Sample records for strain reducing layer

  1. Effect of Elastic Strain Fluctuation on Atomic Layer Growth of Epitaxial Silicide in Si Nanowires by Point Contact Reactions.

    PubMed

    Chou, Yi-Chia; Tang, Wei; Chiou, Chien-Jyun; Chen, Kai; Minor, Andrew M; Tu, K N

    2015-06-10

    Effects of strain impact a range of applications involving mobility change in field-effect-transistors. We report the effect of strain fluctuation on epitaxial growth of NiSi2 in a Si nanowire via point contact and atomic layer reactions, and we discuss the thermodynamic, kinetic, and mechanical implications. The generation and relaxation of strain shown by in situ TEM is periodic and in synchronization with the atomic layer reaction. The Si lattice at the epitaxial interface is under tensile strain, which enables a high solubility of supersaturated interstitial Ni atoms for homogeneous nucleation of an epitaxial atomic layer of the disilicide phase. The tensile strain is reduced locally during the incubation period of nucleation by the dissolution of supersaturated Ni atoms in the Si lattice but the strained-Si state returns once the atomic layer epitaxial growth of NiSi2 occurs by consuming the supersaturated Ni.

  2. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    PubMed

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, S.; Ghosh, K.; Jejurikar, S.

    Graphical abstract: - Highlights: • Investigation of ground state energy in single and multi-layered InAs/GaAs QD. • Strain reducing layer (InGaAs) prevents the formation of non-radiative. • Strain reducing layer (InGaAs) is responsible for high activation energy. • Significant deviation from the Varshni model, E(T) = E − αT{sup 2}/T + β. - Abstract: Vertically coupled, multilayered InAs/GaAs quantum dots (QDs) covered with thin InGaAs strain-reducing layers (SRLs) are in demand for various technological applications. We investigated low temperature photoluminescence of single and multilayered structures in which the SRL thickness was varied. The SRL layer was responsible for high activationmore » energies. Deviation of experimental data from the Varshni (1967) model, E(T) = E − ∞ T{sup 2}/T + β, suggests that the InAs-layered QDs have properties different from those in bulk material. Anomalous ground-state peak linewidths (FWHM), especially for annealed multilayer structures, were observed. A ground-state peak blue-shift with a broadened linewidth was also observed. Loss of intensity was detected in samples annealed at 800 °C. Presence of SRLs prevents formation of non-radiative centers under high temperature annealing. The results indicate the potential importance of such structures in optoelectronic applications.« less

  4. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

    2017-04-01

    We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

  5. Strained-layer epitaxy of germanium-silicon alloys

    NASA Astrophysics Data System (ADS)

    Bean, J. C.

    1985-10-01

    Strained-layer epitaxy is presented as a developing technique for combining Si with other materials in order to obtain semiconductors with enhanced electronic properties. The method involves applying layers sufficiently thin so that the atoms deposited match the bonding configurations of the substrate crystal. When deposited on Si, a four-fold bonding pattern is retained, with a lowered interfacial energy and augmented stored strain energy in the epitaxial layer. The main problem which remains is building an epitaxial layer thick enough to yield desired epitaxial properties while avoiding a reversion to an unstrained structure. The application of a Ge layer to Si using MBE is described, along with the formation of heterojunction multi-layer superlattices, which can reduce the dislocation effects in some homojunctions. The technique shows promise for developing materials of use as bipolar transistors, optical detectors and fiber optic transmission devices.

  6. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    Le Pourhiet, L.; Huet, B.; Labrousse, L.; Yao, K.; Agard, P.; Jolivet, L.

    2013-04-01

    We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr-Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes extremely penetrative but the strength cannot drop since the shear zone has a finite thickness.

  7. Implementation of ZnO/ZnMgO strained-layer superlattice for ZnO heteroepitaxial growth on sapphire

    NASA Astrophysics Data System (ADS)

    Petukhov, Vladimir; Bakin, Andrey; Tsiaoussis, Ioannis; Rothman, Johan; Ivanov, Sergey; Stoemenos, John; Waag, Andreas

    2011-05-01

    The main challenge in fabrication of ZnO-based devices is the absence of reliable p-type material. This is mostly caused by insufficient crystalline quality of the material and not well-enough-developed native point defect control of ZnO. At present high-quality ZnO wafers are still expensive and ZnO heteroepitaxial layers on sapphire are the most reasonable alternative to homoepitaxial layers. But it is still necessary to improve the crystalline quality of the heteroepitaxial layers. One of the approaches to reduce defect density in heteroepitaxial layers is to introduce a strained-layer superlattice (SL) that could stop dislocation propagation from the substrate-layer interface. In the present paper we have employed fifteen periods of a highly strained SL structure. The structure was grown on a conventional double buffer layer comprising of high-temperature MgO/low-temperature ZnO on sapphire. The influence of the SLs on the properties of the heteroepitaxial ZnO layers is investigated. Electrical measurements of the structure with SL revealed very high values of the carrier mobility up to 210 cm2/Vs at room temperature. Structural characterization of the obtained samples showed that the dislocation density in the following ZnO layer was not reduced. The high mobility signal appears to come from the SL structure or the SL/ZnO interface.

  8. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  9. Myocardial layer-specific analysis in patients with heterozygous familial hypercholesterolemia using speckle tracking echocardiography.

    PubMed

    Leng, Zhaoting; Li, Rongjuan; Li, Yijia; Wang, Lvya; Wang, Yueli; Yang, Ya

    2017-03-01

    Familial hypercholesterolemia (FH) is the most common and serious monogenic disorder of lipid metabolism, causing premature coronary heart disease (CHD) due to accelerated atherosclerosis from birth, and the study of left ventricular (LV) function of this disease is seldom. The purpose of this study was to explore the value of layer-specific strain on assessing the early damage of LV function in asymptomatic and left ventricular ejection fraction (LVEF) well-preserved patients with heterozygous FH (HeFH). A total of 49 patients aged 38.7±8.7 diagnosed with heterozygous familial hypercholesterolemia and who had undergone transthoracic echocardiography from 2010 to 2016 were included in this study. A total 32 healthy volunteers aged 35.6±10.3 were included as control group. Longitudinal and circumferential strains of the endocardium, myocardium, and epicardium (LSendo, LSmyo, and LSepi and CSendo, CSmyo, and CSepi) were obtained by a software enabling the analysis of strains in three myocardial layers. In longitudinal strain (LS), the LS of endocardium (LSendo) and the LS of myocardium (LSmyo) are significantly reduced in patients with HeFH (P<.001 in both). In circumferential strain (CS), only the CS of endocardium (CSendo) is significantly reduced (P<.001). The degree of reduction in strain is positively correlated with the TC and LDLC. Layer-specific evaluation of the left ventricle has great value in evaluating early impairment of LV in patients with FH. And this relatively novel technique may made it possible to help us understand the process of LV impairment in patients with FH better, thus preventing further damage. © 2017, Wiley Periodicals, Inc.

  10. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis.

    PubMed

    Golowczyc, M A; Mobili, P; Garrote, G L; Abraham, A G; De Antoni, G L

    2007-09-30

    Eight Lactobacillus kefir strains isolated from different kefir grains were tested for their ability to antagonize Salmonella enterica serovar Enteritidis (Salmonella enteritidis) interaction with epithelial cells. L. kefir surface properties such as autoaggregation and coaggregation with Salmonella and adhesion to Caco-2/TC-7 cells were evaluated. L. kefir strains showed significantly different adhesion capacities, six strains were able to autoaggregate and four strains coaggregated with Salmonella. Coincubation of Salmonella with coaggregating L. kefir strains significantly decreased its capacity to adhere to and to invade Caco-2/TC-7 cells. This was not observed with non coaggregating L. kefir strains. Spent culture supernatants of L. kefir contain significant amounts of S-layer proteins. Salmonella pretreated with spent culture supernatants (pH 4.5-4.7) from all tested L. kefir strains showed a significant decrease in association and invasion to Caco-2/TC-7 cells. Artificially acidified MRS containing lactic acid to a final concentration and pH equivalent to lactobacilli spent culture supernatants did not show any protective action. Pretreatment of this pathogen with spent culture supernatants reduced microvilli disorganization produced by Salmonella. In addition, Salmonella pretreated with S-layer proteins extracted from coaggregating and non coaggregating L. kefir strains were unable to invade Caco-2/TC-7 cells. After treatment, L. kefir S-layer protein was detected associated with Salmonella, suggesting a protective role of this protein on association and invasion.

  11. Multicolor Nanostructured High Efficiency Photovoltaic Devices

    DTIC Science & Technology

    2007-06-30

    the surface of strained buffer layer starts to form some nanoholes and nanogrooves. The depth of these nanoholes and nanogrooves is more than 3 nm...This indicates that the nanoholes and nanogrooves are formed not only just in the top GaAs (5 ML) layer, but also deep in the strained GaAsSb buffer...temperature during the InAs growth. As the InAs growth temperature decreases, the density of the nanoholes and nanogrooves is significantly reduced

  12. Spin-valve giant magneto-resistance film with magnetostrictive FeSiB amorphous layer and its application to strain sensors

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Yamamoto, N.; Kato, T.; Oshima, D.; Iwata, S.

    2018-03-01

    Giant magneto-resistance (GMR) spin-valve films with an FeSiB/CoFeB free layer were fabricated to detect applied strain in a GMR device. The magnetostriction constant of FeSiB was experimentally determined to have 32 ppm, which was one order of magnitude larger than that of CoFeB. In order to detect the strain sensitively and robustly against magnetic field fluctuation, the magnetic field modulation technique was applied to the GMR device. It was confirmed that the output voltage of the GMR device depends on the strain, and the gauge factor K = 46 was obtained by adjusting the applied DC field intensity and direction. We carried out the simulation based on a macro-spin model assuming uniaxial anisotropy, interlayer coupling between the free and pin layers, strain-induced anisotropy, and Zeeman energy, and succeeded in reproducing the experimental results. The simulation predicts that improving the magnetic properties of GMR films, especially reducing interlayer coupling, will be effective for increasing the output, i.e., the gauge factor, of the GMR strain sensors.

  13. Avalanche atomic switching in strain engineered Sb2Te3-GeTe interfacial phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Behera, Jitendra K.; Lv, Shilong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E.

    2017-09-01

    By confining phase transitions to the nanoscale interface between two different crystals, interfacial phase change memory heterostructures represent the state of the art for energy efficient data storage. We present the effect of strain engineering on the electrical switching performance of the {{Sb}}2{{Te}}3-GeTe superlattice van der Waals devices. Multiple Ge atoms switching through a two-dimensional Te layer reduces the activation barrier for further atoms to switch; an effect that can be enhanced by biaxial strain. The out-of-plane phonon mode of the GeTe crystal remains active in the superlattice heterostructures. The large in-plane biaxial strain imposed by the {{Sb}}2{{Te}}3 layers on the GeTe layers substantially improves the switching speed, reset energy, and cyclability of the superlattice memory devices. Moreover, carefully controlling residual stress in the layers of {{Sb}}2{{Te}}3-GeTe interfacial phase change memories provides a new degree of freedom to design the properties of functional superlattice structures for memory and photonics applications.

  14. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas

    NASA Astrophysics Data System (ADS)

    Margetis, J.; Mosleh, A.; Al-Kabi, S.; Ghetmiri, S. A.; Du, W.; Dou, W.; Benamara, M.; Li, B.; Mortazavi, M.; Naseem, H. A.; Yu, S.-Q.; Tolle, J.

    2017-04-01

    High quality, thick (up to 1.1 μm), strain relaxed GeSn alloys were grown on Ge-buffered Si (1 0 0) in an ASM Epsilon® chemical vapor deposition system using SnCl4 and low-cost commercial GeH4 precursors. The significance of surface chemistry in regards to growth rate and Sn-incorporation is discussed by comparing growth kinetics data in H2 and N2 carrier gas. The role of carrier gas is also explored in the suppression of Sn surface segregation and evolution of layer composition and strain profiles via secondary ion mass spectrometry and X-ray diffraction. Transmission electron microscopy revealed the spontaneous compositional splitting and formation of a thin intermediate layer in which dislocations are pinned. This intermediate layer enables the growth of a thick, strain relaxed, and defect-free epitaxial layer on its top. Last, we present photoluminescence results which indicate that both N2 and H2 growth methods produce optoelectronic device quality material.

  15. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias

    The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.

  16. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics.

    PubMed

    Li, Shuang; Su, Yewang; Li, Rui

    2016-06-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.

  17. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics

    PubMed Central

    Li, Shuang; Li, Rui

    2016-01-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics. PMID:27436977

  18. Effect of strain on the electron effective mobility in biaxially strained silicon inversion layers: An experimental and theoretical analysis via atomic force microscopy measurements and Kubo-Greenwood mobility calculations

    NASA Astrophysics Data System (ADS)

    Bonno, Olivier; Barraud, Sylvain; Mariolle, Denis; Andrieu, François

    2008-03-01

    Recently, in order to explain the long-channel electron effective mobility at a high sheet carrier density in strained silicon channel transistors, it has been suggested by [M. V. Fischetti, F. Gamiz, and W. Hansch, J. Appl. Phys. 92, 7230 (2002)] that biaxial tensile strain should smooth the Si/SiO2 interface. To address this topic, the roughness properties of biaxial strained silicon-on-insulator (s-SOI) films are investigated by means of atomic force microscopy. Through in-depth statistical analysis of the digitalized surface profiles, the roughness parameters are extracted for unstrained and strained SOI films, with 0.8% biaxial tensile strain. Especially, it is found that strain significantly reduces the roughness amplitude. Then, mobility calculations in SOI and s-SOI inversion layers are performed in the framework of the Kubo-Greenwood formalism. The model accounts for the main scattering mechanisms that are dominant in the high electron density range, namely phonon and surface roughness. Special attention has been paid to the modeling of the latter by accounting for all the contributions of the potential which arise from the deformed rough interface, and by using a multisubband wavelength-dependent screening model. This model is then applied to study the influence of the surface morphology on the mobility in s-SOI inversion layers. In this context, the mobility gain between s-SOI and unstrained SOI layers is found to agree significantly better with experimental data if the strain-induced decrease of the roughness amplitude is taken into account.

  19. Skin aging as a mechanical phenomenon: The main weak links

    PubMed Central

    Kruglikov, Ilja L.; Scherer, Philipp E.

    2018-01-01

    From a mechanical point of view, human skin appears as a layered composite containing the stiff thin cover layer presented by the stratum corneum, below which are the more compliant layers of viable epidermis and dermis and further below the much more compliant adjacent layer of subcutaneous white adipose tissue (sWAT). Upon exposure to a strain, such a multi-layer system demonstrates structural instabilities in its stiffer layers, which in its simplest form is the wrinkling. These instabilities appear hierarchically when the mechanical strain in the skin exceeds some critical values. Their appearance is mainly dependent on the mismatch in mechanical properties between adjacent skin layers or between the skin and sWAT, on the adhesive strength and thickness ratios between the layers, on their bending and tensile stiffness as well as on the value of the stress existing in single layers. Gradual reduction of elastic fibers in aging significantly reduces the skin’s ability to bend, prompting an up to 4-fold reduction of its stability against wrinkling, thereby explaining the role of these fibers in skin aging. While chronological and extrinsic aging differently modify these parameters, they lead to the same end result, reducing the critical strain required for the onset of instabilities. Comparing of mechanical properties of the skin presented as a bi-, tri- or tetra-layer structure demonstrates the particular importance of the papillary dermis in skin aging and provides the arguments to consider the undulations on the dermal-epidermal and dermal-sWAT interfaces as the result of mechanical bifurcation, leading to structural instabilities inside of the skin. According to this model, anti-aging strategies should focus not as much on the reinforcement of the dermis, but rather aim to treat the elastic mismatch between different adjacent layers in the skin and sWAT as well as the adhesion between these layers.

  20. Residual strain effects on large aspect ratio micro-diaphragms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hijab, R.S.; Muller, R.S.

    1988-09-30

    Highly compliant, large aspect ratio diaphragms for use in low-pressure, capacitive-readout sensors, have been investigated. In such structures, unrelaxed strain in the diaphragms can radically alter mechanical behavior. Although strain can be reduced by thermal annealing, it usually reaches a remnant irreducible minimum. The purpose of this paper is to describe techniques that result in low-strain materials and that reduce the effects of residual strain in micro-diaphragms. Square polysilicon grilles and perforated diaphragms made from both single and double polysilicon layers and from single-crystal silicon, with aspect ratios (side/thickness) of up to 1000 and very low compressive strain ({approx}6 {times}more » 10{sup {minus}5}), have been fabricated. Strain reduction is achieved by combining thermal annealing with one of two mechanical design techniques. The first technique makes use of a series of cantilever beams to support the diaphragms. In a second procedure, corrugated surfaces in thinned membranes of single-crystal silicon are formed. The corrugations result from the use of boron doping and anisotropic silicon etching. In both of these techniques to produce low-strain diaphragms, an etched cavity is purposely formed in the substrate crystal below them. Only one-sided processing of wafers is employed, thus aiding reproducibility and providing ease of compatibility with an MOS process. A fast-etching sacrificial-support layer (phosphorus-doped CVD oxide) is used. 4 refs., 10 figs.« less

  1. Subband Structure and Effective Mass in the Inversion Layer of a Strain Si-Based Alloy P-Type MOSFET.

    PubMed

    Chen, Kuan-Ting; Fan, Jun Wei; Chang, Shu-Tong; Lin, Chung-Yi

    2015-03-01

    In this paper, the subband structure and effective mass of an Si-based alloy inversion layer in a PMOSFET are studied theoretically. The strain condition considered in our calculations is the intrinsic strain resulting from growth of the silicon-carbon alloy on a (001) Si substrate and mechanical uniaxial stress. The quantum confinement effect resulting from the vertically effective electric field was incorporated into the k · p calculation. The distinct effective mass, such as the quantization effective mass and the density-of-states (DOS) effective mass, as well as the subband structure of the silicon-carbon alloy inversion layer for a PMOSFET under substrate strain and various effective electric field strengths, were all investigated. Ore results show that subband structure of relaxed silicon-carbon alloys with low carbon content are almost the same as silicon. We find that an external stress applied parallel to the channel direction can efficiently reduce the effective mass along the channel direction, thus producing hole mobility enhancement.

  2. Behavior of fiber reinforced metal laminates at high strain rate

    NASA Astrophysics Data System (ADS)

    Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo

    2018-05-01

    Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.

  3. Strain-balanced InAs/GaSb type-II superlattice structures and photodiodes grown on InAs substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D.; Zuo, Daniel; Kesler, Benjamin; Chuang, Shun-Lien; Hu, Hefei; Kim, Kyou-Hyun; Ting Lu, Yen; Hsieh, K. C.; Zuo, Jian-Min

    2011-07-01

    We propose and demonstrate strain-balanced InAs/GaSb type-II superlattices (T2SLs) grown on InAs substrates employing GaAs-like interfacial (IF) layers by metalorganic chemical vapor deposition (MOCVD) for effective strain management, simplified growth scheme, improved materials crystalline quality, and reduced substrate absorption. The in-plane compressive strain from the GaSb layers in the T2SLs on the InAs was completely balanced by the GaAs-like IF layers formed by controlled precursor carry-over and anion exchange effects, avoiding the use of complicated IF layers and precursor switching schemes that were used for the MOCVD growth of T2SLs on GaSb. An infrared (IR) p-i-n photodiode structure with 320-period InAs/GaSb T2SLs on InAs was grown and the fabricated devices show improved performance characteristics with a peak responsivity of ˜1.9 A/W and a detectivity of ˜6.78 × 109 Jones at 8 μm at 78 K. In addition, the InAs buffer layer and substrate show a lower IR absorption coefficient than GaSb substrates in most of the mid- and long-IR spectral range.

  4. Metal-insulator transition in CaVO3 thin films: Interplay between epitaxial strain, dimensional confinement, and surface effects

    NASA Astrophysics Data System (ADS)

    Beck, Sophie; Sclauzero, Gabriele; Chopra, Uday; Ederer, Claude

    2018-02-01

    We use density functional theory plus dynamical mean-field theory (DFT+DMFT) to study multiple control parameters for tuning the metal-insulator transition (MIT) in CaVO3 thin films. We focus on separating the effects resulting from substrate-induced epitaxial strain from those related to the reduced thickness of the film. We show that tensile epitaxial strain of around 3%-4% is sufficient to induce a transition to a paramagnetic Mott-insulating phase. This corresponds to the level of strain that could be achieved on a SrTiO3 substrate. Using free-standing slab models, we then demonstrate that reduced film thickness can also cause a MIT in CaVO3, however, only for thicknesses of less than 4 perovskite units. Our calculations indicate that the MIT in such ultrathin films results mainly from a surface-induced crystal-field splitting between the t2 g orbitals, favoring the formation of an orbitally polarized Mott insulator. This surface-induced crystal-field splitting is of the same type as the one resulting from tensile epitaxial strain, and thus the two effects can also cooperate. Furthermore, our calculations confirm an enhancement of correlation effects at the film surface, resulting in a reduced quasiparticle spectral weight in the outermost layer, whereas bulklike properties are recovered within only a few layers away from the surface.

  5. Strained-layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K [Albuquerque, NM; Carroll, Malcolm S [Albuquerque, NM; Gin, Aaron [Albuquerque, NM; Marsh, Phillip F [Lowell, MA; Young, Erik W [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2010-07-13

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  6. Strained layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J

    2012-10-23

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  7. Graphene-based stretchable and transparent moisture barrier

    NASA Astrophysics Data System (ADS)

    Won, Sejeong; Van Lam, Do; Lee, Jin Young; Jung, Hyun-June; Hur, Min; Kim, Kwang-Seop; Lee, Hak-Joo; Kim, Jae-Hyun

    2018-03-01

    We propose an alumina-deposited double-layer graphene (2LG) as a transparent, scalable, and stretchable barrier against moisture; this barrier is indispensable for foldable or stretchable organic displays and electronics. Both the barrier property and stretchability were significantly enhanced through the introduction of 2LG between alumina and a polymeric substrate. 2LG with negligible polymeric residues was coated on the polymeric substrate via a scalable dry transfer method in a roll-to-roll manner; an alumina layer was deposited on the graphene via atomic layer deposition. The effect of the graphene layer on crack generation in the alumina layer was systematically studied under external strain using an in situ micro-tensile tester, and correlations between the deformation-induced defects and water vapor transmission rate were quantitatively analyzed. The enhanced stretchability of alumina-deposited 2LG originated from the interlayer sliding between the graphene layers, which resulted in the crack density of the alumina layer being reduced under external strain.

  8. A Novel Adjustable Concept for Permeable Gas/Vapor Protective Clothing: Balancing Protection and Thermal Strain.

    PubMed

    Bogerd, Cornelis Peter; Langenberg, Johannes Pieter; DenHartog, Emiel A

    2018-02-13

    Armed forces typically have personal protective clothing (PPC) in place to offer protection against chemical, biological, radiological and nuclear (CBRN) agents. The regular soldier is equipped with permeable CBRN-PPC. However, depending on the operational task, these PPCs pose too much thermal strain to the wearer, which results in a higher risk of uncompensable heat stress. This study investigates the possibilities of adjustable CBRN-PPC, consisting of different layers that can be worn separately or in combination with each other. This novel concept aims to achieve optimization between protection and thermal strain during operations. Two CBRN-PPC (protective) layers were obtained from two separate manufacturers: (i) a next-to-skin (NTS) and (ii) a low-burden battle dress uniform (protective BDU). In addition to these layers, a standard (non-CBRN protective) BDU (sBDU) was also made available. The effect of combining clothing layers on the levels of protection were investigated with a Man-In-Simulant Test. Finally, a mechanistic numerical model was employed to give insight into the thermal burden of the evaluated CBRN-PPC concepts. Combining layers results in substantially higher protection that is more than the sum of the individual layers. Reducing the airflow on the protective layer closest to the skin seems to play an important role in this, since combining the NTS with the sBDU also resulted in substantially higher protection. As expected, the thermal strain posed by the different clothing layer combinations decreases as the level of protection decreases. This study has shown that the concept of adjustable protection and thermal strain through multiple layers of CBRN-PPC works. Adjustable CBRN-PPC allows for optimization of the CBRN-PPC in relation to the threat level, thermal environment, and tasks at hand in an operational setting. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle.

    PubMed

    Zhuo, Hao; Hu, Yijie; Tong, Xing; Chen, Zehong; Zhong, Linxin; Lai, Haihong; Liu, Linxiang; Jing, Shuangshuang; Liu, Qingzhong; Liu, Chuanfu; Peng, Xinwen; Sun, Runcang

    2018-05-01

    Ultralight and compressible carbon materials have promising applications in strain and pressure detection. However, it is still difficult to prepare carbon materials with supercompressibility, elasticity, stable strain-electrical signal response, and ultrasensitive detection limits, due to the challenge in structural regulation. Herein, a new strategy to prepare a reduced graphene oxide (rGO)-based lamellar carbon aerogels with unexpected and integrated performances by designing wave-shape rGO layers and enhancing the interaction among the rGO layers is demonstrated. Addition of cellulose nanocrystalline and low-molecular-weight carbon precursors enhances the interaction among rGO layers and thus produces an ultralight, flexible, and superstable structure. The as-prepared carbon aerogel displays a supercompressibility (undergoing an extreme strain of 99%) and elasticity (100% height retention after 10 000 cycles at a strain of 30%), as well as stable strain-current response (at least 10 000 cycles). Particularly, the carbon aerogel is ultrasensitive for detecting tiny change in strain (0.012%) and pressure (0.25 Pa), which are the lowest detection limits for compressible carbon materials reported in the literature. Moreover, the carbon aerogel exhibits excellent bendable performance and can detect an ultralow bending angle of 0.052°. Additionally, the carbon aerogel also demonstrates its promising application as wearable devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Non-evaporative effects of a wet mid layer on heat transfer through protective clothing.

    PubMed

    Bröde, Peter; Havenith, George; Wang, Xiaoxin; Candas, Victor; den Hartog, Emiel A; Griefahn, Barbara; Holmér, Ingvar; Kuklane, Kalev; Meinander, Harriet; Nocker, Wolfgang; Richards, Mark

    2008-09-01

    In order to assess the non-evaporative components of the reduced thermal insulation of wet clothing, experiments were performed with a manikin and with human subjects in which two layers of underwear separated by an impermeable barrier were worn under an impermeable overgarment at 20 degrees C, 80% RH and 0.5 ms(-1) air velocity. By comparing manikin measurements with dry and wetted mid underwear layer, the increase in heat loss caused by a wet layer kept away from the skin was determined, which turned out to be small (5-6 W m(-2)), irrespective of the inner underwear layer being dry or wetted, and was only one third of the evaporative heat loss calculated from weight change, i.e. evaporative cooling efficiency was far below unity. In the experiments with eight males, each subject participated in two sessions with the mid underwear layer either dry or wetted, where they stood still for the first 30 min and then performed treadmill work for 60 min. Reduced heat strain due to lower insulation with the wetted mid layer was observed with decreased microclimate and skin temperatures, lowered sweat loss and cardiac strain. Accordingly, total clothing insulation calculated over the walking period from heat balance equations was reduced by 0.02 m(2) degrees C W(-1) (16%), while for the standing period the same decrease in insulation, representing 9% reduction only showed up after allowing for the lower evaporative cooling efficiency in the calculations. As evaporation to the environment and inside the clothing was restricted, the observed small alterations may be attributed to the wet mid layer's increased conductivity, which, however, appears to be of minor importance compared to the evaporative effects in the assessment of the thermal properties of wet clothing.

  11. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    PubMed

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  12. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic

    DOE PAGES

    Popovic, M. P.; Chen, K.; Shen, H.; ...

    2018-03-29

    At elevated temperatures, heavy liquid metals and their alloys are known to create a highly corrosive environment that causes irreversible degradation of most iron-based materials. In this paper, it has been found that an appropriate concentration of oxygen in the liquid alloy can significantly reduce this issue by creating a passivating oxide scale that controls diffusion, especially if Al is present in Fe-based materials (by Al-oxide formation). However, the increase of the temperature and of oxygen content in liquid phase leads to the increase of oxygen diffusion into bulk, and to promotion of the internal Al oxidation. This can causemore » a strain in bulk near the oxide layer, due either to mismatch between the thermal expansion coefficients of the oxides and bulk material, or to misfit of the crystal lattices (bulk vs. oxides). This work investigates the strain induced into proximal bulk of a Fe-Cr-Al alloy by oxide layers formation in liquid lead-bismuth eutectic utilizing synchrotron X-ray Laue microdiffraction. Finally, it is found that internal oxidation is the most likely cause for the strain in the metal rather than thermal expansion mismatch as a two-layer problem.« less

  13. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, M. P.; Chen, K.; Shen, H.

    At elevated temperatures, heavy liquid metals and their alloys are known to create a highly corrosive environment that causes irreversible degradation of most iron-based materials. In this paper, it has been found that an appropriate concentration of oxygen in the liquid alloy can significantly reduce this issue by creating a passivating oxide scale that controls diffusion, especially if Al is present in Fe-based materials (by Al-oxide formation). However, the increase of the temperature and of oxygen content in liquid phase leads to the increase of oxygen diffusion into bulk, and to promotion of the internal Al oxidation. This can causemore » a strain in bulk near the oxide layer, due either to mismatch between the thermal expansion coefficients of the oxides and bulk material, or to misfit of the crystal lattices (bulk vs. oxides). This work investigates the strain induced into proximal bulk of a Fe-Cr-Al alloy by oxide layers formation in liquid lead-bismuth eutectic utilizing synchrotron X-ray Laue microdiffraction. Finally, it is found that internal oxidation is the most likely cause for the strain in the metal rather than thermal expansion mismatch as a two-layer problem.« less

  14. Predicting the compressibility behaviour of tire shred samples for landfill applications.

    PubMed

    Warith, M A; Rao, Sudhakar M

    2006-01-01

    Tire shreds have been used as an alternative to crushed stones (gravel) as drainage media in landfill leachate collection systems. The highly compressible nature of tire shreds (25-47% axial strain on vertical stress applications of 20-700 kPa) may reduce the thickness of the tire shred drainage layer to less than 300 mm (minimum design requirement) during the life of the municipal solid waste landfill. There hence exists a need to predict axial strains of tire shred samples in response to vertical stress applications so that the initial thickness of the tire shred drainage layer can be corrected for compression. The present study performs one-dimensional compressibility tests on four tire shred samples and compares the results with stress/strain curves from other studies. The stress/strain curves are developed into charts for choosing the correct initial thickness of tire shred layers that maintain the minimum thickness of 300 mm throughout the life of the landfill. The charts are developed for a range of vertical stresses based on the design height of municipal waste cell and bulk unit weight of municipal waste. Experimental results also showed that despite experiencing large axial strains, the average permeability of the tire shred sample consistently remained two to three orders of magnitude higher than the design performance criterion of 0.01cm/s for landfill drainage layers. Laboratory experiments, however, need to verify whether long-term chemical and bio-chemical reactions between landfill leachate and the tire shred layer will deteriorate their mechanical functions (hydraulic conductivity, compressibility, strength) beyond permissible limits for geotechnical applications.

  15. Effect of spacer layer thickness on structural and optical properties of multi-stack InAs/GaAsSb quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeongho; Ban, Keun-Yong, E-mail: kban1@asu.edu; Honsberg, Christiana B.

    2015-10-26

    The structural and optical properties of ten-stack InAs/GaAsSb quantum dots (QDs) with different spacer layer thicknesses (d{sub s} = 2, 5, 10, and 15 nm) are reported. X-ray diffraction analysis reveals that the strain relaxation of the GaAsSb spacers increases linearly from 0% to 67% with larger d{sub s} due to higher elastic stress between the spacer and GaAs matrix. In addition, the dislocation density in the spacers with d{sub s} = 10 nm is lowest as a result of reduced residual strain. The photoluminescence peak energy from the QDs does not change monotonically with increasing d{sub s} due to the competing effects of decreased compressivemore » strain and weak electronic coupling of stacked QD layers. The QD structure with d{sub s} = 10 nm is demonstrated to have improved luminescence properties and higher carrier thermal stability.« less

  16. Effects of training to implement new working methods to reduce knee strain in floor layers. A two-year follow-up.

    PubMed

    Jensen, L K; Friche, C

    2008-01-01

    Follow-up study after two years to measure the effects of an implementation strategy consisting of information, education and training in the use of new tools and working-methods for the purpose of reducing knee strain and knee complaints in floor layers. Training of floor layers (n = 292) in using new working methods was evaluated by questionnaires during the courses. Two years later, this follow-up included questionnaires for the course participants (n = 216) and a control group of floor layers (not trained on courses) (n = 454). Two years after training, 38% used the new working methods weekly or daily compared to 37% three months after the courses, and 10% before. Among controls, only 16% had used the new working methods weekly or daily. The risk of knee complaints >30 days (OR 2.46, 95% CI 1.03 to 5.83) or locking of the knees (OR 2.89, 95% CI 1.11 to 7.5) was more than double among floor layers who had used the new working-methods for less than one year compared to those who had used them more. The results were adjusted for age, body mass index, and stress. The reduction in more severe knee complaints was greatest if floor layers started to use the new working methods before they developed knee problems. Other musculoskeletal complaints did not increase. This indicates that, within a two-year perspective, the implementation strategy to introduce new working methods in the floor laying trade has been effective; the number of floor layers using the new working-methods has increased, and severe knee problems have reduced.

  17. Effect of double layer thickness on magnetoelectric coupling in multiferroic BaTiO3-Bi0.95Gd0.05FeO3 multilayers

    NASA Astrophysics Data System (ADS)

    Hohenberger, S.; Lazenka, V.; Temst, K.; Selle, S.; Patzig, C.; Höche, T.; Grundmann, M.; Lorenz, M.

    2018-05-01

    The effect of double-layer thickness and partial substitution of Bi3+ by Gd3+ is demonstrated for multiferroic BaTiO3–BiFeO3 2–2 heterostructures. Multilayers of 15 double layers of BaTiO3 and Bi0.95Gd0.05FeO3 were deposited onto (0 0 1) oriented SrTiO3 substrates by pulsed laser deposition with various double layer thicknesses. X-ray diffraction and high resolution transmission electron microscopy investigations revealed a systematic strain tuning with layer thickness via coherently strained interfaces. The multilayers show increasingly enhanced magnetoelectric coupling with reduced double layer thickness. The maximum magnetoelectric coupling coefficient was measured to be as high as 50.8 V cm‑1 Oe‑1 in 0 T DC bias magnetic field at room temperature, and 54.9 V cm‑1 Oe‑1 above 3 T for the sample with the thinnest double layer thickness of 22.5 nm. This enhancement is accompanied by progressively increasing perpendicular magnetic anisotropy and compressive out-of-plane strain. To understand the origin of the enhanced magnetoelectric coupling in such multilayers, the temperature and magnetic field dependency of is discussed. The magnetoelectric performance of the Gd3+ substituted samples is found to be slightly enhanced when compared to unsubstituted BaTiO3–BiFeO3 multilayers of comparable double-layer thickness.

  18. Different cross protection scopes of two avian influenza H5N1 vaccines against infection of layer chickens with a heterologous highly pathogenic virus.

    PubMed

    Poetri, Okti Nadia; Van Boven, Michiel; Koch, Guus; Stegeman, Arjan; Claassen, Ivo; Wayan Wisaksana, I; Bouma, Annemarie

    2017-10-01

    Avian influenza (AI) virus strains vary in antigenicity, and antigenic differences between circulating field virus and vaccine virus will affect the effectiveness of vaccination of poultry. Antigenic relatedness can be assessed by measuring serological cross-reactivity using haemagglutination inhibition (HI) tests. Our study aims to determine the relation between antigenic relatedness expressed by the Archetti-Horsfall ratio, and reduction of virus transmission of highly pathogenic H5N1 AI strains among vaccinated layers. Two vaccines were examined, derived from H5N1 AI virus strains A/Ck/WJava/Sukabumi/006/2008 and A/Ck/CJava/Karanganyar/051/2009. Transmission experiments were carried out in four vaccine and two control groups, with six sets of 16 specified pathogen free (SPF) layer chickens. Birds were vaccinated at 4weeks of age with one strain and challenge-infected with the homologous or heterologous strain at 8weeks of age. No transmission or virus shedding occurred in groups challenged with the homologous strain. In the group vaccinated with the Karanganyar strain, high cross-HI responses were observed, and no transmission of the Sukabumi strain occurred. However, in the group vaccinated with the Sukabumi strain, cross-HI titres were low, virus shedding was not reduced, and multiple transmissions to contact birds were observed. This study showed large differences in cross-protection of two vaccines based on two different highly pathogenic H5N1 virus strains. This implies that extrapolation of in vitro data to clinical protection and reduction of virus transmission might not be straightforward. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides.

    PubMed

    Chmielak, Bartos; Matheisen, Christopher; Ripperda, Christian; Bolten, Jens; Wahlbrink, Thorsten; Waldow, Michael; Kurz, Heinrich

    2013-10-21

    We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si₃N₄ strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)(yyz) increase with reduced w(WG). For 300 nm wide waveguides a mean effective χ(2)(yyz) of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.

  20. Evaluation of implantation-disordering of (InGa)As/GaAs strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Myers, D. R.; Barnes, C. E.; Arnold, G. W.; Dawson, L. R.; Biefeld, R. M.; Zipperian, T. E.; Gourley, P. L.; Fritz, I. J.

    The optical and transport properties of InO 2GaO 8As/GaAs strained-layer superlattices (SLS's) which were implanted either with 5 x 10 to the 15th power, 250 keV Zn(+) or with 5 x 10 to 14th power/square cm/cm(2), 70 keV Be(+) and annealed under an arsenic overpressure at 600 (0) C were examined. For both cases, electrical activation in the implantation-doped regions equalled that of similar implants and anneals in bulk GaAs, even though the Be implant retained the SLS structure, while the Zn implant intermixed the SLS layers to produce an alloy semiconductor of the average SLS composition. Photoluminescence intensities in the annealed implanted regions were significantly reduced from that of virgin material, apparently due to residual implant damage. Diodes formed from both the Be- and the Zn-implanted SLS' produced electroluminescence internsity comparable to that of grown-junction SLS diodes in the same chemical system, despite the implantation processing and the potential for vertical lattice mismatch in the Zn-disordered SLS device. These results indicate that Zn-disordering can be as useful for strained-layer superlattices as in lattice-matched systems.

  1. Subcritical crack growth in SiNx thin-film barriers studied by electro-mechanical two-point bending

    NASA Astrophysics Data System (ADS)

    Guan, Qingling; Laven, Jozua; Bouten, Piet C. P.; de With, Gijsbertus

    2013-06-01

    Mechanical failure resulting from subcritical crack growth in the SiNx inorganic barrier layer applied on a flexible multilayer structure was studied by an electro-mechanical two-point bending method. A 10 nm conducting tin-doped indium oxide layer was sputtered as an electrical probe to monitor the subcritical crack growth in the 150 nm dielectric SiNx layer carried by a polyethylene naphthalate substrate. In the electro-mechanical two-point bending test, dynamic and static loads were applied to investigate the crack propagation in the barrier layer. As consequence of using two loading modes, the characteristic failure strain and failure time could be determined. The failure probability distribution of strain and lifetime under each loading condition was described by Weibull statistics. In this study, results from the tests in dynamic and static loading modes were linked by a power law description to determine the critical failure over a range of conditions. The fatigue parameter n from the power law reduces greatly from 70 to 31 upon correcting for internal strain. The testing method and analysis tool as described in the paper can be used to understand the limit of thin-film barriers in terms of their mechanical properties.

  2. Interplay between strain, quantum confinement, and ferromagnetism in strained ferromagnetic semiconductor (In,Fe)As thin films

    NASA Astrophysics Data System (ADS)

    Sasaki, Daisuke; Anh, Le Duc; Nam Hai, Pham; Tanaka, Masaaki

    2014-04-01

    We systematically investigated the influence of strain on the electronic structure and ferromagnetism of (In,Fe)As thin films. It is found that while the shift of the critical point energies of compressive-strained (In,Fe)As layers grown on (In1-y,Gay)As (y = 0.05, 0.1) buffer layers can be explained by the hydrostatic deformation effect (HDE) alone, those of tensile-strained (In,Fe)As layers grown on (Ga1-z,Alz)Sb (z = 0, 0.5, 1) buffer layers can be explained by the combination of HDE and the quantum confinement effect (QCE). The Curie temperature TC of the (In,Fe)As layers strongly depends on the strain, and shows a maximum for the (In,Fe)As layer grown on a GaSb buffer layer. The strain dependence of TC can be explained by the s-d exchange mechanism taking into account HDE and QCE.

  3. Predictions of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit; Zikry, M. A.

    2014-01-01

    A dislocation density-based crystalline plasticity formulation, specialized finite-element techniques, and rational crystallographic orientation relations were used to predict and characterize the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary distributions. Different layer arrangements were investigated for high strain rate applications and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-bonded interface and the potential delamination of the layers. Shear strain localization, dynamic cracking, and delamination are the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be used to optimize behavior for high strain rate applications.

  4. Strain relaxation in convex-graded InxAl1-xAs (x = 0.05-0.79) metamorphic buffer layers grown by molecular beam epitaxy on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Solov'ev, V. A.; Chernov, M. Yu; Baidakova, M. V.; Kirilenko, D. A.; Yagovkina, M. A.; Sitnikova, A. A.; Komissarova, T. A.; Kop'ev, P. S.; Ivanov, S. V.

    2018-01-01

    This paper presents a study of structural properties of InGaAs/InAlAs quantum well (QW) heterostructures with convex-graded InxAl1-xAs (x = 0.05-0.79) metamorphic buffer layers (MBLs) grown by molecular beam epitaxy on GaAs substrates. Mechanisms of elastic strain relaxation in the convex-graded MBLs were studied by the X-ray reciprocal space mapping combined with the data of spatially-resolved selected area electron diffraction implemented in a transmission electron microscope. The strain relaxation degree was approximated for the structures with different values of an In step-back. Strong contribution of the strain relaxation via lattice tilt in addition to the formation of the misfit dislocations has been observed for the convex-graded InAlAs MBL, which results in a reduced threading dislocation density in the QW region as compared to a linear-graded MBL.

  5. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition.

    PubMed

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O; Taylor, Aidan; Isaac, Brandon; Bowers, John E; Klamkin, Jonathan

    2018-02-26

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO₂) stripes and oriented along the [110] direction. Undercut at the Si/SiO₂ interface was used to reduce the propagation of defects into the III-V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 10⁸/cm² and 1.2 nm; respectively and 7.8 × 10⁷/cm² and 10.8 nm for the GaAs-on-Si layer.

  6. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    PubMed Central

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O.; Taylor, Aidan; Isaac, Brandon; Klamkin, Jonathan

    2018-01-01

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2) stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer. PMID:29495381

  7. FAST TRACK COMMUNICATION: Emission wavelength extension of mid-infrared InAsSb/InP nanostructures using InGaAsSb sandwich layers

    NASA Astrophysics Data System (ADS)

    Lei, W.; Tan, H. H.; Jagadish, C.

    2010-08-01

    This paper presents a study on the emission wavelength extension of InAsSb nanostructures using InGaAsSb sandwich layers. Due to the reduced lattice mismatch between InAsSb nanostructure layer and buffer/capping layer, the introduction of InGaAsSb sandwich layers leads to larger island size, reduced compressive strain and lower confinement barrier for InAsSb nanostructures, thus resulting in a longer emission wavelength. For InGaAsSb sandwich layers with nominal Sb concentration higher than 10%, type II band alignment is observed for the InAsSb/InGaAsSb heterostructure, which also contributes to the extension of emission wavelength. The InGaAsSb sandwich layers provide an effective approach to extend the emission wavelength of InAsSb nanostructures well beyond 2 µm, which is very useful for device applications in the mid-infrared region.

  8. Over 7% magnetic field-induced strain in a Ni-Mn-Ga five-layered martensite

    NASA Astrophysics Data System (ADS)

    Pagounis, E.; Chulist, R.; Szczerba, M. J.; Laufenberg, M.

    2014-08-01

    A Ni-Mn-Ga single crystal with a modulated five-layered martensite structure is reported, demonstrating giant magnetic field induced strain (MFIS) of 7.1% at room temperature and of 6% at temperatures close to the austenite transformation (TA = 71 °C). The room temperature MFIS clearly exceeds the best results of around 6% measured earlier in 10M martensites. The larger MFIS is connected to the huge (>1%) change in the lattice distortion of the 10M structure, obtained within a narrow temperature interval of 47 K, which has been previously observed only during intermartensitic transformation. The present material shall effectively reduce the size of magnetic shape memory actuators.

  9. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films reduces the activation volume for yielding.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwater, Harry A.; Leite, Marina S.; Warmann, Emily C.

    A virtual substrate includes a handle support and a strain-relieved single crystalline layer on the handle support. A method of making the virtual substrate includes growing a coherently-strained single crystalline layer on an initial growth substrate, removing the initial growth substrate to relieve the strain on the single crystalline layer, and applying the strain-relieved single crystalline layer on a handle support.

  11. InAs/InGaSb Type-II strained layer superlattice IR detectors

    NASA Astrophysics Data System (ADS)

    Nathan, Vaidya; Anselm, K. Alex; Lin, C. H. T.; Johnson, Jeffrey L.

    2002-05-01

    InAs/InGaSb type2 strained layer superlattice (SLS) combines the advantages of III-V materials technology with the strong, broad-band absorption, and wavelength tunability of HgCdTe. In fact, the significantly reduced tunneling and Auger recombination rates in SLS compared to those in HgCdTe should enable SLS detectors to outperform HgCdTe. We report the results of our investigation of InAs/InGaSb type2 strained layer superlattices (SLS)for LWIR photovoltaic detector development. We modeled the band structure, and absorption spectrum of SLS's, and achieved good agreement with experimental data. We systematically investigated the SLS growth conditions, resulting in good uniformity, and the elimination of several defects. We designed, developed and evaluated 16x16 array of 13 micron cutoff photovoltaic detectors. Photodiodes with cutoff wavelengths of 13 and 18microns were demonstrated, which are the longest wavelengths demonstrated for this material system. Quantum efficiencies commensurate with the superlattice thickness were demonstrated and verified at AFRL. The electrical properties show excessive leakage current, most likely due to trap-assisted tunneling.

  12. AlGaAs/InGaAs/AlGaAs double pulse doped pseudomorphic high electron mobility transistor structures on InGaAs substrates

    NASA Astrophysics Data System (ADS)

    Hoke, W. E.; Lyman, P. S.; Mosca, J. J.; McTaggart, R. A.; Lemonias, P. J.; Beaudoin, R. M.; Torabi, A.; Bonner, W. A.; Lent, B.; Chou, L.-J.; Hsieh, K. C.

    1997-10-01

    Double pulse doped AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor (PHEMT) structures have been grown on InxGa1-xAs (x=0.025-0.07) substrates using molecular beam epitaxy. A strain compensated, AlGaInAs/GaAs superlattice was used for improved resistivity and breakdown. Excellent electrical and optical properties were obtained for 110-Å-thick InGaAs channel layers with indium concentrations up to 31%. A room temperature mobility of 6860 cm2/V s with 77 K sheet density of 4.0×1012cm-2 was achieved. The InGaAs channel photoluminescence intensity was equivalent to an analogous structure on a GaAs substrate. To reduce strain PHEMT structures with a composite InGaP/AlGaAs Schottky layer were also grown. The structures also exhibited excellent electrical and optical properties. Transmission electron micrographs showed planar channel interfaces for highly strained In0.30Ga0.70As channel layers.

  13. Size Dependence of Residual Thermal Stresses in Micro Multilayer Ceramic Capacitors by Using Finite Element Unit Cell Model Including Strain Gradient Effect

    NASA Astrophysics Data System (ADS)

    Jiang, W. G.; Xiong, C. A.; Wu, X. G.

    2013-11-01

    The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices

  14. Use of layer strains in strained-layer superlattices to make devices for operation in new wavelength ranges, E. G. , InAsSb at 8 to 12. mu. m. [InAs/sub 1-x/Sb/sub x/

    DOEpatents

    Osbourn, G.C.

    1983-10-06

    An intrinsic semiconductor electro-optical device comprises a p-n junction intrinsically responsive, when cooled, to electromagnetic radiation in the wavelength range of 8 to 12 ..mu..m. This radiation responsive p-n junction comprises a strained-layer superlattice (SLS) of alternating layers of two different III-V semiconductors. The lattice constants of the two semiconductors are mismatched, whereby a total strain is imposed on each pair of alternating semiconductor layers in the SLS structure, the proportion of the total strain which acts on each layer of the pair being proportional to the ratio of the layer thicknesses of each layer in the pair.

  15. Impact of thickness on the structural properties of high tin content GeSn layers

    NASA Astrophysics Data System (ADS)

    Aubin, J.; Hartmann, J. M.; Gassenq, A.; Milord, L.; Pauc, N.; Reboud, V.; Calvo, V.

    2017-09-01

    We have grown various thicknesses of GeSn layers in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition cluster tool using digermane (Ge2H6) and tin tetrachloride (SnCl4). The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio were kept constant, and incorporation of tin in the range of 10-15% was achieved with a reduction in temperature: 325 °C for 10% to 301 °C for 15% of Sn. The layers were grown on 2.5 μm thick Ge Strain Relaxed Buffers, themselves on Si(0 0 1) substrates. We used X-ray Diffraction, Atomic Force Microscopy, Raman spectroscopy and Scanning Electron Microscopy to measure the Sn concentration, the strain state, the surface roughness and thickness as a function of growth duration. A dramatic degradation of the film was seen when the Sn concentration and layer thickness were too high resulting in rough/milky surfaces and significant Sn segregation.

  16. Impact of virus strain characteristics on early detection of highly pathogenic avian influenza infection in commercial table-egg layer flocks and implications for outbreak control.

    PubMed

    Weaver, J Todd; Malladi, Sasidhar; Goldsmith, Timothy J; Hueston, Will; Hennessey, Morgan; Lee, Brendan; Voss, Shauna; Funk, Janel; Der, Christina; Bjork, Kathe E; Clouse, Timothy L; Halvorson, David A

    2012-12-01

    Early detection of highly pathogenic avian influenza (HPAI) infection in commercial poultry flocks is a critical component of outbreak control. Reducing the time to detect HPAI infection can reduce the risk of disease transmission to other flocks. The timeliness of different types of detection triggers could be dependent on clinical signs that are first observed in a flock, signs that might vary due to HPAI virus strain characteristics. We developed a stochastic disease transmission model to evaluate how transmission characteristics of various HPAI strains might effect the relative importance of increased mortality, drop in egg production, or daily real-time reverse transcriptase (RRT)-PCR testing, toward detecting HPAI infection in a commercial table-egg layer flock. On average, daily RRT-PCR testing resulted in the shortest time to detection (from 3.5 to 6.1 days) depending on the HPAI virus strain and was less variable over a range of transmission parameters compared with other triggers evaluated. Our results indicate that a trigger to detect a drop in egg production would be useful for HPAI virus strains with long infectious periods (6-8 days) and including an egg-drop detection trigger in emergency response plans would lead to earlier and consistent reporting in some cases. We discuss implications for outbreak control and risk of HPAI spread attributed to different HPAI strain characteristics where an increase in mortality or a drop in egg production or both would be among the first clinical signs observed in an infected flock.

  17. Implementation and thickness optimization of perpetual pavements in Ohio : [executive summary].

    DOT National Transportation Integrated Search

    2015-06-01

    Perpetual asphalt pavements are designed to confine distresses to the upper layer of the structure, by eliminating : or reducing the potential for fatigue cracking by maintaining the horizontal strains at the bottom of the pavement : below a critical...

  18. Studies of the Initial Stages of Epitaxial Growth of Germanium on Silicon

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Mohan

    The epitaxial growth of ultra-thin films (< 1nm thick) of Ge on Si(100) has been studied in -situ in an Ultra High Vacuum-Scanning Transmission Electron Microscope. Ge was deposited on clean Si(100) using molecular beam techniques to study two types of growth processes, Molecular Beam Epitaxy (MBE) and Solid Phase MBE. Ge grows in the Stranski-Krastanov growth mode, forming islands after initial layer growth. This islanding transition has been studied with high spatial resolution biassed Secondary Electron Imaging and Auger spectroscopy and imaging. Ex -situ Transmission Electron Microscopy (TEM) and Reflection High Energy Diffraction (RHEED) were also used to characterize the transition. The islanding process and its subsequent evolution was monitored with the help of island size distributions, sensitive to islands above 2nm in size. The studies indicate that Ge forms islands in equilibrium with a 3 monolayer (ML) thick intermediate layer. These islands may initially grow coherently strained (dislocation free) with radii usually below 10nm under the conditions. The strain in these islands reduces the adatom sticking coefficient and strongly influences the microstructural evolution. The intermediate layer may grow metastably under certain conditions to as much as 7 ML before collapsing to its equilibrium form. The influence of three types of adatom sinks--strained islands, dislocated islands and contaminant particles have been studied. The contaminant particles are the strongest sinks, followed by dislocated islands and strained islands. Stepped (vicinal) surfaces (1^circ and 5 ^circ toward {110 }) had no significant influence possibly due to the steps being weak adatom sinks. The coarsening of Ge islands does not follow the Ostwald ripening model at the early stages and is influenced by the supersaturation in the intermediate layer and the strain in the coherent islands. A novel mechanism has been observed, where the larger (dislocated) islands grow at the expense of the unstable intermediate layer while the distribution of smaller (strained) islands is constant. This is possibly due to the lower sticking coefficient at the strained islands.

  19. Purification and characterization of Campylobacter rectus surface layer proteins.

    PubMed Central

    Nitta, H; Holt, S C; Ebersole, J L

    1997-01-01

    Campylobacter rectus is a putative periodontopathogen which expresses a proteinaceous surface layer (S-layer) external to the outer membrane. S-layers are considered to play a protective role for the microorganism in hostile environments. The S-layer proteins from six different C. rectus strains (five human isolates and a nonhuman primate [NHP] isolate) were isolated, purified, and characterized. The S-layer proteins of these strains varied in molecular mass (ca. 150 to 166 kDa) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. They all reacted with monospecific rabbit antiserum to the purified S-layer of C. rectus 314, but a quantitative enzyme-linked immunosorbent assay demonstrated a strong antigenic relationship among the five human strains, while the NHP strain, 6250, showed weaker reactivity. Amino acid composition analysis showed that the S-layers of four C. rectus strains contained large proportions of acidic amino acids (13 to 27%) and that >34% of the amino acid residues were hydrophobic. Amino acid sequence analysis of six S-layer proteins revealed that the first 15 amino-terminal amino acids were identical and showed seven residues of identity with the amino-terminal sequence of the Campylobacter fetus S-layer protein SapA1. CNBr peptide profiles of the S-layer proteins from C. rectus 314, ATCC 33238, and 6250 confirmed that the S-layer proteins from the human strains were similar to each other and somewhat different from that of the NHP isolate (strain 6250). However, the S-layer proteins from the two human isolates do show some structural heterogeneity. For example, there was a 17-kDa fragment unique to the C. rectus 314 S-layer. The amino-terminal sequence of this peptide had homology with the C. rectus 51-kDa porin and was composed of nearly 50% hydrophobic residues. Thus, the S-layer protein from C. rectus has structural heterogeneity among different human strains and immunoheterogeneity with the NHP strain. PMID:9009300

  20. Genetic evidence for the involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in Phage AP50c infection of Bacillus anthracis.

    PubMed

    Plaut, Roger D; Beaber, John W; Zemansky, Jason; Kaur, Ajinder P; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A; Mokashi, Vishwesh; Hannah, Ryan M; Pope, Robert K; Read, Timothy D; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga

    2014-03-01

    In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer.

  1. Genetic Evidence for the Involvement of the S-Layer Protein Gene sap and the Sporulation Genes spo0A, spo0B, and spo0F in Phage AP50c Infection of Bacillus anthracis

    PubMed Central

    Beaber, John W.; Zemansky, Jason; Kaur, Ajinder P.; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A.; Mokashi, Vishwesh; Hannah, Ryan M.; Pope, Robert K.; Read, Timothy D.; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga

    2014-01-01

    In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer. PMID:24363347

  2. Effects of live and killed vaccines against Mycoplasma gallisepticum on the performance characteristics of commercial layer chickens.

    PubMed

    Jacob, R; Branton, S L; Evans, J D; Leigh, S A; Peebles, E D

    2014-06-01

    Different vaccine strains of Mycoplasma gallisepticum have been used on multiple-age commercial layer farms in an effort to protect birds against virulent field-strain infections. Use of the F-strain of M. gallisepticum (FMG), as an overlay vaccine during lay, may be necessary because of the lower level of protection afforded by M. gallisepticum vaccines of low virulence given before lay. Two replicate trials were conducted to investigate effects of live and killed M. gallisepticum vaccines administered individually and in combination before lay, in conjunction with an FMG vaccine overlay after peak egg production (EP), on the performance characteristics of commercial layers. The following treatments were utilized at 10 wk of age (woa): 1) control (no vaccinations); 2) ts11 strain M. gallisepticum (ts11MG) vaccine; 3) M. gallisepticum-Bacterin vaccine (MG-Bacterin); and 4) ts11MG and MG-Bacterin vaccines combination. At 45 woa, half of the birds were overlaid with an FMG vaccine. Hen mortality, BW, egg weight, percentage hen-day EP, egg blood spots, and egg meat spots were determined at various time periods between 18 and 52 woa. The data from each trial were pooled. Treatment did not affect performance in interval I (23 to 45 woa). However, during interval II (46 to 52 woa), the EP of control and MG-Bacterin-vaccinated birds that later received an FMG vaccine overlay was lower than that in the other treatment groups. Furthermore, treatment application reduced bird BW during interval II. Despite the effects on BW and EP, no differences were observed for egg blood or meat spots among the various treatments. It is suggested that the vaccination of commercial layers before lay with ts11MG, but not MG-Bacterin, may reduce the negative impacts of an FMG overlay vaccination given during lay. These results establish that the vaccination of pullets with ts11MG in combination with the vaccination of hens with an FMG overlay, for continual protection against field-strain M. gallisepticum infections, may be used without suppressing performance. Poultry Science Association Inc.

