

    Zhong, Jian; He, Dannong

    2015-01-01

    Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future. PMID:26265357

  16. Combination of Universal Mechanical Testing Machine with Atomic Force Microscope for Materials Research.

    PubMed

    Zhong, Jian; He, Dannong

    2015-08-12

    Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future.

  17. Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves

    NASA Astrophysics Data System (ADS)

    Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.

    2001-12-01

    The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.

  18. Solid-state experiments at high pressure and strain rates

    NASA Astrophysics Data System (ADS)

    Kalantar, D. H.

    1999-11-01

    We are developing experiments on intense laser facilities to study shock compressed metal foils in the solid state. At high pressure, Rayleigh-Taylor induced perturbation growth can be reduced by the strength of the material. [1] We use this to characterize the strength of the metal foils accelerated at high pressure in the solid state. In our experiments, Al and Cu foils are compressed and accelerated with staged shocks using a temporally shaped x-ray drive that is generated in a Nova laser hohlraum target. [2] The peak pressures exceed 1 Mbar (100 GPa), and strain rates are very high, 10^7-10^9 s-1. The instability growth is observed by x-ray radiography. To probe the state of the material under compression and to demonstrate that it remains solid, we are using the dynamic Bragg diffraction technique. [3] This technique has been demonstrated on the Nova laser [4] using Si crystals shocked to 200-500 kbar. Additionally, we have observed diffraction from Cu crystals that are shocked to 100-200 kbar by direct laser irradiation on the Trident and OMEGA lasers. Compressions of up to a 10in the crystal lattice spacing have been observed. We will present the results of our work to develop these high pressure solid-state hydrodynamics experiments. 1. J. F. Barnes et al, J. Appl. Phys. 45, 727 (1974); A. I. Lebedev et al , Proc. 4th IWPCTM, 29 March-1 April, 1993, p. 81. 2. D. H. Kalantar et al., to appear in Int. J. of Impact Eng. (1999). 3. R. R. Whitlock and J. S. Wark, Phys. Rev. B 52, 8 (1995). 4. D. H. Kalantar et al, Rev. Sci. Instrum. 70, 629 (1999).

  19. Directional amorphization of boron carbide subjected to laser shock compression.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  20. EFFECT OF AXIAL TIBIAL TORQUE DIRECTION ON ACL RELATIVE STRAIN AND STRAIN RATE IN AN IN VITRO SIMULATED PIVOT LANDING

    PubMed Central

    Oh, Youkeun K.; Kreinbrink, Jennifer L.; Wojtys, Edward M.; Ashton-Miller, James A.

    2011-01-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment and internal or external tibial torque) was applied to the distal tibia while recording the 3-D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3mm DVRT. In this repeated measures experiment, the Wilcoxon Signed-Rank test was used to test the null hypotheses with p<0.05 considered significant. The mean (± SD) peak AM-ACL relative strains were 5.4±3.7 % and 3.1±2.8 % under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4±160.1 %/sec and 179.4±109.9 %/sec, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70% and 42% greater under internal than external tibial torque, respectively (p=0.023, p=0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. PMID:22025178

  1. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials.

    PubMed

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-04-26

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.

  2. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials

    PubMed Central

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-01-01

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812

  3. Effect of strain on evolution of dynamic recrystallization in Nb-1 wt%Zr-0.1 wt%C alloy at 1500 and 1600 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, A.N.

    Uniaxial compression tests were carried out on Nb-1 wt%Zr-0.1 wt%C alloy at temperature of 1500 and 1600 °C and strain rate of 0.1 s{sup −1} to study the evolution of dynamic recrystallization with strain. Electron back scatter diffraction was used to quantify the microstructural evolution. Nb-1Zr-0.1C alloy showed a necklace structure at a strain of 0.9 when deformed at 1500 °C and at strain of 0.6 when deformed at 1600 °C, both at strain rate of 0.1 s{sup −1}. This suggested the occurrence of dynamic recrystallization. At 1500 °C and strain of 0.9 the local average misorientation and the grainmore » orientation spread was low confirming the presence of dynamic recrystallization at this deformation condition. At both 1500 and 1600 °C and all measured strains the recrystallized grains had a strong fiber component of <001>. - Highlights: • Necklace formation of dynamically recrystallized grains occurred at strain of 0.6 and 0.9 for 1500 and 1600 °C, respectively. • Equiaxed microstructures were seen with increase in strain for both 1500 and 1600 °C. • At large strains the predominant recrystallized texture evolved to <001> pole.« less

  4. Atomistic simulations of focused ion beam machining of strained silicon

    NASA Astrophysics Data System (ADS)

    Guénolé, J.; Prakash, A.; Bitzek, E.

    2017-09-01

    The focused ion beam (FIB) technique has established itself as an indispensable tool in the material science community, both to analyze samples and to prepare specimens by FIB milling. In combination with digital image correlation (DIC), FIB milling can, furthermore, be used to evaluate intrinsic stresses by monitoring the strain release during milling. The irradiation damage introduced by such milling, however, results in a change in the stress/strain state and elastic properties of the material; changes in the strain state in turn affect the bonding strength, and are hence expected to implicitly influence irradiation damage formation and sputtering. To elucidate this complex interplay between strain, irradiation damage and sputtering, we perform TRIM calculations and molecular dynamics simulations on silicon irradiated by Ga+ ions, with slab and trench-like geometries, whilst simultaneously applying uniaxial tensile and compressive strains up to 4%. In addition we calculate the threshold displacement energy (TDE) and the surface binding energy (SBE) for various strain states. The sputter rate and amount of damage produced in the MD simulations show a clear influence of the strain state. The SBE shows no significant dependence on strain, but is strongly affected by surface reconstructions. The TDE shows a clear strain-dependence, which, however, cannot explain the influence of strain on the extent of the induced irradiation damage or the sputter rate.

  5. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests.

    PubMed

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-28

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the 'wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, 'wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  6. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-01

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  7. Mechanics of the Compression Wood Response: II. On the Location, Action, and Distribution of Compression Wood Formation.

    PubMed

    Archer, R R; Wilson, B F

    1973-04-01

    A new method for simulation of cross-sectional growth provided detailed information on the location of normal wood and compression wood increments in two tilted white pine (Pinus strobus L.) leaders. These data were combined with data on stiffness, slope, and curvature changes over a 16-week period to make the mechanical analysis. The location of compression wood changed from the under side to a flank side and then to the upper side of the leader as the geotropic stimulus decreased, owing to compression wood action. Its location shifted back to a flank side when the direction of movement of the leader reversed. A model for this action, based on elongation strains, was developed and predicted the observed curvature changes with elongation strains of 0.3 to 0.5%, or a maximal compressive stress of 60 to 300 kilograms per square centimeter. After tilting, new wood formation was distributed so as to maintain consistent strain levels along the leaders in bending under gravitational loads. The computed effective elastic moduli were about the same for the two leaders throughout the season.

  8. Flexible Polydimethylsiloxane Foams Decorated with Multiwalled Carbon Nanotubes Enable Unprecedented Detection of Ultralow Strain and Pressure Coupled with a Large Working Range.

    PubMed

    Iglio, Rossella; Mariani, Stefano; Robbiano, Valentina; Strambini, Lucanos; Barillaro, Giuseppe

    2018-04-25

    Low-cost piezoresistive strain/pressure sensors with large working range, at the same time able to reliably detect ultralow strain (≤0.1%) and pressure (≤1 Pa), are one of the challenges that have still to be overcome for flexible piezoresistive materials toward personalized health-monitoring applications. In this work, we report on unprecedented, simultaneous detection of ultrasmall strain (0.1%, i.e., 10 μm displacement over 10 mm) and subtle pressure (20 Pa, i.e., a force of only 2 mN over an area of 1 cm 2 ) in compression mode, coupled with a large working range (i.e., up to 60% for strain-6 mm in displacement-and 50 kPa for pressure) using piezoresistive, flexible three-dimensional (3D) macroporous polydimethylsiloxane (pPDMS) foams decorated with pristine multiwalled carbon nanotubes (CNTs). pPDMS/CNT foams with pore size up to 500 μm (i.e., twice the size of those of commonly used foams, at least) and porosity of 77%, decorated with a nanostructured surface network of CNTs at densities ranging from 7.5 to 37 mg/cm 3 are prepared using a low-cost and scalable process, through replica molding of sacrificial sugar templates and subsequent drop-casting of CNT ink. A thorough characterization shows that piezoresistive properties of the foams can be finely tuned by controlling the CNT density and reach an optimum at a CNT density of 25 mg/cm 3 , for which a maximum change of the material resistivity (e.g., ρ 0 /ρ 50 = 4 at 50% strain) is achieved under compression. Further static and dynamic characterization of the pPDMS/CNT foams with 25 mg/cm 3 of CNTs highlights that detection limits for strain and pressure are 0.03% (3 μm displacement over 10 mm) and 6 Pa (0.6 mN over an area of 1 cm 2 ), respectively; moreover, good stability and limited hysteresis are apparent by cycling the foams with 255 compression-release cycles over the strain range of 0-60%, at different strain rates up to 10 mm/min. Our results on piezoresistive, flexible pPDMS/CNT foams pave the way toward breakthrough applications for personalized health care, though not limited to these, which have not been fully addressed to date with flexible strain/stress sensors.

  9. Characterization of the Hot Deformation Behavior of a Newly Developed Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoxia; Yan, Xiaofeng; Duan, Chunhua; Tang, Cunjiang; Pu, Enxiang

    2018-03-01

    To clarify the microstructural evolution and hot workability of GH4282 during hot forming processes, the hot deformation behavior of this superalloy was investigated by isothermal compression tests in the temperature interval of 950-1210 °C and the strain rate range of 0.01-10 s-1 with a true strain of 0.7. The results show that the flow stresses decrease with an increase in the deformation temperature and a decrease in the strain rate. The characteristic of dynamic recrystallization is revealed by the flow curves. The variation rule of the flow stress can be well described by the hyperbolic sine type equation, and the thermal deformation activation energy is determined to be 498.118 kJ/mol. The optimum hot working parameters are 1100-1180 °C and 0.01-0.1 s-1, under which the fine and uniform microstructure can be obtained.

  10. Strain Manipulated Magnetic Properties in ZnO and GaN Induced by Cation Vacancy

    NASA Astrophysics Data System (ADS)

    Gai, Yanqin; Jiang, Jiaping; Wu, Yuxi; Tang, Gang

    2016-07-01

    The effects of isotropic strains on the magnetic properties in ZnO and GaN induced by cation vacancies are comparatively investigated by density functional theory calculations. The magnetic moments and the couplings between vacancies in different charged states are calculated as a function of strains. The modulation of strain on the magnetic properties relies on the materials and the charge states of cation vacancies in them. As the occurrence of charge transfer in ZnO: V Zn under compression, the coupling between V_{{Zn}}0 is antiferromagnetic (AFM) and it could be stabilized by strains. Tensions can strengthen the ferromagnetic (FM) coupling between V_{{Zn}}0 but weaken that of V_{{Ga}}^{ - } . The neutral V Ga are always AFM coupling under strains from -6 to +6% and could be stabilized by compressions. The interactions between V_{{Ga}}^{ - } are always FM with ignorable variations under strains; however, the FM couplings between V_{{Ga}}^{2 - } could be strengthened by compressions. These varying trends of magnetic coupling under strains are interpreted by the band coupling models. Therefore, strain-engineering provides a route to manipulate and design high Curie temperature ferromagnetism derived and mediated by intrinsic defect for spintronic applications.

  11. Limits on rock strength under high confinement

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Schulson, Erland M.

