Sample records for strain wild type

  1. Strain-specific reverse transcriptase PCR assay: means to distinguish candidate vaccine from wild-type strains of respiratory syncytial virus.

    PubMed Central

    Zheng, H; Peret, T C; Randolph, V B; Crowley, J C; Anderson, L J

    1996-01-01

    Candidate live-virus vaccines for respiratory syncytial virus are being developed and are beginning to be evaluated in clinical trials. To distinguish candidate vaccine strains from wild-type strains isolated during these trials, we developed PCR assays specific to two sets of candidate vaccine strains. The two sets were a group A strain (3A), its three attenuated, temperature-sensitive variant strains, a group B strain (2B), and its four attenuated, temperature-sensitive variant strains. The PCR assays were evaluated by testing 18 group A wild-type strains, the 3A strains, 9 group B wild-type strains, and the 2B strains. PCR specific to group A wild-type strains amplified only group A wild-type strains, and 3A-specific PCR amplified only 3A strains. PCR specific to group B wild-type strains amplified all group A and group B strains but gave a 688-bp product for group B wild-type strains, a 279-bp product for 2B strains, a 547-bp product for all group A strains, and an additional 688-bp product for some group A strains, including 3A strains. These types of PCR assays can, in conjunction with other methods, be used to efficiently distinguish candidate vaccine strains from other respiratory syncytial virus strains. PMID:8789010

  2. Proteome profiling of virus-host interactions of wild type and attenuated measles virus strains.

    PubMed

    Billing, Anja M; Kessler, Julia R; Revets, Dominique; Sausy, Aurélie; Schmitz, Stephanie; Barra, Claire; Muller, Claude P

    2014-08-28

    Quantitative gel-based proteomics (2D DIGE coupled to MALDI-TOF/TOF MS) has been used to investigate the effects of different measles virus (MV) strains on the host cell proteome. A549/hSLAM cells were infected either with wild type MV strains, an attenuated vaccine or a multiple passaged Vero cell adapted strain. By including interferon beta treatment as a control it was possible to distinguish between the classical antiviral response and changes induced specifically by the different strains. Of 38 differentially expressed proteins in total (p-value ≤0.05, fold change ≥2), 18 proteins were uniquely modulated following MV infection with up to 9 proteins specific per individual strain. Interestingly, wt strains displayed distinct protein patterns particularly during the late phase of infection. Proteins were grouped into cytoskeleton, metabolism, transcription/translation, immune response and mitochondrial proteins. Bioinformatics analysis revealed mostly changes in proteins regulating cell death and apoptosis. Surprisingly, wt strains affected the cytokeratin system much stronger than the vaccine strain. To our knowledge, this is the first study on the MV-host proteome addressing interstrain differences. In the present study we investigated the host cell proteome upon measles virus (MV) infection. The novelty about this study is the side-by side comparison of different strains from the same virus, which has not been done at the proteome level for any other virus including MV. We used different virus strains including a vaccine strain, wild type isolates derived from MV-infected patients as well as a Vero cell adapted strain, which serves as an intermediate between vaccine and wild type strain. We observed differences between vaccine and wild type strains as well as common features between different wild type strains. Perhaps one of the most surprising findings was that differences did not only occur between wild type and vaccine or Vero cell adapted strains but also between different wild type strains. In fact our study suggests that besides the cytokeratin and the IFN system wild type viruses seem to differ as much among each other than from vaccine strains. Thus our results are suggestive of complex and diverse virus-host interactions which differ considerably between different wild type strains. Our data indicate that interstrain differences are prominent and have so far been neglected by proteomics studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii.

    PubMed

    Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y

    2009-10-01

    The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.

  4. Development of a combined canine distemper virus specific RT-PCR protocol for the differentiation of infected and vaccinated animals (DIVA) and genetic characterization of the hemagglutinin gene of seven Chinese strains demonstrated in dogs.

    PubMed

    Yi, Li; Cheng, Shipeng; Xu, Hongli; Wang, Jianke; Cheng, Yuening; Yang, Shen; Luo, Bin

    2012-01-01

    A combined reverse-transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of the canine distemper virus (CDV). A pair of primers (P1/P2) was used to detect both CDV wild-type strains and vaccines. Another pair (P3/P4) was used to detect only CDV wild-type strains. A 335bp fragment was amplified from the genomic RNA of the vaccine and wild-type strains. A 555bp fragment was amplified specifically from the genomic RNA of the wild-type strains. No amplification was achieved for the uninfected cells, cells infected with canine parvovirus, canine coronavirus, or canine adenovirus. The combined RT-PCR method detected effectively and differentiated the CDV wild-type and vaccine strains by two separate RT-PCRs. The method can be used for clinical detection and epidemiological surveillance. The phylogenetic analysis of the hemagglutinin gene of the local wild-type CDV strains revealed that the seven local isolates all belonged to the Asia-1 lineage, and were clustered closely with one another at the same location. These results suggested that the CDV genotype Asia-1 is circulating currently in domestic dogs in China. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. OpnS, an outer membrane porin of Xenorhabdus nematophila, confers a competitive advantage for growth in the insect host.

    PubMed

    van der Hoeven, Ransome; Forst, Steven

    2009-09-01

    The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded beta-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the DeltaopnS strain. Coinjection of the wild-type and DeltaopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or DeltaopnS strain were colonized by the wild-type strain. In addition, the DeltaopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The DeltaopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment.

  6. [Use of ITS and ISSR markers in the molecular characterisation of Pleurotus djamor hybrid strains].

    PubMed

    Aguilar Doroteo, Leticia; Zárate Segura, Paola Berenice; Villanueva Arce, Ramón; Yáñez Fernández, Jorge; Garín Aguilar, María Eugenia; Guadarrama Mendoza, Paula Cecilia; Valencia Del Toro, Gustavo

    Molecular characterisation of wild type Pleurotus species is important for germplasm conservation and its further use for genetic improvement. No molecular studies have been performed with monokaryons used for producing hybrid strains, either with the reconstituted strains obtained by pairing those monokaryons. The molecular characterisation of parental dikaryons, hybrid, and reconstituted strains as well as monokaryotic strains, is therefore of utmost importance. To carry out the molecular identification of Pleurotus djamor strains, i.e. dikaryotic wild type strains, hybrid strains, and the monokaryotic strains used for the hybrid formation. Five wild type strains of P. djamor from different states in Mexico were collected and molecularly identified by sequencing the ITS1-5.8-ITS2 region using ITS1 and ITS4 universal oligonucleotides. Four hybrid strains were obtained by pairing neohaplonts of two wild type strains selected. Six ISSR markers were used for the molecular characterisation of monokaryotic and dikaryotic strains. Using the ITS markers, an amplified product of 700bp was obtained in five wild type strains, with a 99-100% similarity with P. djamor. A total of 95 fragments were obtained using the ISSR markers, with 99% of polymorphism. Wild type strains were identified as P. djamor, and were clearly grouped with Mexican strains from other states of Mexico. ISSR markers allowed the generation of polymorphic bands in monokaryotic and dikaryotic strains, splitting both types of strains. The high degree of polymorphism indicates the genetic diversity of P. djamor, an advantage in mushroom production and in the improving of the species. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. OpnS, an Outer Membrane Porin of Xenorhabdus nematophila, Confers a Competitive Advantage for Growth in the Insect Host▿ †

    PubMed Central

    van der Hoeven, Ransome; Forst, Steven

    2009-01-01

    The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded β-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the ΔopnS strain. Coinjection of the wild-type and ΔopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or ΔopnS strain were colonized by the wild-type strain. In addition, the ΔopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The ΔopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment. PMID:19465651

  8. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    PubMed Central

    2010-01-01

    A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV). A pair of primers (P1 and P4) specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV), canine parvovirus (CPV), canine coronavirus (CCV), rabies virus (RV), or canine adenovirus (CAV). The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance. PMID:20433759

  9. Role of Mrx Fimbriae of Xenorhabdus nematophila in Competitive Colonization of the Nematode Host ▿

    PubMed Central

    Snyder, Holly; He, Hongjun; Owen, Heather; Hanna, Chris; Forst, Steven

    2011-01-01

    Xenorhabdus nematophila engages in mutualistic associations with the infective juvenile (IJ) stage of specific entomopathogenic nematodes. Mannose-resistant (Mrx) chaperone-usher-type fimbriae are produced when the bacteria are grown on nutrient broth agar (NB agar). The role of Mrx fimbriae in the colonization of the nematode host has remained unresolved. We show that X. nematophila grown on LB agar produced flagella rather than fimbriae. IJs propagated on X. nematophila grown on LB agar were colonized to the same extent as those propagated on NB agar. Further, progeny IJs were normally colonized by mrx mutant strains that lacked fimbriae both when bacteria were grown on NB agar and when coinjected into the insect host with aposymbiotic nematodes. The mrx strains were not competitively defective for colonization when grown in the presence of wild-type cells on NB agar. In addition, a phenotypic variant strain that lacked fimbriae colonized as well as the wild-type strain. In contrast, the mrx strains displayed a competitive colonization defect in vivo. IJ progeny obtained from insects injected with comixtures of nematodes carrying either the wild-type or the mrx strain were colonized almost exclusively with the wild-type strain. Likewise, when insects were coinjected with aposymbiotic IJs together with a comixture of the wild-type and mrx strains, the resulting IJ progeny were predominantly colonized with the wild-type strain. These results revealed that Mrx fimbriae confer a competitive advantage during colonization in vivo and provide new insights into the role of chaperone-usher fimbriae in the life cycle of X. nematophila. PMID:21856828

  10. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli.

    PubMed Central

    Miller, J B; Amy, N K

    1983-01-01

    We examined molybdenum cofactor activity in chlorate-resistant (chl) and nitrate reductase-deficient (nar) insertion mutants and wild-type strains of Escherichia coli K-12. The bacterial molybdenum cofactor was assayed by its ability to restore activity to the cofactor-deficient nitrate reductase found in the nit-1 strain of Neurospora crassa. In the wild-type E. coli strains, molybdenum cofactor was synthesized constitutively and found in both cytoplasmic and membrane fractions. Cofactor was found in two forms: the demolybdo form required additional molybdate in the assay mix for detection, whereas the molybdenum-containing form was active without additional molybdate. The chlA and chlE mutants had no detectable cofactor. The chlB and the narG, narI, narK, and narL (previously designated chlC) strains had cofactor levels similar to those of the wild-type strains, except the chlB strains had two to threefold more membrane-bound cofactor. Cofactor levels in the chlD and chlG strains were sensitive to molybdate. When grown in 1 microM molybdate, the chlD strains had only 15 to 20% of the wild-type levels of the demolybdo and molybdenum-containing forms of the cofactor. In contrast, the chlG strains had near wild-type levels of demolybdo cofactor when grown in 1 microM molybdate, but none of the molybdenum-containing form of the cofactor. Near wild-type levels of both forms of the cofactor were restored to the chlD and chlG strains by growth in 1 mM molybdate. PMID:6307982

  11. Rotavirus A genotype G1P[8]: a novel method to distinguish wild-type strains from the Rotarix vaccine strain.

    PubMed

    Rose, Tatiana L; Miagostovich, Marize P; Leite, José Paulo G

    2010-12-01

    Rotaviruses are important enteric pathogens for humans and animals. Group A rotaviruses (RV-A) are the most common agents of severe gastroenteritis in infants and young children and vaccination is the most effective method to reduce RV-A-associated diseases. G1P[8], the most prevalent RV-A genotype worldwide, is included in the RV-A vaccine Rotarix®. The discrimination between wild-type G1P[8] and vaccine G1P[8] strains is an important topic in the study of RV-A epidemiology to manage outbreaks and to define control measures for vaccinated children. In this study, we developed a novel method to segregate the wild-type and vaccine strains using restriction endonucleases. The dsRNA from the Rotarix® vaccine was sequenced and the NSP3 gene was selected as the target gene. The vaccine strain has a restriction pattern that is different than that of wild-type RV-A G1P[8] isolates after digestion with the restriction endonuclease BspHI. This pattern could be used as a marker for the differentiation of wild-type G1P[8] strains from the vaccine strain.

  12. Differentiation between probiotic and wild-type Bacillus cereus isolates by antibiotic susceptibility test and Fourier transform infrared spectroscopy (FT-IR).

    PubMed

    Mietke, Henriette; Beer, W; Schleif, Julia; Schabert, G; Reissbrodt, R

    2010-05-30

    Animal feed often contains probiotic Bacillus strains used as feed additives. Spores of the non-pathogenic B. cereus var. toyoi (product name Toyocerin) are used. Distinguishing between toxic wild-type Bacillus cereus strains and this probiotic strain is essential for evaluating the quality and risk of feed. Bacillus cereus CIP 5832 (product name Paciflor was used as probiotic strain until 2001. The properties of the two probiotic strains are quite similar. Differentiating between probiotic strains and wild-type B. cereus strains is not easy. ss-lactam antibiotics such as penicillin and cefamandole exhibit an inhibition zone in the agar diffusion test of probiotic B. cereus strains which are not seen for wild-type strains. Therefore, performing the agar diffusion test first may make sense before FT-IR testing. When randomly checking these strains by Fourier transform infrared spectroscopy (FT-IR), the probiotic B. cereus strains were separated from wild-type B. cereus/B. thuringiensis/B. mycoides/B. weihenstephanensis strains by means of hierarchical cluster analysis. The discriminatory information was contained in the spectral windows 3000-2800 cm(-1) ("fatty acid region"), 1200-900 cm(-1) ("carbohydrate region") and 900-700 cm(-1) ("fingerprint region"). It is concluded that FT-IR spectroscopy can be used for the rapid quality control and risk analysis of animal feed containing probiotic B. cereus strains. (c) 2010 Elsevier B.V. All rights reserved.

  13. Multi-locus sequence typing of Salmonella enterica serovar Typhimurium isolates from wild birds in northern England suggests host-adapted strain.

    PubMed

    Hughes, L A; Wigley, P; Bennett, M; Chantrey, J; Williams, N

    2010-10-01

    Recent studies have suggested that Salmonella Typhimurium strains associated with mortality in UK garden birds are significantly different from strains that cause disease in humans and livestock and that wild bird strains may be host adapted. However, without further genomic characterization of these strains, it is not possible to determine whether they are host adapted. The aim of this study was to characterize a representative sample of Salm. Typhimurium strains detected in wild garden birds using multi-locus sequence typing (MLST)to investigate evolutionary relationships between them. Multi-locus sequence typing was performed on nine Salm. Typhimurium strains isolated from wild garden birds. Two sequence types were identified, the most common of which was ST568. Examination of the public Salmonella enterica MLST database revealed that only three other ST568 isolates had been cultured from a human in Scotland. Two further isolates of Salm. Typhimurium were determined to be ST19. Results of MLST analysis suggest that there is a predominant strain of Salm. Typhimurium circulating among garden bird populations in the United Kingdom, which is rarely detected in other species, supporting the hypothesis that this strain is host adapted. Host-pathogen evolution is often assumed to lead to pathogens becoming less virulent to avoid the death of their host; however, infection with ST568 led to high mortality rates among the wild birds examined, which were all found dead at wild bird-feeding stations. We hypothesize that by attracting unnaturally high densities of birds, wild bird-feeding stations may facilitate the transmission of ST568 between wild birds, therefore reducing the evolutionary cost of this pathogen killing its host, resulting in a host-adapted strain with increased virulence.

  14. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  15. Cross-neutralization between three mumps viruses & mapping of haemagglutinin-neuraminidase (HN) epitopes.

    PubMed

    Vaidya, Sunil R; Dvivedi, Garima M; Jadhav, Santoshkumar M

    2016-01-01

    The reports from the countries where mumps vaccine is given as routine immunization suggest differences in mumps virus neutralizing antibody titres when tested with vaccine and wild type viruses. Such reports are unavailable from countries like India where mumps vaccine is not included in routine immunization. We, therefore, undertook this study to understand the cross-neutralization activity of Indian mumps viruses. By using commercial mumps IgG enzyme immunoassay (EIA) and a rapid focus reduction neutralization test (FRNT), a panel of serum samples was tested. The panel consisted of 14 acute and 14 convalescent serum samples collected during a mumps outbreak and 18 archived serum samples. Two wild types (genotypes C and G) and Leningrad-Zagreb vaccine strain (genotype N) were used for the challenge experiments and FRNT titres were determined and further compared. The HN protein sequence of three mumps viruses was analyzed for the presence of key epitopes. All serum samples effectively neutralized mumps virus wild types and a vaccine strain. However, significantly lower FRNT titres were noted to wild types than to vaccine strain (P<0.05). The comparison between EIA and FRNT results revealed 95.6 per cent agreement. No amino acid changes were seen in the epitopes in the Indian wild type strains. All potential N-linked glycosylation sites were observed in Indian strains. Good cross-neutralization activity was observed for three mumps virus strains, however, higher level of FRNT titres was detected for mumps virus vaccine strain compared to Indian wild type isolates.

  16. Diffusible signal factor-repressed extracellular traits enable attachment of Xylella fastidiosa to insect vectors and transmission.

    PubMed

    Baccari, Clelia; Killiny, Nabil; Ionescu, Michael; Almeida, Rodrigo P P; Lindow, Steven E

    2014-01-01

    The hypothesis that a wild-type strain of Xylella fastidiosa would restore the ability of rpfF mutants blocked in diffusible signal factor production to be transmitted to new grape plants by the sharpshooter vector Graphocephala atropunctata was tested. While the rpfF mutant was very poorly transmitted by vectors irrespective of whether they had also fed on plants infected with the wild-type strain, wild-type strains were not efficiently transmitted if vectors had fed on plants infected with the rpfF mutant. About 100-fewer cells of a wild-type strain attached to wings of a vector when suspended in xylem sap from plants infected with an rpfF mutant than in sap from uninfected grapes. The frequency of transmission of cells suspended in sap from plants that were infected by the rpfF mutant was also reduced over threefold. Wild-type cells suspended in a culture supernatant of an rpfF mutant also exhibited 10-fold less adherence to wings than when suspended in uninoculated culture media. A factor released into the xylem by rpfF mutants, and to a lesser extent by the wild-type strain, thus inhibits their attachment to, and thus transmission by, sharpshooter vectors and may also enable them to move more readily through host plants.

  17. Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium.

    PubMed

    Gross, Gabriele; van der Meulen, Jan; Snel, Johannes; van der Meer, Roelof; Kleerebezem, Michiel; Niewold, Theo A; Hulst, Marcel M; Smits, Mari A

    2008-11-01

    Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using an in situ pig Small Intestinal Segment Perfusion model. The effects of L. plantarum 299v wild-type strain were compared with those of two corresponding mutant strains either lacking the gene encoding for the mannose-specific adhesin (msa) or sortase (srtA; responsible for anchoring of cell surface proteins like Msa to the cell wall). A slight enrichment of the wild-type strain associated with the intestinal surface could be observed after 8 h of perfusion when a mixture of wild-type and msa-mutant strain had been applied. In contrast to the mutant strains, the L. plantarum wild-type strain tended to induce a decrease in jejunal net fluid absorption compared with control conditions. Furthermore, after 8 h of perfusion expression of the host gene encoding pancreatitis-associated protein, a protein with proposed bactericidal properties, was found to be upregulated by the wild-type strain only. These observations suggest a role of Msa in the induction of host responses in the pig intestine.

  18. The wild type as concept and in experimental practice: A history of its role in classical genetics and evolutionary theory.

    PubMed

    Holmes, Tarquin

    2017-06-01

    Wild types in genetics are specialised strains of laboratory experimental organism which principally serve as standards against which variation is measured. As selectively inbred lineages highly isolated from ancestral wild populations, there appears to be little wild or typical about them. I will nonetheless argue that they have historically been successfully used as stand-ins for nature, allowing knowledge produced in the laboratory to be extrapolated to the natural world. In this paper, I will explore the 19th century origins of the wild type concept, the theoretical and experimental innovations which allowed concepts and organisms to move from wild nature to laboratory domestication c. 1900 (resulting in the production of standardised lab strains), and the conflict among early geneticists between interactionist and atomist accounts of wild type, which would eventually lead to the conceptual disintegration of wild types and the triumph of genocentrism and population genetics. I conclude by discussing how the strategy of using wild type strains to represent nature in the lab has nonetheless survived the downfall of the wild type concept and continues to provide, significant limitations acknowledged, an epistemically productive means of investigating heredity and evolutionary variation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cross-neutralization between three mumps viruses & mapping of haemagglutinin-neuraminidase (HN) epitopes

    PubMed Central

    Vaidya, Sunil R.; Dvivedi, Garima M.; Jadhav, Santoshkumar M.

    2016-01-01

    Background & objectives: The reports from the countries where mumps vaccine is given as routine immunization suggest differences in mumps virus neutralizing antibody titres when tested with vaccine and wild type viruses. Such reports are unavailable from countries like India where mumps vaccine is not included in routine immunization. We, therefore, undertook this study to understand the cross-neutralization activity of Indian mumps viruses. Methods: By using commercial mumps IgG enzyme immunoassay (EIA) and a rapid focus reduction neutralization test (FRNT), a panel of serum samples was tested. The panel consisted of 14 acute and 14 convalescent serum samples collected during a mumps outbreak and 18 archived serum samples. Two wild types (genotypes C and G) and Leningrad-Zagreb vaccine strain (genotype N) were used for the challenge experiments and FRNT titres were determined and further compared. The HN protein sequence of three mumps viruses was analyzed for the presence of key epitopes. Results: All serum samples effectively neutralized mumps virus wild types and a vaccine strain. However, significantly lower FRNT titres were noted to wild types than to vaccine strain (P<0.05). The comparison between EIA and FRNT results revealed 95.6 per cent agreement. No amino acid changes were seen in the epitopes in the Indian wild type strains. All potential N-linked glycosylation sites were observed in Indian strains. Interpretation & conclusions: Good cross-neutralization activity was observed for three mumps virus strains, however, higher level of FRNT titres was detected for mumps virus vaccine strain compared to Indian wild type isolates. PMID:26997012

  20. Prevalence of toxoplasmosis and genetic characterization of Toxoplasma gondii strains isolated in wild birds of prey and their relation with previously isolated strains from Turkey.

    PubMed

    Karakavuk, Muhammet; Aldemir, Duygu; Mercier, Aurélien; Atalay Şahar, Esra; Can, Hüseyin; Murat, Jean-Benjamin; Döndüren, Ömer; Can, Şengül; Özdemir, Hüseyin Gökhan; Değirmenci Döşkaya, Aysu; Pektaş, Bayram; Dardé, Marie-Laure; Gürüz, Adnan Yüksel; Döşkaya, Mert

    2018-01-01

    Toxoplasma gondii is a protozoon parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations, in immune compromised humans. Analyses of the prevalence and genotyping of strains from the definitive host and intermediate hosts will help to understanding the circulation of the different strains and elucidating the role of the genotype(s) in human toxoplasmosis. Turkey has a specific geographic location bridging Africa, Europe, and Asia. We hypothesized that T. gondii strains may have been transferred to Turkey from these continents via migratory birds or vice versa. The present study aimed to assess the prevalence of toxoplasmosis in wild birds of prey of İzmir and Manisa provinces as well as genetically characterize T. gondii strains from these wild birds to show the relation between bird strains and neighboring stray cats as well as human strains previously isolated in Turkey. Tissues obtained from 48 wild birds were investigated for the presence of T. gondii DNA and then bioassayed in mouse. Isolated strains were genotyped using 15 microsatellite markers. The prevalence of T. gondii DNA was found to be 89.6% (n: 43/48) in wild birds. Out of 43 positive samples, a total of 14 strains were genotyped by 15 microsatellite markers. Among them, eight were type II, three were type III and three were mixture of genotypes (two type II/II and one was II/III). These are the first data that showed the presence of T. gondii and types II and III genotypes in wild birds of Turkey. Moreover, Africa 1 was not detected. In addition, cluster analysis showed that T. gondii strains within type II and III lineage have close relation with strains previously isolated from stray cats in İzmir. Further studies are required to isolate more strains from human cases, other intermediate hosts, and water sources to reveal this relation.

  1. Prevalence of toxoplasmosis and genetic characterization of Toxoplasma gondii strains isolated in wild birds of prey and their relation with previously isolated strains from Turkey

    PubMed Central

    Karakavuk, Muhammet; Aldemir, Duygu; Mercier, Aurélien; Atalay Şahar, Esra; Can, Hüseyin; Murat, Jean-Benjamin; Döndüren, Ömer; Can, Şengül; Özdemir, Hüseyin Gökhan; Değirmenci Döşkaya, Aysu; Pektaş, Bayram; Dardé, Marie-Laure; Gürüz, Adnan Yüksel

    2018-01-01

    Toxoplasma gondii is a protozoon parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations, in immune compromised humans. Analyses of the prevalence and genotyping of strains from the definitive host and intermediate hosts will help to understanding the circulation of the different strains and elucidating the role of the genotype(s) in human toxoplasmosis. Turkey has a specific geographic location bridging Africa, Europe, and Asia. We hypothesized that T. gondii strains may have been transferred to Turkey from these continents via migratory birds or vice versa. The present study aimed to assess the prevalence of toxoplasmosis in wild birds of prey of İzmir and Manisa provinces as well as genetically characterize T. gondii strains from these wild birds to show the relation between bird strains and neighboring stray cats as well as human strains previously isolated in Turkey. Tissues obtained from 48 wild birds were investigated for the presence of T. gondii DNA and then bioassayed in mouse. Isolated strains were genotyped using 15 microsatellite markers. The prevalence of T. gondii DNA was found to be 89.6% (n: 43/48) in wild birds. Out of 43 positive samples, a total of 14 strains were genotyped by 15 microsatellite markers. Among them, eight were type II, three were type III and three were mixture of genotypes (two type II/II and one was II/III). These are the first data that showed the presence of T. gondii and types II and III genotypes in wild birds of Turkey. Moreover, Africa 1 was not detected. In addition, cluster analysis showed that T. gondii strains within type II and III lineage have close relation with strains previously isolated from stray cats in İzmir. Further studies are required to isolate more strains from human cases, other intermediate hosts, and water sources to reveal this relation. PMID:29668747

  2. Low-phosphate-selected Auxenochlorella protothecoides redirects phosphate to essential pathways while producing more biomass

    PubMed Central

    Park, Sang-Hyuck; Kyndt, John; Chougule, Kapeel; Park, Jeong-Jin

    2018-01-01

    Despite the capacity to accumulate ~70% w/w of lipids, commercially produced unicellular green alga A. protothecoides may become compromised due to the high cost of phosphate fertilizers. To address this limitation A. protothecoides was selected for adaptation to conditions of 100× and 5× lower phosphate and peptone, respectively, compared to ‘wild-type media’. The A. protothecoides showed initial signs of adaptation by 45–50 days, and steady state growth at ~100 days. The low phosphate (P)-adapted strain produced up to ~30% greater biomass, while total lipids (~10% w/w) remained about the same, compared to the wild-type strain. Metabolomic analyses indicated that the low P-adapted produced 3.3-fold more saturated palmitic acid (16:0) and 2.2-fold less linolenic acid (18:3), compared to the wild-type strain, resulting in an ~11% increase in caloric value, from 19.5kJ/g for the wild-type strain to 21.6kJ/g for the low P-adapted strain, due to the amounts and composition of certain saturated fatty acids, compared to the wild type strain. Biochemical changes in A. protothecoides adapted to lower phosphate conditions were assessed by comparative RNA-Seq analysis, which yielded 27,279 transcripts. Among them, 2,667 and 15 genes were significantly down- and up-regulated, at >999-fold and >3-fold (adjusted p-value <0.1), respectively. The expression of genes encoding proteins involved in cellular processes such as division, growth, and membrane biosynthesis, showed a trend toward down-regulation. At the genomic level, synonymous SNPs and Indels were observed primarily in coding regions, with the 40S ribosomal subunit gene harboring substantial SNPs. Overall, the adapted strain out-performed the wild-type strain by prioritizing the use of its limited phosphate supply for essential biological processes. The low P-adapted A. protothecoides is expected to be more economical to grow over the wild-type strain, based on overall greater productivity and caloric content, while importantly, also requiring 100-fold less phosphate. PMID:29920531

  3. Analysis by rotavirus gene 6 reverse transcriptase-polymerase chain reaction assay of rotavirus-positive gastroenteritis cases observed during the vaccination phase of the Rotavirus Efficacy and Safety Trial (REST)

    PubMed Central

    Matson, David O; Vesikari, Timo; Dennehy, Penelope; Dallas, Michael D; Goveia, Michelle G; Itzler, Robbin F; Ciarlet, Max

    2014-01-01

    During the vaccination phase of the Rotavirus Efficacy and Safety Trial (REST), the period between the administration of dose 1 through 13 days after the administration of dose 3, there were more wild-type rotavirus gastroenteritis (RVGE) cases among vaccine recipients compared with placebo recipients using the protocol-specified microbiological plaque assay in the clinical-efficacy cohort, a subset of subjects where vaccine efficacy against RVGE of any severity was assessed. In this study, a rotavirus genome segment 6-based reverse transcriptase–polymerase chain reaction assay was applied post hoc to clarify the accuracy of type categorization of all these RVGE cases in vaccine recipients during the vaccination phase of REST. The assay characterized 147 (90%) of 163 re-assayed RVGE cases or rotavirus-associated health care contacts as type-determinable: either wild-type or vaccine-type rotavirus strains. In the clinical-efficacy cohort (N = 5673), 19 (18.8%) of 101 samples from RVGE cases contained wild-type rotavirus, 70 (69.3%) vaccine virus, and 12 (11.9%) were indeterminable. In the large-scale cohort (N = 68,038), 10 (34.5%) of 29 samples from RVGE-related health care contacts contained wild-type rotavirus strains, 15 (51.7%) vaccine-type rotavirus strains, and 4 (13.8%) were indeterminable. Of the 33 samples from RVGE cases in placebo recipients, all were confirmed to contain wild-type rotaviruses. Altogether, this post-hoc re-evaluation showed that the majority (75%) of type-determinable RVGE cases or health care contacts that occurred during the vaccination phase of REST in vaccine recipients were associated with vaccine-type rotavirus strains rather than wild-type rotavirus strains. PMID:25424931

  4. Analysis by rotavirus gene 6 reverse transcriptase-polymerase chain reaction assay of rotavirus-positive gastroenteritis cases observed during the vaccination phase of the Rotavirus Efficacy and Safety Trial (REST).