  3. Method of transferring strained semiconductor structure

    DOEpatents

    Nastasi, Michael A [Santa Fe, NM; Shao, Lin [College Station, TX

    2009-12-29

    The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.

  4. Effects of strain and buffer layer on interfacial magnetization in Sr 2 CrReO 6 films determined by polarized neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yaohua; Lucy, J. M.; Glavic, A.

    2014-09-01

    We have determined the depth-resolved magnetization structures of a series of highly orderedSr2CrReO6 (SCRO) ferrimagnetic epitaxial films via combined studies of x-ray reflectometry, polarized neutron reflectometry and SQUID magnetometry. The SCRO films deposited directly on (LaAlO3)0:3(Sr2AlTaO6)0:7 or SrTiO3 substrates show reduced magnetization of similar width near the interfaces with the substrates, despite having different degrees of strain. When the SCRO film is deposited on a Sr2CrNbO6 (SCNO) double perovskite buffer layer, the width the interfacial region with reduced magnetization is reduced, agreeing with an improved Cr/Re ordering. However, the relative reduction of the magnetization averaged over the interfacial regions aremore » comparable among the three samples. Interestingly, we found that the magnetization suppression region is wider than the Cr/Re antisite disorder region at the interface between SCRO and SCNO.« less

  5. Strain Gauges Based on CVD Graphene Layers and Exfoliated Graphene Nanoplatelets with Enhanced Reproducibility and Scalability for Large Quantities

    PubMed Central

    Yokaribas, Volkan; Schneider, Daniel S.; Friebertshäuser, Philipp; Lemme, Max C.; Fritzen, Claus-Peter

    2017-01-01

    The two-dimensional material graphene promises a broad variety of sensing activities. Based on its low weight and high versatility, the sensor density can significantly be increased on a structure, which can improve reliability and reduce fluctuation in damage detection strategies such as structural health monitoring (SHM). Moreover; it initializes the basis of structure–sensor fusion towards self-sensing structures. Strain gauges are extensively used sensors in scientific and industrial applications. In this work, sensing in small strain fields (from −0.1% up to 0.1%) with regard to structural dynamics of a mechanical structure is presented with sensitivities comparable to bulk materials by measuring the inherent piezoresistive effect of graphene grown by chemical vapor deposition (CVD) with a very high aspect ratio of approximately 4.86 × 108. It is demonstrated that the increasing number of graphene layers with CVD graphene plays a key role in reproducible strain gauge application since defects of individual layers may become less important in the current path. This may lead to a more stable response and, thus, resulting in a lower scattering.. Further results demonstrate the piezoresistive effect in a network consisting of liquid exfoliated graphene nanoplatelets (GNP), which result in even higher strain sensitivity and reproducibility. A model-assisted approach provides the main parameters to find an optimum of sensitivity and reproducibility of GNP films. The fabricated GNP strain gauges show a minimal deviation in PRE effect with a GF of approximately 5.6 and predict a linear electromechanical behaviour up to 1% strain. Spray deposition is used to develop a low-cost and scalable manufacturing process for GNP strain gauges. In this context, the challenge of reproducible and reliable manufacturing and operating must be overcome. The developed sensors exhibit strain gauges by considering the significant importance of reproducible sensor performances and open the path for graphene strain gauges for potential usages in science and industry. PMID:29258260

  6. Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS₂.

    PubMed

    Bhattacharyya, Swastibrata; Pandey, Tribhuwan; Singh, Abhishek K

    2014-11-21

    The sensitive dependence of the electronic and thermoelectric properties of MoS₂ on applied strain opens up a variety of applications in the emerging area of straintronics. Using first-principles-based density functional theory calculations, we show that the band gap of a few layers of MoS₂ can be tuned by applying normal compressive (NC) strain, biaxial compressive (BC) strain, and biaxial tensile (BT) strain. A reversible semiconductor-to-metal transition (S-M transition) is observed under all three types of strain. In the case of NC strain, the threshold strain at which the S-M transition occurs increases when the number of layers increase and becomes maximum for the bulk. On the other hand, the threshold strain for the S-M transition in both BC and BT strains decreases when the number of layers increase. The difference in the mechanisms for the S-M transition is explained for different types of applied strain. Furthermore, the effect of both strain type and the number of layers on the transport properties are also studied using Botzmann transport theory. We optimize the transport properties as a function of the number of layers and the applied strain. 3L- and 2L-MoS₂ emerge as the most efficient thermoelectric materials under NC and BT strain, respectively. The calculated thermopower is large and comparable to some of the best thermoelectric materials. A comparison among the feasibility of these three types of strain is also discussed.

  7. Defect reduction in Si-doped Al{sub 0.45}Ga{sub 0.55}N films by SiN{sub x} interlayer method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Chen, Shengchang; Kong, Man

    2014-01-28

    The dislocation density in AlGaN epitaxial layers with Al content as high as 45% grown on sapphire substrates has been effectively reduced by introducing an in-situ deposited SiN{sub x} nanomask layer in this study. By closely monitoring the evolution of numerous material properties, such as surface morphology, dislocation density, photoluminescence, strain states, and electron mobility of the Si-Al{sub 0.45}Ga{sub 0.55}N layers as the functions of SiN{sub x} interlayer growth time, the surface coverage fraction of SiN{sub x} is found to be a crucial factor determining the strain states and dislocation density. The dependence of the strain states and the dislocationmore » density on the surface coverage fraction of SiN{sub x} nanomask supports the very different growth models of Al-rich AlGaN on SiN{sub x} interlayer due to the reduced nucleation selectivity compared with the GaN counterpart. Compared with GaN, which can only nucleate at open pores of SiN{sub x} nanomask, Al-rich AlGaN can simultaneously nucleate at both open pores and SiN{sub x} covered areas. Dislocations will annihilate at the openings due to the 3D growth initiated on the opening area, while 2D growth mode is preserved on SiN{sub x} and the threading dislocations are also preserved. During the following growth process, lateral overgrowth will proceed from the Al{sub 0.45}Ga{sub 0.55}N islands on the openings towards the regions covered by SiN{sub x}, relaxing the compressive strain and bending the dislocations at the same time.« less

  8. Influence of metal bonding layer on strain transfer performance of FBG

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun

    2013-01-01

    Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.

  9. The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium

    NASA Astrophysics Data System (ADS)

    Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.

    2013-12-01

    High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.

  10. Plasmon modes in monolayer and double-layer black phosphorus under applied uniaxial strain

    NASA Astrophysics Data System (ADS)

    Saberi-Pouya, S.; Vazifehshenas, T.; Saleh, M.; Farmanbar, M.; Salavati-fard, T.

    2018-05-01

    We study the effects of an applied in-plane uniaxial strain on the plasmon dispersions of monolayer, bilayer, and double-layer black phosphorus structures in the long-wavelength limit within the linear elasticity theory. In the low-energy limit, these effects can be modeled through the change in the curvature of the anisotropic energy band along the armchair and zigzag directions. We derive analytical relations of the plasmon modes under uniaxial strain and show that the direction of the applied strain is important. Moreover, we observe that along the armchair direction, the changes of the plasmon dispersion with strain are different and larger than those along the zigzag direction. Using the analytical relations of two-layer phosphorene systems, we found that the strain-dependent orientation factor of layers could be considered as a means to control the variations of the plasmon energy. Furthermore, our study shows that the plasmonic collective modes are more affected when the strain is applied equally to the layers compared to the case in which the strain is applied asymmetrically to the layers. We also calculate the effect of strain on the drag resistivity in a double-layer black phosphorus structure and obtain that the changes in the plasmonic excitations, due to an applied strain, are mainly responsible for the predicted results. This study can be readily extended to other anisotropic two-dimensional materials.

  11. Strain Distribution in REBCO-Coated Conductors Bent With the Constant-Perimeter Geometry

    DOE PAGES

    Wang, Xiaorong; Arbelaez, Diego; Caspi, Shlomo; ...

    2017-10-24

    Here, cable and magnet applications require bending REBa 2Cu 3O 7-δ (REBCO, RE = rare earth) tapes around a former to carry high current or generate specific magnetic fields. With a high aspect ratio, REBCO tapes favor the bending along their broad surfaces (easy way) than their thin edges (hard way). The easy-way bending forms can be effectively determined by the constant-perimeter method that was developed in the 1970s to fabricate accelerator magnets with flat thin conductors. The method, however, does not consider the strain distribution in the REBCO layer that can result from bending. Therefore, the REBCO layer canmore » be overstrained and damaged even if it is bent in an easy way as determined by the constant-perimeter method. To address this issue, we developed a numerical approach to determine the strain in the REBCO layer using the local curvatures of the tape neutral plane. Two orthogonal strain components are determined: the axial component along the tape length and the transverse component along the tape width. These two components can be used to determine the conductor critical current after bending. The approach is demonstrated with four examples relevant for applications: a helical form for cables, forms for canted cos θ dipole and quadrupole magnets, and a form for the coil end design. The approach allows us to optimize the design of REBCO cables and magnets based on the constant-perimeter geometry and to reduce the strain-induced critical current degradation.« less

  12. Strain Distribution in REBCO-Coated Conductors Bent With the Constant-Perimeter Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaorong; Arbelaez, Diego; Caspi, Shlomo

    Here, cable and magnet applications require bending REBa 2Cu 3O 7-δ (REBCO, RE = rare earth) tapes around a former to carry high current or generate specific magnetic fields. With a high aspect ratio, REBCO tapes favor the bending along their broad surfaces (easy way) than their thin edges (hard way). The easy-way bending forms can be effectively determined by the constant-perimeter method that was developed in the 1970s to fabricate accelerator magnets with flat thin conductors. The method, however, does not consider the strain distribution in the REBCO layer that can result from bending. Therefore, the REBCO layer canmore » be overstrained and damaged even if it is bent in an easy way as determined by the constant-perimeter method. To address this issue, we developed a numerical approach to determine the strain in the REBCO layer using the local curvatures of the tape neutral plane. Two orthogonal strain components are determined: the axial component along the tape length and the transverse component along the tape width. These two components can be used to determine the conductor critical current after bending. The approach is demonstrated with four examples relevant for applications: a helical form for cables, forms for canted cos θ dipole and quadrupole magnets, and a form for the coil end design. The approach allows us to optimize the design of REBCO cables and magnets based on the constant-perimeter geometry and to reduce the strain-induced critical current degradation.« less

  13. Use of Bacteria To Stabilize Archaeological Iron

    PubMed Central

    Comensoli, Lucrezia; Maillard, Julien; Albini, Monica; Sandoz, Frederic

    2017-01-01

    ABSTRACT Iron artifacts are common among the findings of archaeological excavations. The corrosion layer formed on these objects requires stabilization after their recovery, without which the destruction of the item due to physicochemical damage is likely. Current technologies for stabilizing the corrosion layer are lengthy and generate hazardous waste products. Therefore, there is a pressing need for an alternative method for stabilizing the corrosion layer on iron objects. The aim of this study was to evaluate an alternative conservation-restoration method using bacteria. For this, anaerobic iron reduction leading to the formation of stable iron minerals in the presence of chlorine was investigated for two strains of Desulfitobacterium hafniense (strains TCE1 and LBE). Iron reduction was observed for soluble Fe(III) phases as well as for akaganeite, the most troublesome iron compound in the corrosion layer of archaeological iron objects. In terms of biogenic mineral production, differential efficiencies were observed in assays performed on corroded iron coupons. Strain TCE1 produced a homogeneous layer of vivianite covering 80% of the corroded surface, while on the coupons treated with strain LBE, only 10% of the surface was covered by the same mineral. Finally, an attempt to reduce iron on archaeological objects was performed with strain TCE1, which led to the formation of both biogenic vivianite and magnetite on the surface of the artifacts. These results demonstrate the potential of this biological treatment for stabilizing archaeological iron as a promising alternative to traditional conservation-restoration methods. IMPORTANCE Since the Iron Age, iron has been a fundamental material for the building of objects used in everyday life. However, due to its reactivity, iron can be easily corroded, and the physical stability of the object built is at risk. This is particularly true for archaeological objects on which a potentially unstable corrosion layer is formed during the time the object is buried. After excavation, changes in environmental conditions (e.g., higher oxygen concentration or lower humidity) alter the stability of the corrosion layer and can lead to the total destruction of the object. In this study, we demonstrate the feasibility of an innovative treatment based on bacterial iron reduction and biogenic mineral formation to stabilize the corrosion layer and protect these objects. PMID:28283522

  14. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains

    DOE PAGES

    Kuang, Youdi; Lindsay, Lucas R.; Huang, Baoling

    2015-01-01

    High basal plane thermal conductivity k of multi-layer graphene makes it promising for thermal management applications. Here we examine the effects of tensile strain on thermal transport in this system. Using a first principles Boltzmann-Peierls equation for phonon transport approach, we calculate the room-temperature in-plane lattice k of multi-layer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite mono-layer graphene and 3-layer graphene agree well with previous experiments. The dimensional transitions of the intrinsic k and the extent of the diffusive transport regime from mono-layer graphene to graphite are presented.more » We find a peak enhancement of intrinsic k for multi-layer graphene and graphite with increasing strain and the largest enhancement amplitude is about 40%. In contrast the calculated intrinsic k with tensile strain decreases for diamond and diverges for graphene, we show that the competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems, suggesting that it is an inherent thermal transport property in multi-layer systems assembled of purely two dimensional atomic layers. This study provides insights into engineering k of multi-layer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.« less

  15. A self-ordered, body-centered tetragonal superlattice of SiGe nanodot growth by reduced pressure CVD

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuji; Zaumseil, Peter; Capellini, Giovanni; Schubert, Markus Andreas; Hesse, Anne; Albani, Marco; Bergamaschini, Roberto; Montalenti, Francesco; Schroeder, Thomas; Tillack, Bernd

    2017-12-01

    Self-ordered three-dimensional body-centered tetragonal (BCT) SiGe nanodot structures are fabricated by depositing SiGe/Si superlattice layer stacks using reduced pressure chemical vapor deposition. For high enough Ge content in the island (>30%) and deposition temperature of the Si spacer layers (T > 700 °C), we observe the formation of an ordered array with islands arranged in staggered position in adjacent layers. The in plane periodicity of the islands can be selected by a suitable choice of the annealing temperature before the Si spacer layer growth and of the SiGe dot volume, while only a weak influence of the Ge concentration is observed. Phase-field simulations are used to clarify the driving force determining the observed BCT ordering, shedding light on the competition between heteroepitaxial strain and surface-energy minimization in the presence of a non-negligible surface roughness.

  16. Strain engineering in epitaxial Ge1- x Sn x : a path towards low-defect and high Sn-content layers

    NASA Astrophysics Data System (ADS)

    Margetis, Joe; Yu, Shui-Qing; Bhargava, Nupur; Li, Baohua; Du, Wei; Tolle, John

    2017-12-01

    The plastic strain relaxation of CVD-grown Ge1-x Sn x layers was investigated in x = 0.09 samples with thicknesses of 152, 180, 257, 570, and 865 nm. X-ray diffraction-reciprocal space mapping was used to determine the strain, composition, and the nature of defects in each layer. Secondary ion mass spectrometry was used to examine the evolution of the compositional profile. These results indicate that growth beyond the critical thickness results in the spontaneous formation of a relaxed and highly defective 9% Sn layer followed by a low defect 12% Sn secondary layer. We find that this growth method can be used to engineer thick, strain-relaxed, and low defect density layers. Furthermore we utilize this strain-dependent Sn incorporation behavior to achieve Sn compositions of 17.5%. Photoluminesence of these layers produces light emission at 3.1 μm.

  17. Plastic strain arrangement in copper single crystals in sliding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less

  18. The role of SiGe buffer in growth and relaxation of Ge on free-standing Si(001) nano-pillars.

    PubMed

    Zaumseil, P; Kozlowski, G; Schubert, M A; Yamamoto, Y; Bauer, J; Schülli, T U; Tillack, B; Schroeder, T

    2012-09-07

    We study the growth and relaxation processes of Ge nano-clusters selectively grown by chemical vapor deposition on free-standing 90 nm wide Si(001) nano-pillars with a thin Si(0.23)Ge(0.77) buffer layer. We found that the dome-shaped SiGe layer with a height of about 28 nm as well as the Ge dot deposited on top of it partially relaxes, mainly by elastic lattice bending. The Si nano-pillar shows a clear compliance behavior-an elastic response of the substrate on the growing film-with the tensile strained top part of the pillar. Additional annealing at 800 °C leads to the generation of misfit dislocation and reduces the compliance effect significantly. This example demonstrates that despite the compressive strain generated due to the surrounding SiO(2) growth mask it is possible to realize an overall tensile strain in the Si nano-pillar and following a compliant substrate effect by using a SiGe buffer layer. We further show that the SiGe buffer is able to improve the structural quality of the Ge nano-dot.

  19. Penny-shaped interface crack between an elastic layer and a half space.

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1972-01-01

    The axially symmetric elastostatic problem for a layer bonded to a half space with different material properties is considered. It is assumed that the bi-material interface contains a penny-shaped crack the surfaces of which are subjected to known tractions. The solution of the problem is reduced to that of a system of singular integral equations of the second kind. A numerical example for an aluminum-epoxy material combination is given. The stress intensity factors and the strain energy release rate are calculated and are given as functions of layer thickness-to-crack radius ratio.

  20. Adhesion properties of potentially probiotic Lactobacillus kefiri to gastrointestinal mucus.

    PubMed

    Carasi, Paula; Ambrosis, Nicolás M; De Antoni, Graciela L; Bressollier, Philippe; Urdaci, María C; Serradell, María de los Angeles

    2014-02-01

    We investigated the mucus-binding properties of aggregating and non-aggregating potentially probiotic strains of kefir-isolated Lactobacillus kefiri, using different substrates. All the strains were able to adhere to commercial gastric mucin (MUCIN) and extracted mucus from small intestine (SIM) and colon (CM). The extraction of surface proteins from bacteria using LiCl or NaOH significantly reduced the adhesion of three selected strains (CIDCA 8348, CIDCA 83115 and JCM 5818); although a significant proportion (up to 50%) of S-layer proteins were not completely eliminated after treatments. The surface (S-layer) protein extracts from all the strains of Lb. kefiri were capable of binding to MUCIN, SIM or CM, and no differences were observed among them. The addition of their own surface protein extract increased adhesion of CIDCA 8348 and 83115 to MUCIN and SIM, meanwhile no changes in adhesion were observed for JCM 5818. None of the seven sugars tested had the ability to inhibit the adhesion of whole bacteria to the three mucus extracts. Noteworthy, the degree of bacterial adhesion reached in the presence of their own surface protein (S-layer) extract decreased to basal levels in the presence of some sugars, suggesting an interaction between the added sugar and the surface proteins. In conclusion, the ability of these food-isolated bacteria to adhere to gastrointestinal mucus becomes an essential issue regarding the biotechnological potentiality of Lb. kefiri for the food industry.

  1. Characterization of strain relaxation behavior in Si1- x Ge x epitaxial layers by dry oxidation

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Park, Seran; Ko, Dae-Hong

    2017-11-01

    We fabricated fully strained Si0.77Ge0.23 epitaxial layers on Si substrates and investigated their strain relaxation behaviors under dry oxidation and the effect of oxidation temperatures and times. After the oxidation process, a Ge-rich layer was formed between the oxide and the remaining Si0.77Ge0.23 layer. Using reciprocal space mapping measurements, we confirmed that the strain of the Si0.77Ge0.23 layers was efficiently relaxed after oxidation, with a maximum relaxation value of 70% after oxidation at 850 °C for 120 min. The surface of Si0.77Ge0.23 layer after strain relaxation by dry oxidation was smoother than a thick Si0.77Ge0.23 layer, which achieved a similar strain relaxation value by increasing the film thickness. Additionally, N2 annealing was performed in order to compare its effect on the relaxation compared to dry oxidation and to identify relaxation mechanisms, other than the thermally driven ones, occurring during dry oxidation.

  2. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  3. Topological defect clustering and plastic deformation mechanisms in functionalized graphene

    NASA Astrophysics Data System (ADS)

    Nunes, Ricardo; Araujo, Joice; Chacham, Helio

    2011-03-01

    We present ab initio results suggesting that strain plays a central role in the clustering of topological defects in strained and functionalized graphene models. We apply strain onto the topological-defect graphene networks from our previous work, and obtain topological-defect clustering patterns which are in excellent agreement with recent observations in samples of reduced graphene oxide. In our models, the graphene layer, containing an initial concentration of isolated topological defects, is covered by hydrogen or hydroxyl groups. Our results also suggest a rich variety of plastic deformation mechanism in functionalized graphene systems. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  4. Insight into the wetting of a graphene-mica slit pore with a monolayer of water

    NASA Astrophysics Data System (ADS)

    Lin, Hu; Schilo, Andre; Kamoka, A. Rauf; Severin, Nikolai; Sokolov, Igor M.; Rabe, Jürgen P.

    2017-05-01

    Scanning force microscopy (SFM) and Raman spectroscopy allow the unraveling of charge doping and strain effects upon wetting and dewetting of a graphene-mica slit pore with water. SFM reveals a wetting monolayer of water, slightly thinner than a single layer of graphene. The Raman spectrum of the dry pore exhibits the D' peak of graphene, which practically disappears upon wetting, and recurs when the water layer dewets the pore. Based on the 2 D - and G -peak positions, the corresponding peak intensities, and the widths, we conclude that graphene on dry mica is charge-doped and variably strained. A monolayer of water in between graphene and mica removes the doping and reduces the strain. We attribute the D' peak to direct contact of the graphene with the ionic mica surface in dry conditions, and we conclude that a complete monolayer of water wetting the slit pore decouples the graphene from the mica substrate both mechanically and electronically.

  5. Low-voltage organic strain sensor on plastic using polymer/high- K inorganic hybrid gate dielectrics

    NASA Astrophysics Data System (ADS)

    Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2007-12-01

    In this paper, gate-induced pentacene semiconductor strain sensors based on hybrid-gate dielectrics using poly-vinylphenol (PVP) and high-K inorganic, Ta IIO 5 are fabricated on flexible substrates, polyethylene naphthalate (PEN). The Ta IIO 5 gate dielectric layer is combined with a thin PVP layer to obtain very smooth and hydrophobic surfaces which improve the molecular structures of pentacene films. The PVP-Ta IIO 5 hybrid-gate dielectric films exhibit a high dielectric capacitance and low leakage current. The sensors adopting thin film transistor (TFT)-like structures show a significantly reduced operating voltage (~6V), and good device characteristics with a field-effect mobility of 1.89 cm2/V•s, a threshold voltage of -0.5 V, and an on/off ratio of 10 3. The strain sensor, one of the practical applications in large-area organic electronics, was characterized with different bending radii of 50, 40, 30, and 20 mm. The sensor output signals were significantly improved with low-operating voltages.

  6. A phase field crystal model simulation of morphology evolution and misfit dislocation generation in nanoheteroepitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.

    2017-10-01

    A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.

  7. Origins of Moiré Patterns in CVD-grown MoS2 Bilayer Structures at the Atomic Scales.

    PubMed

    Wang, Jin; Namburu, Raju; Dubey, Madan; Dongare, Avinash M

    2018-06-21

    The chemical vapor deposition (CVD)-grown two-dimensional molybdenum disulfide (MoS 2 ) structures comprise of flakes of few layers with different dimensions. The top layers are relatively smaller in size than the bottom layers, resulting in the formation of edges/steps across adjacent layers. The strain response of such few-layer terraced structures is therefore likely to be different from exfoliated few-layered structures with similar dimensions without any terraces. In this study, the strain response of CVD-grown few-layered MoS 2 terraced structures is investigated at the atomic scales using classic molecular dynamics (MD) simulations. MD simulations suggest that the strain relaxation of CVD-grown triangular terraced structures is observed in the vertical displacement of the atoms across the layers that results in the formation of Moiré patterns. The Moiré islands are observed to nucleate at the corners or edges of the few-layered structure and propagate inwards under both tensile and compressive strains. The nucleation of these islands is observed to happen at tensile strains of ~ 2% and at compressive strains of ~2.5%. The vertical displacements of the atoms and the dimensions of the Moiré islands predicted using the MD simulation are in excellent agreement with that observed experimentally.

  8. Reduction of microbial contamination on the surfaces of layer houses using slightly acidic electrolyzed water.

    PubMed

    Ni, L; Cao, W; Zheng, W C; Zhang, Q; Li, B M

    2015-11-01

    The objective of this study was to evaluate the effectiveness of slightly acidic electrolyzed water (SAEW) in reducing pathogens on pure cultures and on cotton fabric surfaces in the presence of organic matter and estimate its efficacy in comparison with povidone iodine solution for reducing pathogenic microorganisms on internal surfaces of layer houses. Pure cultures of E.coli, S.enteritidis, and S.aureus and cotton fabric surfaces inoculated with these strains were treated with SAEW in the presence of bovine serum albumin (BSA). In the absence of BSA, complete inactivation of all strains in pure cultures and on cotton fabric surfaces was observed after 2.5 and 5 min treatment with SAEW at 40 mg/L of available chlorine concentration (ACC), respectively. The bactericidal efficiency of SAEW increased with increasing ACC, but decreased with increasing BSA concentration. Then, the surfaces of the layer houses were sprayed with SAEW at 60, 80, and 100 mg/L of ACC and povidone iodine using the automated disinfection system at a rate of 110 mL/m(2), respectively. Samples from the floor, wall, feed trough, and egg conveyor belt surfaces were collected with sterile cotton swabs before and after spraying disinfection. Compared to tap water, SAEW and povidone iodine significantly reduced microbial populations on each surface of the layer houses. SAEW with 80 or 100 mg/L of ACC showed significantly higher efficacy than povidone iodine for total aerobic bacteria, staphylococci, coliforms, or yeasts and moulds on the floor and feed trough surfaces (P < 0.05). SAEW was more effective than povidone iodine at reducing total aerobic bacteria, coliforms, and yeasts and moulds on the wall surface. Additionally, SAEW had similar bactericidal activity with povidone iodine on the surface of the egg conveyor belt. Results suggest that SAEW exerts a higher or equivalent bactericidal efficiency for the surfaces compared to povidone iodine, and it may be used as an effective alternative for reducing microbial contamination on surfaces in layer houses. © 2015 Poultry Science Association Inc.

  9. Influence of quantum confinement and strain on orbital polarization of four-layer LaNiO 3 superlattices: A DFT+DMFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hyowon; Millis, Andrew J.; Marianetti, Chris A.

    Atomically precise superlattices involving transition metal oxides provide a unique opportunity to engineer correlated electron physics using strain (modulated by choice of substate) and quantum confinement (controlled by layer thickness). We use the combination of density functional theory and dynamical mean field theory (DFT+DMFT) to study Ni E g d-orbital polarization in strained LaNiO 3/LaAlO 3 superlattices consisting of four layers of nominally metallic NiO 2 and four layers of insulating AlO 2 separated by LaO layers. The layer-resolved orbital polarization is calculated as a function of strain and analyzed in terms of structural, quantum confinement, and correlation effects. Wemore » determined that the effect of strain is from the dependence of the results on the Ni-O bondlength ratio and the octahedral rotation angles; quantum confinement is studied by comparison to bulk calculations with similar degrees of strain; correlation effects are inferred by varying interaction parameters within our DFT+DMFT calculations. The calculated dependence of orbital polarization on strain in superlattices is qualitatively consistent with recent X-ray absorption spectroscopy and resonant reflectometry data. But, interesting differences of detail are found between theory and experiment. Under tensile strain, the two inequivalent Ni ions display orbital polarization similar to that calculated for strained bulk LaNiO 3 and observed in experiment. Compressive strain produces a larger dependence of orbital polarization on Ni position and even the inner Ni layer exhibits orbital polarization different from that calculated for strained bulk LaNiO 3.« less

  10. Influence of quantum confinement and strain on orbital polarization of four-layer LaNiO 3 superlattices: A DFT+DMFT study

    DOE PAGES

    Park, Hyowon; Millis, Andrew J.; Marianetti, Chris A.

    2016-06-07

    Atomically precise superlattices involving transition metal oxides provide a unique opportunity to engineer correlated electron physics using strain (modulated by choice of substate) and quantum confinement (controlled by layer thickness). We use the combination of density functional theory and dynamical mean field theory (DFT+DMFT) to study Ni E g d-orbital polarization in strained LaNiO 3/LaAlO 3 superlattices consisting of four layers of nominally metallic NiO 2 and four layers of insulating AlO 2 separated by LaO layers. The layer-resolved orbital polarization is calculated as a function of strain and analyzed in terms of structural, quantum confinement, and correlation effects. Wemore » determined that the effect of strain is from the dependence of the results on the Ni-O bondlength ratio and the octahedral rotation angles; quantum confinement is studied by comparison to bulk calculations with similar degrees of strain; correlation effects are inferred by varying interaction parameters within our DFT+DMFT calculations. The calculated dependence of orbital polarization on strain in superlattices is qualitatively consistent with recent X-ray absorption spectroscopy and resonant reflectometry data. But, interesting differences of detail are found between theory and experiment. Under tensile strain, the two inequivalent Ni ions display orbital polarization similar to that calculated for strained bulk LaNiO 3 and observed in experiment. Compressive strain produces a larger dependence of orbital polarization on Ni position and even the inner Ni layer exhibits orbital polarization different from that calculated for strained bulk LaNiO 3.« less

  11. Two groups of S-layer proteins, SLP1s and SLP2s, in Bacillus thuringiensis co-exist in the S-layer and in parasporal inclusions.

    PubMed

    Zhou, Zhou; Peng, Donghai; Zheng, Jinshui; Guo, Gang; Tian, Longjun; Yu, Ziniu; Sun, Ming

    2011-05-01

    We screened four B. thuringiensis strains whose parasporal inclusions contained the S-layer protein (SLP), and cloned two slp genes from each strain. Phylogenetic analysis indicated these SLPs could be divided into two groups, SLP1s and SLP2s. To confirm whether SLPs were present in the S-layer or as a parasporal inclusion, strains CTC and BMB1152 were chosen for further study. Western blots with whole-cell associated proteins from strains CTC and BMB1152 in the vegetative phase showed that SLP1s and SLP2s were constituents of the S-layer. Immunofluorescence utilizing spore-inclusion mixtures of strains CTC and BMB1152 in the sporulation phase showed that SLP1s and SLP2s were also constituents of parasporal inclusions. When heterogeneously expressed in the crystal negative strain BMB171, four SLPs from strains CTC and BMB1152 could also form parasporal inclusions. This temporal and spatial expression is not an occasional phenomenon but ubiquitous in B. thuringiensis strains.

  12. A two-layered mechanical model of the rat esophagus. Experiment and theory

    PubMed Central

    Fan, Yanhua; Gregersen, Hans; Kassab, Ghassan S

    2004-01-01

    Background The function of esophagus is to move food by peristaltic motion which is the result of the interaction of the tissue forces in the esophageal wall and the hydrodynamic forces in the food bolus. The structure of the esophagus is layered. In this paper, the esophagus is treated as a two-layered structure consisting of an inner collagen-rich submucosa layer and an outer muscle layer. We developed a model and experimental setup for determination of elastic moduli in the two layers in circumferential direction and related the measured elastic modulus of the intact esophagus to the elastic modulus computed from the elastic moduli of the two layers. Methods Inflation experiments were done at in vivo length and pressure-diameters relations were recorded for the rat esophagus. Furthermore, the zero-stress state was taken into consideration. Results The radius and the strain increased as function of pressure in the intact as well as in the individual layers of the esophagus. At pressures higher than 1.5 cmH2O the muscle layer had a larger radius and strain than the mucosa-submucosa layer. The strain for the intact esophagus and for the muscle layer was negative at low pressures indicating the presence of residual strains in the tissue. The stress-strain curve for the submucosa-mucosa layer was shifted to the left of the curves for the muscle layer and for the intact esophagus at strains higher than 0.3. The tangent modulus was highest in the submucosa-mucosa layer, indicating that the submucosa-mucosa has the highest stiffness. A good agreement was found between the measured elastic modulus of the intact esophagus and the elastic modulus computed from the elastic moduli of the two separated layers. PMID:15518591

  13. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films

    NASA Astrophysics Data System (ADS)

    Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.

    2016-10-01

    Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.

  14. Production flush of Agaricus blazei on Brazilian casing layers

    PubMed Central

    Colauto, Nelson Barros; da Silveira, Adriano Reis; da Eira, Augusto Ferreira; Linde, Giani Andrea

    2011-01-01

    This study aimed to verify the biological efficiency and production flushes of Agaricus blazei strains on different casing layers during 90 cultivation days. Four casing layers were used: mixture of subsoil and charcoal (VCS), lime schist (LSC), São Paulo peat (SPP) and Santa Catarina peat (SCP); and two genetically distant A. blazei strains. The fungus was grown in composted substratum and, after total colonization, a pasteurized casing layer was added over the substratum, and fructification was induced. Mushrooms were picked up daily when the basidiocarp veil was stretched, but before the lamella were exposed. The biological efficiency (BE) was determined by the fresh basidiocarp mass divided by the substratum dry mass, expressed in percentage. The production flushes were also determined over time production. The BE and production flushes during 90 days were affected by the strains as well as by the casing layers. The ABL26 and LSC produced the best BE of 60.4%. Although VCS is the most used casing layer in Brazil, it is inferior to other casing layers, for all strains, throughout cultivation time. The strain, not the casing layer, is responsible for eventual variations of the average mushroom mass. In average, circa 50% of the mushroom production occurs around the first month, 30% in the second month, and 20% in third month. The casing layer water management depends on the casing layer type and the strain. Production flush responds better to water reposition, mainly with ABL26, and better porosity to LSC and SCP casing layers. PMID:24031673

  15. Sodium Iodate Produces a Strain-Dependent Retinal Oxidative Stress Response Measured In Vivo Using QUEST MRI.

    PubMed

    Berkowitz, Bruce A; Podolsky, Robert H; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y; Berri, Ali M; Dernay, Kristin; Shafie-Khorassani, Fatema; Roberts, Robin

    2017-06-01

    We identify noninvasive biomarkers that measure the severity of oxidative stress within retina layers in sodium iodate (SI)-atrophy vulnerable (C57BL/6 [B6]) and SI-atrophy resistant (129S6/SvEvTac [S6]) mice. At 24 hours after administering systemic SI to B6 and S6 mice we measured: (1) superoxide production in whole retina ex vivo, (2) excessive free radical production in vivo based on layer-specific 1/T1 values before and after α-lipoic acid (ALA) administration while the animal was inside the magnet (QUEnch-assiSTed MRI [QUEST MRI]), and (3) visual performance (optokinetic tracking) ± antioxidants; control mice were similarly assessed. Retinal layer spacing and thickness in vivo also were evaluated (optical coherence tomography, MRI). SI-treated B6 mice retina had a significantly higher superoxide production than SI-treated S6 mice. ALA-injected SI-treated B6 mice had reduced 1/T1 in more retinal layers in vivo than in SI-treated S6 mice. Uninjected and saline-injected SI-treated B6 mice had similar transretinal 1/T1 profiles. Notably, the inner segment layer 1/T1 of SI-treated B6 mice was responsive to ALA but was unresponsive in SI-treated S6 mice. In both SI-treated strains, antioxidants improved contrast sensitivity to similar extents; antioxidants did not change acuity in either group. Retinal thicknesses were normal in both SI-treated strains at 24 hours after treatment. QUEST MRI uniquely measured severity of excessive free radical production within retinal layers of the same subject. Identifying the mechanisms underlying genetic vulnerabilities to oxidative stress is expected to help in understanding the pathogenesis of retinal degeneration.

  16. Strain Effects in Epitaxial VO2 Thin Films on Columnar Buffer-Layer TiO2/Al2O3 Virtual Substrates.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Burgess, Katherine; Charipar, Nicholas; Cheng, Shu-Fan; Stroud, Rhonda; Piqué, Alberto

    2017-01-18

    Epitaxial VO 2 /TiO 2 thin film heterostructures were grown on (100) (m-cut) Al 2 O 3 substrates via pulsed laser deposition. We have demonstrated the ability to reduce the semiconductor-metal transition (SMT) temperature of VO 2 to ∼44 °C while retaining a 4 order of magnitude SMT using the TiO 2 buffer layer. A combination of electrical transport and X-ray diffraction reciprocal space mapping studies help examine the specific strain states of VO 2 /TiO 2 /Al 2 O 3 heterostructures as a function of TiO 2 film growth temperatures. Atomic force microscopy and transmission electron microscopy analyses show that the columnar microstructure present in TiO 2 buffer films is responsible for the partially strained VO 2 film behavior and subsequently favorable transport characteristics with a lower SMT temperature. Such findings are of crucial importance for both the technological implementation of the VO 2 system, where reduction of its SMT temperature is widely sought, as well as the broader complex oxide community, where greater understanding of the evolution of microstructure, strain, and functional properties is a high priority.

  17. n-B-pi-p Superlattice Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2011-01-01

    A specially designed barrier (B) is inserted at the n-pi junction [where most GR (generation-recombination) processes take place] in the standard n-pi-p structure to substantially reduce generation-recombination dark currents. The resulting n-Bpi- p structure also has reduced tunneling dark currents, thereby solving some of the limitations to which current type II strained layer superlattice infrared detectors are prone. This innovation is compatible with common read-out integrated circuits (ROICs).

  18. Prevention of egg contamination by Salmonella Enteritidis after oral vaccination of laying hens with Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC mutants.

    PubMed

    Kilroy, Sofie; Raspoet, Ruth; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2016-08-12

    Vaccination of laying hens has been successfully used to reduce egg contamination by Salmonella Enteritidis, decreasing human salmonellosis cases worldwide. Currently used vaccines for layers are either inactivated vaccines or live attenuated strains produced by mutagenesis. Targeted gene deletion mutants hold promise for future vaccines, because specific bacterial functions can be removed that may improve safety and allow differentiation from field strains. In this study, the efficacy of Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC strains in laying hens as live vaccines was evaluated. The mutants are deficient in either the membrane channel TolC (ΔtolC) or the multi-drug efflux systems acrAB, acrEF and mdtABC (ΔacrABacrEFmdtABC). These strains have a decreased ability for gut and tissue colonization and are unable to survive in egg white, the latter preventing transmission of the vaccine strains to humans. Two groups of 30 laying hens were orally inoculated at day 1, 6 weeks and 16 weeks of age with 10(8) cfu of either vaccine strain, while a third group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 5 × 10(7) cfu Salmonella Enteritidis PT4 S1400/94. The vaccine strains were not shed or detected in the gut, internal organs or eggs, 2 weeks after the third vaccination. The strains significantly protected against gut and internal organ colonization, and completely prevented egg contamination by Salmonella Enteritidis under the conditions of this study. This indicates that Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC strains might be valuable strains for vaccination of layers against Salmonella Enteritidis.

  19. Method of producing strained-layer semiconductor devices via subsurface-patterning

    DOEpatents

    Dodson, Brian W.

    1993-01-01

    A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.

  20. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  1. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    PubMed

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  2. Anisotropically biaxial strain in non-polar (112-0) plane In x Ga1-x N/GaN layers investigated by X-ray reciprocal space mapping.

    PubMed

    Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo

    2017-07-03

    In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga 1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga 1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga 1-x N layer releases through surface roughening and the 3D growth-mode.

  3. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu

    Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less

  4. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4

    DOE PAGES

    Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu; ...

    2018-01-08

    Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less

  5. Regulatory capacities of a broiler and layer strain exposed to high CO2 levels during the second half of incubation.

    PubMed

    Everaert, Nadia; Willemsen, Hilke; Kamers, Bram; Decuypere, Eddy; Bruggeman, Veerle

    2011-02-01

    It has been shown that during embryonic chicken (Gallus gallus) development, the metabolism of broiler embryos differs from that of layers in terms of embryonic growth, pCO2/pO2 blood levels, heat production, and heart rate. Therefore, these strains might adapt differently on extreme environmental factors such as exposure to high CO2. The aim of this study was to compare broiler and layer embryos in their adaptation to 4% CO2 from embryonic days (ED) 12 to 18. Due to hypercapnia, blood pCO2 increased in both strains. Blood bicarbonate concentration was ~10 mmol/L higher in embryos exposed to high CO2 of both strains, while the bicarbonates of broilers had ~5 mmol/L higher values than layer embryos. In addition, the pH increased when embryos of both strains were exposed to CO2. Moreover, under CO2 conditions, the blood potassium concentration increased in both strains significantly, reaching a plateau at ED14. At ED12, the layer strain had a higher increase in CAII protein in red blood cells due to incubation under high CO2 compared to the broiler strain, whereas at ED14, the broiler strain had the highest increase. In conclusion, the most striking observation was the similar mechanism of broiler and layer embryos to cope with high CO2 levels. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Strain mapping in single-layer two-dimensional crystals via Raman activity

    NASA Astrophysics Data System (ADS)

    Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R. T.; Sahin, H.

    2018-03-01

    By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono- and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X =S , Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.

  7. Role of low-temperature AlGaN interlayers in thick GaN on silicon by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fritze, S.; Drechsel, P.; Stauss, P.; Rode, P.; Markurt, T.; Schulz, T.; Albrecht, M.; Bläsing, J.; Dadgar, A.; Krost, A.

    2012-06-01

    Thin AlGaN interlayers have been grown into a thick GaN stack on Si substrates to compensate tensile thermal stress and significantly improve the structural perfection of the GaN. In particular, thicker interlayers reduce the density in a-type dislocations as concluded from x-ray diffraction (XRD) measurements. Beyond an interlayer thickness of 28 nm plastic substrate deformation occurs. For a thick GaN stack, the first two interlayers serve as strain engineering layers to obtain a crack-free GaN structure, while a third strongly reduces the XRD ω-(0002)-FWHM. The vertical strain and quality profile determined by several XRD methods demonstrates the individual impact of each interlayer.

  8. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain

    DOE PAGES

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; ...

    2016-06-13

    Two-dimensional (2D) nanostructures emerge as one of leading topics in fundamental materials science and could enable next generation nanoelectronic devices. Beyond graphene and molybdenum disulphide, layered complex oxides are another large group of promising 2D candidates because of their strong interplay of intrinsic charge, spin, orbital and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials exhibiting new phenomena beyond their conventional form. Here we report the strain-driven self-assembly of Bismuth-based supercells (SC) with a 2D layered structure, and elucidate the fundamental growth mechanism with combined experimental tools and first-principles calculations.more » The study revealed that the new layered structures were formed by the strain-enabled self-assembled atomic layer stacking, i.e., alternative growth of Bi 2O 2 layer and [Fe 0.5Mn 0.5]O 6 layer. The strain-driven approach is further demonstrated in other SC candidate systems with promising room-temperature multiferroic properties. This well-integrated theoretical and experimental study inspired by the Materials Genome Initiatives opens up a new avenue in searching and designing novel 2D layered complex oxides with enormous promises.« less

  9. Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wang, Tianmeng; Wu, Meng; Cao, Ting; Chen, Yanwen; Sankar, Raman; Ulaganathan, Rajesh K.; Chou, Fangcheng; Wetzel, Christian; Xu, Cheng-Yan; Louie, Steven G.; Shi, Su-Fei

    2018-04-01

    InSe, a member of the layered materials family, is a superior electronic and optical material which retains a direct bandgap feature from the bulk to atomically thin few-layers and high electronic mobility down to a single layer limit. We, for the first time, exploit strain to drastically modify the bandgap of two-dimensional (2D) InSe nanoflakes. We demonstrated that we could decrease the bandgap of a few-layer InSe flake by 160 meV through applying an in-plane uniaxial tensile strain to 1.06% and increase the bandgap by 79 meV through applying an in-plane uniaxial compressive strain to 0.62%, as evidenced by photoluminescence (PL) spectroscopy. The large reversible bandgap change of ~239 meV arises from a large bandgap change rate (bandgap strain coefficient) of few-layer InSe in response to strain, ~154 meV/% for uniaxial tensile strain and ~140 meV/% for uniaxial compressive strain, representing the most pronounced uniaxial strain-induced bandgap strain coefficient experimentally reported in 2D materials. We developed a theoretical understanding of the strain-induced bandgap change through first-principles DFT and GW calculations. We also confirmed the bandgap change by photoconductivity measurements using excitation light with different photon energies. The highly tunable bandgap of InSe in the infrared regime should enable a wide range of applications, including electro-mechanical, piezoelectric and optoelectronic devices.

  10. Effect of Load-Induced Oxygen Absorption in YBa2Cu3O6 + x on Mechanical Properties of the "Polyimide-YBa2Cu3O6 + x " System

    NASA Astrophysics Data System (ADS)

    Muradov, A. D.; Kyrykbaeva, A. A.

    2018-05-01

    We have studied the effect of oxygen absorption by disperse powder fillers made of high-temperature superconductor YBa2Cu3O6 + x (YBCO) with concentrations of 0.05, 0.1, and 0.5 mass % on mechanical properties of polyimide composite materials (PCMs) in the form of films. It has been established that an adsorption boundary layer consisting of an aggregate of several transition layers with a varying structure is formed between filler particles and the matrix. A sharp increase in relative elongation (strain) Δɛ c , which is observed for a PCM with YBCO fillers in the form of a jump in the region of loads of 40-47 MPa, is due to the fact that the bonds between the matrix macromolecules and the molecules in the vicinity of the upper boundary layer are ruptured, leading to a strain jump. An increase in the filler concentration increases the rigidity of the bonds between macromolecules in the boundary layers, leads to a shift of Δɛ c to the region of low stresses, and reduces its value.

  11. Extremely small bandgaps, engineered by controlled multi-scale ordering in InAsSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarney, W. L.; Svensson, S. P.; Lin, Y.

    2016-06-07

    The relationship between the effective bandgap and the crystalline structure in ordered InAsSb material has been studied. Modulation of the As/Sb ratio was induced along the growth direction during molecular beam epitaxy, producing a strained layer superlattice. To enable the use of concentration ratios near unity in both layers in the period, the structures were grown with negligible net strain on a virtual substrate with a lattice constant considerably larger than that of GaSb. The bandgap line-up of InAsSb layers with different compositions is such that a type II superlattice is formed, which exhibits smaller bandgaps than either of themore » two constituents. It can also be smaller than the possible minimum direct-bandgap of the alloy. From observations of CuPt ordering in bulk layers with small amounts of strain of both signs, we postulate that strain is the main driving force for atomic ordering in InAsSb. Because the modulated structures exhibit small but opposing amounts of strain, both layers in the period exhibit ordering at the atomic scale throughout the structure. Since the strain can be controlled, the ordering can be controlled and sustained for arbitrary thick layers, unlike the situation in uniform bulk layers where the residual strain eventually leads to dislocation formation. This offers a unique way of using ordering at two different scales to engineer the band-structure.« less

  12. Egg quality in laying hens exposed to Mycoplasma gallisepticum F-strain attenuated vaccine.

    PubMed

    Machado, L D S; Santos, F F D; Togashi, C K; Abreu, D L D C; Pimentel, J C; Sesti, L; Pereira, V L D A; Nascimento, E R D

    2017-04-01

    Mycoplasma gallisepticum causes coughing, ocular and nasal discharge, reduction in feed intake, lower and uneven growth, decline in egg production and quality, and increase in mortality. Among the attenuated vaccination strains, MGF can reduce clinical signs and lesions in layer hens, stimulate immune responses of cellular and humoral basis, act as an instrument of competitive exclusion in relation to field strains, and reduce the use of antimicrobials. This study aimed to investigate the effects of attenuated MG F-strain vaccination on egg quality in 3 groups of 30 hens each, being one control and 2 vaccinated. Vaccination was applied by ocular route at 8 and 12 wk of age. Comparisons were made among unvaccinated hens; vaccinated at 8 wk of age; and vaccinated at 8 and 12 wk of age. There were no statistical differences in eggshell thickness and weight among groups. Eggs from twice vaccinated birds yielded a Haugh unit significantly lower than the other groups without affecting egg classification. There was no significant difference in ELISA results between the vaccinated groups. © 2016 Poultry Science Association Inc.

  13. Stretchable and foldable electronic devices

    DOEpatents

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong

    2013-10-08

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  14. Electronic Spectrum of Twisted Graphene Layers under Heterostrain

    NASA Astrophysics Data System (ADS)

    Huder, Loïc; Artaud, Alexandre; Le Quang, Toai; de Laissardière, Guy Trambly; Jansen, Aloysius G. M.; Lapertot, Gérard; Chapelier, Claude; Renard, Vincent T.

    2018-04-01

    We demonstrate that stacking layered materials allows a strain engineering where each layer is strained independently, which we call heterostrain. We combine detailed structural and spectroscopic measurements with tight-binding calculations to show that small uniaxial heterostrain suppresses Dirac cones and leads to the emergence of flat bands in twisted graphene layers (TGLs). Moreover, we demonstrate that heterostrain reconstructs, much more severely, the energy spectrum of TGLs than homostrain for which both layers are strained identically, a result which should apply to virtually all van der Waals structures opening exciting possibilities for straintronics with 2D materials.

  15. Stretchable and foldable electronic devices

    DOEpatents

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong

    2014-12-09

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  16. Superlattice strain gage

    DOEpatents

    Noel, B.W.; Smith, D.L.; Sinha, D.N.

    1988-06-28

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.

  17. Elastic strain relaxation in GaInAsP/InP membrane quantum wire structures

    NASA Astrophysics Data System (ADS)

    Ferdous, Fahmida; Haque, A.

    2006-12-01

    Strain distribution in GaInAsP/InP compressively strained membrane quantum wires (with low refractive index polymer cladding layers) fabricated by electron-beam lithography, reactive-ion etching and two-step epitaxial growth is theoretically calculated using finite element analysis. Results are compared with those of its conventional counterpart in which InP cladding layers are used. It is found that the etching away of the InP cladding layers in membrane structures causes a redistribution of elastic strain. The normal strain along the growth direction is the most affected component during this redistribution. We have also studied the effects of varying wire width, barrier tensile strain and other parameters on the strain relaxation. The effective bandgap in the presence of strain relaxation is also estimated. Results show that owing to the redistribution of strain, membrane structures exhibit an increase in the effective bandgap.

  18. Internal stress-assisted epitaxial lift-off process for flexible thin film (In)GaAs solar cells on metal foil

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Kim, Kangho; Jung, Sang Hyun; Kim, Chang Zoo; Shin, Hyun-Beom; Choi, JeHyuk; Kang, Ho Kwan

    2017-12-01

    Flexible thin film (In)GaAs solar cells are grown by metalorganic chemical vapor deposition on GaAs substrates and transferred to 30 μm thick Au foil by internal stress-assisted epitaxial lift-off processes. The internal stress is induced by replacing the solar cell epi-layers from GaAs to In0.015Ga0.985As, which has a slightly larger lattice constant. The compressive strained layer thickness was varied from 0 to 4.5 μm to investigate the influence of the internal stress on the epitaxial lift-off time. The etching time in the epitaxial lift-off process was reduced from 36 to 4 h by employing a GaAs/In0.015Ga0.985As heterojunction structure that has a compressive film stress of -59.0 MPa. We found that the partially strained epi-structure contributed to the much faster lateral etching rate with spontaneous bending. Although an efficiency degradation problem occurred in the strained solar cell, it was solved by optimizing the epitaxial growth conditions.

  19. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions.

    PubMed

    Gandhi, Sumeet; Oh, Byung-Taek; Schnoor, Jerald L; Alvarez, Pedro J J

    2002-04-01

    Flow-through aquifer columns packed with a middle layer of granular iron (Fe0) were used to study the applicability and limitations of bio-enhanced Fe0 barriers for the treatment of contaminant mixtures in groundwater. Concentration profiles along the columns showed extensive degradation of hexavalent chromium Cr(VI), nitrate, sulfate, and trichloroethene (TCE), mainly in the Fe0 layer. One column was bioaugmented with Shevanella algae BRY, an iron-reducing bacterium that could enhance Fe0 reactivity by reductive dissolution of passivating iron oxides. This strain did not enhance Cr(VI), which was rapidly reduced by iron, leaving little room for improvement by microbial participation. Nevertheless, BRY-enhanced nitrate removal (from 15% to 80%), partly because this strain has a wide range of electron acceptors, including nitrate. Sulfate was removed (55%) only in a column that was bioaugmented with a mixed culture containing sulfate-reducing bacteria. Apparently, these bacteria used H2 (produced by Fe0 corrosion) as electron donor to respire sulfate. Most of the TCE was degraded in the zone containing Fe0 (50-70%), and bioaugmentation with BRY slightly increased the removal efficiency to about 80%. Microbial colonization of the Fe0 surface was confirmed by scanning electron microscopy.

  20. Strain-tolerant ceramic coated seal

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1994-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. An array of discontinuous grooves is laser machined into the outer surface of the solid lubricant surface layer making the coating strain tolerant.

  1. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun

    2016-12-01

    For epitaxial films, a critical thickness (t c) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO 3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO 3/SrRuO 3/SrTiO 3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO 3 film was resolved into a strained layer with an extremely low piezoelectric coefficientmore » of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.« less

  2. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    PubMed Central

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young

    2016-01-01

    For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling. PMID:27929103

  3. Strained layer InP/InGaAs quantum well laser

    NASA Technical Reports Server (NTRS)

    Forouhar, Siamak (Inventor); Larsson, Anders G. (Inventor); Ksendzov, Alexander (Inventor); Lang, Robert J. (Inventor)

    1993-01-01

    Strained layer single or multiple quantum well lasers include an InP substrate, a pair of lattice-matched InGaAsP quarternary layers epitaxially grown on the substrate surrounding a pair of lattice matched In.sub.0.53 Ga.sub.0.47 As ternary layers surrounding one or more strained active layers of epitaxially grown, lattice-mismatched In.sub.0.75 Ga.sub.0.25 As. The level of strain is selected to control the bandgap energy to produce laser output having a wavelength in the range of 1.6 to 2.5 .mu.m. The multiple quantum well structure uses between each active layer. Diethyl zinc is used for p-type dopant in an InP cladding layer at a concentration level in the range of about 5.times.10.sup.17 /cm.sup.3 to about 2.times.10.sup.18 /cm.sup.3. Hydrogen sulfide is used for n-type dopant in the substrate.

  4. Mesophilic Aeromonas sp. serogroup O:11 resistance to complement-mediated killing.

    PubMed Central

    Merino, S; Rubires, X; Aguilar, A; Albertí, S; Hernandez-Allés, S; Benedí, V J; Tomas, J M

    1996-01-01

    The complement activation by and resistance to complement-mediated killing of Aeromonas sp. strains from serogroup O:11 were investigated by using different wild-type strains (with an S-layer characteristic of this serogroup) and their isogenic mutants characterized for their surface components (S-layer and lipopolysaccharide [LPS]). All of the Aeromonas sp. serogroup O:11 wild-type strains are unable to activate complement, which suggested that the S-layer completely covered the LPS molecules. We found that the classical complement pathway is involved in serum killing of susceptible Aeromonas sp. mutant strains of serogroup O11, while the alternative complement pathway seems not to be involved, and that the complement activation seems to be independent of antibody. The smooth mutant strains devoid of the S-layer (S-layer isogenic mutants) or isogenic LPS mutant strains with a complete or rather complete LPS core (also without the S-layer) are able to activate complement but are resistant to complement-mediated killing. The reasons for this resistance are that C3b is rapidly degraded, and therefore the lytic membrane attack complex (C5b-9) is not formed. Isogenic LPS rough mutants with an incomplete LPS core are serum sensitive because they bind more C3b than the resistant strains, the C3b is not completely degraded, and therefore the lytic complex (C5b-9) is formed. PMID:8945581

  5. Layered Composite Analysis Capability

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Cole, J. G.

    1985-01-01

    Laminated composite material construction is gaining popularity within industry as an attractive alternative to metallic designs where high strength at reduced weights is of prime consideration. This has necessitated the development of an effective analysis capability for the static, dynamic and buckling analyses of structural components constructed of layered composites. Theoretical and user aspects of layered composite analysis and its incorporation into CSA/NASTRAN are discussed. The availability of stress and strain based failure criteria is described which aids the user in reviewing the voluminous output normally produced in such analyses. Simple strategies to obtain minimum weight designs of composite structures are discussed. Several example problems are presented to demonstrate the accuracy and user convenient features of the capability.

  6. Propagation of misfit dislocations from buffer/Si interface into Si

    DOEpatents

    Liliental-Weber, Zuzanna [El Sobrante, CA; Maltez, Rogerio Luis [Porto Alegre, BR; Morkoc, Hadis [Richmond, VA; Xie, Jinqiao [Raleigh, VA

    2011-08-30

    Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.

  7. Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.

    PubMed

    Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen

    2018-01-31

    Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.