    2007-06-01

    Understanding of deep earthquake source mechanisms requires knowledge of failure processes active under high confinement. Under low confinement the compressive strength of rock is well known to be limited by frictional sliding along stress-concentrating flaws. Under higher confinement strength is usually assumed limited by power-law creep associated with the movement of dislocations. In a review of existing experimental data, we find that when the confinement is high enough to suppress frictional sliding, rock strength increases as a power-law function only up to a critical normalized strain rate. Within the regime where frictional sliding is suppressed and the normalized strain rate is below the critical rate, both globally distributed ductile flow and localized brittle-like failure are observed. When frictional sliding is suppressed and the normalized strain rate is above the critical rate, failure is always localized in a brittle-like manner at a stress that is independent of the degree of confinement. Within the high-confinement, high-strain rate regime, the similarity in normalized failure strengths across a variety of rock types and minerals precludes both transformational faulting and dehydration embrittlement as strength-limiting mechanisms. The magnitude of the normalized failure strength corresponding to the transition to the high-confinement, high-strain rate regime and the observed weak dependence of failure strength on strain rate within this regime are consistent with a localized Peierls-type strength-limiting mechanism. At the highest strain rates the normalized strengths approach the theoretical limit for crystalline materials. Near-theoretical strengths have previously been observed only in nano- and micro-scale regions of materials that are effectively defect-free. Results are summarized in a new deformation mechanism map revealing that when confinement and strain rate are sufficient, strengths approaching the theoretical limit can be achieved in cm-scale sized samples of rocks rich in defects. Thus, non-frictional failure processes must be considered when interpreting rock deformation data collected under high confinement and low temperature. Further, even at higher temperatures the load-bearing ability of crustal rocks under high confinement may not be limited by a frictional process under typical geologic strain rates.

  12. Hot Deformation Behavior and Flow Stress Prediction of TC4-DT Alloy in Single-Phase Region and Dual-Phase Regions

    NASA Astrophysics Data System (ADS)

    Liu, Jianglin; Zeng, Weidong; Zhu, Yanchun; Yu, Hanqing; Zhao, Yongqing

    2015-05-01

    Isothermal compression tests of TC4-DT titanium alloy at the deformation temperature ranging from 1181 to 1341 K covering α + β phase field and β-phase field, the strain rate ranging from 0.01 to 10.0 s-1 and the height reduction of 70% were conducted on a Gleeble-3500 thermo-mechanical simulator. The experimental true stress-true strain data were employed to develop the strain-compensated Arrhenius-type flow stress model and artificial neural network (ANN) model; the predictability of two models was quantified in terms of correlation coefficient ( R) and average absolute relative error (AARE). The R and AARE for the Arrhenius-type flow stress model were 0.9952 and 5.78%, which were poorer linear relation and more deviation than 0.9997 and 1.04% for the feed-forward back-propagation ANN model, respectively. The results indicated that the trained ANN model was more efficient and accurate in predicting the flow behavior for TC4-DT titanium alloy at elevated temperature deformation than the strain-compensated Arrhenius-type constitutive equations. The constitutive relationship compensating strain could track the experimental data across the whole hot working domain other than that at high strain rates (≥1 s-1). The microstructure analysis illustrated that the deformation mechanisms existed at low strain rates (≤0.1 s-1), where dynamic recrystallization occurred, were far different from that at high strain rates (≥1 s-1) that presented bands of flow localization and cracking along grain boundary.

  13. Mechanical properties in crumple-formed paper derived materials subjected to compression.

    PubMed

    Hanaor, D A H; Flores Johnson, E A; Wang, S; Quach, S; Dela-Torre, K N; Gan, Y; Shen, L

    2017-06-01

    The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8-1.3 g cm -3 , and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.

  14. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  15. Thermal Aging Study of a Dow Corning SE 1700 Porous Structure Made by Direct Ink Writing: 1-Year Results and Long-Term Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Ward; Pearson, Mark A.; Maiti, Amitesh

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW). The specimens (~50% porosity) were subjected to various compressive strains (15, 30, 45%) and temperatures (room temperature, 35, 50, 70°C) in a nitrogen atmosphere (active purge) for 1 year. Compression set and load retention of the aged specimens were measured periodically during the study. Compression set increased with strain and temperature. After 1 year, specimens aged at room temperature, 35, and 50°C showed ~10% compression set (relative to the applied compressive deflection), while those aged at 70°C showed 20-40%. Due to the increasing compression set,more » load retention decreased with temperature, ranging from ~90% at room temperature to ~60-80% at 70°C. Long-term compression set and load retention at room temperature were predicted by applying time-temperature superposition (TTS). The predictions show compression set relative to the compressive deflection will be ~10-15% with ~70-90% load retention after 50 years at 15-45% strain, suggesting the material will continue to be mechanically functional. Comparison of the results to previously acquired data for cellular (M97*, M9760, M9763) and RTV (S5370) silicone foams suggests that the SE 1700 DIW porous specimens are on par with, or outperform, the legacy foams.« less

  16. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwan; Kim, Sanghyeok; Lee, Jinjae; Yang, Daejong; Park, Byong Chon; Ryu, Seunghwa; Park, Inkyu

    2014-09-01

    Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness.Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03295k

  17. [Effect of elastic strain rate ratio method and virtual touch tissue quantification on the diagnosis of breast masses].

    PubMed

    Gong, LiJie; He, Yan; Tian, Peng; Yan, Yan

    2016-07-01

    To determine the effect of elastic strain rate ratio method and virtual touch tissue quantification (VTQ) on the diagnosis of breast masses.
 Sixty female patients with breast cancer, who received surgical treatment in Daqing Oilfield General Hospital, were enrolled. All patients signed the informed consent paperwork and they were treated by routine ultrasound examination, compression elastography (CE) examination, and VTQ examination in turn. Strain ratio (SR) was checked by CE and shear wave velocity (SWV) value was measured by VTQ. The diagnostic values of different methods were evaluated by receiver operating characteristic (ROC) curves in the diagnosis of benign and malignant breast tumors.
 The maximum diameter and SWV value of the benign tumors were lower than those of the malignant tumors, and the SR ratio of benign masses was higher than that of malignant tumors (P<0.01). The AUC, sensitivity and specificity for elastic strain rate and VTQ for single or combined use were higher than those of conventional ultrasound (0.904, 97.5%, 69.2%; 0.946, 87.5%, 87.2%; 0.976, 90%, 97.4% vs 0.783, 85%, 61.5%). The AUC and specificity of VTQ were higher than those of the elastic strain rate (0.946, 87.2% vs 0.904, 69.2%), but the sensitivity of VTQ was higher than that of the latter (87.5% vs 97.5%). The AUC and specificity for combination of both methods were higher than those of single method, but the sensitivity was lower than that of the elastic strain rate. 
 Combination of elastic strain rate ratio method with VTQ possesses the best diagnostic value and the highest diagnostic accuracy in the diagnosis of breast mass than that used alone.

  18. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.

    PubMed

    Enns-Bray, William S; Ferguson, Stephen J; Helgason, Benedikt

    2018-05-03

    There is currently a knowledge gap in scientific literature concerning the strain rate dependent properties of trabecular bone at intermediate strain rates. Meanwhile, strain rates between 10 and 200/s have been observed in previous dynamic finite element models of the proximal femur loaded at realistic sideways fall speeds. This study aimed to quantify the effect of strain rate (ε̇) on modulus of elasticity (E), ultimate stress (σ u ), failure energy (U f ), and minimum stress (σ m ) of trabecular bone in order to improve the biofidelity of material properties used in dynamic simulations of sideways fall loading on the hip. Cylindrical cores of trabecular bone (D = 8 mm, L gauge  = 16 mm, n = 34) from bovine proximal tibiae and distal femurs were scanned in µCT (10 µm), quantifying apparent density (ρ app ) and degree of anisotropy (DA), and subsequently impacted within a miniature drop tower. Force of impact was measured using a piezoelectric load cell (400 kHz), while displacement during compression was measured from high speed video (50,000 frames/s). Four groups, with similar density distributions, were loaded at different impact velocities (0.84, 1.33, 1.75, and 2.16 m/s) with constant kinetic energy (0.4 J) by adjusting the impact mass. The mean strain rates of each group were significantly different (p < 0.05) except for the two fastest impact speeds (p = 0.09). Non-linear regression models correlated strain rate, DA, and ρ app with ultimate stress (R 2  = 0.76), elastic modulus (R 2  = 0.63), failure energy (R 2  = 0.38), and minimum stress (R 2  = 0.57). These results indicate that previous estimates of σ u could be under predicting the mechanical properties at strain rates above 10/s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  20. Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; Wang, Q.D., E-mail: wangqudong@sjtu.edu.cn

    2015-01-15

    The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tensionmore » and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at GHABs.« less

  1. The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Ballinger, R. G.; Lucas, G. E.; Pelloux, R. M.

    1984-09-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios ( R) were mesured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operation of the principal tensile twinning systems, {101¯2}<1¯011>.

  2. Biomechanics of phalangeal curvature.

    PubMed

    Richmond, Brian G

    2007-12-01

    Phalangeal curvature has been widely cited in primate functional morphology and is one of the key traits in the ongoing debate about whether the locomotion of early hominins included a significant degree of arboreality. This study examines the biomechanics of phalangeal curvature using data on hand posture, muscle recruitment, and anatomical moment arms to develop a finite element (FE) model of a siamang manual proximal phalanx during suspensory grasping. Strain patterns from experiments on intact cadaver forelimbs validated the model. The strain distribution in the curved siamang phalanx FE model was compared to that in a mathematically straight rendition in order to test the hypotheses that curvature: 1) reduces strain and 2) results in lower bending strains but relatively higher compression. In the suspensory posture, joint reaction forces load the articular ends of the phalanx in compression and dorsally, while muscle forces acting through the flexor sheath pull the mid-shaft palmarly. These forces compress the phalanx dorsally and tense it palmarly, effectively bending it 'open.' Strains in the curved model were roughly half that of the straight model despite equivalent lengths, areas, mechanical properties, and loading conditions in the two models. The curved model also experienced a higher ratio of compressive to tensile strains. Curvature reduces strains during grasping hand postures because the curved bone is more closely aligned with the joint reaction forces. Therefore, phalangeal curvature reduces the strains associated with arboreal, and especially suspensory, activity involving flexed digits. These results offer a biomechanical explanation for the observed association between phalangeal curvature and arboreality.

  3. Influence of deformation on dolomite rim growth kinetics

    NASA Astrophysics Data System (ADS)

    Helpa, Vanessa; Rybacki, Erik; Grafulha Morales, Luiz Fernando; Dresen, Georg

    2015-04-01

    Using a gas-deformation apparatus stacks of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals were deformed at T = 750° C and P = 400 MPa to examine the influence of stress and strain on magnesio-calcite and dolomite (CaMg[CO3]2) growth kinetics. Triaxial compression and torsion tests performed at constant stresses between 7 and 38 MPa and test durations between 4 and 171 hours resulted in bulk strains of 0.03-0.2 and maximum shear strains of 0.8-5.6, respectively. The reaction rims consist of fine-grained (2-7 μm) dolomite with palisade-shaped grains growing into magnesite reactants and equiaxed granular dolomite grains next to calcite. In between dolomite and pure calcite, magnesio-calcite grains evolved with an average grain size of 20-40 μm. Grain boundaries tend to be straighter at high bulk strains and equilibrium angles at grain triple junctions are common within the magnesio-calcite layer. Transmission electron microscopy shows almost dislocation free palisades and increasing dislocation density within granular dolomite towards the magnesio-calcite boundary. Within magnesio-calcite grains, dislocations are concentrated at grain boundaries. Variation of time at fixed stress (˜17 MPa) yields a parabolic time dependence of dolomite rim width, indicating diffusion-controlled growth, similar to isostatic rim growth behavior. In contrast, the magnesio-calcite layer growth is enhanced compared to isostatic conditions. Triaxial compression at given time shows no significant change of dolomite rim thickness (11±2 μm) and width of magnesio-calcite layers (33±5 μm) with increasing stress. In torsion experiments, reaction layer thickness and grain size decrease from the center (low stress/strain) to the edge (high strain/stress) of samples. Chemical analysis shows nearly stoichiometric composition of dolomite palisades, but enhanced Ca content within granular grains, indicating local disequilibrium with magnesio-calcite, in particular for twisted samples. The shift from local equilibrium is ˜3 mol% in triaxial compression and ˜7 mol% in torsion. Electron backscatter diffraction analysis reveals a crystallographic preferred orientation (CPO) within the reaction layers with [0001] axes parallel to the compression/rotation axis and poles of {2-1-10} and {10-10} prismatic planes parallel to the reaction interface. Compared to isostatic annealing, the CPO is more pronounced and the amount of low-angle grain boundaries is increased. At the imposed experimental conditions, most of the bulk deformation is accommodated by calcite single, which is stronger than magnesite. Application of flow laws for magnesio-calcite and dolomite suggest that the fine-grained reaction products should deform by grain boundary diffusion creep, resulting in lower flow strength than the single crystal reactants. However, microstructural observations indicate that deformation of granular dolomite and magnesio-calcite is at least partially assisted by dislocation creep, which would result in an almost similar strength to calcite. Therefore, flattening of the reaction layers during triaxial compression may be counterbalanced by enhanced reaction rates, resulting in almost constant layer thickness, independent of the applied stress. For simple shear, the reduced reaction kinetics in the high stress/strain region of twisted samples may be related to increased nucleation rates, resulting in a lower grain size and rim thickness.