    PubMed

    Matson, David O; Vesikari, Timo; Dennehy, Penelope; Dallas, Michael D; Goveia, Michelle G; Itzler, Robbin F; Ciarlet, Max

    2014-01-01

    During the vaccination phase of the Rotavirus Efficacy and Safety Trial (REST), the period between the administration of dose 1 through 13 days after the administration of dose 3, there were more wild-type rotavirus gastroenteritis (RVGE) cases among vaccine recipients compared with placebo recipients using the protocol-specified microbiological plaque assay in the clinical-efficacy cohort, a subset of subjects where vaccine efficacy against RVGE of any severity was assessed. In this study, a rotavirus genome segment 6-based reverse transcriptase-polymerase chain reaction assay was applied post hoc to clarify the accuracy of type categorization of all these RVGE cases in vaccine recipients during the vaccination phase of REST. The assay characterized 147 (90%) of 163 re-assayed RVGE cases or rotavirus-associated health care contacts as type-determinable: either wild-type or vaccine-type rotavirus strains. In the clinical-efficacy cohort (N = 5673), 19 (18.8%) of 101 samples from RVGE cases contained wild-type rotavirus, 70 (69.3%) vaccine virus, and 12 (11.9%) were indeterminable. In the large-scale cohort (N = 68,038), 10 (34.5%) of 29 samples from RVGE-related health care contacts contained wild-type rotavirus strains, 15 (51.7%) vaccine-type rotavirus strains, and 4 (13.8%) were indeterminable. Of the 33 samples from RVGE cases in placebo recipients, all were confirmed to contain wild-type rotaviruses. Altogether, this post-hoc re-evaluation showed that the majority (75%) of type-determinable RVGE cases or health care contacts that occurred during the vaccination phase of REST in vaccine recipients were associated with vaccine-type rotavirus strains rather than wild-type rotavirus strains.

  5. ITS1/5.8S/ITS2, a Good Marker for Initial Classification of Shiitake Culinary-Medicinal Lentinus edodes (Agaricomycetes) Strains in China.

    PubMed

    Song, Xiao-Xia; Zhao, Yan; Song, Chun-Yan; Li, Chuan-Hua; Song, Ying; Chen, Ming-Jie; Bao, Da-Peng; Tan, Qi

    2018-01-01

    China is home to rich wild and cultivated strains of Lentinus edodes, an important edible and medicinal mushroom. Artificial selection of L. edodes has a long history, and the widely cultivated strains belong to populations different from those of most wild strains. Internal transcribed spacer (ITS) regions have been used as good markers to identify L. edodes populations. But because ITS regions exhibit incomplete concerted evolution, the use of an ITS to identify L. edodes populations has been questioned. The objective of this study was to determine whether the ITS region is suitable for identifying L. edodes populations and which populations the widely cultivated strains and the most wild strains belong to by investigating intraindividual and differential ITS polymorphisms between 44 cultivars and 44 wild strains of L. edodes in China. Intraindividual ITS polymorphism is common in L. edodes strains, and most strains possessed 2 different ITS sequences, which came from their heterokaryons. The genetic polymorphisms of ITS1, 5.8S, and ITS2 in L. edodes strains are distinct. All strains were divided into one 5.8S type (5.8S-A), 2 ITS1 types (ITS1-A and ITS1-B), and 2 ITS2 types (ITS2-A and ITS2-B), which were subdivided into 2 branches (ITS2-A1 and ITS2-A2; ITS2-B1 and ITS2-B2). ITS1/5.8S/ITS2 could be used as a good marker in preliminary classification of L. edodes strains in China. It not only exhibited classified information of ITS1, 5.8S, and ITS2 for each strain at the same time, it also indicated whether the strain was heterozygous. The 44 cultivated strains were mainly the A/A/A1 type, and the 44 wild strains were mainly the A/A/A2 and other mixed types.

  6. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant

    PubMed Central

    Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869

  7. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    PubMed

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  8. Excretion of Wild-Type and Vaccine-Derived Poliovirus in the Feces of Poliovirus Receptor-Transgenic Mice

    PubMed Central

    Boot, Hein J.; Kasteel, Daniella T. J.; Buisman, Anne-Marie; Kimman, Tjeerd G.

    2003-01-01

    The emergence of circulating vaccine-derived poliovirus (cVDPV) strains in suboptimally vaccinated populations is a serious threat to the global poliovirus eradication. The genetic determinants for the transmissibility phenotype of polioviruses, and in particularly of cVDPV strains, are currently unknown. Here we describe the fecal excretion of wild-type poliovirus, oral polio vaccine, and cVDPV (Hispaniola) strains after intraperitoneal injection in poliovirus receptor-transgenic mice. Both the pattern and the level of fecal excretion of the cVDPV strains resemble those of wild-type poliovirus type 1. In contrast, very little poliovirus was present in the feces after oral polio vaccine administration. This mouse model will be helpful in elucidating the genetic determinants for the high fecal-oral transmission phenotype of cVDPV strains. PMID:12743311

  9. Mutational analysis of the multicopy hao gene coding for hydroxylamine oxidoreductase in Nitrosomonas sp. strain ENI-11.

    PubMed

    Yamagata, A; Hirota, R; Kato, J; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

    2000-08-01

    The ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 contains three copies of the hao gene (hao1, hao2, and hao3) coding for hydroxylamine oxidoreductase (HAO). Three single mutants (hao1::kan, hao2::kan, or hao3::kan) had 68 to 75% of the wild-type growth rate and 58 to 89% of the wild-type HAO activity when grown under the same conditions. A double mutant (hao1::kan and hao3::amp) also had 68% of the wild-type growth and 37% of the wild-type HAO activity.

  10. High concentrations of intracellular Ap4A and/or Ap5A in developing Myxococcus xanthus cells inhibit sporulation.

    PubMed

    Kimura, Yoshio; Tanaka, Chihiro; Sasaki, Katsuho; Sasaki, Masashi

    2017-01-01

    Diadenosine polyphosphates (ApnA) are thought to act as signalling molecules regulating stress responses and biofilm formation in prokaryotes. However, ApnA function in Myxococcus xanthus remains unknown. Here, we investigated the role of ApnA in M. xanthus, using the wild-type and ApnA hydrolase (apaH) mutant strains exposed to various stress conditions. In both wild-type and apaH mutant cells cultured on starvation medium (CF agar), the levels of intracellular diadenosine tetraphosphate (Ap4A) and pentaphosphate (Ap5A) increased several fold during the first 16 h of development and decreased gradually thereafter. The levels of Ap4A and Ap5A in the apaH mutant were about 5- and 11-fold higher than those in the wild-type strain at 16 h, respectively. ApnA hydrolase activity of the wild-type strain increased 1.5-fold during the first 8 h of development, and it then gradually decreased. The apaH mutant formed spores 1-2 days after the wild-type strain did, and the yield of viable spores was 5.5 % of that in the wild-type strain 5 days after inoculation onto CF agar. These results suggest the possibility that high intracellular levels of Ap4A and/or Ap5A may inhibit M. xanthus sporulation at the early stage of development and that the bacteria reduce intracellular Ap4A and Ap5A accumulation through ApnA hydrolase activity.

  11. Mumps Hoshino and Torii vaccine strains were distinguished from circulating wild strains.

    PubMed

    Sawada, Akihito; Yamaji, Yoshiaki; Nakayama, Tetsuo

    2013-06-01

    Aseptic meningitis and acute parotitis have been observed after mumps vaccination. Mumps outbreaks have been reported in Japan because of low vaccine coverage, and molecular differentiation is required to determine whether these cases are vaccine associated. RT-nested PCR was performed in the small hydrophobic gene region, and viruses were differentiated by restriction fragment length polymorphism assay. A total of 584 nucleotides were amplified. The PCR product of the Hoshino strain was cut into two fragments (313 and 271 nucleotides) by MfeI; that of the Torii strain was digested with EcoT22I, resulting in 332- and 252-nucleotide fragments. Both strains were genotype B and had an XbaI site, resulting in two fragments: 299 and 285 nucleotides. Current circulating wild types were cut only by XbaI or MfeI. However, the MfeI site of the wild types was different from that of the Hoshino strain, resulting in 451- and 133-nucleotide fragments. Using three restriction enzymes, two mumps vaccine strains were distinguished from wild types, and this separation was applied to the identification of vaccine-related adverse events.

  12. Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae.

    PubMed

    Velkov, Tony; Deris, Zakuan Z; Huang, Johnny X; Azad, Mohammad A K; Butler, Mark; Sivanesan, Sivashangarie; Kaminskas, Lisa M; Dong, Yao-Da; Boyd, Ben; Baker, Mark A; Cooper, Matthew A; Nation, Roger L; Li, Jian

    2014-05-01

    This study examines the interaction of polymyxin B and colistin with the surface and outer membrane components of a susceptible and resistant strain of Klebsiella pneumoniae. The interaction between polymyxins and bacterial membrane and isolated LPS from paired wild type and polymyxin-resistant strains of K. pneumoniae were examined with N-phenyl-1-naphthylamine (NPN) uptake, fluorometric binding and thermal shift assays, lysozyme and deoxycholate sensitivity assays, and by (1)H NMR. LPS from the polymyxin-resistant strain displayed a reduced binding affinity for polymyxins B and colistin in comparison with the wild type LPS. The outer membrane NPN permeability of the resistant strain was greater compared with the susceptible strain. Polymyxin exposure enhanced the permeability of the outer membrane of the wild type strain to lysozyme and deoxycholate, whereas polymyxin concentrations up to 32 mg/ml failed to permeabilize the outer membrane of the resistant strain. Zeta potential measurements revealed that mid-logarithmic phase wild type cells exhibited a greater negative charge than the mid-logarithmic phase-resistant cells. Taken together, our findings suggest that the resistant derivative of K. pneumoniae can block the electrostatically driven first stage of polymyxin action, which thereby renders the hydrophobically driven second tier of polymyxin action on the outer membrane inconsequential.

  13. Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines.

    PubMed

    Morozova, O V; Sashina, T A; Fomina, S G; Novikova, N A

    2015-07-01

    Two live, attenuated rotavirus A (RVA) vaccines, Rotarix and RotaTeq, have been successfully introduced into national immunization programs worldwide. The parent strains of both vaccines were obtained more than 30 years ago. Nonetheless, only very limited data are available on the molecular similarity of the vaccine strains and their genetic relationships to the wild-type strains circulating within the territory of Russian Federation. In this study, we have determined the nucleotide sequences of the genes encoding the viral proteins VP7 and VP4 (the globular domain VP8*) of vaccine strains and natural isolates of rotaviruses in Nizhny Novgorod, Russia. The VP7 and VP4 proteins contain antigenic sites that are the main targets of neutralizing antibodies. Phylogenetic analysis based on VP4 and VP7 showed that the majority of the natural RVA isolates from Nizhny Novgorod and the vaccine strains belong to different clusters. Four amino acids within the VP7 antigenic sites were common in both the wild-type and vaccine strains. The largest number of amino acid differences was found between the vaccine strain Rotarix and the Nizhny Novgorod G2 strains (19 residues out of 29). From 3 to 5 amino acid differences per strain were identified in the antigenic sites of VP4 (domain VP8*) between wild-type strains and the vaccine RotaTeq, and 6-8 substitutions were found when they were compared with the vaccine strain Rotarix. For the first time, immunodominant T-cell epitopes of VP7 were analyzed, and differences in the sequences between the vaccine and the wild-type strains were found. The accumulation of amino acid substitutions in the VP7 and VP4 antigenic sites may potentially reduce the immune protection of vaccinated children from wild-type strains of rotavirus.

  14. Role of NleH, a type III secreted effector from attaching and effacing pathogens, in colonization of the bovine, ovine, and murine gut.

    PubMed

    Hemrajani, Cordula; Marches, Olivier; Wiles, Siouxsie; Girard, Francis; Dennis, Alison; Dziva, Francis; Best, Angus; Phillips, Alan D; Berger, Cedric N; Mousnier, Aurelie; Crepin, Valerie F; Kruidenier, Laurens; Woodward, Martin J; Stevens, Mark P; La Ragione, Roberto M; MacDonald, Thomas T; Frankel, Gad

    2008-11-01

    The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-kappaB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC DeltanleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-kappaB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-kappaB response elements, we found that NleH causes an increase in NF-kappaB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain.

  15. Development of a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction assay for the differential diagnosis of Feline leukemia virus vaccine and wild strains.

    PubMed

    Ho, Chia-Fang; Chan, Kun-Wei; Yang, Wei-Cheng; Chiang, Yu-Chung; Chung, Yang-Tsung; Kuo, James; Wang, Chi-Young

    2014-07-01

    A multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) was developed for the differential diagnosis of Feline leukemia virus (FeLV) vaccine and wild-type strains based on a point mutation between the vaccine strain (S) and the wild-type strain (T) located in the p27 gene. This system was further upgraded to obtain a real-time ARMS RT-PCR (ARMS qRT-PCR) with a high-resolution melt analysis (HRMA) platform. The genotyping of various strains of FeLV was determined by comparing the HRMA curves with the defined wild-type FeLV (strain TW1), and the results were expressed as a percentage confidence. The detection limits of ARMS RT-PCR and ARMS qRT-PCR combined with HRMA were 100 and 1 copies of transcribed FeLV RNA per 0.5 ml of sample, respectively. No false-positive results were obtained with 6 unrelated pathogens and 1 feline cell line. Twelve FeLV Taiwan strains were correctly identified using ARMS qRT-PCR combined with HRMA. The genotypes of the strains matched the defined FeLV wild-type strain genotype with at least 91.17% confidence. A higher degree of sequence polymorphism was found throughout the p27 gene compared with the long terminal repeat region. In conclusion, the current study describes the phylogenetic relationship of the FeLV Taiwan strains and demonstrates that the developed ARMS RT-PCR assay is able to be used to detect the replication of a vaccine strain that has not been properly inactivated, thus acting as a safety check for the quality of FeLV vaccines.

  16. Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes.

    PubMed Central

    Zieg, J; Maples, V F; Kushner, S R

    1978-01-01

    Escherichia coli strains containing mutations in lexA, rep, uvrA, uvrD, uvrE, lig, polA, dam, or xthA were constructed and tested for conjugation and transduction proficiencies and ability to form Lac+ recombinants in an assay system utilizing a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1). lexA and rep mutants were as deficient (20% of wild type) as recB and recC strains in their ability to produce Lac+ progeny. All the other strains exhibited increased frequencies of Lac+ recombinant formation, compared with wild type, ranging from 2- to 13-fold. Some strains showed markedly increased conjugation proficiency (dam uvrD) compared to wild type, while others appeared deficient (polA107). Some differences in transduction proficiency were also observed. Analysis of the Lac+ recombinants formed by the various mutants indicated that they were identical to the recombinants formed by a wild-type strain. The results indicate that genetic recombination in E. coli is a highly regulated process involving multiple gene products. PMID:350859

  17. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

    PubMed

    Pratter, S M; Eixelsberger, T; Nidetzky, B

    2015-12-01

    A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Monoclonal antibodies for serotyping the P fimbriae of uropathogenic Escherichia coli.

    PubMed Central

    de Ree, J M; Schwillens, P; van den Bosch, J F

    1986-01-01

    Monoclonal antibodies (MAbs) against seven serologically different P fimbriae (F7(1), F7(2), F8, F9, F11, F12, and F13) of uropathogenic Escherichia coli were tested for their ability to detect the P fimbriae on wild-type strains. In a plate agglutination test the MABs could detect the fimbriae on strains which expressed cloned fimbriae but not on wild-type strains. In a coagglutination test and in a whole-bacterium enzyme-linked immunosorbent assay the MAbs recognized the fimbriae on strains with cloned fimbriae and on wild-type strains. However, the coagglutination test has some disadvantages: only immunoglobulin G MAbs can be used, and the results cannot be read in an objective way. From these results, we concluded that the whole-bacterium enzyme-linked immunosorbent assay is the most convenient method for the determination of P fimbriae on wild-type E. coli strains. With this fast and easy method it is possible to do epidemiological studies on the distribution of P fimbriae among clinical isolates of uropathogenic E. coli and to extend the O:K:H serotype with the F serotype. PMID:2873149

  19. Loss of Regulatory Protein RfaH Attenuates Virulence of Uropathogenic Escherichia coli

    PubMed Central

    Nagy, Gábor; Dobrindt, Ulrich; Schneider, György; Khan, A. Salam; Hacker, Jörg; Emödy, Levente

    2002-01-01

    RfaH is a regulatory protein in Escherichia coli and Salmonella enterica serovar Typhimurium. Although it enhances expression of different factors that are proposed to play a role in bacterial virulence, a direct effect of RfaH on virulence has not been investigated so far. We report that inactivation of rfaH dramatically decreases the virulence of uropathogenic E. coli strain 536 in an ascending mouse model of urinary tract infection. The mortality rate caused by the wild-type strain in this assay is 100%, whereas that of its isogenic rfaH mutant does not exceed 18%. In the case of coinfection, the wild-type strain 536 shows higher potential to colonize the urinary tract even when it is outnumbered 100-fold by its rfaH mutant in the inoculum. In contrast to the wild-type strain, serum resistance of strain 536rfaH::cat is fully abolished. Furthermore, we give evidence that, besides a major decrease in the amount of hemin receptor ChuA (G. Nagy, U. Dobrindt, M. Kupfer, L. Emody, H. Karch, and J. Hacker, Infect. Immun. 69:1924-1928, 2001), loss of the RfaH protein results in an altered lipopolysaccharide phenotype as well as decreased expression of K15 capsule and alpha-hemolysin, whereas levels of other pathogenicity factors such as siderophores, flagella, Prf, and S fimbriae appear to be unaltered in strain 536rfaH::cat in comparison to the wild-type strain. trans complementation of the mutant strain with the rfaH gene restores wild-type levels of the affected virulence factors and consequently restitutes virulence in the mouse model of ascending urinary tract infection. PMID:12117951

  20. Quorum-sensing contributes to virulence, twitching motility, seed attachment and biofilm formation in the wild type strain Aac-5 of Acidovorax citrulli

    USDA-ARS?s Scientific Manuscript database

    Acidovorax citrulli is a seed-borne pathogen that causes bacterial fruit blotch of cucurbits including melon and watermelon. We investigated the roles of quorum sensing in the wild-type group II strain Aac-5 of A. citrulli by generating aacR and aacI knockout mutants and their complementation strain...

  1. The ability to entrain to long photoperiods differs between 3 Drosophila melanogaster wild-type strains and is modified by twilight simulation.

    PubMed

    Rieger, Dirk; Peschel, Nicolai; Dusik, Verena; Glotz, Silvia; Helfrich-Förster, Charlotte

    2012-02-01

    The ability to adapt to different environmental conditions including seasonal changes is a key feature of the circadian clock. Here, we compared the ability of 3 Drosophila melanogaster wild-type strains to adapt rhythmic activity to long photoperiods simulated in the laboratory. Fruit flies are predominantly crepuscular with activity bouts in the morning (M) and evening (E). The M peak follows dawn and the E peak follows dusk when the photoperiod is extended. We show that this ability is restricted to a certain extension of the phase angle between M and E peaks, such that the E peak does not delay beyond a certain phase under long days. We demonstrate that this ability is significantly improved by simulated twilight and that it depends additionally on the genetic background and the ambient temperature. At 20 °C, the laboratory strain CantonS had the most flexible phase angle between M and E peaks, a Northern wild-type strain had an intermediate one, and a Southern wild-type strain had the lowest flexibility. Furthermore, we found that the 3 strains differed in clock light sensitivity, with the CantonS and the Northern strains more light sensitive than the Southern strain. These results are generally in accord with the recently discovered polymorphisms in the timeless gene (tim) that affect clock light sensitivity.

  2. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    PubMed Central

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-01-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492

  3. Comparison of hemagglutinating, receptor-destroying, and acetylesterase activities of avirulent and virulent bovine coronavirus strains.

    PubMed

    Storz, J; Zhang, X M; Rott, R

    1992-01-01

    Hemagglutinating and acetylesterase functions as well as the 124 kDa glycoprotein were present in the highly cell-culture adapted, avirulent bovine coronavirus strain BCV-L9, in the Norden vaccine strain derived from it, and in 5 wild-type, virulent strains that multiplied in HRT-18 cells but were restricted in several types of cultured bovine cells. The BCV-L9 and the wild-type strain BCV-LY-138 agglutinated chicken and mouse erythrocytes. The acetylesterase facilitated break-down of the BCV-erythrocyte complex with chicken but only to a minimal extent with mouse erythrocytes in the receptor-destroying enzyme test. Purified preparations of the vaccine and the wild-type strains agglutinated chicken erythrocytes at low titers and mouse erythrocytes at 128 to 256 times higher titers whereas receptor destroying enzyme activity was detectable only with chicken erythrocytes. When wild-type strains were propagated in HRT cells at low passage levels, they produced 5 x 10(5) to 4.5 x 10(6) plaque forming units per 50 microliters which agglutinated erythrocytes from mice but not from chickens. Diisopropylfluoro-phosphate moderately increased the hemagglutination titers, but completely inhibited the receptor destroying enzyme of purified virus of all strains. It had virtually no influence on the plaque-forming infectivity of the different BCV strains. The acetylesterase of strain BCV-L9 reacting in the receptor-destroying enzyme test was stable for 3 h at 37 and 42 degrees C. It was inactivated within 30 min at 56 degrees C while the hemagglutinin function of this strain was stable for 3 h at 37, 42, and 56 degrees C, but it was inactivated at 65 degrees C within 1 h.

  4. Mumps-specific cross-neutralization by MMR vaccine-induced antibodies predicts protection against mumps virus infection.

    PubMed

    Gouma, Sigrid; Ten Hulscher, Hinke I; Schurink-van 't Klooster, Tessa M; de Melker, Hester E; Boland, Greet J; Kaaijk, Patricia; van Els, Cécile A C M; Koopmans, Marion P G; van Binnendijk, Rob S

    2016-07-29

    Similar to other recent mumps genotype G outbreaks worldwide, most mumps patients during the recent mumps genotype G outbreaks in the Netherlands had received 2 doses of measles, mumps and rubella (MMR) vaccine during childhood. Here, we investigate the capacity of vaccine-induced antibodies to neutralize wild type mumps virus strains, including mumps virus genotype G. In this study, we tested 105 pre-outbreak serum samples from students who had received 2 MMR vaccine doses and who had no mumps virus infection (n=76), symptomatic mumps virus infection (n=10) or asymptomatic mumps virus infection (n=19) during the mumps outbreaks. In all samples, mumps-specific IgG concentrations were measured by multiplex immunoassay and neutralization titers were measured against the Jeryl Lynn vaccine strain and against wild type genotype G and genotype D mumps virus strains. The correlation between mumps-specific IgG concentrations and neutralization titers against Jeryl Lynn was poor, which suggests that IgG concentrations do not adequately represent immunological protection against mumps virus infection by antibody neutralization. Pre-outbreak neutralization titers in infected persons were significantly lower against genotype G than against the vaccine strain. Furthermore, antibody neutralization of wild type mumps virus genotype G and genotype D was significantly reduced in pre-outbreak samples from infected persons as compared with non-infected persons. No statistically significant difference was found for the vaccine strain. The sensitivity/specificity ratio was largest for neutralization of the genotype G strain as compared with the genotype D strain and the vaccine strain. The reduced neutralization of wild type mumps virus strains in MMR vaccinated persons prior to infection indicates that pre-outbreak mumps virus neutralization is partly strain-specific and that neutralization differs between infected and non-infected persons. Therefore, we recommend the use of wild type mumps virus neutralization assays as preferred tool for surveillance of protection against mumps virus infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fermentation of Acid-pretreated Corn Stover to Ethanol Without Detoxification Using Pichia stipitis

    NASA Astrophysics Data System (ADS)

    Agbogbo, Frank K.; Haagensen, Frank D.; Milam, David; Wenger, Kevin S.

    In this work, the effect of adaptation on P. stipitis fermentation using acidpretreated corn stover hydrolyzates without detoxification was examined. Two different types of adaptation were employed, liquid hydrolyzate and solid state agar adaptation. Fermentation of 12.5% total solids undetoxified acid-pretreated corn stover was performed in shake flasks at different rotation speeds. At low rotation speed (100 rpm), both liquid hydrolyzate and solid agar adaptation highly improved the sugar consumption rate as well as ethanol production rate compared to the wild-type strains. The fermentation rate was higher for solid agar-adapted strains compared to liquid hydrolyzate-adapted strains. At a higher rotation speed (150 rpm), there was a faster sugar consumption and ethanol production for both the liquid-adapted and the wild-type strains. However, improvements in the fermentation rate between the liquid-adapted and wild strains were less pronounced at the high rotation speed.

  6. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections.

    PubMed

    Juréen, P; Angeby, K; Sturegård, E; Chryssanthou, E; Giske, C G; Werngren, J; Nordvall, M; Johansson, A; Kahlmeter, G; Hoffner, S; Schön, T

    2010-05-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed +/-1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis.

  7. Wild-Type MIC Distributions for Aminoglycoside and Cyclic Polypeptide Antibiotics Used for Treatment of Mycobacterium tuberculosis Infections▿

    PubMed Central

    Juréen, P.; Ängeby, K.; Sturegård, E.; Chryssanthou, E.; Giske, C. G.; Werngren, J.; Nordvall, M.; Johansson, A.; Kahlmeter, G.; Hoffner, S.; Schön, T.

    2010-01-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed ±1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis. PMID:20237102

  8. Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media.

    PubMed

    Bell, P J; Higgins, V J; Attfield, P V

    2001-04-01

    To compare the fermentative capacity of wild and domesticated isolates of the genus Saccharomyces. The fermentative capacity of yeasts from a variety of wild and domesticated sources was tested in synthetic dough media that mimic major bread dough types. Domesticated yeast strains were found to have better maltose-utilizing capacity than wild yeast strains. The capacity to ferment sugars under high osmotic stress was randomly distributed amongst wild and baking strains of Saccharomyces. The domestication of bakers' yeast has enhanced the ability of yeasts to ferment maltose, without a similar impact on the fermentative capacity under high osmotic conditions. This study, combined with molecular studies of both wild and domesticated yeast, showed that domestication of bakers' yeast has resulted in improved maltose utilization, apparently via the duplication and mutation of the MAL genes.