  8. Impact of the wetting layer thickness on the emission wavelength of direct band gap GeSn/Ge quantum dots

    NASA Astrophysics Data System (ADS)

    Ilahi, Bouraoui; Al-Saigh, Reem; Salem, Bassem

    2017-07-01

    The effects of the wetting layer thickness (t WL) on the electronic properties of direct band gap type-I strained dome shaped Ge(1-x)Sn x quantum dot (QD) embedded in Ge matrix is numerically studied. The emission wavelength and the energy difference between S and P electron levels have been evaluated as a function of t WL for different QD size and composition with constant height to diameter ratio. The emission wavelength is found to be red shifted by increasing the wetting layer thickness, with smaller size QD being more sensitive to the variation of t WL. Furthermore, the minimum Sn composition required to fit the directness criteria is found to reduce by increasing the wetting layer thickness.

  9. Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2018-02-26

    A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less

  10. Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilka, J. A.; Park, J.; Ahn, Y.

    A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less

  11. Patterns of muscular strain in the embryonic heart wall.

    PubMed

    Damon, Brooke J; Rémond, Mathieu C; Bigelow, Michael R; Trusk, Thomas C; Xie, Wenjie; Perucchio, Renato; Sedmera, David; Denslow, Stewart; Thompson, Robert P

    2009-06-01

    The hypothesis that inner layers of contracting muscular tubes undergo greater strain than concentric outer layers was tested by numerical modeling and by confocal microscopy of strain within the wall of the early chick heart. We modeled the looped heart as a thin muscular shell surrounding an inner layer of sponge-like trabeculae by two methods: calculation within a two-dimensional three-variable lumped model and simulated expansion of a three-dimensional, four-layer mesh of finite elements. Analysis of both models, and correlative microscopy of chamber dimensions, sarcomere spacing, and membrane leaks, indicate a gradient of strain decreasing across the wall from highest strain along inner layers. Prediction of wall thickening during expansion was confirmed by ultrasonography of beating hearts. Degree of stretch determined by radial position may thus contribute to observed patterns of regional myocardial conditioning and slowed proliferation, as well as to the morphogenesis of ventricular trabeculae and conduction fascicles. Developmental Dynamics 238:1535-1546, 2009. (c) 2009 Wiley-Liss, Inc.

  12. A strain-isolation design for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Ming; Chen, Wei-Qiu; Kim, Dae-Hyeong; Kim, Yun-Soung; Huang, Yong-Gang; Hwang, Keh-Chih; Kang, Zhan; Rogers, John A.

    2010-12-01

    Stretchable electronics represents a direction of recent development in next-generation semiconductor devices. Such systems have the potential to offer the performance of conventional wafer-based technologies, but they can be stretched like a rubber band, twisted like a rope, bent over a pencil, and folded like a piece of paper. Isolating the active devices from strains associated with such deformations is an important aspect of design. One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple, analytical model and validates the results by the finite element method. The results show that a relatively thick, compliant adhesive is effective to reduce the strain in the electronics, as is a relatively short film.

  13. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation

  14. Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and

  15. Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting.

    PubMed

    Rhee, Dongjoon; Lee, Won-Kyu; Odom, Teri W

    2017-06-01

    Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Through-Layer Buckle Wavelength-Gradient Design for the Coupling of High Sensitivity and Stretchability in a Single Strain Sensor.

    PubMed

    He, Tengyu; Lin, Chucheng; Shi, Liangjing; Wang, Ranran; Sun, Jing

    2018-03-21

    Recent years have witnessed a breathtaking development of wearable strain sensors. Coupling high sensitivity and stretchability in a strain sensor is greatly desired by emerging wearable applications but remains a big challenge. To tackle this issue, a through-layer buckle wavelength-gradient design is proposed and a facile and universal fabrication strategy is demonstrated to introduce such a gradient into the sensing film with multilayered sensing units. Following this strategy, strain sensors are fabricated using graphene woven fabrics (GWFs) as sensing units, which exhibit highly tunable electromechanical performances. Specifically, the sensor with 10-layer GWFs has a gauge factor (GF) of 2996 at a maximum strain of 242.74% and an average GF of 327. It also exhibits an extremely low minimum detection limit of 0.02% strain, a fast signal response of less than 90 ms, and a high cyclic durability through more than 10 000 cycling test. Such excellent performances qualify it in accurately monitoring full-range human activities, ranging from subtle stimuli (e.g., pulse, respiration, and voice recognition) to vigorous motions (finger bending, walking, jogging, and jumping). The combination of experimental observations and modeling study shows that the predesigned through-layer buckle wavelength gradient leads to a layer-by-layer crack propagation process, which accounts for the underlying working mechanism. Modeling study shows a great potential for further improvement of sensing performances by adjusting fabrication parameters such as layers of sensing units ( n) and step pre-strain (ε sp ). For one thing, when ε sp is fixed, the maximum sensing strain could be adjusted from >240% ( n = 10) to >450% ( n = 15) and >1200% ( n = 20). For the other, when n is fixed, the maximum sensing strain could be adjusted from >240% (ε sp = 13.2%) to >400% (ε sp = 18%) and >800% (ε sp = 25%).

  17. Comparative analysis of strain fields in layers of step-graded metamorphic buffers of various designs

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.; Bugaev, A. S.; Ruban, O. A.; Tabachkova, N. Yu.; Shchetinin, I. V.

    2017-10-01

    Spatial distribution of residual elastic strain in the layers of two step-graded metamophic buffers of various designs, grown by molecular beam epitaxy from ternary InxAl1-xAs solutions on GaAs(001) substrates, is obtained using reciprocal space mapping by three-axis X-ray diffractometry and the linear theory of elasticity. The difference in the design of the buffers enabled the formation of a dislocation-free layer with different thickness in each of the heterostructures, which was the main basis of this study. It is shown that, in spite of the different design of graded metamorphic buffers, the nature of strain fields in them is the same, and the residual elastic strains in the final elements of both buffers adjusted for the effect of work hardening subject to the same phenomenological law, which describes the strain relief process in single-layer heterostructures.

  18. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Zhao, Yunong; Wang, Yang; Guo, Xiaohui; Zhang, Yangyang; Liu, Ping; Liu, Caixia; Zhang, Yugang

    2018-03-01

    Strain sensors used as flexible and wearable electronic devices have improved prospects in the fields of artificial skin, robotics, human-machine interfaces, and healthcare. This work introduces a highly stretchable fiber-based strain sensor with a laminated structure made up of a graphene nanoplatelet layer and a carbon black/single-walled carbon nanotube synergetic conductive network layer. An ultrathin, flexible, and elastic two-layer polyurethane (PU) yarn substrate was successively deposited by a novel chemical bonding-based layered dip-coating process. These strain sensors demonstrated high stretchability (˜350%), little hysteresis, and long-term durability (over 2400 cycles) due to the favorable tensile properties of the PU substrate. The linearity of the strain sensor could reach an adjusted R-squared of 0.990 at 100% strain, which is better than most of the recently reported strain sensors. Meanwhile, the strain sensor exhibited good sensibility, rapid response, and a lower detection limit. The lower detection limit benefited from the hydrogen bond-assisted laminated structure and continuous conductive path. Finally, a series of experiments were carried out based on the special features of the PU strain sensor to show its capacity of detecting and monitoring tiny human motions.

  19. Critical layer thickness in In/sub 0. 2/Ga/sub 0. 8/As/GaAs single strained quantum well structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, I.J.; Gourley, P.L.; Dawson, L.R.

    1987-09-28

    We report accurate determination of the critical layer thickness (CLT) for single strained-layer epitaxy in the InGaAs/GaAs system. Our samples were molecular beam epitaxially grown, selectively doped, single quantum well structures comprising a strained In/sub 0.2/Ga/sub 0.8/As layer imbedded in GaAs. We determined the CLT by two sensitive techniques: Hall-effect measurements at 77 K and photoluminescence microscopy. Both techniques indicate a CLT of about 20 nm. This value is close to that determined previously (--15 nm) for comparable strained-layer superlattices, but considerably less than the value of --45 nm suggested by recent x-ray rocking-curve measurements. We show by a simplemore » calculation that photoluminescence microscopy is more than two orders of magnitude more sensitive to dislocations than x-ray diffraction. Our results re-emphasize the necessity of using high-sensitivity techniques for accurate determination of critical layer thicknesses.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, T.M.; Lewandowski, J.J.

    Recently, laminate structures have been investigated as a method for enhancing the fracture resistance of discontinuously reinforced aluminum (DRA) materials. Laminated DRA materials have been constructed which contain alternating layers of DRA material and monolithic aluminum. Initiation in these laminates has been found to preferentially occur in the DRA layers. After initiation, stable crack growth is produced in the DRA material via a crack bridging mechanism in which the ductile aluminum ligaments in the crack wake serve to reduce the driving force for propagation in the DRA layer. In a manner similar to that of Kaufman and Goolsby, it wasmore » proposed that the initiation toughness of the DRA laminates may be improved if the thickness of the DRA layers was reduced. The goal of this study was to investigate the influence of thickness on the toughness of a DRA material based upon a transition from plane strain to plane stress conditions and how this transition may affect the fracture resistance of laminated DRA materials. The following sections document initial attempts to determine the influence of DRA thickness on toughness both in conventional DRA materials and laminated DRA materials.« less

  1. The Surface Layer Homology Domain-Containing Proteins of Alkaliphilic Bacillus pseudofirmus OF4 Play an Important Role in Alkaline Adaptation via Peptidoglycan Synthesis.

    PubMed

    Fujinami, Shun; Ito, Masahiro

    2018-01-01

    It is well known that the Na + cycle and the cell wall are essential for alkaline adaptation of Na + -dependent alkaliphilic Bacillus species. In Bacillus pseudofirmus OF4, surface layer protein A (SlpA), the most abundant protein in the surface layer (S-layer) of the cell wall, is involved in alkaline adaptation, especially under low Na + concentrations. The presence of a large number of genes that encode S-layer homology (SLH) domain-containing proteins has been suggested from the genome sequence of B. pseudofirmus OF4. However, other than SlpA, the functions of SLH domain-containing proteins are not well known. Therefore, a deletion mutant of the csaB gene, required for the retention of SLH domain-containing proteins on the cell wall, was constructed to investigate its physiological properties. The csaB mutant strain of B. pseudofirmus OF4 had a chained morphology and alkaline sensitivity even under a 230 mM Na + concentration at which there is no growth difference between the parental strain and the slpA mutant strain. Ultra-thin section transmission electron microscopy showed that a csaB mutant strain lacked an S-layer part, and its peptidoglycan (PG) layer was disturbed. The slpA mutant strain also lacked an S-layer part, although its PG layer was not disturbed. These results suggested that the surface layer homology domain-containing proteins of B. pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis.

  2. Surface roughening transition and critical layer thickness in strained-layer heteroepitaxy of EuTe on PbTe (111)

    NASA Astrophysics Data System (ADS)

    Springholz, G.; Frank, N.; Bauer, G.

    1994-05-01

    Heteroepitaxial growth of 2% lattice-mismatched EuTe on PbTe (111) by molecular beam epitaxy is investigated in the two-dimensional layer-by-layer growth regime combining in situ reflection high-energy electron diffraction and scanning tunneling microscopy (STM). At the critical layer thickness a distinct surface roughening is observed. The quantitative analysis of STM images yields an increase of the root mean square roughness by a factor of 4 at this roughening transition. Strong evidence is presented that for the used growth conditions this roughening is not caused by strain induced coherent islanding but by misfit dislocations at the onset of strain relaxation.

  3. Fabrication of comb-drive actuators for straining nanostructured suspended graphene.

    PubMed

    Goldsche, Matthias; Verbiest, G J; Khodkov, Tymofiy; Sonntag, Jens; von den Driesch, Nils; Buca, Dan; Stampfer, Christoph

    2018-06-20

    We report on the fabrication and characterization of an optimized comb-drive actuator design for strain-dependent transport measurements on suspended graphene. We fabricate devices from highly p-doped silicon using deep reactive ion etching with a chromium mask. Crucially, we implement a gold layer to reduce the device resistance from ≈51.6 kΩ to ≈236 Ω at room temperature in order to allow for strain-dependent transport measurements. The graphene is integrated by mechanically transferring it directly onto the actuator using a polymethylmethacrylate membrane. Importantly, the integrated graphene can be nanostructured afterwards to optimize device functionality. The minimum feature size of the structured suspended graphene is 30~nm, which allows for interesting device concepts such as mechanically-tunable nanoconstrictions. Finally, we characterize the fabricated devices by measuring the Raman spectrum as well as the a mechanical resonance frequency of an integrated graphene sheet for different strain values. © 2018 IOP Publishing Ltd.

  4. Poly-L-glutamate/glutamine synthesis in the cell wall of Mycobacterium bovis is regulated in response to nitrogen availability

    PubMed Central

    2013-01-01

    Background The cell wall of pathogenic mycobacteria is known to possess poly-L-glutamine (PLG) layer. PLG synthesis has been directly linked to glutamine synthetase (GS) enzyme. glnA1 gene encodes for GS enzyme in mycobacteria. PLG layer is absent in cell wall of avirulent Mycobacterium smegmatis, although M. smegmatis strain expressing GS enzyme of pathogenic mycobacteria can synthesize PLG layer in the cell wall. The role of GS enzyme has been extensively studied in Mycobacterium tuberculosis, however, little is known about GS enzyme in other mycobacterial species. Mycobacterium bovis, as an intracellular pathogen encounters nitrogen stress inside macrophages, thus it has developed nitrogen assimilatory pathways to survive in adverse conditions. We have investigated the expression and activity of M. bovis GS in response to nitrogen availability and effect on synthesis of PLG layer in the cell wall. M. smegmatis was used as a model to study the behaviour of glnA1 locus of M. bovis. Results We observed that GS expression and activity decreased significantly in high nitrogen grown conditions. In high nitrogen conditions, the amount of PLG in cell wall was drastically reduced (below detectable limits) as compared to low nitrogen condition in M. bovis and in M. smegmatis strain complemented with M. bovis glnA1. Additionally, biofilm formation by M. smegmatis strain complemented with M. bovis glnA1 was increased than the wild type M. smegmatis strain. Conclusions The physiological regulation of GS in M. bovis was found to be similar to that reported in other mycobacteria but this data revealed that PLG synthesis in the cell wall of pathogenic mycobacteria occurs only in nitrogen limiting conditions and on the contrary high nitrogen conditions inhibit PLG synthesis. This indicates that PLG synthesis may be a form of nitrogen assimilatory pathway during ammonium starvation in virulent mycobacteria. Also, we have found that M. smegmatis complemented with M. bovis glnA1 was more efficient in biofilm formation than the wild type strain. This indicates that PLG layer favors biofilm formation. This study demonstrate that the nitrogen availability not only regulates GS expression and activity in M. bovis but also affects cell surface properties by modulating synthesis of PLG. PMID:24112767

  5. Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaehwan; Min, Daehong; Jang, Jongjin

    2014-10-28

    In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface.more » To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.« less

  6. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.

  7. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  8. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  9. Complex strain fields

    NASA Astrophysics Data System (ADS)

    Bradshaw, P.

    Computational techniques for accounting for extra strain rates, abnormal distributions of delta-U/delta-y, fluctuating strain rates, and the effects of body forces in modeling shear flows are discussed. Consideration is given to simple shears where the extra strain rate does not affect turbulence, thin shear layers, moderately thin shear layers, and strongly distorted flows. Attention is given to formulations based on the exact transport equations for Reynolds stress as derived from the time-averaged Navier-Stokes equations. Extra strain rates arise from curvature, lateral divergence, and bulk compression, with Coriolis forces accounting for the first, intensification of the spanwise vorticity for the second, and compression or dilation of the shear layer producing the third. The curvature forces, e.g., buoyancy and Coriolis forces, are responsible for hurricanes and tornadoes.

  10. New Class of Precision Antimicrobials Redefines Role of Clostridium difficile S-layer in Virulence and Viability

    PubMed Central

    Kirk, Joseph A.; Gebhart, Dana; Buckley, Anthony M.; Lok, Stephen; Scholl, Dean; Douce, Gillian R.; Govoni, Gregory R.; Fagan, Robert P.

    2017-01-01

    Avidocin-CDs are a new class of precision bactericidal agents that do not damage resident gut microbiota and are unlikely to promote the spread of antibiotic resistance. The precision killing properties result from the fusion of bacteriophage receptor binding proteins (RBPs) to a lethal contractile scaffold from an R-type bacteriocin. We recently described the prototypic Avidocin-CD, Av-CD291.2, that specifically kills C. difficile ribotype 027 strains and prevents colonization of mice. We have since selected two rare Av-CD291.2 resistant mutants of strain R20291 (RT027; S-layer cassette type-4, SCLT-4). These mutants have distinct point mutations in the slpA gene that result in an S-layer null phenotype. Reversion of the mutations to wild-type restored normal SLCT-4 S-layer formation and Av-CD291.2 sensitivity; however, complementation with other SCLT alleles did not restore Av-CD291.2 sensitivity despite restoring S-layer formation. Using newly identified phage RBPs, we constructed a panel of new Avidocin-CDs that kill C. difficile isolates in an SLCT-dependent manner, confirming the S-layer as the receptor in every case. In addition to bacteriophage adsorption, characterization of the S-layer null mutant also uncovered important roles for SlpA in sporulation, resistance to lysozyme and LL-37, and toxin production. Surprisingly, the S-layer-null mutant was found to persist in the hamster gut despite its completely attenuated virulence. Avidocin-CDs have significant therapeutic potential for the treatment and prevention of C. difficile Infection (CDI) given their exquisite specificity for the pathogen. Furthermore, the emergence of resistance forces mutants to trade virulence for continued viability and, therefore, greatly reduce their potential clinical impact. PMID:28878013

  11. Interstrain differences of ionotropic glutamate receptor subunits in the hippocampus and induction of hippocampal sclerosis with pilocarpine in mice.

    PubMed

    Dobó, Endre; Török, Ibolya; Mihály, András; Károly, Norbert; Krisztin-Péva, Beáta

    2015-01-01

    Rodent strains used in epilepsy research have various neurological characteristics. These differences were suggested to be attributed to the diverse densities of the ionotropic glutamate receptor (iGluR) subunits. However, previous studies failed to find interstrain differences in the hippocampal receptor levels. We supposed that a detailed layer-to-layer analysis of the iGluR subunits in the hippocampus might reveal strain-dependent differences in their base lines and reactions induced by pilocarpine (PILO) between two mouse strains without documented ancestors. Levels of iGluR subunits in Balb/c and NMRI mice were compared using semiquantitative immunohistochemistry. The alterations in the neuronal circuitry were validated by neuropeptide Y (NPY) and neuronal nuclear antigen (NeuN) immunostainings. Immunohistochemistry showed interstrain laminar differences in some subunits of both the control and PILO-treated animals. The seizure-induced irreversible neuronal changes were accompanied by reduced GluA1 and GluA2 levels. Their changes were inversely correlated in the individual NMRI mice by Pearson's method. Increase in NPY immunoreactivity showed positive correlation with GluA1, and negative correlation with GluA2. The NMRI strain was susceptible to PILO-induced hippocampal sclerosis, while the Balb/c animals showed resistance. Basal levels of iGluRs differ in mouse strains, which may account for the interstrain differences in their reactions to the convulsant. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  13. Modelling the Flow Stress of Alloy 316L using a Multi-Layered Feed Forward Neural Network with Bayesian Regularization

    NASA Astrophysics Data System (ADS)

    Abiriand Bhekisipho Twala, Olufunminiyi

    2017-08-01

    In this paper, a multilayer feedforward neural network with Bayesian regularization constitutive model is developed for alloy 316L during high strain rate and high temperature plastic deformation. The input variables are strain rate, temperature and strain while the output value is the flow stress of the material. The results show that the use of Bayesian regularized technique reduces the potential of overfitting and overtraining. The prediction quality of the model is thereby improved. The model predictions are in good agreement with experimental measurements. The measurement data used for the network training and model comparison were taken from relevant literature. The developed model is robust as it can be generalized to deformation conditions slightly below or above the training dataset.

  14. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    The design and analysis of semiconductor strained-layer device structures require an understanding of the equilibrium profiles of strain and dislocations associated with mismatched epitaxy. Although it has been shown that the equilibrium configuration for a general semiconductor strained-layer structure may be found numerically by energy minimization using an appropriate partitioning of the structure into sublayers, such an approach is computationally intense and non-intuitive. We have therefore developed a simple electric circuit model approach for the equilibrium analysis of these structures. In it, each sublayer of an epitaxial stack may be represented by an analogous circuit configuration involving an independent current source, a resistor, an independent voltage source, and an ideal diode. A multilayered structure may be built up by the connection of the appropriate number of these building blocks, and the node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits can easily be extended to the relaxation of strained-layer structures. Furthermore, the electrical circuit model may be extended to continuously-graded epitaxial layers by considering the limit as the individual sublayer thicknesses are diminished to zero. In this paper, we describe the mathematical foundation of the electrical circuit model, demonstrate its application to several representative structures involving In x Ga1- x As strained layers on GaAs (001) substrates, and develop its extension to continuously-graded layers. This extension allows the development of analytical expressions for the strain, misfit dislocation density, critical layer thickness and widths of misfit dislocation free zones for a continuously-graded layer having an arbitrary compositional profile. It is similar to the transition from circuit theory, using lumped circuit elements, to electromagnetics, using distributed electrical quantities. We show this development using first principles, but, in a more general sense, Maxwell's equations of electromagnetics could be applied.

  15. Hydrophobicities of human polymorphonuclear leukocytes and oral Bacteroides and Porphyromonas spp., Wolinella recta, and Eubacterium yurii with special reference to bacterial surface structures.

    PubMed

    Haapasalo, M; Kerosuo, E; Lounatmaa, K

    1990-12-01

    The hydrophobicities of human polymorphonuclear leukocytes (PMNLs) and Bacteroides buccae, B. oris, B. oralis, B. veroralis, B. buccalis, B. heparinolyticus, B. intermedius, B. denticola, B. loescheii, B. melaninogenicus, Porphyromonas gingivalis, P. endodontalis, Wolinella recta, and Eubacterium yurii were studied by the hexadecane method. The majority of the strains were equally or less hydrophobic than the PMNLs. Only in the case of E. yurii and the only strain of B. buccalis were all strains more hydrophobic than the PMNLs. However, some strains of B. intermedius, B. oris, B. denticola, and P. gingivalis were also more hydrophobic than the PMNLs. With the exception of B. intermedius and species with a crystalline surface protein layer (S-layer), the strains of all other species with a thick capsule were more hydrophilic than the strains with little or no extracellular polymeric material. All strains of the S-layer species were either quite hydrophilic or hydrophobic depending on the species, totally irrespective of the presence of the capsule. The results suggest that the S-layers of oral anaerobic bacteria may be important determinants of cell surface hydrophobicity.

  16. Expression of angiogenic factors and plexiform lesions in the lungs of broiler and layer chickens: A comparison.

    PubMed

    Tan, X; Shao, F-J; Fan, G-J; Ying, Y-T

    2018-05-01

    Plexiform lesions are characteristic histological changes of pulmonary arteries in human patients with severe pulmonary arterial hypertension (PAH) and are regarded as angiogenic lesions. Meat-type broiler chickens are susceptible to PAH and can develop plexiform lesions spontaneously. Whether the lesion development in broilers is associated with PAH predisposition and lung angiogenic environment remains unclear. Moreover, little is known about the cellular origin of these structures. In this work, plexiform lesions were detected in both layer chickens (a strain known to be resistant to PAH) and broiler chickens aged between 1 and 6 wk with normal pulmonary arterial pressures. Within each of the sampled ages, the lesion density did not differ between strains, with an exception of wk 4 when broiler was higher than layer. In contrast to the trend of age-related decline in layers, lesion densities in broilers demonstrated bi-phasic alterations characterized by a gradual decrease during wk 1 to 3 followed by a sudden increase at wk 4. The mRNA of 6 angiogenic factors in the lung tissue, namely, vascular endothelial growth factor receptor (VEGFR)-2, angiopoietin (Ang)-1, angiopoietin receptor Tie-2, transforming growth factor (TGF)-β1, hepatocyte growth factor (HGF), and interleukin (IL)-8, were differentially expressed between strains. However, none of them was found to be significantly correlated with the lesion density by strain and age-adjusted partial correlation analysis. An in vivo experiment revealed impaired differentiation of endothelial progenitor cells (EPC) into endothelial cells during the producing of plexiform lesions, as evidenced by increased expression of endothelial CD133, a maker of EPC, but reduced expression of CD31, a marker of mature endothelial cells, in the parent vessels of plexiform lesions compared to normal vessels. Collectively, it appears unlikely that the predisposition to PAH or intrapulmonary angiogenic environment contributes to the lesion development in broilers when compared with layers. It is suggested that the lesion development is associated with increased pulmonary arterial pressure, and that local EPC dysfunction may play a role in the process.

  17. Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Watanabe, Kazuhiro; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-10-01

    The energy band alignment of Ge1-xSnx/Ge1-x-ySixSny heterostructures was investigated, and control of the valence band offset at the Ge1-xSnx/Ge1-x-ySixSny heterointerface was achieved by controlling the Si and Sn contents in the Ge1-x-ySixSny layer. The valence band offset in the Ge0.902Sn0.098/Ge0.41Si0.50Sn0.09 heterostructure was evaluated to be as high as 330 meV, and its conduction band offset was estimated to be 150 meV by considering the energy bandgap calculated from the theoretical prediction. In addition, the formation of the strain-relaxed Ge1-x-ySixSny layer was examined and the crystalline structure was characterized. The epitaxial growth of a strain-relaxed Ge0.64Si0.21Sn0.15 layer with the degree of strain relaxation of 55% was examined using a virtual Ge substrate. Moreover, enhancement of the strain relaxation was demonstrated by post-deposition annealing, where a degree of strain relaxation of 70% was achieved after annealing at 400 °C. These results indicate the possibility for enhancing the indirect-direct crossover with a strained and high-Sn-content Ge1-xSnx layer on a strain-relaxed Ge1-x-ySixSny layer, realizing preferable carrier confinement by type-I energy band alignment with high conduction and valence band offsets.

  18. Surface-layer (S-layer) of human and animal Clostridium difficile strains and their behaviour in adherence to epithelial cells and intestinal colonization.

    PubMed

    Spigaglia, Patrizia; Barketi-Klai, Amira; Collignon, Anne; Mastrantonio, Paola; Barbanti, Fabrizio; Rupnik, Maja; Janezic, Sandra; Kansau, Imad

    2013-09-01

    Clostridium difficile is a frequent cause of severe, recurrent post-antibiotic diarrhoea and pseudomembranous colitis. The surface layer (S-layer) is the predominant outer surface component of C. difficile which is involved in pathogen-host interactions critical to pathogenesis. In this study, we characterized the S-layer protein A (SlpA) of animal and human strains belonging to different PCR-ribotypes (PR) and compared the in vitro adherence and in vivo colonization properties of strains showing different SlpA variants. Since each SlpA variant has been recently associated with an S-layer cassette, we were able to deduce the cassette for each of our strains. In this study, an identity of 99-100 % was found among the SlpA of isolates belonging to PR 012, 014/020, 045 and 078. One exception was the SlpA of a poultry isolate, PR 014/020, which showed 99 % identity with that of strain 0160, another PR 014/020 which contains an S-layer cassette 6. Interestingly, this cassette has also been found in a PR 018 strain, an emerging virulent type currently predominant in Italy. Five other SlpA variants (v014/020a-e) were identified in strains PR 014/020. In vitro adherence assays and in vivo colonization experiments were performed on five PR 014/020 strains: human 1064 (v014/020e), human 4684/08 (v014/020b), human IT1106 (v078a), poultry P30 (v014/020d) and poultry PB90 (v014/020b) strains. Adhesion assays indicate that C. difficile strains vary in their capacity to adhere to cells in culture and that adhesion seems to be independent of the SlpA variant. Colonization properties were assessed in vivo using a dixenic mouse model of colonization. The kinetics of faecal shedding and caecal colonization were similar when human 4684/08 (v014/020b) strain was compared with human 1064 (v014/020e) and poultry PB90 (v014/020b) strain. In contrast, poultry P30 (v014/020d) strain outcompeted both human 4684/08 (v014/020b) and IT1106 (v078a) strains and its adherence to caeca at day 7 was significantly higher. The peculiar characteristics of C. difficile P30 seem to advantage it in colonizing the intestinal mice niche, increasing its ability to compete and adapt. The results obtained underline the need of an increased attention to the genetic evolution of C. difficile to prevent and limit the consequences of the emergence of increasingly virulent strains.

  19. Production of a textile reinforced concrete protective layers with non-woven polypropylene fabric

    NASA Astrophysics Data System (ADS)

    Žák, J.; Štemberk, P.; Vodička, J.

    2017-09-01

    Textile concrete with nonwoven polypropylene fabric can be used for protective layers of reinforced concrete structures, reducing the thickness of the cover layer or reducing the water penetration rate into the structure. The material consists of cement matrix with finegrained aggregate and nonwoven textile reinforcement. The maximum grain size of the mixture suitable for the nonwoven textile infiltration is 0.25 mm. The interlayer contains larger aggregates and short fibers. Tensile loading causes a large amount of microcracks in the material. The material can withstand strain over 25% without collapsing. Increased quality and water-cement ratio reduction was achieved using the plasticizers and distribution of the mixture into a fabric using a vibrating trowel. It is possible to make flat plates and even curved structures from this material. Larger curvatures of structures should be solved by cutting and overlapping the fabric. Small curvatures can be solved within the deformability of the fabric. Proper infiltration of the cement mixture into the fabric is the most important task in producing this material.

  20. Structural and luminescent Properties of Bulk InAsSb

    DTIC Science & Technology

    2011-12-21

    have used compositionally graded metamorphic buffer layers to accommodate the misfit strain between InAsxSb1-x alloys and GaSb and InSb substrates in...wavelength range. The authors have used compositionally graded metamorphic buffer layers to accommodate the misfit strain between InAsxSb1x alloys...long wave IR range. We used compositionally graded GaInSb, AlGaInSb, and InAsxSb1x metamorphic buffer layers to accommodate the misfit strain between

  1. Strain and stability of ultrathin Ge layers in Si/Ge/Si axial heterojunction nanowires

    DOE PAGES

    Ross, Frances M.; Stach, Eric A.; Wen, Cheng -Yen; ...

    2015-02-05

    The abrupt heterointerfaces in the Si/Ge materials system presents useful possibilities for electronic device engineering because the band structure can be affected by strain induced by the lattice mismatch. In planar layers, heterointerfaces with abrupt composition changes are difficult to realize without introducing misfit dislocations. However, in catalytically grown nanowires, abrupt heterointerfaces can be fabricated by appropriate choice of the catalyst. Here we grow nanowires containing Si/Ge and Si/Ge/Si structures respectively with sub-1nm thick Ge "quantum wells" and we measure the interfacial strain fields using geometric phase analysis. Narrow Ge layers show radial strains of several percent, with a correspondingmore » dilation in the axial direction. Si/Ge interfaces show lattice rotation and curvature of the lattice planes. We conclude that high strains can be achieved, compared to what is possible in planar layers. In addition, we study the stability of these heterostructures under heating and electron beam irradiation. The strain and composition gradients are supposed to the cause of the instability for interdiffusion.« less

  2. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  3. Exciton confinement in strain-engineered metamorphic InAs/I nxG a1 -xAs quantum dots

    NASA Astrophysics Data System (ADS)

    Khattak, S. A.; Hayne, M.; Huang, J.; Vanacken, J.; Moshchalkov, V. V.; Seravalli, L.; Trevisi, G.; Frigeri, P.

    2017-11-01

    We report a comprehensive study of exciton confinement in self-assembled InAs quantum dots (QDs) in strain-engineered metamorphic I nxG a1 -xAs confining layers on GaAs using low-temperature magnetophotoluminescence. As the lattice mismatch (strain) between QDs and confining layers (CLs) increases from 4.8% to 5.7% the reduced mass of the exciton increases, but saturates at higher mismatches. At low QD-CL mismatch there is clear evidence of spillover of the exciton wave function due to small localization energies. This is suppressed as the In content x in the CLs decreases (mismatch and localization energy increasing). The combined effects of low effective mass and wave-function spillover at high x result in a diamagnetic shift coefficient that is an order of magnitude larger than for samples where In content in the barrier is low (mismatch is high and localization energy is large). Finally, an anomalously small measured Bohr radius in samples with the highest x is attributed to a combination of thermalization due to low localization energy, and its enhancement with magnetic field, a mechanism which results in small dots in the ensemble dominating the measured Bohr radius.

  4. Thickness dependence of curvature, strain, and response time in ionic electroactive polymer actuators fabricated via layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Montazami, Reza; Liu, Sheng; Liu, Yang; Wang, Dong; Zhang, Qiming; Heflin, James R.

    2011-05-01

    Ionic electroactive polymer (IEAP) actuators containing porous conductive network composites (CNCs) and ionic liquids can result in high strain and fast response times. Incorporation of spherical gold nanoparticles in the CNC enhances conductivity and porosity, while maintaining relatively small thickness. This leads to improved mechanical strain and bending curvature of the actuators. We have employed the layer-by-layer self-assembly technique to fabricate a CNC with enhanced curvature (0.43 mm-1) and large net intrinsic strain (6.1%). The results demonstrate that curvature and net strain of IEAP actuators due to motion of the anions increase linearly with the thickness of the CNC as a result of the increased volume in which the anions can be stored. In addition, after subtracting the curvature of a bare Nafion actuator without a CNC, it is found that the net intrinsic strain of the CNC layer is independent of thickness for the range of 20-80 nm, indicating that the entire CNC volume contributes equivalently to the actuator motion. Furthermore, the response time of the actuator due to anion motion is independent of CNC thickness, suggesting that traversal through the Nafion membrane is the limiting factor in the anion motion.

  5. A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating.

    PubMed

    Chiang, Chia-Chin; Li, Chein-Hsing

    2014-06-02

    In the present study, a novel packaged long-period fiber grating (PLPFG) strain sensor is first presented. The MEMS process was utilized to fabricate the packaged optical fiber strain sensor. The sensor structure consisted of etched optical fiber sandwiched between two layers of thick photoresist SU-8 3050 and then packaged with poly (dimethylsiloxane) (PDMS) polymer material to construct the PLPFG strain sensor. The PDMS packaging material was used to prevent the glue effect, wherein glue flows into the LPFG structure and reduces coupling strength, in the surface bonding process. Because the fiber grating was packaged with PDMS material, it was effectively protected and made robust. The resonance attenuation dip of PLPFG grows when it is loading. This study explored the size effect of the grating period and fiber diameter of PLPFG via tensile testing. The experimental results found that the best strain sensitivity of the PLPFG strain sensor was -0.0342 dB/με, and that an R2 value of 0.963 was reached.

  6. Strain-compensated infrared photodetector and photodetector array

    DOEpatents

    Kim, Jin K; Hawkins, Samuel D; Klem, John F; Cich, Michael J

    2013-05-28

    A photodetector is disclosed for the detection of infrared light with a long cutoff wavelength in the range of about 4.5-10 microns. The photodetector, which can be formed on a semiconductor substrate as an nBn device, has a light absorbing region which includes InAsSb light-absorbing layers and tensile-strained layers interspersed between the InAsSb light-absorbing layers. The tensile-strained layers can be formed from GaAs, InAs, InGaAs or a combination of these III-V compound semiconductor materials. A barrier layer in the photodetector can be formed from AlAsSb or AlGaAsSb; and a contact layer in the photodetector can be formed from InAs, GaSb or InAsSb. The photodetector is useful as an individual device, or to form a focal plane array.

  7. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    NASA Technical Reports Server (NTRS)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further complications due to the creation of defects and short life of the device or to introduce high content of indium, which again is found problematic due to the difficulties in diluting nitrogen in the presence of high indium [9]. An availability of material of proper band gap and lattice matching on InP are important issues for the development of TPV devices to perform better. To address those issues, recently we have shown that by adjusting the thickness of individual sublayers and the nitrogen composition, strain balanced GaAs(1-x)N(x)/InAs(1-y)N(y) superlattice can be designed to be both lattice matched to InP and have an effective bandgap in the desirable 0.4- 0.7eV range [10,11]. Theoretically the already reduced band gap of GaAs(1-x)N(x), due to the nitrogen effects, can be further reduced by subjecting it to a biaxial tensile strain, for example, by fabricating pseudomorphically strained layers on commonly available InP substrates. While such an approach in principle could allow access to smaller band gap (longer wavelength), only a few atomic monolayers of the material can be grown due to the large lattice mismatch between GaAs(1-x)N(x) and InP (approx.3.8-4.8 % for x<0.05, 300K). This limitation can be avoided using the principle of strain balancing [12], by introducing the alternating layers of InAs(1-y)N(y) with opposite strain (approx.2.4-3.1% for x<0.05, 300K) in combination with GaAs(1-x)N(x). Therefore, even an infinite pseudomorphically strained superlattice thickness can be realized from a sequence of GaAs(1-x)N(x) and InAs(1-y)N(y) layers if the thickness of each layer is kept below the threshold for its lattice relaxation

  8. INTERLAYER MICROMECHANICS OF THE AORTIC HEART VALVE LEAFLET

    PubMed Central

    Buchanan, Rachel M.; Sacks, Michael S.

    2014-01-01

    While the mechanical behaviors of the fibrosa and ventricularis layers of the aortic valve (AV) leaflet are understood, little information exists on their mechanical interactions mediated by the GAG-rich central spongiosa layer. Parametric simulations of the interlayer interactions of the AV leaflets in flexure utilized a tri-layered finite element (FE) model of circumferentially oriented tissue sections to investigate inter-layer sliding hypothesized to occur. Simulation results indicated that the leaflet tissue functions as a tightly bonded structure when the spongiosa effective modulus was at least 25% that of the fibrosa and ventricularis layers. Novel studies that directly measured transmural strain in flexure of AV leaflet tissue specimens validated these findings. Interestingly, a smooth transmural strain distribution indicated that the layers of the leaflet indeed act as a bonded unit, consistent with our previous observations (Stella and Sacks, 2007) of a large number of transverse collagen fibers interconnecting the fibrosa and ventricularis layers. Additionally, when the tri-layered FE model was refined to match the transmural deformations, a layer-specific bimodular material model (resulting in four total moduli) accurately matched the transmural strain and moment-curvature relations simultaneously. Collectively, these results provide evidence, contrary to previous assumptions, that the valve layers function as a bonded structure in the low-strain flexure deformation mode. Most likely, this results directly from the transverse collagen fibers that bind the layers together to disable physical sliding and maintain layer residual stresses. Further, the spongiosa may function as a general dampening layer while the AV leaflets deforms as a homogenous structure despite its heterogeneous architecture. PMID:24292631

  9. Structural evaluation of InAsP/InGaAsP strained-layer superlattices with dislocations as grown by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakashima, Kiichi; Sugiura, Hideo

    1997-08-01

    The relaxation process in InAsP/InGaAsP strained-layer superlattices (SLSs) with interfacial misfit dislocations has been investigated systematically by transmission electron microscopy (TEM) and x-ray analyses. The TEM analysis reveals that dislocations locate a little inside the buffer layer near the interface between the buffer and first well layer in the SLS. The x-ray analysis of (400) azimuthal angle dependence indicates the buffer layer has a large macroscopic tilt. Using a curve fitting analysis of various (hkl) x-ray profiles and reciprocal lattice mapping measurements, residual strain was determined quantitatively, i.e., Δa∥ and Δa⊥, in the SLS and buffer layer. These results reveal that the dislocations mainly cause lattice distortion of the buffer layer rather than relaxation of the SLS layer. The most remarkable result is that the change of a∥ is not equal to that of a⊥ in the buffer layer. This phenomenon strongly suggests that microplastic domains are generated in the buffer layer.

  10. On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium

    NASA Astrophysics Data System (ADS)

    Kovtanyuk, L. V.; Panchenko, G. L.

    2017-11-01

    The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.

  11. Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Liang; Wang, Jin; Dongare, Avinash M., E-mail: dongare@uconn.edu

    2015-06-28

    The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer andmore » a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.« less

  12. Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Saj Mohan M., M.; Ramadurai, Ranjith

    2018-04-01

    Strain engineering is a key to develop novel properties in functional materials. We report a strain mediated phase stabilization and epitaxial growth of bismuth ferrite(BiFeO3) thin films on LaAlO3 (LAO) substrates. The strain in the epitaxial layer is controlled by controlling the thickness of bottom electrode where the thickness of the BFO is kept constant. The thickness of La0.7Sr0.3MnO3(LSMO) template layer was optimized to grow completely strained tetragonal, tetragonal/rhombohedral mixed phase and fully relaxed rhombohedral phase of BFO layers. The results were confirmed with coupled-θ-2θ scan, and small area reciprocal space mapping. The piezoelectric d33 (˜ 45-48 pm/V) coefficient of the mixed phase was relatively larger than the strained tetragonal and relaxed rhombohedral phase for a given thickness.

  13. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    NASA Astrophysics Data System (ADS)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  14. HOLEGAGE 1.0 - Strain-Gauge Drilling Analysis Program

    NASA Technical Reports Server (NTRS)

    Hampton, Roy V.

    1992-01-01

    Interior stresses inferred from changes in surface strains as hole is drilled. Computes stresses using strain data from each drilled-hole depth layer. Planar stresses computed in three ways: least-squares fit for linear variation with depth, integral method to give incremental stress data for each layer, and/or linear fit to integral data. Written in FORTRAN 77.

  15. Hot Electron Injection into Uniaxially Strained Silicon

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo

    In semiconductor spintronics, silicon attracts great attention due to the long electron spin lifetime. Silicon is also one of the most commonly used semiconductor in microelectronics industry. The spin relaxation process of diamond crystal structure such as silicon is dominant by Elliot-Yafet mechanism. Yafet shows that intravalley scattering process is dominant. The conduction electron spin lifetime measured by electron spin resonance measurement and electronic measurement using ballistic hot electron method well agrees with Yafet's theory. However, the recent theory predicts a strong contribution of intervalley scattering process such as f-process in silicon. The conduction band minimum is close the Brillouin zone edge, X point which causes strong spin mixing at the conduction band. A recent experiment of electric field-induced hot electron spin relaxation also shows the strong effect of f-process in silicon. In uniaxially strained silicon along crystal axis [100], the suppression of f-process is predicted which leads to enhance electron spin lifetime. By inducing a change in crystal structure due to uniaxial strain, the six fold degeneracy becomes two fold degeneracy, which is valley splitting. As the valley splitting increases, intervalley scattering is reduced. A recent theory predicts 4 times longer electron spin lifetime in 0.5% uniaxially strained silicon. In this thesis, we demonstrate ballistic hot electron injection into silicon under various uniaxial strain. Spin polarized hot electron injection under strain is experimentally one of the most challenging part to measure conduction electron spin lifetime in silicon. Hot electron injection adopts tunnel junction which is a thin oxide layer between two conducting materials. Tunnel barrier, which is an oxide layer, is only 4 ˜ 5 nm thick. Also, two conducting materials are only tens of nanometer. Therefore, under high pressure to apply 0.5% strain on silicon, thin films on silicon substrate can be easily destroyed. In order to confirm the performance of tunnel junction, we use tunnel magnetoresistance(TMR). TMR consists of two kinds of ferromagnetic materials and an oxide layer as tunnel barrier in order to measure spin valve effect. Using silicon as a collector with Schottky barrier interface between metal and silicon, ballistic hot spin polarized electron injection into silicon is demonstrated. We also observed change of coercive field and magnetoresistance due to modification of local states in ferromagnetic materials and surface states at the interface between metal and silicon due to strain.

  16. Relationships of left ventricular strain and strain rate to wall stress and their afterload dependency.

    PubMed

    Murai, Daisuke; Yamada, Satoshi; Hayashi, Taichi; Okada, Kazunori; Nishino, Hisao; Nakabachi, Masahiro; Yokoyama, Shinobu; Abe, Ayumu; Ichikawa, Ayako; Ono, Kota; Kaga, Sanae; Iwano, Hiroyuki; Mikami, Taisei; Tsutsui, Hiroyuki

    2017-05-01

    Whether and how left ventricular (LV) strain and strain rate correlate with wall stress is not known. Furthermore, it is not determined whether strain or strain rate is less dependent on the afterload. In 41 healthy young adults, LV global peak strain and systolic peak strain rate in the longitudinal direction (LS and LSR, respectively) and circumferential direction (CS and CSR, respectively) were measured layer-specifically using speckle tracking echocardiography (STE) before and during a handgrip exercise. Among all the points before and during the exercise, all the STE parameters significantly correlated linearly with wall stress (LS: r = -0.53, p < 0.01, LSR: r = -0.28, p < 0.05, CS in the inner layer: r = -0.72, p < 0.01, CSR in the inner layer: r = -0.47, p < 0.01). Strain more strongly correlated with wall stress than strain rate (r = -0.53 for LS vs. r = -0.28 for LSR, p < 0.05; r = -0.72 for CS vs. r = -0.47 for CSR in the inner layer, p < 0.05), whereas the interobserver variability was similar between strain and strain rate (longitudinal 6.2 vs. 5.2 %, inner circumferential 4.8 vs. 4.7 %, mid-circumferential 7.9 vs. 6.9 %, outer circumferential 10.4 vs. 9.7 %), indicating that the differences in correlation coefficients reflect those in afterload dependency. It was thus concluded that LV strain and strain rate linearly and inversely correlated with wall stress in the longitudinal and circumferential directions, and strain more strongly depended on afterload than did strain rate. Myocardial shortening should be evaluated based on the relationships between these parameters and wall stress.

  17. Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1

    PubMed Central

    Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki

    2014-01-01

    Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate. PMID:25548048

  18. Functional Genomics of the Aeromonas salmonicida Lipopolysaccharide O-Antigen and A-Layer from Typical and Atypical Strains

    PubMed Central

    Merino, Susana; de Mendoza, Elena; Canals, Rocío; Tomás, Juan M.

    2015-01-01

    The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway. Until now, only repeating units with one or two different monosaccharides have been described. Functional genomic analysis of this wbsalmo region is mostly in agreement with the LPS O-antigen structure of acetylated l-rhamnose (Rha), d-glucose (Glc), and 2-amino-2-deoxy-d-mannose (ManN). Between genes of the wbsalmo we found the genes responsible for the biosynthesis and assembly of the S-layer (named A-layer in these strains). Through comparative genomic analysis and in-frame deletions of some of the genes, we concluded that all the A. salmonicida typical and atypical strains, other than A. salmonicida subsp. pectinolytica strains, shared the same wbsalmo and presence of A-layer. A. salmonicida subsp. pectinolytica strains lack wbsalmo and A-layer, two major virulence factors, and this could be the reason they are the only ones not found as fish pathogens. PMID:26082990

  19. Two distinct Photobacterium populations thrive in ancient Mediterranean sapropels.

    PubMed

    Süss, Jacqueline; Herrmann, Kerstin; Seidel, Michael; Cypionka, Heribert; Engelen, Bert; Sass, Henrik

    2008-04-01

    Eastern Mediterranean sediments are characterized by the periodic occurrence of conspicuous, organic matter-rich sapropel layers. Phylogenetic analysis of a large culture collection isolated from these sediments revealed that about one third of the isolates belonged to the genus Photobacterium. In the present study, 22 of these strains were examined with respect to their phylogenetic and metabolic diversity. The strains belonged to two distinct Photobacterium populations (Mediterranean cluster I and II). Strains of cluster I were isolated almost exclusively from organic-rich sapropel layers and were closely affiliated with P. aplysiae (based on their 16S rRNA gene sequences). They possessed almost identical Enterobacterial Repetitive Intergenic Consensus (ERIC) and substrate utilization patterns, even among strains from different sampling sites or from layers differing up to 100,000 years in age. Strains of cluster II originated from sapropels and from the surface and carbon-lean intermediate layers. They were related to Photobacterium frigidiphilum but differed significantly in their fingerprint patterns and substrate spectra, even when these strains were obtained from the same sampling site and layer. Temperature range for growth (4 to 33 degrees C), salinity tolerance (5 to 100 per thousand), pH requirements (5.5-9.3), and the composition of polar membrane lipids were similar for both clusters. All strains grew by fermentation (glucose, organic acids) and all but five by anaerobic respiration (nitrate, dimethyl sulfoxide, anthraquinone disulfonate, or humic acids). These results indicate that the genus Photobacterium forms subsurface populations well adapted to life in the deep biosphere.

  20. Longitudinal 2 years field study of conventional vaccination against highly pathogenic avian influenza H5N1 in layer hens.

    PubMed

    Rudolf, Miriam; Pöppel, Manfred; Fröhlich, Andreas; Breithaupt, Angele; Teifke, Jens; Blohm, Ulrike; Mettenleiter, Thomas; Beer, Martin; Harder, Timm

    2010-10-04

    A licensed, inactivated vaccine based on a low pathogenic avian influenza virus strain (H5N2) was evaluated in layer hens kept under field conditions during a 2-year period. Vaccine efficacy was investigated by specific antibodies and by challenge-contact experiments using highly pathogenic avian influenza viruses (HPAIV) H5N1. Basic immunization with two applications induced clinical protection. Virus excretion by vaccinated hens was significantly reduced compared to non-vaccinated controls; transmission to non-vaccinated and vaccinated contact birds was not fully interrupted. Vaccination efficacy is influenced by several factors including antigenic relatedness between vaccine and field strains, but also by species, age and type of commercial uses of the host. Limitations and risks of HPAIV vaccination as silent spread of HPAIV and emergence of escape mutants must be considered a priori and appropriate corrective measures have to be installed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The maximum evaporative potential of constant wear immersion suits influences the risk of excessive heat strain for helicopter aircrew

    PubMed Central

    2018-01-01

    The heat exchange properties of aircrew clothing including a Constant Wear Immersion Suit (CWIS), and the environmental conditions in which heat strain would impair operational performance, were investigated. The maximum evaporative potential (im/clo) of six clothing ensembles (three with a flight suit (FLY) and three with a CWIS) of varying undergarment layers were measured with a heated sweating manikin. Biophysical modelling estimated the environmental conditions in which body core temperature would elevate above 38.0°C during routine flight. The im/clo was reduced with additional undergarment layers, and was more restricted in CWIS compared to FLY ensembles. A significant linear relationship (r2 = 0.98, P<0.001) was observed between im/clo and the highest wet-bulb globe temperature in which the flight scenario could be completed without body core temperature exceeding 38.0°C. These findings provide a valuable tool for clothing manufacturers and mission planners for the development and selection of CWIS’s for aircrew. PMID:29723267

  2. Enhancement of indium incorporation to InGaN MQWs on AlN/GaN periodic multilayers

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Hafiz, Shopan; Das, Saikat; Izyumskaya, Natalia; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    The effect of compressive strain in buffer layer on strain relaxation and indium incorporation in InGaN multi-quantum wells (MQWs) is studied for two sets of samples grown side by side on both relaxed GaN layers and strained 10-pairs of AlN/GaN periodic multilayers. The 14-nm AlN layers were utilized in both multilayers, while GaN thickness was 4.5 and 2.5 nm in the first and the second set, respectively. The obtained results for the InGaN active layers on relaxed GaN and AlN/GaN periodic multilayers indicate enhanced indium incorporation for more relaxed InGaN active layers providing a variety of emission colors from purple to green.

  3. Electric field dynamics in nitride structures containing quaternary alloy (Al, In, Ga)N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borysiuk, J., E-mail: jolanta.borysiuk@ifpan.edu.pl; Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw; Sakowski, K.

    2016-07-07

    Molecular beam epitaxy growth and basic physical properties of quaternary AlInGaN layers, sufficiently thick for construction of electron blocking layers (EBL), embedded in ternary InGaN layers are presented. Transmission electron microscopy (TEM) measurement revealed good crystallographic structure and compositional uniformity of the quaternary layers contained in other nitride layers, which are typical for construction of nitride based devices. The AlInGaN layer was epitaxially compatible to InGaN matrix, strained, and no strain related dislocation creation was observed. The strain penetrated for limited depth, below 3 nm, even for relatively high content of indium (7%). For lower indium content (0.6%), the strain wasmore » below the detection limit by TEM strain analysis. The structures containing quaternary AlInGaN layers were studied by time dependent photoluminescence (PL) at different temperatures and excitation powers. It was shown that PL spectra contain three peaks: high energy donor bound exciton peak from the bulk GaN (DX GaN) and the two peaks (A and B) from InGaN layers. No emission from quaternary AlInGaN layers was observed. An accumulation of electrons on the EBL interface in high-In sample and formation of 2D electron gas (2DEG) was detected. The dynamics of 2DEG was studied by time resolved luminescence revealing strong dependence of emission energy on the 2DEG concentration. Theoretical calculations as well as power-dependence and temperature-dependence analysis showed the importance of electric field inside the structure. At the interface, the field was screened by carriers and could be changed by illumination. From these measurements, the dynamics of electric field was described as the discharge of carriers accumulated on the EBL.« less

  4. Effect of elastic strain redistribution on electronic band structures of compressively strained GaInAsP/InP membrane quantum wires

    NASA Astrophysics Data System (ADS)

    Ferdous, F.; Haque, A.

    2007-05-01

    The effect of redistribution of elastic strain relaxation on the energy band structures of GaInAsP/InP compressively strained membrane quantum wires fabricated by electron-beam lithography, reactive-ion etching and two-step epitaxial growth is theoretically studied using an 8-band k ṡp method. Anisotropic strain analysis by the finite element method shows that due to etching away the top and the bottom InP clad layers in membrane structures, redistribution of strain occurs. It is found that strain redistribution increases the effective bandgap of membrane quantum wire structures causing a blueshift of the emission frequency. Comparison with effective bandgap calculations neglecting confinement and band mixing demonstrates that neglect of these effects leads to an overestimation of the change in the bandgap. We have also investigated the effect of variation of wire width, barrier strain compensation, number of stacked quantum wire layers, and thickness of the top and the bottom residual InP layers in membrane structures on the change in the effective bandgap of membrane structures.

  5. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    NASA Technical Reports Server (NTRS)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  6. Si/Ge double-layered nanotube array as a lithium ion battery anode.

    PubMed

    Song, Taeseup; Cheng, Huanyu; Choi, Heechae; Lee, Jin-Hyon; Han, Hyungkyu; Lee, Dong Hyun; Yoo, Dong Su; Kwon, Moon-Seok; Choi, Jae-Man; Doo, Seok Gwang; Chang, Hyuk; Xiao, Jianliang; Huang, Yonggang; Park, Won Il; Chung, Yong-Chae; Kim, Hansu; Rogers, John A; Paik, Ungyu

    2012-01-24

    Problems related to tremendous volume changes associated with cycling and the low electron conductivity and ion diffusivity of Si represent major obstacles to its use in high-capacity anodes for lithium ion batteries. We have developed a group IVA based nanotube heterostructure array, consisting of a high-capacity Si inner layer and a highly conductive Ge outer layer, to yield both favorable mechanics and kinetics in battery applications. This type of Si/Ge double-layered nanotube array electrode exhibits improved electrochemical performances over the analogous homogeneous Si system, including stable capacity retention (85% after 50 cycles) and doubled capacity at a 3C rate. These results stem from reduced maximum hoop strain in the nanotubes, supported by theoretical mechanics modeling, and lowered activation energy barrier for Li diffusion. This electrode technology creates opportunities in the development of group IVA nanotube heterostructures for next generation lithium ion batteries. © 2011 American Chemical Society

  7. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    NASA Astrophysics Data System (ADS)

    Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2017-05-01

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components.

  8. Improved crystalline quality of AlN epitaxial layer on sapphire by introducing TMGa pulse flow into the nucleation stage

    NASA Astrophysics Data System (ADS)

    Wu, Hualong; Wang, Hailong; Chen, Yingda; Zhang, Lingxia; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao

    2018-05-01

    The crystalline quality of AlN epitaxial layers on sapphire substrates was improved by introducing trimethylgallium (TMGa) pulse flow into the growth of AlN nucleation layers. It was found that the density of both screw- and edge-type threading dislocations could be significantly reduced by introducing the TMGa pulse flow. With increasing TMGa pulse flow times, the lateral correlation length (i.e. the grain size) increases and the strain in the AlN epilayers changes from tensile state to compressive state. Unstrained AlN with the least dislocations and a smooth surface was obtained by introducing 2-times TMGa pulse flow. The crystalline improvement is attributed to enhanced lateral growth and improved crystalline orientation by the TMGa pulse flow.

  9. Superconducting Cable Having A Felexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-15

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  10. Superconducting Cable Having A Flexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-08-30

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  11. Passivation of InP heterojunction bipolar transistors by strain controlled plasma assisted electron beam evaporated hafnium oxide

    NASA Astrophysics Data System (ADS)

    Driad, R.; Sah, R. E.; Schmidt, R.; Kirste, L.

    2012-01-01

    We present structural, stress, and electrical properties of plasma assisted e-beam evaporated hafnium dioxide (HfO2) layers on n-type InP substrates. These layers have subsequently been used for surface passivation of InGaAs/InP heterostructure bipolar transistors either alone or in combination with plasma enhanced chemical vapor deposited SiO2 layers. The use of stacked HfO2/SiO2 results in better interface quality with InGaAs/InP heterostructures, as illustrated by smaller leakage current and improved breakdown voltage. These improvements can be attributed to the reduced defect density and charge trapping at the dielectric-semiconductor interface. The deposition at room temperature makes these films suitable for sensitive devices.

  12. Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.

    PubMed

    Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T

    2015-09-04

    We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.