  4. Fatigue characteristics of carbon nanotube blocks under compression

    NASA Astrophysics Data System (ADS)

    Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.

    2008-03-01

    In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.

  5. Prediction of Fracture Initiation in Hot Compression of Burn-Resistant Ti-35V-15Cr-0.3Si-0.1C Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Saifei; Zeng, Weidong; Zhou, Dadi; Lai, Yunjin

    2015-11-01

    An important concern in hot working of metals is whether the desired deformation can be accomplished without fracture of the material. This paper builds a fracture prediction model to predict fracture initiation in hot compression of a burn-resistant beta-stabilized titanium alloy Ti-35V-15Cr-0.3Si-0.1C using a combined approach of upsetting experiments, theoretical failure criteria and finite element (FE) simulation techniques. A series of isothermal compression experiments on cylindrical specimens were conducted in temperature range of 900-1150 °C, strain rate of 0.01-10 s-1 first to obtain fracture samples and primary reduction data. Based on that, a comparison of eight commonly used theoretical failure criteria was made and Oh criterion was selected and coded into a subroutine. FE simulation of upsetting experiments on cylindrical specimens was then performed to determine the fracture threshold values of Oh criterion. By building a correlation between threshold values and the deforming parameters (temperature and strain rate, or Zener-Hollomon parameter), a new fracture prediction model based on Oh criterion was established. The new model shows an exponential decay relationship between threshold values and Zener-Hollomon parameter (Z), and the relative error of the model is less than 15%. This model was then applied successfully in the cogging of Ti-35V-15Cr-0.3Si-0.1C billet.

  6. Dual-phase steel sheets under cyclic tension-compression to large strains: Experiments and crystal plasticity modeling

    NASA Astrophysics Data System (ADS)

    Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko

    2016-11-01

    In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.

  7. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics

    PubMed Central

    Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954

  8. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors.

    PubMed

    Ma, Zhonglei; Wei, Ajing; Ma, Jianzhong; Shao, Liang; Jiang, Huie; Dong, Diandian; Ji, Zhanyou; Wang, Qian; Kang, Songlei

    2018-04-19

    Lightweight, compressible and highly sensitive pressure/strain sensing materials are highly desirable for the development of health monitoring, wearable devices and artificial intelligence. Herein, a very simple, low-cost and solution-based approach is presented to fabricate versatile piezoresistive sensors based on conductive polyurethane (PU) sponges coated with synergistic multiwalled carbon nanotubes (MWCNTs) and graphene. These sensor materials are fabricated by convenient dip-coating layer-by-layer (LBL) electrostatic assembly followed by in situ reduction without using any complicated microfabrication processes. The resultant conductive MWCNT/RGO@PU sponges exhibit very low densities (0.027-0.064 g cm-3), outstanding compressibility (up to 75%) and high electrical conductivity benefiting from the porous PU sponges and synergistic conductive MWCNT/RGO structures. In addition, the MWCNT/RGO@PU sponges present larger relative resistance changes and superior sensing performances under external applied pressures (0-5.6 kPa) and a wide range of strains (0-75%) compared with the RGO@PU and MWCNT@PU sponges, due to the synergistic effect of multiple mechanisms: "disconnect-connect" transition of nanogaps, microcracks and fractured skeletons at low compression strain and compressive contact of the conductive skeletons at high compression strain. The electrical and piezoresistive properties of MWCNT/RGO@PU sponges are strongly associated with the dip-coating cycle, suspension concentration, and the applied pressure and strain. Fully functional applications of MWCNT/RGO@PU sponge-based piezoresistive sensors in lighting LED lamps and detecting human body movements are demonstrated, indicating their excellent potential for emerging applications such as health monitoring, wearable devices and artificial intelligence.

  9. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    NASA Astrophysics Data System (ADS)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (< 10-6), the nonlinear classical theory issued from a Taylor decomposition can explain the harmonic content. For higher strain, harmonic content becomes richer and the material exhibits more hysteretic behaviors, i.e. strain rate dependencies. Such observations have been made in the past (e.g., Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  10. 3D Finite Element Modeling of Sliding Wear

    DTIC Science & Technology

    2013-12-01

    the high strain rate compression of three armor materials: Maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083. The University of...bearings, gears, brakes, gun barrels , slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows...43 Figure III-18 AISI-1080 Steel Distribution of Asperities..................................... 45 Figure III-19 Micrograph of Worn

  11. Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion

    NASA Astrophysics Data System (ADS)

    Chen, Sean Kuanhsiang; Wu, Yih-Min; Hsu, Ya-Ju; Chan, Yu-Chang

    2017-07-01

    We study internal deformation of the Taiwan orogen, a young arc-continental collision belt, which the spatial heterogeneity remains unclear. We aim to ascertain heterogeneity of the orogenic crust in depth when specifying general mechanisms of the Taiwan orogeny. To reach this goal, we used updated data of continuous GPS (cGPS) and earthquake focal mechanisms to reassess geodetic strain-rate and seismic stress fields of Taiwan, respectively. We updated the both data sets from 1990 to 2015 to provide large amount of constraints on surficial and internal deformation of the crust for a better understanding. We estimated strain-rate tensors by calculating gradient tensors of cGPS station velocities in horizontal 0.1°-spacing grids via Delaunay triangulation. We determined stress tensors within a given horizontal and vertical grid cell of 0.1° and 10 km, respectively, by employing the spatial and temporal stress inversion. To minimize effects of the 1999 Mw 7.6 Chi-Chi earthquake on trends of the strain and stress, we modified observational possible bias of the cGPS velocities after the earthquake and removed the first 15-month focal mechanisms within the fault rupture zone. We also calculated the Anderson fault parameter (Aϕ) based on stress ratios and rake angles to quantitatively describe tectonic regimes of Taiwan. By examining directions of seismic compressive axes and styles of faulting, our results indicate that internal deformation of the crust is presently heterogeneous in the horizontal and vertical spaces. Directions of the compressive axes are fan-shaped oriented between N10°W and N110°W in the western and mid-eastern Taiwan at the depths of 0-20 km and near parallel to orientations of geodetic compressional axes. The orientations agreed with predominantly reverse faulting in the western Taiwan at the same depth range, implying a brittle deformation regime against the Peikang Basement High. Orientations of the compressive axes most rotated counter-clockwise at the depths of 20-40 km, coinciding with transition of styles of faulting from reverse to strike-slip faulting along the depths as revealed by variation of the Aϕ values. The features indicate that internal deformation of the upper crust is primarily driven by the same compressional mechanism. It implies that geodetic strains could detect the deformation from surface down to a maximal depth of 20 km in most regimes of Taiwan. We find that heterogeneity in orientations of compressive axes and styles of faulting is strong in two regimes at the northern and southern Central Range, coinciding to areas of the orogenic thinned/thickened crust. Conversely, the heterogeneity is weak in the central Western Foothills at surrounding area of root of the overthickened crust. This observation, coupled with regional seismological observations, may imply that vertical deformation from crustal thickening and thinning and thinning-related dynamics from mantle flows may have joint influence on degree of stress heterogeneity.

  12. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu

    Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less

  13. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4

    DOE PAGES

    Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu; ...

    2018-01-08

    Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less

  14. Hot Deformation and Processing Window Optimization of a 70MnSiCrMo Carbide-Free Bainitic Steel.

    PubMed

    Han, Ying; Sun, Yu; Zhang, Wei; Chen, Hua

    2017-03-21

    The hot deformation behavior of a high carbon carbide-free bainitic steel was studied through isothermal compression tests that were performed on a Gleeble-1500D thermal mechanical simulator at temperatures of 1223-1423 K and strain rates of 0.01-5 s -1 . The flow behavior, constitutive equations, dynamic recrystallization (DRX) characteristics, and processing map were respectively analyzed in detail. It is found that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the single-peak DRX can be easily observed at high temperatures and/or low strain rates. The internal relationship between the flow stress and processing parameters was built by the constitutive equations embracing a parameter of Z/A, where the activation energy for hot deformation is 351.539 kJ/mol and the stress exponent is 4.233. In addition, the DRX evolution and the critical conditions for starting DRX were discussed. Then the model of the DRX volume fraction was developed with satisfied predictability. Finally, the processing maps at different strains were constructed according to the dynamic material model. The safety domains and flow instability regions were identified. The best processing parameters of this steel are within the temperature range of 1323-1423 K and strain rate range of 0.06-1 s -1 .

  15. Hot Deformation and Processing Window Optimization of a 70MnSiCrMo Carbide-Free Bainitic Steel

    PubMed Central

    Han, Ying; Sun, Yu; Zhang, Wei; Chen, Hua

    2017-01-01

    The hot deformation behavior of a high carbon carbide-free bainitic steel was studied through isothermal compression tests that were performed on a Gleeble-1500D thermal mechanical simulator at temperatures of 1223–1423 K and strain rates of 0.01–5 s−1. The flow behavior, constitutive equations, dynamic recrystallization (DRX) characteristics, and processing map were respectively analyzed in detail. It is found that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the single-peak DRX can be easily observed at high temperatures and/or low strain rates. The internal relationship between the flow stress and processing parameters was built by the constitutive equations embracing a parameter of Z/A, where the activation energy for hot deformation is 351.539 kJ/mol and the stress exponent is 4.233. In addition, the DRX evolution and the critical conditions for starting DRX were discussed. Then the model of the DRX volume fraction was developed with satisfied predictability. Finally, the processing maps at different strains were constructed according to the dynamic material model. The safety domains and flow instability regions were identified. The best processing parameters of this steel are within the temperature range of 1323–1423 K and strain rate range of 0.06–1 s−1. PMID:28772678

  16. Anisotropic properties of periodically polarity-inverted zinc oxide structures

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Minegishi, T.; Lee, J. W.; Hong, S. K.; Song, J. H.; Lee, J. Y.; Yoon, E.; Yao, T.

    2010-06-01

    We report on the anisotropic structural properties of periodically polarity-inverted (PPI) ZnO structures grown on patterned templates. The etching and growth rates along ⟨112¯0⟩ direction of ZnO structures are higher than those of ⟨101¯0⟩ direction of ZnO films. From the strain evaluation by Raman spectroscopy, compressive strains are observed in all PPI ZnO samples with different stripe pattern size and the smaller pattern size is more effective to residual stress relaxation. The detailed structures at transition region show relationship with the anisotropic crystal quality.

  17. Metal-Insulator Transition of strained SmNiO3 Thin Films: Structural, Electrical and Optical Properties

    PubMed Central

    Torriss, B.; Margot, J.; Chaker, M.