  9. Role of NleH, a Type III Secreted Effector from Attaching and Effacing Pathogens, in Colonization of the Bovine, Ovine, and Murine Gut▿

    PubMed Central

    Hemrajani, Cordula; Marches, Olivier; Wiles, Siouxsie; Girard, Francis; Dennis, Alison; Dziva, Francis; Best, Angus; Phillips, Alan D.; Berger, Cedric N.; Mousnier, Aurelie; Crepin, Valerie F.; Kruidenier, Laurens; Woodward, Martin J.; Stevens, Mark P.; La Ragione, Roberto M.; MacDonald, Thomas T.; Frankel, Gad

    2008-01-01

    The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-κB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC ΔnleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-κB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-κB response elements, we found that NleH causes an increase in NF-κB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain. PMID:18725419

  10. Wild poliovirus circulation among healthy children immunized with oral polio vaccine in Antananarivo, Madagascar.

    PubMed

    Andrianarivelo, M R; Rabarijaona, L; Boisier, P; Chezzi, C; Zeller, H G

    1999-01-01

    From July 1995 to December 1996, 3185 stool specimens from healthy children aged 6-59 months attending 6 dispensaries in the Antananarivo area were examined for poliovirus. The children had been routinely immunized according to the Expanded Programme on Immunization (EPI) schedule and received the last dose of oral polio vaccine (OPV) more than 1 month before stool collection. 99.4% of the children were immunized with at least 3 doses of OPV. HEp-2 cell culture revealed virus infections in 192 stools (6.0%), including 9 poliovirus (0.3%) and 183 nonpolio enterovirus isolates (5.7%). Infections occurred throughout the year, but incidence was higher during the hot and rainy season (P=0.01). Using a neutralization test with monoclonal antibodies and PCR-RFLP in two genomic regions coding for the VP1 capsid and RNA polymerase, 4 wild polioviruses (3 type 1 and 1 type 3) and 5 vaccine-related polioviruses (2 Sabin 1-like variants, 1 Sabin 2-like and 2 Sabin 3-like) strains were identified. The wild polioviruses were isolated at the beginning and the end of the dry season. Similar RFLP patterns were observed for the 3 wild type 1 polioviruses. Comparison of partial genomic sequences in the VP1/2 A region of 1 of the wild type 1 isolates with 2 wild type strains isolated in Antananarivo in 1992 and 1993 showed a divergence of at least 10% between the strains, suggesting at least two different pathways of transmission during this period. Our findings demonstrate that immunization with 3 doses of OPV did not prevent intestinal carriage of wild poliovirus strains, and that there is a risk of wild poliovirus transmission to susceptible children in the area. Multiple strategies are required to improve immunization coverage in Madagascar.

  11. Identification of vaccine-derived rotavirus strains in children with acute gastroenteritis in Japan, 2012-2015.

    PubMed

    Kaneko, Mei; Takanashi, Sayaka; Thongprachum, Aksara; Hanaoka, Nozomu; Fujimoto, Tsuguto; Nagasawa, Koo; Kimura, Hirokazu; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi

    2017-01-01

    Two live attenuated oral rotavirus vaccines, Rotarix and RotaTeq, have been introduced as voluntary vaccination in Japan since 2011 and 2012, respectively. Effectiveness of the vaccines has been confirmed, whereas concerns such as shedding of the vaccine strains and gastroenteritis cases caused by vaccine strains are not well assessed. We aimed to identify the vaccine strains in children with acute gastroenteritis (AGE) to investigate the prevalence of AGE caused by vaccination or horizontal transmission of vaccine strains. A total of 1,824 stool samples were collected from children with AGE at six outpatient clinics in 2012-2015. Among all, 372 group A rotavirus (RVA) positive samples were screened for vaccine components by real-time RT-PCR which were designed to differentiate vaccine strains from rotavirus wild-type strains with high specificity. For samples possessing both vaccine and wild-type strains, analyses by next-generation sequencing (NGS) were conducted to characterize viruses existed in the intestine. As a result, Rotarix-derived strains were identified in 6 of 372 (1.6%) RVA positive samples whereas no RotaTeq strain was detected. Among six samples, four possessed Rotarix-derived strains while two possessed both Rotarix-derived strains and wild-type strains. In addition, other pathogens such as norovirus, enterovirus and E.coli were detected in four samples. The contribution of these vaccine strains to each patient's symptoms was unclear as all of the cases were vaccinated 2-14 days before sample collection. Proportion of average coverage for each segmented gene by NGS strongly suggested the concurrent infection of the vaccine-derived strain and the wild-type strain rather than reassortment of these two strains in one sample. This is the first study to report the prevalence of vaccine-derived strains in patients with RVA AGE in Japan as 1.6% without evidence of horizontal transmission. The results emphasized the importance of continuous monitoring on vaccine strains and their clinical impacts on children.

  12. Identification of vaccine-derived rotavirus strains in children with acute gastroenteritis in Japan, 2012-2015

    PubMed Central

    Kaneko, Mei; Thongprachum, Aksara; Hanaoka, Nozomu; Fujimoto, Tsuguto; Nagasawa, Koo; Kimura, Hirokazu; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi

    2017-01-01

    Two live attenuated oral rotavirus vaccines, Rotarix and RotaTeq, have been introduced as voluntary vaccination in Japan since 2011 and 2012, respectively. Effectiveness of the vaccines has been confirmed, whereas concerns such as shedding of the vaccine strains and gastroenteritis cases caused by vaccine strains are not well assessed. We aimed to identify the vaccine strains in children with acute gastroenteritis (AGE) to investigate the prevalence of AGE caused by vaccination or horizontal transmission of vaccine strains. A total of 1,824 stool samples were collected from children with AGE at six outpatient clinics in 2012–2015. Among all, 372 group A rotavirus (RVA) positive samples were screened for vaccine components by real-time RT-PCR which were designed to differentiate vaccine strains from rotavirus wild-type strains with high specificity. For samples possessing both vaccine and wild-type strains, analyses by next-generation sequencing (NGS) were conducted to characterize viruses existed in the intestine. As a result, Rotarix-derived strains were identified in 6 of 372 (1.6%) RVA positive samples whereas no RotaTeq strain was detected. Among six samples, four possessed Rotarix-derived strains while two possessed both Rotarix-derived strains and wild-type strains. In addition, other pathogens such as norovirus, enterovirus and E.coli were detected in four samples. The contribution of these vaccine strains to each patient’s symptoms was unclear as all of the cases were vaccinated 2–14 days before sample collection. Proportion of average coverage for each segmented gene by NGS strongly suggested the concurrent infection of the vaccine-derived strain and the wild-type strain rather than reassortment of these two strains in one sample. This is the first study to report the prevalence of vaccine-derived strains in patients with RVA AGE in Japan as 1.6% without evidence of horizontal transmission. The results emphasized the importance of continuous monitoring on vaccine strains and their clinical impacts on children. PMID:28902863

  13. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    PubMed Central

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  14. Detection of MEF-1 laboratory reference strain of poliovirus type 2 in children with poliomyelitis in India in 2002 & 2003.

    PubMed

    Deshpande, J M; Nadkarni, S S; Siddiqui, Z A

    2003-12-01

    Significant progress has been made towards eradication of poliomyelitis in India. Surveillance for acute flaccid paralysis (AFP) has reached high standards. Among the 3 types of polioviruses, type 2 had been eliminated in India and eradicated globally as of October 1999. However, we isolated wild poliovirus type 2 from a small number of polio cases in northern India in 2000 and again during December 2002 to February 2003. Using molecular tools the origin, of the wild type 2 poliovirus was investigated. Polioviruses isolated from stool samples collected from patients with AFP were differentiated as wild virus or Sabin vaccine-like by ELISA and probe hybridization assays. Complete VP1 gene nucleotide sequences of the wild type 2 poliovirus isolates were determined by reverse transcriptase polymerase chain reaction (RT-PCR), followed by cycle sequencing. VP1 nucleotide sequences were compared with those of wild type 2 polioviruses that were indigenous in India in the past as well as prototype/laboratory strains and the GenBank database. Wild poliovirus type 2 was detected in stool samples from 6 patients with AFP in western Uttar Pradesh and 1 in Gujarat. In addition, the virus was isolated from one healthy contact child and from environmental sewage sample in Moradabad where three of these patients were reported. These isolates were identified as genetically closely related to laboratory reference strain MEF-1. Molecular characterization of the isolates confirmed that there was no evidence of extensive person-to-person transmission of the virus in the community. Laboratory reference strain (MEF-1) of poliovirus type 2 caused paralytic poliomyelitis in 10 patients in September 2000 and November 2002 to February 2003. The origin of the virus was some laboratory as yet not identified. This episode highlights the urgent need for stringent containment of wild poliovirus containing materials in the laboratories across the country in order to prevent recurrence of such incidents.

  15. Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy.

    PubMed

    Paul, Biplab C; El-Ganiny, Amira M; Abbas, Mariam; Kaminskyj, Susan G W; Dahms, Tanya E S

    2011-05-01

    The fungal wall mediates cell-environment interactions. Galactofuranose (Galf), the five-member ring form of galactose, has a relatively low abundance in Aspergillus walls yet is important for fungal growth and fitness. Aspergillus nidulans strains deleted for Galf biosynthesis enzymes UgeA (UDP-glucose-4-epimerase) and UgmA (UDP-galactopyranose mutase) lacked immunolocalizable Galf, had growth and sporulation defects, and had abnormal wall architecture. We used atomic force microscopy and force spectroscopy to image and quantify cell wall viscoelasticity and surface adhesion of ugeAΔ and ugmAΔ strains. We compared the results for ugeAΔ and ugmAΔ strains with the results for a wild-type strain (AAE1) and the ugeB deletion strain, which has wild-type growth and sporulation. Our results suggest that UgeA and UgmA are important for cell wall surface subunit organization and wall viscoelasticity. The ugeAΔ and ugmAΔ strains had significantly larger surface subunits and lower cell wall viscoelastic moduli than those of AAE1 or ugeBΔ hyphae. Double deletion strains (ugeAΔ ugeBΔ and ugeAΔ ugmAΔ) had more-disorganized surface subunits than single deletion strains. Changes in wall surface structure correlated with changes in its viscoelastic modulus for both fixed and living hyphae. Wild-type walls had the largest viscoelastic modulus, while the walls of the double deletion strains had the smallest. The ugmAΔ strain and particularly the ugeAΔ ugmAΔ double deletion strain were more adhesive to hydrophilic surfaces than the wild type, consistent with changes in wall viscoelasticity and surface organization. We propose that Galf is necessary for full maturation of A. nidulans walls during hyphal extension.

  16. Simultaneous co-detection of wild-type and vaccine strain measles virus using the BD MAX system.

    PubMed

    Thapa, Kiran; Ellem, Justin A; Basile, Kerri; Carter, Ian; Olma, Tom; Chen, Sharon C-A; Dwyer, Dominic E; Kok, Jen

    2018-06-01

    Despite the reported elimination of measles virus in Australia, importation of cases from endemic countries continues to lead to secondary local transmission and outbreaks. Rapid laboratory confirmation of measles is paramount for individual patient management and outbreak responses. Further, it is important to rapidly distinguish infection from wild-type virus or vaccine strains to guide public health responses. We developed a high throughput, TaqMan-based multiplex reverse-transcription-polymerase chain reaction (PCR) assay using the BD MAX platform (Becton Dickinson) that simultaneously detects measles virus and differentiates between wild-type and vaccine strains without the need for sequencing. Copyright © 2018 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  17. Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti.

    PubMed

    Sakurai, Kenta; Yamazaki, Shoko; Ishii, Masaharu; Igarashi, Yasuo; Arai, Hiroyuki

    2013-01-01

    Wild-type Acetobacter aceti NBRC 14818 possesses genes encoding isocitrate lyase (aceA) and malate synthase (glcB), which constitute the glyoxylate pathway. In contrast, several acetic acid bacteria that are utilized for vinegar production lack these genes. Here, an aceA-glcB knockout mutant of NBRC 14818 was constructed and used for investigating the role of the glyoxylate pathway in acetate productivity. In medium containing ethanol as a carbon source, the mutant grew normally during ethanol oxidation to acetate, but exhibited slower growth than that of the wild-type strain as the accumulated acetate was oxidized. The mutant grew similarly to that of the wild-type strain in medium containing glucose as a carbon source, indicating that the glyoxylate pathway was not necessary for glucose utilization. However, in medium containing both ethanol and glucose, the mutant exhibited significantly poorer growth and lower glucose consumption compared to the wild-type strain. Notably, the mutant oxidized ethanol nearly stoichiometrically to acetate, which was retained in the medium for a longer period of time than the acetate produced by wild-type strain. The features of the aceA-glcB knockout mutant revealed here indicate that the lack of the glyoxylate pathway is advantageous for industrial vinegar production by A. aceti. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Synergistic effects of acyclovir and 3, 19-isopropylideneandrographolide on herpes simplex virus wild types and drug-resistant strains.

    PubMed

    Priengprom, Thongkoon; Ekalaksananan, Tipaya; Kongyingyoes, Bunkerd; Suebsasana, Supawadee; Aromdee, Chantana; Pientong, Chamsai

    2015-03-11

    An andrographolide analogue, 3, 19-isopropylideneandrographolide (IPAD), exerts an inhibitory effect on replication of wild-type herpes simplex virus serotype 1 (HSV-1). In this study, we examined the anti-viral activity of IPAD on HSV wild types (HSV-1 strain KOS and HSV-2 clinical isolate) and HSV-1 drug-resistant strains (DRs). Synergistic effects of IPAD with acyclovir (ACV) were also evaluated. MTT and cytopathic effect (CPE) reduction assays were performed to determine cytotoxicity and anti-viral activities, respectively. A combination assay was used to determine synergistic effects of IPAD and ACV. Presence of viral DNA and protein in experimental cells was investigated using the polymerase chain reaction and western blotting, respectively. A non-cytotoxic concentration of IPAD (20.50 μM) completely inhibited CPE formation induced by HSV wild types and HSV-1 DRs after viral entry into the cells. The anti-HSV activities included inhibition of viral DNA and protein synthesis. The minimum inhibitory concentrations of ACV for HSV wild types and HSV-1 DRs were 20.20 and 2,220.00 μM, respectively. Combination of ACV with IPAD showed synergistic effects in inhibition of CPE formation, viral DNA and protein synthesis by HSV wild types as well as HSV-1 DRs. For the synergistic effects on HSV wild types and HSV-1 DRs, the effective concentrations of ACV were reduced. These results showed the inhibitory potential of IPAD on HSV wild types and HSV-1 DRs and suggested that IPAD could be used in combination with ACV for treatment of HSV-1 DRs infections.

  19. Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin

    PubMed Central

    Yu, Xia; Wang, Guirong; Chen, Suting; Wei, Guomei; Shang, Yuanyuan; Dong, Lingling; Schön, Thomas; Moradigaravand, Danesh; Peacock, Sharon J.

    2016-01-01

    Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. PMID:27324769

  20. Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs.

    PubMed

    Kaino, Tomohiro; Tateiwa, Tetsuya; Mizukami-Murata, Satomi; Shima, Jun; Takagi, Hiroshi

    2008-09-01

    We constructed self-cloning diploid baker's yeast strains by disrupting PUT1, encoding proline oxidase, and replacing the wild-type PRO1, encoding gamma-glutamyl kinase, with a pro1(D154N) or pro1(I150T) allele. The resultant strains accumulated intracellular proline and retained higher-level fermentation abilities in the frozen doughs than the wild-type strain. These results suggest that proline-accumulating baker's yeast is suitable for frozen-dough baking.

  1. Both Leukotoxin and Poly-N-Acetylglucosamine Surface Polysaccharide Protect Aggregatibacter actinomycetemcomitans Cells from Macrophage Killing

    PubMed Central

    Venketaraman, Vishwanath; Lin, Albert K.; Le, Amy; Kachlany, Scott C.; Connell, Nancy D.; Kaplan, Jeffrey B.

    2008-01-01

    Two virulence factors produced by the periodontopathogen Aggregatibacter actinomycetemcomitans are leukotoxin, a secreted lipoprotein that kills human polymorphonuclear leukocytes and macrophages, and poly-N-acetylglucosamine (PGA), a surface polysaccharide that mediates intercellular adhesion, biofilm formation and detergent resistance. In this study we examined the roles of leukotoxin and PGA in protecting A. actinomycetemcomitans cells from killing by the human macrophage cell line THP-1. Monolayers of THP-1 cells were infected with single-cell suspensions of a wild-type A. actinomycetemcomitans strain, or of isogenic leukotoxin or PGA mutant strains. After 48 h, viable bacteria were enumerated by dilution plating, macrophage morphology was evaluated microscopically, and macrophage viability was measured by a Trypan blue dye exclusion assay. The number of A. actinomycetemcomitans CFUs increased approximately 2-fold in wells infected with the wild-type strain, but decreased by approximately 70–90% in wells infected with the leukotoxin and PGA mutant strains. Infection with the wild-type or leukotoxin mutant strain caused a significant decrease in THP-1 cell viability, whereas infection with the PGA mutant strain did not result in any detectable changes in THP-1 viability. Pre-treatment of wild-type A. actinomycetemcomitans cells with the PGA-hydrolyzing enzyme dispersin B rendered them sensitive to killing by THP-1 cells. We concluded that both leukotoxin and PGA are necessary for evasion of macrophage killing by A. actinomycetemcomitans. PMID:18573331

  2. Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora.

    PubMed

    Andersson, R A; Kõiv, V; Norman-Setterblad, C; Pirhonen, M

    1999-12-01

    The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an rpoS mutant of the Er. carotovora subsp. carotovora strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses in vitro and to be deficient in glycogen accumulation. The production of extracellular enzymes in vitro was similar in the mutant and in the wild-type strains. However, the rpoS mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes in planta, but did not grow to higher cell density in planta compared to the wild-type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the rpoS mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild-type strain in planta and in vitro. These results suggest that a functional rpoS gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.

  3. Immune mechanisms induced by an HSV-1 mutant strain: Discrepancy analysis of the immune system gene profile in comparison with a wild-type strain.

    PubMed

    Zhang, Xiaolong; Jiang, Quanlong; Xu, Xingli; Wang, Yongrong; Liu, Lei; Lian, Yaru; Li, Hao; Wang, Lichun; Zhang, Ying; Jiang, Guorun; Zeng, Jieyuan; Zhang, Han; Han, Jing-Dong Jackie; Li, Qihan

    2018-04-25

    Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.

    PubMed

    Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki

    2014-02-01

    A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.

  5. A study of the interaction between H. pylori mice passage strains and gastric epithelial cells.

    PubMed

    Rahman, Inayatur; Idrees, Muhammad; Waqas, Mohammad; Karim, Abdul

    2018-05-01

    Helicobacter pylori (H. pylori) infections are very serious health problem that are further worsened by increasing/developing resistance to the current antibiotics. Therefore, new therapeutic agents are needed for H. pylori eradication. Use of a CD46 derived peptide (P3) as bactericidal agent against H. pylori has shown high activity rate in vivo and this study examines the changes in H. pylori features in response to effect of P3 treatment.AGS cells were infected with H. pylori wild type strain 67:21 and its mice passage strains (P3 treated and untreated strains) and further examined using immunoblotting assay, FACS and Urease activity analysis. Comparatively we found increased level of Urease alpha subunit A (UreA) and alkyl hydroperoxide reductase C (AhpC) proteins for P3 treated strain of H. pylori than its wild type or untreated strain after infection of AGS cells. Conclusion These results suggest that there might be a high rate of adherence to host cells for the P3 treated passage strain than untreated or wild type strain. Our findings also indicate that either adhesins are being changed or H. pylori interaction to the host cells is affected after P3 treatment.

  6. Comparison of the Live Attenuated Yellow Fever Vaccine 17D-204 Strain to Its Virulent Parental Strain Asibi by Deep Sequencing

    PubMed Central

    Beck, Andrew; Tesh, Robert B.; Wood, Thomas G.; Widen, Steven G.; Ryman, Kate D.; Barrett, Alan D. T.

    2014-01-01

    Background. The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. Methods. The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. Results. Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. Conclusions. Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence. PMID:24141982

  7. Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing.

    PubMed

    Beck, Andrew; Tesh, Robert B; Wood, Thomas G; Widen, Steven G; Ryman, Kate D; Barrett, Alan D T

    2014-02-01

    The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence.

  8. 5-Fluorouracil-resistant strain of Methanobacterium thermoautotrophicum.

    PubMed

    Nagle, D P; Teal, R; Eisenbraun, A

    1987-09-01

    Growth of Methanobacterium thermoautotrophicum Marburg is inhibited by the pyrimidine, 5-fluorouracil (FU). It was shown previously that methanogenesis is not inhibited to the same extent as growth. A spontaneously occurring FU-resistant strain (RTAE-1) was isolated from a culture of strain Marburg. The growth of both strains was inhibited by 5-fluorodeoxyuridine but not 5-fluorocytosine, and the wild type was more susceptible to inhibition by 5-azauracil and 6-azauracil than was strain RTAE-1. The cellular targets for the pyrimidine analogs are not known. When the accumulation of 14C-labeled uracil or FU by the two strains was compared, the wild type took up 15-fold more radiolabel per cell than did the FU-resistant strain. In the wild type, radiolabel from uracil was incorporated into the soluble pool, RNA, and DNA. The metabolism of uracil appeared to involve a uracil phosphoribosyltransferase activity. Strain Marburg extracts contained this enzyme, whereas FU-resistant strain RTAE-1 extracts had less than 1/10 as much activity. Although it is possible that a change in permeability to the compounds plays a role in the stable resistance of strain RTAE-1, the fact that it lacks the ability to metabolize pyrimidines to nucleotides is sufficient to account for its phenotype.

  9. 5-Fluorouracil-resistant strain of Methanobacterium thermoautotrophicum.

    PubMed Central

    Nagle, D P; Teal, R; Eisenbraun, A

    1987-01-01

    Growth of Methanobacterium thermoautotrophicum Marburg is inhibited by the pyrimidine, 5-fluorouracil (FU). It was shown previously that methanogenesis is not inhibited to the same extent as growth. A spontaneously occurring FU-resistant strain (RTAE-1) was isolated from a culture of strain Marburg. The growth of both strains was inhibited by 5-fluorodeoxyuridine but not 5-fluorocytosine, and the wild type was more susceptible to inhibition by 5-azauracil and 6-azauracil than was strain RTAE-1. The cellular targets for the pyrimidine analogs are not known. When the accumulation of 14C-labeled uracil or FU by the two strains was compared, the wild type took up 15-fold more radiolabel per cell than did the FU-resistant strain. In the wild type, radiolabel from uracil was incorporated into the soluble pool, RNA, and DNA. The metabolism of uracil appeared to involve a uracil phosphoribosyltransferase activity. Strain Marburg extracts contained this enzyme, whereas FU-resistant strain RTAE-1 extracts had less than 1/10 as much activity. Although it is possible that a change in permeability to the compounds plays a role in the stable resistance of strain RTAE-1, the fact that it lacks the ability to metabolize pyrimidines to nucleotides is sufficient to account for its phenotype. PMID:3624203

  10. [Isolation and characterization of a Streptococcus suis serotype 9 from a wild cat].

    PubMed

    Tang, Fang; Pan, Zihao; Li, Dezhi; Ma, Lin; Xiong, Yi; Lu, Chengping

    2016-02-04

    Streptococcus suis (S. suis) is an emerging zoonotic pathogenic bacterium capable of infecting piglets and human and with sporadic infections in a variety of mammalian species. The aim of this study is to investigate the prevalence of S. suis in wild cats. We isolated an S. suis strain from a wild cat. We tested the serotype of the isolated strain by anti-serum agglutination and PCR. We determined the sequence type (ST) of the isolated strain by multilocus sequence typing tests (MLST). We constructed the 16S rRNA phylogenetic tree of the isolation and S. suis strains in NCBI database to demonstrated genetic relationship of different strains. We measured the antibiotic resistance of the isolated strain by triple disk diffusion method. We detected the virulence of the isolated strain by mice infection experiments. We isolated an S. suis strain m70 from a wild cat, which belongs to serotype 9. MLST showed that m70 fell into a new ST. The 16S rRNA phylogenetic tree of m70 and S. suis strains in NCBI database demonstrated that m70 was in a separate cluster. m70 was resistant to tetracycline, intermediate to erythromycin, and sensitive to ampicillin, corresponding to clinical S. suis isolates in China. The mortality of mice infected with 10(8) CFU of m70 was achieved 60%-80% (3/5-4/5). The mean LD50 of mice infected with m70 was 5.1 x 10(7) CFU, while the mean LD50 of virulent S. suis strain HA9801 was 3.9 x 10(7) CFU. There is no significant difference between the LD50 of the two strains (P < 0.05). We isolated an S. suis strain from a wild cat, which belongs to the prevalent serotype and was a virulent strain, indicating the potential of transmission of S. suis from wild cats to humans, especially some prevalent serotype strains.

  11. Deletion of the Dynein Heavy-Chain Gene DYN1 Leads to Aberrant Nuclear Positioning and Defective Hyphal Development in Candida albicans

    PubMed Central

    Martin, R.; Walther, A.; Wendland, J.

    2004-01-01

    Cytoplasmic dynein is a microtubule-associated minus-end-directed motor protein. CaDYN1 encodes the single dynein heavy-chain gene of Candida albicans. The open reading frames of both alleles of CaDYN1 were completely deleted via a PCR-based approach. Cadyn1 mutants are viable but grow more slowly than the wild type. In vivo time-lapse microscopy was used to compare growth of wild-type (SC5314) and dyn1 mutant strains during yeast growth and after hyphal induction. During yeast-like growth, Cadyn1 strains formed chains of cells. Chromosomal TUB1-GFP and HHF1-GFP alleles were used both in wild-type and mutant strains to monitor the orientation of mitotic spindles and nuclear positioning in C. albicans. In vivo fluorescence time-lapse analyses with HHF1-GFP over several generations indicated defects in dyn1 cells in the realignment of spindles with the mother-daughter axis of yeast cells compared to that of the wild type. Mitosis in the dyn1 mutant, in contrast to that of wild-type yeast cells, was very frequently completed in the mother cells. Nevertheless, daughter nuclei were faithfully transported into the daughter cells, resulting in only a small number of multinucleate cells. Cadyn1 mutant strains responded to hypha-inducing media containing l-proline or serum with initial germ tube formation. Elongation of the hyphal tubes eventually came to a halt, and these tubes showed a defect in the tipward localization of nuclei. Using a heterozygous DYN1/dyn1 strain in which the remaining copy was controlled by the regulatable MAL2 promoter, we could switch between wild-type and mutant phenotypes depending on the carbon source, indicating that the observed mutant phenotypes were solely due to deletion of DYN1. PMID:15590831

  12. Development of an Avirulent Salmonella Surrogate for Modeling Pathogen Behavior in Pre- and Postharvest Environments

    PubMed Central

    de Moraes, Marcos H.; Chapin, Travis K.; Ginn, Amber; Wright, Anita C.; Parker, Kenneth; Hoffman, Carol; Pascual, David W.; Danyluk, Michelle D.