  13. Influence of deformation on dolomite rim growth kinetics

    NASA Astrophysics Data System (ADS)

    Helpa, Vanessa; Rybacki, Erik; Grafulha Morales, Luiz Fernando; Dresen, Georg

    2015-04-01

    Using a gas-deformation apparatus stacks of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals were deformed at T = 750° C and P = 400 MPa to examine the influence of stress and strain on magnesio-calcite and dolomite (CaMg[CO3]2) growth kinetics. Triaxial compression and torsion tests performed at constant stresses between 7 and 38 MPa and test durations between 4 and 171 hours resulted in bulk strains of 0.03-0.2 and maximum shear strains of 0.8-5.6, respectively. The reaction rims consist of fine-grained (2-7 μm) dolomite with palisade-shaped grains growing into magnesite reactants and equiaxed granular dolomite grains next to calcite. In between dolomite and pure calcite, magnesio-calcite grains evolved with an average grain size of 20-40 μm. Grain boundaries tend to be straighter at high bulk strains and equilibrium angles at grain triple junctions are common within the magnesio-calcite layer. Transmission electron microscopy shows almost dislocation free palisades and increasing dislocation density within granular dolomite towards the magnesio-calcite boundary. Within magnesio-calcite grains, dislocations are concentrated at grain boundaries. Variation of time at fixed stress (˜17 MPa) yields a parabolic time dependence of dolomite rim width, indicating diffusion-controlled growth, similar to isostatic rim growth behavior. In contrast, the magnesio-calcite layer growth is enhanced compared to isostatic conditions. Triaxial compression at given time shows no significant change of dolomite rim thickness (11±2 μm) and width of magnesio-calcite layers (33±5 μm) with increasing stress. In torsion experiments, reaction layer thickness and grain size decrease from the center (low stress/strain) to the edge (high strain/stress) of samples. Chemical analysis shows nearly stoichiometric composition of dolomite palisades, but enhanced Ca content within granular grains, indicating local disequilibrium with magnesio-calcite, in particular for twisted samples. The shift from local equilibrium is ˜3 mol% in triaxial compression and ˜7 mol% in torsion. Electron backscatter diffraction analysis reveals a crystallographic preferred orientation (CPO) within the reaction layers with [0001] axes parallel to the compression/rotation axis and poles of {2-1-10} and {10-10} prismatic planes parallel to the reaction interface. Compared to isostatic annealing, the CPO is more pronounced and the amount of low-angle grain boundaries is increased. At the imposed experimental conditions, most of the bulk deformation is accommodated by calcite single, which is stronger than magnesite. Application of flow laws for magnesio-calcite and dolomite suggest that the fine-grained reaction products should deform by grain boundary diffusion creep, resulting in lower flow strength than the single crystal reactants. However, microstructural observations indicate that deformation of granular dolomite and magnesio-calcite is at least partially assisted by dislocation creep, which would result in an almost similar strength to calcite. Therefore, flattening of the reaction layers during triaxial compression may be counterbalanced by enhanced reaction rates, resulting in almost constant layer thickness, independent of the applied stress. For simple shear, the reduced reaction kinetics in the high stress/strain region of twisted samples may be related to increased nucleation rates, resulting in a lower grain size and rim thickness.

  14. Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb

    DOE PAGES

    Kim, Honggyu; Meng, Yifei; Klem, John F.; ...

    2018-04-28

    Here, we show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with our scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase inmore » strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ~1 nm, which suggest the presence of point defects.« less

  15. Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb

    NASA Astrophysics Data System (ADS)

    Kim, Honggyu; Meng, Yifei; Klem, John F.; Hawkins, Samuel D.; Kim, Jin K.; Zuo, Jian-Min

    2018-04-01

    We show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with the scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase in strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ˜1 nm, which suggest the presence of point defects.

  16. Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Honggyu; Meng, Yifei; Klem, John F.

    Here, we show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with our scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase inmore » strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ~1 nm, which suggest the presence of point defects.« less

  17. RBS/Channeling Studies of Swift Heavy Ion Irradiated GaN Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathish, N.; Dhamodaran, S.; Pathak, A. P.

    2009-03-10

    Epitaxial GaN layers grown by MOCVD on c-plane sapphire substrates were irradiated with 150 MeV Ag ions at a fluence of 5x10{sup 12} ions/cm{sup 2}. Samples used in this study are 2 {mu}m thick GaN layers, with and without a thin AlN cap-layer. Energy dependent RBS/Channeling measurements have been carried out on both irradiated and unirradiated samples for defects characterization. Observed results are compared and correlated with previous HRXRD, AFM and optical studies. The {chi}{sub min} values for unirradiated samples show very high value and the calculated defect densities are of the order of 10{sup 10} cm{sup -2} as expectedmore » in these samples. Effects of irradiation on these samples are different as initial samples had different defect densities. Epitaxial reconstruction of GaN buffer layer has been attributed to the observed changes, which are generally grown to reduce the strain between GaN and Sapphire.« less

  18. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber.

    PubMed

    Bradley, Geoffrey G; Punja, Zamir K

    2010-11-01

    Three composts (Ball, dairy, and greenhouse) were tested for the ability to suppress the development of Fusarium root and stem rot (caused by Fusarium oxysporum f. sp. radicis-cucumerinum) on greenhouse cucumber. Dairy and greenhouse composts significantly reduced disease severity (P = 0.05), while Ball compost had no effect. Assessment of total culturable microbes in the composts showed a positive relationship between disease suppressive ability and total population levels of pseudomonads. In vitro antagonism assays between compost-isolated bacterial strains and the pathogen showed that strains of Pseudomonas aeruginosa exhibited the greatest antagonism. In growth room trials, strains of P. aeruginosa and nonantagonistic Pseudomonas maculicola, plus 2 biocontrol strains of Pseudomonas fluorescens, were tested for their ability to reduce (i) survival of F. oxysporum, (ii) colonization of plants by the pathogen, and (iii) disease severity. Cucumber seedlings grown in compost receiving P. aeruginosa and P. fluorescens had reduced disease severity index scores after 8 weeks compared with control plants without bacteria. Internal stem colonization by F. oxysporum was significantly reduced by P. aeruginosa. The bacteria colonized plant roots at 1.9 × 10(6) ± 0.73 × 10(6) CFU·(g root tissue)-1 and survival was >107 CFU·(g compost)-1 after 6 weeks. The locus for 2,4-diacetylphloroglucinol production was detected by Southern blot analysis and confirmed by PCR. The production of the antibiotic 2,4-diacetylphloroglucinol in liquid culture by P. aeruginosa was confirmed by thin layer chromatography. These results demonstrate that composts containing antibiotic-producing P. aeruginosa have the potential to suppress diseases caused by Fusarium species.

  19. Strained layer Fabry-Perot device

    DOEpatents

    Brennan, Thomas M.; Fritz, Ian J.; Hammons, Burrell E.

    1994-01-01

    An asymmetric Fabry-Perot reflectance modulator (AFPM) consists of an active region between top and bottom mirrors, the bottom mirror being affixed to a substrate by a buffer layer. The active region comprises a strained-layer region having a bandgap and thickness chosen for resonance at the Fabry-Perot frequency. The mirrors are lattice matched to the active region, and the buffer layer is lattice matched to the mirror at the interface. The device operates at wavelengths of commercially available semiconductor lasers.

  20. EFFECTS OF BROILER REARING ENVIRONMENT ON TRANSMISSION OF F-STRAIN MYCOPLASMA GALLISEPTICUM FROM COMMERCIAL LAYER HENS TO BROILER CHICKENS: ROLE OF ACID-BASE BALANCE

    USDA-ARS?s Scientific Manuscript database

    Two trials were conducted concurrently to determine and compare, blood pH, blood gases, hematocrit, and hemoglobin in mycoplasma-free, F-strain Mycoplasma gallisepticum (FMG) inoculation layers, and FMG contact-infected broilers. FMG-inoculated layers had the highest partial pressure of O2 and the l...

  1. Nucleation of ripplocations through atomistic modeling of surface nanoindentation in graphite

    NASA Astrophysics Data System (ADS)

    Freiberg, D.; Barsoum, M. W.; Tucker, G. J.

    2018-05-01

    In this work, we study the nucleation and subsequent evolution behavior of ripplocations - a newly proposed strain accommodating defect in layered materials where one, or more, layers buckle orthogonally to the layers - using atomistic modeling of graphite. To that effect, we model the response to cylindrical indenters with radii R of 50, 100, and 250 nm, loaded edge-on into graphite layers and the strain gradient effects beneath the indenter are quantified. We show that the response is initially elastic followed by ripplocation nucleation, and growth of multiple fully reversible ripplocation boundaries below the indenter. In the elastic region, the stress is found to be a function of indentation volume; beyond the elastic regime, the interlayer strain gradient emerges as paramount in the onset of ripplocation nucleation and subsequent in-plane stress relaxation. Furthermore, ripplocation boundaries that nucleate from the alignment of ripplocations on adjacent layers are exceedingly nonlocal and propagate, wavelike, away from the indented surface. This work not only provides a critical understanding of the mechanistic underpinnings of the deformation of layered solids and formation of kink boundaries, but also provides a more complete description of the nucleation mechanics of ripplocations and their strain field dependence.

  2. Investigation of threading dislocation blocking in strained-layer InGaAs/GaAs heterostructures using scanning cathodoluminescence microscopy

    NASA Astrophysics Data System (ADS)

    Russell, J. J.; Zou, J.; Moon, A. R.; Cockayne, D. J. H.

    2000-08-01

    Threading dislocation glide relieves strain in strained-layer heterostructures by increasing the total length of interface misfit dislocations. The blocking theory proposed by Freund [J. Appl. Phys. 68, 2073 (1990)] predicts the thickness above which gliding threading dislocations are able to overcome the resistance force produced by existing orthogonal misfit dislocations. A set of wedge-shaped samples of InxGa1-xAs/GaAs (x=0.04) strained-layer heterostructures was grown using molecular-beam epitaxy in order to test the theory of dislocation blocking over a range of thicknesses within one sample. Scanning cathodoluminescence microscopy techniques were used to image the misfit dislocations. The cathodoluminescence results confirm the model proposed by Freund.

  3. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F.; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha

    2014-07-01

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  4. Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy

    PubMed Central

    Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Korolkov, Vladimir V.; Cho, YongJin; Mellor, Christopher J.; Foxon, C. Thomas; Khlobystov, Andrei N.; Watanabe, Kenji; Taniguchi, Takashi; Eaves, Laurence; Novikov, Sergei V.; Beton, Peter H.

    2016-01-01

    Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moiré patterns are observed and attributed to the relaxation of graphene islands which nucleate at different sites and subsequently coalesce. In addition, cracks are formed leading to strain relaxation, highly anisotropic strain fields, and abrupt boundaries between regions with different moiré periods. These cracks can also be formed by modification of the layers with a local probe resulting in the contraction and physical displacement of graphene layers. The Raman spectra of regions with a large moiré period reveal split and shifted G and 2D peaks confirming the presence of strain. Our work demonstrates a new approach to the growth of epitaxial graphene and a means of generating and modifying strain in graphene. PMID:26928710

  5. Variation of refractive index in strained In(x)Ga(1-x)As-GaAs heterostructures

    NASA Technical Reports Server (NTRS)

    Das, U.; Bhattacharya, P. K.

    1986-01-01

    In(x)Ga(1-x)As-GaAs heterostructures and strained-layer superlattices can be used as optical waveguides. For such applications it is important to know explicitly the refractive index variation with mismatch strain and with alloying in the ternary layer. Starting from the Kramers-Kronig integral dispersion relations, a model has been developed from which the refractive index change in the ternary layer of In(x)Ga(1-x)As-GaAs heterojunctions can be calculated. The results are presented and discussed. The expected changes in a superlattice have been qualitatively predicted.

  6. Strain Engineering of Epitaxially Transferred, Ultrathin Layers of III-V Semiconductor on Insulator

    DTIC Science & Technology

    2011-01-01

    The structure of the source wafer is shown schematically in Fig. 2a, with both InAs and AlGaSb layers coherently strained to the GaSb 001...is due to the surface plasmon-LO phonon FIG. 2. Color online a The structure of GaSb /AlGaSb/InAs source wafer with an assumed strain state for...insulator layers obtained from an epitaxial transfer process is studied. The as-grown InAs epilayer 10–20 nm thick on the GaSb /AlGaSb source wafer has the

  7. A novel method of fabricating laminated silicone stack actuators with pre-strained dielectric layers

    NASA Astrophysics Data System (ADS)

    Hinitt, Andrew D.; Conn, Andrew T.

    2014-03-01

    In recent studies, stack based Dielectric Elastomer Actuators (DEAs) have been successfully used in haptic feedback and sensing applications. However, limitations in the fabrication method, and materials used to con- struct stack actuators constrain their force and displacement output per unit volume. This paper focuses on a fabrication process enabling a stacked elastomer actuator to withstand the high tensile forces needed for high power applications, such as mimetics for mammalian muscle contraction (i.e prostheses), whilst requiring low voltage for thickness-mode contractile actuation. Spun elastomer layers are bonded together in a pre-strained state using a conductive adhesive filler, forming a Laminated Inter-Penetrating Network (L-IPN) with repeatable and uniform electrode thickness. The resulting structure utilises the stored strain energy of the dielectric elas- tomer to compress the cured electrode composite material. The method is used to fabricate an L-IPN example, which demonstrated that the bonded L-IPN has high tensile strength normal to the lamination. Additionally, the uniformity and retained dielectric layer pre-strain of the L-IPN are confirmed. The described method is envisaged to be used in a semi-automated assembly of large-scale multi-layer stacks of pre-strained dielectric layers possessing a tensile strength in the range generated by mammalian muscle.

  8. Processing method for forming dislocation-free SOI and other materials for semiconductor use

    DOEpatents

    Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun

    1997-01-01

    A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

  9. Influence of TESG layer viscoelasticity on the imaging properties of microlenses

    NASA Astrophysics Data System (ADS)

    Vasiljević, Darko; Murić, Branka; Pantelić, Dejan; Panić, Bratimir

    2012-05-01

    Microlenses were produced by the irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) with laser light (second harmonic Nd:YAG, 532 nm). For this research, eight microlenses were written on a dog-bone-shaped TESG layer. After production, microlenses were uniaxially stretched on a tensile testing machine. Each microlens had different amounts of strain (0, 30, 60, 80, 120, 140, 180 and 240% strain). The influence of TESG layer extensibility on the imaging properties of microlenses was characterized by calculating the root mean square wavefront aberration, the modulation transfer function and the geometrical spot diagram. All microlenses had very good imaging properties and the microlens with 0% strain had diffraction-limited performance.

  10. Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency

    NASA Technical Reports Server (NTRS)

    Larsson, Anders; Cody, Jeffrey; Lang, Robert J.

    1989-01-01

    Low threshold current density strained-layer In(0.2)Ga(0.8)As/GaAs/AlGaAs single quantum well lasers, emitting at 980 nm, have been grown by molecular beam epitaxy. Contrary to what has been reported for broad-area lasers with pseudomorphic InGaAs active layers grown by metalorganic chemical vapor deposition, these layers exhibit a high internal quantum efficiency (about 90 percent). The maximum external differential quantum efficiency is 70 percent, limited by an anomalously high internal loss possibly caused by a large lateral spreading of the optical mode. In addition, experimental results supporting the theoretically predicted strain-induced reduction of the valence-band nonparabolicity and density of states are presented.

  11. Postseismic viscoelastic deformation and stress. Part 2: Stress theory and computation; dependence of displacement, strain, and stress on fault parameters

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1979-01-01

    A viscoelastic model for deformation and stress associated with earthquakes is reported. The model consists of a rectangular dislocation (strike slip fault) in a viscoelastic layer (lithosphere) lying over a viscoelastic half space (asthenosphere). The time dependent surface stresses are analyzed. The model predicts that near the fault a significant fraction of the stress that was reduced during the earthquake is recovered by viscoelastic softening of the lithosphere. By contrast, the strain shows very little change near the fault. The model also predicts that the stress changes associated with asthenospheric flow extend over a broader region than those associated with lithospheric relaxation even though the peak value is less. The dependence of the displacements, stresses on fault parameters studied. Peak values of strain and stress drop increase with increasing fault height and decrease with fault depth. Under many circumstances postseismic strains and stresses show an increase with decreasing depth to the lithosphere-asthenosphere boundary. Values of the strain and stress at distant points from the fault increase with fault area but are relatively insensitive to fault depth.

  12. Mechanical Response Analysis of Long-life Asphalt Pavement Structure of Yunluo High-speed on the Semi-rigid Base

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wu, Chuanhai; Xu, Xinquan; Li, Hao; Wang, Zhixiang

    2018-01-01

    In order to grasp the rule of the strain change of the semi-rigid asphalt pavement structure under the FWD load and provide a reliable theoretical and practical basis for the design of the pavement structure, based on the test section of Guangdong Yunluo expressway, taking FWD as the loading tool, by using the finite element analysis software ANSYS, the internal variation rules of each pavement structural layer were obtained. Based on the results of the theoretical analysis, the measured strain sensor was set up in the corresponding layer of the pavement structure, and the strain test plan was determined. Based on the analysis of the strain data obtained from several structural layers and field monitoring, the rationality of the type pavement structure and the strain test scheme were verified, so as to provide useful help for the design and the maintenance of the pavement structure.

  13. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    NASA Astrophysics Data System (ADS)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  14. Influences of misfit strains on liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Yu, Genggeng; Chen, Zheng

    2017-10-01

    Influences of misfit strains with different signs on liquid phase heteroepitaxial growth are studied by binary phase field crystal model. It is amazing to find that double islands are formed because of lateral and vertical separation. The morphological evolution of epitaxial layer depends on signs of misfit strains. The maximum atomic layer thickness of double islands under negative misfit strain is larger than that of under positive misfit strain at the same evolutional time, and size differences between light and dark islands is much smaller under negative misfit strain than that of under positive misfit strain. In addition, concentration field and density field approximately have similar variational law along x direction under the same misfit strain but show opposite variational trend under misfit strains with different signs. Generally, free energy of epitaxial growth systems keeps similar variational trend under misfit strains with different signs.

  15. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  16. Effect of crystal quality on performance of spin-polarized photocathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xiuguang; Ozdol, Burak; Yamamoto, Masahiro

    2014-11-17

    GaAs/GaAsP strain-compensated superlattices (SLs) with thickness up to 90-pair were fabricated. Transmission electron microscopy revealed the SLs are of high crystal quality and the introduced strain in SLs layers are fixed in the whole SL layers. With increasing SL pair number, the strain-compensated SLs show a less depolarization than the conventional strained SLs. In spite of the high crystal quality, the strain-compensated SLs also remain slightly depolarized with increasing SL pairs and the decrease in spin-polarization contributes to the spin relaxation time. 24-pair of GaAs/GaAsP strain-compensated SL demonstrates a maximum spin-polarization of 92% with a high quantum efficiency of 1.6%.

  17. Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate

    PubMed Central

    Stan, Gheorghe; Adams, George G.

    2016-01-01

    In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338

  18. Microscopic Electronic and Mechanical Properties of Ultra-Thin Layered Materials

    DTIC Science & Technology

    2016-07-25

    Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that...the observed highly nonuniform strains. 4. Connecting dopant bond type with electronic structure in N-doped graphene (reference [4]) Robust methods

  19. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  20. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    NASA Astrophysics Data System (ADS)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  1. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  2. Engineering Strain for Improved III-Nitride Optoelectronic Device Performance

    NASA Astrophysics Data System (ADS)

    Van Den Broeck, Dennis Marnix

    Due to growing environmental and economic concerns, renewable energy generation and high-efficiency lighting are becoming even more important in the scientific community. III-Nitride devices have been essential in production of high-brightness light-emitting diodes (LEDs) and are now entering the photovoltaic (PV) realm as the technology advances. InGaN/GaN multiple quantum well LEDs emitting in the blue/green region have emerged as promising candidates for next-generation lighting technologies. Due to the large lattice mismatch between InN and GaN, large electric fields exist within the quantum well layers and result in low rates of radiative recombination, especially for the green spectral region. This is commonly referred to as the "green gap" and results in poor external quantum efficiencies for light-emitting diodes and laser diodes. In order to mitigate the compressive stress of InGaN QWs, a novel growth technique is developed in order to grown thick, strain-relaxed In yGa1-yN templates for 0.08 < y < 0.11. By inserting 2 nm GaN interlayers into the growing InyGa1-yN film, and subsequently annealing the structure, "semibulk" InGaN templates were achieved with vastly superior crystal and optical properties than bulk InGaN films. These semibulk InGaN templates were then utilized as new templates for multiple quantum well active layers, effectively reducing the compressive strain in the InGaN wells due to the larger lattice constant of the InGaN template with respect to a GaN template. A zero-stress balance method was used in order to realize a strain-balanced multiple quantum well structure, which again showed improved optical characteristics when compared to fully-strain active regions. The semibulk InGaN template was then implemented into "strain-compensated" LED structures, where light emission was achieved with very little leakage current. Discussion of these strain-compensated devices compared to conventional LEDs is detailed.

  3. High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure

    NASA Astrophysics Data System (ADS)

    Albrecht, Alexander R.; Rotter, Thomas J.; Hains, Christopher P.; Stintz, Andreas; Xin, Guofeng; Wang, Tsuei-Lian; Kaneda, Yushi; Moloney, Jerome V.; Malloy, Kevin J.; Balakrishnan, Ganesh

    2011-03-01

    We compare an InAs quantum dot (QD) vertical external-cavity surface-emitting laser (VECSEL) design consisting of 4 groups of 3 closely spaced QD layers with a resonant periodic gain (RPG) structure, where each of the 12 QD layers is placed at a separate field antinode. This increased the spacing between the QDs, reducing strain and greatly improving device performance. For thermal management, the GaAs substrate was thinned and indium bonded to CVD diamond. A fiber-coupled 808 nm diode laser was used as pump source, a 1% transmission output coupler completed the cavity. CW output powers over 4.5 W at 1250 nm were achieved.

  4. Study on ion implantation conditions in fabricating compressively strained Si/relaxed Si1-xCx heterostructures using the defect control by ion implantation technique

    NASA Astrophysics Data System (ADS)

    Arisawa, You; Sawano, Kentarou; Usami, Noritaka

    2017-06-01

    The influence of ion implantation energies on compressively strained Si/relaxed Si1-xCx heterostructures formed on Ar ion implanted Si substrates was investigated. It was found that relaxation ratio can be enhanced over 100% at relatively low implantation energies, and compressive strain in the topmost Si layer is maximized at 45 keV due to large lattice mismatch. Cross-sectional transmission electron microscope images revealed that defects are localized around the hetero-interface between the Si1-xCx layer and the Ar+-implanted Si substrate when the implantation energy is 45 keV, which decreases the amount of defects in the topmost Si layer and the upper part of the Si1-xCx buffer layer.

  5. Dual-Bioaugmentation Strategy To Enhance Remediation of Cocontaminated Soil

    PubMed Central

    Roane, T. M.; Josephson, K. L.; Pepper, I. L.

    2001-01-01

    Although metals are thought to inhibit the ability of microorganisms to degrade organic pollutants, several microbial mechanisms of resistance to metal are known to exist. This study examined the potential of cadmium-resistant microorganisms to reduce soluble cadmium levels to enhance degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under conditions of cocontamination. Four cadmium-resistant soil microorganisms were examined in this study. Resistant up to a cadmium concentration of 275 μg ml−1, these isolates represented the common soil genera Arthrobacter, Bacillus, and Pseudomonas. Isolates Pseudomonas sp. strain H1 and Bacillus sp. strain H9 had a plasmid-dependent intracellular mechanism of cadmium detoxification, reducing soluble cadmium levels by 36%. Isolates Arthrobacter strain D9 and Pseudomonas strain I1a both produced an extracellular polymer layer that bound and reduced soluble cadmium levels by 22 and 11%, respectively. Although none of the cadmium-resistant isolates could degrade 2,4-D, results of dual-bioaugmentation studies conducted with both pure culture and laboratory soil microcosms showed that each of four cadmium-resistant isolates supported the degradation of 500-μg ml−1 2,4-D by the cadmium-sensitive 2,4-D degrader Ralstonia eutropha JMP134. Degradation occurred in the presence of up to 24 μg of cadmium ml−1 in pure culture and up to 60 μg of cadmium g−1 in amended soil microcosms. In a pilot field study conducted with 5-gallon soil bioreactors, the dual-bioaugmentation strategy was again evaluated. Here, the cadmium-resistant isolate Pseudomonas strain H1 enhanced degradation of 2,4-D in reactors inoculated with R. eutropha JMP134 in the presence of 60 μg of cadmium g−1. Overall, dual bioaugmentation appears to be a viable approach in the remediation of cocontaminated soils. PMID:11425743

  6. Transcriptional analysis of liver from chickens with fast (meat bird), moderate (F1 layer x meat bird cross) and low (layer bird) growth potential.

    PubMed

    Willson, Nicky-Lee; Forder, Rebecca E A; Tearle, Rick; Williams, John L; Hughes, Robert J; Nattrass, Greg S; Hynd, Philip I

    2018-05-02

    Divergent selection for meat and egg production in poultry has resulted in strains of birds differing widely in traits related to these products. Modern strains of meat birds can reach live weights of 2 kg in 35 d, while layer strains are now capable of producing more than 300 eggs per annum but grow slowly. In this study, RNA-Seq was used to investigate hepatic gene expression between three groups of birds with large differences in growth potential; meat bird, layer strain as well as an F1 layer x meat bird. The objective was to identify differentially expressed (DE) genes between all three strains to elucidate biological factors underpinning variations in growth performance. RNA-Seq analysis was carried out on total RNA extracted from the liver of meat bird (n = 6), F1 layer x meat bird cross (n = 6) and layer strain (n = 6), males. Differential expression of genes were considered significant at P < 0.05, and a false discovery rate of < 0.05, with any fold change considered. In total, 6278 genes were found to be DE with 5832 DE between meat birds and layers (19%), 2935 DE between meat birds and the cross (9.6%) and 493 DE between the cross and layers (1.6%). Comparisons between the three groups identified 155 significant DE genes. Gene ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis of the 155 DE genes showed the FoxO signalling pathway was most enriched (P = 0.001), including genes related to cell cycle regulation and insulin signalling. Significant GO terms included 'positive regulation of glucose import' and 'cellular response to oxidative stress', which is also consistent with FoxOs regulation of glucose metabolism. There were high correlations between FoxO pathway genes and bodyweight, as well as genes related to glycolysis and bodyweight. This study revealed large transcriptome differences between meat and layer birds. There was significant evidence implicating the FoxO signalling pathway (via cell cycle regulation and altered metabolism) as an active driver of growth variations in chicken. Functional analysis of the FoxO genes is required to understand how they regulate growth and egg production.

  7. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    PubMed

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Nonbioluminescent strains of Photobacterium phosphoreum produce the cell-to-cell communication signal N-(3-Hydroxyoctanoyl)homoserine lactone.

    PubMed

    Flodgaard, L R; Dalgaard, P; Andersen, J B; Nielsen, K F; Givskov, M; Gram, L

    2005-04-01

    Bioluminescence is a common phenotype in marine bacteria, such as Vibrio and Photobacterium species, and can be quorum regulated by N-acylated homoserine lactones (AHLs). We extracted a molecule that induced a bacterial AHL monitor (Agrobacterium tumefaciens NT1 [pZLR4]) from packed cod fillets, which spoil due to growth of Photobacterium phosphoreum. Interestingly, AHLs were produced by 13 nonbioluminescent strains of P. phosphoreum isolated from the product. Of 177 strains of P. phosphoreum (including 18 isolates from this study), none of 74 bioluminescent strains elicited a reaction in the AHL monitor, whereas 48 of 103 nonbioluminescent strains did produce AHLs. AHLs were also detected in Aeromonas spp., but not in Shewanella strains. Thin-layer chromatographic profiles of cod extracts and P. phosphoreum culture supernatants identified a molecule similar in relative mobility (Rf value) and shape to N-(3-hydroxyoctanoyl)homoserine lactone, and the presence of this molecule in culture supernatants from a nonbioluminescent strain of P. phosphoreum was confirmed by high-performance liquid chromatography-positive electrospray high-resolution mass spectrometry. Bioluminescence (in a non-AHL-producing strain of P. phosphoreum) was strongly up-regulated during growth, whereas AHL production in a nonbioluminescent strain of P. phosphoreum appeared constitutive. AHLs apparently did not influence bioluminescence, as the addition of neither synthetic AHLs nor supernatants delayed or reduced this phenotype in luminescent strains of P. phosphoreum. The phenotypes of nonbioluminescent P. phosphoreum strains regulated by AHLs remains to be elucidated.

  9. Enhancement of breakdown voltage for fully-vertical GaN-on-Si p-n diode by using strained layer superlattice as drift layer

    NASA Astrophysics Data System (ADS)

    Mase, Suguru; Hamada, Takeaki; Freedsman, Joseph J.; Egawa, Takashi

    2018-06-01

    We have demonstrated a vertical GaN-on-Si p-n diode with breakdown voltage (BV) as high as 839 V by using a low Si-doped strained layer superlattice (SLS). The p-n vertical diode fabricated by using the n‑-SLS layer as a part of the drift layer showed a remarkable enhancement in BV, when compared with the conventional n‑-GaN drift layer of similar thickness. The vertical GaN-on-Si p-n diodes with 2.3 μm-thick n‑-GaN drift layer and 3.0 μm-thick n‑-SLS layer exhibited a differential on-resistance of 4.0 Ω · cm2 and a BV of 839 V.

  10. Polymer film strain gauges for measuring large elongations

    NASA Astrophysics Data System (ADS)

    Kondratov, A. P.; Zueva, A. M.; Varakin, R. S.; Taranec, I. P.; Savenkova, I. A.

    2018-02-01

    The paper shows the possibility to print polymer strain gages, microstrip lines, coplanar waveguides, and other prints for avionics using printing technology and equipment. The methods of screen and inkjet printing have been complemented by three new operations of preparing print films for application of an electrically conductive ink layer. Such additional operations make it possible to enhance the conductive ink layer adhesion to the film and to manufacture strain gages for measuring large elongations.

  11. Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei

    2018-04-01

    Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.

  12. Electromodulation spectroscopy of direct optical transitions in Ge{sub 1−x}Sn{sub x} layers under hydrostatic pressure and built-in strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dybała, F.; Żelazna, K.; Maczko, H.

    Unstrained Ge{sub 1−x}Sn{sub x} layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge{sub 0.97}Sn{sub 0.03} layers with built-in compressive (ε = −0.5%) and tensile (ε = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge{sub 1−x}Sn{sub x} layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, whichmore » is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge{sub 1−x}Sn{sub x} alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge{sub 0.97}Sn{sub 0.03} with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge{sub 1−x}Sn{sub x} layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.« less

  13. Highly strain-sensitive magnetostrictive tunnel magnetoresistance junctions

    NASA Astrophysics Data System (ADS)

    Tavassolizadeh, Ali; Hayes, Patrick; Rott, Karsten; Reiss, Günter; Quandt, Eckhard; Meyners, Dirk

    2015-06-01

    Tunnel magnetoresistance (TMR) junctions with CoFeB/MgO/CoFeB layers are promising for strain sensing applications due to their high TMR effect and magnetostrictive sense layer (CoFeB). TMR junctions available even in submicron dimensions can serve as strain sensors for microelectromechanical systems devices. Upon stress application, the magnetization configuration of such junctions changes due to the inverse magnetostriction effect resulting in strain-sensitive tunnel resistance. Here, strain sensitivity of round-shaped junctions with diameters of 11.3 μm, 19.2 μm, 30.5 μm, and 41.8 μm were investigated on macroscopic cantilevers using a four-point bending apparatus. This investigation mainly focuses on changes in hard-axis TMR loops caused by the stress-induced anisotropy. A macrospin model is proposed, supported by micromagnetic simulations, which describes the complete rotation of the sense layer magnetization within TMR loops of junctions, exposed to high stress. Below 0.2‰ tensile strain, a representative junction with 30.5 μm diameter exhibits a very large gauge factor of 2150. For such high gauge factor a bias field H = - 3.2 kA / m is applied in an angle equal to 3 π / 2 toward the pinned magnetization of the reference layer. The strain sensitivity strongly depends on the bias field. Applying stress along π / 4 against the induced magnetocrystalline anisotropy, both compressive and tensile strain can be identified by a unique sensor. More importantly, a configuration with a gauge factor of 400 at zero bias field is developed which results in a straightforward and compact measuring setup.

  14. High quality Ge epilayer on Si (1 0 0) with an ultrathin Si1-x Ge x /Si buffer layer by RPCVD

    NASA Astrophysics Data System (ADS)

    Chen, Da; Guo, Qinglei; Zhang, Nan; Xu, Anli; Wang, Bei; Li, Ya; Wang, Gang

    2017-07-01

    The authors report a method to grow high quality strain-relaxed Ge epilayer on a combination of low temperature Ge seed layer and Si1-x Ge x /Si superlattice buffer layer by reduced pressure chemical vapor deposition system without any subsequent annealing treatment. Prior to the growth of high quality Ge epilayer, an ultrathin Si1-x Ge x /Si superlattice buffer layer with the thickness of 50 nm and a 460 nm Ge seed layer were deposited successively at low temperature. Then an 840 nm Ge epilayer was grown at high deposition rate with the surface root-mean-square roughness of 0.707 nm and threading dislocation density of 2.5  ×  106 cm-2, respectively. Detailed investigations of the influence of ultrathin low-temperature Si1-x Ge x /Si superlattice buffer layer on the quality of Ge epilayer were performed, which indicates that the crystalline quality of Ge epilayer can be significantly improved by enhancing the Ge concentration of Si1-x Ge x /Si superlattice buffer layer.

  15. Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel

    NASA Astrophysics Data System (ADS)

    Suarez, L.; Vanden Eynde, X.; Lamberigts, M.; Houbaert, Y.

    2007-04-01

    An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 μm) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050°C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050°C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050°C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.

  16. Residual strain sensor using Al-packaged optical fiber and Brillouin optical correlation domain analysis.

    PubMed

    Choi, Bo-Hun; Kwon, Il-Bum

    2015-03-09

    We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

  17. Optimal vibration control of a rotating plate with self-sensing active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Xie, Zhengchao; Wong, Pak Kin; Lo, Kin Heng

    2012-04-01

    This paper proposes a finite element model for optimally controlled constrained layer damped (CLD) rotating plate with self-sensing technique and frequency-dependent material property in both the time and frequency domain. Constrained layer damping with viscoelastic material can effectively reduce the vibration in rotating structures. However, most existing research models use complex modulus approach to model viscoelastic material, and an additional iterative approach which is only available in frequency domain has to be used to include the material's frequency dependency. It is meaningful to model the viscoelastic damping layer in rotating part by using the anelastic displacement fields (ADF) in order to include the frequency dependency in both the time and frequency domain. Also, unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Thus, in this work, a single layer finite element is adopted to model a three-layer active constrained layer damped rotating plate in which the constraining layer is made of piezoelectric material to work as both the self-sensing sensor and actuator under an linear quadratic regulation (LQR) controller. After being compared with verified data, this newly proposed finite element model is validated and could be used for future research.

  18. Buffer Layer Effects on Tandem InGaAs TPV Devices

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of configurations both with and without buffer layers. All structures were characterized by reciprocal space x-ray diffraction to determine epilayer composition and residual strain. Electrical characterization of the devices was performed to examine the effect of the buffer on the device performance. The effect of the buffer structure depends upon where it is positioned. When near the emitter region, a 2.6x increase in dark current was measured, whereas no change in dark current was observed when it was near the base region.

  19. Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes.

    PubMed

    Yang, Jian; Zhao, Jingbo; Liao, Donghua; Gregersen, Hans

    2006-01-01

    Passive biomechanical properties in term of the stress-strain relationship and the shear modulus were studied in separated muscle layer and mucosa-submucosa layer in the oesophagus of normal and STZ (streptozotocin)-induced diabetic rats. The mucosa-submucosa and muscle layers were separated using microsurgery and studied in vitro using a self-developed test machine. Stepwise elongation and inflation plus continuous twist were applied to the samples. A constitutive equation based on a strain energy function was used for the stress-strain analysis. Five material constants were obtained for both layers. The mucosa-submucosa layer was significantly stiffer than the muscle layer in longitudinal, circumferential and circumferential-longitudinal shear direction. The mechanical constants of the oesophagus show that the oesophageal wall was anisotropic, the stiffness in the longitudinal direction was higher than in the circumferential direction in the intact oesophagus (P < 0.001) and in the muscle layer (P < 0.05). Diabetes-induced pronounced increase in the outer perimeter, inner perimeter and lumen area in both the muscle and mucosa-submucosa layer. The growth of the mucosa-submucosa layer (P < 0.001) was more pronounced than the muscle layer (P < 0.05). Furthermore, the circumferential stiffness of the mucosa-submucosa layer increased 28 days after STZ treatment. In conclusion, the oesophagus is a non-homogeneous anisotropic tube. Thus, the mechanical properties differed between layers as well as in different directions. Morphological and biomechanical remodelling is prominent in the diabetic oesophagus.

  20. Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization

    PubMed Central

    Farla, Robert J. M.; Karato, Shun-ichiro; Cai, Zhengyu

    2013-01-01

    For plate tectonics to operate on a terrestrial planet, the surface layer (the lithosphere) must have a modest strength (Earth, ≤200 MPa), but a standard strength profile based on olivine far exceeds this threshold value. Consequently, it is essential to identify mechanisms that reduce the strength of the lithosphere on Earth. Here we report results of high-strain laboratory deformation experiments on a representative olivine–orthopyroxene composition that show the addition of orthopyroxene substantially reduces the strength in the ductile regime within a certain temperature window. The reduction in strength is associated with the formation of small orthopyroxene and olivine grains. Our samples show heterogeneous microstructures similar to those observed in natural peridotites in shear zones: fine-grained regions containing both orthopyroxene and olivine that form interconnected bands where a large fraction of strain is accommodated. A model is developed to apply these results to geological conditions. Such a model, combined with our experimental observations, suggests that orthopyroxene may play a key role in the plastic deformation of the lithosphere in a critical temperature range, leading to long-term weakening associated with strain localization in the lithosphere. PMID:24067645

  1. Altering thermal transport by strained-layer epitaxy

    NASA Astrophysics Data System (ADS)

    Majdi, Tahereh; Pal, Souvik; Hafreager, Anders; Murad, Sohail; Sahu, Rakesh P.; Puri, Ishwar K.

    2018-05-01

    Since strain changes the interatomic spacing of matter and alters electron and phonon dispersion, an applied strain can modify the thermal conductivity k of a material. We show how the strain induced by heteroepitaxy is a passive mechanism to change k in a thin film. Molecular dynamics simulations of the deposition and epitaxial growth of ZnTe thin films provide insights into the role of interfacial strain in the conductivity of a deposited film. ZnTe films grow strain-free on lattice-matched ZnTe substrates, but similar thin films grown on a lattice-mismatched CdTe substrate exhibit ˜6% biaxial in-plane tensile strain and ˜7% uniaxial out-of-plane compressive strain. In the T = 700 K-1100 K temperature range, the conductivities of strained ZnTe layers decrease to ˜60% of their unstrained values. The resulting understanding of dk/dT shows that strain engineering can be used to alter the performance of a thermal rectifier and also provides a framework for enhancing thermoelectric devices.

  2. Wrinkling and folding of nanotube-polymer bilayers

    NASA Astrophysics Data System (ADS)

    Semler, Matthew R.; Harris, John M.; Hobbie, Erik K.

    2014-07-01

    The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.

  3. Strain effect in epitaxial VO2 thin films grown on sapphire substrates using SnO2 buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Bingham, Nicholas S.; Charipar, Nicholas A.; Piqué, Alberto

    2017-10-01

    Epitaxial VO2/SnO2 thin film heterostructures were deposited on m-cut sapphire substrates via pulsed laser deposition. By adjusting SnO2 (150 nm) growth conditions, we are able to control the interfacial strain between the VO2 film and SnO2 buffer layer such that the semiconductor-to-metal transition temperature (TC) of VO2 films can be tuned without diminishing the magnitude of the transition. It is shown that in-plane tensile strain and out-of-plane compressive strain of the VO2 film leads to a decrease of Tc. Interestingly, VO2 films on SnO2 buffer layers exhibit a structural phase transition from tetragonal-like VO2 to tetragonal-VO2 during the semiconductor-to-metal transition. These results suggest that the strain generated by SnO2 buffer provides an effective way for tuning the TC of VO2 films.

  4. Elimination of initial stress-induced curvature in a micromachined bi-material composite-layered cantilever

    NASA Astrophysics Data System (ADS)

    Liu, Ruiwen; Jiao, Binbin; Kong, Yanmei; Li, Zhigang; Shang, Haiping; Lu, Dike; Gao, Chaoqun; Chen, Dapeng

    2013-09-01

    Micro-devices with a bi-material-cantilever (BMC) commonly suffer initial curvature due to the mismatch of residual stress. Traditional corrective methods to reduce the residual stress mismatch generally involve the development of different material deposition recipes. In this paper, a new method for reducing residual stress mismatch in a BMC is proposed based on various previously developed deposition recipes. An initial material film is deposited using two or more developed deposition recipes. This first film is designed to introduce a stepped stress gradient, which is then balanced by overlapping a second material film on the first and using appropriate deposition recipes to form a nearly stress-balanced structure. A theoretical model is proposed based on both the moment balance principle and total equal strain at the interface of two adjacent layers. Experimental results and analytical models suggest that the proposed method is effective in producing multi-layer micro cantilevers that display balanced residual stresses. The method provides a generic solution to the problem of mismatched initial stresses which universally exists in micro-electro-mechanical systems (MEMS) devices based on a BMC. Moreover, the method can be incorporated into a MEMS design automation package for efficient design of various multiple material layer devices from MEMS material library and developed deposition recipes.

  5. Digital model for X-ray diffraction with application to composition and strain determination in strained InAs/GaSb superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Yifei; Kim, Honggyu; Zuo, Jian-Min

    2014-07-07

    We propose a digital model for high quality superlattices by including fluctuations in the superlattice periods. The composition and strain profiles are assumed to be coherent and persist throughout the superlattice. Using this model, we have significantly improved the fit with experimental X-ray diffraction data recorded from the nominal InAs/GaSb superlattice. The lattice spacing of individual layers inside the superlattice and the extent of interfacial intermixing are refined by including both (002) and (004) and their satellite peaks in the fitting. For the InAs/GaSb strained layer superlattice, results show: (i) the GaSb-on-InAs interface is chemically sharper than the InAs-on-GaSb interface,more » (ii) the GaSb layers experience compressive strain with In incorporation, (iii) there are interfacial strain associated with InSb-like bonds in GaSb and GaAs-like bonds in InAs, (iv) Sb substitutes a significant amount of In inside InAs layer near the InAs-on-GaSb interface. For support, we show that the composition profiles determined by X-ray diffraction are in good agreement with those obtained from atom probe tomography measurement. Comparison with the kinetic growth model shows a good agreement in terms of the composition profiles of anions, while the kinetic model underestimates the intermixing of cations.« less

  6. N-Glycosylation Is Important for Proper Haloferax volcanii S-Layer Stability and Function.

    PubMed

    Tamir, Adi; Eichler, Jerry

    2017-03-15

    N-Glycosylation, the covalent linkage of glycans to select Asn residues of target proteins, is an almost universal posttranslational modification in archaea. However, whereas roles for N-glycosylation have been defined in eukarya and bacteria, the function of archaeal N-glycosylation remains unclear. Here, the impact of perturbed N-glycosylation on the structure and physiology of the haloarchaeon Haloferax volcanii was considered. Cryo-electron microscopy was used to examine right-side-out membrane vesicles prepared from cells of a parent strain and from strains lacking genes encoding glycosyltransferases involved in assembling the N-linked pentasaccharide decorating the surface layer (S-layer) glycoprotein, the sole component of the S-layer surrounding H. volcanii cells. Whereas a regularly repeating S-layer covered the entire surface of vesicles prepared from parent strain cells, vesicles from the mutant cells were only partially covered. To determine whether such N-glycosylation-related effects on S-layer assembly also affected cell function, the secretion of a reporter protein was addressed in the parent and N-glycosylation mutant strains. Compromised S-layer glycoprotein N-glycosylation resulted in impaired transfer of the reporter past the S-layer and into the growth medium. Finally, an assessment of S-layer glycoprotein susceptibility to added proteases in the mutants revealed that in cells lacking AglD, which is involved in adding the final pentasaccharide sugar, a distinct S-layer glycoprotein conformation was assumed in which the N-terminal region was readily degraded. Perturbed N-glycosylation thus affects S-layer glycoprotein folding. These findings suggest that H. volcanii could adapt to changes in its surroundings by modulating N-glycosylation so as to affect S-layer architecture and function. IMPORTANCE Long held to be a process unique to eukaryotes, it is now accepted that bacteria and archaea also perform N-glycosylation, namely, the covalent attachment of sugars to select asparagine residues of target proteins. Yet, while information on the importance of N-glycosylation in eukaryotes and bacteria is available, the role of this posttranslational modification in archaea remains unclear. Here, insight into the purpose of archaeal N-glycosylation was gained by addressing the surface layer (S-layer) surrounding cells of the halophilic species Haloferax volcanii Relying on mutant strains defective in N-glycosylation, such efforts revealed that compromised N-glycosylation affected S-layer integrity and the transfer of a secreted reporter protein across the S-layer into the growth medium, as well as the conformation of the S-layer glycoprotein, the sole component of the S-layer. Thus, by modifying N-glycosylation, H. volcanii cells can change how they interact with their surroundings. Copyright © 2017 American Society for Microbiology.

  7. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin.

    PubMed

    Leyva-Mendivil, Maria F; Page, Anton; Bressloff, Neil W; Limbert, Georges

    2015-09-01

    The study of skin biophysics has largely been driven by consumer goods, biomedical and cosmetic industries which aim to design products that efficiently interact with the skin and/or modify its biophysical properties for health or cosmetic benefits. The skin is a hierarchical biological structure featuring several layers with their own distinct geometry and mechanical properties. Up to now, no computational models of the skin have simultaneously accounted for these geometrical and material characteristics to study their complex biomechanical interactions under particular macroscopic deformation modes. The goal of this study was, therefore, to develop a robust methodology combining histological sections of human skin, image-processing and finite element techniques to address fundamental questions about skin mechanics and, more particularly, about how macroscopic strains are transmitted and modulated through the epidermis and dermis. The work hypothesis was that, as skin deforms under macroscopic loads, the stratum corneum does not experience significant strains but rather folds/unfolds during skin extension/compression. A sample of fresh human mid-back skin was processed for wax histology. Sections were stained and photographed by optical microscopy. The multiple images were stitched together to produce a larger region of interest and segmented to extract the geometry of the stratum corneum, viable epidermis and dermis. From the segmented structures a 2D finite element mesh of the skin composite model was created and geometrically non-linear plane-strain finite element analyses were conducted to study the sensitivity of the model to variations in mechanical properties. The hybrid experimental-computational methodology has offered valuable insights into the simulated mechanics of the skin, and that of the stratum corneum in particular, by providing qualitative and quantitative information on strain magnitude and distribution. Through a complex non-linear interplay, the geometry and mechanical characteristics of the skin layers (and their relative balance), play a critical role in conditioning the skin mechanical response to macroscopic in-plane compression and extension. Topographical features of the skin surface such as furrows were shown to act as an efficient means to deflect, convert and redistribute strain-and so stress-within the stratum corneum, viable epidermis and dermis. Strain reduction and amplification phenomena were also observed and quantified. Despite the small thickness of the stratum corneum, its Young׳s modulus has a significant effect not only on the strain magnitude and directions within the stratum corneum layer but also on those of the underlying layers. This effect is reflected in the deformed shape of the skin surface in simulated compression and extension and is intrinsically linked to the rather complex geometrical characteristics of each skin layer. Moreover, if the Young׳s modulus of the viable epidermis is assumed to be reduced by a factor 12, the area of skin folding is likely to increase under skin compression. These results should be considered in the light of published computational models of the skin which, up to now, have ignored these characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanical properties of silicon in subsurface damage layer from nano-grinding studied by atomistic simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwei; Chen, Pei; Qin, Fei; An, Tong; Yu, Huiping

    2018-05-01

    Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD) layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young's modulus, ultimate tensile strength (UTS), and strain at fracture is observed.

  9. Load Deflection of Dow Corning SE 1700 Face Centered Tetragonal Direct Ink Write Materials: Effect of Thickness and Filament Spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Ward; Pearson, Mark A.; Metz, Tom R.

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW) in a face centered tetragonal (FCT) configuration. The filament diameter was 250 μm. Structures consisting of 4, 8, or 12 layers were fabricated with center-to-center filament spacing (“road width” (RW)) of 475, 500, 525, 550, or 575 μm. Three compressive load-unload cycles to 2000 kPa were performed on four separate areas of each sample; three samples of each thickness and filament spacing were tested. At a given strain during the third loading phase, stress varied inversely with porosity. At 10% strain, the stress was nearlymore » independent of the number of layers (i.e., thickness). At higher strains (20- 40%), the stress was highest for the 4-layer structure; the 8- and 12-layer structures were nearly equivalent suggesting that the load deflection is independent of number of layers above 8 layers. Intra-and inter-sample variability of the load deflection response was higher for thinner and less porous structures.« less

  10. Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.

    1993-01-01

    An ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer super lattices grown by MBE at low temperature (500 C) is presented, and results are compared with x ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. It is shown that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. It was also noted that we do not observe any strain effect on the E(sub 1) critical point.

  11. THz-wave generation via difference frequency mixing in strained silicon based waveguide utilizing its second order susceptibility χ((2)).

    PubMed

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-07-14

    Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.

  12. Probing the effects of defects on ferroelectricity in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Lin

    Ferroelectric materials have been intensively studied due to their interesting properties such as piezoelectricity, ferroelectricity including spontaneous polarization, remnant polarization, hysteresis loop, and etc. In this study, effects of defects, thickness, and temperature on ferroelectric stability, hysteresis loop, and phase transition in ferroelectric thin films have been investigated using molecular dynamics simulations with first-principles effective Hamiltonian. Various types of defects are considered including oxygen vacancy, hydrogen contamination, and dead layer. We first study the effects of oxygen vacancy on ferroelectricity in PbTiO3 (PTO) thin films. An oxygen vacancy has been modeled as a +2q charged point defect which generates local strain and electrostatic fields. Atomic displacements induced by an oxygen vacancy were obtained by first-principles calculations and the corresponding strain field was fitted with elastic continuum model of a point defect. The obtained local strain and electrostatic fields are the inputs to the molecular dynamics (MD) simulations. We limited the oxygen vacancies in the interfacial layers between the film and electrodes. Oxygen vacancies reduce the spontaneous polarization and significantly increase the critical thickness below which the spontaneous polarization disappears. With the presence of oxygen vacancy only at one interface layer, PTO film exhibits asymmetric hysteresis loop which is consistent with experimental observations about the imprint effect. In the heating-up and cooling-down processes, oxygen vacancies weaken the phase transitions, but contribute tension along the thickness direction at high temperature. First-principles calculations are performed to determine the possible position, formation energy, and mobility of the interstitial hydrogen atom, and the calculated results are used as inputs to MD simulations in a large system. The hydrogen atom is able to move within one unit cell with small energy barriers. The energy difference between a hydrogen contaminated PTO and a pure PTO is considered as an energy penalty term induced by hydrogen contamination. Then, the effective Hamiltonian with the energy penalty is employed in MD simulations to investigate the effects of hydrogen contamination on the ferroelectric responses of PTO films. The hysteresis loops are presented and analyzed for PTO films with various concentrations of hydrogen impurities and thicknesses. Hydrogen contamination reduces the remnant polarization, especially for thin films. As the concentration of hydrogen impurities increases, the critical thickness increases. By analyzing the vertical cross section snapshots, it has been found that the hydrogen impurities near interfaces affect the polarization throughout the entire PTO film. To study the effect of the dead layer (depolarization field), the soft modes in the top and bottom layers are constrained to be zero, which gives rise to the reduced polarization and increased critical thickness. Negative capacitance is a new and hot topic, which was recently observed by experiment. It is a transient effect that correlated with depolarization field. Some preliminary results and application of negative capacitance are discussed.

  13. Formation of a Ge-rich Si1-x Ge x (x > 0.9) fin epitaxial layer condensed by dry oxidation

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Ko, Dae-Hong

    2017-11-01

    We have selectively grown an epitaxial Si0.35Ge0.65 fin layer in a 65 nm oxide trench pattern array and formed a Ge-rich Si1-x Ge x (x > 0.9) fin layer with condensed Ge using dry oxidation. During oxidation of the SiGe fin structure, we found that the compressive strain of the condensed SiGe layer was increased by about 1.3% while Ge was efficiently condensed due to a two-dimensional oxidation reaction. In this paper, we discussed in detail the diffusion during the two-dimensional condensation reaction as well as the asymmetric biaxial strain of the SiGe fin before and after oxidation using a reciprocal space mapping measurement. The application of dry oxidation on selectively grown SiGe fin layer can be an effective method for increasing hole mobility of SiGe fin with increased Ge content and self-induced compressive strain.

  14. Enhancing power density of strained In0.8Ga0.2As/AlAs resonant tunneling diode for terahertz radiation by optimizing emitter spacer layer thickness

    NASA Astrophysics Data System (ADS)

    Shi, Xiangyang; Wu, Yuanyuan; Wang, Ding; Su, Juan; Liu, Jie; Yang, Wenxian; Xiao, Meng; Tan, Wei; Lu, Shulong; Zhang, Jian

    2017-12-01

    We demonstrate both theoretically and experimentally that the power density of resonant tunneling diode (RTD) can be enhanced by optimizing emitter spacer layer thickness, in addition to reducing barrier thickness. Compared to the widely used epitaxial structure with ultrathin emitter spacer layer thickness, appropriate increasing the thickness will increase the voltage drop in accumulation region, leading to larger voltage widths of negative differential resistance region. By measuring J-V characteristics, the specific contact resistivity, and the self-capacitance, we theoretically analyze the maximum output power of the fabricated RTDs. It shows that the optimized In0.8Ga0.2As/AlAs RTD with 20 nm emitter spacer thickness and 5 μm2 mesa area theoretically possesses the capability to reach 3.1 mW at 300 GHz and 1.8 mW at 600 GHz.

  15. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion

    DOE PAGES

    Thomas, S.; Kuiper, B.; Hu, J.; ...

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO 3 films by the deposition of a SrTiO 3 capping layer, which can be lithographically patterned to achieve local control. Here, using a scanning Sagnac magnetic microscope, we show an increasemore » in the Curie temperature of SrRuO 3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. Lastly, this capping-layer-based technique may open new possibilities for developing functional oxide materials.« less

  16. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion.

    PubMed

    Thomas, S; Kuiper, B; Hu, J; Smit, J; Liao, Z; Zhong, Z; Rijnders, G; Vailionis, A; Wu, R; Koster, G; Xia, J

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.

  17. Adjustable Membrane Mirrors Incorporating G-Elastomers

    NASA Technical Reports Server (NTRS)

    Chang, Zensheu; Morgan, Rhonda M.; Xu, Tian-Bing; Su, Ji; Hishinuma, Yoshikazu; Yang, Eui-Hyeok

    2008-01-01

    Lightweight, flexible, large-aperture mirrors of a type being developed for use in outer space have unimorph structures that enable precise adjustment of their surface figures. A mirror of this type includes a reflective membrane layer bonded with an electrostrictive grafted elastomer (G-elastomer) layer, plus electrodes suitably positioned with respect to these layers. By virtue of the electrostrictive effect, an electric field applied to the G-elastomer membrane induces a strain along the membrane and thus causes a deflection of the mirror surface. Utilizing this effect, the mirror surface figure can be adjusted locally by individually addressing pairs of electrodes. G-elastomers, which were developed at NASA Langley Research Center, were chosen for this development in preference to other electroactive polymers partly because they offer superior electromechanical performance. Whereas other electroactive polymers offer, variously, large strains with low moduli of elasticity or small strains with high moduli of elasticity, G-elastomers offer both large strains (as large as 4 percent) and high moduli of elasticity (about 580 MPa). In addition, G-elastomer layers can be made by standard melt pressing or room-temperature solution casting.

  18. Removal of bacteria from boar ejaculates by Single Layer Centrifugation can reduce the use of antibiotics in semen extenders.

    PubMed

    Morrell, J M; Wallgren, M

    2011-01-01

    There is considerable interest world-wide in reducing the use of antibiotics to stem the development of antibiotic-resistant strains of bacteria. An alternative to the routine addition of antibiotics to semen extenders in livestock breeding would be to separate the spermatozoa from bacterial contaminants in the semen immediately after collection. The present study was designed to determine whether such separation was possible by Single Layer Centrifugation (SLC) using the colloid Androcoll™-P. The results showed that complete removal (6 out of 10 samples), or considerable reduction of bacterial contaminants (4 out of 10 samples) was possible with this method. The type of bacteria and/or the length of time between collection and SLC-processing affected the removal of bacteria, with motile flagellated bacteria being more likely to be present after SLC than non-flagellated bacteria. Although further studies are necessary, these preliminary results suggest that the use of SLC when processing boar semen for AI doses might enable antibiotic usage in semen extenders to be reduced. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-01

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for opto-electronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the charge transport in black phosphorus at room temperature; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs). The effect opens up opportunities for future development of electro-mechanical transducers based on black phosphorus, and we demonstrate strain gauges constructed from black phosphorus thin crystals.

  20. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors.

    PubMed

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-11

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.

  1. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  2. GaSb and GaSb/AlSb Superlattice Buffer Layers for High-Quality Photodiodes Grown on Commercial GaAs and Si Substrates

    NASA Astrophysics Data System (ADS)

    Gutiérrez, M.; Lloret, F.; Jurczak, P.; Wu, J.; Liu, H. Y.; Araújo, D.