    2017-01-01

    Samarium nickelate (SmNiO3) thin films were successfully synthesized on LaAlO3 and SrTiO3 substrates using pulsed-laser deposition. The Mott metal-insulator (MI) transition of the thin films is sensitive to epitaxial strain and strain relaxation. Once the strain changes from compressive to tensile, the transition temperature of the SmNiO3 samples shifts to slightly higher values. The optical conductivity reveals the strong dependence of the Drude spectral weight on the strain relaxation. Actually, compressive strain broadens the bandwidth. In contrast, tensile strain causes the effective number of free carriers to reduce which is consistent with the d-band narrowing. PMID:28098240

  18. Tuning the Energy Gap of SiCH3 Nanomaterials Under Elastic Strain

    NASA Astrophysics Data System (ADS)

    Ma, Shengqian; Li, Feng; Geng, Jiguo; Zhu, Mei; Li, Suyan; Han, Juguang

    2018-05-01

    SiCH3 nanomaterials have been studied using the density functional theory. When the nanosheets and nanoribbons (armchair and zigzag) are introduced, their energy gap is modulated under elastic strain and width. The results show that the band gap of SiCH3 nanomaterials can be easily tuned using elastic strains and widths. Surprisingly, the band gap can be modulated along two directions, namely, compressing and stretching. The band gap decreases when increasing stretching strain or decreasing compressing strain. In addition, the band gap decreases when increasing the nanoribbon width. For energy gap engineering, the band gap can be tuned by strains and widths. Therefore, the SiCH3 nanomaterials play important roles in potential applications for strain sensors, electronics, and optical electronics.

  19. Direct and continuous strain control of catalysts with tunable battery electrode materials

    DOE PAGES

    Wang, Haotian; Xu, Shicheng; Tsai, Charlie; ...

    2016-11-24

    We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-correctedmore » transmission electron microscopy. As a result, we observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.« less

  20. Physics of Shock Compression and Release: NEMD Simulations of Tantalum and Silicon

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Meyers, Marc; Zhao, Shiteng; Remington, Bruce; Bringa, Eduardo; Germann, Tim; Ravelo, Ramon; Hammerberg, James

    2015-06-01

    Shock compression and release allow us to evaluate physical deformation and damage mechanisms occurring in extreme environments. SPaSM and LAMMPS molecular dynamics codes were employed to simulate single and polycrystalline tantalum and silicon at strain rates above 108 s-1. Visualization and analysis was accomplished using OVITO, Crystal Analysis Tool, and a redesigned orientation imaging function implemented into SPaSM. A comparison between interatomic potentials for both Si and Ta (as pertaining to shock conditions) is conducted and the influence on phase transformation and plastic relaxation is discussed. Partial dislocations, shear induced disordering, and metastable phase changes are observed in compressed silicon. For tantalum, the role of grain boundary and twin intersections are evaluated for their role in ductile spallation. Finally, the temperature dependent response of both Ta and Si is investigated.

  1. Evaluation of material properties and compression characteristics of Assam Bora rice flours as a directly compressible vehicle in tablet formulation.

    PubMed

    Ahmad, Mohammad Zaki; Akhter, Sohail; Dhiman, Ishita; Sharma, Poonam; Verma, Reena

    2013-02-01

    The mechanical properties and compaction characteristics of different varieties of Assam Bora rice flours (ABRFs) were evaluated and compared with those of official Starch 1500®. The material properties and compression characteristics of Assam Bora rice flours were studied by Heckel and Kawakita analysis. The influences of physical and geometrical properties of ABRFs were evaluated with regard to their compression properties. The mechanical properties, such as toughness and Young's modulus of ABRFs were also compared with that of Starch 1500®. The novel ABRFs reflect better physical characteristics such as higher bulk and tap densities, less porosity, better powder packing ability, large surface area, and improved flowability. ABRFs were the least sensitive material to magnesium stearate, and blending time did not affect its compactibility. Their onset of plastic deformation and strain rate sensitivity as compared to that of Starch 1500® demonstrate its potential use as a directly compressible vehicle for tablet. The experimental ABRFs showed superior properties to official Starch 1500® in many cases and could serve as suitable alternatives for particular purposes.

  2. Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding

    NASA Astrophysics Data System (ADS)

    Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen

    2018-02-01

    Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.

  3. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  4. 1200 and 1300 K slow plastic compression properties of Ni-50Al composites

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Kumar, K. S.; Mannan, S. K.

    1991-01-01

    XD synthesis, powder blending, and hot pressing techniques have been utilized to produce NiAl composites containing 4, 7.5, 15, and 25 vol pct alumina whiskers and hybrid composite materials with 15 vol pct Al2O3 + 10 or 20 vol pct, nominally 1 micron TiB2 particles. The resistance to slow plastic flow was determined at 1200 and 1300 K via compression testing in air under constant velocity conditions. The stress-strain behavior of the intermetallic composites depended on the fraction of second phases where the 4 and 7.5 percent Al2O3 materials flowed at a nominally constant stress after about 2 percent deformation, while all the other composites exhibited diffuse yielding followed by strain softening. The flow stress-strain rate properties increased with volume fraction of Al2O3 whiskers except for the 4 and 7.5 percent materials, which had similar strengths. The hybrid composite NiAl + 15Al2O3 + 10TiB2 was substantially stronger than the materials simply containing alumina. Deformation in these composites can be described by the Kelly and Street model of creep in perfectly bonded, rigid, discontinuous fiber materials.

  5. Forming limit diagrams of tubes with initial wall-thickness difference based on different instability criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Qiwen; Yang, Lianfa; He, Yulin

    2018-05-01

    The Forming limit diagram (FLD), also known as a forming limit curves (FLC), is generally used in metal forming for predicting forming behavior of metals. The purpose of the study is to clarify the difference among the FLC of tubes with initial wall-thickness difference under tension-compression strain states using finite element (FE) simulation of tube hydroforming (THF) and different instability criteria. Firstly, geometrical models for SUS304 stainless steel tubes with initial wall-thickness differences were built by introducing an index `wall-thickness deviation rate'. Secondly, forced-end hydro-bugling of the tubes was modeled and the forming process was simulated by using the commercial finite element (FE) code ABAQUS/Explicit 6.10. Afterwards, the limiting strains of the material in the hydro-bugling process were calculated based on the simulated resultant data and three instability criteria-strain change criterion, strain rate change criterion and strain path change criterion, respectively. Finally, the FLD for the tubes was established and the effect of wall-thickness deviation rate on the FLD was analyzed and the differences among the FLC based on the three instability criteria were compared. The results showed that the FLC are observed to shift in the major-minor strain coordinate system due to the initial non-uniform wall-thickness; however, no distinct differences among the FLC based on the three instability criteria were observed.

  6. Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour.

    PubMed

    Gomez-Marin, Alex; Stephens, Greg J; Brown, André E X

    2016-08-01

    Regularities in animal behaviour offer insights into the underlying organizational and functional principles of nervous systems and automated tracking provides the opportunity to extract features of behaviour directly from large-scale video data. Yet how to effectively analyse such behavioural data remains an open question. Here, we explore whether a minimum description length principle can be exploited to identify meaningful behaviours and phenotypes. We apply a dictionary compression algorithm to behavioural sequences from the nematode worm Caenorhabditis elegans freely crawling on an agar plate both with and without food and during chemotaxis. We find that the motifs identified by the compression algorithm are rare but relevant for comparisons between worms in different environments, suggesting that hierarchical compression can be a useful step in behaviour analysis. We also use compressibility as a new quantitative phenotype and find that the behaviour of wild-isolated strains of C. elegans is more compressible than that of the laboratory strain N2 as well as the majority of mutant strains examined. Importantly, in distinction to more conventional phenotypes such as overall motor activity or aggregation behaviour, the increased compressibility of wild isolates is not explained by the loss of function of the gene npr-1, which suggests that erratic locomotion is a laboratory-derived trait with a novel genetic basis. Because hierarchical compression can be applied to any sequence, we anticipate that compressibility can offer insights into the organization of behaviour in other animals including humans. © 2016 The Authors.

  7. The influence of lay-up and thickness on composite impact damage and compression strength

    NASA Technical Reports Server (NTRS)

    Guynn, E. G.; Obrien, T. K.

    1985-01-01

    The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.

  8. An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste

    NASA Astrophysics Data System (ADS)

    Kumavat, Hemraj Ramdas

    2016-09-01

    The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.

  9. Strain distribution in hot rolled aluminum by photoplastic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyinlola, Adeyinka Kofoworola

    1974-10-01

    A previously developed photomechanic material, Larninac, which excellently simulates the behavior of aluminum in tension has been investigated intensively as a possible modeling material for hot-rolled aluminum billets. Photoplasticity techniques combined with the Moire method have been used to study the behavior of the Laminac mixture in compression. Photoplastic analysis revealed that a Laminac mixture of 60% flexible and 40% rigid resins, compressed or rolled at 40°C, showed the phenomenon of double bulging which has been observed in hot-rolled aluminum billets. The potentiality of the 60:40 Laminac mixture as a possible Simulating material at 40°C is further enhanced by themore » fact that the true stress-true strain curves of cylindrical samples compressed at 40°C correlated very well with true stresstrue strain of identical cylindrical samples of aluminum compressed. at 300°C, 425PC and 500°c.« less

  10. Mathematical Modeling of High-Temperature Constitutive Equations and Hot Processing Maps for As-Cast SA508-3 Steel

    NASA Astrophysics Data System (ADS)

    Sui, Dashan; Wang, Tao; Zhu, Lingling; Gao, Liang; Cui, Zhenshan

    2016-11-01

    The hot deformation behavior and hot workability characteristics of as-cast SA508-3 steel were studied by modeling the constitutive equations and developing hot processing maps. The isothermal compression experiments were carried out at temperatures of 950°C, 1050°C, 1150°C, and 1250°C and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, and 1 s-1 respectively. The two-stage flow stress models were established through the classical theories on work hardening and softening, and the solution of activation energy for hot deformation was 355.0 kJ mol-1 K-1. Based on the dynamic material model, the power dissipation and instability maps were developed separately at strains of 0.2, 0.4, 0.6 and 0.8. The power dissipation rate increases with both the increase of temperature and the decrease of strain rate, and the instable region mainly appears on the conditions of low temperature and high strain rate. The optimal hot working parameters for as-cast SA508-3 steel are 1050-1200°C/0.001-0.1 s-1, with about 25-40% peak efficiency of power dissipation.

  11. Directional amorphization of boron carbide subjected to laser shock compression

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-01-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C. PMID:27733513

  12. Directional amorphization of boron carbide subjected to laser shock compression

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; ...

    2016-10-12

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. When using high-power pulsed-laser-driven shock compression, an unprecedented high strain rates can be achieved; we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45~50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. We also propose that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversionmore » calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4C.« less

  13. Structural Influence on the Mechanical Response of Adolescent Gottingen Porcine Cranial Bone

    DTIC Science & Technology

    2016-10-01

    specimens were then loaded in quasi -static compression to measure their mechanical response. The surface strain distribution on the specimen face was...13 Fig. 10 Apparent stress-strain responses of a sample of specimens loaded in quasi -static compression...modulus-BVF experimental results shown in Fig. 15 ..................................................................................19 Fig. 17 The

  14. Shear-strain energy rate distribution caused by the interplate locking along the Nankai Trough, southwest Japan: An integration analysis using stress tensor inversion and slip deficit inversion

    NASA Astrophysics Data System (ADS)

    Saito, T.; Noda, A.; Yoshida, K.; Tanaka, S.