    2016-01-01

    ABSTRACT Recurrent outbreaks of bacterial gastroenteritis linked to the consumption of fresh fruits and vegetables highlight the paucity of understanding of the ecology of Salmonella enterica under crop production and postharvest conditions. These gaps in knowledge are due, at least in part, to the lack of suitable surrogate organisms for studies for which biosafety level 2 is problematic. Therefore, we constructed and validated an avirulent strain of Salmonella enterica serovar Typhimurium. The strain lacks major Salmonella pathogenicity islands SPI-1, SPI-2, SPI-3, SPI-4, and SPI-5 as well as the virulence plasmid pSLT. Deletions and the absence of genomic rearrangements were confirmed by genomic sequencing, and the surrogate behaved like the parental wild-type strain on selective media. A loss-of-function (phoN) selective marker allowed the differentiation of this strain from wild-type strains on a medium containing a chromogenic substrate for alkaline phosphatase. Lack of virulence was confirmed by oral infection of female BALB/c mice. The strain persisted in tomatoes, cantaloupes, leafy greens, and soil with the same kinetics as the parental wild-type and selected outbreak strains, and it reached similar final population levels. The responses of this strain to heat treatment and disinfectants were similar to those of the wild type, supporting its potential as a surrogate for future studies on the ecology and survival of Salmonella in production and processing environments. IMPORTANCE There is significant interest in understanding the ecology of human pathogens in environments outside of their animal hosts, including the crop production environment. However, manipulative field experiments with virulent human pathogens are unlikely to receive regulatory approval due to the obvious risks. Therefore, we constructed an avirulent strain of S. enterica serovar Typhimurium and characterized it extensively. PMID:27129962

  13. Organization and characterization of genetic regions in Bacillus subtilis subsp. krictiensis ATCC55079 associated with the biosynthesis of iturin and surfactin compounds

    PubMed Central

    Kim, Sung Eun; Lee, Won Jung; Moon, Jae Sun; Cho, Min Seop; Park, Ho-Yong; Hwang, Ingyu

    2017-01-01

    Bacillus subtilis subsp. krictiensis ATCC55079 produces the cyclic lipopeptide antibiotics iturin A–F as well as several surfactins. Here, we analyzed and characterized the biosynthetic genes associated with iturin and surfactin production in this strain. We aligned the sequences of each iturin and surfactin synthetase ORF obtained from a genomic library screen and next generation sequencing. The resulting 37,249-bp and 37,645-bp sequences associated with iturin and surfactin production, respectively, contained several ORFs that are predicted to encode proteins involved in iturin and surfactin biosynthesis. These ORFs showed higher sequence homologies with the respective iturin and surfactin synthetase genes of B. methylotrophicus CAU B946 than with those of B. subtilis RB14 and B. subtilis ATCC6633. Moreover, comparative analysis of the secondary metabolites produced by the wild-type and surfactin-less mutant (with a spectinomycin resistance cassette inserted into the srfAB gene within the putative surfactin gene region) strains demonstrated that the mutant strain showed significantly higher antifungal activity against Fusarium oxysporum than the wild-type strain. In addition, the wild-type strain-specific surfactin high performance liquid chromatography (HPLC) peaks were not observed in the surfactin-less mutant strain. In contrast, the iturin A peak detected by HPLC and liquid chromatography-mass spectrometry (LC/MS) in the surfactin-less mutant strain was 30% greater than that in the wild-type strain. These results suggested that the gene cluster we identified is involved in surfactin biosynthesis, and the biosynthetic pathways for iturin and surfactin in Bacillus strains producing both iturin and surfactin may utilize a common pathway. PMID:29267290

  14. Fimbria-Encoding Gene yadC Has a Pleiotropic Effect on Several Biological Characteristics and Plays a Role in Avian Pathogenic Escherichia coli Pathogenicity.

    PubMed

    Verma, Renu; Rojas, Thaís Cabrera Galvão; Maluta, Renato Pariz; Leite, Janaína Luisa; da Silva, Livia Pilatti Mendes; Nakazato, Gerson; Dias da Silveira, Wanderley

    2016-01-01

    The extraintestinal pathogen termed avian pathogenic Escherichia coli (APEC) is known to cause colibacillosis in chickens. The molecular basis of APEC pathogenesis is not fully elucidated yet. In this work, we deleted a component of the Yad gene cluster (yadC) in order to understand the role of Yad in the pathogenicity of the APEC strain SCI-07. In vitro, the transcription level of yadC was upregulated at 41°C and downregulated at 22°C. The yadC expression in vivo was more pronounced in lungs than in spleen, suggesting a role in the early steps of the infection. Chicks infected with the wild-type and mutant strains presented, respectively, 80% and 50% mortality rates. The ΔyadC strain presented a slightly decreased ability to adhere to HeLa cells with or without the d-mannose analog compared with the wild type. Real-time PCR (RT-PCR) assays showed that fimH was downregulated (P < 0.05) and csgA and ecpA were slightly upregulated in the mutant strain, showing that yadC modulates expression of other fimbriae. Bacterial internalization studies showed that the ΔyadC strain had a lower number of intracellular bacteria recovered from Hep-2 cells and HD11 cells than the wild-type strain (P < 0.05). Motility assays in soft agar demonstrated that the ΔyadC strain was less motile than the wild type (P < 0.01). Curiously, flagellum-associated genes were not dramatically downregulated in the ΔyadC strain. Taken together, the results show that the fimbrial adhesin Yad contributes to the pathogenicity and modulates different biological characteristics of the APEC strain SCI-07. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    PubMed

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  16. Administration of a Salmonella Enteritidis ΔhilAssrAfliG strain by coarse spray to newly hatched broilers reduces colonization and shedding of a Salmonella Enteritidis challenge strain.

    PubMed

    De Cort, W; Haesebrouck, F; Ducatelle, R; van Immerseel, F

    2015-01-01

    Consumption of contaminated poultry meat is still an important cause of Salmonella infections in humans. Colonization inhibition (CI) occurs when a live Salmonella strain is administered to chickens and subsequently protects against challenge with another Salmonella strain belonging to the same serotype. A Salmonella Enteritidis hilAssrAfliG deletion mutant has previously been proven to reduce colonization and shedding of a wild-type Salmonella Enteritidis strain in newly hatched broilers after experimental infection. In this study, we compared two administration routes for this strain. Administering the Salmonella Enteritidis ΔhilAssrAfliG strain through drinking water on the first day of life resulted in decreased fecal shedding and cecal colonization of a wild-type Salmonella Enteritidis challenge strain administered 24 h later using a seeder-bird model. When administering the CI strain by coarse spray on newly hatched broiler chicks, an even more pronounced reduction of cecal colonization was observed, and fecal shedding of the Salmonella Enteritidis challenge strain ceased during the course of the experiment. These data suggest that administering a Salmonella Enteritidis ΔhilAssrAfliG strain to newly hatched chicks using a coarse spray is a useful and effective method that reduces colonization and shedding of a wild-type Salmonella Enteritidis strain after early challenge. © 2014 Poultry Science Association Inc.

  17. Antigenic and molecular characterization of wild type 1 poliovirus causing outbreaks of poliomyelitis in Albania and neighboring countries in 1996.

    PubMed

    Fiore, L; Genovese, D; Diamanti, E; Catone, S; Ridolfi, B; Ibrahimi, B; Konomi, R; van der Avoort, H G; Hovi, T; Crainic, R; Simeoni, P; Amato, C

    1998-07-01

    Mass vaccination has led poliomyelitis to become a rare disease in a large part of the world, including Western Europe. However, in the past 20 years wild polioviruses imported from countries where polio is endemic have been responsible for outbreaks in otherwise polio-free European countries. We report on the characterization of poliovirus isolates from a large outbreak of poliomyelitis that occurred in Albania in 1996 and that also spread to the neighboring countries of Yugoslavia and Greece. The epidemics involved 145 subjects, mostly young adults, and caused persisting paralysis in 87 individuals and 16 deaths. The agent responsible for the outbreak was isolated from 74 patients and was identified as wild type 1 poliovirus by both immunological and molecular methods. Sequence analysis of the genome demonstrated the involvement of a single virus strain throughout the epidemics, and genotyping analysis showed 95% homology of the strain with a wild type 1 poliovirus strain isolated in Pakistan in 1995. Neutralization assays with both human sera and monoclonal antibodies were performed to analyze the antigenic structure of the epidemic strain, suggesting its peculiar antigenic characteristics. The presented data underline the current risks of outbreaks due to imported wild poliovirus and emphasize the need to improve vaccination efforts and also the need to implement surveillance in countries free of indigenous wild poliovirus.

  18. Antigenic and Molecular Characterization of Wild Type 1 Poliovirus Causing Outbreaks of Poliomyelitis in Albania and Neighboring Countries in 1996

    PubMed Central

    Fiore, L.; Genovese, D.; Diamanti, E.; Catone, S.; Ridolfi, B.; Ibrahimi, B.; konomi, R.; van der Avoort, H. G. A. M.; Hovi, T.; Crainic, R.; Simeoni, P.; Amato, C.

    1998-01-01

    Mass vaccination has led poliomyelitis to become a rare disease in a large part of the world, including Western Europe. However, in the past 20 years wild polioviruses imported from countries where polio is endemic have been responsible for outbreaks in otherwise polio-free European countries. We report on the characterization of poliovirus isolates from a large outbreak of poliomyelitis that occurred in Albania in 1996 and that also spread to the neighboring countries of Yugoslavia and Greece. The epidemics involved 145 subjects, mostly young adults, and caused persisting paralysis in 87 individuals and 16 deaths. The agent responsible for the outbreak was isolated from 74 patients and was identified as wild type 1 poliovirus by both immunological and molecular methods. Sequence analysis of the genome demonstrated the involvement of a single virus strain throughout the epidemics, and genotyping analysis showed 95% homology of the strain with a wild type 1 poliovirus strain isolated in Pakistan in 1995. Neutralization assays with both human sera and monoclonal antibodies were performed to analyze the antigenic structure of the epidemic strain, suggesting its peculiar antigenic characteristics. The presented data underline the current risks of outbreaks due to imported wild poliovirus and emphasize the need to improve vaccination efforts and also the need to implement surveillance in countries free of indigenous wild poliovirus. PMID:9650935

  19. Contrasting colonization and plant growth promoting capacity between wild type and gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weyens N.; van der Lelie D.; Boulet, J.

    2011-06-09

    This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promotemore » growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.« less

  20. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization.

    PubMed

    Balsanelli, Eduardo; Serrato, Rodrigo V; de Baura, Valter A; Sassaki, Guilherme; Yates, Marshall G; Rigo, Liu Un; Pedrosa, Fábio O; de Souza, Emanuel M; Monteiro, Rose A

    2010-08-01

    In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior.

    PubMed

    Yuan, Xiaofei; Couto, Jillian M; Glidle, Andrew; Song, Yanqing; Sloan, William; Yin, Huabing

    2017-12-15

    By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.

  2. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis.

    PubMed

    Benforte, Florencia C; Colonnella, Maria A; Ricardi, Martiniano M; Solar Venero, Esmeralda C; Lizarraga, Leonardo; López, Nancy I; Tribelli, Paula M

    2018-01-01

    Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.

  3. Neutropenia restores virulence to an attenuated Cu,Zn superoxide dismutase-deficient Haemophilus ducreyi strain in the swine model of chancroid.

    PubMed

    San Mateo, L R; Toffer, K L; Orndorff, P E; Kawula, T H

    1999-10-01

    Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu, Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host.

  4. Neutropenia Restores Virulence to an Attenuated Cu,Zn Superoxide Dismutase-Deficient Haemophilus ducreyi Strain in the Swine Model of Chancroid

    PubMed Central

    San Mateo, Lani R.; Toffer, Kristen L.; Orndorff, Paul E.; Kawula, Thomas H.

    1999-01-01

    Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu,Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host. PMID:10496915

  5. Biofilm Production and Antibiofilm Activity of Echinocandins and Liposomal Amphotericin B in Echinocandin-Resistant Yeast Species

    PubMed Central

    Marcos-Zambrano, Laura Judith; Gómez-Perosanz, Marta; Escribano, Pilar; Zaragoza, Oscar; Bouza, Emilio

    2016-01-01

    The echinocandins and liposomal amphotericin B are active against biofilm produced by echinocandin-susceptible Candida strains. However, few data have been reported on the production of biofilm by echinocandin-resistant isolates and their antifungal susceptibility. We studied the production of biofilm by fks mutant Candida strains and intrinsically echinocandin-resistant non-Candida isolates and the susceptibility of both entities to liposomal amphotericin B and echinocandins. We analyzed the production of biofilm by isolates from patients with fungemia (fks mutant Candida, n = 5; intrinsically echinocandin-resistant non-Candida, n = 12; and Candida wild type, n = 10). Biofilm formation was measured to classify strains according to biomass (crystal violet assay) and metabolic activity (XTT reduction assay). Preformed biofilms were tested against liposomal amphotericin B, caspofungin, micafungin, and anidulafungin. The sessile MIC was defined as the antifungal concentration yielding a 50% or 80% reduction in the metabolic activity of the biofilm compared to that of the growth control (SMIC50 and SMIC80, respectively). fks mutant Candida isolates formed biofilms in a fashion similar to that of Candida wild-type strains. The echinocandins had the highest activity against biofilms formed by wild-type Candida isolates, followed by fks mutant Candida isolates and non-Candida isolates. Liposomal amphotericin B had the highest activity against fks mutant Candida biofilms. The formation of biofilm by echinocandin-resistant strains was similar to that of wild-type strains, although resistance to echinocandins remained high. PMID:27021323

  6. The secreted esterase of Propionibacterium freudenreichii has a major role in cheese lipolysis.

    PubMed

    Abeijón Mukdsi, María Claudia; Falentin, Hélène; Maillard, Marie-Bernadette; Chuat, Victoria; Medina, Roxana Beatriz; Parayre, Sandrine; Thierry, Anne

    2014-01-01

    Free fatty acids are important flavor compounds in cheese. Propionibacterium freudenreichii is the main agent of their release through lipolysis in Swiss cheese. Our aim was to identify the esterase(s) involved in lipolysis by P. freudenreichii. We targeted two previously identified esterases: one secreted esterase, PF#279, and one putative cell wall-anchored esterase, PF#774. To evaluate their role in lipolysis, we constructed overexpression and knockout mutants of P. freudenreichii CIRM-BIA1(T) for each corresponding gene. The sequences of both genes were also compared in 21 wild-type strains. All strains were assessed for their lipolytic activity on milk fat. The lipolytic activity observed matched data previously reported in cheese, thus validating the relevance of the method used. The mutants overexpressing PF#279 or PF#774 released four times more fatty acids than the wild-type strain, demonstrating that both enzymes are lipolytic esterases. However, inactivation of the pf279 gene induced a 75% reduction in the lipolytic activity compared to that of the wild-type strain, whereas inactivation of the pf774 gene did not modify the phenotype. Two of the 21 wild-type strains tested did not display any detectable lipolytic activity. Interestingly, these two strains exhibited the same single-nucleotide deletion at the beginning of the pf279 gene sequence, leading to a premature stop codon, whereas they harbored a pf774 gene highly similar to that of the other strains. Taken together, these results clearly demonstrate that PF#279 is the main lipolytic esterase in P. freudenreichii and a key agent of Swiss cheese lipolysis.

  7. The Secreted Esterase of Propionibacterium freudenreichii Has a Major Role in Cheese Lipolysis

    PubMed Central

    Abeijón Mukdsi, María Claudia; Falentin, Hélène; Maillard, Marie-Bernadette; Chuat, Victoria; Medina, Roxana Beatriz; Parayre, Sandrine

    2014-01-01

    Free fatty acids are important flavor compounds in cheese. Propionibacterium freudenreichii is the main agent of their release through lipolysis in Swiss cheese. Our aim was to identify the esterase(s) involved in lipolysis by P. freudenreichii. We targeted two previously identified esterases: one secreted esterase, PF#279, and one putative cell wall-anchored esterase, PF#774. To evaluate their role in lipolysis, we constructed overexpression and knockout mutants of P. freudenreichii CIRM-BIA1T for each corresponding gene. The sequences of both genes were also compared in 21 wild-type strains. All strains were assessed for their lipolytic activity on milk fat. The lipolytic activity observed matched data previously reported in cheese, thus validating the relevance of the method used. The mutants overexpressing PF#279 or PF#774 released four times more fatty acids than the wild-type strain, demonstrating that both enzymes are lipolytic esterases. However, inactivation of the pf279 gene induced a 75% reduction in the lipolytic activity compared to that of the wild-type strain, whereas inactivation of the pf774 gene did not modify the phenotype. Two of the 21 wild-type strains tested did not display any detectable lipolytic activity. Interestingly, these two strains exhibited the same single-nucleotide deletion at the beginning of the pf279 gene sequence, leading to a premature stop codon, whereas they harbored a pf774 gene highly similar to that of the other strains. Taken together, these results clearly demonstrate that PF#279 is the main lipolytic esterase in P. freudenreichii and a key agent of Swiss cheese lipolysis. PMID:24242250

  8. Gravitropism of inflorescence stems in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Weise, S. E.; Kiss, J. Z.

    1999-01-01

    Previous studies have assayed the gravitropic response of roots and hypocotyls of wild type Arabidopsis thaliana, two reduced-starch strains, and a starchless strain. Because there have been few reports on inflorescence gravitropism, in this article, we use microscopic analyses and time-course studies of these mutants and their wild type to study gravitropism in these stems. Sedimentation of plastids was observed in endodermal cells of the wild type and reduced-starch mutants but not in the starchless mutant. In all of these strains, the short inflorescence stems (1.0-2.9 cm) were less responsive to the gravistimulus compared with the long stems (3.0-6.0 cm). In both long and short inflorescence stems, the wild type initially had the greatest response; the starchless mutant had the least response; and the reduced starch mutants exhibited an intermediate response. Furthermore, growth rates among all four strains were approximately equal. At about 6 h after reorientation, inflorescences of all strains returned to a position parallel to the gravity vector. Thus, in inflorescence stems, sedimentation of plastids may act as an accelerator but is not required to elicit a gravitropic response. Furthermore, the site of perception appears to be diffuse throughout the inflorescence stem. These results are consistent with both a plastid-based statolith model and the protoplast pressure hypothesis, and it is possible that multiple systems for gravity perception occur in plant cells.

  9. Mutations in the Atp1p and Atp3p subunits of yeast ATP synthase differentially affect respiration and fermentation in Saccharomyces cerevisiae.

    PubMed

    Francis, Brian R; White, Karen H; Thorsness, Peter E

    2007-04-01

    ATP1-111, a suppressor of the slow-growth phenotype of yme1Delta lacking mitochondrial DNA is due to the substitution of phenylalanine for valine at position 111 of the alpha-subunit of mitochondrial ATP synthase (Atp1p in yeast). The suppressing activity of ATP1-111 requires intact beta (Atp2p) and gamma (Atp3p) subunits of mitochondrial ATP synthase, but not the stator stalk subunits b (Atp4p) and OSCP (Atp5p). ATP1-111 and other similarly suppressing mutations in ATP1 and ATP3 increase the growth rate of wild-type strains lacking mitochondrial DNA. These suppressing mutations decrease the growth rate of yeast containing an intact mitochondrial chromosome on media requiring oxidative phosphorylation, but not when grown on fermentable media. Measurement of chronological aging of yeast in culture reveals that ATP1 and ATP3 suppressor alleles in strains that contain mitochondrial DNA are longer lived than the isogenic wild-type strain. In contrast, the chronological life span of yeast cells lacking mitochondrial DNA and containing these mutations is shorter than that of the isogenic wild-type strain. Spore viability of strains bearing ATP1-111 is reduced compared to wild type, although ATP1-111 enhances the survival of spores that lacked mitochondrial DNA.

  10. Spontaneous mutation reveals influence of exopolysaccharide on Lactobacillus johnsonii surface characteristics.

    PubMed

    Horn, Nikki; Wegmann, Udo; Dertli, Enes; Mulholland, Francis; Collins, Samuel R A; Waldron, Keith W; Bongaerts, Roy J; Mayer, Melinda J; Narbad, Arjan

    2013-01-01

    As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions.

  11. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿

    PubMed Central

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-01-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758

  12. Comparative pathogenomics of Clostridium tetani.

    PubMed

    Cohen, Jonathan E; Wang, Rong; Shen, Rong-Fong; Wu, Wells W; Keller, James E

    2017-01-01

    Clostridium tetani and Clostridium botulinum produce two of the most potent neurotoxins known, tetanus neurotoxin and botulinum neurotoxin, respectively. Extensive biochemical and genetic investigation has been devoted to identifying and characterizing various C. botulinum strains. Less effort has been focused on studying C. tetani likely because recently sequenced strains of C. tetani show much less genetic diversity than C. botulinum strains and because widespread vaccination efforts have reduced the public health threat from tetanus. Our aim was to acquire genomic data on the U.S. vaccine strain of C. tetani to better understand its genetic relationship to previously published genomic data from European vaccine strains. We performed high throughput genomic sequence analysis on two wild-type and two vaccine C. tetani strains. Comparative genomic analysis was performed using these and previously published genomic data for seven other C. tetani strains. Our analysis focused on single nucleotide polymorphisms (SNP) and four distinct constituents of the mobile genome (mobilome): a hypervariable flagellar glycosylation island region, five conserved bacteriophage insertion regions, variations in three CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems, and a single plasmid. Intact type IA and IB CRISPR/Cas systems were within 10 of 11 strains. A type IIIA CRISPR/Cas system was present in two strains. Phage infection histories derived from CRISPR-Cas sequences indicate C. tetani encounters phages common among commensal gut bacteria and soil-borne organisms consistent with C. tetani distribution in nature. All vaccine strains form a clade distinct from currently sequenced wild type strains when considering variations in these mobile elements. SNP, flagellar glycosylation island, prophage content and CRISPR/Cas phylogenic histories provide tentative evidence suggesting vaccine and wild type strains share a common ancestor.

  13. Wild type measles virus attenuation independent of type I IFN.

    PubMed

    Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T

    2008-02-03

    Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the alpha/beta IFN system.

  14. Wild type measles virus attenuation independent of type I IFN

    PubMed Central

    Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T

    2008-01-01

    Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system. PMID:18241351

  15. Isolation and characterization of Lactobacillus helveticus DSM 20075 variants with improved autolytic capacity.

    PubMed

    Spus, Maciej; Liu, Hua; Wels, Michiel; Abee, Tjakko; Smid, Eddy J

    2017-01-16

    Lactobacillus helveticus is widely used in dairy fermentations and produces a range of enzymes, which upon cell lysis can be released into the cheese matrix and impact degradation of proteins, peptides and lipids. In our study we set out to explore the potential of Lb. helveticus DSM 20075 for increased autolytic capacity triggered by conditions such as low pH and high salt concentrations encountered in cheese environments. Lb. helveticus DSM 20075 was subjected to varied incubation temperatures (ranging from 37 to 50°C). High-temperature incubation (in the range of 45 to 50°C) allowed us to obtain a collection of six variant strains (V45-V50), which in comparison to the wild-type strain, showed higher growth rates at elevated temperatures (42°C-45°C). Moreover, variant strain V50 showed a 4-fold higher, in comparison to wild type, autolytic capacity in cheese-like conditions. Next, strain V50 was used as an adjunct in lab-scale cheese making trials to measure its impact on aroma formation during ripening. Specifically, in cheeses made with strain V50, the relative abundance of benzaldehyde increased 3-fold compared to cheeses made with the wild-type strain. Analysis of the genome sequence of strain V50 revealed multiple mutations in comparison to the wild-type strain DSM 20075 including a mutation found in a gene coding for a metal ion transporter, which can potentially be linked to intracellular accumulation of Mn 2+ and benzaldehyde formation. The approach of high-temperature incubation can be applied in dairy industry for the selection of (adjunct) cultures targeted at accelerated cheese ripening and aroma formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains.

    PubMed

    Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A

    2014-01-01

    Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.

  17. Wild corvid birds colonized with vancomycin-resistant Enterococcus faecium of human origin harbor epidemic vanA plasmids.

    PubMed

    Oravcová, Veronika; Peixe, Luísa; Coque, Teresa M; Novais, Carla; Francia, Maria V; Literák, Ivan; Freitas, Ana R

    2018-06-02

    The most prevalent type of acquired vancomycin resistance in Enterococcus faecium (VREfm) is encoded by the vanA transposon Tn1546, mainly located on transferable plasmids. vanA plasmids have been characterized in VREfm from a variety of sources but not wild birds. The aim of this study was to analyse the genetic context of VREfm strains recovered from wild corvid birds and to compare their plasmid and strain characteristics with human strains. To achieve that, 75 VREfm isolates, including strains from wild birds recovered during wide surveillance studies performed in Europe, Canada and the United States (2010-2013), and clinical and wastewater strains from Czech Republic, a region lacking data about vanA plasmids, were analysed. Their population structure, presence of major putative virulence markers and characterization of vanA transposons and plasmids were established. VREfm from wild birds were mainly associated with major human lineages (ST18 and ST78) circulating in hospitals worldwide and were enriched in putative virulence markers that are highly associated with clinical E. faecium from human infections. They also carried plasmids of the same families usually found in the clinical setting [RCR, small theta plasmids, RepA_N (pRUM/pLG1) and Inc18]. The clinically widespread IS1251-carrying Tn1546 type "F" was predominant and Tn1546-vanA was mainly located on pRUM/Axe-Txe (USA) and Inc18- or pLG1-like (Europe) plasmids. VREfm from hospitals and wastewaters carried Tn1546-vanA in different plasmid types including mosaic pRUM-Inc18 plasmids, not identified in wild birds. This is the first characterization of vanA plasmids obtained from wild birds. A similar plasmid pool seems to exist in different clonal E. faecium backgrounds of humans and wild birds. The isolation of VREfm strains from wild birds that belong to human E. faecium adapted lineages and carry virulence genes, Tn1546 and plasmid variants widespread in the clinical setting is of concern and highlight their role as potential drivers of the global dissemination of vancomycin resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. MT-PCR panel detection of canine parvovirus (CPV-2): Vaccine and wild-type CPV-2 can be difficult to differentiate in canine diagnostic fecal samples.

    PubMed

    Meggiolaro, Maira N; Ly, Anna; Rysnik-Steck, Benjamin; Silva, Carolina; Zhang, Joshua; Higgins, Damien P; Muscatello, Gary; Norris, Jacqueline M; Krockenberger, Mark; Šlapeta, Jan

    2017-06-01

    Canine parvovirus (CPV-2) remains an important cause of devastating enteritis in young dogs. It can be successfully prevented with live attenuated CPV-2 vaccines when given at the appropriate age and in the absence of maternal antibody interference. Rapid diagnosis of parvoviral enteritis in young dogs is essential to ensuring suitable barrier nursing protocols within veterinary hospitals. The current diagnostic trend is to use multiplexed PCR panels to detect an array of pathogens commonly responsible for diarrhea in dogs. The multiplexed PCR assays do not distinguish wild from vaccine CPV-2. They are highly sensitive and detect even a low level of virus shedding, such as those caused by the CPV-2 vaccine. The aim of this study was to identify the CPV-2 subtypes detected in diagnostic specimens and rule out occult shedding of CPV-2 vaccine strains. For a total of 21 samples that tested positive for CPV-2 in a small animal fecal pathogens diagnostic multiplexed tandem PCR (MT-PCR) panel during 2014-2016 we partially characterized the VP2 gene of CPV-2. Vaccine CPV-2 strain, wild type CPV-2a subtypes and vaccine-like CPV-2b subtypes were detected. High copy number was indicative of wild-type CPV-2a presence, but presence of vaccine-like CPV-2b had a variable copy number in fecal samples. A yardstick approach to a copy number or C t -value to discriminate vaccine strain from a wild type virus of CPV-2 can be, in some cases, potentially misleading. Therefore, discriminating vaccine strain from a wild type subtype of CPV-2 remains ambitious. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Induction of stable benomyl-tolerant phenotypic mutants of Trichoderma pseudokoningii MTCC 3011, and their evaluation for antagonistic and biocontrol potential.

    PubMed

    Mukherjee, P K; Sherkhane, P D; Murthy, N B

    1999-07-01

    Trichoderma pseudokoningii MTCC 3011 is a very useful strain for biological control of the plant pathogen Sclerotium rolfsii under post-harvest conditions. In the present investigation, several benomyl-tolerant phenotypic mutants of this strain have been generated using a two step mutagenesis-chemical followed by gamma irradiation. The mutants differed from the wild type strain in antibiotic and disease control potential. Some of the mutants are superior to the wild type in biocontrol potential on S. rolfsii.

  20. Effect of impaired twitching motility and biofilm dispersion on performance of Pseudomonas aeruginosa-powered microbial fuel cells.

    PubMed

    Shreeram, Devesh D; Panmanee, Warunya; McDaniel, Cameron T; Daniel, Susan; Schaefer, Dale W; Hassett, Daniel J

    2018-02-01

    Pseudomonas aeruginosa is a metabolically voracious bacterium that is easily manipulated genetically. We have previously shown that the organism is also highly electrogenic in microbial fuel cells (MFCs). Polarization studies were performed in MFCs with wild-type strain PAO1 and three mutant strains (pilT, bdlA and pilT bdlA). The pilT mutant was hyperpiliated, while the bdlA mutant was suppressed in biofilm dispersion chemotaxis. The double pilT bdlA mutant was expected to have properties of both mutations. Polarization data indicate that the pilT mutant showed 5.0- and 3.2-fold increases in peak power compared to the wild type and the pilT bdlA mutant, respectively. The performance of the bdlA mutant was surprisingly the lowest, while the pilT bdlA electrogenic performance fell between the pilT mutant and wild-type bacteria. Measurements of biofilm thickness and bacterial viability showed equal viability among the different strains. The thickness of the bdlA mutant, however, was twice that of wild-type strain PAO1. This observation implicates the presence of dead or dormant bacteria in the bdlA mutant MFCs, which increases biofilm internal resistance as confirmed by electrochemical measurements.

  1. Sortase anchored proteins of Streptococcus uberis play major roles in the pathogenesis of bovine mastitis in dairy cattle

    PubMed Central

    Leigh, James A.; Egan, Sharon A.; Ward, Philip N.; Field, Terence R.; Coffey, Tracey J.