    2018-05-01

    The objective of this work is the integration of InGaAs/GaSb/GaAs heterostructures, with high indium content, on GaAs and Si commercial wafers. The design of an interfacial misfit dislocation array, either on GaAs or Si substrates, allowed growth of strain-free devices. The growth of purposely designed superlattices with their active region free of extended defects on both GaAs and Si substrates is demonstrated. Transmission electron microscopy technique is used for the structural characterization and plastic relaxation study. In the first case, on GaAs substrates, the presence of dopants was demonstrated to reduce several times the threading dislocation density through a strain-hardening mechanism avoiding dislocation interactions, while in the second case, on Si substrates, similar reduction of dislocation interactions is obtained using an AlSb/GaSb superlattice. The latter is shown to redistribute spatially the interfacial misfit dislocation array to reduce dislocation interactions.

  3. Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.

    PubMed

    Monn, Michael A; Kesari, Haneesh

    2017-12-01

    The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Quantitative strain and compositional studies of InxGa1-xAs Epilayer in a GaAs-based pHEMT device structure by TEM techniques.

    PubMed

    Sridhara Rao, Duggi V; Sankarasubramanian, Ramachandran; Muraleedharan, Kuttanellore; Mehrtens, Thorsten; Rosenauer, Andreas; Banerjee, Dipankar

    2014-08-01

    In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the In x Ga1-x As channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the In x Ga1-x As layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the In x Ga1-x As channel layer was pseudomorphically grown leading to tetragonal strain along the [001] growth direction and that the average indium content (x) in the epilayer is ~0.12. We found consistency in the results obtained using various methods of analysis.

  5. Metal TiO2 Nanotube Layers for the Treatment of Dental Implant Infections.

    PubMed

    Roguska, Agata; Belcarz, Anna; Zalewska, Justyna; Hołdyński, Marcin; Andrzejczuk, Mariusz; Pisarek, Marcin; Ginalska, Grazyna

    2018-05-23

    Titanium oxide nanotube layers with silver and zinc nanoparticles are attracting increasing attention in the design of bone and dental implants due to their antimicrobial potential and their ability to control host cell adhesion, growth, and differentiation. However, recent reports indicate that the etiology of dental infections is more complex than has been previously considered. Therefore, the antimicrobial potential of dental implants should be evaluated against at least several different microorganisms cooperating in human mouth colonization. In this study, Ag and Zn nanoparticles incorporated into titanium oxide nanotubular layers were studied with regard to how they affect Candida albicans, Candida parapsilosis, and Streptococcus mutans. Layers of titanium oxide nanotubes with an average diameter of 110 nm were fabricated by electrochemical anodization, annealed at 650 °C, and modified with approx. 5 wt % Ag or Zn nanoparticles. The surfaces were examined with the scanning electron microscopy-energy dispersive X-ray analysis, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and subjected to evaluation of microbial-killing and microbial adhesion-inhibiting potency. In a 1.5 h long adhesion test, the samples were found more effective toward yeast strains than toward S. mutans. In a release-killing test, the microorganisms were almost completely eliminated by the samples, either within 3 h of contact (for S. mutans) or 24 h of contact (for both yeast strains). Although further improvement is advisable, it seems that Ag and Zn nanoparticles incorporated into TiO 2 nanotubular surfaces provide a powerful tool for reducing the incidence of bone implant infections. Their high bidirectional activity (against both Candida species and S. mutans) makes the layers tested particularly promising for the design of dental implants.

  6. A Rhomboid Protease Gene Deletion Affects a Novel Oligosaccharide N-Linked to the S-layer Glycoprotein of Haloferax volcanii*

    PubMed Central

    Parente, Juliana; Casabuono, Adriana; Ferrari, María Celeste; Paggi, Roberto Alejandro; De Castro, Rosana Esther; Couto, Alicia Susana; Giménez, María Inés

    2014-01-01

    Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family. PMID:24596091

  7. A rhomboid protease gene deletion affects a novel oligosaccharide N-linked to the S-layer glycoprotein of Haloferax volcanii.

    PubMed

    Parente, Juliana; Casabuono, Adriana; Ferrari, María Celeste; Paggi, Roberto Alejandro; De Castro, Rosana Esther; Couto, Alicia Susana; Giménez, María Inés

    2014-04-18

    Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family.

  8. Biocontrol of ticks by entomopathogenic nematodes. Research update.

    PubMed

    Samish, M; Alekseev, E; Glazer, I

    2000-01-01

    Entomopathogenic nematodes (EPNs) are lethal to ticks even though they do not use their normal propagation cycle within tick cadavers. The tick Boophilus annulatus was found to be far more susceptible to EPNs than Hyalomma excavatum, Rhipicephalus bursa, or Rhipicephalus sanguineus. Ticks seem to be less susceptible to nematodes when feeding on a host. Preimaginal tick stages were less susceptible to nematodes than adult ticks. The mortality rate of unfed females was highest, followed by unfed males, and engorged females. The virulence of nematodes to ticks varied greatly among different nematode strains. In most cases, the Heterorhabditis sp. strains were the most virulent strains tested in petri dishes. In buckets containing sandy soil sprayed with 50 nematodes/cm2 and engorged B. annulatus females, the LT50 of the ticks was less than five days. The addition of manure to soil or a manure extract to petri dishes reduced nematode virulence. Since ticks spend most of their life cycle in the upper humid layer of the ground, and many nematode strains share this same ecological niche, the use of EPNs for biocontrol of ticks appears promising.

  9. Concurrent agglomeration and straining govern the transport of 14C-labeled few-layer graphene in saturated porous media.

    PubMed

    Su, Yu; Gao, Bin; Mao, Liang

    2017-05-15

    Deposition of graphene on environmental surfaces will dictate its transport and risks. In this work, the deposition, mobilization, and transport of 14 C-labeled few-layer graphene (FLG) in saturated quartz sand were systematically examined. Increasing solution ionic strength (IS) (1-100 mmol/L NaCl) resulted in greater retention of FLG (33-89%) in the sand and more hyper-exponential distribution of FLG along the sand column. Only a small fraction (≤7.4%) of the retained FLG was remobilized due to perturbation of IS by deionized water. These results indicate that trapping in pore spaces (i.e., physical straining) plays a dominant role in FLG deposition rather than attachment onto the surfaces of the sand. When IS, FLG input concentration, and flow velocity favor particle-particle interaction over particle-collector interaction, concurrent agglomeration within the pores promotes straining. In addition, electrostatic and steric repulsion that derived from the adsorbed organic macromolecules on FLG effectively reduced agglomeration and thereby enhanced transport and release of FLG. Moreover, the recovery of FLG (that deposited at 100 mmol/L NaCl) in the effluent reached 33% after speeding up the deionized water flushing rate. These findings highlight the need for FLG management in view of variations in transport behavior when assessing water quality and associated risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Studies of morphological instability and defect formation in heteroepitaxial Si(1-x)Ge(x) thin films via controlled annealing experiments

    NASA Astrophysics Data System (ADS)

    Ozkan, Cengiz Sinan

    Strained layer semiconductor structures provide possibilities for novel electronic devices. When a semiconductor layer is deposited epitaxially onto a single crystal substrate with the same structure but a slightly different lattice parameter, the semiconductor layer grows commensurately with a misfit strain that can be accommodated elastically below a critical thickness. When the critical thickness is exceeded, the elastic strain energy builds up to a point where it becomes energetically favorable to form misfit dislocations. In addition, in the absence of a capping layer, Sisb{1-x}Gesb{x} films exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. Surface roughening takes place in the form of ridges aligned along {<}100{>} or {<}110{>} directions depending on the film thickness and the rate of strain relief. Recent work has shown that surface roughening makes a very significant contribution to strain relaxation in heteroepitaxial thin films. At sharp valley regions on the surface, amplified local stresses can cause further defect nucleation and propagation, such as stacking faults and 90sp° dislocations. In addition, capping layers with suitable thickness will surpress surface roughening and keep most of the strain in the film. We study surface roughening and defect formation by conducting controlled annealing experiments on initially flat and defect free films grown by LPCVD in a hydrogen ambient. We study films with both subcritical and supercritical thicknesses. In addition, we compare the relaxation behaviour of capped and uncapped films where surface roughening was inhibited in films with a capping layer. TEM and AFM studies were conducted to study the morphology and microstructure of these films. X-ray diffraction measurements were made to determine the amount of strain relaxation in these films. Further studies of surface roughening on heteroepitaxial films under a positive biaxial stress have shown that, morphological evolution occurs regardless of the sign of stress in the film. Finally, we have studied surface roughening processes in real time by conducting in-situ TEM experiments. We have observed that the kinetics of roughening depend strongly on the annealing ambient.

  11. Characterization of crystallographic properties of thin films using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zoo, Yeongseok

    2007-12-01

    Silver (Ag) has been recognized as one of promising candidates in Ultra-Large Scale Integrated (ULSI) applications in that it has the lowest bulk electrical resistivity of all pure metals and higher electromigration resistance than other interconnect materials. However, low thermal stability on Silicon Dioxide (Si02) at high temperatures (e.g., agglomeration) is considered a drawback for the Ag metallization scheme. Moreover, if a thin film is attached on a substrate, its properties may differ significantly from that of the bulk, since the properties of thin films can be significantly affected by the substrate. In this study, the Coefficient of Thermal Expansion (CTE) and texture evolution of Ag thin films on different substrates were characterized using various analytical techniques. The experimental results showed that the CTE of the Ag thin film was significantly affected by underlying substrate and the surface roughness of substrate. To investigate the alloying effect for Ag meatallization, small amounts of Copper (Cu) were added and characterized using theta-2theta X-ray Diffraction (XRD) scan and pole figure analysis. These XRD techniques are useful for investigating the primary texture of a metal film, (111) in this study, which (111) is the notation of a specific plane in the orthogonal coordinate system. They revealed that the (111) textures of Ag and Ag(Cu) thin films were enhanced with increasing temperature. Comparison of texture profiles between Ag and Ag(Cu) thin films showed that Cu additions enhanced (111) texture in Ag thin films. Accordingly, the texture enhancement in Ag thin films by Cu addition was discussed. Strained Silicon-On-Insulator (SSOI) is being considered as a potential substrate for Complementary Metal-Oxide-Semiconductor (CMOS) technology since the induced strain results in a significant improvement in device performance. High resolution X-ray diffraction (XRD) techniques were used to characterize the perpendicular and parallel strains in SSOI layers. XRD diffraction profiles generated from the crystalline SSOI layer provided a direct measurement of the layer's strain components. In addition, it has demonstrated that the rotational misalignment between the layer and the substrate can be incorporated within the biaxial strain equations for epitaxial layers. Based on these results, the strain behavior of the SSOI layer and the relation between strained Si and SiO2 layers are discussed for annealed samples.

  12. Striped, honeycomb, and twisted moiré patterns in surface adsorption systems with highly degenerate commensurate ground states

    NASA Astrophysics Data System (ADS)

    Elder, K. R.; Achim, C. V.; Granato, E.; Ying, S. C.; Ala-Nissila, T.

    2017-11-01

    Atomistically thin adsorbate layers on surfaces with a lattice mismatch display complex spatial patterns and ordering due to strain-driven self-organization. In this work, a general formalism to model such ultrathin adsorption layers that properly takes into account the competition between strain and adhesion energy of the layers is presented. The model is based on the amplitude expansion of the two-dimensional phase field crystal (PFC) model, which retains atomistic length scales but allows relaxation of the layers at diffusive time scales. The specific systems considered here include cases where both the film and the adsorption potential can have either honeycomb (H) or triangular (T) symmetry. These systems include the so-called (1 ×1 ) , (√{3 }×√{3 }) R 30∘ , (2 ×2 ) , (√{7 }×√{7 }) R 19 .1∘ , and other higher order states that can contain a multitude of degenerate commensurate ground states. The relevant phase diagrams for many combinations of the H and T systems are mapped out as a function of adhesion strength and misfit strain. The coarsening patterns in some of these systems is also examined. The predictions are in good agreement with existing experimental data for selected strained ultrathin adsorption layers.

  13. Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Tomohiro; Bunn, Jeffrey R.; Fancher, Christopher M.

    Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-raymore » diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material. The research discussed within this paper consists of non-destructive residual strain measurements in the interior of connecting rods using the 2nd Generation Neutron Residual Stress Mapping Facility (NRSF2) at Oak Ridge National Laboratory, measuring the Fe (211) diffraction peak position of the ferrite phase. The interior strain distribution of connecting rod, which prepared under different manufacturing processes, was revealed. By the visualization of interior strains, clear understandings of differences in various processing conditions were obtained. In addition, it is known that the peak width, which is also obtained during measurement, is suggestive of the size of crystallites in the structure; however the peak width can additionally be caused by microstresses and material dislocations.« less

  14. Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition

    DTIC Science & Technology

    2014-11-18

    substrate and material. To better explain the experimental results and estimate the strain transferred to MoS2 layer under such tensile tests, a 3D... ACS Nano 7, 7126 7131 (2013). 29. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via...transition as it is thinned down from multi layer to monolayer, producing a significant enhancement of photoluminescence (PL) quantum yield as a result of the

  15. Critical thickness and strain relaxation in high-misfit heteroepitaxial systems: PbTe1-xSex on PbSe (001)

    NASA Astrophysics Data System (ADS)

    Wiesauer, Karin; Springholz, G.

    2004-06-01

    Strain relaxation and misfit dislocation formation is investigated for the high-misfit PbTe1-xSex/PbSe (001) heteroepitaxial system in which the lattice mismatch varies from 0% to 5.5%. Because a two-dimensional (2D) layer growth prevails for all PbTe1-xSex ternary compositions, the lattice mismatch is relaxed purely by misfit dislocations. In addition, it is found that strain relaxation is not hindered by dislocation kinetics. Therefore, this material combination is an ideal model system for testing the equilibrium Frank van der Merwe and Matthews Blakeslee strain relaxation models. In our experiments, we find significantly lower values of the critical layer thickness as compared to the model predictions. This discrepancy is caused by the inappropriate description of the dislocation self-energies when the layer thickness becomes comparable to the dislocation core radius. To resolve this problem, a modified expression for the dislocation self-energy is proposed. The resulting theoretical critical thicknesses are in excellent agreement with the experimental data. In addition, a remarkable universal scaling behavior is found for the strain relaxation data. This underlines the breakdown of the current strain relaxation models.

  16. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Luping; Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072; Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases moremore » quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.« less

  17. Usefulness of layer-specific strain for identifying complex CAD and predicting the severity of coronary lesions in patients with non-ST-segment elevation acute coronary syndrome: Compared with Syntax score.

    PubMed

    Zhang, Li; Wu, Wei-Chun; Ma, Hong; Wang, Hao

    2016-11-15

    Layer-specific strain allows the assessment of the function of every layer of myocardium. To evaluate the changes of non-ST-segment elevation acute coronary syndrome(NSTE-ACS) patients with and without complex coronary artery disease(CAD) by layer-specific strain and determine if myocardial strain can identify complex CAD and assess the severity of coronary lesions as defined by Syntax score (SS). A total of 139 patients undergoing coronary angiography due to suspected NSTE-ACS were prospectively enrolled. Echocardiography was performed 1h before angiography. Global longitudinal strain (GLS), territorial longitudinal strain (TLS), global circumferential strain (GCS) and territorial circumferential strain (TCS) of the three layers of LV wall were assessed by two-dimensional (2D) speckle tracking echocardiography (STE) with layer-specific myocardial deformation quantitative analysis based on the perfusion territories of the three major coronary arteries in an 18-segment model of LV. SS was used for predicting the severity of coronary lesions in patients with complex CAD. 78 had complex CAD, 32 had 1- or 2-vessel disease and 29 had no significant coronary stenosis confirmed by coronary angiography. According to SS value, 78 complex CAD subjects were subdivided into three groups, 24 in group SS 1 (SS≤22), 26 in group SS 2 (SS 23-32) and 28 in group SS 3 (SS≥33). Compared to the other two groups without complex CAD, patients with NSTE-ACS due to complex CAD had worse function in all 3 myocardial layers assessed by GLS, TLS, GCS and TCS. Endocardial GLS and TLS (all, P<0.01) were most affected. The absolute differences between endocardial and epicardial GLS and TLS were lower in magnitude in patients with complex CAD than in those without (all, P<0.001), and the more complex of coronary lesion, the lower magnitude of the parameters(all, P<0.001). Endocardial GLS and TLS were closely correlated with SS value(r=-0.751 and r=-0.753, respectively; P<0.001). By receiver-operating characteristic curve analysis, endocardial GLS and TLS demonstrated the highest area under curve, showing better diagnostic accuracy (endocardial GLS: value<-21.35% had 72% sensitivity, 84% specificity and area under the curve ¼0.846; endocardial TLS: value<-20.15% had 72% sensitivity, 88% specificity and area under the curve ¼0.852) than GCS, TCS, mid-myocardial and epicardial GLS, and TLS(all, P<0.05). Strains, particularly endocardial GLS and TLS measurement by 2DSTE might enable a non-invasive method to identify complex CAD and predict the severity of coronary lesions in patients with NSTE-ACS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Tsui, C. Y.

    1972-01-01

    Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.

  19. Diffusion behavior of Cu/Ta heterogeneous interface under high temperature and high strain: An atomistic investigation

    NASA Astrophysics Data System (ADS)

    Li, Ganglong; Wu, Houya; Luo, Honglong; Chen, Zhuo; Tay, Andrew A. O.; Zhu, Wenhui

    2017-09-01

    Three-dimensional (3D) integration technology using Cu interconnections has emerged as a promising solution to improve the performance of silicon microelectronic devices. However, Cu diffuses into SiO2 and requires a barrier layer such as Ta to ensure acceptable reliability. In this paper, the effects of temperature and strain normal to the interface on the inter-diffusion of Cu and Ta at annealing conditions are investigated using a molecular dynamics (MD) technique with embedded atomic method (EAM) potentials. Under thermal annealing conditions without strain, it is found that a Cu-rich diffusion region approximately 2 nm thick is formed at 1000 K after 10 ns of annealing. Ta is capable of diffusing into the interior of Cu but Cu hardly diffuses into the inner lattice of Ta. At the Cu side near the interface an amorphous structure is formed due to the process of diffusion. The diffusion activation energy of Cu and Ta are found to be 0.9769 and 0.586 eV, respectively. However, when a strain is applied, a large number of crystal defects are generated in the sample. As the strain is increased, extrinsic stacking faults (ESFs) and lots of Shockley partial dislocations appear. The density of the dislocations and the diffusion channels increase, promoting the diffusion of Cu atoms into the inner lattice of Ta. The thickness of the diffusion layer increases to 4 times the value when only a temperature load of 700 K is applied. The MD simulations demonstrated that Ta is very effective as a barrier layer under thermal loading only, and its effectiveness is impaired by tensile strain at the Cu/Ta interface. The simulations also clarified the mechanism that caused the impairment. The methodology and approach described in this paper can be followed further to study the effectiveness of barrier layers under various annealing and strain conditions, and to determine the minimum thickness of barrier layers required for a particular application.

  20. A Model of the THUNDER Actuator

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1997-01-01

    A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will develop in each layer and these stresses will induce a bending moment. When the actuator is released from its flat configuration, the differential stresses are relieved as the actuator bends.

  1. Whole-Genome Sequence of Aeromonas hydrophila Strain AH-1 (Serotype O11)

    PubMed Central

    Forn-Cuní, Gabriel; Tomás, Juan M.

    2016-01-01

    Aeromonas hydrophila is an emerging pathogen of aquatic and terrestrial animals, including humans. Here, we report the whole-genome sequence of the septicemic A. hydrophila AH-1 strain, belonging to the serotype O11, and the first mesophilic Aeromonas with surface layer (S-layer) to be sequenced. PMID:27587829

  2. Growth of strained Si/relaxed SiGe heterostructures on Si(110) substrates using solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Arimoto, Keisuke; Nakazawa, Hiroki; Mitsui, Shohei; Utsuyama, Naoto; Yamanaka, Junji; Hara, Kosuke O.; Usami, Noritaka; Nakagawa, Kiyokazu

    2017-11-01

    A strained Si/relaxed SiGe heterostructure grown on Si(110) substrate is attractive as a platform for high-hole-mobility Si-based electronic devices. To improve the electrical property, a smoother surface is desirable. In this study, we investigated surface morphology and microstructural aspects of strained Si/relaxed SiGe/Si(110) heterostructures grown by solid-source (SS) molecular beam epitaxy (MBE). It was revealed that SSMBE provides a way to grow strained Si/relaxed SiGe heterostructures with smooth surfaces. In addition, it was found that the strain in the SiGe layer of the SSMBE-grown sample is highly anisotropic whereas that of the GSMBE-grown sample is almost biaxially relaxed. Along with the surface morphology, the symmetry in degree of strain relaxation has implications for the electrical property. Results of a calculation shows that anisotropic strain is preferable for device application since it confines holes solely in the strained Si layer where hole mobility is enhanced.

  3. Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy.

    PubMed

    Müller, Knut; Rosenauer, Andreas; Schowalter, Marco; Zweck, Josef; Fritz, Rafael; Volz, Kerstin

    2012-10-01

    This article deals with the measurement of strain in semiconductor heterostructures from convergent beam electron diffraction patterns. In particular, three different algorithms in the field of (circular) pattern recognition are presented that are able to detect diffracted disc positions accurately, from which the strain in growth direction is calculated. Although the three approaches are very different as one is based on edge detection, one on rotational averages, and one on cross correlation with masks, it is found that identical strain profiles result for an In x Ga1-x N y As1-y /GaAs heterostructure consisting of five compressively and tensile strained layers. We achieve a precision of strain measurements of 7-9·10-4 and a spatial resolution of 0.5-0.7 nm over the whole width of the layer stack which was 350 nm. Being already very applicable to strain measurements in contemporary nanostructures, we additionally suggest future hardware and software designs optimized for fast and direct acquisition of strain distributions, motivated by the present studies.

  4. Speckle-Tracking Layer-Specific Analysis of Myocardial Deformation and Evaluation of Scar Transmurality in Chronic Ischemic Heart Disease.

    PubMed

    Tarascio, Michela; Leo, Laura Anna; Klersy, Catherine; Murzilli, Romina; Moccetti, Tiziano; Faletra, Francesco Fulvio

    2017-07-01

    Identification of the extent of scar transmurality in chronic ischemic heart disease is important because it correlates with viability. The aim of this retrospective study was to evaluate whether layer-specific two-dimensional speckle-tracking echocardiography allows distinction of scar presence and transmurality. A total of 70 subjects, 49 with chronic ischemic cardiomyopathy and 21 healthy subjects, underwent two-dimensional speckle-tracking echocardiography and late gadolinium-enhanced cardiac magnetic resonance. Scar extent was determined as the relative amount of hyperenhancement using late gadolinium-enhanced cardiac magnetic resonance in an 18-segment model (0% hyperenhancement = normal; 1%-50% = subendocardial scar; 51%-100% = transmural scar). In the same 18-segment model, peak systolic circumferential strain and longitudinal strain were calculated separately for the endocardial and epicardial layers as well as the full-wall myocardial thickness. All strain parameters showed cutoff values (area under the curve > 0.69) that allowed the discrimination of normal versus scar segments but not of transmural versus subendocardial scars. This was true for all strain parameters analyzed, without differences in efficacy between longitudinal and circumferential strain and subendocardial, subepicardial, and full-wall-thickness strain values. Circumferential and longitudinal strain in normal segments showed transmural and basoapical gradients (greatest values at the subendocardial layer and apex). In segments with scar, transmural gradient was maintained, whereas basoapical gradient was lost because the reduction of strain values in the presence of the scar was greater at the apex. The two-dimensional speckle-tracking echocardiographic values distinguish scar presence but not transmurality; thus, they are not useful predictors of scar segment viability. It remains unclear why there is a greater strain value reduction in the presence of a scar at the apical level. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  5. Synthesis of Germanium-Tin Alloys by Ion Implantation and Pulsed Laser Melting: Towards a Group IV Direct Band Gap Semiconductor

    NASA Astrophysics Data System (ADS)

    Tran, Tuan Thien

    The germanium-tin (Ge1-xSnx) material system is expected to be a direct bandgap group IV semiconductor at a Sn content of 6.5-11 at.%. Hence there has been much interest in preparing such alloys since they are compatible with silicon and they raise the possibility of integrating photonics functionality into silicon circuitry. However, the maximum solid solubility of Sn in Ge is around 0.5 at.% and non-equilibrium deposition techniques such as molecular beam epitaxy or chemical vapour deposition have been used to achieve the desired high Sn concentrations. In this PhD work, the combination of ion implantation and pulsed laser melting (PLM) is demonstrated to be an alternative promising method to produce a highly Sn concentrated alloy with good crystal quality. In initial studies, it was shown that 100 keV Sn implants followed by PLM produced high quality alloys with up to 6.2 at.%Sn but above these Sn concentrations the crystal quality was poor. The structural properties of the ≤6.2 at.% alloys such as soluble Sn concentration, strain distribution and crystal quality have been characterised by Rutherford backscattering spectrometry (RBS), Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The optical properties and electronic band structure have been studied by spectroscopic ellipsometry. The introduction of substitutional Sn into Ge is shown to either induce a splitting between light and heavy hole subbands or lower the conduction band at the Gamma valley. However, at higher implant doses needed to achieve >6.2 at.% Sn, ion-beam-induced porosity in Ge starts to occur, which drastically reduces the retained amount of the implanted Sn and such microstructure also hinders good crystallisation of the material during PLM. To solve this problem, it was shown that a nanometer thick SiO2 layer deposited on the Ge substrate prior to the implantation can largely eliminate the formation of porosity. This capping SiO2 layer also helps to increase the retained Sn concentration up to 15 at.% after implantation, as well as significantly improving the crystal quality of the Ge-Sn layer after PLM. With the use of the capping layer, a good quality Ge-Sn layer with 9 at.% Sn has been achieved using Sn implants at an energy of 120 keV. However, the thin film alloys produced by 100 keV or 120 keV Sn implantation and PLM are shown to contain compressive strain as a result of the large lattice mismatch between Ge and high Sn content alloys. Such strain compromises the tendency towards a direct bandgap material and hence strain relaxation is highly desirable. A thermal stability study showed that the thin film strained material is metastable up to 400°C, but thereafter Sn comes out of solution and diffuses to the material surface. To investigate a possible pathway to the synthesis of strain-relaxed material, a higher Sn implant energy of 350 keV was used to produce thicker alloy layers. XRD/reciprocal space mapping showed that this thicker alloy material is largely relaxed after PLM, which is beneficial for the direct band gap transition and solves the trade-off between higher Sn concentration and compressive strain. However, RBS indicates a sub-surface band of disorder which suggested a possible mechanism for the strain relaxation. Indeed, TEM examination of such material showed the material relaxed via the generation of non-equilibrium threading defects. Despite such defects, a PL study of this relaxed material found photon emission at a wavelength of 2150 nm for 6-9 at.% Sn alloys. However, the intensity of the emission was variable across different Sn content alloys, presumably as a result of the threading defects. A possible pathway to removing such defects is given that may enable both photodetectors and lasers to be fabricated at wavelengths above 2mum.

  6. Polar Cation Ordering: A Route to Introducing >10% Bond Strain Into Layered Oxide Films

    DOE PAGES

    Nelson-Cheeseman, Brittany B.; Zhou, Hua; Balachandran, Prasanna V.; ...

    2014-09-05

    The 3d transition metal (M) perovskite oxides exhibit a remarkable array of properties, including novel forms of superconductivity, magnetism and multiferroicity. Strain can have a profound effect on many of these properties. This is due to the localized nature of the M 3d orbitals, where even small changes in the M–O bond lengths and M–O–M bond angles produced by strain can be used to tune the 3d– O 2p hybridization, creating large changes in electronic structure. We present a new route to strain the M–O bonds in epitaxial two-dimensional perovskite films by tailoring local electrostatic dipolar interactions within every formulamore » unit via atomic layer-by-layer synthesis. The response of the O anions to the resulting dipole electric fields distorts the M–O bonds by more than 10%, without changing substrate strain or chemical composition. We found that this distortion is largest for the apical oxygen atoms (O ap), and alters the transition metal valence state via self-doping without chemical substitution.« less

  7. Determination of the strain distribution for the Si3N4 passivated AlGaN/AlN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Fu, Chen; Lin, Zhaojun; Liu, Yan; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao

    2017-11-01

    A method to determine the strain distribution of the AlGaN barrier layer after the device fabrication and the passivation process has been presented. By fitting the calculated parasitic source access resistance with the measured ones for the AlGaN/AlN/GaN HFETs and using the polarization Coulomb field scattering theory, the strain variation of the AlGaN barrier layer after the passivation process has been quantitatively studied. The results show that the tensile strain in the access regions of the AlGaN barrier layer has been increased by 4.62% for the 250 nm-Si3N4 passivated device, and has been decreased by 2.0% for the 400 nm-Si3N4 passivated device, compared to that of before the passivation, respectively. For the gate region of the two devices, the tensile strain has been decreased by 60.77% and increased by 3.60% after the passivation of different thicknesses, oppositely.

  8. Personalized modeling for real-time pressure ulcer prevention in sitting posture.

    PubMed

    Luboz, Vincent; Bailet, Mathieu; Boichon Grivot, Christelle; Rochette, Michel; Diot, Bruno; Bucki, Marek; Payan, Yohan

    2018-02-01

    Ischial pressure ulcer is an important risk for every paraplegic person and a major public health issue. Pressure ulcers appear following excessive compression of buttock's soft tissues by bony structures, and particularly in ischial and sacral bones. Current prevention techniques are mainly based on daily skin inspection to spot red patches or injuries. Nevertheless, most pressure ulcers occur internally and are difficult to detect early. Estimating internal strains within soft tissues could help to evaluate the risk of pressure ulcer. A subject-specific biomechanical model could be used to assess internal strains from measured skin surface pressures. However, a realistic 3D non-linear Finite Element buttock model, with different layers of tissue materials for skin, fat and muscles, requires somewhere between minutes and hours to compute, therefore forbidding its use in a real-time daily prevention context. In this article, we propose to optimize these computations by using a reduced order modeling technique (ROM) based on proper orthogonal decompositions of the pressure and strain fields coupled with a machine learning method. ROM allows strains to be evaluated inside the model interactively (i.e. in less than a second) for any pressure field measured below the buttocks. In our case, with only 19 modes of variation of pressure patterns, an error divergence of one percent is observed compared to the full scale simulation for evaluating the strain field. This reduced model could therefore be the first step towards interactive pressure ulcer prevention in a daily set-up. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  9. Low-Thermal-Conductivity Pyrochlore Oxide Materials Developed for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2005-01-01

    When turbine engines operate at higher temperatures, they consume less fuel, have higher efficiencies, and have lower emissions. The upper-use temperatures of the base materials (superalloys, silicon-based ceramics, etc.) used for the hot-section components of turbine engines are limited by the physical, mechanical, and corrosion characteristics of these materials. Thermal barrier coatings (TBCs) are applied as thin layers on the surfaces of these materials to further increase the operating temperatures. The current state-of-the-art TBC material in commercial use is partially yttria-stabilized zirconia (YSZ), which is applied on engine components by plasma spraying or by electron-beam physical vapor deposition. At temperatures higher than 1000 C, YSZ layers are prone to sintering, which increases thermal conductivity and makes them less effective. The sintered and densified coatings can also reduce thermal stress and strain tolerance, which can reduce the coating s durability significantly. Alternate TBC materials with lower thermal conductivity and better sintering resistance are needed to further increase the operating temperature of turbine engines.

  10. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    NASA Astrophysics Data System (ADS)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  11. Hydrogen uptake causes molecular "avalanches" in palladium | Argonne

    Science.gov Websites

    experimental and calculated strain distributions in the hydrogen-poor phase. The strains are consistent with a trapped hydrogen-rich surface layer. Middle: Comparison between experimental and calculated strain transformation. Comparison between experimental and calculated strain distributions in the hydrogen-poor phase

  12. Heat-Assisted Multiferroic Solid-State Memory

    PubMed Central

    2017-01-01

    A heat-assisted multiferroic solid-state memory design is proposed and analysed, based on a PbNbZrSnTiO3 antiferroelectric layer and Ni81Fe19 magnetic free layer. Information is stored as magnetisation direction in the free layer of a magnetic tunnel junction element. The bit writing process is contactless and relies on triggering thermally activated magnetisation switching of the free layer towards a strain-induced anisotropy easy axis. A stress is generated using the antiferroelectric layer by voltage-induced antiferroelectric to ferroelectric phase change, and this is transmitted to the magnetic free layer by strain-mediated coupling. The thermally activated strain-induced magnetisation switching is analysed here using a three-dimensional, temperature-dependent magnetisation dynamics model, based on simultaneous evaluation of the stochastic Landau-Lifshitz-Bloch equation and heat flow equation, together with stochastic thermal fields and magnetoelastic contributions. The magnetisation switching probability is calculated as a function of stress magnitude and maximum heat pulse temperature. An operating region is identified, where magnetisation switching always occurs, with stress values ranging from 80 to 180 MPa, and maximum temperatures normalised to the Curie temperature ranging from 0.65 to 0.99. PMID:28841185

  13. Heat-Assisted Multiferroic Solid-State Memory.

    PubMed

    Lepadatu, Serban; Vopson, Melvin M

    2017-08-25

    A heat-assisted multiferroic solid-state memory design is proposed and analysed, based on a PbNbZrSnTiO₃ antiferroelectric layer and Ni 81 Fe 19 magnetic free layer. Information is stored as magnetisation direction in the free layer of a magnetic tunnel junction element. The bit writing process is contactless and relies on triggering thermally activated magnetisation switching of the free layer towards a strain-induced anisotropy easy axis. A stress is generated using the antiferroelectric layer by voltage-induced antiferroelectric to ferroelectric phase change, and this is transmitted to the magnetic free layer by strain-mediated coupling. The thermally activated strain-induced magnetisation switching is analysed here using a three-dimensional, temperature-dependent magnetisation dynamics model, based on simultaneous evaluation of the stochastic Landau-Lifshitz-Bloch equation and heat flow equation, together with stochastic thermal fields and magnetoelastic contributions. The magnetisation switching probability is calculated as a function of stress magnitude and maximum heat pulse temperature. An operating region is identified, where magnetisation switching always occurs, with stress values ranging from 80 to 180 MPa, and maximum temperatures normalised to the Curie temperature ranging from 0.65 to 0.99.

  14. Static versus dynamic fracturing in shallow carbonate fault zones

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Doan, M. L.; Aben, F. M.; Fusseis, F.; Mitchell, T. M.; Di Toro, G.

    2015-12-01

    Moderate to large earthquakes often nucleate within and propagate through carbonates in the shallow crust, therefore several field and experimental studies were recently aimed to constrain earthquake-related deformation processes within carbonate fault rocks. In particular, the occurrence of thick belts (10-100s m) of low-strain fault-related breccias (average size of rock fragments >1 cm), which is relatively common within carbonate damage zones, was generally interpreted as resulting from the quasi-static growth of fault zones rather than from the cumulative effect of multiple earthquake ruptures. Here we report the occurrence of up to hundreds of meters thick belts of intensely fragmented dolostones along the major transpressive Foiana Fault Zone (Italian Southern Alps) which was exhumed from < 2 km depth. Such dolostones are reduced into fragments ranging from few centimeters down to few millimeters in size with ultrafine-grained layers in proximity to the principal slip zones. Preservation of the original bedding indicates a lack of significant shear strain in the fragmented dolostones which seem to have been shattered in situ. To investigate the origin of the in-situ shattered rocks, the host dolostones were deformed in uniaxial compression both under quasi-static loading (strain rate ~10-3 s-1) and dynamic loading (strain rate >50 s-1). Dolostones deformed up to failure under low-strain rate were affected by single to multiple discrete (i.e. not interconnected) extensional fractures sub-parallel to the loading direction. Dolostones deformed under high-strain rate were shattered above a strain rate threshold of ~200 s-1(strain >1.2%) while they were split in few fragments or were macroscopically intact for lower strain rates. Experimentally shattered dolostones were reduced into a non-cohesive material with most rock fragments a few millimeters in size and elongated parallel to the loading direction. Fracture networks were investigated by X-ray microtomography showing that low- and high-strain rate damage patterns are different with the latter being similar to that of natural in-situ shattered dolostones. In-situ shattered dolostones are thus interpreted as the product of off-fault dynamic stress wave loading and can potentially be used to constrain coseismic energy release in fault zones.

  15. Minimizing residues and strain in 2D materials transferred from PDMS.

    PubMed

    Jain, Achint; Bharadwaj, Palash; Heeg, Sebastian; Parzefall, Markus; Taniguchi, Takashi; Watanabe, Kenji; Novotny, Lukas

    2018-06-29

    Integrating layered two-dimensional (2D) materials into 3D heterostructures offers opportunities for novel material functionalities and applications in electronics and photonics. In order to build the highest quality heterostructures, it is crucial to preserve the cleanliness and morphology of 2D material surfaces that come in contact with polymers such as PDMS during transfer. Here we report that substantial residues and up to ∼0.22% compressive strain can be present in monolayer MoS 2 transferred using PDMS. We show that a UV-ozone pre-cleaning of the PDMS surface before exfoliation significantly reduces organic residues on transferred MoS 2 flakes. An additional 200 ◦ C vacuum anneal after transfer efficiently removes interfacial bubbles and wrinkles as well as accumulated strain, thereby restoring the surface morphology of transferred flakes to their native state. Our recipe is important for building clean heterostructures of 2D materials and increasing the reproducibility and reliability of devices based on them.

  16. Minimizing residues and strain in 2D materials transferred from PDMS

    NASA Astrophysics Data System (ADS)

    Jain, Achint; Bharadwaj, Palash; Heeg, Sebastian; Parzefall, Markus; Taniguchi, Takashi; Watanabe, Kenji; Novotny, Lukas

    2018-06-01

    Integrating layered two-dimensional (2D) materials into 3D heterostructures offers opportunities for novel material functionalities and applications in electronics and photonics. In order to build the highest quality heterostructures, it is crucial to preserve the cleanliness and morphology of 2D material surfaces that come in contact with polymers such as PDMS during transfer. Here we report that substantial residues and up to ∼0.22% compressive strain can be present in monolayer MoS2 transferred using PDMS. We show that a UV-ozone pre-cleaning of the PDMS surface before exfoliation significantly reduces organic residues on transferred MoS2 flakes. An additional 200 ◦C vacuum anneal after transfer efficiently removes interfacial bubbles and wrinkles as well as accumulated strain, thereby restoring the surface morphology of transferred flakes to their native state. Our recipe is important for building clean heterostructures of 2D materials and increasing the reproducibility and reliability of devices based on them.

  17. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.

    PubMed

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-09-02

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

  18. A novel method for visualising and quantifying through-plane skin layer deformations.

    PubMed

    Gerhardt, L-C; Schmidt, J; Sanz-Herrera, J A; Baaijens, F P T; Ansari, T; Peters, G W M; Oomens, C W J

    2012-10-01

    Skin is a multilayer composite and exhibits highly non-linear, viscoelastic, anisotropic material properties. In many consumer product and medical applications (e.g. during shaving, needle insertion, patient re-positioning), large tissue displacements and deformations are involved; consequently large local strains in the skin tissue can occur. Here, we present a novel imaging-based method to study skin deformations and the mechanics of interacting skin layers of full-thickness skin. Shear experiments and real-time video recording were combined with digital image correlation and strain field analysis to visualise and quantify skin layer deformations during dynamic mechanical testing. A global shear strain of 10% was applied to airbrush-patterned porcine skin (thickness: 1.2-1.6mm) using a rotational rheometer. The recordings were analysed with ARAMIS image correlation software, and local skin displacement, strain and stiffness profiles through the skin layers determined. The results of this pilot study revealed inhomogeneous skin deformation, characterised by a gradual transition from a low (2.0-5.0%; epidermis) to high (10-22%; dermis) shear strain regime. Shear moduli ranged from 20 to 130kPa. The herein presented method will be used for more extended studies on viable human skin, and is considered a valuable foundation for further development of constitutive models which can be used in advanced finite element analyses of skin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu

    2016-07-11

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial filmmore » surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.« less

  20. Nanometer-Scale Epitaxial Strain Release in Perovskite Heterostructures Using 'SrAlOx' Sliding Buffer Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Christopher

    2011-08-11

    We demonstrate the strain release of LaAlO{sub 3} epitaxial film on SrTiO{sub 3} (001) by inserting ultra-thin 'SrAlO{sub x}' buffer layers. Although SrAlO{sub x} is not a perovskite, nor stable as a single phase in bulk, epitaxy stabilizes the perovskite structure up to a thickness of 2 unit cells (uc). At a critical thickness of 3 uc of SrAlO{sub x}, the interlayer acts as a sliding buffer layer, and abruptly relieves the lattice mismatch between the LaAlO{sub 3} filmand the SrTiO{sub 3} substrate, while maintaining crystallinity. This technique may provide a general approach for strain relaxation of perovskite film farmore » below the thermodynamic critical thickness. A central issue in heteroepitaxial filmgrowth is the inevitable difference in lattice constants between the filmand substrate. Due to this lattice mismatch, thin film are subjected to microstructural strain, which can have a significan effect on the filmproperties. This challenge is especially prominent in the rapidly developing fiel of oxide electronics, where much interest is focused on incorporating the emergent physical properties of oxides in devices. Although strain can be used to great effect to engineer unusual ground states, it is often deleterious for bulk first-orde phase transitions, which are suppressed by the strain and symmetry constraints of the substrate. While there are some reports discussing the control of the lattice mismatch in oxides using thick buffer layers, the materials choice, lattice-tunable range, and control of misfit dislocations are still limited. In this Letter, we report the fabrication of strain-relaxed LaAlO{sub 3} (LAO) thin film on SrTiO{sub 3} (STO) (001) using very thin 'SrAlO{sub x}' (SAO) buffer layers. Whereas for 1 or 2 pseudo-perovskite unit cells (uc) of SAO, the subsequent LAO filmis strained to the substrate, at a critical thickness of 3 uc the SAO interlayer abruptly relieves the lattice mismatch between the LAO and the STO, although maintaining the relative crystalline orientation between the filmand the substrate. For 4 uc or greater, the perovskite epitaxial template is lost and the LAO filmis amorphous. These results suggest that metastable interlayers can be used for strain release on the nanometer scale.« less

  1. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    NASA Astrophysics Data System (ADS)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the influence of the network density on the piezoresistivity of mechanically drawn SWCNT thin films. Mechanically drawn SWCNT thin films with different layer (or thickness) e.g. 1-layer, 3-layer, 10-layer and 20-layer SWCNT thin films were prepared to understand the variation of SWCNT network density as well as the alignment of SWCNTs on the strain sensitivity. The less entangled SWCNT bundles observed in the sparse network density (1- layer and 3-layer SWCNT thin films) allows for easy alignment and the best gauge factors. As compared to the randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~8x increase on the GF for the 1-layer SWCNT thin films while the 20-layer SWCNT thin films exhibited ~3x increase in the GF. My third accomplishment examines the effect of SWCNT bundles with different diameters on the piezoresistive behavior of mechanically drawn SWCNT thin films. SWCNT thin film network of sparse morphology (1-layer) with different bundle sizes were prepared by varying the sonication duration e.g. S0.5hr, S4hr, S10hr and S20hr and using spraying coating. The GF increased by a factor of ~10 when the randomly oriented SWCNT thin film was stretched to a draw ratio of 3.2 for the S0.5hr SWCNT thin films and by a factor of ~2 for the S20hr SWCNT thin films. Three main mechanisms were attributed to this behavior e.g. effect of concentration of exfoliated nanotubes, bundle reduction due to mechanical stretching, and influence of bundle length on the alignment of SWCNTs. Furthermore, information about the average length and length distribution is very essential when investigating the influence of individual nanotube length on the strain sensitivity. With that in mind, we would use our previously developed preparative ultracentrifuge method (PUM), and our newly developed gel electrophoresis and simultaneous Raman and photoluminescence spectroscopy (GEP-SRSPL) to characterize the average length and length distribution of individual SWCNTs respectively.

  2. Strain-Dependent Edge Structures in MoS2 Layers.

    PubMed

    Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia

    2017-11-08

    Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

  3. Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors

    DOEpatents

    Biefeld, Robert M.; Dawson, L. Ralph; Fritz, Ian J.; Kurtz, Steven R.; Zipperian, Thomas E.

    1991-01-01

    A high gain photoconductive device for 8 to 12 .mu.m wavelength radiation including an active semiconductor region extending from a substrate to an exposed face, the region comprising a strained-layer superlattice of alternating layers of two different InAs.sub.1-x Sb.sub.x compounds having x>0.75. A pair of spaced electrodes are provided on the exposed face, and changes in 8 to 12 .mu.m radiation on the exposed face cause a large photoconductive gain between the spaced electrodes.

  4. Nanoscale self-templating for oxide epitaxy with large symmetry mismatch

    DOE PAGES

    Gao, Xiang; Lee, Shinbuhm; Nichols, John A.; ...

    2016-12-02

    Direct observations using scanning transmission electron microscopy unveil an intriguing interfacial bi-layer that enables epitaxial growth of a strain-free, monoclinic, bronze-phase VO 2(B) thin film on a perovskite SrTiO 3 (STO) substrate. For this study, we observe an ultrathin (2–3 unit cells) interlayer best described as highly strained VO 2(B) nanodomains combined with an extra (Ti,V)O 2 layer on the TiO 2 terminated STO (001) surface. By forming a fully coherent interface with the STO substrate and a semi-coherent interface with the strain-free epitaxial VO 2(B) film above, the interfacial bi-layer enables the epitaxial connection of the two materials despitemore » their large symmetry and lattice mismatch.« less

  5. Non-linear second harmonic generation (SHG) studies of BaTiO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    Vlahos, Eftihia; Lee, Che-Hui; Wu, Pingping; Wung Bark, Chung; Jang, Ho Won; Folkman, Chad; Hyub Baek, Seung; Park, J. W.; Biegalski, Mike; Tenne, Dmitri; Schlom, Darrell; Chen, Long-Qing; Eom, Chang-Beom; Gopalan, Venkatraman

    2010-03-01

    Theoretical phase-field simulations predict that certain types of superlattices consisting of alternating (BaTiO3)n/(SrTiO3)n layers have novel vortex domain wall configurations which give rise to exceptionally high polarization tunability combined with negligible polarization hysteresis. Optical second harmonic generation (SHG) was used to probe the phase and transition temperatures of multilayer (BaTiO3)m/(SrTiO3)n superlattices, as a function of epitaxial strain. In addition, in-plane electro-optic measurements were carried out. The experimental results are in excellent agreement both with theoretical predictions, as well as the temperature-strain phase diagram obtained experimentally from UV Raman studies. The ferroelectric, in-plane SHG signal, from the tensile strained SrTiO3 layers reveals an mm2 point group symmetry, whereas the point group symmetry of the compressively strained BaTiO3 layers, was determined to be 4mm.

  6. Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: Application to (113)A -oriented layers

    NASA Astrophysics Data System (ADS)

    Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.

    2010-06-01

    Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.

  7. Strain modulation-enhanced Mg acceptor activation efficiency of Al0.14Ga0.86N/GaN superlattices with AlN interlayer

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Rui; Li, Ding; Liu, Ningyang; Liu, Lei; Chen, Weihua; Wang, Cunda; Yang, Zhijian; Hu, Xiaodong

    2010-02-01

    AlN layer was grown as interlayer between undoped GaN and Mg doped Al0.14Ga0.86N/GaN superlattices (SLs) epilayer to modulate the strain distribution between Al0.14Ga0.86N barrier and GaN well layers in SLs sample. Strain relaxation was observed in the SLs sample with AlN interlayer by x-ray diffraction reciprocal space mapping method. The measured hole concentration of SLs sample with AlN interlayer at room temperature was over 1.6×1018 cm-3 but that was only 6.6×1016 cm-3 obtained in SLs sample without AlN interlayer. Variable temperature Hall-effect measurement showed that the acceptor activation energy decreased from 150 to 70 meV after inserting the AlN layer, which indicated that the strain modulation of SLs induced by AlN interlayer was beneficial to the Mg acceptor activation and hole concentration enhancement.

  8. Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazioti, C.; Kehagias, Th.; Pavlidou, E.

    2015-10-21

    We investigate the structural properties of a series of high alloy content InGaN epilayers grown by plasma-assisted molecular beam epitaxy, employing the deposition temperature as variable under invariant element fluxes. Using transmission electron microscopy methods, distinct strain relaxation modes were observed, depending on the indium content attained through temperature adjustment. At lower indium contents, strain relaxation by V-pit formation dominated, with concurrent formation of an indium-rich interfacial zone. With increasing indium content, this mechanism was gradually substituted by the introduction of a self-formed strained interfacial InGaN layer of lower indium content, as well as multiple intrinsic basal stacking faults andmore » threading dislocations in the rest of the film. We show that this interfacial layer is not chemically abrupt and that major plastic strain relaxation through defect introduction commences upon reaching a critical indium concentration as a result of compositional pulling. Upon further increase of the indium content, this relaxation mode was again gradually succeeded by the increase in the density of misfit dislocations at the InGaN/GaN interface, leading eventually to the suppression of the strained InGaN layer and basal stacking faults.« less

  9. Coherency strain engineered decomposition of unstable multilayer alloys for improved thermal stability

    NASA Astrophysics Data System (ADS)

    Forsén, R.; Ghafoor, N.; Odén, M.

    2013-12-01

    A concept to improve hardness and thermal stability of unstable multilayer alloys is presented based on control of the coherency strain such that the driving force for decomposition is favorably altered. Cathodic arc evaporated cubic TiCrAlN/Ti1-xCrxN multilayer coatings are used as demonstrators. Upon annealing, the coatings undergo spinodal decomposition into nanometer-sized coherent Ti- and Al-rich cubic domains which is affected by the coherency strain. In addition, the growth of the domains is restricted by the surrounding TiCrN layer compared to a non-layered TiCrAlN coating which together results in an improved thermal stability of the cubic structure. A significant hardness increase is seen during decomposition for the case with high coherency strain while a low coherency strain results in a hardness decrease for high annealing temperatures. The metal diffusion paths during the domain coarsening are affected by strain which in turn is controlled by the Cr-content (x) in the Ti1-xCrxN layers. For x = 0 the diffusion occurs both parallel and perpendicular to the growth direction but for x > =0.9 the diffusion occurs predominantly parallel to the growth direction. Altogether this study shows a structural tool to alter and fine-tune high temperature properties of multicomponent materials.

  10. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    DOE PAGES

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; ...

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  11. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  12. Noble-transition metal nanoparticle breathing in a reactive gas atmosphere.

    PubMed

    Petkov, Valeri; Shan, Shiyao; Chupas, Peter; Yin, Jun; Yang, Lefu; Luo, Jin; Zhong, Chuan-Jian

    2013-08-21

    In situ high-energy X-ray diffraction coupled to atomic pair distribution function analysis is used to obtain fundamental insight into the effect of the reactive gas environment on the atomic-scale structure of metallic particles less than 10 nm in size. To substantiate our recent discovery we investigate a wide range of noble-transition metal nanoparticles and confirm that they expand and contract radially when treated in oxidizing (O2) and reducing (H2) atmospheres, respectively. The results are confirmed by supplementary XAFS experiments. Using computer simulations guided by the experimental diffraction data we quantify the effect in terms of both relative lattice strain and absolute atomic displacements. In particular, we show that the effect leads to a small percent of extra surface strain corresponding to several tenths of Ångström displacements of the atoms at the outmost layer of the particles. The effect then gradually decays to zero within 4 atomic layers inside the particles. We also show that, reminiscent of a breathing type structural transformation, the effect is reproducible and reversible. We argue that because of its significance and widespread occurrence the effect should be taken into account in nanoparticle research.

  13. Sudden bending of cracked laminates

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.

  14. Controlled growth of heteroepitaxial zinc oxide nanostructures on gallium nitride.

    PubMed

    Kong, Bo Hyun; Kim, Dong Chan; Mohanta, Sanjay Kumar; Han, Won Suk; Cho, Hyung Koun; Hong, Chang-Hee; Kim, Hyung Gu

    2009-07-01

    ZnO epitaxial layers were grown on GaN underlying films by metalorganic chemical vapor deposition at various temperatures. An increase in growth temperature led to morphological changes from a smooth film with hexagonal-shaped surface pits to honeycomb-like nanostructures with deep hollow, and additionally resulted in a decrease in dislocation density in the interfacial layers. The reduced dislocation density at the higher growth temperature was attributed to an increase in the size of the critical nucleus and the low nucleation density at the initial stage. The shifts in the peak positions in the X-ray diffraction and photoluminescence were also observed in the samples grown at different temperatures, and were caused by the variation of residual strains after the complete coalescence of the nuclei.

  15. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  16. [Morphological changes of neurons and neuroglial cells in the brain of senescence-accelerated prone 1 (SAMP1) mice].

    PubMed

    Khudoerkov, R M; Sal'kov, V N; Sal'nikova, O V; Sobolev, V B

    2014-01-01

    Computerized morphometry was used to examine the sizes of neuronal bodies and the compactness of arrangement of neurons and neuroglial cells in layers III and V of the sensorimotor cortex in senescence-accelerated prone 1 (SAMP1) mice (an experimental group) and senescence-accelerated-resistant strain 1 (SAMR1) ones (a control group). In the SAMP1 mice as compared to the SAMR1 ones, the neuronal body sizes were significantly unchanged; the compactness of their arrangement decreased by 17 and 20% in layers III and V, respectively; that of neuroglial cells significantly increased by 14% in layer III only. In the SAMP1 mice versus the SAMR1 ones, the glial index rose by 36% in layer III and by 24% in layer V. During simulation of physiological aging, the sizes of neuronal bodies were shown to be virtually unchanged in the cerebral cortex; the compactness of their arrangement (cell counts) moderately reduced and that of neuroglial cells increased, which caused a rise in the glioneuronal index that was indicative of the enhanced supporting function of neuroglial cells during the physiological aging of brain structures.

  17. MBE growth of Topological Isolators based on strained semi-metallic HgCdTe layers

    NASA Astrophysics Data System (ADS)

    Grendysa, J.; Tomaka, G.; Sliz, P.; Becker, C. R.; Trzyna, M.; Wojnarowska-Nowak, R.; Bobko, E.; Sheregii, E. M.

    2017-12-01

    Particularities of Molecular Beam Epitaxial (MBE) technology for the growth of Topological Insulators (TI) based on the semi-metal Hg1-xCdx Te are presented. A series of strained layers grown on GaAs substrates with a composition close to the 3D Dirac point were studied. The composition of the layers was verified by means of the position of the E1 maximum in optical reflectivity in the visible region. The surface morphology was determined via atomic force and electron microscopy. Magneto-transport measurements show quantized Hall resistance curves and Shubnikov de Hass oscillations (up to 50 K). It has been demonstrated that a well-developed MBE technology enables one to grow strained Hg1-xCdx Te layers on GaAs/CdTe substrates with a well-defined composition near the 3D Dirac point and consequently allows one to produce a 3D topological Dirac semimetal - 3D analogy of graphene - for future applications.

  18. Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.

    PubMed

    Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A

    2016-06-28

    Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined by the kirigami periodicity.

  19. Chemical and morphological characterization of III-V strained layered heterostructures

    NASA Astrophysics Data System (ADS)

    Gray, Allen Lindsay

    This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.

  20. Influence of Supplemental Dietary Poultry Fat, Phytase, and 25-Hydroxycholecalciferol on the Performance of Commercial Layers Inoculated Before or at the Onset of Lay with F-Strain Mycoplasma gallisepticum

    USDA-ARS?s Scientific Manuscript database

    The effects of 2 levels of supplemental dietary poultry fat (PF) and the combination of PF, phytase (PHY) and 25-hydroxycholecalciferol (D3) on the performance of commercial layers inoculated with F-strain Mycoplasma gallisepticum (FMG) were investigated in 2 trials. Sham and FMG inoculations were ...

  1. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Honggyu; Meng, Yifei; Kwon, Ji-Hwan

    Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. Themore » ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.« less

  2. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain

    DOE PAGES

    Kim, Honggyu; Meng, Yifei; Kwon, Ji-Hwan; ...

    2018-01-01

    Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. Themore » ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.« less

  3. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers.

    PubMed

    Abdelhafiz, Ali; Vitale, Adam; Joiner, Corey; Vogel, Eric; Alamgir, Faisal M

    2015-03-25

    In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.

  4. Deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems: Theoretical calculations and experimental measurements

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, Luis A.; Pelzel, Rodney I.; Nosho, Brett Z.; Weinberg, W. Henry; Maroudas, Dimitrios

    2001-09-01

    A comprehensive, quantitative analysis is presented of the deformation behavior of coherently strained InAs/GaAs(111)A heteroepitaxial systems. The analysis combines a hierarchical theoretical approach with experimental measurements. Continuum linear elasticity theory is linked with atomic-scale calculations of structural relaxation for detailed theoretical studies of deformation in systems consisting of InAs thin films on thin GaAs(111)A substrates that are mechanically unconstrained at their bases. Molecular-beam epitaxy is used to grow very thin InAs films on both thick and thin GaAs buffer layers on epi-ready GaAs(111)A substrates. The deformation state of these samples is characterized by x-ray diffraction (XRD). The interplanar distances of thin GaAs buffer layers along the [220] and [111] crystallographic directions obtained from the corresponding XRD spectra indicate clearly that thin buffer layers deform parallel to the InAs/GaAs(111)A interfacial plane, thus aiding in the accommodation of the strain induced by lattice mismatch. The experimental measurements are in excellent agreement with the calculated lattice interplanar distances and the corresponding strain fields in the thin mechanically unconstrained substrates considered in the theoretical analysis. Therefore, this work contributes direct evidence in support of our earlier proposal that thin buffer layers in layer-by-layer semiconductor heteroepitaxy exhibit mechanical behavior similar to that of compliant substrates [see, e.g., B. Z. Nosho, L. A. Zepeda-Ruiz, R. I. Pelzel, W. H. Weinberg, and D. Maroudas, Appl. Phys. Lett. 75, 829 (1999)].