    2017-12-01

    In the Nankai Trough, southwest Japan, the Philippine Sea Plate descends beneath the Eurasian plate. The locking, or the slip deficit, on the plate interface causes stress fluctuation in the inland area. The interplate locking does not always result in stress accumulation but also causes stress release. The stress increase/decrease is not determined only from the stress fluctuation but also depends on the background stress, in particular, its orientation. This study proposes a method to estimate the shear-strain energy increase/decrease distribution caused by the interplate locking. We at first investigated the background stress field in and around the Nankai Trough. The spatial distribution of the principal stress orientations and the stress ratio were estimated by analysis of 130,000 focal mechanisms of small earthquakes (e.g., Yoshida et al. 2015 Tectonophysics). For example, in an area called Chugoku region, the maximum and minimum compression axes were E-W and N-S directions, respectively. We also estimated the slip-deficit rate at the plate interface by analyzing GNSS data and calculated the stress fluctuation due to the deficit (e.g., Noda et al. 2013 GJI). The interplate locking causes the maximum compression in the direction of plate convergence. This is significantly different from the orientations of the background stress characterized by the E-W compressional strike-slip stress regime.. By combining the results of the background stress and the stress fluctuation, we made a map indicating the shear-strain energy change due to the interplate locking. In the Chugoku region, the shear-strain energy decreases due to the interplate locking. This is because the N-S compressional stress caused by the interplate locking compensates the N-S extensional stress in the background. The shear-strain energy increases in some parts of the analyzed areas. By statistically comparing the shear strain energy rate with the seismicity in the inland area, we found that the seismicity tends to be high where the interplate locking increases the shear-strain energy. Our results suggest that the stress fluctuation due to the interplate locking is not dominant in the background stress but surely contributes to the inland seismicity in southwest Japan.

  15. Compression behavior of delaminated composite plates

    NASA Technical Reports Server (NTRS)

    Peck, Scott O.; Springer, George S.

    1989-01-01

    The response of delaminated composite plates to compressive in-plane loads was investigated. The delaminated region may be either circular or elliptical, and may be located between any two plies of the laminate. For elliptical delaminations, the axes of the ellipse may be arbitrarily oriented with respect to the applied loads. A model was developed that describes the stresses, strains, and deformation of the sublaminate created by the delamination. The mathematical model is based on a two dimensional nonlinear plate theory that includes the effects of transverse shear deformation. The model takes into account thermal and moisture induced strains, transverse pressures acting on the sublaminate, and contact between the sublaminate and plate. The solution technique used is the Ritz method. A computationally efficient computer implementation of the model was developed. The code can be used to predict the nonlinear-load-strain behavior of the sublaminate including the buckling load, postbuckling behavior, and the onset of delamination growth. The accuracy of the code was evaluated by comparing the model results to benchmark analytical solutions. A series of experiments was conducted on Fiberite T300/976 graphite/epoxy laminates bonded to an aluminum honeycomb core forming a sandwich panel. Either circles or ellipses made from Teflon film were embedded in the laminates, simulating the presence of a delamination. Each specimen was loaded in compression and the strain history of the sublaminate was recorded far into the postbuckling regime. The extent of delamination growth was evaluated by C-scan examination of each specimen. The experimental data were compared to code predictions. The code was found to describe the data with reasonable accuracy. A sensitivity study examined the relative importance of various material properties, the delamination dimensions, the contact model, the transverse pressure differential, the critical strain energy release rate, and the relative growth direction on the buckling load, the postbuckling behavior, and the growth load of the sublaminate.

  16. Numerical assessment of the role of slip and twinning in magnesium alloy AZ31B during loading path reversal

    DOE PAGES

    Wang, Huamiao; Wu, Peidong; Wang, Jian

    2015-04-17

    Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC–TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension–compression–tension along rolling direction, (2) tension–compression–tension along transverse direction, (3) compression–tension–compression along rolling direction, and (4) compression–tension–compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimentalmore » observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Lastly, such significant effect is mainly ascribed to the activity of twinning and detwinning.« less

  17. Modeling and Finite Element Analysis for the Dynamic Recrystallization Behavior of Ti-5Al-5Mo-5V-3Cr-1Zr Near β Titanium Alloy During Hot Deformation

    NASA Astrophysics Data System (ADS)

    Lv, Ya-ping; Li, Shao-jun; Zhang, Xiao-yong; Li, Zhi-you; Zhou, Ke-chao

    2018-04-01

    Evolution for the dynamic recrystallization (DRX) volume fraction of Ti-5Al-5Mo-5V-3Cr-1Zr near β titanium alloy during hot deformation was characterized by using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. To determine the equation parameters, a series of thermal simulation experiments at the temperature of 1023-1098 K and strain rate of 0.001-1 s‒1 to the true strain of 0.7 were conducted to obtain the essential data about stress σ and strain ɛ. By further transforming the relationship of σ versus ɛ into the relationship of strain hardening rate dσ/dɛ versus σ, two characteristic strains at the beginning of DRX (critical strain ɛc) and at the peak stress (peak strain ɛp) were identified from the dσ/dɛ-σ curves. Sequentially, the parameters in the JMAK equation were determined from the linear fitting of the different relationships among critical strain ɛc, peak strain ɛp and deformation conditions (including temperature T, strain rate \\dot ɛ and strain ɛ). The as-obtained JMAK equation was expressed as XDRX=1-exp[-0.0053((ɛ-ɛc)/ɛc)2.1], where ɛc=0.6053ɛp and ɛp=0.0031 \\dot ɛ .0081exp(28,781/RT). Finally, the JMAK equation was implanted into finite element program to simulate the hot compression of thermal simulation experiments. The simulation predictions and experimental results about the DRX volume fraction distribution showed a good consistency.

  18. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.

    PubMed

    Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B

    2015-01-02

    Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. Published by Elsevier Ltd.

  19. Bacterial survival following shock compression in the GigaPascal range

    NASA Astrophysics Data System (ADS)

    Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, Fabrizia; Appleby-Thomas, Gareth J.; McMillan, Paul F.

    2017-09-01

    The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for bacterial cell walls on the order of seconds in the time-dependent strain rate.

  20. Static versus dynamic fracturing in shallow carbonate fault zones

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Doan, M. L.; Aben, F. M.; Fusseis, F.; Mitchell, T. M.; Di Toro, G.

    2015-12-01

    Moderate to large earthquakes often nucleate within and propagate through carbonates in the shallow crust, therefore several field and experimental studies were recently aimed to constrain earthquake-related deformation processes within carbonate fault rocks. In particular, the occurrence of thick belts (10-100s m) of low-strain fault-related breccias (average size of rock fragments >1 cm), which is relatively common within carbonate damage zones, was generally interpreted as resulting from the quasi-static growth of fault zones rather than from the cumulative effect of multiple earthquake ruptures. Here we report the occurrence of up to hundreds of meters thick belts of intensely fragmented dolostones along the major transpressive Foiana Fault Zone (Italian Southern Alps) which was exhumed from < 2 km depth. Such dolostones are reduced into fragments ranging from few centimeters down to few millimeters in size with ultrafine-grained layers in proximity to the principal slip zones. Preservation of the original bedding indicates a lack of significant shear strain in the fragmented dolostones which seem to have been shattered in situ. To investigate the origin of the in-situ shattered rocks, the host dolostones were deformed in uniaxial compression both under quasi-static loading (strain rate ~10-3 s-1) and dynamic loading (strain rate >50 s-1). Dolostones deformed up to failure under low-strain rate were affected by single to multiple discrete (i.e. not interconnected) extensional fractures sub-parallel to the loading direction. Dolostones deformed under high-strain rate were shattered above a strain rate threshold of ~200 s-1(strain >1.2%) while they were split in few fragments or were macroscopically intact for lower strain rates. Experimentally shattered dolostones were reduced into a non-cohesive material with most rock fragments a few millimeters in size and elongated parallel to the loading direction. Fracture networks were investigated by X-ray microtomography showing that low- and high-strain rate damage patterns are different with the latter being similar to that of natural in-situ shattered dolostones. In-situ shattered dolostones are thus interpreted as the product of off-fault dynamic stress wave loading and can potentially be used to constrain coseismic energy release in fault zones.

  1. Finite Element Modeling of the Behavior of Armor Materials Under High Strain Rates and Large Strains

    NASA Astrophysics Data System (ADS)

    Polyzois, Ioannis

    For years high strength steels and alloys have been widely used by the military for making armor plates. Advances in technology have led to the development of materials with improved resistance to penetration and deformation. Until recently, the behavior of these materials under high strain rates and large strains has been primarily based on laboratory testing using the Split Hopkinson Pressure Bar apparatus. With the advent of sophisticated computer programs, computer modeling and finite element simulations are being developed to predict the deformation behavior of these metals for a variety of conditions similar to those experienced during combat. In the present investigation, a modified direct impact Split Hopkinson Pressure Bar apparatus was modeled using the finite element software ABAQUS 6.8 for the purpose of simulating high strain rate compression of specimens of three armor materials: maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083. These armor materials, provided by the Canadian Department of National Defence, were tested at the University of Manitoba by others. In this study, the empirical Johnson-Cook visco-plastic and damage models were used to simulate the deformation behavior obtained experimentally. A series of stress-time plots at various projectile impact momenta were produced and verified by comparison with experimental data. The impact momentum parameter was chosen rather than projectile velocity to normalize the initial conditions for each simulation. Phenomena such as the formation of adiabatic shear bands caused by deformation at high strains and strain rates were investigated through simulations. It was found that the Johnson-Cook model can accurately simulate the behavior of body-centered cubic (BCC) metals such as steels. The maximum shear stress was calculated for each simulation at various impact momenta. The finite element model showed that shear failure first occurred in the center of the cylindrical specimen and propagated outwards diagonally towards the front and back edges forming an hourglass pattern. This pattern matched the failure behavior of specimens tested experimentally, which also exhibited failure through the formation of adiabatic shear bands. Adiabatic shear bands are known to lead to a complete shear failure. Both mechanical and thermal mechanisms contribute to the formation of shear bands. However, the finite element simulations did not show the effects of temperature rise within the material, a phenomenon which is known to contribute to thermal instabilities, whereby strain hardening effects are outweighed by thermal softening effects and adiabatic shear bands begin to form. In the simulations, the purely mechanical maximum shear stress failure, nucleating from the center of the specimens, was used as an indicator of the time at which these shear bands begin to form. The time and compressive stress at the moment of thermal instability in experimental results which have shown to form adiabatic shear bands, matched closely to those at which shear failure was first observed in the simulations. Although versatile in modeling BCC behavior, the Johnson-Cook model did not show the correct stress response in face-centered cubic (FCC) metals, such as aluminum 5083, where effects of strain rate and temperature depend on strain. Similar observations have been reported in literature. In the Johnson-Cook model, temperature, strain rate and strain" parameters are independent of each other. To this end, a more physical-based model based on dislocation mechanics, namely the Feng and Bassim constitutive model, would be more appropriate.

  2. Superelastic Graphene Aerogel/Poly(3,4-Ethylenedioxythiophene)/MnO2 Composite as Compression-Tolerant Electrode for Electrochemical Capacitors

    PubMed Central

    Lv, Peng; Wang, Yaru; Ji, Chenglong; Yuan, Jiajiao

    2017-01-01

    Ultra-compressible electrodes with high electrochemical performance, reversible compressibility and extreme durability are in high demand in compression-tolerant energy storage devices. Herein, an ultra-compressible ternary composite was synthesized by successively electrodepositing poly(3,4-ethylenedioxythiophene) (PEDOT) and MnO2 into the superelastic graphene aerogel (SEGA). In SEGA/PEDOT/MnO2 ternary composite, SEGA provides the compressible backbone and conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PEDOT not only reduces the interface resistance between MnO2 and graphene, but also further reinforces the strength of graphene cellar walls. The synergistic effect of the three components in the ternary composite electrode leads to high electrochemical performances and good compression-tolerant ability. The gravimetric capacitance of the compressible ternary composite electrodes reaches 343 F g−1 and can retain 97% even at 95% compressive strain. And a volumetric capacitance of 147.4 F cm−3 is achieved, which is much higher than that of other graphene-based compressible electrodes. This value of volumetric capacitance can be preserved by 80% after 3500 charge/discharge cycles under various compression strains, indicating an extreme durability.