    2010-01-01

    Streptococcus uberis, strain 0140J, contains a single copy sortase A (srtA), encoding a transamidase capable of covalently anchoring specific proteins to peptidoglycan. Unlike the wild-type, an isogenic mutant carrying an inactivating ISS1 insertion within srtA was only able to infect the bovine mammary gland in a transient fashion. For the first 24 h post challenge, the srtA mutant colonised at a similar rate and number to the wild type strain, but unlike the wild type did not subsequently colonise in higher numbers. Similar levels of host cell infiltration were detected in response to infection with both strains, but only in those mammary quarters infected with the wild type strain were clinical signs of disease evident. Mutants that failed to express individual sortase substrate proteins (sub0135, sub0145, sub0207, sub0241, sub0826, sub0888, sub1095, sub1154, sub1370, and sub1730) were isolated and their virulence determined in the same challenge model. This revealed that mutants lacking sub0145, sub1095 and sub1154 were attenuated in cattle. These data demonstrate that a number of sortase anchored proteins each play a distinct, non-redundant and important role in pathogenesis of S. uberis infection within the lactating bovine mammary gland. PMID:20519112

  2. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues?

    PubMed Central

    Blánquez, Alba; Ball, Andrew S.; González-Pérez, José Antonio; Jiménez-Morillo, Nicasio T.; González-Vila, Francisco; Arias, M. Enriqueta

    2017-01-01

    The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA−) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA−). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA− and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation. PMID:29112957

  3. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues?

    PubMed

    Blánquez, Alba; Ball, Andrew S; González-Pérez, José Antonio; Jiménez-Morillo, Nicasio T; González-Vila, Francisco; Arias, M Enriqueta; Hernández, Manuel

    2017-01-01

    The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA-) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA-). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA- and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation.

  4. A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems.

    PubMed

    Moleleki, Lucy Novungayo; Pretorius, Rudolph Gustav; Tanui, Collins Kipngetich; Mosina, Gabolwelwe; Theron, Jacques

    2017-01-01

    Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain. © 2016 BSPP and John Wiley & Sons Ltd.

  5. Survival differences among freeze-dried genetically engineered and wild-type bacteria.

    PubMed Central

    Israeli, E; Shaffer, B T; Hoyt, J A; Lighthart, B; Ganio, L M

    1993-01-01

    Because the death mechanisms of freeze-dried and air-dried bacteria are thought to be similar, freeze-drying was used to investigate the survival differences between potentially airborne genetically engineered microorganisms and their wild types. To this end, engineered strains of Escherichia coli and Pseudomonas syringae were freeze-dried and exposed to air, visible light, or both. The death rates of all engineered strains were significantly higher than those of their parental strains. Light and air exposure were found to increase the death rates of all strains. Application of death rate models to freeze-dried engineered bacteria to be released into the environment is discussed. PMID:8434925

  6. The molecular phylogenic tree of the genus Trichinella constructed from isozyme patterns.

    PubMed

    Fukumoto, S; Nagai, D; Yazaki, S; Kamo, H; Yamaguchi, T

    1988-01-01

    Six zymograms were compared for extracts of muscle-stage larvae of the seven Trichinella isolates, using isoelectric focusing in polyacrylamide gels. The isozyme patterns of acid phosphatase among them fell into four types. T. pseudospiralis from a raccoon and the Polar strain from a polar bear formed type 1 and type 2, respectively. The Iwasaki strain from a Japanese black bear and the Yamagata strain from a raccoon dog, both from Japan, were type 3. Type 4 consisted of three remaining strains, viz. the Polish strain from a wild pig, the USA strain from a pig, and the Thai strain from a human case, all of which have similar infectivity to pigs. The isozyme patterns of esterase 1, beta-N-acetylglucosaminidase, and peptidase were similar in types 2 and 3. Those of esterase D were common to types 2-4 but not to type 1. In the zymogram of mannosephosphate isomerase, types 2-4 but not type 1 had one common band, whereas in the other bands type 2 was markedly distinguished from types 3 and 4. In the present study, the molecular phylogenic tree was constructed for the first time on the basis of our present and previous electrophoretic data by the use of cluster analysis, and the evolutionary process was considered as follows: T. pseudospiralis (type 1) and T. spiralis (the common ancestor of types 2-4) were initially separated. Next, the common ancestor of the strains from wild carnivores (types 2 and 3) and type 4 were separated. Finally, the Polar strain (type 2) and the Japanese strain (type 3) were separated.

  7. Detection and differentiation of wild-type and vaccine strains of canine distemper virus by a duplex reverse transcription polymerase chain reaction

    PubMed Central

    Dong, X. Y.; Li, W. H.; Zhu, J. L.; Liu, W. J.; Zhao, M. Q.; Luo, Y. W.; Chen, J. D.

    2015-01-01

    Canine distemper virus (CDV) is the cause of canine distemper (CD) which is a severe and highly contagious disease in dogs. In the present study, a duplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of CDV. Four primers were designed to detect and discriminate the two viruses by generating 638- and 781-bp cDNA products, respectively. Furthermore, the duplex RT-PCR method was used to detect 67 field samples suspected of CD from Guangdong province in China. Results showed that, 33 samples were to be wild-type-like. The duplex RT-PCR method exhibited high specificity and sensitivity which could be used to effectively detect and differentiate wild-type and vaccine CDV, indicating its use for clinical detection and epidemiological surveillance. PMID:27175171

  8. Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: Steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa.

    PubMed

    Munhenga, Givemore; Brooke, Basil D; Gilles, Jeremie R L; Slabbert, Kobus; Kemp, Alan; Dandalo, Leonard C; Wood, Oliver R; Lobb, Leanne N; Govender, Danny; Renke, Marius; Koekemoer, Lizette L

    2016-03-02

    Anopheles arabiensis Patton is primarily responsible for malaria transmission in South Africa after successful suppression of other major vector species using indoor spraying of residual insecticides. Control of An. arabiensis using current insecticide based approaches is proving difficult owing to the development of insecticide resistance, and variable feeding and resting behaviours. The use of the sterile insect technique as an area-wide integrated pest management system to supplement the control of An. arabiensis was proposed for South Africa and is currently under investigation. The success of this technique is dependent on the ability of laboratory-reared sterile males to compete with wild males for mates. As part of the research and development of the SIT technique for use against An. arabiensis in South Africa, radio-sensitivity and mating competitiveness of a local An. arabiensis sexing strain were assessed. The optimal irradiation dose inducing male sterility without compromising mating vigour was tested using Cobalt 60 irradiation doses ranging from 70-100 Gy. Relative mating competitiveness of sterile laboratory-reared males (GAMA strain) compared to fertile wild-type males (AMAL strain) for virgin wild-type females (AMAL) was investigated under laboratory and semi-field conditions using large outdoor cages. Three different sterile male to fertile male to wild-type female ratios were evaluated [1:1:1, 5:1:1 and 10:1:1 (sterile males: fertile, wild-type males: fertile, wild-type females)]. Irradiation at the doses tested did not affect adult emergence but had a moderate effect on adult survivorship and mating vigour. A dose of 75 Gy was selected for the competitiveness assays. Mating competitiveness experiments showed that irradiated GAMA male mosquitoes are a third as competitive as their fertile AMAL counterparts under semi-field conditions. However, they were not as competitive under laboratory conditions. An inundative ratio of 10:1 induced the highest sterility in the representative wild-type population, with potential to effectively suppress reproduction. Laboratory-reared and sterilised GAMA male An. arabiensis at a release ratio of 3:1 (3 sterile males to 1 wild, fertile male) can successfully compete for insemination of wild-type females. These results will be used to inform subsequent small-scale pilot field releases in South Africa.

  9. A chimeric measles virus with canine distemper envelope protects ferrets from lethal distemper challenge.

    PubMed

    Rouxel, Ronan Nicolas; Svitek, Nicholas; von Messling, Veronika

    2009-08-06

    CDV infects a broad range of carnivores, and over the past decades it has caused outbreaks in a variety of wild carnivore populations. Since the currently available live-attenuated vaccine is not sufficiently safe in these highly susceptible species, we produced a chimeric virus combining the replication complex of the measles Moraten vaccine strain with the envelope of a recent CDV wild type isolate. The resulting virus did not cause disease or immunosuppression in ferrets and conferred protection from challenge with a lethal wild type strain, demonstrating its potential value for wildlife conservation efforts.

  10. Anthelmintic effect of Psidium guajava and Tagetes erecta on wild-type and Levamisole-resistant Caenorhabditis elegans strains.

    PubMed

    Piña-Vázquez, Denia M; Mayoral-Peña, Zyanya; Gómez-Sánchez, Maricela; Salazar-Olivo, Luis A; Arellano-Carbajal, Fausto

    2017-04-18

    Psidium guajava and Tagetes erecta have been used traditionally to treat gastrointestinal parasites, but their active metabolites and mechanisms of action remain largely unknown. To evaluate the anthelmintic potential of Psidium guajava and Tagetes erecta extracts on Levamisole-sensitive and Levamisole-resistant strains of the model nematode Caenorhabditis elegans. Aqueous extracts of Psidium guajava (PGE) and Tagetes erecta (TEE) were assayed on locomotion and egg-laying behaviors of the wild-type (N2) and Levamisole-resistant (CB193) strains of Caenorhabditis elegans. Both extracts paralyzed wild-type and Levamisole-resistant nematodes in a dose-dependent manner. In wild-type worms, TEE 25mg/mL induced a 75% paralysis after 8h of treatment and PGE 25mg/mL induced a 100% paralysis after 4h of treatment. PGE exerted a similar paralyzing effect on N2 wild-type and CB193 Levamisole-resistant worms, while TEE only partially paralyzed CB193 worms. TEE 25mg/mL decreased N2 egg-laying by 65% with respect to the untreated control, while PGE did it by 40%. Psidium guajava leaves and Tagetes erecta flower-heads possess hydrosoluble compounds that block the motility of Caenorhabditis elegans by a mechanism different to that of the anthelmintic drug Levamisole. Effects are also observable on oviposition, which was diminished in the wild-type worms. The strong anthelmintic effects in crude extracts of these plants warrants future work to identify their active compounds and to elucidate their molecular mechanisms of action. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Fructose 6-phosphate phosphoketolase activity in wild-type strains of Lactobacillus, isolated from the intestinal tract of pigs.

    PubMed

    Bolado-Martínez, E; Acedo-Félix, E; Peregrino-Uriarte, A B; Yepiz-Plascencia, G

    2012-01-01

    Phosphoketolases are key enzymes of the phosphoketolase pathway of heterofermentative lactic acid bacteria, which include lactobacilli. In heterofermentative lactobacilli xylulose 5-phosphate phosphoketolase (X5PPK) is the main enzyme of the phosphoketolase pathway. However, activity of fructose 6-phosphate phosphoketolase (F6PPK) has always been considered absent in lactic acid bacteria. In this study, the F6PPK activity was detected in 24 porcine wild-type strains of Lactobacillus reuteri and Lactobacillus mucosae, but not in the Lactobacillus salivarius or in L. reuteri ATCC strains. The activity of F6PPK increased after treatment of the culture at low-pH and diminished after porcine bile-salts stress conditions in wild-type strains of L. reuteri. Colorimetric quantification at 505 nm allowed to differentiate between microbial strains with low activity and without the activity of F6PPK. Additionally, activity of F6PPK and the X5PPK gene expression levels were evaluated by real time PCR, under stress and nonstress conditions, in 3 L. reuteri strains. Although an exact correlation, between enzyme activity and gene expression was not obtained, it remains possible that the xpk gene codes for a phosphoketolase with dual substrate, at least in the analyzed strains of L. reuteri.

  12. The redox-sensing protein Rex modulates ethanol production in Thermoanaerobacterium saccharolyticum

    PubMed Central

    Lanahan, Anthony A.; Lynd, Lee R.

    2018-01-01

    Thermoanaerobacterium saccharolyticum is a thermophilic anaerobe that has been engineered to produce high amounts of ethanol, reaching ~90% theoretical yield at a titer of 70 g/L. Here we report the physiological changes that occur upon deleting the redox-sensing transcriptional regulator Rex in wild type T. saccharolyticum: a single deletion of rex resulted in a two-fold increase in ethanol yield (from 40% to 91% theoretical yield), but the resulting strains grew only about a third as fast as the wild type strain. Deletion of the rex gene also had the effect of increasing expression of alcohol dehydrogenase genes, adhE and adhA. After several serial transfers, the ethanol yield decreased from an average of 91% to 55%, and the growth rates had increased. We performed whole-genome resequencing to identify secondary mutations in the Δrex strains adapted for faster growth. In several cases, secondary mutations had appeared in the adhE gene. Furthermore, in these strains the NADH-linked alcohol dehydrogenase activity was greatly reduced. Complementation studies were done to reintroduce rex into the Δrex strains: reintroducing rex decreased ethanol yield to below wild type levels in the Δrex strain without adhE mutations, but did not change the ethanol yield in the Δrex strain where an adhE mutation occurred. PMID:29621294

  13. Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garber, E.D.; Baird, M.L.; Chapman, D.J.

    1975-12-01

    Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, $gamma$-carotene; and one yellow mutant, $beta$-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange- yellow, respectively. The whitemore » mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants. (auth)« less

  14. The alternative sigma factor sigma B of Staphylococcus aureus modulates virulence in experimental central venous catheter-related infections.

    PubMed

    Lorenz, Udo; Hüttinger, Christian; Schäfer, Tina; Ziebuhr, Wilma; Thiede, Arnulf; Hacker, Jörg; Engelmann, Susanne; Hecker, Michael; Ohlsen, Knut

    2008-03-01

    The impact of the alternative sigma factor sigma B (SigB) on pathogenesis of Staphylococcus aureus is not conclusively clarified. In this study, a central venous catheter (CVC) related model of multiorgan infection was used to investigate the role of SigB for the pathogenesis of S. aureus infections and biofilm formation in vivo. Analysis of two SigB-positive wild-type strains and their isogenic mutants revealed uniformly that the wild-type was significantly more virulent than the SigB-deficient mutant. The observed difference in virulence was apparently not linked to the capability of the strains to form biofilms in vivo since wild-type and mutant strains were able to produce biofilm layers inside of the catheter. The data strongly indicate that the alternative sigma factor SigB plays a role in CVC-associated infections caused by S. aureus.

  15. Improved α-amylase production by Aspergillus oryzae after a double deletion of genes involved in carbon catabolite repression.

    PubMed

    Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2014-01-01

    In filamentous fungi, the expression of secretory glycoside hydrolase encoding genes, such as those for amylases, cellulases, and xylanases, is generally repressed in the presence of glucose. CreA and CreB have been observed to be regulating factors for carbon catabolite repression. In this study, we generated single and double deletion creA and/or creB mutants in Aspergillus oryzae. The α-amylase activities of each strain were compared under various culture conditions. For the wild-type strain, mRNA levels of α-amylase were markedly decreased in the later stage of submerged culture under inducing conditions, whereas this reduced expression was not observed for single creA and double creA/creB deletion mutants. In addition, α-amylase activity of the wild-type strain was reduced in submerged culture containing high concentrations of inducing sugars, whereas all constructed mutants showed higher α-amylase activities. In particular, the α-amylase activity of the double deletion mutant in a medium containing 5% starch was >10-fold higher than that of the wild-type strain under the same culture conditions. In solid-state cultures using wheat bran as a substrate, the α-amylase activities of single creA and double deletion mutants were >2-fold higher than that of the wild-type strain. These results suggested that deleting both creA and creB resulted in dramatic improvements in the production of secretory glycoside hydrolases in filamentous fungi.

  16. The hydrolytic activity of esterases in the yeast Saccharomyces cerevisiae is strain dependent.

    PubMed

    Kwolek-Mirek, Magdalena; Bednarska, Sabina; Zadrąg-Tęcza, Renata; Bartosz, Grzegorz

    2011-11-01

    Ester precursors of fluorogenic or chromogenic probes are often employed in studies of yeast cell biology. This study was aimed at a comparison of the ability of several commonly used laboratory wild-type Saccharomyces cerevisiae strains to hydrolyse the following model esters: fluorescein diacetate, 2-naphthyl acetate, PNPA (p-nitrophenyl acetate) and AMQI (7-acetoxy-1-methylquinolinum iodide). In all the strains, the esterase activity was localized mainly to the cytosol. Considerable differences in esterase activity were observed between various wild-type laboratory yeast strains. The phase of growth also contributed to the variation in esterase activity of the yeast. This diversity implies the need for caution in using intracellularly hydrolysed probes for a comparison of yeast strains with various genetic backgrounds.

  17. Adaptive evolution of Desulfovibrio alaskensis G20 for developing resistance to perchlorate

    NASA Astrophysics Data System (ADS)

    Mehta-Kolte, M. G.; Youngblut, M.; Redford, S.; Gregoire, P.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Due to its toxic, explosive, and corrosive nature, inadvertent biological H2S production by sulfate reducing microorganisms (SRM) poses significant health and industrial operational risks. Anthropogenic sources are dominated by the oil industry where H2S in reservoir gases and fluids has an associated annual cost estimated at $90 billion globally. Our previous studies have identified perchlorate (ClO4-) as a selective and potent inhibitor of SRM in pure culture and complex microbial ecosystems. However, constant addition of inhibitors like perchlorate to natural ecosystems may result in a new adaptive selective pressure on SRM populations. With this in mind we investigated the ability of Desulfovibrio alaskensis G20, a model oil reservoir SRM, to adapt to perchlorate and develop a resistance. Serial transfers of three parallel cultures with increasing concentrations of perchlorate up to 100 mM were generated and compared to wild-type strains that were transferred for same number of generations in absence of perchlorate. Genome sequencing revealed that all three adapted strains had single non-synonymous single-nucleotide polymorphisms in the same gene, Dde_2265, the sulfate adenylytransferase (ATP sulfurylase (ATPS)) (EC 2.7.7.4). ATPS catalyzes the first committed step in sulfate reduction and is essential in all SRM. IC50s against growth for these evolved strains demonstrated a three-fold increased resistance to perchlorate compared to wild-type controls. These evolved strains also had 5x higher transcriptional abundance of Dde_2265 compared to the wild-type strain. Biochemical characterization of the purified ATPS enzyme from both wild-type and the evolved strain showed that the mutant ATPS from the evolved strain was resistant to perchlorate inhibition of ATP turnover with a KI for perchlorate that was 3x greater relative to the wild-type ATPS. These results demonstrate that a single-base pair mutation in ATPS can have a significant impact on developing resistance to perchlorate and suggest that adaptive evolution is a valuable tool to understand potential responses of microorganism to any environmental perturbations imposed during oil production.

  18. Wild birds and urban pigeons as reservoirs for diarrheagenic Escherichia coli with zoonotic potential.

    PubMed

    Borges, Clarissa A; Cardozo, Marita V; Beraldo, Livia G; Oliveira, Elisabete S; Maluta, Renato P; Barboza, Kaline B; Werther, Karin; Ávila, Fernando A

    2017-05-01

    In order to describe the role of wild birds and pigeons in the transmission of shiga toxigenic Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) to humans and other animals, samples were collected from cloacae and oropharynx of free-living wild birds and free-living pigeons. Two STEC (0.8%) and five EPEC strains (2.0%) were isolated from wild birds and four EPEC strains (2.0%) were recovered from pigeons. Serogroups, sequence types (STs) and virulence genes, such as saa, iha, lpfA O113 , ehxA, espA, nleB and nleE, detected in this study had already been implicated in human and animal diseases. Multidrug resistance (MDR) was found in 25.0% of the pigeon strains and in 57.0% of the wild bird strains; the wild birds also yielded one isolate carrying extended-spectrum β-lactamases (ESBLs) gene bla CTX-M-8 . The high variability shown by PFGE demonstrates that there are no prevalent E. coli clones from these avian hosts. Wild birds and pigeons could act as carriers of multidrug-resistant STEC and EPEC and therefore may constitute a considerable hazard to human and animal health by transmission of these strains to the environment.

  19. Development of an Avirulent Salmonella Surrogate for Modeling Pathogen Behavior in Pre- and Postharvest Environments.

    PubMed

    de Moraes, Marcos H; Chapin, Travis K; Ginn, Amber; Wright, Anita C; Parker, Kenneth; Hoffman, Carol; Pascual, David W; Danyluk, Michelle D; Teplitski, Max

    2016-07-15

    Recurrent outbreaks of bacterial gastroenteritis linked to the consumption of fresh fruits and vegetables highlight the paucity of understanding of the ecology of Salmonella enterica under crop production and postharvest conditions. These gaps in knowledge are due, at least in part, to the lack of suitable surrogate organisms for studies for which biosafety level 2 is problematic. Therefore, we constructed and validated an avirulent strain of Salmonella enterica serovar Typhimurium. The strain lacks major Salmonella pathogenicity islands SPI-1, SPI-2, SPI-3, SPI-4, and SPI-5 as well as the virulence plasmid pSLT. Deletions and the absence of genomic rearrangements were confirmed by genomic sequencing, and the surrogate behaved like the parental wild-type strain on selective media. A loss-of-function (phoN) selective marker allowed the differentiation of this strain from wild-type strains on a medium containing a chromogenic substrate for alkaline phosphatase. Lack of virulence was confirmed by oral infection of female BALB/c mice. The strain persisted in tomatoes, cantaloupes, leafy greens, and soil with the same kinetics as the parental wild-type and selected outbreak strains, and it reached similar final population levels. The responses of this strain to heat treatment and disinfectants were similar to those of the wild type, supporting its potential as a surrogate for future studies on the ecology and survival of Salmonella in production and processing environments. There is significant interest in understanding the ecology of human pathogens in environments outside of their animal hosts, including the crop production environment. However, manipulative field experiments with virulent human pathogens are unlikely to receive regulatory approval due to the obvious risks. Therefore, we constructed an avirulent strain of S. enterica serovar Typhimurium and characterized it extensively. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Mutations in Genes Involved in the Flagellar Export Apparatus of the Solvent-Tolerant Pseudomonas putida DOT-T1E Strain Impair Motility and Lead to Hypersensitivity to Toluene Shocks

    PubMed Central

    Segura, Ana; Duque, Estrella; Hurtado, Ana; Ramos, Juan L.

    2001-01-01

    Pseudomonas putida DOT-T1E is a solvent-tolerant strain able to grow in the presence of 1% (vol/vol) toluene in the culture medium. Random mutagenesis with mini-Tn5-′phoA-Km allowed us to isolate a mutant strain (DOT-T1E-42) that formed blue colonies on Luria-Bertani medium supplemented with 5-bromo-4-chloro-3-indolylphosphate and that, in contrast to the wild-type strain, was unable to tolerate toluene shocks (0.3%, vol/vol). The mutant strain exhibited patterns of tolerance or sensitivity to a number of antibiotics, detergents, and chelating agents similar to those of the wild-type strain. The mutation in this strain therefore seemed to specifically affect toluene tolerance. Cloning and sequencing of the mutation revealed that the mini-Tn5-′phoA-Km was inserted within the fliP gene, which is part of the fliLMNOPQRflhBA cluster, a set of genes that encode flagellar structure components. FliP is involved in the export of flagellar proteins, and in fact, the P. putida fliP mutant was nonmotile. The finding that, after replacing the mutant allele with the wild-type one, the strain recovered the wild-type pattern of toluene tolerance and motility unequivocally assigned FliP a function in solvent resistance. An flhB knockout mutant, another gene component of the flagellar export apparatus, was also nonmotile and hypersensitive to toluene. In contrast, a nonpolar mutation at the fliL gene, which encodes a cytoplasmic membrane protein associated with the flagellar basal body, yielded a nonmotile yet toluene-resistant strain. The results are discussed regarding a possible role of the flagellar export apparatus in the transport of one or more proteins necessary for toluene tolerance in P. putida DOT-T1E to the periplasm. PMID:11418551

  1. Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28.

    PubMed

    Nakayama, Shunichi; Tabata, Ken; Oba, Takahiro; Kusumoto, Kenichi; Mitsuiki, Shinji; Kadokura, Toshimori; Nakazato, Atsumi

    2012-09-01

    We characterized a high malic acid production mechanism in sake yeast strain No. 28. No considerable differences in the activity of the enzymes that were involved in malic acid synthesis were observed between strain No. 28 and its parent strain, K1001. However, compared with strain K1001, which actively took up rhodamine 123 during staining, the cells of strain No. 28 were only lightly stained, even when cultured in high glucose concentrations. In addition, malic acid production by the respiratory-deficient strain of K1001 was 2.5-fold higher than that of the wild-type K1001 and wild-type No. 28. The findings of this study demonstrated that the high malic acid production by strain No. 28 is attributed to the suppression of mitochondrial activity. Copyright © 2012. Published by Elsevier B.V.

  2. Role of CXCR4 in Cell-Cell Fusion and Infection of Monocyte-Derived Macrophages by Primary Human Immunodeficiency Virus Type 1 (HIV-1) Strains: Two Distinct Mechanisms of HIV-1 Dual Tropism

    PubMed Central

    Yi, Yanjie; Isaacs, Stuart N.; Williams, Darlisha A.; Frank, Ian; Schols, Dominique; De Clercq, Erik; Kolson, Dennis L.; Collman, Ronald G.

    1999-01-01

    Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4). PMID:10438797

  3. Natural non-homologous recombination led to the emergence of a duplicated V3-NS5A region in HCV-1b strains associated with hepatocellular carcinoma.

    PubMed

    Le Guillou-Guillemette, Hélène; Pivert, Adeline; Bouthry, Elise; Henquell, Cécile; Petsaris, Odile; Ducancelle, Alexandra; Veillon, Pascal; Vallet, Sophie; Alain, Sophie; Thibault, Vincent; Abravanel, Florence; Rosenberg, Arielle A; André-Garnier, Elisabeth; Bour, Jean-Baptiste; Baazia, Yazid; Trimoulet, Pascale; André, Patrice; Gaudy-Graffin, Catherine; Bettinger, Dominique; Larrat, Sylvie; Signori-Schmuck, Anne; Saoudin, Hénia; Pozzetto, Bruno; Lagathu, Gisèle; Minjolle-Cha, Sophie; Stoll-Keller, Françoise; Pawlotsky, Jean-Michel; Izopet, Jacques; Payan, Christopher; Lunel-Fabiani, Françoise; Lemaire, Christophe

    2017-01-01

    The emergence of new strains in RNA viruses is mainly due to mutations or intra and inter-genotype homologous recombination. Non-homologous recombinations may be deleterious and are rarely detected. In previous studies, we identified HCV-1b strains bearing two tandemly repeated V3 regions in the NS5A gene without ORF disruption. This polymorphism may be associated with an unfavorable course of liver disease and possibly involved in liver carcinogenesis. Here we aimed at characterizing the origin of these mutant strains and identifying the evolutionary mechanism on which the V3 duplication relies. Direct sequencing of the entire NS5A and E1 genes was performed on 27 mutant strains. Quasispecies analyses in consecutive samples were also performed by cloning and sequencing the NS5A gene for all mutant and wild strains. We analyzed the mutant and wild-type sequence polymorphisms using Bayesian methods to infer the evolutionary history of and the molecular mechanism leading to the duplication-like event. Quasispecies were entirely composed of exclusively mutant or wild-type strains respectively. Mutant quasispecies were found to have been present since contamination and had persisted for at least 10 years. This V3 duplication-like event appears to have resulted from non-homologous recombination between HCV-1b wild-type strains around 100 years ago. The association between increased liver disease severity and these HCV-1b mutants may explain their persistence in chronically infected patients. These results emphasize the possible consequences of non-homologous recombination in the emergence and severity of new viral diseases.

  4. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response.

    PubMed

    Sumby, Paul; Barbian, Kent D; Gardner, Donald J; Whitney, Adeline R; Welty, Diane M; Long, R Daniel; Bailey, John R; Parnell, Michael J; Hoe, Nancy P; Adams, Gerald G; Deleo, Frank R; Musser, James M

    2005-02-01

    Many pathogenic bacteria produce extracellular DNase, but the benefit of this enzymatic activity is not understood. For example, all strains of the human bacterial pathogen group A Streptococcus (GAS) produce at least one extracellular DNase, and most strains make several distinct enzymes. Despite six decades of study, it is not known whether production of DNase by GAS enhances virulence. To test the hypothesis that extracellular DNase is required for normal progression of GAS infection, we generated seven isogenic mutant strains in which the three chromosomal- and prophage-encoded DNases made by a contemporary serotype M1 GAS strain were inactivated. Compared to the wild-type parental strain, the isogenic triple-mutant strain was significantly less virulent in two mouse models of invasive infection. The triple-mutant strain was cleared from the skin injection site significantly faster than the wild-type strain. Preferential clearance of the mutant strain was related to the differential extracellular killing of the mutant and wild-type strains, possibly through degradation of neutrophil extracellular traps, innate immune structures composed of chromatin and granule proteins. The triple-mutant strain was also significantly compromised in its ability to cause experimental pharyngeal disease in cynomolgus macaques. Comparative analysis of the seven DNase mutant strains strongly suggested that the prophage-encoded SdaD2 enzyme is the major DNase that contributes to virulence in this clone. We conclude that extracellular DNase activity made by GAS contributes to disease progression, thereby resolving a long-standing question in bacterial pathogenesis research.