  5. Growth and characterization of low composition Ge, x in epi-Si1‑x Gex (x  ⩽  10%) active layer for fabrication of hydrogenated bottom solar cell

    NASA Astrophysics Data System (ADS)

    Ajmal Khan, M.; Sato, R.; Sawano, K.; Sichanugrist, P.; Lukianov, A.; Ishikawa, Y.

    2018-05-01

    Semiconducting epi-Si1‑x Ge x alloys have promising features as solar cell materials and may be equally important for some other semiconductor device applications. Variation of the germanium compositional, x in epi-Si1‑x Ge x , makes it possible to control the bandgap between 1.12 eV and 0.68 eV for application in bottom solar cells. A low proportion of Ge in SiGe alloy can be used for photovoltaic application in a bottom cell to complete the four-terminal tandem structure with wide bandgap materials. In this research, we aimed to use a low proportion of Ge—about 10%—in strained or relaxed c-Si1‑x Ge x /c-Si heterojunctions (HETs), with or without insertion of a Si buffer layer grown by molecular beam epitaxy, to investigate the influence of the relaxed or strained SiGe active layer on the performance of HET solar cells grown using the plasma enhanced chemical vapor deposition system. Thanks to the c-Si buffer layer at the hetero-interface, the efficiency of these SiGe based HET solar cells was improved from 2.3% to 3.5% (fully strained and with buffer layer). The Jsc was improved, from 8 mA cm‑2 to 15.46 mA cm‑2, which might be supported by strained c-Si buffer layer at the hetero-interface, by improving the crystalline quality.

  6. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen.

    PubMed

    Yadav, Ashok Kumar; Tyagi, Ashish; Kaushik, Jai Kumar; Saklani, Asha Chandola; Grover, Sunita; Batish, Virender Kumar

    2013-12-14

    Human feacal isolates were ascertain as genus Lactobacillus using specific primer LbLMA1/R16-1 and further identified as Lactobacillus plantarum with species specific primers Lpl-3/Lpl-2. 25 L. plantarum strains were further assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to immobilized human collagen type-1. Surface proteins were isolated from selected L. plantarum 91(Lp91) strain. The purified collagen binding protein (Cbp) protein was assessed for its anti-adhesion activity against enteric Escherichia coli 0157:H7 pathogen on immobilized collagen. Four L. plantarum strains displayed high degree of hydrophobicity and significant adhesion to collagen. A 72 kDa protein was purified which reduced 59.71% adhesion of E. coli 0157:H7 on immobilized collagen as compared to control well during adhesion assay. Cbp protein is the major influencing factor in inhibition of E. coli 0157:H7 adhesion with extracellular matrix (ECM) components. Hydrophobicity and adhesion potential are closely linked attributes precipitating in better colonization potential of the lactobacillus strains. Cbp is substantiated as a crucial surface protein contributing in adhesion of lactobacillus strains. The study can very well be the platform for commercialization of indigenous probiotic strain once their functional attributes are clinically explored. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.

  8. Reversible loss of Bernal stacking during the deformation of few-layer graphene in nanocomposites.

    PubMed

    Gong, Lei; Young, Robert J; Kinloch, Ian A; Haigh, Sarah J; Warner, Jamie H; Hinks, Jonathan A; Xu, Ziwei; Li, Li; Ding, Feng; Riaz, Ibtsam; Jalil, Rashid; Novoselov, Kostya S

    2013-08-27

    The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (~0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed.

  9. Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites

    PubMed Central

    2013-01-01

    The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (∼0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed. PMID:23899378

  10. Bilayer Suspension Plasma-Sprayed Thermal Barrier Coatings with Enhanced Thermal Cyclic Lifetime: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Mohit; Kumara, Chamara; Nylén, Per

    2017-08-01

    Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.

  11. Variable Thermal-Force Bending of a Three-Layer Bar with a Compressible Filler

    NASA Astrophysics Data System (ADS)

    Starovoitov, E. I.; Leonenko, D. V.

    2017-11-01

    Deformation of a three-layer elastoplastic bar with a compressible filler in a temperature field is considered. To describe the kinematics of a pack asymmetric across its thickness, the hypothesis of broken line is accepted, according to which the Bernoulli hypothesis is true in thin bearing layers, and the Timoshenko hypothesis is valid for a filler compressible across the its thickness, with a linear approximation of displacements across the layer thickness. The work of filler in the tangential direction is taken into account. The physical stress-strain relations correspond to the theory of small elastoplastic deformations. Temperature variations are calculated from a formula obtained by averaging the thermophysical properties of layer materials across the bar thickness. Using the variational method, a system of differential equilibrium equations is derived. On the boundary, the kinematic conditions of simply supported ends of the bar are assumed. The solution of the boundary problem is reduced to the search for four functions, namely, deflections and longitudinal displacements of median surfaces of the bearing layers. An analytical solution is derived by the method of elastic solutions with the use of the Moskvitin theorem on variable loadings. Its numerical analysis is performed for the cases of continuous and local loads.

  12. Thin-layer chromatographic technique for rapid detection of bacterial phospholipases.

    PubMed

    Legakis, N J; Papavassiliou, J

    1975-11-01

    Silica gel thin-layer chromatography was employed to detect lecithinase activity induced from bacterial resting cell preparations induced from bacterial resting cell preparations incubated at 37 C for 4 h in the presence of purified egg yolk lecithin. Bacillus subtilis, Bacillus cereus, Serratia marcescens, and Pseudomonas aeruginosa hydrolyzed lecithin with the formation of free fatty acids as the sole lipid-soluble product. In none of the Escherichia coli and Citrobacter freundii strains tested could lecithinase activity be detected. Four among eight strains of Enterobacter aerogenes and one among 12 strains of Proteus tested produced negligible amounts of free fatty acid.

  13. Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and application to monitoring joint flexion

    NASA Astrophysics Data System (ADS)

    Kim, Inhwan; Cho, Gilsoo

    2018-07-01

    Strain sensors made of intrinsically conductive polymers (ICPs) and nanofibers were fabricated and tested for suitability for use in wearable technology. The sensors were fabricated and evaluated based on their surface appearances, and electrical, tensile, and chemical/thermal properties. Polypyrrole (PPy) was in situ polymerized onto polyurethane (PU) nanofiber substrates by exposing pyrrole monomers to ammonium persulfate as oxidant and 2,6-naphthalenedisulfonic acid disodium salt as doping agents in an aqueous bath. The PPy treated PU nanofibers were then coated with polydimethylsiloxane (PDMS). Both pyrrole concentrations and layer numbers were significantly related to change in electrical conductivity. Specimen treated with 0.1 M of PPy and having three layered structure showed the best electrical conductivity. Regarding tensile strength, the in situ polymerization process decreased tensile strength because the oxidant chemically degraded the PU fibers. Adding layers and PDMS treatment generally improved tensile properties while adding layers created fracture parts in the stress–strain curves. The treatment condition of 0.1 M of PPy, two layered, and PDMS treated specimen showed the best tensile properties as a strain sensor. The chemical property evaluation with Fourier transform infrared and x-ray photoelectron spectroscopy tests showed successful PPy polymerization and PDMS treatments. The functional groups and chemical bonds in polyol, urethane linkage, backbone ring structure in PPy, silicon-based functional groups in PDMS, and elemental content changes by treatment at each stage were characterized. The real-time data acquired from the dummy and five human subjects with repetition of motion at three different speeds of 0.16, 0.25 and 0.5 Hz generated similar trends and tendencies. The PU nanofiber sensors based on PPy and PDMS treatments in this study point to the possibility of developing textiles based wearable strain sensors developed using ICPs.

  14. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    USGS Publications Warehouse

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  15. Optical method for the determination of stress in thin films

    DOEpatents

    Maris, H.J.

    1999-01-26

    A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer. 16 figs.

  16. Optical method for the determination of stress in thin films

    DOEpatents

    Maris, Humphrey J.

    1999-01-01

    A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer.

  17. Use of an acidophilic yeast strain to enable the growth of leaching bacteria on solid media.

    PubMed

    Ngom, Baba; Liang, Yili; Liu, Yi; Yin, Huaqun; Liu, Xueduan

    2015-03-01

    In this study, a Candida digboiensis strain was isolated from a heap leaching plant in Zambia and used in double-layer agar plate to efficiently isolate and purify leaching bacteria. Unlike Acidiphilium sp., the yeast strain was tetrathionate tolerant and could metabolize a great range of organic compounds including organic acids. These properties allowed the yeast strain to enable and fasten the growth of iron and sulfur oxidizers on double-layer agar plate. The isolates were identified as Acidithiobacillus ferrooxidans FOX1, Leptospirillun ferriphilum BN, and Acidithiobacillus thiooxidans ZMB. These three leaching bacteria were inhibited by organic acids such as acetic and propionic acids; however, their activities were enhanced by Candida digboiensis NB under dissolved organic matter stress.

  18. Strain-Engineered Nanomembrane Substrates for Si/SiGe Heterostructures

    NASA Astrophysics Data System (ADS)

    Sookchoo, Pornsatit

    For Group IV materials, including silicon, germanium, and their alloys, although they are most widely used in the electronics industry, the development of photonic devices is hindered by indirect band gaps and large lattice mismatches. Thus, any heterostructures involving Si and Ge (4.17% lattice mismatch) are subject to plastic relaxation by dislocation formation in the heterolayers. These defects make many devices impossible and at minimum degrade the performance of those that are possible. Fabrication using elastic strain engineering in Si/SiGe nanomembranes (NMs) is an approach that is showing promise to overcome this limitation. A key advantage of such NM substrates over conventional bulk substrates is that they are relaxed elastically and therefore free of dislocations that occur in the conventional fabrication of SiGe substrates, which are transferred to the epilayers and roughen film interfaces. In this thesis, I use the strain engineering of NMs or NM stacks to fabricate substrates for the epitaxial growth of many repeating units of Si/SiGe heterostructure, known as a 'superlattice', by the elastic strain sharing of a few periods of the repeating unit of Si/SiGe heterolayers or a Si/SiGe/Si tri-layer structure. In both cases, the process begins with the epitaxial growth of Si/SiGe heterolayers on silicon-on-insulator (SOI), where each layer thickness is designed to stay below its kinetic critical thickness for the formation of dislocations. The heterostructure NMs are then released by etching of the SiO2 sacrificial layer in hydrofluoric acid. The resulting freestanding NMs are elastically relaxed by the sharing of strain between the heterolayers. The NMs can be bonded in-place to their host substrate or transferred to another host substrate for the subsequent growth of many periods of superlattice film. The magnitude of strain sharing in these freestanding NMs is influenced by their layer thicknesses and layer compositions. As illustrated in this dissertation, strain-engineering of such NMs can provide the enabling basis for improved Group IV optoelectronic devices.

  19. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate.

    PubMed

    Ma, Y J; Zhong, Z; Yang, X J; Fan, Y L; Jiang, Z M

    2013-01-11

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 10(10) cm(-2), and that the lateral and the vertical interdot spacing were ~10 and ~2.5 nm, respectively.

  20. Preliminary report on the biological effects of space flight on the producing strain of a new immunosuppressant, Kanglemycin C.

    PubMed

    Zhou, Jianqin; Sun, Chenghang; Wang, Nanjin; Gao, Rongmei; Bai, Shuoke; Zheng, Huanrong; You, Xuefu; Li, Rongfeng

    2006-08-01

    Kanglemycin C (K-C) is a new immunosuppressant isolated from the culture broth of Nocardia mediterranei var. kanglensis 1747-64. To improve the productivity of K-C and to study the biological effects of space flight on its producing strain, spores from five K-C producing strains (U-10, U-15, U-7, M-13, gamma-33) mutated from the wild strain N. mediterranei var. kanglensis 1747-64 were carried into space by an unmanned spaceship, "Shenzhou III" (Divine Vessel III) on March 25, 2002. Comparatively, the strain U-7 was the highest K-C producing strain among the above five starting strains when cultivated in 500-ml Erlenmeyer flasks. After a 6 day and 18 h flight, the treated spores went through serial screening processes to screen for high-yield K-C mutant strains, using thin layer chromatography and high performance liquid chromatography (HPLC). The K-C yield produced by one mutant strain, designated as F-16, derived from the starting strain U-7 was increased by up to 200% when compared to that produced by the starting strain U-7 in 500-ml Erlenmeyer flasks after careful postflight HPLC analysis. Another mutant strain, designated as F-210, derived from the starting strain M-13 showed reduced productivity of K-C as well as exhibited changes in some morphological and physiological characteristics. For example, the broth color of the strain F-210 changed from yellow to purple after 96 h of culture, but that of the ground control strain M-13 remained yellow. Similarly, the mycelium morphological change from filamentous to coccoid of F-210 occurred later than that of ground control M-13. Examination of the survivability of postflight spores indicated that exposure to radiation, during the 162 h of space flight, plays a critical role in the survival rates of spores such that spores exposed to strong radiation exhibited lower survival rates than spores exposed to weak radiation.

  1. Strain engineering of van der Waals heterostructures.

    PubMed

    Vermeulen, Paul A; Mulder, Jefta; Momand, Jamo; Kooi, Bart J

    2018-01-18

    Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS 2 , and Bi 2 Te 3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals interfaces. Here we present direct observations of the contrary by showing growth of vdWaals heterostructures with persistent in-plane strains up to 5% and we show that strain relaxation follows a not yet reported process distinctly different from strain relaxation in three-dimensionally bonded (3D) materials. For this, 2D bonded Bi 2 Te 3 -Sb 2 Te 3 and 2D/3D bonded Bi 2 Te 3 -GeTe multilayered films are grown using Pulsed Laser Deposition (PLD) and their structure is monitored in situ using Reflective High Energy Electron Diffraction (RHEED) and post situ analysis is performed using Transmission Electron Microscopy (TEM). Strain relaxation is modeled and found to solely depend on the layer being grown and its initial strain. This insight demonstrates that strain engineering of 2D bonded heterostructures obeys different rules than hold for epitaxial 3D materials and opens the door to precise tuning of the strain state of the individual layers to optimize functional performance of vdWaals heterostructures.

  2. Linked Data: Forming Partnerships at the Data Layer

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Chandler, C. L.; Arko, R. A.; Jones, M. B.; Hitzler, P.; Janowicz, K.; Krisnadhi, A.; Schildhauer, M.; Fils, D.; Narock, T.; Groman, R. C.; O'Brien, M.; Patton, E. W.; Kinkade, D.; Rauch, S.

    2015-12-01

    The challenges presented by big data are straining data management software architectures of the past. For smaller existing data facilities, the technical refactoring of software layers become costly to scale across the big data landscape. In response to these challenges, data facilities will need partnerships with external entities for improved solutions to perform tasks such as data cataloging, discovery and reuse, and data integration and processing with provenance. At its surface, the concept of linked open data suggests an uncalculated altruism. Yet, in his concept of five star open data, Tim Berners-Lee explains the strategic costs and benefits of deploying linked open data from the perspective of its consumer and producer - a data partnership. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) addresses some of the emerging needs of its research community by partnering with groups doing complementary work and linking their respective data layers using linked open data principles. Examples will show how these links, explicit manifestations of partnerships, reduce technical debt and provide a swift flexibility for future considerations.

  3. Size-controlled InGaN/GaN nanorod LEDs with an ITO/graphene transparent layer

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Phil; Seong, Won-Seok; Min, Jung-Hong; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-jun; Lee, Dong-Seon

    2016-11-01

    We introduce ITO on graphene as a current-spreading layer for separated InGaN/GaN nanorod LEDs for the purpose of passivation-free and high light-extraction efficiency. Transferred graphene on InGaN/GaN nanorods effectively blocks the diffusion of ITO atoms to nanorods, facilitating the production of transparent ITO/graphene contact on parallel-nanorod LEDs, without filling the air gaps, like a bridge structure. The ITO/graphene layer sufficiently spreads current in a lateral direction, resulting in uniform and reliable light emission observed from the whole area of the top surface. Using KOH treatment, we reduce series resistance and reverse leakage current in nanorod LEDs by recovering the plasma-damaged region. We also control the size of the nanorods by varying the KOH treatment time and observe strain relaxation via blueshift in electroluminescence. As a result, bridge-structured LEDs with 8 min of KOH treatment show 15 times higher light-emitting efficiency than with 2 min of KOH treatment.

  4. Assessment of the growth/etch back technique for the production of Ge strain-relaxed buffers on Si

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Aubin, J.

    2018-04-01

    Thick Ge layers grown on Si(0 0 1) are handy for the production of GeOI wafers, as templates for the epitaxy of III-V and GeSn-based heterostructures and so on. Perfecting their crystalline quality would enable to fabricate suspended Ge micro-bridges with extremely high levels of tensile strain (for mid IR lasers). In this study, we have used a low temperature (400 °C)/high temperature (750 °C) approach to deposit with GeH4 various thickness Ge layers in the 0.5 μm - 5 μm range. They were submitted afterwards to short duration thermal cycling under H2 (in between 750 °C and 875-890 °C) to lower the Threading Dislocation Density (TDD). Some of the thickest layers were partly etched at 750 °C with gaseous HCl to recover wafer bows compatible with device processing later on. X-ray Diffraction (XRD) showed that the layers were slightly tensile-strained, with a 104.5-105.5% degree of strain relaxation irrespective of the thickness. The surface was cross-hatched, with a roughness slightly decreasing with the thickness, from 2.0 down to 0.8 nm. The TDD (from Omega scans in XRD) decreased from 8 × 107 cm-2 down to 107 cm-2 as the Ge layer thickness increased from 0.5 up to 5 μm. The lack of improvement when growing 5 μm thick layers then etching a fraction of them with HCl over same thickness layers grown in a single run was at variance with Thin Solid Films 520, 3216 (2012). Low temperature HCl defect decoration confirmed those findings, with (i) a TDD decreasing from slightly more 107 cm-2 down to 5 × 106 cm-2 as the Ge layer thickness increased from 1.3 up to 5 μm and (ii) no TDD hysteresis between growth and growth then HCl etch-back.

  5. MBE grown III-V strain relaxed buffer layers and superlattices characterized by atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, A.J.; Fritz, I.J.; Drummond, T.J.

    1993-11-01

    Using atomic force microscopy (AFM), the authors have investigated the effects of growth temperature and dopant incorporation on the surface morphology of MBE grown graded buffer layers and strained layer superlattices (SLSs) in the InGaAlAs/GaAs and InAsSb/InSb material systems. The AFM results show quantitatively that over the temperature range from 380 to 545 C, graded in{sub x}Al{sub 1{minus}x}As(x = 0.05 {minus} 0.32) buffer layers grown at high temperatures ({approximately}520 C), and graded In{sub x}Ga{sub 1{minus}x}As (x = 0.05 {minus} 0.33) buffer layers and In{sub 0.4}Ga{sub 0.6}As/In{sub 0.26}Al{sub 0.35}Ga{sub 0.39}As SLSs grown at low temperatures ({approximately}400 C) have the lowest RMSmore » roughness. Also, for SLSs InAs{sub 0.21}Sb{sub 0.79}/InSb, undoped layers grown at 470 C were smoother than undoped layers grown at 420 C and Be-doped layers grown at 470 C. These results illustrate the role of surface tension in the growth of strained layer materials near the melting temperature of the InAs{sub x}Sb{sub {minus}x}/InSb superlattice. Nomarski interference and transmission electron microscopies, IR photoluminescence, x-ray diffraction, and photocurrent spectroscopy were also used to evaluate the relative quality of the material but usually, the results were not conclusive.« less

  6. Electrical and mechanical characterization of nanoscale-layered cellulose-based electro-active paper.

    PubMed

    Yun, Gyu-Young; Yun, Ki-Ju; Kim, Joo-Hyung; Kim, Jaehwan

    2011-01-01

    In order to understand the electro-mechanical behavior of piezoelectric electro active paper (EAPap), the converse and direct piezoelectric characterization of cellulose EAPap was studied and compared. A delay between the electrical field and the induced strain of EAPap was observed due to the inner nano-voids or the localized amorphous regions in layer-by-layered structure to capture or hold the electrical charges and remnant ions. The linear relation between electric field and induced strain is also observed. The electro-mechanical performance of EAPap is discussed in detail in this paper.

  7. Strained layer relaxation effect on current crowding and efficiency improvement of GaN based LED

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    2012-02-01

    Efficiency droop effect of GaN based LED at high power and high temperature is addressed by several groups based on career delocalization and photon recycling effect(radiative recombination). We extend the previous droop models to optical loss parameters. We correlate stained layer relaxation at high temperature and high current density to carrier delocalization. We propose a third order model and show that Shockley-Hall-Read and Auger recombination effect is not enough to account for the efficiency loss. Several strained layer modification scheme is proposed based on the model.

  8. Influence of supplemental dietary poultry fat, phytase, and 25-hydroxycholecalciferol on the blood characteristics of commercial layers inoculated before or at the onset of lay with F-strain Mycoplasma gallisepticum

    USDA-ARS?s Scientific Manuscript database

    The effects of 2 supplemental levels of dietary poultry fat (PF) and the combination of PF, phytase (PHY) and 25-hydroxycholecalciferol [25(OH)D] on the blood characteristics of commercial layers inoculated with F-strain Mycoplasma gallisepticum (FMG) were investigated in 2 trials. Sham and FMG ino...

  9. Influence of supplemental dietary poultry fat, phytase, and 25-hydroxycholecalciferol on the egg characteristics of commercial layers inoculated before or at the onset of lay with F-strain Mycoplasma gallisepticum

    USDA-ARS?s Scientific Manuscript database

    The effects of 2 supplemental levels of dietary poultry fat (PF) and the combination of PF, phytase (PHY) and 25-hydroxycholecalciferol (D3) on the egg characteristics of commercial layers inoculated with F-strain Mycoplasma gallisepticum (FMG) were investigated in 2 trials. Sham and FMG inoculatio...

  10. A benchmark of co-flow and cyclic deposition/etch approaches for the selective epitaxial growth of tensile-strained Si:P

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Veillerot, M.; Prévitali, B.

    2017-10-01

    We have compared co-flow and cyclic deposition/etch processes for the selective epitaxial growth of Si:P layers. High growth rates, relatively low resistivities and significant amounts of tensile strain (up to 10 nm min-1, 0.55 mOhm cm and a strain equivalent to 1.06% of substitutional C in Si:C layers) were obtained at 700 °C, 760 Torr with a co-flow approach and a SiH2Cl2 + PH3 + HCl chemistry. This approach was successfully used to thicken the sources and drains regions of n-type fin-shaped Field Effect Transistors. Meanwhile, the (Si2H6 + PH3/HCl + GeH4) CDE process evaluated yielded at 600 °C, 80 Torr even lower resistivities (0.4 mOhm cm, typically), at the cost however of the tensile strain which was lost due to (i) the incorporation of Ge atoms (1.5%, typically) into the lattice during the selective etch steps and (ii) a reduction by a factor of two of the P atomic concentration in CDE layers compared to that in layers grown in a single step (5 × 1020 cm-3 compared to 1021 cm-3).

  11. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs

    PubMed Central

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-01-01

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This “compliant” buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 105 cm−2. In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6” wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors. PMID:26329829

  12. Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.

    PubMed

    Wang, Meng; Ford, Roseanne M

    2009-08-01

    The significance of chemotaxis in directing bacterial migration toward contaminants in natural porous media was investigated under groundwater flow conditions. A laboratory-scale column, with a coarse-grained sand core surrounded by a fine-grained annulus, was used to simulate natural aquifers with strata of different hydraulic conductivities. A chemoattractant source was placed along the central axis of the column to model contaminants trapped in the heterogeneous subsurface. Chemotactic bacterial strains, Escherichia coli HCB1 and Pseudomonas putida F1, introduced into the column by a pulse injection, were found to alter their transport behaviors under the influence of the attractant chemical emanating from the central source. For E. coil HCB1, approximately 18% more of the total population relative to the control without attractant exited the column from the coarse sand layer due to the chemotactic effects of alpha-methylaspartate under an average fluid velocity of 5.1 m/d. Although P. putida F1 demonstrated no observable changes in migration pathways with the model contaminant acetate under the same flow rate, when the flow rate was reduced to 1.9 m/d, approximately 6-10% of the population relative to the control migrated from the fine sand layer toward attractant into the coarse sand layer. Microbial transport properties were further quantified by a mathematical model to examine the significance of bacterial motility and chemotaxis under different hydrodynamic conditions, which suggested important considerations for strain selection and practical operation of bioremediation schemes.

  13. Triple-layer configuration for stable high-speed lubricated pipeline transport

    NASA Astrophysics Data System (ADS)

    Sarmadi, Parisa; Hormozi, Sarah; Frigaard, Ian A.

    2017-04-01

    Lubricated transport of heavy viscous oils is a popular technology in the pipelining industry, where pumping pressures can be reduced significantly by concentrating the strain rate in a lubricating layer. However, the interface between the lubricating layer and heavy oil is vulnerable to any perturbations in the system as well as transients due to start up, shut down, temperature change, etc. We present a method in which we purposefully position an unyielded skin of a viscoplastic fluid between the oil and the lubricating fluid. The objective is to reduce the frictional pressure gradient while avoiding interfacial instability. We study this methodology in both concentric and eccentric configurations and show its feasibility for a wide range of geometric and flow parameters found in oil pipelining. The eccentric configuration benefits the transport process via generating lift forces to balance the density differences among the layers. We use classical lubrication theory to estimate the leading order pressure distribution in the lubricating layer and calculate the net force on the skin. We explore the effects of skin shape, viscosity ratio, and geometry on the pressure drop, the flow rates of skin and lubricant fluids, and the net force on the skin. We show that the viscosity ratio and the radius of the core fluid are the main parameters that control the pressure drop and consumptions of outer fluids, respectively. The shape of the skin and the eccentricity mainly affect the lubrication pressure. These predictions are essential in designing a stable transport process. Finally, we estimate the yield stress required in order that the skin remain unyielded and ensure interfacial stability.

  14. Assembly and Function of the Bacillus anthracis S-Layer.

    PubMed

    Missiakas, Dominique; Schneewind, Olaf

    2017-09-08

    Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.

  15. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    PubMed

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. InGaN-Based Light-Emitting Diodes Grown on a Micro/Nanoscale Hybrid Patterned Sapphire Substrate.

    PubMed

    Ke, Wen-Cheng; Lee, Fang-Wei; Chiang, Chih-Yung; Liang, Zhong-Yi; Chen, Wei-Kuo; Seong, Tae-Yeon

    2016-12-21

    A hybrid patterned sapphire substrate (hybrid-PSS) was prepared using an anodic aluminum oxide etching mask to transfer nanopatterns onto a conventional patterned sapphire substrate with microscale patterns (bare-PSS). The threading dislocation (TD) suppression of light-emitting diodes (LEDs) grown on a hybrid-PSS (HP-LED) exhibits a smaller reverse leakage current compared with that of LEDs grown on a bare-PSS (BP-LED). The strain-free GaN buffer layer and fully strained InGaN active layer were evidenced by cross-sectional Raman spectra and reciprocal space mapping of the X-ray diffraction intensity for both samples. The calculated piezoelectric fields for both samples are close, implying that the quantum-confined Stark effect was not a dominant mechanism influencing the electroluminescence (EL) peak wavelength under a high injection current. The bandgap shrinkage effect of the InGaN well layer was considered to explain the large red-shifted EL peak wavelength under high injection currents. The estimated LED chip temperatures rise from room temperature to 150 °C and 75 °C for BP-LED and HP-LED, respectively, at a 600-mA injection current. This smaller temperature rise of the LED chip is attributed to the increased contact area between the sapphire and the LED structural layer because of the embedded nanopattern. Although the chip generates more heat at high injection currents, the accumulated heat can be removed to outside the chip effectively. The high diffuse reflection (DR) rate of hybrid-PSS increases the escape probability of photons, resulting in an increase in the viewing angle of the LEDs from 130° to 145°. The efficiency droop was reduced from 46% to 35%, effects which can be attributed to the elimination of TDs and strain relaxation by embedded nanopatterns. In addition, the light output power of HP-LED at 360-mA injection currents exhibits a ∼ 22.3% enhancement, demonstrating that hybrid-PSSs are beneficial to apply in high-power LEDs.

  17. Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria.

    PubMed

    Makdoumi, Karim; Bäckman, Anders

    2016-09-01

    To evaluate the bactericidal effect of clinical ultraviolet A (UVA) settings used in photoactivated chromophore for infectious keratitis (PACK)-collagen cross-linking (CXL) in antibiotic-resistant and non-resistant bacterial strains. Well-characterized bacterial strains from clinical isolates, without and with antibiotic resistance, were studied in a pairwise comparison. The evaluated pathogens were Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis. Bacteria were dispersed in PBS and diluted to a concentration of approximately 4 × 10 5 /ml. Riboflavin was added to a concentration of 0.01%. By spreading the solution on a microscope slide, a fluid film layer, with a thickness of around 400 mm, was formed and UVA exposure followed. Eight separate exposures were made for each strain (n = 8). The degree of elimination in resistant and non-resistant pathogens was compared. The bactericidal efficacy of exposure differed between the tested microorganisms, and the mean elimination ranged between 60 and 92%, being most extensive in both of the evaluated Pseudomonas strains and least in the E. faecalis strains. Similar reductions were seen in antibiotic-resistant and non-resistant strains, with the exception of S. aureus, in which the resistant strain metchicillin-resistant Staphylococcus aureus (MRSA) was eradicated in a greater extent than the non-resistant strain (P = 0.030). UVA-riboflavin settings used in PACK-CXL are effective in reducing both antibiotic-resistant and non-resistant bacteria. Antibiotic resistance does not appear to be protective against the photooxidative exposure. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  18. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  19. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation.

    PubMed

    Boissy, Patrick; Genest, Jonathan; Patenaude, Johanne; Poirier, Marie-Sol; Chenel, Vanessa; Béland, Jean-Pierre; Legault, Georges-Auguste; Bernier, Louise; Tapin, Danielle; Beauvais, Jacques

    2011-01-01

    This paper presents an overview of the functioning principles of CNTs and their electrical and mechanical properties when used as strain sensors and describes a system embodiment for a wearable monitoring and biofeedback platform for use in pressure ulcer prevention and rehabilitation. Two type of CNTs films (multi-layered CNTs film vs purified film) were characterized electrically and mechanically for potential use as source material. The loosely woven CNTs film (multi-layered) showed substantial less sensitivity than the purified CNTs film but had an almost linear response to stress and better mechanical properties. CNTs have the potential to achieve a much higher sensitivity to strain than other piezoresistors based on regular of conductive particles such as commercially available resistive inks and could become an innovative source material for wearable strain sensors. We are currently continuing the characterization of CNTs based strain sensors and exploring their use in a design for 3-axis strain sensors.

  20. Materials properties and dislocation dynamics in InAsP compositionally graded buffers on InP substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandl, Adam, E-mail: jandl@mit.edu; Bulsara, Mayank T.; Fitzgerald, Eugene A.

    The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}.more » A model for a two-energy level dislocation nucleation system is proposed based on our results.« less

  1. Antimicrobial susceptibility pattern of Brachyspira intermedia isolates from European layers.

    PubMed

    Verlinden, Marc; Boyen, Filip; Pasmans, Frank; Garmyn, An; Haesebrouck, Freddy; Martel, An

    2011-09-01

    A broth microdilution method was used to determine the antimicrobial susceptibility of 20 Brachyspira intermedia isolates obtained from different layer flocks in Belgium and The Netherlands between 2008 and 2010. The antimicrobial agents used were tylosin, tilmicosin, tiamulin, valnemulin, doxycycline, and lincomycin. The minimal inhibitory concentration (MIC) distribution patterns of tylosin, tilmicosin, lincomycin, and doxycycline were bimodal, demonstrating acquired resistance against doxycycline in three strains, against the macrolides in two strains, and against lincomycin in one strain. The MICs of tiamulin and valnemulin showed a monomodal distribution, but with tailing toward the higher MIC values, possibly suggesting low-level acquired resistance in six isolates. Sequencing revealed a G1058C mutation in the 16S rRNA gene in all doxycycline-resistant strains. The strain resistant to tylosin, tilmicosin, and lincomycin had an A2058T mutation in the 23S rRNA gene.

  2. High strain rate deformation of layered nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  3. High strain rate deformation of layered nanocomposites.

    PubMed

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  4. Regional strain variations in the human patellar tendon.

    PubMed

    Pearson, Stephen J; Ritchings, Tim; Mohamed, Azlan S A

    2014-07-01

    Characteristics of localized tendon strain in vivo are largely unknown. The present study examines local tendon strain between the deep, middle, and surface structures at the proximal and distal aspects of the patellar tendon during ramped isometric contractions. Male subjects (age 28.0 ± 6.3 yr) were examined for patellar tendon excursion (anterior, midsection, and posterior) during ramped isometric voluntary contractions using real-time B-mode ultrasonography and dynamometry. Regional tendon excursion measurements were compared using an automated pixel tracking method. Strain was determined from the tendon delta length normalized to initial/resting segment length. Strain increased from 10% to 100% of force for all regions. Significantly greater mean strain was seen for the anterior proximal region compared to the posterior and mid layer of the tendon (7.5% ± 1.1% vs 3.7% ± 0.5% vs 5.5% ± 1.0%; P < 0.05). Similarly, the distal posterior region showed greater mean strain compared to the mid and anterior regions (7.9% ± 0.6% vs 5.0% ± 0.6% vs 5.4% ± 0.6%; P < 0.05). Relative changes in strain differences from 50% to 100% of force for the proximal region were greatest for the anterior to midline regions (4.6% ± 0.6% and 5.6% ± 0.6%, respectively) and those for the distal region were also greatest for the anterior to midline regions (4.4% ± 0.2% and 5.3% ± 0.2%, respectively). The largest mean strain for the proximal region was at the anterior layer (7.5% ± 1.1%) and that for the distal tendon region was at the posterior layer (7.9% ± 0.9%). This study shows significant regional differences in strain during ramped isometric contractions for the patellar tendon. Lower proximal strains in the posterior tendon compared to the anterior region may be associated with the suggestion of "stress shielding" as an etiological factor in insertional tendinopathy.

  5. Measurement of strain and tensile force of the supraspinatus tendon under conditions that simulates low angle isometric elevation of the gleno-humeral joint: Influence of adduction torque and joint positioning.

    PubMed

    Miyamoto, Hiroki; Aoki, Mitsuhiro; Hidaka, Egi; Fujimiya, Mineko; Uchiyama, Eiichi

    2017-12-01

    Recently, supraspinatus muscle exercise has been reported to treat rotator cuff disease and to recover shoulder function. However, there have been no report on the direct measurement of strain on the supraspinatus tendon during simulated isometric gleno-humeral joint elevation. Ten fresh-frozen shoulder specimens with the rotator cuff complex left intact were used as experimental models. Isometric gleno-humeral joint elevation in a sitting position was reproduced with low angle of step-by-step elevation in the scapular plane and strain was measured on the surface layer of the supraspinatus tendon. In isometric conditions, applied tensile force of the supraspinatus tendon increased significantly with increases in adduction torque on the gleno-humeral joint. Significant increases in the strain on the layer were observed by increase in adduction torque, which were recorded in isometric elevation at -10° and 0°, but little increase in the strain was observed at 10° or greater gleno-humeral elevation. Increased strain on the surface layer of the supraspinatus tendon was observed during isometric gleno-humeral elevation from -10 to 0°. These findings demonstrate a potential risk of inducing overstretching of the supraspinatus tendon during supraspinatus muscle exercise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkert, A.; Schumacher, C.; Brunner, K.

    The authors demonstrate in situ high-resolution x-ray diffraction applied during heteroepitaxy on (001)GaAs for instant layer characterization. The current thickness, composition, strain, and relaxation dynamics of pseudomorphic layers are precisely determined from q{sub z} scans at the (113) reflection measured at a molecular beam epitaxy chamber with a conventional x-ray tube in static geometry. A simple fitting routine enables real-time in situ x-ray diffraction analysis of layers as thin as 20 nm. Critical thicknesses for dislocation formation and plastic relaxation of ZnCdSe layers versus Cd content are determined. The strong influence of substrate temperature on heteroepitaxial nucleation process, deposition rate,more » composition, and strain relaxation dynamics of ZnCdSe on GaAs is also studied.« less

  7. Guided elastic waves in a pre-stressed compressible interlayer

    PubMed

    Sotiropoulos

    2000-03-01

    The propagation of guided elastic waves in a pre-stressed elastic compressible layer embedded in a different compressible material is examined. The waves propagate parallel to the planar layer interfaces as a superposed dynamic stress state on the statically pre-stressed layer and host material. The underlying stress condition in the two materials is characterized by equibiaxial in-plane deformations with common principal axes of strain, one of the axes being perpendicular to the layering. Both materials have arbitrary strain energy functions. The dispersion equation is derived in explicit form. Analysis of the dispersion equation reveals the propagation characteristics and their dependence on frequency, material parameters and stress parameters. Combinations of these parameters are also defined for which guided waves cannot propagate.

  8. SLS complementary logic devices with increase carrier mobility

    DOEpatents

    Chaffin, R.J.; Osbourn, G.C.; Zipperian, T.E.

    1991-07-09

    In an electronic device comprising a semiconductor material and having at least one performance characteristic which is limited by the mobility of holes in the semiconductor material, said mobility being limited because of a valence band degeneracy among high-mobility and low-mobility energy levels accessible to said holes at the energy-momentum space maximum, an improvement is provided wherein the semiconductor material is a strained layer superlattice (SLS) whose layer compositions and layer thicknesses are selected so that the strain on the layers predominantly containing said at least one carrier type splits said degeneracy and modifies said energy levels around said energy-momentum space maximum in a manner whereby said limitation on the mobility of said holes is alleviated. 5 figures.

  9. SLS complementary logic devices with increase carrier mobility

    DOEpatents

    Chaffin, Roger J.; Osbourn, Gordon C.; Zipperian, Thomas E.

    1991-01-01

    In an electronic device comprising a semiconductor material and having at least one performance characteristic which is limited by the mobility of holes in the semiconductor material, said mobility being limited because of a valence band degeneracy among high-mobility and low-mobility energy levels accessible to said holes at the energy-momentum space maximum, an improvement is provided wherein the semiconductor material is a strained layer superlattice (SLS) whose layer compositions and layer thicknesses are selected so that the strain on the layers predominantly containing said at least one carrier type splits said degeneracy and modifies said energy levels around said energy-momentum space maximum in a manner whereby said limitation on the mobility of said holes is alleviated.

  10. Giant voltage-controlled magnetic anisotropy effect in a crystallographically strained CoFe system

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Yoda, Hiroaki; Saito, Yoshiaki; Oikawa, Soichi; Fujii, Keiko; Yoshiki, Masahiko; Koi, Katsuhiko; Sugiyama, Hideyuki; Ishikawa, Mizue; Inokuchi, Tomoaki; Shimomura, Naoharu; Shimizu, Mariko; Shirotori, Satoshi; Altansargai, Buyandalai; Ohsawa, Yuichi; Ikegami, Kazutaka; Tiwari, Ajay; Kurobe, Atsushi

    2018-05-01

    We experimentally demonstrate a giant voltage-controlled magnetic anisotropy (VCMA) coefficient in a crystallographically strained CoFe layer (∼15 monolayers in thickness) in a MgO/CoFe/Ir system. We observed a strong applied voltage dependence of saturation field and an asymmetric concave behavior with giant VCMA coefficients of ‑758 and 1043 fJ V‑1 m‑1. The result of structural analysis reveals epitaxial growth in MgO/CoFe/Ir layers and the orientation relationship MgO(001)[110] ∥ CoFe(001)[100] ∥ Ir(001)[110]. The CoFe layer has a bcc structure and a tetragonal distortion due to the lattice mismatch; therefore, the CoFe layer has a large perpendicular magnetic anisotropy.

  11. Ferroelastic switching in a layered-perovskite thin film

    PubMed Central

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; Liang, Renrong; Luo, Zhenlin; Tian, Yu; Yi, Di; Zhang, Qintong; Wang, Jing; Han, Xiu-Feng; Van Tendeloo, Gustaaf; Chen, Long-Qing; Nan, Ce-Wen; Ramesh, Ramamoorthy; Zhang, Jinxing

    2016-01-01

    A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications. PMID:26838483

  12. Ferroelastic switching in a layered-perovskite thin film

    DOE PAGES

    Wang, Chuanshou; Ke, Xiaoxing; Wang, Jianjun; ...

    2016-02-03

    Here, a controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi 2WO 6 thin films, where the ferroelectric polarization rotates by 90° within four in-plane preferred orientations. Phase-field simulation indicates that the energy barriermore » of ferroelastic switching in orthorhombic Bi 2WO 6 film is ten times lower than the one in PbTiO 3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.« less

  13. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire—I. Microstructural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Lee, Dong Nyung

    Much research has been done to reduce dislocation densities for the growth of GaN on sapphire, but has paid little attention to the elastic behavior at the GaN/sapphire interface. In this study, we have examined effects of the addition of Si to a sapphire substrate on its elastic property and on the growth of GaN deposit. Si atoms are added to a c-plane sapphire substrate by ion implantation. The ion implantation results in scratches on the surface, and concomitantly, inhomogeneous distribution of Si. The scratch regions contain a higher concentration of Si than other regions of the sapphire substrate surface,more » high-temperature GaN being poorly grown there. However, high-temperature GaN is normally grown in the other regions. The GaN overlayer in the normally-grown regions is observed to have a lower TD density than the deposit on the bare sapphire substrate (with no Si accommodated). As compared with the film on an untreated, bare sapphire, the cathodoluminescence defect density decreases by 60 % for the GaN layer normally deposited on the Si-ion implanted sapphire. As confirmed by a strain mapping technique by transmission electron microscopy (geometric phase analysis), the addition of Si in the normally deposited regions forms a surface layer in the sapphire elastically more compliant than the GaN overlayer. The results suggest that the layer can largely absorb the misfit strain at the interface, which produces the overlayer with a lower defect density. Our results highlight a direct correlation between threading-dislocation density in GaN deposits and the elastic behavior at the GaN/sapphire interface, opening up a new pathway to reduce threading-dislocation density in GaN deposits.« less

  14. Indentation and overall compression behavior of multilayered thin-film composites. Effect of undulating layer geometry

    DOE PAGES

    Jamison, Ryan D.; Shen, Y. -L.

    2015-03-19

    Two finite element models are used to investigate the behavior of aluminum/silicon carbide thin-film layered composites with imperfect internal geometry when subjected to various loadings. In both models, undulating layers are represented by regular waveforms with various amplitudes, wavelengths, and phase offsets. First, uniaxial compressive loading of the composite is considered. The modulus and stress/strain response of the composite is sensitive to both loading direction and frequency of the undulation. Second, the nanoindentation response of the composite is investigated. The derived hardness and modulus are shown to be sensitive to the presence of undulating layers and the relative size ofmore » the indenter to the undulation. Undulating layers create bands of tensile and compressive stress in the indentation direction that are significantly different from the flat layers. The amount of equivalent plastic strain in the Al layers is increased by the presence of undulating layers. The correlations between the two forms of loading, and the implications to composite property measurement are carefully examined in this study.« less

  15. Piezophototronic Effect in Single-Atomic-Layer MoS2 for Strain-Gated Flexible Optoelectronics.

    PubMed

    Wu, Wenzhuo; Wang, Lei; Yu, Ruomeng; Liu, Yuanyue; Wei, Su-Huai; Hone, James; Wang, Zhong Lin

    2016-10-01

    Strain-gated flexible optoelectronics are reported based on monolayer MoS 2 . Utilizing the piezoelectric polarization created at the metal-MoS 2 interface to modulate the separation/transport of photogenerated carriers, the piezophototronic effect is applied to implement atomic-layer-thick phototransistor. Coupling between piezoelectricity and photogenerated carriers may enable the development of novel optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Distribution of elastic strains appearing in gallium arsenide as a result of doping with isovalent impurities of phosphorus and indium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I., E-mail: bobrov@phys.unn.ru

    2015-01-15

    The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.

  17. Magnetic skin layer of NiO(100) probed by polarization-dependent spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Menon, Krishnakumar S. R., E-mail: krishna.menon@saha.ac.in; Belkhou, Rachid

    2014-06-16

    Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (∼150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of inducedmore » strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena.« less

  18. Si(111) strained layers on Ge(111): Evidence for c (2 ×4 ) domains

    NASA Astrophysics Data System (ADS)

    Zhachuk, R.; Coutinho, J.; Dolbak, A.; Cherepanov, V.; Voigtländer, B.

    2017-08-01

    The tensile-strained Si (111 ) layers grown on top of Ge (111 ) substrates are studied by combining scanning tunneling microscopy, low-energy electron diffraction, and first-principles calculations. It is shown that the layers exhibit c (2 ×4 ) domains, which are separated by domain walls along <1 ¯10 > directions. A model structure for the c (2 ×4 ) domains is proposed, which shows low formation energy and good agreement with the experimental data. The results of our calculations suggest that Ge atoms are likely to replace Si atoms with dangling bonds on the surface (rest-atoms and adatoms), thus significantly lowering the surface energy and inducing the formation of domain walls. The experiments and calculations demonstrate that when surface strain changes from compressive to tensile, the (111) reconstruction converts from dimer-adatom-stacking fault-based to adatom-based structures.

  19. Surface functionalization of WS2 fullerene-like nanoparticles.

    PubMed

    Shahar, Chen; Zbaida, David; Rapoport, Lev; Cohen, Hagai; Bendikov, Tatyana; Tannous, Johny; Dassenoy, Fabrice; Tenne, Reshef

    2010-03-16

    WS(2) belongs to a family of layered metal dichalcogenide compounds that are known to form cylindrical (inorganic nanotubes-INT) and polyhedral nanostructures--onion or nested fullerene-like (IF) particles. The outermost layers of these IF nanoparticles can be peeled under shear stress, thus IF nanoparticles have been studied for their use as solid lubricants. However, the IF nanoparticles tend to agglomerate, presumably because of surface structural defects induced by elastic strain and curvature, a fact that has a deleterious effect on their tribological properties. In the present work, chemical modification of the IF-WS(2) surface with alkyl-silane molecules is reported. The surface-modified IF nanoparticles display improved dispersion in oil-based suspensions. The alkyl-silane coating reduces the IF-WS(2) nanoparticles' tendency to agglomerate and consequently improves the long-term tribological behavior of oil formulated with the IF additive.

  20. The Effect of Multiple Shot Peening on the Corrosion Behavior of Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Feng, Qiang; She, Jia; Wu, Xueyan; Wang, Chengxi; Jiang, Chuanhai

    2018-03-01

    Various types of shot peening treatments were applied to duplex stainless steel. The effects of shot peening intensity and working procedures on the microstructure were investigated. The domain size and microstrain evolution in the surface layer were characterized utilizing the Rietveld method. As the shot peening intensity increased, the surface roughness increased in the surface layer; however, it decreased after multiple (dual and triple) shot peening. The mole fraction of strain-induced martensite as a function of the intensity of shot peening was evaluated by XRD measurements. Both potentiodynamic polarization curves and salt spray tests of shot-peened samples in NaCl solution were investigated. The results indicate that traditional shot peening has negative effects on corrosion resistance with increasing shot peening intensity; however, the corrosion rate can be reduced by means of multiple shot peening.

  1. Boundary Layer Effect on Behavior of Discrete Models.

    PubMed

    Eliáš, Jan

    2017-02-10

    The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson's ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  2. Si Complies with GaN to Overcome Thermal Mismatches for the Heteroepitaxy of Thick GaN on Si.

    PubMed

    Tanaka, Atsunori; Choi, Woojin; Chen, Renjie; Dayeh, Shadi A

    2017-10-01

    Heteroepitaxial growth of lattice mismatched materials has advanced through the epitaxy of thin coherently strained layers, the strain sharing in virtual and nanoscale substrates, and the growth of thick films with intermediate strain-relaxed buffer layers. However, the thermal mismatch is not completely resolved in highly mismatched systems such as in GaN-on-Si. Here, geometrical effects and surface faceting to dilate thermal stresses at the surface of selectively grown epitaxial GaN layers on Si are exploited. The growth of thick (19 µm), crack-free, and pure GaN layers on Si with the lowest threading dislocation density of 1.1 × 10 7 cm -2 achieved to date in GaN-on-Si is demonstrated. With these advances, the first vertical GaN metal-insulator-semiconductor field-effect transistors on Si substrates with low leakage currents and high on/off ratios paving the way for a cost-effective high power device paradigm on an Si CMOS platform are demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Convergence of separate orbits for enhanced thermoelectric performance of layered ZrS2

    NASA Astrophysics Data System (ADS)

    Ding, Guangqian; Chen, Jinfeng; Yao, Kailun; Gao, Guoying

    2017-07-01

    Minimizing the band splitting energy to approach orbital degeneracy has been shown as a route to improved thermoelectric performance. This represents an open opportunity in some promising layered materials where there is a separation of p orbitals at the valence band edge due to the crystal field splitting. In this work, using ab initio calculations and semiclassical Boltzmann transport theory, we try to figure out how orbital degeneracy influences the thermoelectric properties of layered transition-metal dichalcogenide ZrS2. We tune the splitting energy by applying compressive biaxial strain, and find out that near-degeneration at the {{Γ }} point can be achieved for around 3% strain. As expected, the enhanced density-of-states effective mass results in an increased power factor. Interestingly, we also find a marked decline in the lattice thermal conductivity due to the effect of strain on phonon velocities and scattering. The two effects synergetically enhance the figure of merit. Our results highlight the convenience of exploring this optimization route in layered thermoelectric materials with band structures similar to that of ZrS2.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  5. Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production.

    PubMed

    Zarenejad, F; Yakhchali, B; Rasooli, I

    2012-01-01

    Mushrooms such as Agaricus bisporus, are cultivated for food worldwide. Fruit body initiation in Agaricus bisporus is a phase change from the vegetative to the reproductive stage which depends on the presence of a casing layer with particular physical, chemical and microbiological properties. The phase change is achieved practically by environmental manipulation and the presence of naturally occurring bacteria such as Pseuodomonas putida. In this study, 274 individual bacterial isolates were collected by screening the casing layer of 14 edible mushroom farms. The isolates were analysed with respect to biochemical properties, organic and inorganic phosphate solubilization, production of siderophore and growth in the presence of volatile compound of 1-octen-3-ol. It was found that approximately 97% of the strains were able to grow in the presence of 1-octen-3-ol and 36% were able to solubilize phosphorus. Among the isolates, 23 strains were selected as potent mushroom growth promoting bacteria (MGPB) for inoculation of the casing layer. Field experiments using these strains showed various promoting effects on production of mushroom. Finally, 2 strains (strains Bt4 and Ps7) showing the highest increase in A. bisporus production, were characterized as Pseuodomonas putida by molecular methods and identified as the best suited growth promoting inoculants for application in production farms for increasing the mushroom yield.

  6. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum

    PubMed Central

    2014-01-01

    Background Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. Results The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. Conclusion There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system. PMID:24731213

  7. Using fiber-optic sensor technology to measure strains under the asphalt layer of a flexible pavement structure.

    DOT National Transportation Integrated Search

    2006-01-01

    In this study, a flexible pavement system was instrumented using fiber-optic strain sensors (FOSS). The purpose of this study was to demonstrate the feasibility of a FOSS installation, monitor the long-term strains under repeated traffic loading, and...

  8. A comparative study of live attenuated F strain-derived Mycoplasma gallisepticum vaccines

    USDA-ARS?s Scientific Manuscript database

    Commercially available attenuated strains of Mycoplasma gallisepticum (MG) are commonly used within the layer industry to control MG-induced mycoplasmosis. Among these are two live MG vaccines derived from the moderately pathogenic MG “chick F” strain. In the present study, the commercially availa...

  9. Strain relaxation of thin Si{sub 0.6}Ge{sub 0.4} grown with low-temperature buffers by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Hansson, G. V.; Ni, W.-X.

    A double-low-temperature-buffer variable-temperature growth scheme was studied for fabrication of strain-relaxed thin Si{sub 0.6}Ge{sub 0.4} layer on Si(001) by using molecular beam epitaxy (MBE), with particular focuses on the influence of growth temperature of individual low-temperature-buffer layers on the relaxation process and final structural qualities. The low-temperature buffers consisted of a 40 nm Si layer grown at an optimized temperature of {approx}400 deg. C, followed by a 20 nm Si{sub 0.6}Ge{sub 0.4} layer grown at temperatures ranging from 50 to 550 deg. C. A significant relaxation increase together with a surface roughness decrease both by a factor of {approx}2, accompaniedmore » with the cross-hatch/cross-hatch-free surface morphology transition, took place for the sample containing a low-temperature Si{sub 0.6}Ge{sub 0.4} layer that was grown at {approx}200 deg. C. This dramatic change was explained by the association with a certain onset stage of the ordered/disordered growth transition during the low-temperature MBE, where the high density of misfit dislocation segments generated near surface cusps largely facilitated the strain relaxation of the top Si{sub 0.6}Ge{sub 0.4} layer.« less

  10. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    PubMed Central

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-01-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors. PMID:27713550

  11. Effects of nanoscale coatings on reliability of MEMS ohmic contact switches

    NASA Astrophysics Data System (ADS)

    Tremper, Amber Leigh

    This thesis examines how the electrical and mechanical behavior of Au thin films is altered by the presence of ultra-thin metallic coatings. To examine the mechanical behavior, nanoindentation, nano-scratch, and atomic force microscopy (AFM) testing was performed. The electrical behavior was evaluated through Kelvin probe contact resistance measurements. This thesis shows that ultra-thin, hard, ductile coatings on a softer, ductile underlying layer (such as Ru or Pt on Au) had a significant effect on mechanical behavior of the system, and can be tailored to control the deformation resistance of the thin film system. Despite Ru and Pt having a higher hardness and plane strain modulus than Au, the Ru and Pt coatings decreased both the hardness and plane strain modulus of the layered system when the indentation depth was on the order of the coating thickness. Alternately, when the indentation depth was several times the coating thickness, the ductile, plastically hard, elastically stiff layer significantly hardened the contact response. These results correlate well with membrane stress theoretical predictions, and demonstrate that membrane theory can be applied even when the ratio of indentation depth, h, to coating thickness, t, is very large ( h/t<10). The transition from film-substrate models to membrane models occurs when the indent penetration depth to coating thickness ratio is less than ˜0.5. When the electrical behavior of the Ru-coated Au films was examined, it was found that all the measured resistances of the Au-only film and Ru-coated systems were several orders of magnitude larger than those predicted by Holm's law, but were still in good agreement with previously reported values in the literature. Previous studies attributed the high contact resistances to a variety of causes, including the buildup of an insulating contamination layer. This thesis determined the cause of the deviations to be large sheet resistance contributions to the total measured resistance. Further, studies on aged samples (with thicker contamination layers) conclusively showed that, while contamination increases the contact resistance, it also increases the dependence on force. This thesis also details that the relative contribution of contact resistance to the total measured resistance can be maximized by decreasing the probe spacing and tip radius. AFM testing of the layered systems showed that the coated samples had larger predicted plane strain moduli than the Au sample, in contrast to the nanoindentation testing. Thus, when the contact depth was kept sufficiently small, the contact stiffness increased as predicted by substrate models. When the contact depth was on the order of the coating thickness, the contact stiffness actually decreased. Additionally, the forceseparation plots showed that the Ru and Pt surfaces either accumulated large amounts of contamination or were less susceptible to being wiped clean than the Au film. Further, scratch testing of the Au film and Ru and Pt coatings show that the hard surface coatings reduce material removal and contact wear. Ultra-thin Ru and Pt surface coatings on Au films are shown to be improved material systems for ohmic contact switches. The wear is reduced for coated materials, while the resistance and power consumption through the coating are not significantly affected.

  12. Symmetry and lattice mismatch induced strain accommodation near and away from correlated perovskite interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vailionis, A.; Boschker, H.; Max Planck Institute for Solid State Research, 70569 Stuttgart

    2014-09-29

    Distinct MnO{sub 6} octahedral distortions near and away from the La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3}(001) (LSMO/STO) interface are quantified using synchrotron x-ray diffraction and dynamical x-ray diffraction simulations. Three structural regions of stress accommodation throughout the film thickness were resolved: near the LSMO/STO interface, intermediate region farther from the interface, and the main layer away from the interface. The results show that within the first two unit cells stress is accommodated by the suppression of octahedral rotations in the film, leading to the expansion of the c-axis lattice parameter. Farther from the interface film structure acquires octahedral tilts similar tomore » thicker perovskite films under tensile stress, leading to a reduced c-axis parameter. We demonstrate that these regions are related to two different strain coupling mechanisms: symmetry mismatch at the interface and lattice mismatch in the rest of the film. The findings suggest new routes for strain engineering in correlated perovskite heterostructures.« less

  13. Transmission electron microscopy study of the formation of epitaxial CoSi2/Si (111) by a room-temperature codeposition technique

    NASA Technical Reports Server (NTRS)

    D'Anterroches, Cecile; Yakupoglu, H. Nejat; Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1988-01-01

    Co and Si have been codeposited on Si (111) substrates near room temperature in a stoichiometric 1:2 ratio in a molecular beam epitaxy system. Annealing of these deposits yields high-quality single-crystal CoSi2 layers. Transmission electron microscopy has been used to examine as-deposited layers and layers annealed at 300, 500, and 600 C. Single-crystal epitaxial grains of CoSi2 embedded in a matrix of amorphous Co/Si are observed in as-deposited samples, while the layer is predominantly single-crystal, inhomogeneously strained CoSi2 at 300 C. At 600 C, a homogeneously strained single-crystal layer with a high density of pinholes is observed. In contrast to other solid phase epitaxy techniques used to grow CoSi2 on Si (111), no intermediate silicide phases are observed prior to the formation of CoSi2.