  3. Strain Gage Measurements of Aft Nacelle Shock Absorbers.

    DTIC Science & Technology

    ENGINE NACELLES, SHOCK ABSORBERS ), (* SHOCK ABSORBERS , STRESSES), SURFACE TO SURFACE MISSILES, LAUNCHING, STRAIN GAGES, COMPRESSIVE PROPERTIES, CALIBRATION, STRAIN(MECHANICS), FAILURE, GROUND SUPPORT EQUIPMENT.

  4. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization.

    PubMed

    Amini, Samira; Mortazavi, Farhad; Sun, Jun; Levesque, Martin; Hoemann, Caroline D; Villemure, Isabelle

    2013-01-01

    Mechanical environment is one of the regulating factors involved in the process of longitudinal bone growth. Non-physiological compressive loading can lead to infantile and juvenile musculoskeletal deformities particularly during growth spurt. We hypothesized that tissue mechanical behavior in sub-regions (reserve, proliferative and hypertrophic zones) of the growth plate is related to its collagen and proteoglycan content as well as its collagen fiber orientation. To characterize the strain distribution through growth plate thickness and to evaluate biochemical content and collagen fiber organization of the three histological zones of growth plate tissue. Distal ulnar growth plate samples (N = 29) from 4-week old pigs were analyzed histologically for collagen fiber organization (N = 7) or average zonal thickness (N = 8), or trimmed into the three average zones, based on the estimated thickness of each histological zone, for biochemical analysis of water, collagen and glycosaminoglycan content (N = 7). Other samples (N = 7) were tested in semi-confined compression under 10% compressive strain. Digital images of the fluorescently labeled nuclei were concomitantly acquired by confocal microscopy before loading and after tissue relaxation. Strain fields were subsequently calculated using a custom-designed 2D digital image correlation algorithm. Depth-dependent compressive strain patterns and collagen content were observed. The proliferative and hypertrophic zone developed the highest axial and transverse strains, respectively, under compression compared to the reserve zone, in which the lowest axial and transverse strains arose. The collagen content per wet mass was significantly lower in the proliferative and hypertrophic zones compared to the reserve zone, and all three zones had similar glycosaminoglycan and water content.Polarized light microscopy showed that collagen fibers were mainly organized horizontally in the reserve zone and vertically aligned with the growth direction in the proliferative and hypertrophic zones. Higher strains were developed in growth plate areas (proliferative and hypertrophic) composed of lower collagen content and of vertical collagen fiber organization. The stiffer reserve zone, with its higher collagen content and collagen fibers oriented to restrain lateral expansion under compression, could play a greater role of mechanical support compared to the proliferative and hypertrophic zones, which could be more susceptible to be involved in an abnormal growth process.

  5. Real-time 3-D ultrafast ultrasound quasi-static elastography in vivo

    PubMed Central

    Papadacci, Clement; Bunting, Ethan A.; Konofagou, Elisa E.

    2017-01-01

    Ultrasound elastography, a technique used to assess mechanical properties of soft tissue is of major interest in the detection of breast cancer as it is stiffer than the surroundings. Techniques such as ultrasound quasi-static elastography have been developed to assess the strain distribution in soft tissues in two dimensions using a quasi-static compression. However, tumors can exhibit very heterogeneous shape, a three dimensions approach would be then necessary to measure accurately the tumor volume and remove operator dependency. To ensure this issue, several 3-D quasi-static elastographic approaches have been proposed. However, all these approaches suffered from a long acquisition time to acquire 3-D volumes resulting in the impossibility to perform real-time and the creation of artifacts. The long acquisition time comes from both the use of focused ultrasound emissions and the fact that the volume was made from a stack of two dimensions images acquired by mechanically translating an ultrasonic array. Being able to acquire volume at high volume rates is thus crucial to perform real-time with a simple freehand compression and to avoid signal decorrelation coming from hand motions or natural motions such as the respiratory. In this study we developed for the first time, the 3-D ultrafast ultrasound quasi-static elastography method to estimate 3-D axial strain distribution in vivo in real-time. Acquisitions were performed with a 2-D matrix array probe of 256 elements (16-by-16 elements). 100 plane waves were emitted at a volume rate of 100 volumes/sec during a continuous motorized compression. 3-D B-mode volumes and 3-D B-mode cumulative axial strain volumes were estimated on a two-layers gelatin phantom with different stiffness, in a stiff inclusion embedded in a soft gelatin phantoms, in a soft inclusion embedded in a stiff gelatin phantom and in an ex vivo canine liver before and after a high focused ultrasound (HIFU) ablation. In each case, we were able to image in real-time and in entire volumes the axial strain distribution and were able to detect the differences between stiff and soft structures with a good sensitivity. In addition, we were able to detect the stiff lesion in the ex vivo canine liver after HIFU ablation. Finally, we demonstrated the in vivo feasibility of the method using freehand compression on the calf of a human volunteer and were able to retrieve 3-D axial strain volume in real-time depicting the differences in stiffness of the two muscles which compose the calf. The 3-D ultrafast ultrasound quasi-static elastography method could have a major clinical impact for the real-time detection in three dimensions of breast cancer in patients using a simple freehand scanning. PMID:27483021

  6. Shock Tube Test for Energy Absorbing Materials

    DTIC Science & Technology

    2013-09-13

    rigid and lightweight foam material with a closed-cell structure, and a very high strength-to-weight ratio (7). It is commonly used as a sandwich...including application in helmet liners (8). Zorbium™ is the viscoelastic polyurethane foam used in military helmet suspension system pads (9). 8...viscoelastic polyurethane foam which shows strain rate dependent behavior when compressed. This is displayed by the significant difference in response

  7. Mechanical Properties of Polymers Used for Anatomical Components in the Warrior Injury Assessment Manikin (WIAMan) Technology Demonstrator

    DTIC Science & Technology

    2016-07-01

    14. ABSTRACT The Warrior Injury Assessment Manikin was developed to provide an instrumented anthropomorphic test device (ATD) specifically...underbody blasts . To achieve that goal, the ATD used numerous polymeric materials for component parts that simulate human tissue and enable compliance in...strain rate, underbody blast , mechanical testing, tension, compression 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  8. Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Leonard, Andy D.; Hill, James C.

    1992-01-01

    Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.

  9. Procedures for characterizing an alloy and predicting cyclic life with the total strain version of Strainrange Partitioning

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.; Halford, Gary R.

    1989-01-01

    Procedures are presented for characterizing an alloy and predicting cyclic life for isothermal and thermomechanical fatigue conditions by using the total strain version of strainrange partitioning (TS-SRP). Numerical examples are given. Two independent alloy characteristics are deemed important: failure behavior, as reflected by the inelastic strainrange versus cyclic life relations; and flow behavior, as indicated by the cyclic stress-strain-time response (i.e., the constitutive behavior). Failure behavior is characterized by conducting creep-fatigue tests in the strain regime, wherein the testing times are reasonably short and the inelastic strains are large enough to be determined accurately. At large strainranges, stress-hold, strain-limited tests are preferred because a high rate of creep damage per cycle is inherent in this type of test. At small strainranges, strain-hold cycles are more appropriate. Flow behavior is characterized by conducting tests wherein the specimen is usually cycled far short of failure and the wave shape is appropriate for the duty cycle of interest. In characterizing an alloy pure fatigue, or PP, failure tests are conducted first. Then depending on the needs of the analyst a series of creep-fatigue tests are conducted. As many of the three generic SRP cycles are featured as are required to characterize the influence of creep on fatigue life (i.e., CP, PC, and CC cycles, respectively, for tensile creep only, compressive creep only, and both tensile and compressive creep). Any mean stress effects on life also must be determined and accounted for when determining the SRP inelastic strainrange versus life relations for cycles featuring creep. This is particularly true for small strainranges. The life relations thus are established for a theoretical zero mean stress condition.

  10. Melt fracture revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referredmore » to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.« less

  11. Characterization of the mechanical properties of a new grade of ultra high molecular weight polyethylene and modeling with the viscoplasticity based on overstress.

    PubMed

    Khan, Fazeel; Yeakle, Colin; Gomaa, Said

    2012-02-01

    Enhancements to the service life and performance of orthopedic implants used in total knee and hip replacement procedures can be achieved through optimization of design and the development of superior biocompatible polymeric materials. The introduction of a new or modified polymer must, naturally, be preceded by a rigorous testing program. This paper presents the assessment of the mechanical properties of a new filled grade of ultra high molecular weight polyethylene (UHMWPE) designated AOX(TM) and developed by DePuy Orthopaedics Inc. The deformation behavior was investigated through a series of tensile and compressive tests including strain rate sensitivity, creep, relaxation, and recovery. The polymer was found to exhibit rate-reversal behavior for certain loading histories: strain rate during creep with a compressive stress can be negative, positive, or change between the two during a test. Analogous behavior occurs during relaxation as well. This behavior lies beyond the realm of most numerical models used to computationally investigate and improve part geometry through finite element analysis of components. To address this shortcoming, the viscoplasticity theory based on overstress (VBO) has been suitably modified to capture these trends. VBO is a state variable based model in a differential formulation. Numerical simulation and prediction of all of the aforementioned tests, including good reproduction of the rate reversal behavior, is presented in this study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  13. Effect of Pre-Strain on the Fatigue Behavior of Extruded AZ31 Alloys

    NASA Astrophysics Data System (ADS)

    Wu, Yanjun

    2017-09-01

    An attempt is made to rationalize the effect of pre-strain history on fatigue behaviors of AZ31 magnesium alloy. Axial fatigue tests were conducted in the extruded and pre-compressioned AZ31 alloy under low cycle total strain control fatigue conditions. The pre-strain process influences the plastic deformation mechanism activated during fatigue deformation, especially during tensile loading, by enhancing the activity of detwinning mechanism. The low-cycle fatigue lifetime of extruded AZ31 alloy can be enhanced by the pre-compression process. And the hysteresis energy was successfully used to predict the low-cycle fatigue lifetime.

  14. Characterization of strain and its effects on ferromagnetic nickel nanocubes

    NASA Astrophysics Data System (ADS)

    Manna, Sohini; Kim, Jong Woo; Lubarda, Marko V.; Wingert, James; Harder, Ross; Spada, Fred; Lomakin, Vitaliy; Shpyrko, Oleg; Fullerton, Eric E.

    2017-12-01

    We report on the interplay of magnetic properties and intrinsic strain in ferromagnetic nickel nanocubes with cubic anisotropy. Via coherent x-ray diffraction imaging we observed compressive stress at the bottom surface of these cubes. The nanocubes with {100} facets described and imaged in this study were synthesized using a single-step CVD process. Micromagnetic simulations predict the presence of vortices at remanence in the absence of strain. The effects of strain resulting from the compressive stress on the magnetic response of the ferromagnetic cubes is investigated. We observe that measured intrinsic strain is too low to change the magnetic anisotropy of ferromagnetic cubes but topological behavior of magnetic vortices is sensitive to even this low range of strain.

  15. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography

    PubMed Central

    Kennedy, Kelsey M.; Chin, Lixin; McLaughlin, Robert A.; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.; Kennedy, Brendan F.