  5. Gene disruption in Salmonella typhimurim by modified λ Red disruption system.

    PubMed

    Ahani Azari, A; Zahraei Salehi, T; Nayeri Fasaei, B; Alebouyeh, M

    2015-01-01

    There are many techniques to knock out directed genes in bacteria, some of which have been described in Salmonella species. In this study, a combination of SOEing PCR method and the λ Red disruption system were used to disrupt phoP gene in wild type and standard strains of Salmonella typhimurium. Three standards PCR and one fusion PCR reactions were performed to construct a linear DNA including upstream and downstream of phoP gene and Kanamycin cassette. As a template plasmid, we used pKD4 which carries kanamycin gene flanked by FRT (FLP recognition target) sites. The resulting construct was electroporated into prepared competent cells of S. typhimurium. The transformants colonies related to the standard strain appeared on the LB-Km-agar plates after incubation, but there was no colony on LB-Km-agar plates corresponding to the wild type strain. The failure in transformation of the wild type strain may be because of inflexibility of the λ Red disruption system in this strain or its unique restriction-modification system. However, by this construct we are able to generate phoP mutant in many of the Salmonella species due to high homology of the phoP gene which exists in different species.

  6. Development of an indirect enzyme-linked immunosorbent assay (ELISA) to differentiate antibodies against wild-type porcine reproductive and respiratory syndrome from the vaccine strain TJM-F92 based on a recombinant Nsp2 protein.

    PubMed

    Wang, X X; Wang, F X; Li, Z G; Wen, Y J; Wang, X; Song, N; Wu, H

    2018-01-01

    An accurate ELISA method to differentiate pigs infected with wild-type porcine reproductive and respiratory syndrome (PRRSV) strains from vaccinated ones would help to monitor PRRSV vaccination compliance. The recombinant protein GST-d120aa derived from the continuous deletion of 120 amino acids in the non-structural protein 2 region of the modified-live vaccine strain TJM-F92 was used to develop an indirect enzyme-linked immunosorbent assay (d120-ELISA) for differentiating serum antibodies against TJM-F92 from other PRRSV strains. At the optimized cut-off value which was calculated at an S/P of 0.25, it yielded a sensitivity of 90.7% and a specificity of 95.1%. Cross-reactivity tests suggested that the d120-ELISA was PRRSV-specific. Coefficient of variations of the repeatability tests ranged between 1.41-17.02%. The results suggest that the d120-ELISA is suitable for differentiating animals infected with wild-type strains from those immunized with MLV TJM-F92. Copyright © 2017. Published by Elsevier B.V.

  7. The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa.

    PubMed

    Bowman, Barry J; Abreu, Stephen; Johl, Jessica K; Bowman, Emma Jean

    2012-11-01

    The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.

  8. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival.

    PubMed

    Naikare, Hemant; Palyada, Kiran; Panciera, Roger; Marlow, Denver; Stintzi, Alain

    2006-10-01

    To assess the importance of ferrous iron acquisition in Campylobacter physiology and pathogenesis, we disrupted and characterized the Fe2+ iron transporter, FeoB, in Campylobacter jejuni NCTC 11168, 81-176, and ATCC 43431. The feoB mutant was significantly affected in its ability to transport 55Fe2+. It accumulated half the amount of iron than the wild-type strain during growth in an iron-containing medium. The intracellular iron of the feoB mutant was localized in the periplasmic space versus the cytoplasm for the wild-type strain. These results indicate that the feoB gene of C. jejuni encodes a functional ferrous iron transport system. Reverse transcriptase PCR analysis revealed the cotranscription of feoB and Cj1397, which encodes a homolog of Escherichia coli feoA. C. jejuni 81-176 feoB mutants exhibited reduced ability to persist in human INT-407 embryonic intestinal cells and porcine IPEC-1 small intestinal epithelial cells compared to the wild type. C. jejuni NCTC 11168 feoB mutant was outcompeted by the wild type for colonization and/or survival in the rabbit ileal loop. The feoB mutants of the three C. jejuni strains were significantly affected in their ability to colonize the chick cecum. And finally, the three feoB mutants were outcompeted by their respective wild-type strains for infection of the intestinal tracts of colostrum-deprived piglets. Taken together, these results demonstrate that FeoB-mediated ferrous iron acquisition contributes significantly to colonization of the gastrointestinal tract during both commensal and infectious relationship, and thus it plays an important role in Campylobacter pathogenesis.

  9. Mycoviruses as Triggers and Targets of RNA Silencing in White Mold Fungus Sclerotinia sclerotiorum.

    PubMed

    Mochama, Pauline; Jadhav, Prajakta; Neupane, Achal; Lee Marzano, Shin-Yi

    2018-04-22

    This study aimed to demonstrate the existence of antiviral RNA silencing mechanisms in Sclerotinia sclerotiorum by infecting wild-type and RNA-silencing-deficient strains of the fungus with an RNA virus and a DNA virus. Key silencing-related genes were disrupted to dissect the RNA silencing pathway. Specifically, dicer genes ( dcl-1, dcl-2 , and both dcl-1 / dcl-2 ) were displaced by selective marker(s). Disruption mutants were then compared for changes in phenotype, virulence, and susceptibility to virus infections. Wild-type and mutant strains were transfected with a single-stranded RNA virus, SsHV2-L, and copies of a single-stranded DNA mycovirus, SsHADV-1, as a synthetic virus constructed in this study. Disruption of dcl-1 or dcl-2 resulted in no changes in phenotype compared to wild-type S. sclerotiorum ; however, the double dicer mutant strain exhibited significantly slower growth. Furthermore, the Δdcl-1/dcl-2 double mutant, which was slow growing without virus infection, exhibited much more severe debilitation following virus infections including phenotypic changes such as slower growth, reduced pigmentation, and delayed sclerotial formation. These phenotypic changes were absent in the single mutants, Δdcl-1 and Δdcl-2 . Complementation of a single dicer in the double disruption mutant reversed viral susceptibility to the wild-type state. Virus-derived small RNAs were accumulated from virus-infected wild-type strains with strand bias towards the negative sense. The findings of these studies indicate that S. sclerotiorum has robust RNA silencing mechanisms that process both DNA and RNA mycoviruses and that, when both dicers are silenced, invasive nucleic acids can greatly debilitate the virulence of this fungus.

  10. Role of a membrane-bound aldehyde dehydrogenase complex AldFGH in acetic acid fermentation with Acetobacter pasteurianus SKU1108.

    PubMed

    Yakushi, Toshiharu; Fukunari, Seiya; Kodama, Tomohiro; Matsutani, Minenosuke; Nina, Shun; Kataoka, Naoya; Theeragool, Gunjana; Matsushita, Kazunobu

    2018-05-01

    Acetic acid fermentation is widely considered a consequence of ethanol oxidation by two membrane-bound enzymes-alcohol dehydrogenase and aldehyde dehydrogenase (ALDH)-of acetic acid bacteria. Here, we used a markerless gene disruption method to construct a mutant of the Acetobacter pasteurianus strain SKU1108 with a deletion in the aldH gene, which encodes the large catalytic subunit of a heterotrimeric ALDH complex (AldFGH), to examine the role of AldFGH in acetic acid fermentation. The ΔaldH strain grew less on ethanol-containing medium, i.e., acetic acid fermentation conditions, than the wild-type strain and significantly accumulated acetaldehyde in the culture medium. Unexpectedly, acetaldehyde oxidase activity levels of the intact ΔaldH cells and the ΔaldH cell membranes were similar to those of the wild-type strain, which might be attributed to an additional ALDH isozyme (AldSLC). The apparent K M values of the wild-type and ΔaldH membranes for acetaldehyde were similar to each other, when the cells were cultured in nonfermentation conditions, where ΔaldH cells grow as well as the wild-type cells. However, the membranes of the wild-type cells grown under fermentation conditions showed a 10-fold lower apparent K M value than those of the cells grown under nonfermentation conditions. Under fermentation conditions, transcriptional levels of a gene for AldSLC were 10-fold lower than those under nonfermentation conditions, whereas aldH transcript levels were not dramatically changed under the two conditions. We suggest that A. pasteurianus SKU1108 has two ALDHs, and the AldFGH complex is indispensable for acetic acid fermentation and is the major enzyme under fermentation conditions.

  11. Pathoadaptive Conditional Regulation of the Type VI Secretion System in Vibrio cholerae O1 Strains

    PubMed Central

    Ishikawa, Takahiko; Sabharwal, Dharmesh; Bröms, Jeanette; Milton, Debra L.; Sjöstedt, Anders; Uhlin, Bernt Eric

    2012-01-01

    The most recently discovered secretion pathway in Gram-negative bacteria, the type VI secretion system (T6SS), is present in many species and is considered important for the survival of non-O1 non-O139 Vibrio cholerae in aquatic environments. Until now, it was not known whether there is a functionally active T6SS in wild-type V. cholerae O1 strains, the cause of cholera disease in humans. Here, we demonstrate the presence of a functionally active T6SS in wild-type V. cholerae O1 strains, as evidenced by the secretion of the T6SS substrate Hcp, which required several gene products encoded within the putative vas gene cluster. Our analyses showed that the T6SS of wild-type V. cholerae O1 strain A1552 was functionally activated when the bacteria were grown under high-osmolarity conditions. The T6SS was also active when the bacteria were grown under low temperature (23°C), suggesting that the system may be important for the survival of the bacterium in the environment. A test of the interbacterial virulence of V. cholerae strain A1552 against an Escherichia coli K-12 strain showed that it was strongly enhanced under high osmolarity and that it depended on the hcp genes. Interestingly, we found that the newly recognized osmoregulatory protein OscR plays a role in the regulation of T6SS gene expression and secretion of Hcp from V. cholerae O1 strains. PMID:22083711

  12. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  13. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    PubMed

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation.

  14. Phylogenetic analysis of the haemagglutinin gene of current wild-type canine distemper viruses from South Africa: lineage Africa.

    PubMed

    Woma, Timothy Y; van Vuuren, Moritz; Bosman, Ana-Mari; Quan, Melvyn; Oosthuizen, Marinda

    2010-07-14

    There are no reports of CDV isolations in southern Africa, and although CDV is said to have geographically distinct lineages, molecular information of African strains has not yet been documented. Viruses isolated in cell cultures were subjected to reverse transcription-polymerase chain reaction (RT-PCR), and the complete H gene was sequenced and phylogenetically analysed with other strains from GenBank. Phylogenetic comparisons of the complete H gene of CDV isolates from different parts of the world (available in GenBank) with wild-type South African isolates revealed nine clades. All South African isolates form a separate African clade of their own and thus are clearly separated from the American, European, Asian, Arctic and vaccine virus clades. It is likely that only the 'African lineage' of CDV may be circulating in South Africa currently, and the viruses isolated from dogs vaccinated against CDV are not the result of reversion to virulence of vaccine strains, but infection with wild-type strains. (c) 2009 Elsevier B.V. All rights reserved.

  15. The global regulator CodY is required for the fitness of Bacillus cereus in various laboratory media and certain beverages.

    PubMed

    Kovács, Ákos T

    2016-07-01

    The impact of gene mutations on the growth of the cells can be studied using pure cultures. However, the importance of certain proteins and pathways can be also examined via co-culturing wild type and its mutant derivative. Here, the relative fitness of a mutant strain that lacks the global nitrogen regulator, CodY, was examined in Bacillus cereus, a food poisoning Gram-positive bacterium. Fitness measurements revealed that the ΔcodY strain was outcompeted when cocultured with the wild-type ATCC 14579 under various rich laboratory medium, and also when inoculated in certain beverages. In nutrient-poor minimal medium, the ΔcodY mutant had comparable fitness to the wild-type strain. Interestingly, the relative fitness of the ΔcodY strain was antagonistic when it was cultivated in apple or orange juices due to unknown properties of these beverages, highlighting the importance of chemical composition of the test medium during the bacterial fitness measurements. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered Lactobacillus plantarum in rodents.

    PubMed

    Nicaise, Charles; Prozzi, Deborah; Viaene, Eric; Moreno, Christophe; Gustot, Thierry; Quertinmont, Eric; Demetter, Pieter; Suain, Valérie; Goffin, Philippe; Devière, Jacques; Hols, Pascal

    2008-10-01

    Hyperammonemia is a common complication of acute and chronic liver diseases. Often accompanied with side effects, therapeutic interventions such as antibiotics or lactulose are generally targeted to decrease the intestinal production and absorption of ammonia. In this study, we aimed to modulate hyperammonemia in three rodent models by administration of wild-type Lactobacillus plantarum, a genetically engineered ammonia hyperconsuming strain, and a strain deficient for the ammonia transporter. Wild-type and metabolically engineered L. plantarum strains were administered in ornithine transcarbamoylase-deficient Sparse-fur mice, a model of constitutive hyperammonemia, in a carbon tetrachloride rat model of chronic liver insufficiency and in a thioacetamide-induced acute liver failure mice model. Constitutive hyperammonemia in Sparse-fur mice and hyperammonemia in a rat model of chronic hepatic insufficiency were efficiently decreased by Lactobacillus administration. In a murine thioacetamide-induced model of acute liver failure, administration of probiotics significantly increased survival and decreased blood and fecal ammonia. The ammonia hyperconsuming strain exhibited a beneficial effect at a lower dose than its wild-type counterpart. Improved survival in the acute liver failure mice model was associated with lower blood ammonia levels but also with a decrease of astrocyte swelling in the brain cortex. Modulation of ammonia was abolished after administration of the strain deficient in the ammonium transporter. Intestinal pH was clearly lowered for all strains and no changes in gut flora were observed. Hyperammonemia in constitutive model or after acute or chronic induced liver failure can be controlled by the administration of L. plantarum with a significant effect on survival. The mechanism involved in this ammonia decrease implicates direct ammonia consumption in the gut.

  17. Pseudomonas fluorescens F113 Mutant with Enhanced Competitive Colonization Ability and Improved Biocontrol Activity against Fungal Root Pathogens ▿

    PubMed Central

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-01-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible. PMID:21685161

  18. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens.

    PubMed

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-08-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.

  19. Haemophilus influenzae OxyR: Characterization of Its Regulation, Regulon and Role in Fitness

    PubMed Central

    Whitby, Paul W.; Morton, Daniel J.; VanWagoner, Timothy M.; Seale, Thomas W.; Cole, Brett K.; Mussa, Huda J.; McGhee, Phillip A.; Bauer, Chee Yoon S.; Springer, Jennifer M.; Stull, Terrence L.

    2012-01-01

    To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness. PMID:23226321

  20. Spontaneous Mutation Reveals Influence of Exopolysaccharide on Lactobacillus johnsonii Surface Characteristics

    PubMed Central

    Horn, Nikki; Wegmann, Udo; Dertli, Enes; Mulholland, Francis; Collins, Samuel R. A.; Waldron, Keith W.; Bongaerts, Roy J.; Mayer, Melinda J.; Narbad, Arjan

    2013-01-01

    As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions. PMID:23544114

  1. Interleukin-17 protects against the Francisella tularensis live vaccine strain but not against a virulent F. tularensis type A strain.

    PubMed

    Skyberg, Jerod A; Rollins, Maryclare F; Samuel, Joshua W; Sutherland, Marjorie D; Belisle, John T; Pascual, David W

    2013-09-01

    Francisella tularensis is a highly infectious intracellular bacterium that causes the zoonotic infection tularemia. While much literature exists on the host response to F. tularensis infection, the vast majority of work has been conducted using attenuated strains of Francisella that do not cause disease in humans. However, emerging data indicate that the protective immune response against attenuated F. tularensis versus F. tularensis type A differs. Several groups have recently reported that interleukin-17 (IL-17) confers protection against the live vaccine strain (LVS) of Francisella. While we too have found that IL-17Rα(-/-) mice are more susceptible to F. tularensis LVS infection, our studies, using a virulent type A strain of F. tularensis (SchuS4), indicate that IL-17Rα(-/-) mice display organ burdens and pulmonary gamma interferon (IFN-γ) responses similar to those of wild-type mice following infection. In addition, oral LVS vaccination conferred equivalent protection against pulmonary challenge with SchuS4 in both IL-17Rα(-/-) and wild-type mice. While IFN-γ was found to be critically important for survival in a convalescent model of SchuS4 infection, IL-17 neutralization from either wild-type or IFN-γ(-/-) mice had no effect on morbidity or mortality in this model. IL-17 protein levels were also higher in the lungs of mice infected with the LVS rather than F. tularensis type A, while IL-23p19 mRNA expression was found to be caspase-1 dependent in macrophages infected with LVS but not SchuS4. Collectively, these results demonstrate that IL-17 is dispensable for host immunity to type A F. tularensis infection, and that induced and protective immunity differs between attenuated and virulent strains of F. tularensis.

  2. Detection by hemi-nested reverse transcription polymerase chain reaction and genetic characterization of wild type strains of Canine distemper virus in suspected infected dogs.

    PubMed

    Di Francesco, Cristina E; Di Francesco, Daniela; Di Martino, Barbara; Speranza, Roberto; Santori, Domenico; Boari, Andrea; Marsilio, Fulvio

    2012-01-01

    A new highly sensitive and specific hemi-nested reverse transcription polymerase chain reaction (RT-PCR) assay was applied to detect nucleoprotein (NP) gene of Canine distemper virus (CDV) in samples collected from dogs showing respiratory, gastrointestinal, and neurological signs. Thirty-eight out of 86 samples were positive suggesting that despite the vaccination, canine distemper may still represent a high risk to the canine population. The 968 base pair (bp) fragments from the hemagglutinin (H) gene of 10 viral strains detected in positive samples were amplified and analyzed by restriction fragment length polymorphism (RFLP) using AluI and PsiI enzymes in order to differentiate among vaccine and wild-type CDV strains and to characterize the field viral strains. The products of the both enzymatic digestions allowed identification all viruses as wild strains of CDV. In addition, the RFLP analysis with AluI provided additional information about the identity level among the strains analyzed on the basis of the positions of the cleavage site in the nucleotide sequences of the H gene. The method could be a more useful and simpler method for molecular studies of CDV strains.

  3. Molecular Modeling and Structural Stability of Wild-Type and Mutant CYP51 from Leishmania major: In Vitro and In Silico Analysis of a Laboratory Strain.

    PubMed

    Keighobadi, Masoud; Emami, Saeed; Lagzian, Milad; Fakhar, Mahdi; Rafiei, Alireza; Valadan, Reza

    2018-03-19

    Cutaneous leishmaniasis is a neglected tropical disease and a major public health in the most countries. Leishmania major is the most common cause of cutaneous leishmaniasis. In the Leishmania parasites, sterol 14α-demethylase (CYP51), which is involved in the biosynthesis of sterols, has been identified as an attractive target for development of new therapeutic agents. In this study, the sequence and structure of CYP51 in a laboratory strain (MRHO/IR/75/ER) of L. major were determined and compared to the wild-type strain. The results showed 19 mutations including seven non-synonymous and 12 synonymous ones in the CYP51 sequence of strain MRHO/IR/75/ER. Importantly, an arginine to lysine substitution at position of 474 resulted in destabilization of CYP51 (ΔΔG = 1.17 kcal/mol) in the laboratory strain; however, when the overall effects of all substitutions were evaluated by 100 ns molecular dynamics simulation, the final structure did not show any significant changes ( p -value < 0.05) in stability parameter of the strain MRHO/IR/75/ER compared to the wild-type protein. The energy level for the CYP51 of wild-type and MRHO/IR/75/ER strain were -40,027.1 and -39,706.48 Kcal/mol respectively. The overall Root-mean-square deviation (RMSD) deviation between two proteins was less than 1 Å throughout the simulation and Root-mean-square fluctuation (RMSF) plot also showed no substantial differences between amino acids fluctuation of the both protein. The results also showed that, these mutations were located on the protein periphery that neither interferes with protein folding nor with substrate/inhibitor binding. Therefore, L. major strain MRHO/IR/75/ER is suggested as a suitable laboratory model for studying biological role of CYP51 and inhibitory effects of sterol 14α-demethylase inhibitors.

  4. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model.

    PubMed

    Ikegami, Tetsuro; Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B; Morrill, John C; Shivanna, Vinay; Indran, Sabarish V; Zhang, Lihong; Smith, Jennifer K; Perez, David; Juelich, Terry L; Morozov, Igor; Wilson, William C; Freiberg, Alexander N; Richt, Juergen A

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.

  5. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model

    PubMed Central

    Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B.; Morrill, John C.; Shivanna, Vinay; Indran, Sabarish V.; Zhang, Lihong; Smith, Jennifer K.; Perez, David; Juelich, Terry L.; Morozov, Igor; Wilson, William C.; Freiberg, Alexander N.; Richt, Juergen A.

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2–3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies. PMID:29267298

  6. wPip Wolbachia contribution to Aedes albopictus SIT performance: Advantages under intensive rearing.

    PubMed

    Puggioli, Arianna; Calvitti, Maurizio; Moretti, Riccardo; Bellini, Romeo

    2016-12-01

    As a part of a project aiming at the suppression of the mosquito vector Aedes albopictus, a specific Ae. albopictus line producing sterile males, ARwP, was tested for its suitability to intense rearing conditions compatible with mass production and field release. This line was developed by the Italian National Agency for New Technologies, Energy and Sustainable Economic Development thanks to the artificial infection with a heterologous Wolbachia strain, resulting in a bidirectional incompatibility pattern with wild-type Ae. albopictus. ARwP was reared under Standard Operating Procedures at the Centro Agricoltura Ambiente and compared with a wild-type strain in terms of time of pupation onset, production of male pupae in the following 24h and mechanical sexing efficacy. Mating competitiveness of ARwP males was also evaluated in comparison with irradiated wild-type males in large field enclosures. ARwP males demonstrated a significantly shorter time of pupation onset, a higher rate of production of male pupae in the following 24h and a lower percentage of residual contaminant females when applying mechanical sexing procedures. In addition, ARwP males were more efficient than wild-types in competing for wild-type females in large enclosures, thus inducing a level of sterility significantly higher than that expected for an equal mating competitiveness. These results encourage the use of this Ae. albopictus strain as suppression tool against Ae. albopictus based on considerations thoroughly discussed in the manuscript. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. New candidate tumor-suppressor gene KLF6 and its splice variant KLF6 SV2 counterbalancing expression in primary hepatocarcinoma.

    PubMed

    Zhenzhen, Zhou; De'an, Tian; Limin, Xia; Wei, Yan; Min, Luo

    2012-01-01

    This study aimed to detect the expression of newly discovered zinc finger transcriptional factor KLF6 and its splice variant KLF6 SV2 in primary hepatocarcinoma (PHC) tissues and hepatoma cell strains, and to evaluate their clinicopathologic relationship with PHC. Wild-type KLF6 and KLF6 SV2 mRNA expression was determined by RTPCR in 27 cases of PHC tissues and cell strains of HepG2, SMMC7721 and LO2. Western blotting and immunohistochemical staining were adopted to detect KLF6 protein expression. Positive area ratio of wild-type KLF6 protein expression and its relationship with clinicopathological parameters of PHC was analyzed. Wild-type KLF6 expression in PHC tissues was lower than that in paracancerous tissues. In contrast, KLF6 SV2 mRNA expression was higher in PHC tissues and hepatoma cell strains (p<0.05). Positive area ratio of wild-type KLF6 protein expression was positively correlated with cellular differentiation degree of PHC (p<0.01), but negatively correlated not only with liver cirrhosis, tumor size and extrahepatic metastases (p<0.01), but also with portal vein thrombus and the number of lymph nodes with metastasis (p<0.05). Wild-type KLF6 deletion and inactivation was involved in the growth, cell differentiation and other physiological processes of PHC. The upregulation of KLF6 splice variant might counterbalance the wildtype KLF6 and contribute to the occurrence and development of PHC.

  8. Lethal factor is not required for Bacillus anthracis virulence in guinea pigs and rabbits.

    PubMed

    Levy, Haim; Weiss, Shay; Altboum, Zeev; Schlomovitz, Josef; Rothschild, Nili; Blachinsky, Eran; Kobiler, David

    2011-11-01

    The major virulence factor of Bacillus anthracis is the tripartite anthrax toxin, comprising the protective antigen (PA), lethal factor (LF) and edema factor (EF). The LF of B. anthracis is a metalloprotease that has been shown to play an important role in pathogenicity. Deletion of this gene (lef) in the Sterne strain was reported to dramatically reduce the pathogenicity of this strain in mice, and was reported to be as dramatic as the deletion of PA. We evaluated the effect on pathogenicity of the lef deletion in the fully virulent Vollum strain in guinea pigs and NZW rabbits by either subcutaneous injection or intranasal instillation. In guinea pigs, no major differences between the mutant strain and the wild type could be detected in the LD(50) or mean time to death values. On the other hand, the lef deletion caused death of 50-70% of all rabbits infected with the mutant spores at doses equivalent or higher than the wild type LD(50). The surviving rabbits, which were infected with spore doses higher than the wild type LD(50), developed a protective immune response that conferred resistance to challenge with the wild type strain. These findings may indicate that the mutant lacking the LF is capable of host colonization which causes death in 50-70% of the animals and a protective immune response in the others. These results indicate that unlike the data obtained in mice, the LF mutation does not abolish B. anthracis pathogenicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Attachment Capability of Antagonistic Yeast Rhodotorula glutinis to Botrytis cinerea Contributes to Biocontrol Efficacy.

    PubMed

    Li, Boqiang; Peng, Huaimin; Tian, Shiping

    2016-01-01

    Rhodotorula glutinis as an antagonism show good biocontrol performance against various post-harvest diseases in fruits. In the present study, strong attachment capability of R. glutinis to spores and hyphae of Botrytis cinerea was observed. Further analysis showed that certain protein components on the yeast cell surface played critical role during the interaction between R. glutinis and B. cinerea. The components mainly distributed at the poles of yeast cells and might contain glycosylation modification, as tunicamycin treated yeast cells lost attachment capability to B. cinerea. To investigate contributions of attachment capability of R. glutinis to its biocontrol efficacy, yeast cells were mutagenized with 3% methane-sulfonic acid ethyl ester (EMS), and a mutant CE4 with stable non-attaching phenotype was obtained. No significant difference was found on colony, cell morphology, reproductive ability, and capsule formation between the mutant and wild-type. However, there was a distinct difference in India ink positive staining patterns between the two strains. Moreover, wild-type strain of R. glutinis showed better performance on inhibiting spore germination and mycelial growth of B. cinerea than CE4 strain when yeast cells and B. cinerea were co-cultured in vitro. In biocontrol assay, both wild-type and CE4 strains showed significant biocontrol efficacy against gray mold caused by B. cinerea in apple fruit, whereas, control effect of CE4 strain was lower than that of wild-type. Our findings provided new evidences that attachment capability of R. glutinis to B. cinerea contributed to its biocontrol efficacy.