  14. Delamination Analysis of a Multilayered Two-Dimensional Functionally Graded Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2017-11-01

    Delamination fracture behaviour of a multilayered two-dimensional functionally graded cantilever beam is analyzed in terms of the strain energy release rate. The beam is made of an arbitrary number of layers. Perfect adhesion is assumed between layers. Each layer has individual thickness and material properties. Besides, the material is two-dimensional functionally graded in the cross-section of each layer. There is a delamination crack located arbitrary between layers. The beam is loaded by a bending moment applied at the free end of the lower crack arm. The upper crack arm is free of stresses. The solution to strain energy release rate derived is applied to investigate the influence of the crack location and the material gradient on the delamination fracture. The results obtained can be used to optimize the multilayered two-dimensional functionally graded beam structure with respect to the delamination fracture behaviour.

  15. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.

  16. Coexistence of antibiotic-producing and antibiotic-sensitive bacteria in biofilms is mediated by resistant bacteria.

    PubMed

    Narisawa, Naoki; Haruta, Shin; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2008-06-01

    Antibiotic-sensitive bacteria have been found to coexist with antibiotic-producing bacteria in biofilms, but little is known about how the former develop in such an environment. Here we isolated pyocyanin-sensitive bacteria belonging to the genus Brevibacillus from a biofilm derived from soil extract and based on the preestablished biofilm of a pyocyanin producer, Pseudomonas aeruginosa strain P1. In addition, pyocyanin-resistant strains belonging to the genus Raoultella were isolated from the same biofilm. Microbial relationships within biofilms were examined by using three strains, strain P1, Brevibacillus strain S1, and Raoultella strain R1, each of which individually formed a biofilm within 2 days in a flow cell. Strain S1 did not fully develop on the preestablished biofilm of strain P1 during 4 days of cultivation, whereas a mutant of strain P1 which was deficient in pyocyanin production allowed strain S1 to cocolonize within a biofilm. On the other hand, strain R1 developed on the biofilm of strain P1 regardless of pyocyanin production. When mixed 1:1 inocula of strains S1 and R1 were introduced into the strain P1 biofilm, all three species were found in the 4-day biofilm. In the mixed biofilm, strain S1 was surrounded by the layer of strain R1 and seemed to be separated from strain P1 and the outflow solution. However, strain S1 did not survive in a three-species mixed culture under planktonic conditions. These results indicate that the survival of sensitive bacteria in biofilm with a pyocyanin producer is achieved by covering them with a layer of resistant bacteria. We also evaluated the influence of antibiotic production on the producer.

  17. Vocal outcome after endoscopic thyroarytenoid myoneurectomy in patients with adductor spasmodic dysphonia.

    PubMed

    Gandhi, Sachin; Remacle, Marc; Mishra, Prasun; Desai, Vrushali

    2014-12-01

    Spasmodic dysphonia (SD) remains one of the most difficult of laryngeal pathologies to treat. With limited role for speech therapy, various surgical modalities have been tried with various success rates. The objective of the study is to report the results of vocal outcome after thyroarytenoid myoneurectomy in patients of adductor spasmodic dysphonia (ASD). 15 patients of ASD were selected. GRBAS, and voice handicap index (VHI) were used for perceptual evaluation of voice. Thyroarytenoid myoneurectomy was performed by vaporizing the muscular layer of the vocal fold with CO2 laser, at an intensity of 6 W with 1.2 mm diameter in scanner mode. Voice analysis was repeated at 12, 24 and 48 months follow-up. Preoperative GRBAS scores and VHI score of all the patients were poor. At 12 months 12/15 (80 %) patients having strain score of 0. There was marked improvement in VHI scores at 6 months. 10/15 (67 %) patients have been followed up for 24 months. 5/10 (50 %) patients have strain (S) value of 0. VHI scoring of 5/10 (50 %) patients was <30. Two of the four patients completed 48 months follow-up had a strain (S) value of 0, one patient has strain value of 1 and one patient had strain value of 2. 2/4 patients had VHI score of <30; one patient had that of 40. Trans-oral CO2 laser thyroarytenoid myoneurectomy shows significant long-term improvement in voice quality in terms of reduced speech brakes, effort and strain in voice.

  18. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    NASA Astrophysics Data System (ADS)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  19. Dynamic compressive properties of bovine knee layered tissue

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Hino, Yuki; Todo, Mitsugu

    2015-09-01

    In Japan, the most common articular disease is knee osteoarthritis. Among many treatment methodologies, tissue engineering and regenerative medicine have recently received a lot of attention. In this field, cells and scaffolds are important, both ex vivo and in vivo. From the viewpoint of effective treatment, in addition to histological features, the compatibility of mechanical properties is also important. In this study, the dynamic and static compressive properties of bovine articular cartilage-cancellous bone layered tissue were measured using a universal testing machine and a split Hopkinson pressure bar method. The compressive behaviors of bovine articular cartilage-cancellous bone layered tissue were examined. The effects of strain rate on the maximum stress and the slope of stress-strain curves of the bovine articular cartilage-cancellous bone layered tissue were discussed.

  20. Hybrid structure of white layer in high carbon steel - Formation mechanism and its properties.

    PubMed

    Hossain, Rumana; Pahlevani, Farshid; Witteveen, Evelien; Banerjee, Amborish; Joe, Bill; Prusty, B Gangadhara; Dippenaar, Rian; Sahajwalla, Veena

    2017-10-16

    This study identifies for the first time, the hybrid structure of the white layer in high carbon steel and describes its formation mechanism and properties. The so-called 'white layer' in steel forms during high strain rate deformation and appears featureless under optical microscopy. While many researchers have investigated the formation of the white layer, there has been no definitive study, nor is there sufficient evidence to fully explain the formation, structure and properties of the layer. In this study, the formation, morphology and mechanical properties of the white layer was determined following impact testing, using a combination of optical and SE- microscopy, HR-EBSD, TKD and TEM as well as nano-indentation hardness measurements and FE modelling. The phase transformation and recrystallization within and near the white layer was also investigated. The microstructure of the steel in the white layer consisted of nano-sized grains of martensite. A very thin layer of austenite with nano sized grains was identified within the white layer by HR-EBSD techniques, the presence of which is attributed to a thermally-induced reverse phase transformation. Overall, the combination of phase transformations, strain hardening and grain refinement led to a hybrid structure and an increase in hardness of the white layer.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Maung, K.; Hahn, H. Thomas; Ju, Y.S.

    Multifunction integration of solar cells in load-bearing structures can enhance overall system performance by reducing parasitic components and material redundancy. The article describes a manufacturing strategy, named the co-curing scheme, to integrate thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites and eliminate parasitic packaging layers. In this scheme, an assembly of a solar cell and a prepreg is cured to form a multifunctional composite in one processing step. The photovoltaic performance of the manufactured structures is then characterized under controlled cyclic mechanical loading. The study finds that the solar cell performance does not degrade under 0.3%-strain cyclic tension loading upmore » to 100 cycles. Significant degradation, however, is observed when the magnitude of cyclic loading is increased to 1% strain. The present study provides an initial set of data to guide and motivate further studies of multifunctional energy harvesting structures. (author)« less

  2. Barrier Engineered Quantum Dot Infrared Photodetectors

    DTIC Science & Technology

    2015-06-01

    dual-color detectors using InAs/GaSb strained layer superlattices ." In Lester Eastman Conference on High Performance Devices (LEC), 2012, pp. 1-4. IEEE...Gautam, S. S. Krishna, E. P. Smith, S. Johnson, and S. Krishna. "Dual-band pBp detectors based on InAs/GaSb strained layer superlattices ." Infrared ...AFRL-RV-PS- AFRL-RV-PS- TR-2015-0111 TR-2015-0111 BARRIER ENGINEERED QUANTUM DOT INFRARED PHOTODETECTORS Sanjay Krishna Center for High Technology

  3. Growth of Interfacial Intermetallic Compound Layer in Diffusion-Bonded SAC-Cu Solder Joints During Different Types of Thermomechanical Excursion

    NASA Astrophysics Data System (ADS)

    Kanjilal, Anwesha; Kumar, Praveen

    2018-01-01

    The effects of mechanical strain on the growth kinetics of interfacial intermetallic compounds (IMCs) sandwiched between Cu substrate and Sn-1.0 wt.%Ag-0.5 wt.%Cu (SAC105) solder have been investigated. Isothermal aging (IA) at 70°C and 125°C, and thermal cycling (TC) as well as thermomechanical cycling (TMC) with shear strain of 12.8% per cycle between -25°C and 125°C were applied to diffusion-bonded solder joints to study the growth behavior of the interfacial IMC layer under various types of thermomechanical excursion (TME). The microstructure of the solder joint tested under each TME was observed at regular intervals. It was observed that the growth rate of the IMC layer was higher in the case of TMC compared with TC or IA. This increased growth rate of the IMC layer in the presence of mechanical strain suggests an additional driving force that enhances the growth kinetics of the IMC. Finite element analysis was performed to gain insight into the effect of TC and TMC on the stress field in the solder joint, especially near the interface between the solder and the substrate. Finally, an analytical model was developed to quantify the effect of strain on the effective diffusivity and express the growth kinetics for all three types of TME using a single expression.

  4. Formation of chocolate-tablet boudins: Results from scaled analogue models

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Göttlich, J.; Peinl, M.

    2014-11-01

    We used power-law viscous plasticine as a rock analogue to simulate chocolate tablet boudinage of rocks undergoing dislocation creep. A competent plasticine layer, oriented perpendicular to the main shortening direction, Z, underwent two phases of plane strain in a weaker plasticine matrix, with the principal stretching axis, X, and the axis of no-change, Y, replacing each other from the first to the second phase. In each phase of plane strain, boudinage was controlled by an initial phase of viscous necking followed by extension fracture along the neck domain. Increase in the magnitude of finite strain (e) and decrease in layer thickness (Hi) result in a decrease in the boudin width (Wa) and an increase in the number of boudins (N). Given the viscosity ratio between layer and matrix (m) is higher than ca. 5, the number of boudins decreases and the boudin width increases with increasing values of m. An unexpected result of the present study is that in each experiment, the number of boudins was significantly higher during the second phase of plane strain. This difference should be related to additional drag of the matrix plasticine on the stiff layer in the neck domains formed during the first phase of boudinage. The aspect ratio of the second generation of boudins (Wd = Wa/Hi) is compatible with aspect ratios of natural boudins and with aspect ratios calculated using analytical solutions.

  5. Layer-by-Layer Polyelectrolyte Encapsulation of Mycoplasma pneumoniae for Enhanced Raman Detection

    PubMed Central

    Rivera-Betancourt, Omar E.; Sheppard, Edward S.; Krause, Duncan C.; Dluhy, Richard A.

    2014-01-01

    Mycoplasma pneumoniae is a major cause of respiratory disease in humans and accounts for as much as 20% of all community-acquired pneumonia. Existing mycoplasma diagnosis is primarily limited by the poor success rate at culturing the bacteria from clinical samples. There is a critical need to develop a new platform for mycoplasma detection that has high sensitivity, specificity, and expediency. Here we report the layer-by-layer (LBL) encapsulation of M. pneumoniae cells with Ag nanoparticles in a matrix of the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS). We evaluated nanoparticle encapsulated mycoplasma cells as a platform for the differentiation of M. pneumoniae strains using surface enhanced Raman scattering (SERS) combined with multivariate statistical analysis. Three separate M. pneumoniae strains (M129, FH and II-3) were studied. Scanning electron microscopy and fluorescence imaging showed that the Ag nanoparticles were incorporated between the oppositely charged polyelectrolyte layers. SERS spectra showed that LBL encapsulation provides excellent spectral reproducibility. Multivariate statistical analysis of the Raman spectra differentiated the three M. pneumoniae strains with 97 – 100% specificity and sensitivity, and low (0.1 – 0.4) root mean square error. These results indicated that nanoparticle and polyelectrolyte encapsulation of M. pneumoniae is a potentially powerful platform for rapid and sensitive SERS-based bacterial identification. PMID:25017005

  6. Multiscale deformation behavior for multilayered steel by in-situ FE-SEM

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.

    2010-03-01

    The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.

  7. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices

    NASA Astrophysics Data System (ADS)

    Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.

    2005-01-01

    Theoretical predictions-motivated by recent advances in epitaxial engineering-indicate a wealth of complex behaviour arising in superlattices of perovskite-type metal oxides. These include the enhancement of polarization by strain and the possibility of asymmetric properties in three-component superlattices. Here we fabricate superlattices consisting of barium titanate (BaTiO3), strontium titanate (SrTiO3) and calcium titanate (CaTiO3) with atomic-scale control by high-pressure pulsed laser deposition on conducting, atomically flat strontium ruthenate (SrRuO3) layers. The strain in BaTiO3 layers is fully maintained as long as the BaTiO3 thickness does not exceed the combined thicknesses of the CaTiO3 and SrTiO3 layers. By preserving full strain and combining heterointerfacial couplings, we find an overall 50% enhancement of the superlattice global polarization with respect to similarly grown pure BaTiO3, despite the fact that half the layers in the superlattice are nominally non-ferroelectric. We further show that even superlattices containing only single-unit-cell layers of BaTiO3 in a paraelectric matrix remain ferroelectric. Our data reveal that the specific interface structure and local asymmetries play an unexpected role in the polarization enhancement.

  8. Many body calculations of the optoelectronic properties of h-AlN: from 3D to 2D

    NASA Astrophysics Data System (ADS)

    Kecik, Deniz; Bacaksiz, Cihan; Durgun, Engin; Senger, Tugrul

    Outstanding electronic and optical properties of graphene, h-BN, MoS2 etc. motivate the further discovery of novel 2D materials such as AlN, a III-V compound, with remarkable features for potential optoelectronic applications, due to its wide indirect band gap. The layer and strain dependent optoelectronic properties of the recently synthesized monolayer hexagonal AlN (h-AlN) were investigated using density functional and many body perturbation theories, where RPA and BSE were employed on top of the QPG0W0 method. The optical spectra of 1-4 layered h-AlN revealed prominent absorption beyond the visible light regime; absorbance within the UV range increasing with the number of layers. In addition, the applied tensile strain (1 - 7 %) was observed to gradually redshift the absorption spectra. While the many body corrections induced significant blueshift to the optical spectra, evidence of bound excitons were also found for the layered structures. Hence, the optoelectronic properties of layered h-AlN can be tuned by modifying their structure and applying strain, moreover are greatly altered when electron-hole interactions are considered. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 113T050).

  9. Piezoelectrically enhanced photocathode

    NASA Technical Reports Server (NTRS)

    Beach, Robert A. (Inventor); Nikzad, Shouleh (Inventor); Strittmatter, Robert P. (Inventor); Bell, Lloyd Douglas (Inventor)

    2009-01-01

    A photocathode, for generating electrons in response to incident photons in a photodetector, includes a base layer having a first lattice structure and an active layer having a second lattice structure and epitaxially formed on the base layer, the first and second lattice structures being sufficiently different to create a strain in the active layer with a corresponding piezoelectrically induced polarization field in the active layer, the active layer having a band gap energy corresponding to a desired photon energy.

  10. Glancing-incidence focussed ion beam milling: A coherent X-ray diffraction study of 3D nano-scale lattice strains and crystal defects

    DOE PAGES

    Hofmann, Felix; Harder, Ross J.; Liu, Wenjun; ...

    2018-05-11

    Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less

  11. Glancing-incidence focussed ion beam milling: A coherent X-ray diffraction study of 3D nano-scale lattice strains and crystal defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix; Harder, Ross J.; Liu, Wenjun

    Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less

  12. Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithium-Ion Batteries.

    PubMed

    Tai, Zhixin; Subramaniyam, Chandrasekar M; Chou, Shu-Lei; Chen, Lingna; Liu, Hua-Kun; Dou, Shi-Xue

    2017-09-01

    The most promising cathode materials, including LiCoO 2 (layered), LiMn 2 O 4 (spinel), and LiFePO 4 (olivine), have been the focus of intense research to develop rechargeable lithium-ion batteries (LIBs) for portable electronic devices. Sluggish lithium diffusion, however, and unsatisfactory long-term cycling performance still limit the development of present LIBs for several applications, such as plug-in/hybrid electric vehicles. Motivated by the success of graphene and novel 2D materials with unique physical and chemical properties, herein, a simple shear-assisted mechanical exfoliation method to synthesize few-layered nanosheets of LiCoO 2 , LiMn 2 O 4 , and LiFePO 4 is used. Importantly, these as-prepared nanosheets with preferred orientations and optimized stable structures exhibit excellent C-rate capability and long-term cycling performance with much reduced volume expansion during cycling. In particular, the zero-strain insertion phenomenon could be achieved in 2-3 such layers of LiCoO 2 electrode materials, which could open up a new way to the further development of next-generation long-life and high-rate batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Poly-SiGe MEMS actuators for adaptive optics

    NASA Astrophysics Data System (ADS)

    Lin, Blake C.; King, Tsu-Jae; Muller, Richard S.

    2006-01-01

    Many adaptive optics (AO) applications require mirror arrays with hundreds to thousands of segments, necessitating a CMOS-compatible MEMS process to integrate the mirrors with their driving electronics. This paper proposes a MEMS actuator that is fabricated using low-temperature polycrystalline silicon-germanium (poly-SiGe) surface-micromaching technology (total thermal budget is 6 hours at or below 425°C). The MEMS actuator consists of three flexures and a hexagonal platform, on which a micromirror is to be assembled. The flexures are made of single-layer poly-SiGe with stress gradient across thickness of the film, making them bend out-of-plane after sacrificial-layer release to create a large nominal gap. The platform, on the other hand, has an additional stress-balancing SiGe layer deposited on top, making the dual-layer stack stay flat after release. Using this process, we have successfully fabricated the MEMS actuator which is lifted 14.6 μm out-of-plane by 290-μm-long flexures. The 2-μm-thick hexagonal mirror-platform exhibits a strain gradient of -5.5×10 -5 μm -1 (equivalent to 18 mm radius-of-curvature), which would be further reduced once the micromirror is assembled.

  14. Inverted Al0.25Ga0.75N/GaN ultraviolet p-i-n photodiodes formed on p-GaN template layer grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-Hua; Sheu, Jinn-Kong; Lee, Ming-Lun; Tu, Shang-Ju; Yang, Chih-Ciao; Kuo, Huan-Shao; Yang, J. H.; Lai, Wei-Chih

    2010-07-01

    Inverted Al0.25Ga0.75N/GaN ultraviolet (UV) p-i-n photodiodes (PDs) were grown by selective-area regrowth on p-GaN template. The inverted devices with low-resistivity n-type AlGaN top-contact layers exhibited a typical zero-bias peak responsivity of 66.7 mA/W at 310 nm corresponding to the external quantum efficiency of 26.6%. The typical UV-to-visible (310/400 nm) spectral rejection ratio at zero-bias was over three orders of magnitude. The differential resistance and detectivity were obtained at approximately 6.2×1012 Ω and 3.4×1013 cm Hz1/2 W-1, respectively. Compared with conventional AlGaN/GaN-based UV p-i-n PDs, the proposed device structure can potentially achieve solar-blind AlGaN/GaN-based p-i-n PDs with low-aluminum content or aluminum-free p-contact layer and reduce excessive tensile strain due to the lattice mismatch between AlGaN and GaN layers.

  15. Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals.

    PubMed

    Li, Honglai; Liu, Hongjun; Zhou, Linwei; Wu, Xueping; Pan, Yuhao; Ji, Wei; Zheng, Biyuan; Zhang, Qinglin; Zhuang, Xiujuan; Zhu, Xiaoli; Wang, Xiao; Duan, Xiangfeng; Pan, Anlian

    2018-05-22

    Atomic substitution offers an important route to achieve compositionally engineered two-dimensional nanostructures and their heterostructures. Despite the recent research progress, the fundamental understanding of the reaction mechanism has still remained unclear. Here, we reveal the atomic substitution mechanism of two-dimensional atomic layered materials. We found that the atomic substitution process depends on the varying lattice constant (strain) in monolayer crystals, dominated by two strain-tuning (self-promoted and self-limited) mechanisms using density functional theory calculations. These mechanisms were experimentally confirmed by the controllable realization of a graded substitution ratio in the monolayers by controlling the substitution temperature and time and further theoretically verified by kinetic Monte Carlo simulations. The strain-tuning atomic substitution processes are of general importance to other two-dimensional layered materials, which offers an interesting route for tailoring electronic and optical properties of these materials.

  16. Size effects on the martensitic phase transformation of NiTi nanograins

    NASA Astrophysics Data System (ADS)

    Waitz, T.; Antretter, T.; Fischer, F. D.; Simha, N. K.; Karnthaler, H. P.

    2007-02-01

    The analysis of nanocrystalline NiTi by transmission electron microscopy (TEM) shows that the martensitic transformation proceeds by the formation of atomic-scale twins. Grains of a size less than about 50 nm do not transform to martensite even upon large undercooling. A systematic investigation of these phenomena was carried out elucidating the influence of the grain size on the energy barrier of the transformation. Based on the experiment, nanograins were modeled as spherical inclusions containing (0 0 1) compound twinned martensite. Decomposition of the transformation strains of the inclusions into a shear eigenstrain and a normal eigenstrain facilitates the analytical calculation of shear and normal strain energies in dependence of grain size, twin layer width and elastic properties. Stresses were computed analytically for special cases, otherwise numerically. The shear stresses that alternate from twin layer to twin layer are concentrated at the grain boundaries causing a contribution to the strain energy scaling with the surface area of the inclusion, whereas the strain energy induced by the normal components of the transformation strain and the temperature dependent chemical free energy scale with the volume of the inclusion. In the nanograins these different energy contributions were calculated which allow to predict a critical grain size below which the martensitic transformation becomes unlikely. Finally, the experimental result of the atomic-scale twinning can be explained by analytical calculations that account for the transformation-opposing contributions of the shear strain and the twin boundary energy of the twin-banded morphology of martensitic nanograins.

  17. Reconstruction of loads in the fibrosa and ventricularis of porcine aortic valves.

    PubMed

    Vesely, I

    1996-01-01

    The main structural components of aortic valve cusps, the fibrosa and ventricularis, are pre loaded by virtue of their attachment to each other. The fibrosa is under compression and the ventricularis is under tension. Once separated from each other, these internal stresses are relieved, and the fibrosa elongates and the ventricularis shrinks. It then becomes impossible to determine what fraction of the load is carried by the two layers at a given strain, using the standard superposition of tension vs strain curves. To enable the superposition approach, we needed to adjust the tension/ strain curves of the fibrosa and ventricularis, and duplicate the pre load that exists in these layers. We, therefore, iteratively shifted these curves and compared their arithmetic sum to the tension curve for the whole intact cusp, using a sum-of-squares error function. The best fits occurred when the fibrosa and ventricularis were shifted to the right and left by amounts corresponding to a true strain of epsilon = 0.26 and 0.10 for the fibrosa and ventricularis in the radial directions. In the circumferential direction, the best fit was achieved for shifts of epsilon = -0.11 and 0.010 for the fibrosa and ventricularis, respectively. This 26% compressive strain of the radial fibrosa compares well with direct observations. The reconstructed tension curves indicate that the ventricularis carries much of the radial loads, whereas circumferentially the two layers share loads equally up to 25% strain, beyond which the fibrosa takes over.

  18. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Junhua; Jiang, Jin-Wu; Rabczuk, Timon

    2013-12-01

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS2) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS2. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  19. Study of InGaAs-based modulation doped field effect transistor structures using variable-angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1991-01-01

    Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.

  20. Type-II quantum wells with tensile-strained GaAsSb layers for interband cascade lasers with tailored valence band mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motyka, M.; Dyksik, M.; Ryczko, K.

    Optical properties of modified type II W-shaped quantum wells have been investigated with the aim to be utilized in interband cascade lasers. The results show that introducing a tensely strained GaAsSb layer, instead of a commonly used compressively strained GaInSb, allows employing the active transition involving valence band states with a significant admixture of the light holes. Theoretical predictions of multiband k·p theory have been experimentally verified by using photoluminescence and polarization dependent photoreflectance measurements. These results open a pathway for practical realization of mid-infrared lasing devices with uncommon polarization properties including, for instance, polarization-independent midinfrared light emitters.

  1. A Case of Loeffler Endocarditis That Showed Endomyocardial Systolic Dysfunction Detected by Layer Specific Strain Analysis.

    PubMed

    Jin, Xuanyi; Ma, Chunyan; Wang, Yonghuai; Yang, Jun

    2017-12-12

    Loeffler endocarditis is a rare comprehensive cardiac manifestation caused by eosinophilic cell infiltrations and is present in 50%-60% of patients with hypereosinophilic syndrome (HES). Left ventricle (LV) endocardial systolic dysfunction is a major cause of morbidity and mortality in HES and Loeffler endocarditis. We present a case of Loeffler endocarditis, whose left ventricular (LV) systolic dysfunction and endocardial systolic dysfunction were first neglected by conventional transthoracic echocardiography (TTE), but were later pointed out by layer-specific longitudinal strain analysis. With timely initial therapeutic management, the patient's outcome was remarkable. Thus, we strongly recommend strain analysis as a necessary supplementary test of conventional TTE in all patients with Loeffler endocarditis.

  2. Optical Properties of Gallium Arsenide and Indium Gallium Arsenide Quantum Wells and Their Applications to Opto-Electronic Devices.

    NASA Astrophysics Data System (ADS)

    Huang, Daming

    1990-01-01

    In this thesis we investigate the optical properties of modulation doped GaAs/AlGaAs and strained-layer undoped InGaAs/GaAs multiple quantum well structures (MQWS). The phenomena studied are the effects of carrier, strain, and the electric field on the absorption of excitons. For GaAs/AlGaAs modulation doped MQWS, the quenching of excitons by free carriers has been demonstrated. The comparison of the experimental results with calculations which consider phase space filling, screening, and exchange interaction showed the phase space filling to be the dominant mechanism responsible for the change of oscillator strength and binding energy of excitons associated with partially filled subband. On the other hand, the screening and exchange interaction are equally important to excitons associated with empty subbands. For InGaAs/GaAs strained-layer MQWS, we have demonstrated that the band edges are dramatically modified by strain. We determined the band discontinuities at InGaAs/GaAs interfaces using optical absorption, and showed that in this structure the heavy holes are confined in InGaAs layers while the light holes are in GaAs layers, in contrast to GaAs/AlGaAs MQWS. We also explore applications of GaAs/AlGaAs and InGaAs/GaAs MQWS to opto-electronic devices. The principle of devices investigated is mainly based on the electric field effect on the excitonic absorption in MQWS (the quantum confined Stark effect). Two examples presented in this thesis are the strained-layer InGaAs/GaAs MQWS electroabsorption modulators grown on GaAs substrates and the GaAs/AlGaAs MQWS reflection modulators grown on Si substrates. The large modulation observed in the absorption coefficient by an electric field is expected to facilitate opto-electronic integration.

  3. Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey.

    PubMed

    Yilmaz, Huseyin; Altan, Eda; Cizmecigil, Utku Y; Gurel, Aydin; Ozturk, Gulay Yuzbasioglu; Bamac, Ozge Erdogan; Aydin, Ozge; Britton, Paul; Monne, Isabella; Cetinkaya, Burhan; Morgan, Kenton L; Faburay, Bonto; Richt, Juergen A; Turan, Nuri

    2016-09-01

    The avian coronavirus infectious bronchitis virus (AvCoV-IBV) is recognized as an important global pathogen because new variants are a continuous threat to the poultry industry worldwide. This study investigates the genetic origin and diversity of AvCoV-IBV by analysis of the S1 sequence derived from 49 broiler flocks and 14 layer flocks in different regions of Turkey. AvCoV-IBV RNA was detected in 41 (83.6%) broiler flocks and nine (64.2%) of the layer flocks by TaqMan real-time RT-PCR. In addition, AvCoV-IBV RNA was detected in the tracheas 27/30 (90%), lungs 31/49 (62.2%), caecal tonsils 7/22 (31.8%), and kidneys 4/49 (8.1%) of broiler flocks examined. Pathologic lesions, hemorrhages, and mononuclear infiltrations were predominantly observed in tracheas and to a lesser extent in the lungs and a few in kidneys. A phylogenetic tree based on partial S1 sequences of the detected AvCoV-IBVs (including isolates) revealed that 1) viruses detected in five broiler flocks were similar to the IBV vaccines Ma5, H120, M41; 2) viruses detected in 24 broiler flocks were similar to those previously reported from Turkey and to Israel variant-2 strains; 3) viruses detected in seven layer flocks were different from those found in any of the broiler flocks but similar to viruses previously reported from Iran, India, and China (similar to Israel variant-1 and 4/91 serotypes); and 4) that the AVCoV-IBV, Israeli variant-2 strain, found to be circulating in Turkey appears to be undergoing molecular evolution. In conclusion, genetically different AvCoV-IBV strains, including vaccine-like strains, based on their partial S1 sequence, are circulating in broiler and layer chicken flocks in Turkey and the Israeli variant-2 strain is undergoing evolution.

  4. Strain-specific detection of orally administered canine jejunum-dominated Lactobacillus acidophilus LAB20 in dog faeces by real-time PCR targeted to the novel surface layer protein.

    PubMed

    Tang, Y; Saris, P E J

    2013-10-01

    Lactobacillus acidophilus LAB20 has potential to be a probiotic strain because it can be present at high numbers in the jejunum of dog. To specifically detect LAB20 from dog faecal samples, a real-time PCR protocol was developed targeting the novel surface (S) layer protein gene of LAB20. The presence of S-layer protein was verified by N-terminal sequencing of the approximately 50-kDa major band from SDS-PAGE gel. The corresponding S-layer gene was amplified by inverse PCR using homology to known S-layers and sequenced. This novel S-layer protein has low sequence similarity to other S-layer proteins in the N-terminal region (32-211 aa, 7-39%). This enabled designing strain-specific PCR primers. The primer set was utilized to study intestinal persistence of LAB20 in dog that was fed with LAB20 fermented milk for 5 days. The results showed that LAB20 can be detected from dog faecal sample after 6 weeks with 10(4·53)  DNA copies g(-1) postadministration. It suggested that LAB20 could be a good candidate to study the mechanism behind its persistence and dominance in dog intestine and maybe utilize it as a probiotic for canine. A real-time PCR method was developed to detect Lactobacillus acidophilus LAB20, a strain that was previously found dominant in canine gastrointestinal (GI) tract. The quantitative detection was based on targeting to variation region of a novel S-layer protein found in LAB20, allowing to specifically enumerate LAB20 from dog faeces. The results showed that the real-time PCR method was sensitive enough to be used in later intervention studies. Interestingly, LAB20 was found to persist in dog GI tract for 6 weeks. Therefore, LAB20 could be a good candidate to study its colonization and potentially utilize as a canine probiotic. © 2013 The Society for Applied Microbiology.

  5. Analytical and Experimental Characterization of Thick-Section Fiber-Metal Laminates

    DTIC Science & Technology

    2013-06-01

    individual metal layers as loading increases. The off-axis deformation properties of the prepreg layers were modeled by using equivalent constraint models...the degraded stiffness of the prepreg layer is found. At each loading step the stiffness properties of individual layers are calculated. These...predicts stress-strain curves on-axis, additional work is needed to study the local interactions between metal and prepreg layers as damage occurs in each

  6. Strain-engineered diffusive atomic switching in two-dimensional crystals

    PubMed Central

    Kalikka, Janne; Zhou, Xilin; Dilcher, Eric; Wall, Simon; Li, Ju; Simpson, Robert E.

    2016-01-01

    Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffusivity of Ge and Te atoms that are confined to 5 Å thick 2D planes within an Sb2Te3–GeTe van der Waals superlattice. The number of quintuple Sb2Te3 2D crystal layers dictates the strain in the GeTe layers and consequently its diffusive atomic disordering. By identifying four critical rules for the superlattice configuration we lay the foundation for a generalizable approach to the design of switchable van der Waals heterostructures. As Sb2Te3–GeTe is a topological insulator, we envision these rules enabling methods to control spin and topological properties of materials in reversible and energy efficient ways. PMID:27329563

  7. Strain dependence of In incorporation in m-oriented GaInN/GaN multi quantum well structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horenburg, Philipp, E-mail: p.horenburg@tu-braunschweig.de; Buß, Ernst Ronald; Rossow, Uwe

    We demonstrate a strong dependence of the indium incorporation efficiency on the strain state in m-oriented GaInN/GaN multi quantum well (MQW) structures. Insertion of a partially relaxed AlInN buffer layer opens up the opportunity to manipulate the strain situation in the MQW grown on top. By lattice-matching this AlInN layer to the c- or a-axis of the underlying GaN, relaxation towards larger a- or smaller c-lattice constants can be induced, respectively. This results in a modified template for the subsequent MQW growth. From X-ray diffraction and photoluminescence measurements, we derive significant effects on the In incorporation efficiency and In concentrationsmore » in the quantum well (QW) up to x = 38% without additional accumulation of strain energy in the QW region. This makes strain manipulation a very promising method for growth of high In-containing MQW structures for efficient, long wavelength light-emitting devices.« less

  8. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-07-01

    The biosurfactant-producing Pseudomonas aeruginosa A11, with plant-growth-promoting (PGP) and multi-metal-resistant (MMR) features was isolated from the rhizosphere of a wild plant Parthenium hysterophorus. The strain A11 was able to utilize glycerol as a carbon source and produce 4,436.9 mg/L of biosurfactant after 120 h of incubation. The biosurfactants was characterized as rhamnolipids (RLs) by thin layer chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and liquid chromatography-mass spectrometry analysis. Eight different RLs congeners were detected with RhaRhaC₁₀C₁₀ being most abundant. The purified rhamnolipid, dirhamnolipid, and monorhamnolipid reduced the surface tension of water to 29, 36, and 42 mN/m with critical micelle concentration of 83, 125, and 150 mg/L, respectively. The strain A11 demonstrated resistance against all the metals detected in rhizosphere except Hg and Ni. The strain A11 also possessed plant-growth-promoting features like siderophores, hydrogen cyanide, catalase, ammonia production, and phosphate solubilization. The dirhamnolipids formed crystals upon incubation at 4 °C, thus making separation of dirhamnolipids easy. Biosurfactant-producing ability along with MMR and PGP traits of the strain A11 makes it a potential candidate for application in the bacterial assisted enhancement of phytoremediation of heavy-metal-contaminated sites.

  9. Study of Minority Carrier Lifetimes in Very Long Wave Infrared Strained Layer InAs/GaInSb Superlattices (Postprint)

    DTIC Science & Technology

    2016-09-19

    arsenide ; Superlattices ; Absorption ; Engineering ; Long wavelength infrared ; Photodetectors ; Reflectivity ; Sensors 16. SECURITY CLASSIFICATION...So far, the best reported VLWIR D* is 4.5 x 10 10 Jones at 80 K using an InAs/GaSb (noted herein as “binary”) SL Infrared Sensors , Devices, and... temperature on InAs/GaInSb strained layer superlattices for very long wavelength infrared detection”, Appl. Phys. Lett. 101, 171105 (2012). [13] H. J

  10. Increasing the critical thickness of InGaAs quantum wells using strain-relief technologies

    NASA Astrophysics Data System (ADS)

    Jones, Andrew Marquis

    The advantages of optical communication through silica fiber have made long-distance electrical communication through copper wire obsolete. The two windows of operation for long-haul optical communication are centered around the wavelengths of 1.3 mum and 1.55 mum, which have minimal amounts of signal attenuation and dispersion. Benefits of optical communications within these windows include low system costs, high bandwidth, and high system reliability which have encouraged the development of emitters and receivers at these relatively long wavelengths. Long-wavelength semiconductor lasers are typically fabricated on InP substrates, but their performance suffers greatly with increases in operating temperature. Laser diodes on GaAs substrates are not as sensitive to operating temperature due to quantum-well active regions with relative deep potential barriers, but critical thickness limits the wavelength ceiling to 1.1 mum. Strain-relief technologies are currently being investigated to enable long-wavelength lasers with deeper potential wells leading to a corresponding increase in characteristic temperatures. Having a larger lattice constant than GaAs enables ternary InGaAs substrates to increase the 1.1-mum wavelength ceiling. Extending this ceiling to one of the optical communication windows could enable high-characteristic-temperature, long-wavelength lasers. Broad-area and buried-heterostructure lasers have demonstrated the potential of ternary substrates to increase characteristic temperatures and emission wavelengths. Wavelengths as long as 1.15 mum and characteristic temperatures as high as 145 K have been achieved. Reduced-area metalorganic chemical vapor deposition involves the deposition of strained materials on isolated islands. Due to the discontinuous nature of reduced-area epitaxy, strained materials are allowed to expand near the mesa edges, decreasing the overall strain in the structure. Laser diodes using this technology have been successfully fabricated, and evidence for partial relief of strain energy has been obtained. Compliant membranes enable strain relief by depositing on an ultra-thin semiconductor base. Unlike growth on typical thick substrates, expansion of the compliant membrane during strained-layer regrowth allows the membrane to accommodate most of the strain energy. Ternary InGaAs compliant films supported above a GaAs substrate with single AlGaAs pedestals have been utilized to fabricate long-wavelength (1.35 mum) InGaAs quantum wells on a GaAs substrate.

  11. The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.; O’Flaherty, Sarah; Goh, Yong Jun; Carroll, Ian; Barrangou, Rodolphe; Klaenhammer, Todd R.

    2017-01-01

    Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S-) layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs). Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs). In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578), was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX) demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms’ immunomodulatory properties and interactions with some intestinal epithelial cell components. PMID:28713337

  12. Measurement of the through thickness compression of a battery separator

    NASA Astrophysics Data System (ADS)

    Yan, Shutian; Huang, Xiaosong; Xiao, Xinran

    2018-04-01

    The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.

  13. Fire service instructor's undergarment choice to reduce Interleukin-6 and minimise physiological and perceptual strain.

    PubMed

    Watkins, Emily R; Richardson, Alan J

    2017-01-01

    Fire Service Instructors frequently experience high levels of physiological and perceptual strain during live fire exposures. Instructors are also at risk of cardiovascular illnesses, with cardiac death being the greatest cause of fire fighter death. Current practice for UK instructors is to select undergarment type based on personal preference, between a boiler suit (BOILER) and a wicking base layer (WBL). Research suggests that shorts and t-shirt (SHORTS) may also be a beneficial alternative undergarment choice. The UK South East Fire Service requested an investigation to identify if undergarment selection can lessen the strain experienced by instructors, and reduce the acute inflammatory response to fire exposures. Eight males completed three 45min sessions in a heat chamber (49.5±1.4°C and 16.9±4.3% RH) whilst performing intermittent walking. At the end of heat exposure change in heart rate was not effected by garment type (p=0.061, ηp 2 =0.373). Change in rectal temperature was different between garments (p=0.009, η p 2 =0.271), with trends suggesting that BOILER resulted in a greater change (1.03±0.60°C) than SHORTS (0.76±0.37°C, p=0.589, d=0.21) and WBL (0.72±0.33°C, p=0.545, d=0.25). Interleukin-6 post exposure was greater for BOILER (6.96±0.28pgmL -1 ) than both SHORTS (6.59±0.30pgmL -1 , p=0.043, d=0.42) and WBL (6.45±0.43pgmL -1 , p=0.031, d=0.51). Overall, undergarment type had little impact on physiological or perceptual strain. However, wearing WBL or SHORTS may reduce the inflammatory response, and consequently decrease the risk of cardiovascular events. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. Haemagglutination and surface structures in strains of Clostridium spiroforme.

    PubMed

    Baldassarri, L; Pantosti, A; Caprioli, A; Mastrantonio, P; Donelli, G

    1989-07-01

    Five strains of Clostridium spiroforme were examined for their surface properties. All strains were able to agglutinate human erythrocytes. Electron microscopy showed a ruthenium red-positive capsule mediating the attachment of bacteria to erythrocytes. Two strains, showing the lowest degree of haemagglutination, exhibited an additional external layer of filamentous structures, possibly interfering with the agglutinating activity. In spite of their agglutinating ability, the C. spiroforme strains did not show surface hydrophobicity, thus suggesting the possible existence of a new type of clostridial adhesin.

  15. Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity

    PubMed Central

    Morrison, Barclay; Goletiani, Cezar; Yu, Zhe; Wagner, Sigurd

    2013-01-01

    A high resolution elastically stretchable microelectrode array (SMEA) to interface with neural tissue is described. The SMEA consists of an elastomeric substrate, such as poly(dimethylsiloxane) (PDMS), elastically stretchable gold conductors, and an electrically insulating encapsulating layer in which contact holes are opened. We demonstrate the feasibility of producing contact holes with 40 µm × 40 µm openings, show why the adhesion of the encapsulation layer to the underlying silicone substrate is weakened during contact hole fabrication, and provide remedies. These improvements result in greatly increased fabrication yield and reproducibility. An SMEA with 28 microelectrodes was fabricated. The contact holes (100 µm × 100 µm) in the encapsulation layer are only ~10% the size of the previous generation, allowing a larger number of microelectrodes per unit area, thus affording the capability to interface with a smaller neural population per electrode. This new SMEA is used to record spontaneous and evoked activity in organotypic hippocampal tissue slices at 0% strain before stretching, at 5 % and 10 % equibiaxial strain, and again at 0% strain after relaxation. The noise of the recordings increases with increasing strain. The frequency of spontaneous neural activity also increases when the SMEA is stretched. Upon relaxation, the noise returns to pre-stretch levels, while the frequency of neural activity remains elevated. Stimulus-response curves at each strain level are measured. The SMEA shows excellent biocompatibility for at least two weeks. PMID:24093006

  16. Influence of strain and metal thickness on metal-MoS₂ contacts.

    PubMed

    Saidi, Wissam A

    2014-09-07

    MoS2 and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS2 contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS2(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS2 heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS2 exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS2 with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  17. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine.

    PubMed

    Dias, Rita; Vilas-Boas, Eduardo; Campos, Francisco M; Hogg, Tim; Couto, José António

    2015-08-01

    This work evaluated the effect of lysozyme on lactobacilli isolated from Port wine. Bacterial growth experiments were conducted in MRS/TJ medium and inactivation studies were performed in phosphate buffer (KH2PO4), distilled water and wine supplemented with different concentrations of lysozyme. The response of bacteria to lysozyme was found to be highly strain dependent. Some strains of Lactobacillus hilgardii together with Lactobacillus collinoides and Lactobacillus fructivorans were found to be resistant to concentrations of lysozyme as high as 2000 mg/L. It was observed that among the L. hilgardii taxon the resistant strains possess an S-layer coat. Apparently, the strains of L. collinoides and L. fructivorans studied are also S-layer producers as suggested by the total protein profile obtained by SDS-PAGE. Thus, the hypothetical protective role of the S-layer against the action of lysozyme was investigated. From the various treatments used to remove the protein from the surface of the cells, the one employing LiCl (5 M) was the most effective. LiCl pre-treated cells exposed to lysozyme (2000 mg/L) in KH2PO4 buffer maintained its resistance. However, when cells were suspended in distilled water an increased sensitivity to lysozyme was observed. Moreover, it was found that the addition of ethanol (20% v/v) to the suspension medium (distilled water) triggered a strong inactivation effect especially on cells previously treated with LiCl (reduction of >6 CFU log cycles). The results suggest that the S-layer exerts a protective effect against lysozyme and that the cell suspension medium influences the bacteriolysis efficiency. It was also noted that ethanol enhances the inactivation effect of lysozyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of lattice mismatch on the magnetic properties of nanometer-thick La0.9Ba0.1MnO3 (LBM) films and LBM/BaTiO3/LBM heterostructures

    NASA Astrophysics Data System (ADS)

    Mirzadeh Vaghefi, P.; Baghizadeh, A.; Willinger, M.; Lourenço, A. A. C. S.; Amaral, V. S.

    2017-12-01

    Oxide multiferroic thin films and heterostructures offer a wide range of properties originated from intrinsic coupling between lattice strain and nanoscale magnetic/electronic ordering. La0.9Ba0.1MnO3 (LBM) thin-films and LBM/BaTiO3/LBM (LBMBT) heterostructures were grown on single crystalline [100] silicon and [0001] Al2O3 using RF magnetron sputtering to study the effect of crystallinity and induced lattice mismatch in the film on magnetic properties of deposited films and heterostructures. The thicknesses of the films on Al2O3 and Si are 70 and 145 nm, respectively, and for heterostructures are 40/30/40 nm on both substrates. The microstructure of the films, state of strain and growth orientations was studied by XRD and microscopy techniques. Interplay of microstructure, strain and magnetic properties is further investigated. It is known that the crystal structure of substrates and imposed tensile strain affect the physical properties; i.e. magnetic behavior of the film. The thin layer grown on Al2O3 substrate shows out-of-plane compressive strain, while Si substrate induces tensile strain on the deposited film. The magnetic transition temperatures (Tc) of the LBM film on the Si and Al2O3 substrates are found to be 195 K and 203 K, respectively, slightly higher than the bulk form, 185 K. The LBMBT heterostructure on Si substrate shows drastic decrease in magnetization due to produced defects created by diffusion of Ti ions into magnetic layer. Meanwhile, the Tc in LBMBTs increases in respect to other studied single layers and heterostructure, because of higher tensile strain induced at the interfaces.

  19. Feeling stretched or compressed? The multiple mechanosensitive responses of wood formation to bending.

    PubMed

    Roignant, Jeanne; Badel, Éric; Leblanc-Fournier, Nathalie; Brunel-Michac, Nicole; Ruelle, Julien; Moulia, Bruno; Decourteix, Mélanie

    2018-05-11

    Trees constantly experience wind, perceive resulting mechanical cues, and modify their growth and development accordingly. Previous studies have demonstrated that multiple bending treatments trigger ovalization of the stem and the formation of flexure wood in gymnosperms, but ovalization and flexure wood have rarely been studied in angiosperms, and none of the experiments conducted so far has used multidirectional bending treatments at controlled intensities. Assuming that bending involves tensile and compressive strain, we hypothesized that different local strains may generate specific growth and wood differentiation responses. Basal parts of young poplar stems were subjected to multiple transient controlled unidirectional bending treatments during 8 weeks, which enabled a distinction to be made between the wood formed under tensile or compressive flexural strains. This set-up enabled a local analysis of poplar stem responses to multiple stem bending treatments at growth, anatomical, biochemical and molecular levels. In response to multiple unidirectional bending treatments, poplar stems developed significant cross-sectional ovalization. At the tissue level, some aspects of wood differentiation were similarly modulated in the compressed and stretched zones (vessel frequency and diameter of fibres without a G-layer), whereas other anatomical traits (vessel diameter, G-layer formation, diameter of fibres with a G-layer and microfibril angle) and the expression of fasciclin-encoding genes were differentially modulated in the two zones. This work leads us to propose new terminologies to distinguish the 'flexure wood' produced in response to multiple bidirectional bending treatments from wood produced under transient tensile strain (tensile flexure wood; TFW) or under transient compressive strain (compressive flexure wood; CFW). By highlighting similarities and differences between tension wood and TFW and by demonstrating that plants could have the ability to discriminate positive strains from negative strains, this work provides new insight into the mechanisms of mechanosensitivity in plants.

  20. Boundary Layer Effect on Behavior of Discrete Models

    PubMed Central

    Eliáš, Jan

    2017-01-01

    The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis. PMID:28772517

  1. Tunable inversion symmetry in heterostructures of layered oxides

    NASA Astrophysics Data System (ADS)

    Rondinelli, James

    Traditional approaches to create and control functional electronic materials have focused on new phases in previously unknown bulk minerals. More recently, interlayer physics has spawned interest in known materials in unexplored atomic scale geometries, especially in complex transition metal oxides (TMO), where heterostructures can be created on demand. In this talk, I show that although epitaxial strain routinely induces (enhances) electric polarizations, biaxial strain can also induce an unanticipated polar-to-nonpolar (P-NP) structural transition in (001) thin films of naturally layered An + 1Bn O3n+1 (n = 1 - ∞) oxides. Density functional theory calculations and a complete phenomenological model for Ca3Ti2O7 are used to show that the origin of the P-NP transition originates from the interplay of trilinear-related lattice mode interactions active in the layered oxides, and those interactions are directly strain tunable. Moreover these layered oxides exhibit a quasi-two dimensional phonon mode-an acoustic branch with quadratic dispersion, enabling unusual membrane effects such as tunable negative thermal expansion. I conclude by emphasizing that broken inversion symmetric structures offer a plentiful playground for realizing new functionalities in thin films, including new multiferroics from polar metals.

  2. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.

    PubMed

    Rajesh, A; Mangamma, G; Sairam, T N; Subramanian, S; Kalavathi, S; Kamruddin, M; Dash, S

    2017-07-01

    Graphene oxide (GO) based nanocomposites have gained considerable attention in the field of material science due to their excellent physicochemical and biological properties. Incorporation of nanomaterials into GO sheets prevents the formation of π-π stacking bond thereby giving rise to composites that show the improved properties compared to their individual counterparts. In this work, reduced graphene oxide (rGO) - hydroxyapatite (HAP) nanocomposites were synthesized by ultrasonic method. Increasing the c/a ratio of HAP in the diffraction pattern of rGO/HAP nanocomposites indicates the c-axis oriented grown HAP nanorods interacting with rGO layers. Shift in wavenumber (15cm -1 ) and increase of full width at half maximum (45cm -1 ) of G band in Raman spectra of the rGO/HAP nanocomposites are observed and attributed to the tensile strain induced due to the intercalated HAP nanorods between the rGO layers. Atomic force microscopy (AFM) and phase imaging studies revealed the intercalation of HAP nanorod with diameter 30nm and length 110-120nm in rGO sheets was clearly perceived along with improved elasticity compared to pristine HAP. 13 C-NMR results proved the synergistic interaction between both components in rGO/HAP nanocomposite. The novel properties observed and the microscopic mechanism responsible for this are a result of the structural modification in rGO layers brought about by the intercalation of HAP nanorods. Copyright © 2017. Published by Elsevier B.V.

  3. Epitaxial growth of highly strained antimonene on Ag(111)

    NASA Astrophysics Data System (ADS)

    Mao, Ya-Hui; Zhang, Li-Fu; Wang, Hui-Li; Shan, Huan; Zhai, Xiao-Fang; Hu, Zhen-Peng; Zhao, Ai-Di; Wang, Bing

    2018-06-01

    The synthesis of antimonene, which is a promising group-V 2D material for both fundamental studies and technological applications, remains highly challenging. Thus far, it has been synthesized only by exfoliation or growth on a few substrates. In this study, we show that thin layers of antimonene can be grown on Ag(111) by molecular beam epitaxy. High-resolution scanning tunneling microscopy combined with theoretical calculations revealed that the submonolayer Sb deposited on a Ag(111) surface forms a layer of AgSb2 surface alloy upon annealing. Further deposition of Sb on the AgSb2 surface alloy causes an epitaxial layer of Sb to form, which is identified as antimonene with a buckled honeycomb structure. More interestingly, the lattice constant of the epitaxial antimonene (5 Å) is much larger than that of freestanding antimonene, indicating a high tensile strain of more than 20%. This kind of large strain is expected to make the antimonene a highly promising candidate for roomtemperature quantum spin Hall material.

  4. Anomalous Hall hysteresis in T m3F e5O12/Pt with strain-induced perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Xu, Yadong; Garay, Javier E.; Shi, Jing

    2016-10-01

    We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator T m3F e5O12 (TIG) films grown with pulsed laser deposition on a substituted G d3G a5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.

  5. Characterization of structural response to hypersonic boundary-layer transition

    DOE PAGES

    Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; ...

    2016-05-24

    The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and theymore » can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.« less

  6. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    PubMed Central

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D

    2017-01-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219

  7. Mechanical behaviour near grain boundaries of He-implanted UO2 ceramic polycrystals

    NASA Astrophysics Data System (ADS)

    Ibrahim, M.; Castelier, É.; Palancher, H.; Bornert, M.; Caré, S.; Micha, J.-S.

    2017-01-01

    For studying the micromechanical behaviour of UO2 and characterising the intergranular interaction, polycrystals are implanted with helium ions, inducing strains in a thin surface layer. Laue X-ray micro-diffraction is used to measure the strain field in this implanted layer with a spatial resolution of about 1 μm. It allows a 2D mapping of the strain field in a dozen of grains. These measurements show that the induced strain depends mainly on the crystal orientation, and can be evaluated by a semi-analytical mechanical model. A mechanical interaction of the neighbouring grains has also been evidenced near the grain boundaries, which has been well reproduced by a finite element model. This interaction is shown to increase with the implantation energy (i.e. the implantation depth): it can be neglected at low implantation energy (60 keV), but not at higher energy (500 keV).

  8. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.

    PubMed

    Park, Jung Jin; Hyun, Woo Jin; Mun, Sung Cik; Park, Yong Tae; Park, O Ok

    2015-03-25

    Because of their outstanding electrical and mechanical properties, graphene strain sensors have attracted extensive attention for electronic applications in virtual reality, robotics, medical diagnostics, and healthcare. Although several strain sensors based on graphene have been reported, the stretchability and sensitivity of these sensors remain limited, and also there is a pressing need to develop a practical fabrication process. This paper reports the fabrication and characterization of new types of graphene strain sensors based on stretchable yarns. Highly stretchable, sensitive, and wearable sensors are realized by a layer-by-layer assembly method that is simple, low-cost, scalable, and solution-processable. Because of the yarn structures, these sensors exhibit high stretchability (up to 150%) and versatility, and can detect both large- and small-scale human motions. For this study, wearable electronics are fabricated with implanted sensors that can monitor diverse human motions, including joint movement, phonation, swallowing, and breathing.

  9. Finite strain calculations of continental deformation. I - Method and general results for convergent zones. II - Comparison with the India-Asia collision zone

    NASA Technical Reports Server (NTRS)

    Houseman, G.; England, P.

    1986-01-01

    The present investigation has the objective to perform numerical experiments on a rheologically simple continuum model for the continental lithosphere. It is attempted to obtain a better understanding of the dynamics of continental deformation. Calculations are presented of crustal thickness distributions, stress, strain, strain rate fields, latitudinal displacements, and finite rotations, taking into account as basis a model for continental collision which treats the litoshphere as a thin viscous layer subject to indenting boundary conditions. The results of this paper support the conclusions of England and McKenzie (1982) regarding the role of gravity in governing the deformation of a thin viscous layer subject to indenting boundary conditions. The results of the experiments are compared with observations of topography, stress and strain rate fields, and palaeomagnetic latitudinal displacements in Asia.

  10. Massless Dirac fermions in semimetal HgCdTe

    NASA Astrophysics Data System (ADS)

    Marchewka, M.; Grendysa, J.; Żak, D.; Tomaka, G.; Śliż, P.; Sheregii, E. M.

    2017-01-01

    Magneto-transport results obtained for the strained 100 nm thick Hg1-x CdxTe (x=0.135) layer grown by MBE on the CdTe/GaAs substrate are interpreted by the 8×8 kp model with the in-plane tensile strain. The dispersion relation for the investigated structure proves that the Dirac point is located in the gap caused by the strain. It is also shown that the fan of the Landau Levels (LL's) energy calculated for topological protected surface states for the studied HgCdTe alloy corresponds to the fan of the LL's calculated using the graphen-like Hamiltonian which gives excellent agreement with the experimental data for velocity on the Fermi level equal to vf ≈ 0.85×106 m/s. That characterized strained Hg1-x CdxTe layers (0.13 < x < 0.14) are a perfect Topological Insulator with good perspectives of further applications.

  11. Mobility and Device Applications of Heavily Doped Silicon and Strained SILICON(1-X) Germanium(x) Layers

    NASA Astrophysics Data System (ADS)

    Carns, Timothy Keith

    With the advent of Si molecular beam epitaxy (Si -MBE), a significant amount of research has occurred to seek alternative high conductivity Si-based materials such as rm Si_{1-x}Ge_ {x} and delta-doped Si. These materials have brought improvements in device speeds and current drives with the added advantage of monolithic integration into Si VLSI circuits. The bulk of research in Si-based materials has been devoted to the implementation of strained rm Si_{1-x}Ge_{x} as the base layer of a rm Si_ {1-x}Ge_{x}/Si heterojunction bipolar transistor (HBT). Because of the valence band offset, the rm Si_{1-x}Ge _{x} layer can be heavily doped, leading to lower base sheet resistances and hence, improved speed performances. The Ge content in the base can also be graded to increase the drift field in the base. However, very few hole mobility measurements have been done in these strained layers, leading to limitations in device modeling and in understanding the transport behavior in this important material. In addition to rm Si_{1 -x}Ge_{x}, much potential also exists in using delta-doping in Si for improved conductivities over those of bulk Si. However, as of yet, delta-doped Si has received little attention. Therefore, this dissertation is dedicated to the investigation of both of these Si-based materials (strained rm Si_{1-x}Ge_{x } and delta-doped Si and rm Si_{1-x}Ge_ {x}) for the purpose of obtaining higher conductivities than comparably doped bulk Si. This work is divided into three parts to accomplish this objective. The first part is contained in Chapter 3 and is comprised of a comprehensive characterization of the hole mobility in compressively strained rm Si_{1 -x}Ge_{x}. Few results have been obtained prior to this research which has led to many inaccuracies in device modeling. The second part of this dissertation in Chapters 4 and 5 is devoted to the study of the mobility behavior in both boron and antimony delta-doped Si and rm Si_ {1-x}Ge_{x}. The important discovery of mobility and conductivity enhancement in coupled delta-doped layers is highlighted in Chapter 5. Finally, the third part of this work discusses the implementation of boron delta -doped layers in Si homojunction bipolar transistors and FETs. Chapter 6 includes the fabrication of the first coupled delta-doped base layer Si BJT, the first p-type Si delta-doped layer MESFET, the first coupled delta -doped layer FET, and the first SiGe delta -FET.