    2015-01-01

    Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues. PMID:26503225

  16. Biomechanical assessment and 3D finite element analysis of the treatment of tibial fractures using minimally invasive percutaneous plates

    PubMed Central

    Hu, Xin-Jia; Wang, Hua

    2017-01-01

    The aim of the present study was to investigate the biomechanical effects of varying the length of a limited contact-dynamic compression plate (LC-DCP) and the number and position of screws on middle tibial fractures, and to provide biomechanical evidence regarding minimally invasive plate osteosynthesis (MIPO). For biomechanical testing, 60 tibias from cadavers (age at mortality, 20–40 years) were used to create middle and diagonal fracture models without defects. Tibias were randomly grouped and analyzed by biomechanic and three-dimensional (3D) finite element analysis. The differences among LC-DCPs of different lengths (6-, 10- and 14-hole) with 6 screws, 14-hole LC-DCPs with different numbers of screws (6, 10 and 14), and 14-hole LC-DCPs with 6 screws at different positions with regard to mechanical characteristics, including compressing, torsion and bending, were examined. The 6-hole LC-DCP had greater vertical compression strain compared with the 10- and 14-hole LC-DCPs (P<0.01), and the 14-hole LC-DCP had greater lateral strain than the 6- and 10-hole LC-DCPs (P<0.01). Furthermore, significant differences in torque were observed among the LC-DPs of different lengths (P<0.01). For 14-hole LC-DCPs with different numbers of screws, no significant differences in vertical strain, lateral strain or torque were detected (P>0.05). However, plates with 14 screws had greater vertical strain compared with those fixed with 6 or 10 screws (P<0.01). For 4-hole LC-DCPs with screws at different positions, vertical compression strain values were lowest for plates with screws at positions 1, 4, 7, 8, 11 and 14 (P<0.01). The lateral strain values and vertical strain values for plates with screws at positions 1, 3, 6, 9, 12 and 14 were significantly lower compared with those at the other positions (P<0.01), and torque values were also low. Thus, the 14-hole LC-DCP was the most stable against vertical compression, torsion and bending, and the 6-hole LC-DCP was the least stable. However, the use of 14 screws with a 14-hole LC-DCP provided less stability against bending than did 6 or 10 screws. Furthermore, fixation with distributed screws, in which some screws were close to the fracture line, provided good stability against compression and torsion, while fixation with screws at the ends of the LC-DCP provided poor stability against bending, compressing and torsion. PMID:28781632

  17. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  18. Design, Optimization, and Evaluation of A1-2139 Compression Panel with Integral T-Stiffeners

    NASA Technical Reports Server (NTRS)

    Mulani, Sameer B.; Havens, David; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert

    2012-01-01

    A T-stiffened panel was designed and optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis and design tool named EBF3PanelOpt. The panel was designed for a compression loading configuration, a realistic load case for a typical aircraft skin-stiffened panel. The panel was integrally machined from 2139 aluminum alloy plate and was tested in compression. The panel was loaded beyond buckling and strains and out-of-plane displacements were extracted from 36 strain gages and one linear variable displacement transducer. A digital photogrammetric system was used to obtain full field displacements and strains on the smooth (unstiffened) side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis.

  19. Experimental and computational correlation of fracture parameters KIc, JIc, and GIc for unimodular and bimodular graphite components

    NASA Astrophysics Data System (ADS)

    Bhushan, Awani; Panda, S. K.

    2018-05-01

    The influence of bimodularity (different stress ∼ strain behaviour in tension and compression) on fracture behaviour of graphite specimens has been studied with fracture toughness (KIc), critical J-integral (JIc) and critical strain energy release rate (GIc) as the characterizing parameter. Bimodularity index (ratio of tensile Young's modulus to compression Young's modulus) of graphite specimens has been obtained from the normalized test data of tensile and compression experimentation. Single edge notch bend (SENB) testing of pre-cracked specimens from the same lot have been carried out as per ASTM standard D7779-11 to determine the peak load and critical fracture parameters KIc, GIc and JIc using digital image correlation technology of crack opening displacements. Weibull weakest link theory has been used to evaluate the mean peak load, Weibull modulus and goodness of fit employing two parameter least square method (LIN2), biased (MLE2-B) and unbiased (MLE2-U) maximum likelihood estimator. The stress dependent elasticity problem of three-dimensional crack progression behaviour for the bimodular graphite components has been solved as an iterative finite element procedure. The crack characterizing parameters critical stress intensity factor and critical strain energy release rate have been estimated with the help of Weibull distribution plot between peak loads versus cumulative probability of failure. Experimental and Computational fracture parameters have been compared qualitatively to describe the significance of bimodularity. The bimodular influence on fracture behaviour of SENB graphite has been reflected on the experimental evaluation of GIc values only, which has been found to be different from the calculated JIc values. Numerical evaluation of bimodular 3D J-integral value is found to be close to the GIc value whereas the unimodular 3D J-value is nearer to the JIc value. The significant difference between the unimodular JIc and bimodular GIc indicates that GIc should be considered as the standard fracture parameter for bimodular brittle specimens.

  20. A Linear Viscoelastic Model Calibration of Sylgard 184.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Kevin Nicholas; Brown, Judith Alice

    2017-04-01

    We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANLmore » data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.« less

  1. Numerical simulation of systems of shear bands in ductile metal with inclusions

    NASA Astrophysics Data System (ADS)

    Plohr, Jeeyeon

    2017-06-01

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation. This method employs the Generalized Method of Cells to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  2. Hot Deformation Behavior and Intrinsic Workability of Carbon Nanotube-Aluminum Reinforced ZA27 Composites

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Geng, Cong; Zhu, Yunke; Peng, Jinfeng; Xu, Junrui

    2017-04-01

    Using a controlled thermal simulator system, hybrid carbon nanotube-aluminum reinforced ZA27 composites were subjected to hot compression testing in the temperature range of 473-523 K with strain rates of 0.01-10 s-1. Based on experimental results, a developed-flow stress model was established using a constitutive equation coupled with strain to describe strain softening arising from dynamic recrystallization. The intrinsic workability was further investigated by constructing three-dimensional (3D) processing maps aided by optical observations of microstructures. The 3D processing maps were constructed based on a dynamic model of materials to delineate variations in the efficiency of power dissipation and flow instability domains. The instability domains exhibited adiabatic shear band and flow localization, which need to be prevented during hot processing. The recommended domain is predicated to be within the temperature range 550-590 K and strain rate range 0.01-0.35 s-1. In this state, the main softening mechanism is dynamic recrystallization. The results from processing maps agree well with the microstructure observations.

  3. Strain rate orientations near the Coso Geothermal Field

    NASA Astrophysics Data System (ADS)

    Ogasa, N. T.; Kaven, J. O.; Barbour, A. J.; von Huene, R.

    2016-12-01

    Many geothermal reservoirs derive their sustained capacity for heat exchange in large part due to continuous deformation of preexisting faults and fractures that permit permeability to be maintained. Similarly, enhanced geothermal systems rely on the creation of suitable permeability from fracture and faults networks to be viable. Stress measurements from boreholes or earthquake source mechanisms are commonly used to infer the tectonic conditions that drive deformation, but here we show that geodetic data can also be used. Specifically, we quantify variations in the horizontal strain rate tensor in the area surrounding the Coso Geothermal Field (CGF) by analyzing more than two decades of high accuracy differential GPS data from a network of 14 stations from the University of Nevada Reno Geodetic Laboratory. To handle offsets in the data, from equipment changes and coseismic deformation, we segment the data, perform a piecewise linear fit and take the average of each segment's strain rate to determine secular velocities at each station. With respect to North America, all stations tend to travel northwest at velocities ranging from 1 to 10 mm/yr. The nearest station to CGF shows anomalous motion compared to regional stations, which otherwise show a coherent increase in network velocity from the northeast to the southwest. We determine strain rates via linear approximation using GPS velocities in Cartesian reference frame due to the small area of our network. Principal strain rate components derived from this inversion show maximum extensional strain rates of 30 nanostrain/a occur at N87W with compressional strain rates of 37nanostrain/a at N3E. These results generally align with previous stress measurements from borehole breakouts, which indicate the least compressive horizontal principal stress is east-west oriented, and indicative of the basin and range tectonic setting. Our results suggest that the CGF represents an anomaly in the crustal deformation field, which may be influenced by the hydrothermal anomaly and possibly by the geothermal reservoir operations as well.

  4. Microstructure and strain-stress analysis of the dynamic strain aging in inconel 625 at high temperature

    NASA Astrophysics Data System (ADS)

    Maj, P.; Zdunek, J.; Mizera, J.; Kurzydlowski, K. J.; Sakowicz, B.; Kaminski, M.

    2017-01-01

    Serrated flow is a result of unstable plastic flow, which occurs during tensile and compression tests on some dilute alloys. This phenomenon is referred as the Portevin Le-Chatelier effect (PLC effect). The aim of this research was to investigate and analyze this phenomenon in Inconel 625 solution strengthened superalloy. The tested material was subjected to tensile tests carried out within the temperature range 200-700 °C, with three different strain rates: 0.002 1/s, 0.01/s, and 0.05 1/s and additional compression tests with high deformation speeds of 0.1, 1, and 10 1/s. The tensile strain curves were analyzed in terms of intensity and the observed patterns of serrations Using a modified stress drop method proposed by the authors, the activation energy was calculated with the assumption that the stress drops' distribution is a direct representation of an average solute atom's interaction with dislocations. Subsequently, two models, the standard vacancy diffusion Bilby-Cottrell model and the realistic cross-core diffusion mechanism proposed by Zhang and Curtin, were compared. The results obtained show that the second one agrees with the experimental data. Additional microstructure analysis was performed to identify microstructure elements that may be responsible for the PLC effect. Based on the results, the relationship between the intensity of the phenomenon and the conditions of the tests were determined.

  5. A Correction to the Stress-Strain Curve During Multistage Hot Deformation of 7150 Aluminum Alloy Using Instantaneous Friction Factors

    NASA Astrophysics Data System (ADS)

    Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui

    2018-04-01

    Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.

  6. Effect of Stress and Strain Path on Cavity Closure During Hot Working of an Alpha/Beta Titanium Alloy (Preprint)

    DTIC Science & Technology

    2007-07-01

    damage totally. 15. SUBJECT TERMS Ti- 6Al - 4V , strain, stress, cavity closure, hot working, titanium alloy 16. SECURITY CLASSIFICATION OF: 17...stress state on deformation and cavitation during hot working of Ti- 6Al - 4V was established via torsion-compression and reversed-torsion tests...strain path and stress state on deformation and cavitation during hot working of Ti- 6Al - 4V was established via torsion-compression and reversed

  7. Stress–strain state in an elastoplastic pipe taking into account the temperature and compressibility of the material

    NASA Astrophysics Data System (ADS)

    Gornostaev, K. K.; Kovalev, A. V.; Malygina, Y. V.

    2018-03-01

    In the article the authors have considered the problem of determining the stress-strain state of the elastoplastic pipe with the Mises’ condition in case of plane strain for the compressible material taking into account the temperature. The task was solved using the method of the small parameter. The expressions for the fields of stresses and displacements were received as well as the ratio of the radius of the elastoplastic boundary in the zero and first approximations.

  8. Ice Loads and Ship Response to Ice. Summer 1982/Winter 1983 Test Program

    DTIC Science & Technology

    1984-12-01

    approximately 100 ft2 (9.2 M 2) was instrumented to measure ice pressures by measuring compressive strains in the webs of transverse frames. The panel...compressive strains in the webs of transverse frames. The panel was divided into 60 sub-panel areas, six rows of,-ten frames, over which uniform pressures...the Web and the Selection of Gage Spacing . . .............. 18 4.3 Across the Frame Influence on Strain .......... 20 4.4 Construction of the Data

  9. Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain

    NASA Astrophysics Data System (ADS)

    Miao, Yaping; Huang, Yuhong; Bao, Hongwei; Xu, Kewei; Ma, Fei; Chu, Paul K.