  10. Attachment Capability of Antagonistic Yeast Rhodotorula glutinis to Botrytis cinerea Contributes to Biocontrol Efficacy

    PubMed Central

    Li, Boqiang; Peng, Huaimin; Tian, Shiping

    2016-01-01

    Rhodotorula glutinis as an antagonism show good biocontrol performance against various post-harvest diseases in fruits. In the present study, strong attachment capability of R. glutinis to spores and hyphae of Botrytis cinerea was observed. Further analysis showed that certain protein components on the yeast cell surface played critical role during the interaction between R. glutinis and B. cinerea. The components mainly distributed at the poles of yeast cells and might contain glycosylation modification, as tunicamycin treated yeast cells lost attachment capability to B. cinerea. To investigate contributions of attachment capability of R. glutinis to its biocontrol efficacy, yeast cells were mutagenized with 3% methane-sulfonic acid ethyl ester (EMS), and a mutant CE4 with stable non-attaching phenotype was obtained. No significant difference was found on colony, cell morphology, reproductive ability, and capsule formation between the mutant and wild-type. However, there was a distinct difference in India ink positive staining patterns between the two strains. Moreover, wild-type strain of R. glutinis showed better performance on inhibiting spore germination and mycelial growth of B. cinerea than CE4 strain when yeast cells and B. cinerea were co-cultured in vitro. In biocontrol assay, both wild-type and CE4 strains showed significant biocontrol efficacy against gray mold caused by B. cinerea in apple fruit, whereas, control effect of CE4 strain was lower than that of wild-type. Our findings provided new evidences that attachment capability of R. glutinis to B. cinerea contributed to its biocontrol efficacy. PMID:27199931

  11. Phylogenetic evidence of a new canine distemper virus lineage among domestic dogs in Colombia, South America.

    PubMed

    Espinal, Maria A; Díaz, Francisco J; Ruiz-Saenz, Julian

    2014-08-06

    Canine distemper virus (CDV) is a highly contagious viral disease of carnivores affecting both wild and domestic populations. The hemagglutinin gene, encoding for the attachment protein that determines viral tropism, shows high heterogeneity among strains, allowing for the distinction of ten different lineages distributed worldwide according to a geographic pattern. We obtained the sequences of the full-length H gene of 15 wild-type CDV strains circulating in domestic dog populations from the Aburrá Valley, Colombia. A phylogenetic analysis of H gene nucleotide sequences from Colombian CDV viruses along with field isolates from different geographic regions and vaccine strains was performed. Colombian wild-type viruses formed a distinct monophyletic cluster clearly separated from the previously identified wild-type and vaccine lineages, suggesting that a novel genetic variant, quite different from vaccines and other lineages, is circulating among dog populations in the Aburrá Valley. We propose naming this new lineage as "South America 3". This information indicates that there are at least three different CDV lineages circulating in domestic and wild carnivore populations in South America. The first one, renamed Europe/South America 1, circulates in Brazil and Uruguay; the second, South America 2, appears to be restricted to Argentina; and the third, South America 3, which comprises all the strains characterized in this study, may also be circulating in other northern countries of South America. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Molecular Epidemiology of Leptospira Serogroup Pomona Infections Among Wild and Domestic Animals in Spain.

    PubMed

    Arent, Z J; Gilmore, C; San-Miguel Ayanz, J M; Neyra, L Quevedo; García-Peña, F J

    2017-03-01

    Strains of Leptospira serogroup Pomona are known to cause widespread animal infections in many parts of the world. Forty-three isolates retrieved from domestic animals and wild small mammals suggest that serogroup Pomona is epidemiologically relevant in Spain. This is supported by the high prevalence of serovar Pomona antibodies in livestock and wild animals. In this study, the strains were serologically and genetically characterized in an attempt to elucidate their epidemiology. Serological typing was based on the microscopic agglutination test but molecular typing involved species-specific polymerase chain reaction, restriction endonuclease analysis, and multiple-locus variable-number tandem repeat analysis. The study revealed that the infections are caused by two serovars, namely Pomona and Mozdok. Serovar Pomona was derived only from farm animals and may be adapted to pigs, which are recognized as the maintenance host. The results demonstrated that serovar Pomona is genetically heterogeneous and three different types were recognized. This heterogeneity was correlated with different geographical distributions of the isolates. All strains derived from small wild mammals were identified as serovar Mozdok. Some isolates of this serovar retrieved from cattle confirm that this serovar may also be the cause of infections in food-producing animals for which these wild species may be source of infection.

  13. A disruption of ctpA encoding carboxy-terminal protease attenuates Burkholderia mallei and induces partial protection in CD1 mice.

    PubMed

    Bandara, Aloka B; DeShazer, David; Inzana, Thomas J; Sriranganathan, Nammalwar; Schurig, Gerhardt G; Boyle, Stephen M

    2008-09-01

    Burkholderia mallei is the etiologic agent of glanders in solipeds (horses, mules and donkeys), and incidentally in carnivores and humans. Little is known about the molecular mechanisms of B. mallei pathogenesis. The putative carboxy-terminal processing protease (CtpA) of B. mallei is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. All species and isolates of Burkholderia carry a highly conserved copy of ctpA. We studied the involvement of CtpA on growth, cell morphology, persistence, and pathogenicity of B. mallei. A sucrose-resistant strain of B. mallei was constructed by deleting a major portion of the sacB gene of the wild type strain ATCC 23344 by gene replacement, and designated as strain 23344DeltasacB. A portion of the ctpA gene (encoding CtpA) of strain 23344DeltasacB was deleted by gene replacement to generate strain 23344DeltasacBDeltactpA. In contrast to the wild type ATCC 23344 or the sacB mutant 23344DeltasacB, the ctpA mutant 23344DeltasacBDeltactpA displayed altered cell morphologies with partially or fully disintegrated cell envelopes. Furthermore, relative to the wild type, the ctpA mutant displayed slower growth in vitro and less ability to survive in J774.2 murine macrophages. The expression of mRNA of adtA, the gene downstream of ctpA was similar among the three strains suggesting that disruption of ctpA did not induce any polar effects. As with the wild type or the sacB mutant, the ctpA mutant exhibited a dose-dependent lethality when inoculated intraperitoneally into CD1 mice. The CD1 mice inoculated with a non-lethal dose of the ctpA mutant produced specific serum immunoglobulins IgG1 and IgG2a and were partially protected against challenge with wild type B. mallei ATCC 23344. These findings suggest that CtpA regulates in vitro growth, cell morphology and intracellular survival of B. mallei, and a ctpA mutant protects CD1 mice against glanders.

  14. [Comparative evaluation of Leningrad-3 mumps vaccine virus neurovirulence in a neonatal rat model].

    PubMed

    Ignat'ev, G M; Otrashevskaia, E V; Rubin, S A

    2011-01-01

    The neurovirulence and replication potential of several mumps virus strains, including Leningrad-3 mumps vaccine virus (FSUE SIC "Microgen", Russia) and wild type strains isolated in the Novosibirsk Region (Russia), were assessed in rat tests. The mean neurovirulence scores of the Leningrad-3 virus (< 4.0) were significantly lower than those of wild type strains (ranging from 6.1 to 15.2) and were in accordance with the scores determined for other attenuated mumps vaccine strains (usually ranging from 0 to 5). In general, the relative ability of the viruses to replicate in the rat brain tracked with their neurovirulence scores. These results indicate a low neurovirulence potential of the Leningrad-3 mumps vaccine virus for humans.

  15. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome. PMID:18983662

  16. Relationship between axenic growth of Dictyostelium discoideum strains and their track morphology on substrates coated with gold particles

    PubMed Central

    1983-01-01

    Amoebae of Dictyostelium discoideum produce tracks with two distinct morphologies on gold-coated coverslips. The wild-type strain and other strains that feed only by phagocytosis produced indistinct, fuzzy tracks, whereas mutants capable of axenic growth produced clear, sharp tracks. The sharp track morphology was found to be a recessive phenotype that segregates with axenicity and probably requires a previously unidentified axenic mutation. Axenic and nonaxenic strains also differed in their ability to pinocytose. When the two types of cells were shifted from bacterial growth plates to nutrient media, within 24 h the axenic strain established a rapid rate of pinocytosis, approximately 100-fold higher than the low rate detectable for the nonaxenic strain. However, track formation did not appear to be directly related to endocytosis. Electron microscopic examination of cells during track formation showed that both axenic and nonaxenic strains accumulated gold particles on their surfaces, but neither strain internalized the gold to any significant degree. Observation of living cells revealed that axenic strains collected all particles that they contacted, whereas wild-type strains left many particles undisturbed. The size of the gold particle clusters discarded by the cells also contributed to track morphology. PMID:6619183

  17. Two cell-counting factors regulate the aggregate size of the cellular slime mold Dictyostelium discoideum.

    PubMed

    Okuwa, T; Katayama, T; Takano, A; Kodaira, K; Yasukawa, H

    2001-12-01

    Countin, a cell-counting factor in Dictyostelium discoideum, is considered to limit the maximum size of the multicellular structure, because a countin null strain forms a huge fruiting body compared to that of the wild-type. A novel gene, countin2, that is highly homologous to countin (40% identity in amino acid sequence) was identified in the D. discoideum genome. The countin2 null strain formed a 1.7-fold higher number of the aggregates, resulting in smaller fruiting bodies compared with those of wild-type cells. Thus, the Countin2 protein is thought to limit the minimum size of the multicellular structure. The size and number of aggregates formed by a mixture of countin null and countin2 null strains were the same as those of the wild-type. These findings demonstrate that a combination of Countin and Countin2 proteins determines the appropriate size of the multicellular structure of D. discoideum.

  18. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Strain H2-419-4 of Haematococcus pluvialis induced by ethyl methanesulphonate and ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Sun, Yanhong; Liu, Jianguo; Zhang, Xiaoli; Lin, Wei

    2008-05-01

    Two strains H2-410 and H2-419 were obtained from the chemically mutated survivors of wild Haematococcus pluvialis 2 by using ethyl methanesulphonate (EMS). Strains H2-410 and H2-419 showed a fast cell growth with 13% and 20% increase in biomass compared to wild type, respectively. Then H2-419-4, a fast cell growth and high astaxanthin accumulation strain, was obtained by exposing the strain H2-419 to ultraviolet radiation (UV) further. The total biomass, the astaxanthin content per cell, astaxanthin production of H2-419-4 showed 68%, 28%, and 120% increase compared to wild H. pluvialis 2, respectively. HPLC (High Performance Liquid Chromatography) data showed also an obvious proportional variation of different carotenoid compositions in the extracts of H2-419-4 and the wild type, although no peak of carotenoids appeared or disappeared. Therefore, the main compositions in strain H2-419-4, like its wild one, were free of astaxanthin, monoester, and diester of astaxanthin. The asexual reproduction in survivors after exposed to UV was not synchronous, and different from the normal synchronous asexual reproduction as the mother cells were motile instead of non-motile. Interestingly, some survivors from UV irradiation produced many mini-spores (or gamete?), the spores moved away from the mother cell gradually 4 or 5 days later. This is quite similar to sexual reproduction described by Elliot in 1934. However, whether this was sexual reproduction remains questionable, as no mating process has been observed.

  20. Computationally Optimized Broadly Reactive Hemagglutinin Elicits Hemagglutination Inhibition Antibodies against a Panel of H3N2 Influenza Virus Cocirculating Variants

    PubMed Central

    Wong, Terianne M.; Allen, James D.; Bebin-Blackwell, Anne-Gaelle; Carter, Donald M.; Alefantis, Timothy; DiNapoli, Joshua; Kleanthous, Harold

    2017-01-01

    ABSTRACT Each influenza season, a set of wild-type viruses, representing one H1N1, one H3N2, and one to two influenza B isolates, are selected for inclusion in the annual seasonal influenza vaccine. In order to develop broadly reactive subtype-specific influenza vaccines, a methodology called computationally optimized broadly reactive antigens (COBRA) was used to design novel hemagglutinin (HA) vaccine immunogens. COBRA technology was effectively used to design HA immunogens that elicited antibodies that neutralized H5N1 and H1N1 isolates. In this report, the development and characterization of 17 prototype H3N2 COBRA HA proteins were screened in mice and ferrets for the elicitation of antibodies with HA inhibition (HAI) activity against human seasonal H3N2 viruses that were isolated over the last 48 years. The most effective COBRA HA vaccine regimens elicited antibodies with broader HAI activity against a panel of H3N2 viruses than wild-type H3 HA vaccines. The top leading COBRA HA candidates were tested against cocirculating variants. These variants were not efficiently detected by antibodies elicited by the wild-type HA from viruses selected as the vaccine candidates. The T-11 COBRA HA vaccine elicited antibodies with HAI and neutralization activity against all cocirculating variants from 2004 to 2007. This is the first report demonstrating broader breadth of vaccine-induced antibodies against cocirculating H3N2 strains compared to the wild-type HA antigens that were represented in commercial influenza vaccines. IMPORTANCE There is a need for an improved influenza vaccine that elicits immune responses that recognize a broader number of influenza virus strains to prevent infection and transmission. Using the COBRA approach, a set of vaccines against influenza viruses in the H3N2 subtype was tested for the ability to elicit antibodies that neutralize virus infection against not only historical vaccine strains of H3N2 but also a set of cocirculating variants that circulated between 2004 and 2007. Three of the H3N2 COBRA vaccines recognized all of the cocirculating strains during this era, but the chosen wild-type vaccine strains were not able to elicit antibodies with HAI activity against these cocirculating strains. Therefore, the COBRA vaccines have the ability to elicit protective antibodies against not only the dominant vaccine strains but also minor circulating strains that can evolve into the dominant vaccine strains in the future. PMID:28978710

  1. Comparison of Ehrlichia muris strains isolated from wild mice and ticks and serologic survey of humans and animals with E. muris as antigen.

    PubMed

    Kawahara, M; Ito, T; Suto, C; Shibata, S; Rikihisa, Y; Hata, K; Hirai, K

    1999-04-01

    In metropolitan Tokyo, the Ehrlichia muris seropositivity rate of 24 wild mice was 63% in Hinohara Village, but in the surrounding areas, it was 0 to 5%. This finding suggests that the reservoir of E. muris is focal. Among the 15 seropositive mice, ehrlichiae were isolated from 9 Apodemus speciosus mice and 1 A. argenteus mouse, respectively. Five ehrlichial isolates were obtained from 10 ticks (Haemaphysalis flava) collected in Asuke Town, Aichi Prefecture, where the E. muris type strain had been isolated. These new isolates were compared with the E. muris type strain. The mouse virulence and ultrastructure of the new isolates were similar to those of the type strain, and all of them were cross-reactive with each other, as well as with the type strain, by indirect immunofluorescent-antibody test. The levels of similarity of the base sequences of the 16S rRNA gene of one of the A. speciosus isolates and one of the tick isolates to that of the E. muris type strain were 99.79 and 99.93%, respectively. We suggest that all of these isolates are E. muris; that E. muris is not limited to Eothenomys kageus but infects other species of mice; and that E. muris is present at locations other than Aichi Prefecture. It appears that H. flava is a potential vector of E. muris. Twenty (1%) of 1803 humans from metropolitan Tokyo were found to be seropositive for E. muris antibodies. A serological survey revealed that exposure to E. muris or organisms antigenically cross-reactive to E. muris occurred among dogs, wild mice, monkeys, bears, deer, and wild boars in Gifu Prefecture, nearby prefectures, and Nagoya City, central Japan. However, human beings and Rattus norvegicus rats in this area were seronegative. These results indicate broader geographic distribution of and human and animal species exposure to E. muris or related Ehrlichia spp. in Japan.

  2. Comparative study on fermentation performance in the genome shuffled Candida versatilis and wild-type salt tolerant yeast strain.

    PubMed

    Qi, Wei; Guo, Hong-Lian; Wang, Chun-Ling; Hou, Li-Hua; Cao, Xiao-Hong; Liu, Jin-Fu; Lu, Fu-Ping

    2017-01-01

    The fermentation performance of a genome-shuffled strain of Candida versatilis S3-5, isolated for improved tolerance to salt, and wild-type (WT) strain were analysed. The fermentation parameters, such as growth, reducing sugar, ethanol, organic acids and volatile compounds, were detected during soy sauce fermentation process. The results showed that ethanol produced by the genome shuffled strain S3-5 was increasing at a faster rate and to a greater extent than WT. At the end of the fermentation, malic acid, citric acid and succinic acid formed in tricarboxylic acid cycle after S3-5 treatment elevated by 39.20%, 6.85% and 17.09% compared to WT, respectively. Moreover, flavour compounds such as phenethyl acetate, ethyl vanillate, ethyl acetate, isoamyl acetate, ethyl myristate, ethyl pentadecanoate, ethyl palmitate and phenylacetaldehyde produced by S3-5 were 2.26, 2.12, 2.87, 34.41, 6.32, 13.64, 2.23 and 78.85 times as compared to WT. S3-5 exhibited enhanced metabolic ability as compared to the wild-type strain, improved conversion of sugars to ethanol, metabolism of organic acid and formation of volatile compounds, especially esters, Moreover, S3-5 might be an ester-flavour type salt-tolerant yeast. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Phenotypic analysis of newly isolated short-lifespan Neurospora crassa mutant deficient in a high mobility group box protein.

    PubMed

    Yoshihara, Ryouhei; Li, ZhengHao; Ishimori, Keisuke; Kuwabara, Kazuki; Hatakeyama, Shin; Tanaka, Shuuitsu

    2017-08-01

    To elucidate genetic mechanisms affecting the lifespan of the filamentous fungus Neurospora crassa, we attempted to identify a gene of which a defect causes a short-lifespan. By screening a Neurospora knockout library, provided by the Fungal Genetics Stock Center at Kansas State University, several KO strains with a short-lifespan were isolated. FGSC#11693 is one of these, which shows similar phenotypes to known Neurospora short-lifespan mutants as follows: 1) hyphal growth ceases after about 2weeks of cultivation, despite that of the wild-type continuing for over 2years, 2) viability of conidia is lower than that of the wild-type, and 3) high sensitivity to mutagens such as methyl methanesulfonate, ultraviolet radiation, and hydroxyl urea is exhibited. The NCU number of the knocked-out gene in the KO strain is NCU02695, and recovery from the short-lifespan and mutagen sensitivity was achieved by the introduction of this gene from the wild-type. The putative amino acid sequence of the knocked-out gene contains two high mobility group box domains and a mitochondrial localization signal is found at the N-terminal of this sequence. Upon analyzing the subcellular localization of the gene product fused with GFP, GFP signals were detected in mitochondria. From these observations, the gene and KO strain were named mitochondrial high mobility group box protein 1 (MHG1) and mhg1 KO strain, respectively. The amount of mtDNA relative to the nuclear amount was lower in the mhg1 KO strain than in the wild-type. mtDNA aberration was also observed in the mhg1 KO strain. These results suggest that the MHG1 protein plays an important role in the maintenance of mitochondrial DNA, and mitochondrial abnormality caused by mtDNA aberration is responsible for the short-lifespan of the mhg1 KO strain. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Porphyromonas gingivalis Peptidylarginine Deiminase, a Key Contributor in the Pathogenesis of Experimental Periodontal Disease and Experimental Arthritis

    PubMed Central

    Gully, Neville; Bright, Richard; Marino, Victor; Marchant, Ceilidh; Cantley, Melissa; Haynes, David; Butler, Catherine; Dashper, Stuart; Reynolds, Eric; Bartold, Mark

    2014-01-01

    Objectives To investigate the suggested role of Porphyromonas gingivalis peptidylarginine deiminase (PAD) in the relationship between the aetiology of periodontal disease and experimentally induced arthritis and the possible association between these two conditions. Methods A genetically modified PAD-deficient strain of P. gingivalis W50 was produced. The effect of this strain, compared to the wild type, in an established murine model for experimental periodontitis and experimental arthritis was assessed. Experimental periodontitis was induced following oral inoculation with the PAD-deficient and wild type strains of P. gingivalis. Experimental arthritis was induced via the collagen antibody induction process and was monitored by assessment of paw swelling and micro-CT analysis of the radio-carpal joints. Experimental periodontitis was monitored by micro CT scans of the mandible and histological assessment of the periodontal tissues around the mandibular molars. Serum levels of anti-citrullinated protein antibodies (ACPA) and P. gingivalis were assessed by ELISA. Results The development of experimental periodontitis was significantly reduced in the presence of the PAD-deficient P. gingivalis strain. When experimental arthritis was induced in the presence of the PAD-deficient strain there was less paw swelling, less erosive bone damage to the joints and reduced serum ACPA levels when compared to the wild type P. gingivalis inoculated group. Conclusion This study has demonstrated that a PAD-deficient strain of P. gingivalis was associated with significantly reduced periodontal inflammation. In addition the extent of experimental arthritis was significantly reduced in animals exposed to prior induction of periodontal disease through oral inoculation of the PAD-deficient strain versus the wild type. This adds further evidence to the potential role for P. gingivalis and its PAD in the pathogenesis of periodontitis and exacerbation of arthritis. Further studies are now needed to elucidate the mechanisms which drive these processes. PMID:24959715

  5. Mutational activation of a Galphai causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa.

    PubMed Central

    Yang, Q; Borkovich, K A

    1999-01-01

    Heterotrimeric G proteins, consisting of alpha, beta, and gamma subunits, transduce environmental signals through coupling to plasma membrane-localized receptors. We previously reported that the filamentous fungus Neurospora crassa possesses a Galpha protein, GNA-1, that is a member of the Galphai superfamily. Deletion of gna-1 leads to defects in apical extension, differentiation of asexual spores, sensitivity to hyperosmotic media, and female fertility. In addition, Deltagna-1 strains have lower intracellular cAMP levels under conditions that promote morphological abnormalities. To further define the function of GNA-1 in signal transduction in N. crassa, we examined properties of strains with mutationally activated gna-1 alleles (R178C or Q204L) as the only source of GNA-1 protein. These mutations are predicted to inhibit the GTPase activity of GNA-1 and lead to constitutive signaling. In the sexual cycle, gna-1(R178C) and gna-1(Q204L) strains are female-fertile, but produce fewer and larger perithecia than wild type. During asexual development, gna-1(R178C) and gna-1(Q204L) strains elaborate abundant, long aerial hyphae, produce less conidia, and possess lower levels of carotenoid pigments in comparison to wild-type controls. Furthermore, gna-1(R178C) and gna-1(Q204L) strains are more sensitive to heat shock and exposure to hydrogen peroxide than wild-type strains, while Deltagna-1 mutants are more resistant. In contrast to Deltagna-1 mutants, gna-1(R178C) and gna-1(Q204L) strains have higher steady-state levels of cAMP than wild type. The results suggest that GNA-1 possesses several Gbetagamma-independent functions in N. crassa. We propose that GNA-1 mediates signal transduction pathway(s) that regulate aerial hyphae development and sensitivity to heat and oxidative stresses, possibly through modulation of cAMP levels. PMID:9872952

  6. [Survival elongation of Pseudomonas aeruginosa improves power output of microbial fuel cells].

    PubMed

    You, Ting; Liu, Jihua; Liang, Rubing; Liu, Jianhua

    2017-04-25

    The secondary metabolites, phenazine products, produced by Pseudomonas aeruginosa can mediate the electrons transfer in microbial fuel cells (MFCs). How increase the total electricity production in MFCs by improving the characteristics of Pseudomonas aeruginosa is one of research hot spots and problems. In this study, P. aeruginosa strain SJTD-1 and its knockout mutant strain SJTD-1 (ΔmvaT) were used to construct MFCs, and the discharge processes of the two MFCs were analyzed to determine the key factors to electricity yields. Results indicated that not only phenazine but also the viable cells in the fermentation broth were essential for the discharge of MFCs. The mutant strain SJTD-1 (ΔmvaT) could produce more phenazine products and continue discharging over 160 hours in MFCs, more than that of the wild-type SJTD-1 strain (90 hours discharging time). The total electricity generated by SJTD-1 (ΔmvaT) strain could achieve 2.32 J in the fermentation process, much higher than the total 1.30 J electricity of the wild-type SJTD-1 strain. Further cell growth analysis showed that the mutant strain SJTD-1 (ΔmvaT) could keep a longer stationary period, survive much longer in MFCs and therefore, discharge more electron than those of the wild-type SJTD-1 strain. Therefore, the cell survival elongation of P. aeruginosa in MFCs could enhance its discharging time and improve the overall energy yield. This work could give a clue to improve the characteristics of MFCs using genetic engineering strain, and could promote related application studies on MFCs.

  7. A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440.

    PubMed

    Fonseca, Pilar; de la Peña, Fernando; Prieto, María Auxiliadora

    2014-11-01

    Pseudomonas putida KT2440 is a Gram-negative bacterium capable of producing medium-chain-length-polyhydroxyalkanoates (mcl-PHA). When fatty acids are used as growth and polymer precursors, the biosynthesis is linked to fatty acid metabolism via ß-oxidation route. In the close-related Pseudomonas aeruginosa, the transcriptional repressor PsrA regulates the ß-oxidation, but little is known about the regulatory system in P. putida. To analyze the effect of the absence of psrA gene on the growth and PHA production in P. putida, a set of different carbon sources were assayed in the wild type strain and in a generated psrA deficient strain (KT40P). The growth rates were in all cases, lower for the mutant. The amount of PHA produced by the mutant strain is lower than the wild type. Moreover, the monomeric composition seems to be different among the strains, as there is enrichment in monomers with shorter carbon length in the mutant strain. To understand the role of the psrA gene on the metabolism of fatty acids, we have determined the expression profile of several genes related to fatty acid metabolism in the wild type and in the mutant strain. The results indicated that PsrA mostly negatively regulate genes related to fatty acid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence.

    PubMed

    Dietzel, Erik; Anderson, Danielle E; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea

    2011-07-01

    In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.

  9. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence.

    PubMed

    Hissen, Anna H T; Wan, Adrian N C; Warwas, Mark L; Pinto, Linda J; Moore, Margo M

    2005-09-01

    Aspergillus fumigatus is the leading cause of invasive mold infection and is a serious problem in immunocompromised populations worldwide. We have previously shown that survival of A. fumigatus in serum may be related to secretion of siderophores. In this study, we identified and characterized the sidA gene of A. fumigatus, which encodes l-ornithine N(5)-oxygenase, the first committed step in hydroxamate siderophore biosynthesis. A. fumigatus sidA codes for a protein of 501 amino acids with significant homology to other fungal l-ornithine N(5)-oxygenases. A stable DeltasidA strain was created by deletion of A. fumigatus sidA. This strain was unable to synthesize the siderophores N',N",N'''-triacetylfusarinine C (TAF) and ferricrocin. Growth of the DeltasidA strain was the same as that of the wild type in rich media; however, the DeltasidA strain was unable to grow in low-iron defined media or media containing 10% human serum unless supplemented with TAF or ferricrocin. No significant differences in ferric reduction activities were observed between the parental strain and the DeltasidA strain, indicating that blocking siderophore secretion did not result in upregulation of this pathway. Unlike the parental strain, the DeltasidA strain was unable to remove iron from human transferrin. A rescued strain (DeltasidA + sidA) was constructed; it produced siderophores and had the same growth as the wild type on iron-limited media. Unlike the wild-type and rescued strains, the DeltasidA strain was avirulent in a mouse model of invasive aspergillosis, indicating that sidA is necessary for A. fumigatus virulence.

  10. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi VI. Electron Transport in Mutant Strains Lacking Either Cytochrome 553 or Plastocyanin 1

    PubMed Central

    Gorman, Donald S.; Levine, R. P.

    1966-01-01

    A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453

  11. Development of Biotin-Prototrophic and -Hyperauxotrophic Corynebacterium glutamicum Strains

    PubMed Central

    Miyamoto, Aya; Mutoh, Sumire; Kitano, Yuko; Tajima, Mei; Shirakura, Daisuke; Takasaki, Manami; Mitsuhashi, Satoshi; Takeno, Seiki

    2013-01-01

    To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter). PMID:23709504

  12. Development of biotin-prototrophic and -hyperauxotrophic Corynebacterium glutamicum strains.

    PubMed

    Ikeda, Masato; Miyamoto, Aya; Mutoh, Sumire; Kitano, Yuko; Tajima, Mei; Shirakura, Daisuke; Takasaki, Manami; Mitsuhashi, Satoshi; Takeno, Seiki

    2013-08-01

    To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter).

  13. Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape.

    PubMed

    Chatterjee, Subhadeep; Newman, Karyn L; Lindow, Steven E

    2008-10-01

    Cell-to-cell signaling mediated by a fatty acid diffusible signaling factor (DSF) is central to the regulation of the virulence of Xylella fastidiosa. DSF production by X. fastidiosa is dependent on rpfF and, although required for insect colonization, appears to reduce its virulence to grape. To understand what aspects of colonization of grape are controlled by DSF in X. fastidiosa and, thus, those factors that contribute to virulence, we assessed the colonization of grape by a green fluorescent protein-marked rpfF-deficient mutant. The rpfF-deficient mutant was detected at a greater distance from the point of inoculation than the wild-type strain at a given sampling time, and also attained a population size that was up to 100-fold larger than that of the wild-type strain at a given distance from the point of inoculation. Confocal laser-scanning microscopy revealed that approximately 10-fold more vessels in petioles of symptomatic leaves harbored at least some cells of either the wild type or rpfF mutant when compared with asymptomatic leaves and, thus, that disease symptoms were associated with the extent of vessel colonization. Importantly, the rpfF mutant colonized approximately threefold more vessels than the wild-type strain. Although a wide range of colony sizes were observed in vessels colonized by both the wild type and rpfF mutant, the proportion of colonized vessels harboring large numbers of cells was significantly higher in plants inoculated with the rpfF mutant than with the wild-type strain. These studies indicated that the hypervirulence phenotype of the rpfF mutant is due to both a more extensive spread of the pathogen to xylem vessels and unrestrained multiplication within vessels leading to blockage. These results suggest that movement and multiplication of X. fastidiosa in plants are linked, perhaps because cell wall degradation products are a major source of nutrients. Thus, DSF-mediated cell-to-cell signaling, which restricts movement and colonization of X. fastidiosa, may be an adaptation to endophytic growth of the pathogen that prevents the excessive growth of cells in vessels.