  12. Solid-state Fermentation of Xylanase from Penicillium canescens 10-10c in a Multi-layer-packed Bed Reactor

    NASA Astrophysics Data System (ADS)

    Assamoi, Antoine A.; Destain, Jacqueline; Delvigne, Frank; Lognay, Georges; Thonart, Philippe

    Xylanase is produced by Penicillium canescens 10-10c from soya oil cake in static conditions using solid-state fermentation. The impact of several parameters such as the nature and the size of inoculum, bed-loading, and aeration is evaluated during the fermentation process. Mycelial inoculum gives more production than conidial inoculum. Increasing the quantity of inoculum enhances slightly xylanase production. Forced aeration induces more sporulation of strain and reduces xylanase production. However, forced moistened air improves the production compared to production obtained with forced dry air. In addition, increasing bed-loading reduces the specific xylanase production likely due to the incapacity of the Penicillium strain to grow deeply in the fermented soya oil cake mass. Thus, the best cultivation conditions involve mycelial inoculum form, a bed loading of 1-cm height and passive aeration. The maximum xylanase activity is obtained after 7 days of fermentation and attains 10,200 U/g of soya oil cake. These levels are higher than those presented in the literature and, therefore, show all the potentialities of this stock and this technique for the production of xylanase.

  13. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  14. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.

    PubMed

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  15. Effects of a GaSb buffer layer on an InGaAs overlayer grown on Ge(111) substrates: Strain, twin generation, and surface roughness

    NASA Astrophysics Data System (ADS)

    Kajikawa, Y.; Nishigaichi, M.; Tenma, S.; Kato, K.; Katsube, S.

    2018-04-01

    InGaAs layers were grown by molecular-beam epitaxy on nominal and vicinal Ge(111) substrates with inserting GaSb buffer layers. High-resolution X-ray diffraction using symmetric 333 and asymmetric 224 reflections was employed to analyze the crystallographic properties of the grown layers. By using the two reflections, we determined the lattice constants (the unit cell length a and the angle α between axes) of the grown layers with taking into account the rhombohedral distortion of the lattices of the grown layers. This allowed us the independent determination of the strain components (perpendicular and parallel components to the substrate surface, ε⊥ and ε//) and the composition x of the InxGa1-xAs layers by assuming the distortion coefficient D, which is defined as the ratio of ε⊥ against ε//. Furthermore, the twin ratios were determined for the GaSb and the InGaAs layers by comparing asymmetric 224 reflections from the twin domain with that from the normal domain of the layers. As a result, it has been shown that the twin ratio in the InGaAs layer can be decreased to be less than 0.1% by the use of the vicinal substrate together with annealing the GaSb buffer layer during the growth interruption before the InGaAs overgrowth.

  16. Salt reduction in sheeted dough: A successful technological approach.

    PubMed

    Diler, Guénaëlle; Le-Bail, Alain; Chevallier, Sylvie

    2016-10-01

    The challenge of reducing the salt content while maintaining shelf life, stability and acceptability of the products is major for the food industry. In the present study, we implemented processing adjustments to reduce salt content while maintaining the machinability and the saltiness perception of sheeted dough: the homogeneous distribution of a layer of encapsulated salt grains on the dough during the laminating process. During sheeting, for an imposed deformation of 0.67, the final strain remained unchanged around 0.50 for salt reduction below 50%, and then, increased significantly up to 0.53 for a dough without salt. This increase is, in fine, positive regarding the rolling process since the decrease of salt content induces less shrinkage of dough downstream, which is the main feature to be controlled in the process. Moreover, the final strain was negatively correlated to the resistance to extension measured with a texture analyzer, therefore providing a method to evaluate the machinability of the dough. From these results, a salt reduction of 25% was achieved by holding 50% of the salt in the dough recipe to maintain the dough properties and saving 25% as salt grains to create high-salted areas that would enhance the saltiness perception of the dough. The distributor mounted above the rollers of the mill proved to be able to distribute evenly salt grains at a calculated step of the rolling out process. An innovative method based on RX micro-tomography allowed to follow the salt dissolving and to demonstrate the capability of the coatings to delay the salt dissolving and consequently the diffusion of salt within the dough piece. Finally, a ranking test on the salted perception of different samples having either an even distribution of encapsulated salt grains, a single layer of salt grains or a homogeneous distribution of salt, demonstrated that increasing the saltiness perception in salt-reduced food product could be achieved by a technological approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A comparative density functional study on electrical properties of layered penta-graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhi Gen, E-mail: yuzg@ihpc.a-star.edu.sg; Zhang, Yong-Wei, E-mail: zhangyw@ihpc.a-star.edu.sg

    We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN andmore » ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.« less

  18. Impact of textural anisotropy on syn-kinematic partial melting of natural gneisses: an experimental approach.

    NASA Astrophysics Data System (ADS)

    Ganzhorn, Anne-Céline; Trap, Pierre; Arbaret, Laurent; Champallier, Rémi; Fauconnier, Julien; Labrousse, Loic; Prouteau, Gaëlle

    2015-04-01

    Partial melting of continental crust is a strong weakening process controlling its rheological behavior and ductile flow of orogens. This strength weakening due to partial melting is commonly constrained experimentally on synthetic starting material with derived rheological law. Such analog starting materials are preferentially used because of their well-constrained composition to test the impact of melt fraction, melt viscosity and melt distribution upon rheology. In nature, incipient melting appears in particular locations where mineral and water contents are favorable, leading to stromatic migmatites with foliation-parallel leucosomes. In addition, leucosomes are commonly located in dilatants structural sites like boudin-necks, in pressure shadows, or in fractures within more competent layers of migmatites. The compositional layering is an important parameter controlling melt flow and rheological behavior of migmatite but has not been tackled experimentally for natural starting material. In this contribution we performed in-situ deformation experiments on natural rock samples in order to test the effect of initial gneissic layering on melt distribution, melt flow and rheological response. In-situ deformation experiments using a Paterson apparatus were performed on two partially melted natural gneissic rocks, named NOP1 & PX28. NOP1, sampled in the Western Gneiss Region (Norway), is biotite-muscovite bearing gneiss with a week foliation and no gneissic layering. PX28, sampled from the Sioule Valley series (French Massif Central), is a paragneiss with a very well pronounced layering with quartz-feldspar-rich and biotite-muscovite-rich layers. Experiments were conducted under pure shear condition at axial strain rate varying from 5*10-6 to 10-3 s-1. The main stress component was maintained perpendicular to the main plane of anisotropy. Confining pressure was 3 kbar and temperature ranges were 750°C and 850-900°C for NOP1 and PX28, respectively. For the 750°C experiments NOP1 was previously hydrated at room pressure and temperature. According to melt fraction, deformation of partially molten gneiss induced different strain patterns. For low melt fraction, at 750°C, deformation within the initially isotropic gneiss NOP1 is localized along large scales shear-zones oriented at about 60° from main stress component σ1. In these zones quartz grains are broken and micas are sheared. Melt is present as thin film (≥20 µm) at muscovite-quartz grain boundaries and intrudes quartz aggregates as injections parallel to σ1. For higher melt fraction, at 850°C, deformation is homogeneously distributed. In the layered gneiss PX28, deformation is partitioned between mica-rich and quartz-rich layers. For low melt fraction, at 850°C, numerous conjugate shear-bands crosscut mica-rich layers. Melt is present around muscovite grains and intrudes quartz grains in the favor of fractures. For high melt fractions, at 900°C, melt assisted creep within mica-rich layers is responsible for boudinage of the quartz-feldspar rich layers. Melt-induced veining assists the transport of melt toward inter-boudin zones. Finite strain pattern and melt distribution after deformation of PX28 attest for appearance of strong pressure gradients leading to efficient melt flow. The subsequent melt redistribution strongly enhance strain partitioning and strength weakening, as shown by differential stress vs. strain graphs. Our experiments have successfully reproduced microstructures commonly observed in migmatitic gneisses like boudinage of less fertile layers. Comparison between non-layered and layered gneisses attest for strong influence of compositional anisotropies inherited from the protolith upon melt distribution and migmatite strength.

  19. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures.

    PubMed

    Christensen, Kyle; Davis, Brian; Jin, Yifei; Huang, Yong

    2018-08-01

    Additive manufacturing, or 3D printing, is a promising approach for the fabrication of biological structures for regenerative medicine applications using tissue-like materials such as hydrogels. Herein, inkjet printing is implemented as a model droplet-based 3D printing technology for which interfaces have been shown to form between printed lines within printed layers of hydrogel structures. Experimental samples with interfaces in two orientations are fabricated by inkjet printing and control samples with and without interfaces are fabricated by extrusion printing and casting, respectively. The formation of partial and full interfaces is modeled in terms of printing conditions and gelation parameters, and an approach to predicting the ratio of interfacial area to the total contact area between two adjacent lines is presented. Digital image correlation is used to determine strain distributions and identify regions of increased localized deformation for samples under uniaxial tension. Despite the presence of interfaces in inkjet-printed samples, strain distributions are found to be homogeneous regardless of interface orientation, which may be attributed to the multi-layer nature of samples. Conversely, single-layer extrusion-printed samples exhibit localized regions of increased deformation between printed lines, indicating delamination along interfaces. The effective stiffness, failure strength, and failure strain of inkjet-printed samples are found to be dependent on the orientation of interfaces within layers. Specifically, inkjet-printed samples in which tensile forces pull apart interfaces exhibit significantly decreased mechanical properties compared to cast samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Stress generated modifications of epitaxial ferroelectric SrTiO3 films on sapphire

    NASA Astrophysics Data System (ADS)

    Hollmann, E.; Schubert, J.; Kutzner, R.; Wördenweber, R.

    2009-06-01

    The effect of lattice-mismatch induced stress upon the crystallographic structure, strain, strain relaxation, and the generation of different types of defects in heteroepitaxially grown SrTiO3 films on CeO2 buffered sapphire is examined. Depending on the thickness of the SrTiO3 layer, characteristic changes in the structural perfection of the layers, their crystallographic orientation with respect to the substrate system, and their strain is observed. For thin films misfit dislocations partially compensate the stress in the SrTiO3 layer, whereas cracks develop in thicker SrTiO3 films. The cracks are orientated along two predominant crystallographic orientations of the sapphire. The structural modifications and the formation of misfit defects and cracks are explained in a model based on lattice misfit induced stress, on the one hand, and energy considerations taking into account the stress release due to crack formation and the energy necessary for the formation of new surfaces at the crack, on the other hand. The impact of lattice misfit is discussed in two steps, i.e., intrinsic and thermal induced misfits during heteroepitaxial film growth at a given temperature and the subsequent cooling of the sample, respectively. The comparison of the theoretical predictions and the experimental observations demonstrate that intrinsic mismatch and thermal mismatch have to be considered in order to explain strain dependent effects in complex heteroepitaxial layer systems such as induced ferroelectricity of SrTiO3 on sapphire.

  1. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    PubMed

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well as influence of microorganisms nature onto the interaction of between barrier layers and microorganisms.

  2. Ductile crustal flow in Europe's lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2011-12-01

    Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.

  3. Quantitative Differentiation of LV Myocardium with and without Layer-Specific Fibrosis Using MRI in Hypertrophic Cardiomyopathy and Layer-Specific Strain TTE Analysis.

    PubMed

    Funabashi, Nobusada; Takaoka, Hiroyuki; Ozawa, Koya; Kamata, Tomoko; Uehara, Masae; Komuro, Issei; Kobayashi, Yoshio

    2018-05-30

    To achieve further risk stratification in hypertrophic cardiomyopathy (HCM) patients, we localized and quantified layer-specific LVM fibrosis on MRI in HCM patients using regional layer-specific peak longitudinal strain (PLS) and peak circumferential strain (PCS) in LV myocardium (LVM) on speckle tracking transthoracic echocardiography (TTE). A total of 18 HCM patients (14 males; 58 ± 17 years) underwent 1.5T-MRI and TTE. PLS and PCS in each layer of the LVM (endocardium, epicardium, and whole-layer myocardium) were calculated for 17 AHA-defined lesions. MRI assessment showed that fibrosis was classified as endocardial, epicardial, or whole-layer (= either or both of these). Regional PLS was smaller in fibrotic endocardial lesions than in non-fibrotic endocardial lesions (P = 0.004). To detect LV endocardial lesions with fibrosis, ROC curves of regional PLS revealed an area under the curve (AUC) of 0.609 and a best cut-off point of 13.5%, with sensitivity of 65.3% and specificity of 54.3%. Regional PLS was also smaller in fibrotic epicardial lesions than in non-fibrotic epicardial lesions (P < 0.001). To detect LV epicardial lesions with fibrosis, ROC curves of PLS revealed an AUC of 0.684 and a best cut-off point of 9.5%, with sensitivity of 73.5% and specificity of 55.5%. Using whole-layer myocardium analysis, PLS was smaller in fibrotic lesions than in non-fibrotic lesions (P < 0.001). To detect whole-layer LV lesions with fibrosis, ROC curves of regional PLS revealed an AUC of 0.674 and a best cut-off point of 12.5%, with sensitivity of 79.0% and specificity of 50.7%. There were no significant differences in PCS of LV myocardium (endocardium, epicardium, and whole-layer) between fibrotic and non-fibrotic lesions. Quantitative regional PLS but not PCS in LV endocardium, epicardium, and whole-layer myocardium provides useful non-invasive information for layer-specific localization of fibrosis in HCM patients.

  4. Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins.

    PubMed

    Malamud, Mariano; Carasi, Paula; Bronsoms, Sílvia; Trejo, Sebastián A; Serradell, María de Los Angeles

    2017-04-01

    The S-layer is a proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea, and it could be involved in cell recognition of microbes among other several distinct functions. In this work, both proteomic and genomic approaches were used to gain knowledge about the sequences of the S-layer protein (SLPs) encoding genes expressed by six aggregative and sixteen non-aggregative strains of potentially probiotic Lactobacillus kefiri. Peptide mass fingerprint (PMF) analysis confirmed the identity of SLPs extracted from L. kefiri, and based on the homology with phylogenetically related species, primers located outside and inside the SLP-genes were employed to amplify genomic DNA. The O-glycosylation site SASSAS was found in all L. kefiri SLPs. Ten strains were selected for sequencing of the complete genes. The total length of the mature proteins varies from 492 to 576 amino acids, and all SLPs have a calculated pI between 9.37 and 9.60. The N-terminal region is relatively conserved and shows a high percentage of positively charged amino acids. Major differences among strains are found in the C-terminal region. Different groups could be distinguished regarding the mature SLPs and the similarities observed in the PMF spectra. Interestingly, SLPs of the aggregative strains are 100% homologous, although these strains were isolated from different kefir grains. This knowledge provides relevant data for better understanding of the mechanisms involved in SLPs functionality and could contribute to the development of products of biotechnological interest from potentially probiotic bacteria.

  5. Probing the interaction of noble gases with pristine and nitrogen-doped graphene through Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cunha, Renato; Perea-López, Néstor; Elías, Ana Laura; Fujisawa, Kazunori; Carozo, Victor; Feng, Simin; Lv, Ruitao; dos Santos, Maria Cristina; Terrones, Mauricio; Araujo, Paulo T.

    2018-05-01

    The interactions of adsorbates with graphene have received increasing attention due to its importance in the development of applications involving graphene-based coatings. Here, we present a study of the adsorption of noble gases on pristine and nitrogen-doped graphene. Single-layer graphene samples were synthesized by chemical vapor deposition (CVD) and transferred to transmission electron microscopy (TEM) grids. Several noble gases were allowed to adsorb on the suspended graphene substrate at very low temperatures. Raman spectra show distinct frequency blue shifts in both the 2D and G bands, which are induced by gas adsorption onto high quality single layer graphene (1LG). These shifts, which we associate with compressive biaxial strain in the graphene layers induced by the noble gases, are negligible for nitrogen-doped graphene. Additionally, a thermal depinning transition, which is related to the desorption of a noble gas layer from the graphene surface at low temperatures (ranging from 20 to 35 K), was also observed at different transition temperatures for different noble gases. These transition temperatures were found to be 25 K for argon and 35 K for xenon. Moreover, we were able to obtain values for the compressive biaxial strain in graphene induced by the adsorbed layer of noble gases, using Raman spectroscopy. Ab initio calculations confirmed the correlation between the noble gas-induced strain and the changes in the Raman features observed.

  6. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications.

    PubMed

    Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei

    2016-01-01

    The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

  7. Distributed parameter modeling to prevent charge cancellation for discrete thickness piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Krishnasamy, M.; Qian, Feng; Zuo, Lei; Lenka, T. R.

    2018-03-01

    The charge cancellation due to the change of strain along single continuous piezoelectric layer can remarkably affect the performance of a cantilever based harvester. In this paper, analytical models using distributed parameters are developed with some extent of averting the charge cancellation in cantilever piezoelectric transducer where the piezoelectric layers are segmented at strain nodes of concerned vibration mode. The electrode of piezoelectric segments are parallelly connected with a single external resistive load in the 1st model (Model 1). While each bimorph piezoelectric layers are connected in parallel to a resistor to form an independent circuit in the 2nd model (Model 2). The analytical expressions of the closed-form electromechanical coupling responses in frequency domain under harmonic base excitation are derived based on the Euler-Bernoulli beam assumption for both models. The developed analytical models are validated by COMSOL and experimental results. The results demonstrate that the energy harvesting performance of the developed segmented piezoelectric layer models is better than the traditional model of continuous piezoelectric layer.

  8. Extractable Bacterial Surface Proteins in Probiotic–Host Interaction

    PubMed Central

    do Carmo, Fillipe L. R.; Rabah, Houem; De Oliveira Carvalho, Rodrigo D.; Gaucher, Floriane; Cordeiro, Barbara F.; da Silva, Sara H.; Le Loir, Yves; Azevedo, Vasco; Jan, Gwénaël

    2018-01-01

    Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp), this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs), and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines. PMID:29670603

  9. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard Jr, Lawrence Frederick

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize themore » binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION« less

  10. Design and development of SiGe based near-infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Zeller, John W.; Puri, Yash R.; Sood, Ashok K.; McMahon, Shane; Efsthadiatis, Harry; Haldar, Pradeep; Dhar, Nibir K.

    2014-10-01

    Near-infrared (NIR) sensors operating at room temperatures are critical for a variety of commercial and military applications including detecting mortar fire and muzzle flashes. SiGe technology offers a low-cost alternative to conventional IR sensor technologies such as InGaAs, InSb, and HgCdTe for developing NIR micro-sensors that will not require any cooling and can operate with high bandwidths and comparatively low dark currents. Since Ge has a larger thermal expansion coefficient than Si, tensile strain may be incorporated into detector devices during the growth process, enabling an extended operating wavelength range above 1600 nm. SiGe based pin photodetectors have advantages of high stability, low noise, and high responsivity compared to metal-semiconductor-metal (MSM) devices. We have developed a process flow and are fabricating SiGe detector devices on 12" (300 mm) silicon wafers in order to take advantage of high throughput, large-area leading-edge silicon based CMOS technology that provides small feature sizes with associated device cost/density scaling advantages. The fabrication of the detector devices is facilitated by a two-step growth process incorporating initial low temperature growth of Ge/SiGe to form a thin strain-relaxed layer, followed by high temperature growth to deposit a thicker absorbing film, and subsequent high temperature anneal. This growth process is designed to effectively reduce dark current and enhance detector performance by reducing the number of defects and threading dislocations which form recombination centers during the growth process. Various characterization techniques have been employed to determine the properties of the epitaxially deposited Ge/SiGe layers, and the corresponding results are discussed.

  11. Viscoelastic Vibration Dampers for Turbomachine Blades

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2003-01-01

    Simple viscoelastic dampers have been invented for use on the root attachments of turbomachine blades. These dampers suppress bending- and torsion-mode blade vibrations, which are excited by unsteady aerodynamic forces during operation. In suppressing vibrations, these dampers reduce fatigue (thereby prolonging blade lifetimes) while reducing noise. These dampers can be installed in new turbomachines or in previously constructed turbomachines, without need for structural modifications. Moreover, because these dampers are not exposed to flows, they do not affect the aerodynamic performances of turbomachines. Figure 1 depicts a basic turbomachine rotor, which includes multiple blades affixed to a hub by means of dovetail root attachments. Prior to mounting of the blades, thin layers of a viscoelastic material are applied to selected areas of the blade roots. Once the blades have been installed in the hub and the rotor is set into rotation, centrifugal force compresses these layers between the mating load-bearing surfaces of the hub and the blade root. The layers of viscoelastic material provide load paths through which the vibration energy of the blade can be dissipated. The viscoelasticity of the material converts mechanical vibration energy into shear strain energy and then from shear strain energy to heat. Of the viscoelastic materials that have been considered thus far for this application, the one of choice is a commercial polyurethane that is available in tape form, coated on one side with an adhesive that facilitates bonding to blade roots. The thickness of the tape can be chosen to suit the specific application. The typical thickness of 0.012 in. (.0.3 mm) is small enough that the tape can fit in the clearance between the mating blade-root and hub surfaces in a typical turbomachine. In an experiment, a blade was mounted in a test fixture designed to simulate the blade-end conditions that prevail in a turbocompressor. Vibrations were excited in the blade by use of an impact hammer, and damping of the vibrations was measured by use of a dynamic signal analyzer. Tests were performed without and with viscoelastic dampers installed in the dovetail root attachment. The results of the measurements, some of which are presented in Figure 2, show that the viscoelastic dampers greatly increased the rate of damping of vibrations. Accordingly, dynamic stresses on rotor blades were significantly reduced, as shown in Figure 2.

  12. Promotion of Intestinal Peristalsis by Bifidobacterium spp. Capable of Hydrolysing Sennosides in Mice

    PubMed Central

    Matsumoto, Mitsuharu; Ishige, Atsushi; Yazawa, Yuka; Kondo, Manami; Muramatsu, Koji; Watanabe, Kenji

    2012-01-01

    Background While there are a variety of identifiable causes of constipation, even idiopathic constipation has different possible mechanisms. Sennosides, the main laxative constituents of Daio, an ancient Kampo medicine, are prodrugs that are converted to an active principle, rheinanthrone, by intestinal microbiota. In this study, we aimed to determine the sennoside hydrolysis ability of lactic acid bacterial strains and bifidobacteria in the intestine and to investigate their effect on intestinal peristalsis in mice. Methodology/Principal Findings A total of 88 lactic acid bacterial strains and 47 bifidobacterial strains were evaluated for their ability to hydrolyze sennosides. Our results revealed that 4 strains, all belonging to the genus Bifidobacterium, had strong sennoside hydrolysis ability, exhibiting a decrease of >70% of sennoside content. By thin-layer chromatography analysis, rheinanthrone was detected in the medium cultured with B. pseudocatenulatum LKM10070 and B. animalis subsp. lactis LKM512. The fecal sennoside contents significantly (P<0.001) decreased upon oral administration of these strains as compared with the control. Intestinal peristalsis activity was measured by the moved distance of the charcoal powder administered orally. The distance travelled by the charcoal powder in LKM512-treated mice was significantly longer than that of control (P<0.05). Intestinal microbiota were analysed by real-time PCR and terminal-restriction fragment length polymorphism. The diversity of the intestinal microbiota was reduced by kanamycin treatment and the diversity was not recovered by LKM512 treatment. Conclusion/Significance We demonstrated that intestinal peristalsis was promoted by rheinanthrone produced by hydrolysis of sennoside by strain LKM512 and LKM10070. PMID:22384059

  13. Promotion of intestinal peristalsis by Bifidobacterium spp. capable of hydrolysing sennosides in mice.

    PubMed

    Matsumoto, Mitsuharu; Ishige, Atsushi; Yazawa, Yuka; Kondo, Manami; Muramatsu, Koji; Watanabe, Kenji

    2012-01-01

    While there are a variety of identifiable causes of constipation, even idiopathic constipation has different possible mechanisms. Sennosides, the main laxative constituents of Daio, an ancient Kampo medicine, are prodrugs that are converted to an active principle, rheinanthrone, by intestinal microbiota. In this study, we aimed to determine the sennoside hydrolysis ability of lactic acid bacterial strains and bifidobacteria in the intestine and to investigate their effect on intestinal peristalsis in mice. A total of 88 lactic acid bacterial strains and 47 bifidobacterial strains were evaluated for their ability to hydrolyze sennosides. Our results revealed that 4 strains, all belonging to the genus Bifidobacterium, had strong sennoside hydrolysis ability, exhibiting a decrease of >70% of sennoside content. By thin-layer chromatography analysis, rheinanthrone was detected in the medium cultured with B. pseudocatenulatum LKM10070 and B. animalis subsp. lactis LKM512. The fecal sennoside contents significantly (P<0.001) decreased upon oral administration of these strains as compared with the control. Intestinal peristalsis activity was measured by the moved distance of the charcoal powder administered orally. The distance travelled by the charcoal powder in LKM512-treated mice was significantly longer than that of control (P<0.05). Intestinal microbiota were analysed by real-time PCR and terminal-restriction fragment length polymorphism. The diversity of the intestinal microbiota was reduced by kanamycin treatment and the diversity was not recovered by LKM512 treatment. We demonstrated that intestinal peristalsis was promoted by rheinanthrone produced by hydrolysis of sennoside by strain LKM512 and LKM10070.

  14. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.

    PubMed

    Zhao, F; Shi, R; Zhao, J; Li, G; Bai, X; Han, S; Zhang, Y

    2015-02-01

    The ex situ application of rhamnolipid to enhance oil recovery is costly and complex in terms of rhamnolipid production and transportation, while in situ production of rhamnolipid is restricted by the oxygen-deficient environments of oil reservoirs. To overcome the oxygen-limiting conditions and to circumvent the complex regulation of rhamnolipid biosynthesis in Pseudomonas aeruginosa, an engineered strain Pseudomonas stutzeri Rhl was constructed for heterologous production of rhamnolipid under anaerobic conditions. The rhlABRI genes for rhamnolipid biosynthesis were cloned into a facultative anaerobic strain Ps. stutzeri DQ1 to construct the engineered strain Rhl. Anaerobic production of rhamnolipid was confirmed by thin layer chromatography and Fourier transform infrared analysis. Rhamnolipid product reduced the air-water surface tension to 30.3 mN m(-1) and the oil-water interfacial tension to 0.169 mN m(-1). Rhl produced rhamnolipid of 1.61 g l(-1) using glycerol as the carbon source. Rhl anaerobic culture emulsified crude oil up to EI24 ≈ 74. An extra 9.8% of original crude oil was displaced by Rhl in the core flooding test. Strain Rhl achieved anaerobic production of rhamnolipid and worked well for enhanced oil recovery in the core flooding model. The rhamnolipid produced by Rhl was similar to that of the donor strain SQ6. This is the first study to achieve anaerobic and heterologous production of rhamnolipid. Results demonstrated the potential feasibility of Rhl as a promising strain to enhance oil recovery through anaerobic production of rhamnolipid. © 2014 The Society for Applied Microbiology.

  15. Characterization of SiGe/Ge heterostructures and graded layers using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Croke, E. T.; Wang, K. L.; Heyd, A. R.; Alterovitz, S. A.; Lee, C. H.

    1996-01-01

    Variable angle spectroscopic ellipsometry (VASE) has been used to characterize Si(x)Ge(1-x)/Ge superlattices (SLs) grown on Ge substrates and thick Si(x)Ge(1-x)/Ge heterostructures grown on Si substrates. Our VASE analysis yielded the thicknesses and alloy compositions of all layers within the optical penetration depth of the surface. In addition, strain effects were observed in the VASE results for layers under both compressive and tensile strain. Results for the SL structures were found to be in close agreement with high resolution x-ray diffraction measurements made on the same samples. The VASE analysis has been upgraded to characterize linearly graded Si(x)Ge(1-x) buffer layers. The algorithm has been used to determine the total thickness of the buffer layer along with the start and end alloy composition by breaking the total thickness into many (typically more than 20) equal layers. Our ellipsometric results for 1 (mu)m buffer layers graded in the ranges 0.7 less than or = x less than or = 1.0, and 0.5 less than or = x less than or = 1.0 are presented, and compare favorably with the nominal values.

  16. Validation of Noninvasive In Vivo Compound Ultrasound Strain Imaging Using Histologic Plaque Vulnerability Features.

    PubMed

    Hansen, Hendrik H G; de Borst, Gert Jan; Bots, Michiel L; Moll, Frans L; Pasterkamp, Gerard; de Korte, Chris L

    2016-11-01

    Carotid plaque rupture is a major cause of stroke. Key issue for risk stratification is early identification of rupture-prone plaques. A noninvasive technique, compound ultrasound strain imaging, was developed providing high-resolution radial deformation/strain images of atherosclerotic plaques. This study aims at in vivo validation of compound ultrasound strain imaging in patients by relating the measured strains to typical features of vulnerable plaques derived from histology after carotid endarterectomy. Strains were measured in 34 severely stenotic (>70%) carotid arteries at the culprit lesion site within 48 hours before carotid endarterectomy. In all cases, the lumen-wall boundary was identifiable on B-mode ultrasound, and the imaged cross-section did not move out of the imaging plane from systole to diastole. After endarterectomy, the plaques were processed using a validated histology analysis technique. Locally elevated strain values were observed in regions containing predominantly components related to plaque vulnerability, whereas lower values were observed in fibrous, collagen-rich plaques. The median strain of the inner plaque layer (1 mm thickness) was significantly higher (P<0.01) for (fibro)atheromatous (n=20, strain=0.27%) than that for fibrous plaques (n=14, strain=-0.75%). Also, a significantly larger area percentage of the inner layer revealed strains above 0.5% for (fibro)atheromatous (45.30%) compared with fibrous plaques (31.59%). (Fibro)atheromatous plaques were detected with a sensitivity, specificity, positive predictive value, and negative predictive value of 75%, 86%, 88%, and 71%, respectively. Strain did not significantly correlate with fibrous cap thickness, smooth muscle cell, or macrophage concentration. Compound ultrasound strain imaging allows differentiating (fibro)atheromatous from fibrous carotid artery plaques. © 2016 American Heart Association, Inc.

  17. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.

  18. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a well suited electrode material that is both conducting, and full strained on the MgAl2O4 substrate is quite rare. We will supply some answers to this unique problem. XRD results show that Ni1-xAlxO1+delta (x=0.3, 0.4 & 0.5) film, although highly mixed with Al2O3, still takes rock-salt structure and is grown very well on the spinel MgAl 2O4 substrate, with perfect crystallization and a smooth surface. Ni0.7Al0.3O1+ delta and Ni 0.6Al0.4O1+ delta are good buffer layers for perovskite film on spinel MgAl2O4 substrate. Ni 0.5Al0.5O1+ delta could also be a good buffer layer. The structural transition from rock-salt to spinel was found at x=0.67. Tensile strain effects from thermal expansion difference of BiFeO3 films were found. Thermal expansion difference caused strain does not change the ferroelectric property greatly, due to film relaxation. BiFeO3 film with NAO buffer exhibit much larger strain.

  19. Assessment of Fatigue Resistance of Aluminide Layers on MAR 247 Nickel Super Alloy with Full-Field Optical Strain Measurements

    NASA Astrophysics Data System (ADS)

    Kukla, D.; Brynk, T.; Pakieła, Z.

    2017-08-01

    This work presents the results of fatigue tests of MAR 247 alloy flat specimens with aluminides layers of 20 or 40 µm thickness obtained in CVD process. Fatigue test was conducted at amplitude equal to half of maximum load and ranging between 300 and 650 MPa (stress asymmetry ratio R = 0, frequency f = 20 Hz). Additionally, 4 of the tests, characterized by the highest amplitude, were accompanied with non-contact strain field measurements by means of electronic speckle pattern interferometry and digital image correlation. Results of these measurements allowed to localize the areas of deformation concentration identified as the damage points of the surface layer or advanced crack presence in core material. Identification and observation of the development of deformation in localization areas allowed to assess fatigue-related phenomena in both layer and substrate materials.

  20. Sensitivity and ex vivo validation of finite element models of the domestic pig cranium

    PubMed Central

    Bright, Jen A; Rayfield, Emily J

    2011-01-01

    A finite element (FE) validation and sensitivity study was undertaken on a modern domestic pig cranium. Bone strain data were collected ex vivo from strain gauges, and compared with results from specimen-specific FE models. An isotropic, homogeneous model was created, then input parameters were altered to investigate model sensitivity. Heterogeneous, isotropic models investigated the effects of a constant-thickness, stiffer outer layer (representing cortical bone) atop a more compliant interior (representing cancellous bone). Loading direction and placement of strain gauges were also varied, and the use of 2D membrane elements at strain gauge locations as a method of projecting 3D model strains into the plane of the gauge was investigated. The models correctly estimate the loading conditions of the experiment, yet at some locations fail to reproduce correct principal strain magnitudes, and hence strain ratios. Principal strain orientations are predicted well. The initial model was too stiff by approximately an order of magnitude. Introducing a compliant interior reported strain magnitudes more similar to the ex vivo results without notably affecting strain orientations, ratios or contour patterns, suggesting that this simple heterogeneity was the equivalent of reducing the overall stiffness of the model. Models were generally insensitive to moderate changes in loading direction or strain gauge placement, except in the squamosal portion of the zygomatic arch. The use of membrane elements made negligible differences to the reported strains. The models therefore seem most sensitive to changes in material properties, and suggest that failure to model local heterogeneity in material properties and structure of the bone may be responsible for discrepancies between the experimental and model results. This is partially attributable to a lack of resolution in the CT scans from which the model was built, and partially due to an absence of detailed material properties data for pig cranial bone. Thus, caution is advised when using FE models to estimate absolute numerical values of breaking stress and bite force unless detailed input parameters are available. However, if the objective is to compare relative differences between models, the fact that the strain environment is replicated well means that such investigations can be robust. PMID:21718316

  1. Quality-enhanced In{sub 0.3}Ga{sub 0.7}As film grown on GaAs substrate with an ultrathin amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fangliang; Li, Guoqiang, E-mail: msgli@scut.edu.cn

    2014-01-27

    Using low-temperature molecular beam epitaxy, amorphous In{sub 0.6}Ga{sub 0.4}As layers have been grown on GaAs substrates to act as buffer layers for the subsequent epitaxial growth of In{sub 0.3}Ga{sub 0.7}As films. It is revealed that the crystallinity of as-grown In{sub 0.3}Ga{sub 0.7}As films is strongly affected by the thickness of the large-mismatched amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer. Given an optimized thickness of 2 nm, this amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer can efficiently release the misfit strain between the In{sub 0.3}Ga{sub 0.7}As epi-layer and the GaAs substrate, trap the threading and misfit dislocations from propagating to the following In{sub 0.3}Ga{submore » 0.7}As epi-layer, and reduce the surface fluctuation of the as-grown In{sub 0.3}Ga{sub 0.7}As, leading to a high-quality In{sub 0.3}Ga{sub 0.7}As film with competitive crystallinity to that grown on GaAs substrate using compositionally graded In{sub x}Ga{sub 1-x}As metamorphic buffer layers. Considering the complexity of the application of the conventional In{sub x}Ga{sub 1-x}As graded buffer layers, this work demonstrates a much simpler approach to achieve high-quality In{sub 0.3}Ga{sub 0.7}As film on GaAs substrate and, therefore, is of huge potential for the InGaAs-based high-efficiency photovoltaic industry.« less

  2. Structural strength assessment of the reconstructed road structure in terms of the loading time and yield criterion

    NASA Astrophysics Data System (ADS)

    Mazurek, Grzegorz; Iwański, Marek

    2018-05-01

    This article reports the results of numerical simulations of the stress-strain states in the rebuilt road structure compared to the solutions contained in the Polish Catalogue, with the true characteristics of the layer materials taken into account. In the case analysed, a cold-recycled base layer with foamed bitumen as a recycling agent was used. The presented analysis is complementary to the mandatory in Poland procedure of mechanistic pavement design based on a linear elastic model. The temperature distribution in the road structure was analysed at the reference temperature of 40°C on the asphalt layer surface. The loading time was included in the computer simulations through the use of the classic generalized Maxwell model and thus the stiffness-time history of the layers had to be determined. For this purpose, the dynamic modulus E* tests of the loading time frequency from 0.1 Hz to 20 Hz were carried out, and the yield point was modelled using the Coulomb-Mohr failure criterion calculated on the basis of triaxial compression tests. The analytical solution to the problem was found with ABAQUS. The results demonstrate that the high temperature of asphalt layers and long loading time noticeably reduces the stiffness modulus in those layers. That reduction changes the principal stress levels, which significantly influences the shear stress both in the recycled base layer and in the subgrade soil. Should the yield point be exceeded rapidly in the recycled layer, the horizontal stresses in the asphalt layers will increase and adversely affect the durability of the reconstructed road pavement structure, especially in the zones of slow heavy vehicle traffic.

  3. Measurement of strain distribution in bonded joints by fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Guemes, J. Alfredo; Diaz-Carrillo, Sebastian; Menendez, Jose M.

    1998-07-01

    Due to the small dimensions of the adhesive layer, the high non-uniformity of the strain field and the non linear elastic behavior of the adhesive material, the strain distribution at an adhesive joint can be predicted by FEM, but can not be experimentally obtained with classical approaches; only non standard procedures like Moire interferometry, or special artifacts like KGR extensometers may afford some insights on the behavior of the adhesive. Due to their small size, ensuring low perturbation of the strain field, and their innate ability to measure strain and strain gradient along the sensor, fiber Bragg gratings offer a good opportunity to solve this problem, and it is a good example of situations that may benefit from these new sensors. Fiber Bragg gratings may be placed or at the interface, within the adhesive layer, or embedded at the adherents, if these were made of composite material. Tests may be run at different temperatures, changing the adhesive characteristics from brittle to pseudoplastic without additional difficulties. When loading the joint, the strain field is obtained by analyzing the distorted spectrum of the reflected light pulse; the algorithm for doing it has already been published. A comparison with theoretical results is done, and the validity and utility of these sensors for this and similar applications is demonstrated.

  4. Verification of finite element analysis of fixed partial denture with in vitro electronic strain measurement.

    PubMed

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2016-01-01

    The purpose of the study was to verify the finite element analysis model of three-unite fixed partial denture with in vitro electronic strain analysis and analyze clinical situation with the verified model. First, strain gauges were attached to the critical areas of a three-unit fixed partial denture. Strain values were measured under 300 N load perpendicular to the occlusal plane. Secondly, a three-dimensional finite element model in accordance with the electronic strain analysis experiment was constructed from the scanning data. And the strain values obtained by finite element analysis and in vitro measurements were compared. Finally, the clinical destruction of the fixed partial denture was evaluated with the verified finite element analysis model. There was a mutual agreement and consistency between the finite element analysis results and experimental data. The finite element analysis revealed that failure will occur in the veneer layer on buccal surface of the connector under occlusal force of 570 N. The results indicate that the electronic strain analysis is an appropriate and cost saving method to verify the finite element model. The veneer layer on buccal surface of the connector is the weakest area in the fixed partial denture. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  5. Effects of strain and thickness on the electronic and optical behaviors of two-dimensional hexagonal gallium nitride

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2017-06-01

    The full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory has been used to study effects of strain and thickness on the electronic and optical properties of two-dimensional GaN. The band gap of monolayer and bilayer GaN under compressive in-plane strain change from indirect to direct with bond length shortening. Also, the semiconductor to semimetal transition occurs for monolayer and bilayer GaN under in-plane tensile strain with bond length elongation. It is found that the tensile and compressive strains cause the red and blue shifts in the optical spectra, respectively, for both monolayer and bilayer GaN. Applying the perpendicular strain on the bilayer GaN by decreasing the inter layer distance leads to the shift of valence band maximum towards the Γ point in the band structure and shift of peak positions and variation of peak intensities in ε2(ω) spectrum. The results show that the n-layer GaN has an indirect band gap for n < 16. The results suggest that monolayer and multilayer GaN are good candidates for application in optoelectronics and flexible electronics.

  6. Modeling lateral circulation and its influence on the along-channel flow in a branched estuary

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; He, Qing; Shen, Jian

    2018-02-01

    A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.

  7. Strained GaSb/AlAsSb Quantum Wells for p-Channel Field-Effect Transistors

    DTIC Science & Technology

    2008-01-01

    Available online 18 October 2008 PACS: 72.80.Ey 73.61.Ey 81.05.Ea 85.30.Tv Keywords: A3. Molecular beam epitaxy A3. Quantum wells B2. Semiconducting III–V...were grown by molecular beam epitaxy on GaAs substrates. The buffer layer and barrier layers consisted of relaxed AlAsxSb1x. The composition of the...composition in order to control the strain in the GaSb quantum well. The heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi

  8. Applications of 4-state nanomagnetic logic using multiferroic nanomagnets possessing biaxial magnetocrystalline anisotropy and experiments on 2-state multiferroic nanomagnetic logic

    NASA Astrophysics Data System (ADS)

    D'Souza, Noel Michael

    Nanomagnetic logic, incorporating logic bits in the magnetization orientations of single-domain nanomagnets, has garnered attention as an alternative to transistor-based logic due to its non-volatility and unprecedented energy-efficiency. The energy efficiency of this scheme is determined by the method used to flip the magnetization orientations of the nanomagnets in response to one or more inputs and produce the desired output. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque inhibit the promised energy-efficiency. Another technique offering superior energy efficiency, "straintronics", involves the application of a voltage to a piezoelectric layer to generate a strain which is transferred to an elastically coupled magnetrostrictive layer, causing magnetization rotation. The functionality of this scheme can be enhanced further by introducing magnetocrystalline anisotropy in the magnetostrictive layer, thereby generating four stable magnetization states (instead of the two stable directions produced by shape anisotropy in ellipsoidal nanomagnets). Numerical simulations were performed to implement a low-power universal logic gate (NOR) using such 4-state magnetostrictive/piezoelectric nanomagnets (Ni/PZT) by clocking the piezoelectric layer with a small electrostatic potential (˜0.2 V) to switch the magnetization of the magnetic layer. Unidirectional and reliable logic propagation in this system was also demonstrated theoretically. Besides doubling the logic density (4-state versus 2-state) for logic applications, these four-state nanomagnets can be exploited for higher order applications such as image reconstruction and recognition in the presence of noise, associative memory and neuromorphic computing. Experimental work in strain-based switching has been limited to magnets that are multi-domain or magnets where strain moves domain walls. In this work, we also demonstrate strain-based switching in 2-state single-domain ellipsoidal magnetostrictive nanomagnets of lateral dimensions ˜200 nm fabricated on a piezoelectric substrate (PMN-PT) and studied using Magnetic Force Microscopy (MFM). A nanomagnetic Boolean NOT gate and unidirectional bit information propagation through a finite chain of dipole-coupled nanomagnets are also shown through strain-based "clocking". This is the first experimental demonstration of strain-based switching in nanomagnets and clocking of nanomagnetic logic (Boolean NOT gate), as well as logic propagation in an array of nanomagnets.

  9. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    NASA Astrophysics Data System (ADS)

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  10. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment.

    PubMed

    Orgad, Oded; Oren, Yoram; Walker, Sharon L; Herzberg, Moshe

    2011-08-01

    Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment. © 2011 Taylor & Francis

  11. Growth and characterization of In1-xGaxAs/InAs0.65Sb0.35 strained layer superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Ariyawansa, G.; Duran, J. M.; Reyner, C. J.; Steenbergen, E. H.; Yoon, N.; Wasserman, D.; Scheihing, J. E.

    2017-02-01

    Type-II strained layer superlattices (SLS) are an active research topic in the infrared detector community and applications for SLS detectors continue to grow. SLS detector technology has already reached the commercial market due to improvements in material quality, device design, and device fabrication. Despite this progress, the optimal superlattice design has not been established, and at various times has been believed to be InAs/GaSb, InAs/InGaSb, or InAs/InAsSb. Building on these, we investigate the properties of a new mid-wave infrared SLS material: InGaAs/InAsSb SLS. The ternary InGaAs/InAsSb SLS has three main advantages over other SLS designs: greater support for strain compensation, enhanced absorption due to increased electron-hole wavefunction overlap, and improved vertical hole mobility due to reduced hole effective mass. Here, we compare three ternary SLSs, with approximately the same bandgap (0.240 eV at 150 K), comprised of Ga fractions of 5%, 10%, and 20% to a reference sample with 0% Ga. Enhanced absorption is both theoretically predicted and experimentally realized. Furthermore, the characteristics of ternary SLS infrared detectors based on an nBn architecture are reported and exhibit nearly state-of-the-art dark current performance with minimal growth optimization. We report standard material and device characterization information, including dark current and external quantum efficiency, and provide further analysis that indicates improved quantum efficiency and vertical hole mobility. Finally, a 320×256 focal plane array built based on the In0.8Ga0.2As/InAs0.65Sb0.35 SLS design is demonstrated with promising performance.

  12. Protective Mechanisms of Respiratory Tract Streptococci against Streptococcus pyogenes Biofilm Formation and Epithelial Cell Infection

    PubMed Central

    Fiedler, Tomas; Riani, Catur; Koczan, Dirk; Standar, Kerstin

    2013-01-01

    Streptococcus pyogenes (group A streptococci [GAS]) encounter many streptococcal species of the physiological microbial biome when entering the upper respiratory tract of humans, leading to the question how GAS interact with these bacteria in order to establish themselves at this anatomic site and initiate infection. Here we show that S. oralis and S. salivarius in direct contact assays inhibit growth of GAS in a strain-specific manner and that S. salivarius, most likely via bacteriocin secretion, also exerts this effect in transwell experiments. Utilizing scanning electron microscopy documentation, we identified the tested strains as potent biofilm producers except for GAS M49. In mixed-species biofilms, S. salivarius dominated the GAS strains, while S. oralis acted as initial colonizer, building the bottom layer in mixed biofilms and thereby allowing even GAS M49 to form substantial biofilms on top. With the exception of S. oralis, artificial saliva reduced single-species biofilms and allowed GAS to dominate in mixed biofilms, although the overall two-layer structure was unchanged. When covered by S. oralis and S. salivarius biofilms, epithelial cells were protected from GAS adherence, internalization, and cytotoxic effects. Apparently, these species can have probiotic effects. The use of Affymetrix array technology to assess HEp-2 cell transcription levels revealed modest changes after exposure to S. oralis and S. salivarius biofilms which could explain some of the protective effects against GAS attack. In summary, our study revealed a protection effect of respiratory tract bacteria against an important airway pathogen and allowed a first in vitro insight into local environmental processes after GAS enter the respiratory tract. PMID:23241973

  13. DFT calculations of strain and interface effects on electronic structures and magnetic properties of L10-FePt/Ag heterojunction of GMR applications

    NASA Astrophysics Data System (ADS)

    Pramchu, Sittichain; Jaroenjittichai, Atchara Punya; Laosiritaworn, Yongyut

    2018-03-01

    In this work, density functional theory (DFT) was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001)/Ag(001), that is, interface between Fe and Ag layers (Fe/Ag) and between Pt and Ag layers (Pt/Ag), were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of "interfacial" Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS) analysis suggests that interaction between Fe (Pt) and Ag near Fe/Ag (Pt/Ag) interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR) ratio of potential GMR-based spintronic devices.

  14. Patterns of folding and fold interference in oblique contraction of layered rocks of the inverted Cobar Basin, Australia

    NASA Astrophysics Data System (ADS)

    Smith, J. V.; Marshall, B.

    1992-12-01

    The inverted Cobar Basin, within the Lachlan Fold Belt of New South Wales, Australia, comprises a mid-Palaeozoic cover sequence, originally deposited in a NNW-trending basin. The pattern of F 1 folding in the layered cover rocks changes from east to west; from tight well-cleaved folds parallel to the NNW-trending basin margin on the east, to open poorly cleaved en echelon folds at about 35° to the margin, further to the west. The change in fold trend and strain intensity has been repeatedly ascribed to the differing behaviour of discrete zones, decoupled across a north-trending strike-slip fault boundary. New field data show that the changes in orientation and strain intensity of F 1 structures are progressively developed, that an abrupt boundary between discrete zones cannot be substantiated, and that interpretations involving decoupled blocks are not supported by the evidence. Conversely, the data require coherent behaviour across the basin, such that the overall pattern of F 1 folding must be explained by strain compatible processes. This new interpretation of the F 1 deformation pattern has been modelled and quantitatively analysed. Theoretical predictions of the orientation of structures in unlayered isotropic material undergoing oblique contraction are inapplicable to layered anisotropic material. The style of deformation in layered material will reflect the interaction of the bulk strain pattern due to convergence together with the influence of the layering anisotropy. The orientations of the finite strain axes inferred from the folding need not match those of the bulk deformation; the amount of strain recorded by folding may be unrepresentative of that developed in the deformed tract. Oblique contraction at a range of convergence angles was simulated by models employing layers of wet tissue paper. Quantitative analysis of the strain patterns in this layered anisotropic material showed consistent departures from the theoretical predictions for isotropic material. The orientations of the principal finite horizontal extension proximal to the margin yielded higher convergence angles than those which were imposed; the orientations distal from the margin yielded substantially lower apparent convergence angles. This is because the layering anisotropy results in tight folds dissipating the normal component of the oblique convergence vector close to the margin. Whereas more open structures further from the margin show orientations controlled by the progressively more dominant shear component of the vergence vector. Modelling of D 1 the Cobar Basin shows that the F 1 pattern is consistent with dextral oblique convergence at 60° to the eastern margin of the basin. The deformation patterns, in both the model and the Cobar Basin, yield higher proximal and substantially lower distal apparent convergence angles. This is as expected from theoretical considerations and quantitative analysis of oblique contraction over a range of convergence angles. The rheological anisotropy of the cover sequence of the basin is replicated by that of the layered wet tissue paper. Wet-tissue modelling of the superposition of the second period of deformation (D 2) on F 1 demonstrates the way in which the tightness and orientation of early folds influence the type of fold interference pattern. At the eastern margin of the Cobar Basin, where D 1 was most intense, this resulted in major swings of the strike of bedding and cleavage, and of the trend of F 1 folds. Further west, open basin and dome patterns developed where D 1 was least intense. Principles developed in relation to the inversion of the Cobar Basin, are equally applicable to other basins in which layered cover rocks have undergone inversion by oblique contraction. Many basins in the Lachlan Fold Belt and in general would fall within this category.

  15. Realization of Intrinsically Stretchable Organic Solar Cells Enabled by Charge-Extraction Layer and Photoactive Material Engineering.

    PubMed

    Hsieh, Yun-Ting; Chen, Jung-Yao; Fukuta, Seijiro; Lin, Po-Chen; Higashihara, Tomoya; Chueh, Chu-Chen; Chen, Wen-Chang

    2018-06-12

    The rapid development of wearable electronic devices has prompted a strong demand to develop stretchable organic solar cells (OSCs) to serve as the advanced powering systems. However, to realize an intrinsically stretchable OSC is challenging because it requires all the constituent layers to possess certain elastic properties. It thus necessitates a combined engineering of charge-transporting layers and photoactive materials. Herein, we first describe a stretchable electron-extraction layer using a blend of poly[(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN) and nitrile butadiene rubber (NBR, Nipol 1072). This hybrid PFN/NBR layer exhibits a much lower Derjaguin-Muller-Toporov modulus (0.45 GPa) than the value (1.25 GPa) of the pristine PFN and could withstand a high strain (60% strain) without showing any cracks. Moreover, besides enriching the stretchability of PFN, the terminal carboxyl groups of NBR can ionize PFN to promote its solution-processability in polar solvents and to ensure the interfacial dipole formation at the corresponding interface in the device, as evidenced by the Fourier transform infrared and ultraviolet photoelectron spectroscopy analyses. By further coupling the replacement of [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with nonfullerene acceptors owing to better mechanical stretchability in the photoactive layer, OSCs with improved intrinsically stretchability and performance were demonstrated. An all-polymer OSC can exhibit a power conversion efficiency of 2.82% after 10% stretching, surpassing the PCBM-based device that can only withstand 5% strain.

  16. Bounds on strain in large Tertiary shear zones of SE Asia from boudinage restoration

    NASA Astrophysics Data System (ADS)

    Lacassin, R.; Leloup, P. H.; Tapponnier, P.

    1993-06-01

    We have used surface-balanced restoration of stretched, boudinaged layers to estimate minimum amounts of finite strain in the mylonitic gneisses of the Oligo-Miocene Red River-Ailao Shan shear zone (Yunnan, China) and of the Wang Chao shear zone (Thailand). The layer-parallel extension values thus obtained range between 250 and 870%. We discuss how to use such extension values to place bounds on amounts of finite shear strain in these large crustal shear zones. Assuming simple shear, these values imply minimum total and late shear strains of, respectively, 33 ± 6 and 7 ± 3 at several sites along the Red River-Ailao Shan shear zone. For the Wang Chao shear zone a minimum shear strain of 7 ± 4 is deduced. Assuming homogeneous shear would imply that minimum strike-slip displacements along these two left-lateral shear zones, which have been interpreted to result from the India-Asia collision, have been of the order of 330 ± 60 km (Red River-Ailao Shan) and 35 ± 20 km (Wang Chao).

  17. Thermal Strain Analysis of Optic Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-01

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating. PMID:23385407

  18. Graphene Calisthenics: Straintronics of Graphene with Light-Reactive Azobenzene Polymer

    NASA Astrophysics Data System (ADS)

    Meaker, Kacey; Cao, Peigen; Huo, Mandy; Crommie, Michael

    2014-03-01

    Although a promising target for next-generation electronics, graphene's lack of a band gap is a severe hindrance. There are many ways of opening a gap, and one controllable way is through application of specific non-uniform strains which can produce extremely large pseudomagnetic fields. This effect was predicted and verified experimentally, but so far there have been few methods developed that reliably control the size, location, separation and amount of strain in graphene. We have used a layer of light-reactive azobenzene polymer beneath the graphene to produce strained monolayer graphene with light exposure. Using Raman spectroscopy, we have measured a shift of up to 20 cm-1 in the 2D peak when the graphene and polymer sample was exposed to 532 nm laser illumination indicating that the graphene is undergoing a strain from deformation of the azobenzene layer below. AFM topographic measurements and COMSOL simulations were used to verify this assertion. Use of polymeric materials to reliably strain graphene in non-uniform ways could result in controllable production of large pseudomagnetic fields in graphene and more control over graphene's low-energy charge carriers.

  19. InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariyawansa, Gamini, E-mail: gamini.ariyawansa.2@us.af.mil; Reyner, Charles J.; Steenbergen, Elizabeth H.

    2016-01-11

    Investigation of growth and properties of InGaAs/InAsSb strained layer superlattices, identified as ternary strained layer superlattices (ternary SLSs), is reported. The material space for the antimony-based SLS detector development is expanded beyond InAs/InAsSb and InAs/(In)GaSb by incorporating Ga into InAs. It was found that this not only provides support for strain compensation but also enhances the infrared (IR) absorption properties. A unique InGaAs/InAsSb SLS exists when the conduction band of InGaAs aligns with that of InAsSb. The bandgap of this specific InGaAs/InAsSb SLS can then be tuned by adjusting the thickness of both constituents. Due to the enhanced electron-hole wavefunctionmore » overlap, a significant increase in the absorption coefficient was theoretically predicted for ternary SLS as compared to current state-of-the-art InAs/InAsSb SLS structures, and an approximately 30%–35% increase in the absorption coefficient was experimentally observed. All the samples examined in this work were designed to have the same bandgap of approximately 0.240 eV (5.6 μm) at 150 K.« less

  20. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California

    USGS Publications Warehouse

    Holzer, T.L.; Youd, T.L.

    2007-01-01

    Excess pore-water pressure and liquefaction at the Wildlife Liquefaction Array in 1987 were caused by deformation associated with both high-frequency strong ground motion and 5.5-second-period Love waves. The Love waves produced large (???1.5%) cyclic shear strains well after the stronger high-frequency ground motion abated. These cyclic strains generated approximately from 13 to 35% of the excess pore-water pressure in the liquefied layer and caused excess pore-water pressures ultimately to reach effective overburden stress. The deformation associated with the Love waves explains the "postearthquake" increase of pore-water pressure that was recorded at the array. This explanation suggests that conventional methods for predicting liquefaction based on peak ground acceleration are incomplete and may need to consider cyclic strains associated with long-period surface waves. A post-earthquake survey of an inclinometer casing indicated permanent shear strain associated with lateral spreading primarily occurred in the upper part of the liquefied layer. Comparison of cone penetration test soundings conducted after the earthquake with pre-earthquake soundings suggests sleeve friction increased. Natural lateral variability of the liquefied layer obscured changes in tip resistance despite a ???1% reduction in volume. The large oscillatory motion associated with surface waves explains ground oscillation that has been reported at some liquefaction sites during earthquakes.

Top