    2018-05-01

    First-principles calculations are conducted to study the electronic and magnetic states of Mn-doped monolayer MoS2 under lattice strain. Mn-doped MoS2 exhibits half-metallic and ferromagnetic (FM) characteristics in which the majority spin channel exhibits metallic features but there is a bandgap in the minority spin channel. The FM state and the total magnetic moment of 1 µ B are always maintained for the larger supercells of monolayer MoS2 with only one doped Mn, no matter under tensile or compressive strain. Furthermore, the FM state will be enhanced by the tensile strain if two Mo atoms are substituted by Mn atoms in the monolayer MoS2. The magnetic moment increases up to 0.50 µ B per unit cell at a tensile strain of 7%. However, the Mn-doped MoS2 changes to metallic and antiferromagnetic under compressive strain. The spin polarization of Mn 3d orbitals disappears gradually with increasing compressive strain, and the superexchange interaction between Mn atoms increases gradually. The results suggest that the electronic and magnetic properties of Mn-doped monolayer MoS2 can be effectively modulated by strain engineering providing insight into application to electronic and spintronic devices.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hao; Yang, Fan; Pan, Ding

    Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. Furthermore, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistrymore » through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain.« less

  11. Creep of Bridgmanite Analog, Neighborite (NaMgF3), and Implications for Viscous Flow in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Mecklenburgh, J.; Mariani, E.; Wheeler, J.

    2016-12-01

    The rheology of the lower mantle directly influences mantle viscosity and strength and therefore affects a number of geophysical processes including mantle mixing, formation of mantle plumes and hotspots, slab subduction and stagnation, and plate motion. Experimental flow laws of lower mantle minerals, which quantify rheology of the lower mantle, are needed to help resolve discrepancies in estimates of lower mantle viscosity, better constrain geophysical models, and answer a number of outstanding questions such as, why slabs descend to different depths, and why the lower mantle is mostly isotropic despite large strains predicted by convection models. However, we lack natural lower mantle samples from which to infer deformation history. Furthermore, deformation experiments at lower mantle pressures and temperatures are challenging, and strain rates and stress cannot always be precisely controlled or measured. As a valuable alternative we have synthesized and deformed neighborite (NaMgF3), a low pressure analog of bridgmanite (MgSiO3), the most abundant mineral in the lower mantle and the Earth. Neighborite was deformed at 200 MPa confining pressure and between 500-700°C in compression using a fluid-medium deformation apparatus, and in torsion using a Patterson rig. In these experiments strain rate and stress can be accurately controlled and measured, and flow laws reliably determined. In addition we have recovered samples and examined deformation microstructures in a scanning electron microscope using electron backscatter diffraction. Preliminary mechanical results show a switch from linear-viscous deformation at lower stress (<50 MPa) to power law creep accommodated by grain boundary sliding at higher stress (>50 MPa). We also see strain weakening. Microstructures of samples deformed at a range of stress steps show grain boundary migration recrystallization (likely from lower stress) and crystallographic preferred orientation with poles to (100) planes parallel to compression (likely from higher stress). Further work is in progress to obtain microstructures that can be univocally associated with the observed mechanical behavior. We compare our results to those of other bridgmanite analogs and bridgmanite itself and extrapolate to geologic strain rates.

  12. Influence of Rare-Earth Additions on Properties of Titanium Alloys - Effects of Yttrium and Erbium Additions on Ti-8Al and Ti-10Al Alloy.

    DTIC Science & Technology

    1980-08-31

    loop generated during the alternate tension-compression fatigue testing of Ti-8A1 alloy at 6000C at a plastic strain amplitude of * 0.5Z...Dependence of peak stress on the number of cycles in the longitudinal orientation of Ti-lOAl-RE alloys deformed in alternate tension-compression at...of cycles in the transverse orientation of Ti-OAl-RE alloys deformed in alternate tension- A compression fatigue at 500 0C at a plastic strain

  13. Mechanisms of High-Temperature Fatigue Failure in Alloy 800H

    NASA Technical Reports Server (NTRS)

    BhanuSankaraRao, K.; Schuster, H.; Halford, G. R.

    1996-01-01

    The damage mechanisms influencing the axial strain-controlled Low-Cycle Fatigue (LCF) behavior of alloy 800H at 850 C have been evaluated under conditions of equal tension/compression ramp rates (Fast-Fast (F-F): 4 X 10(sup -3)/s and Slow-Slow (S-S): 4 X 10(sup -5)/s) and asymmetrical ramp rates (Fast-Slow (F-S): 4 x 10(sup -3)/s / 4 X 10(sup -5/s and Slow-Fast (S-F): 4 X 10(sup -5) / 4 X 10(sup -3)/s) in tension and compression. The fatigue life, cyclic stress response, and fracture modes were significantly influenced by the waveform shape. The fatigue lives displayed by different loading conditions were in the following order: F-F greater than S-S greater than F-S greater than S-F. The fracture mode was dictated by the ramp rate adopted in the tensile direction. The fast ramp rate in the tensile direction led to the occurrence of transgranular crack initiation and propagation, whereas the slow ramp rate caused intergranular initiation and propagation. The time-dependent processes and their synergistic interactions, which were at the basis of observed changes in cyclic stress response and fatigue life, were identified. Oxidation, creep damage, dynamic strain aging, massive carbide precipitation, time-dependent creep deformation, and deformation ratcheting were among the several factors influencing cyclic life. Irrespective of the loading condition, the largest effect on life was exerted by oxidation processes. Deformation ratcheting had its greatest influence on life under asymmetrical loading conditions. Creep damage accumulated the greatest amount during the slow tensile ramp under S-F conditions.

  14. Effects of grain size on the quasi-static mechanical properties of ultrafine-grained and nanocrystalline tantalum

    NASA Astrophysics Data System (ADS)

    Ligda, Jonathan Paul

    The increase in strength due to the Hall-Petch effect, reduced strain hardening capacity, a reduced ductility, and changes in deformation mechanisms are all effects of reducing grain size (d) into the ultrafine-grained (UFG, 100 < d < 1000 nm) and nanocrystalline (NC, d<100 nm) state. However, most of the studies on the mechanical behavior of UFG/NC metals have been on face-centered cubic (FCC) metals. Of the few reports on UFG/NC body-centered cubic (BCC) metals, the interest is related to their increase in strength and reduced strain rate sensitivity. This combination increases their propensity to deform via adiabatic shear bands (ASBs) at high strain rates, which is a desired response for materials being considered as a possible replacement for depleted uranium in kinetic energy penetrators. However, an ideal replacement material must also plastically deform in tension under quasi-static rates to survive initial launch conditions. This raises the question: if the material forms ASBs at dynamic rates, will it also form shear bands at quasi-static isothermal rates? As well as, is there a specific grain size for a material that will plastically deform in tension at quasi-static rates but form adiabatic shear bands at dynamic rates? Using high pressure torsion, a polycrystalline bulk tantalum disk was refined into the UFG/NC regime. Using microscale mechanical testing techniques, such as nanoindentation, microcompression, and microtension, it is possible to isolate locations with a homogeneous grain size within the disk. Pillars are compressed using a nanoindenter with a flat punch tip, while "dog-bone" specimens were pulled in tension using a custom built in-situ tension stage within a scanning electron microscope (SEM). The observed mechanical behavior is related to the microstructure by using transmission electron microscopy (TEM) on the as-processed material and tested specimens. Synchrotron X-ray based texture analysis was also conducted on the disk to determine if any changes in the deformation texture occur during HPT processing. Nanoindentation data shows a trend of increasing hardness with radial position that saturates at 4.5 GPa near the edge, and decreasing strain rate sensitivity. The micromechanical tests show two distinct regions on a processed circular disk, a non-shearing region and a shearing region. Microcompression/tension tests in the region of 1.0< X < 5.3 mm (X is the radial distance from the disk center) show limited strain hardening, homogeneous plastic deformation, and tensile elongation that varies from 0.3--4.0%. Tests performed at X > 5.3 mm show a drastic switch to localized plastic deformation in the form of shear bands, with evidence of grain rotation as the active deformation mechanism, and a measureable tension-compression asymmetry. Grains are elongated at all locations, and while the minimum diameters are consistent between regions, the elongated diameter in the shearing region is reduced. The transition to localized deformation is attributed to this reduced dimension. A larger percentage of grains in the shearing region have an elongated diameter below the critical grain size necessary to activate the grain rotation mechanism. The tension-compression asymmetry is due to an increased dependence on the normal stress for yielding, meaning NC Ta would follow a Mohr-Coulomb criterion over the traditional Tresca or von Mises.

  15. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite

    NASA Astrophysics Data System (ADS)

    Teomete, Egemen

    2016-07-01

    Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.

  16. Modelling deformation of partially melted rock using a poroviscoelastic rheology with dynamic power law viscosity

    NASA Astrophysics Data System (ADS)

    Simakin, A.; Ghassemi, A.

    2005-03-01

    A poroviscoelastic constitutive model is developed and used to study coupled rock deformation and fluid flow. The model allows the relaxation of both shear and symmetric components of the effective stress. Experimental results are usually interpreted in terms of the power law viscous material. However, in this work the effect of strain damage on viscosity is considered by treating the viscosity as a dynamic time-dependent parameter that varies proportionally to the second invariant of the strain rate. Healing is also taken into account so that the dynamic power law viscosity has a constant asymptotic at a given strain rate. The theoretical model is implemented in a finite element (FE) formulation that couples fluid flow and mechanical equilibrium equations. The FE method is applied to numerically study the triaxial compression of partially melted rocks at elevated PT conditions. It is found that the numerically calculated stress-strain curves demonstrate maxima similar to those observed in laboratory experiments. Also, the computed pattern of melt redistribution and strain localization at the contact between the rock sample and a stiff spacer is qualitatively similar to the experimental observations. The results also indicate that the matrix sensitivity to damage affects the scale of strain localization and melt redistribution.

  17. Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining

    NASA Astrophysics Data System (ADS)

    Momeni, Amir; Kazemi, Shahab; Bahrani, Ali

    2013-10-01

    The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100°C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-Hollomon parameter ( Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6.×1015 (ln Z=35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.

  18. Synthesis of an Al-Mn-Based Alloy Containing In Situ-Formed Quasicrystals and Evaluation of Its Mechanical and Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Naglič, Iztok; Samardžija, Zoran; Delijić, Kemal; Kobe, Spomenka; Leskovar, Blaž; Markoli, Boštjan

    2018-05-01

    An Al-Mn alloy with additions of copper, magnesium, and silicon was prepared and cast into a copper mold. It contains in situ-formed icosahedral quasicrystals (iQCs), as confirmed by electron backscatter diffraction. The aim of this work is to present the mechanical and corrosion properties of this alloy and compare its properties with some conventional commercial materials. The compressive strength and compressive yield strength were 751 MPa and 377 MPa, while the compressive fracture strain was 19%. It was observed that intensive shearing caused the final fracture of the specimens and the fractured iQC dendrites still showed cohesion with the α-Al matrix. The polarization resistance and corrosion rate of the artificially aged alloy were 7.30 kΩ and 1.2 μm/year. The evaluated properties are comparable to conventional, discontinuously reinforced aluminum metal-matrix composites and structural wrought aluminum alloys.

  19. Powder and compaction characteristics of pregelatinized starches.

    PubMed

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders.

  20. Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds

    NASA Astrophysics Data System (ADS)

    Lafata, M. A.; Rettberg, L. H.; He, M. Y.; Pollock, T. M.

    2018-01-01

    The mechanism of oxidation-assisted growth of surface cracks during fatigue with compressive holds has been studied experimentally and via a model that describes the role of oxide and substrate properties. The creep-based finite element model has been employed to examine the role of material parameters in the damage evolution in a Ni-base single-crystal superalloy René N5. Low-cycle fatigue experiments with compressive holds were conducted at 1255 K and 1366 K (982 °C and 1093 °C). Interrupted and failed specimens were characterized for crack depth and spacing, oxide thickness, and microstructural evolution. Comparison of experimental to modeled hysteresis loops indicates that transient creep drives the macroscopic stress-strain response. Crack penetration rates are strongly influenced by growth stresses in the oxide, structural evolution in the substrate, and the development of γ ^' } denuded zones. Implications for design of alloys resistant to this mode of degradation are discussed.

Top