  14. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    NASA Astrophysics Data System (ADS)

    Ge, Chunmei; Yang, Yingge; Fan, Yonghong; Li, Wen; Pan, Renrui; Zheng, Zhiming; Yu, Zengliang

    2008-02-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ~ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  15. Genetic variation of trypsin and chymotrypsin inhibitors in pigeonpea [Cajanus cajan (L.) Millsp.] and its wild relatives.

    PubMed

    Kollipara, K P; Singh, L; Hymowitz, T

    1994-09-01

    Variation in the trypsin inhibitors (TIs) and the chymotrypsin inhibitors (CIs) among 69 pigeonpea [Cajanus cajan (L.) Millsp.] strains from a wide geographical distribution and among 17 accessions representing seven wild Cajanus species was studied by electrophoretic banding pattern comparisons and by spectrophotometric activity assays. The TI and CI electrophoretic migration patterns among the pigeonpea strains were highly uniform but varied in the inhibitor band intensities. The migration patterns of the inhibitors in the wild Cajanus species were highly species specific. The mean TI activity of pigeonpea strains (2279 units) was significantly higher than that of the wild Cajanus species (1407 units). However, the mean CI activity in the pigeonpea strains (62 units) was much lower than that in the wild species (162 units). Kenya 2 and ICP 9151 were the lowest and the highest, respectively, in both the TI and CI activities among all the pigeonpea strains used in this study. A highly-significant positive correlation was observed between the TI and CI activities. The Bowman-Birk type inhibitors with both TI and CI activities were identified in all the pigeonpea strains and also in the accessions of all the wild species except C. volubilis (Blanco) Blanco. The C. volubilis accession ICPW 169 was found to be 'null' for both CI bands and CI activity. Environment, strain, and environment x strain interaction showed highly-significant effects on both the TI and CI activities. Growing the pigeonpea strains at a different environment from their area of adaptation increased TI and CI activities and also altered the maturity period.

  16. Attenuated Phenotype and Immunogenic Characteristics of a Mutated Herpes Simplex Virus 1 Strain in the Rhesus Macaque.

    PubMed

    Fan, Shengtao; Xu, Xingli; Liao, Yun; Wang, Yongrong; Wang, Jianbin; Feng, Min; Wang, Lichun; Zhang, Ying; He, Zhanlong; Yang, Fengmei; Fraser, Nigel W; Li, Qihan

    2018-05-02

    Herpes simplex virus type 1(HSV-1) presents a conundrum to public health worldwide because of its specific pathogenicity and clinical features. Some experimental vaccines, such as the recombinant viral glycoproteins, exhibit the viral immunogenicity of a host-specific immune response, but none of these has achieved a valid epidemiological protective efficacy in the human population. In the present study, we constructed an attenuated HSV-1 strain M3 through the partial deletion of UL7, UL41 , and the latency-associated transcript ( LAT ) using the CRISPR/Cas9 system. The mutant strain exhibited lowered infectivity and virulence in macaques. Neutralization testing and ELISpot detection of the specific T-cell responses confirmed the specific immunity induced by M3 immunization and this immunity defended against the challenges of the wild-type strain and restricted the entry of the wild-type strain into the trigeminal ganglion. These results in rhesus macaques demonstrated the potential of the attenuated vaccine for the prevention of HSV-1 in humans.

  17. Quinone Reduction by the Na+-Translocating NADH Dehydrogenase Promotes Extracellular Superoxide Production in Vibrio cholerae▿ †

    PubMed Central

    Lin, Po-Chi; Türk, Karin; Häse, Claudia C.; Fritz, Günter; Steuber, Julia

    2007-01-01

    The pathogenicity of Vibrio cholerae is influenced by sodium ions which are actively extruded from the cell by the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR). To study the function of the Na+-NQR in the respiratory chain of V. cholerae, we examined the formation of organic radicals and superoxide in a wild-type strain and a mutant strain lacking the Na+-NQR. Upon reduction with NADH, an organic radical was detected in native membranes by electron paramagnetic resonance spectroscopy which was assigned to ubisemiquinones generated by the Na+-NQR. The radical concentration increased from 0.2 mM at 0.08 mM Na+ to 0.4 mM at 14.7 mM Na+, indicating that the concentration of the coupling cation influences the redox state of the quinone pool in V. cholerae membranes. During respiration, V. cholerae cells produced extracellular superoxide with a specific activity of 10.2 nmol min−1 mg−1 in the wild type compared to 3.1 nmol min−1 mg−1 in the NQR deletion strain. Raising the Na+ concentration from 0.1 to 5 mM increased the rate of superoxide formation in the wild-type V. cholerae strain by at least 70%. Rates of respiratory H2O2 formation by wild-type V. cholerae cells (30.9 nmol min−1 mg−1) were threefold higher than rates observed with the mutant strain lacking the Na+-NQR (9.7 nmol min−1 mg−1). Our study shows that environmental Na+ could stimulate ubisemiquinone formation by the Na+-NQR and hereby enhance the production of reactive oxygen species formed during the autoxidation of reduced quinones. PMID:17322313

  18. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli.

    PubMed

    Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro

    2014-01-01

    Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production.

  19. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    PubMed

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  20. [Changes of biological behavioral of E. coli K1 after ppk1 gene deletion].

    PubMed

    Peng, Liang; Pan, Jiayun; Luo, Su; Yang, Zhenghui; Huang, Mufang; Cao, Hong

    2014-06-01

    To study the changes in biological behaviors of meningitis E. coli K1 strain E44 after deletion of polyphosphate kinase 1 (ppk1) gene and explore the role of ppk1 in the pathogenesis of E. coli K1-induced meningitis. The wild-type strain E. coli K1 and ppk1 deletion mutant were exposed to heat at 56 degrees celsius; for 6 min, and their survival rates were determined. The adhesion and invasion of the bacteria to human brain microvascular endothelial cells (HBMECs) were observed using electron microscopy and quantitative tests. HBMECs were co-incubated with wild-type strain or ppk1 deletion mutant, and the cytoskeleton rearrangement was observed under laser scanning confocal microscope. The survival rate of the ppk1 deletion mutant was significantly lower than that of the wild-type strain after heat exposure. The ppk1 deletion mutant also showed lowered cell adhesion and invasion abilities and weakened ability to induce cytoskeleton rearrangement in HBMECs. ppk1 gene is important for E.coli K1 for heat resistance, cell adhesion and invasion, and for inducing cytoskeletal rearrangement in HBMECs.

  1. Antigenic analysis of genetic variants of Canine distemper virus.

    PubMed

    Anis, Eman; Holford, Amy L; Galyon, Gina D; Wilkes, Rebecca P

    2018-06-01

    Canine distemper virus (CDV) is an RNA virus of the genus Morbillivirus within the family Paramyxoviridae. CDV produces multi-systemic disease in dogs and other terrestrial carnivores. With the development of modified live vaccines in the 1950s and 1960s, the disease, with a few exceptions, has been successfully controlled. However, recently the cases of CDV in vaccinated dogs have been increasing throughout the world, including the United States. There are many reasons that can lead to vaccine failure, including antigenic differences between the vaccine strains and the currently circulating wild-type strains. Currently, there are at least three genetically different CDV lineages circulating in the US. Therefore, in this study, we evaluated various wild-type CDV and vaccine isolates to determine if the genetic differences observed among various strains result in significant antigenic differences based on changes to the neutralizing epitopes. The results of a cross-neutralization assay revealed that there are antigenic differences among the tested CDV wild-type isolates as well as between the tested isolates and the vaccine strains currently used in the US. Therefore, these results suggest the need to develop an updated CDV vaccine. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Virulence Effects and Signaling Partners Modulated by Brucella melitensis Light-sensing Histidine Kinase

    NASA Astrophysics Data System (ADS)

    Gourley, Christopher R.

    The facultative intracellular pathogen Brucella melitensis utilizes diverse virulence factors. A Brucella light sensing histidine kinase can influence in vitro virulence of the bacteria during intracellular infection. First, we demonstrated that the B. melitensis light sensing kinase (BM-LOV-HK) affects virulence in an IRF-1-/- mouse model of infection. Infection with a Δ BM-LOV-HK strain resulted in less bacterial colonization of IRF-1-/- spleens and extended survivorship compared to mice infected with wild type B. melitensis 16M. Second, using PCR arrays, we observed less expression of innate and adaptive immune system activation markers in ΔBM-LOV-HK infected mouse spleens than wild type B. melitensis 16M infected mouse spleens 6 days after infection. Third, we demonstrated by microarray analysis of B. melitensis that deletion of BM-LOV-HK alters bacterial gene expression. Downregulation of genes involved in control of the general stress response system included the alternative sigma factor RpoE1 and its anti-anti sigma factor PhyR. Conversely, genes involved in flagella production, quorum sensing, and the type IV secretion system (VirB operon) were upregulated in the Δ BM-LOV-HK strain compared to the wild type B. melitensis 16M. Analysis of genes differentially regulated in Δ BM-LOV-HK versus the wild type strain indicated an overlap of 110 genes with data from previous quorum sensing regulator studies of Δ vjbR and/ΔblxR(babR) strains. Also, several predicted RpoE1 binding sites located upstream of genes were differentially regulated in the ΔBM-LOV-HK strain. Our results suggest BM-LOV-HK is important for in vivo Brucella virulence, and reveals that BM-LOV-HK directly or indirect regulates members of the Brucella quorum sensing, type IV secretion, and general stress systems.

  3. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates.

    PubMed

    Pontes, María Victoria Aguilar; Patyshakuliyeva, Aleksandrina; Post, Harm; Jurak, Edita; Hildén, Kristiina; Altelaar, Maarten; Heck, Albert; Kabel, Mirjam A; de Vries, Ronald P; Mäkelä, Miia R

    2018-03-01

    The white button mushroom Agaricus bisporus is one of the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. We therefore focused our analysis on the stages where the fungus is producing fruiting bodies. Growth profiling was used to identify A. bisporus strains with different abilities to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Characterization of yakju brewed from glutinous rice and wild-type yeast strains isolated from nuruks.

    PubMed

    Kim, Hye Ryun; Kim, Jae-Ho; Bae, Dong-Hoon; Ahn, Byung-Hak

    2010-12-01

    Korean traditional rice wines yakju and takju are generally brewed with nuruk as the source of the saccharogenic enzymes by natural fermentation. To improve the quality of Korean rice wine, the microorganisms in the nuruk need to be studied. The objective of this research was to improve the quality of Korean wine with the wild-type yeast strains isolated from the fermentation starter, nuruk. Only strain YA-6 showed high activity in 20% ethanol. Precipitation of Y89-5-3 was similar to that of very flocculent yeast (〉80%) at 75.95%. Using 18S rRNA sequencing, all 10 strains were identified as Saccharomyces cerevisiae. Volatile compounds present in yakju were analyzed by gas chromatography-mass selective detector. The principal component analysis (PCA) of the volatile compounds grouped long-chain esters on the right side of the first principal component, PC1; these compounds were found in yakju that was made with strains YA-6, Y89-5-3, Y89-5- 2, Y90-9, and Y89-1-1. On the other side of PC1 were short-chain esters; these compounds were found in wines that were brewed with strains Y183-2, Y268-3, Y54-3, Y98-4, and Y88-4. Overall, the results indicated that using different wild-type yeast strains in the fermentation process significantly affects the chemical characteristics of the glutinous rice wine.

  5. Virulence genes and plasmid profiles in Rhodococcus equi isolates from domestic pigs and wild boars (Sus scrofa) in Brazil.

    PubMed

    Ribeiro, Márcio Garcia; Takai, Shinji; Guazzelli, Alessandro; Lara, Gustavo Henrique Batista; da Silva, Aristeu Vieira; Fernandes, Marta Catarina; Condas, Larissa Anuska Zeni; Siqueira, Amanda Keller; Salerno, Tatiana

    2011-12-01

    The virulence genes and plasmid profiles of 23 Rhodococcus equi isolates from 258 lymph nodes from domestic pigs (129 nodes with lesions and 129 without lesions) and 120 lymph nodes from slaughtered wild boars (60 nodes with lesions and 60 without) were characterized. R. equi was obtained from 19 lymph nodes of domestic pigs, 17 with, and two without lesions, and from four lymph nodes with lesions, from wild boars. The 23 isolates were tested for the presence of vapA and vapB genes, responsible for the 15-17 and 20 kDa virulence-associated proteins, respectively, by PCR in order to characterize as virulent (VapA), intermediately virulent (VapB) and avirulent. Plasmid DNAs were isolated and analyzed by digestion with restriction endonucleases to estimate size and compare their polymorphisms. Of the 19 domestic pigs strains, seven (36.8%) were avirulent and 12 (63.2%) were intermediately virulent, with the intermediately virulent isolates being plasmid types 8 (8 isolates), 10 (2 isolates), 1 (1 isolate) and 29 (1 isolate). The plasmid type of four strains isolated from wild boars was also intermediately virulent type 8. None of the domestic pigs and wild boar isolates showed the vapA gene. These findings demonstrate a high occurrence of plasmid type 8 in isolates from pigs and wild boars, and the similarity of plasmid types in the domestic pigs, wild boars and human isolates in Brazil. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Cytochrome and Alternative Pathway Respiration in Green Algae 1

    PubMed Central

    Weger, Harold G.; Guy, Robert D.; Turpin, David H.

    1990-01-01

    Inhibitor titration curves and discrimination against 18O2 by mitochondrial respiration in three strains of green algae (Selenastrum minutum [Naeg.] Collins, and two strains of Chlamydomonas reinhardtii Dangeard) with differing respiratory capabilities were determined. Discrimination for cytochrome pathway respiration ranged from 19.89 to 20.43%. Discrimination for alternative pathway respiration by wild-type C. reinhardtii (measured in the presence of KCN) was 25.46%, while discrimination values for a cytochrome oxidase deficient mutant of C. reinhardtii ranged from 24.24 to 24.96%. In the absence of KCN, the alternative pathway was not engaged in wild-type C. reinhardtii, the only algal strain that possessed both cytochrome and alternative pathway capacities. PMID:16667462

  7. Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains.

    PubMed

    Lomakin, Joseph; Arakane, Yasuyuki; Kramer, Karl J; Beeman, Richard W; Kanost, Michael R; Gehrke, Stevin H

    2010-12-01

    Cuticle tanning in insects involves simultaneous cuticular pigmentation and hardening or sclerotization. The dynamic mechanical properties of the highly modified and cuticle-rich forewings (elytra) from Tribolium castaneum (red flour beetle) wild-type and body color mutant strains were investigated to relate body coloration and elytral mechanical properties. There was no statistically significant variation in the storage modulus E' among the elytra from jet, cola, sooty and black mutants or between the mutants and the wild-type GA-1 strain: E' averaged 5.1 ± 0.6 GPa regardless of body color. E' is a power law function of oscillation frequency for all types. The power law exponent, n, averaged 0.032 ± 0.001 for elytra from all genotypes except black; this small value indicated that the elytra are cross-linked. Black elytra, however, displayed a significantly larger n of 0.047 ± 0.004 and an increased loss tangent (tan δ), suggesting that metabolic differences in the black mutant strain result in elytra that are less cross-linked and more pigmented than the other types. These results are consistent with the hypothesis that black elytra have a β-alanine-deficient and dopamine-abundant metabolism, leading to greater melanin (black pigment) production, probably at the expense of cross-linking of cuticular proteins mediated by N-β-alanyldopamine quinone. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Development of industrial brewing yeast with low acetaldehyde production and improved flavor stability.

    PubMed

    Wang, Jinjing; Shen, Nan; Yin, Hua; Liu, Chunfeng; Li, Yongxian; Li, Qi

    2013-02-01

    Higher acetaldehyde concentration in beer is one of the main concerns of current beer industry in China. Acetaldehyde is always synthesized during beer brewing by the metabolism of yeast. Here, using ethanol as the sole carbon source and 4-methylpyrazole as the selection marker, we constructed a new mutant strain with lower acetaldehyde production and improved ethanol tolerance via traditional mutagenesis strategy. European Brewery Convention tube fermentation tests comparing the fermentation broths of mutant strain and industrial brewing strain showed that the acetaldehyde concentration of mutant strain was 81.67 % lower, whereas its resistant staling value was 1.0-fold higher. Owing to the mutation, the alcohol dehydrogenase activity of the mutant strain decreased to about 30 % of the wild-type strain. In the meantime, the fermentation performance of the newly screened strain has little difference compared with the wild-type strain, and there are no safety problems regarding the industrial usage of the mutant strain. Therefore, we suggest that the newly screened strain could be directly applied to brewing industry.

  9. The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages.

    PubMed

    Yamada, Hanano; Vreysen, Marc J B; Gilles, Jeremie R L; Munhenga, Givemore; Damiens, David D

    2014-08-13

    To enable the release of only sterile male Anopheles arabiensis mosquitoes for the sterile insect technique, the genetic background of a wild-type strain was modified to create a genetic sexing strain ANO IPCL1 that was based on a dieldrin resistance mutation. Secondly, the eggs of ANO IPCL1 require treatment with dieldrin to allow complete elimination of female L1 larvae from the production line. Finally, male mosquito pupae need to be treated with an irradiation dose of 75 Gy for sterilization. The effects of these treatments on the competitiveness of male An. arabiensis were studied. The competitiveness of ANO IPCL1 males that were treated either with irradiation or both dieldrin and irradiation, was compared with that of the wild-type strain (An. arabiensis Dongola) at a 1:1 ratio in 5.36 m3 semi-field cages located in a climate-controlled greenhouse. In addition, three irradiated: untreated male ratios were tested in semi-field cages (1:1, 5:1 and 10:1) and their competition for virgin wild-type females was assessed. The ANO IPCL1 males were equally competitive as the wild-type males in this semi-field setting. The ANO IPCL1 males irradiated at 75 Gy were approximately half as competitive as the unirradiated wild-type males. ANO IPCL1 males that had been treated with dieldrin as eggs, and irradiated with 75 Gy as pupae were slightly more competitive than males that were only irradiated. Ratios of 1:1, 5:1 and 10:1 irradiated ANO IPCL1 males: untreated wild-type males resulted in 31, 66 and 81% induced sterility in the female cage population, respectively. An irradiation dose of 75 Gy reduced the competitiveness of male ANO IPCL1 significantly and will need to be compensated by releasing higher numbers of sterile males in the field. However, the dieldrin treatment used to eliminate females appears to have an unexpected radioprotectant effect, however the mechanism is not understood. A sterile to wild-type ratio of 10:1 effectively reduced the population's fertility under the experimental field cage conditions, but further studies in the field will be needed to confirm the efficiency of sterile ANO IPCL1 males when competing against wild males for wild females.

  10. Cloning of the koi herpesvirus genome as an infectious bacterial artificial chromosome demonstrates that disruption of the thymidine kinase locus induces partial attenuation in Cyprinus carpio koi.

    PubMed

    Costes, B; Fournier, G; Michel, B; Delforge, C; Raj, V Stalin; Dewals, B; Gillet, L; Drion, P; Body, A; Schynts, F; Lieffrig, F; Vanderplasschen, A

    2008-05-01

    Koi herpesvirus (KHV) is the causative agent of a lethal disease in koi and common carp. In the present study, we describe the cloning of the KHV genome as a stable and infectious bacterial artificial chromosome (BAC) clone that can be used to produce KHV recombinant strains. This goal was achieved by the insertion of a loxP-flanked BAC cassette into the thymidine kinase (TK) locus. This insertion led to a BAC plasmid that was stably maintained in bacteria and was able to regenerate virions when permissive cells were transfected with the plasmid. Reconstituted virions free of the BAC cassette but carrying a disrupted TK locus (the FL BAC-excised strain) were produced by the transfection of Cre recombinase-expressing cells with the BAC. Similarly, virions with a wild-type revertant TK sequence (the FL BAC revertant strain) were produced by the cotransfection of cells with the BAC and a DNA fragment encoding the wild-type TK sequence. Reconstituted recombinant viruses were compared to the wild-type parental virus in vitro and in vivo. The FL BAC revertant strain and the FL BAC-excised strain replicated comparably to the parental FL strain. The FL BAC revertant strain induced KHV infection in koi carp that was indistinguishable from that induced by the parental strain, while the FL BAC-excised strain exhibited a partially attenuated phenotype. Finally, the usefulness of the KHV BAC for recombination studies was demonstrated by the production of an ORF16-deleted strain by using prokaryotic recombination technology. The availability of the KHV BAC is an important advance that will allow the study of viral genes involved in KHV pathogenesis, as well as the production of attenuated recombinant candidate vaccines.

  11. Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains

    PubMed Central

    2013-01-01

    Background S. erythraea is a Gram-positive filamentous bacterium used for the industrial-scale production of erythromycin A which is of high clinical importance. In this work, we sequenced the whole genome of a high-producing strain (E3) obtained by random mutagenesis and screening from the wild-type strain NRRL23338, and examined time-series expression profiles of both E3 and NRRL23338. Based on the genomic data and transcriptpmic data of these two strains, we carried out comparative analysis of high-producing strain and wild-type strain at both the genomic level and the transcriptomic level. Results We observed a large number of genetic variants including 60 insertions, 46 deletions and 584 single nucleotide variations (SNV) in E3 in comparison with NRRL23338, and the analysis of time series transcriptomic data indicated that the genes involved in erythromycin biosynthesis and feeder pathways were significantly up-regulated during the 60 hours time-course. According to our data, BldD, a previously identified ery cluster regulator, did not show any positive correlations with the expression of ery cluster, suggesting the existence of alternative regulation mechanisms of erythromycin synthesis in S. erythraea. Several potential regulators were then proposed by integration analysis of genomic and transcriptomic data. Conclusion This is a demonstration of the functional comparative genomics between an industrial S. erythraea strain and the wild-type strain. These findings help to understand the global regulation mechanisms of erythromycin biosynthesis in S. erythraea, providing useful clues for genetic and metabolic engineering in the future. PMID:23902230

  12. Host-cell interaction of attenuated and wild-type strains of yellow fever virus can be differentiated at early stages of hepatocyte infection.

    PubMed

    Lefeuvre, Anabelle; Contamin, Hugues; Decelle, Thierry; Fournier, Christophe; Lang, Jean; Deubel, Vincent; Marianneau, Philippe

    2006-05-01

    Yellow fever (YF) virus is currently found in tropical Africa and South America, and is responsible for a febrile to severe illness characterized by organ failure and shock. The attenuated YF 17D strain, used in YF vaccine, was derived from the wild-type strain Asibi. Although studies have been done on genetic markers of YF virulence, differentiation of the two strains in terms of host-cell interaction during infection remains elusive. As YF wild-type strains are hepatotropic, we chose a hepatic cell line (HepG2) to study YF virus-host cell interaction. HepG2 cells rapidly produced high titres of infectious viral particles for 17D and Asibi YF strains. However, HepG2 cells were more susceptible to the attenuated 17D virus infection, and only this virus strain induced early apoptosis in these cells. Molecular markers specific for the 17D virus were identified by microarray analysis and confirmed by quantitative RT-PCR analysis. As early as 1h postinfection, three genes, (IEX-1, IRF-1, DEC-1) all implicated in apoptosis pathways, were upregulated. Later in infection (48 h) two other genes (HSP70-1A and 1B), expressed in cases of cellular stress, were highly upregulated in 17D-infected HepG2 cells. The early specific upregulation of these cellular genes in HepG2 cells may be considered markers of the 17D virus. This study on the YF attenuated strain gives a new approach to the analysis of the factors involved in virus attenuation.

  13. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Richards, Gil F. (Inventor); Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  14. Importance of cell damage causing growth delay for high pressure inactivation of Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Nanba, Masaru; Nomura, Kazuki; Nasuhara, Yusuke; Hayashi, Manabu; Kido, Miyuki; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru; Hirayama, Masao; Ueno, Shigeaki; Fujii, Tomoyuki

    2013-06-01

    A high pressure (HP) tolerant (barotolerant) mutant a2568D8 and a variably barotolerant mutant a1210H12 were generated from Saccharomyces cerevisiae using ultra-violet mutagenesis. The two mutants, a barosensitive mutant a924E1 and the wild-type strain, were pressurized (225 MPa), and pressure inactivation behavior was analyzed. In the wild-type strain, a proportion of the growth-delayed cells were detected after exposure to HP. In a924E1, the proportion of growth-delayed cells significantly decreased compared with the wild-type. In a2568D8, the proportion of growth-delayed cells increased and the proportion of inactivated cells decreased compared with the wild-type. In a1210H12, the growth-delayed cells could not be detected within 120 s of exposure to HP. The proportion of growth-delayed cells, which incurred the damage, would affect the survival ratio by HP. These results suggested that cellular changes in barotolerance caused by mutations are remarkably affected by the ability to recover from cellular damage, which results in a growth delay.

  15. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3.

    PubMed

    Sharma, Deepa K; Nalavade, Uma P; Deshpande, Jagadish M

    2015-10-01

    The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 10 4.40 CCID 50 /ml of WPV1 and 10 4.00 CCID 50 /ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.

  16. Influence of developmental stage and genotype on liver mRNA levels among wild, domesticated, and hybrid rainbow trout (Oncorhynchus mykiss).

    PubMed

    White, Samantha L; Sakhrani, Dionne; Danzmann, Roy G; Devlin, Robert H

    2013-10-02

    Release of domesticated strains of fish into nature may pose a threat to wild populations with respect to their evolved genetic structure and fitness. Understanding alterations that have occurred in both physiology and genetics as a consequence of domestication can assist in evaluating the risks posed by introgression of domesticated genomes into wild genetic backgrounds, however the molecular causes of these consequences are currently poorly defined. The present study has examined levels of mRNA in fast-growing pure domesticated (D), slow-growing age-matched pure wild (Wa), slow-growing size-matched pure wild (Ws), and first generation hybrid cross (W/D) rainbow trout (Oncorhynchus mykiss) to investigate the influence of genotype (domesticated vs. wild, and their interactions in hybrids) and developmental stage (age- or size-matched animals) on genetic responses (i.e. dominant vs. recessive) and specific physiological pathways. Highly significant differences in mRNA levels were found between domesticated and wild-type rainbow trout genotypes (321 mRNAs), with many mRNAs in the wild-domesticated hybrid progeny showing intermediate levels. Differences were also found between age-matched and size-matched wild-type trout groups (64 mRNAs), with unique mRNA differences for each of the wild-type groups when compared to domesticated trout (Wa: 114 mRNAs, Ws: 88 mRNAs), illustrating an influence of fish developmental stage affecting findings when used as comparator groups to other genotypes. Analysis of differentially expressed mRNAs (found for both wild-type trout to domesticated comparisons) among the genotypes indicates that 34.8% are regulated consistent with an additive genetic model, whereas 39.1% and 26.1% show a recessive or dominant mode of regulation, respectively. These molecular data are largely consistent with phenotypic data (growth and behavioural assessments) assessed in domesticated and wild trout strains. The present molecular data are concordant with domestication having clearly altered rainbow trout genomes and consequent phenotype from that of native wild populations. Although mainly additive responses were noted in hybrid progeny, the prevalence of dominant and non-additive responses reveals that introgression of domesticated and wild genotypes alters the type of genetic control of mRNA levels from that of wild-type, which may lead to disruption of gene regulation systems important for developing phenotypes for optimal fitness in nature. A clear influence of both fish age and size (developmental stage) on mRNA levels was also noted in this study, which highlights the importance of examining multiple control samples to provide a comprehensive understanding of changes observed between strains possessing differences in growth rate.

  17. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-03

    During bread-making processes, yeast cells are exposed to various baking-associated stresses. High-sucrose concentrations exert severe osmotic stress that seriously damages cellular components by generation of reactive oxygen species (ROS). Previously, we found that the accumulation of proline conferred freeze-thaw stress tolerance and the baker's yeast strain that accumulated proline retained higher-level fermentation abilities in frozen doughs than the wild-type strain. In this study, we constructed self-cloning diploid baker's yeast strains that accumulate proline. These resultant strains showed higher cell viability and lower intracellular oxidation levels than that observed in the wild-type strain under high-sucrose stress condition. Proline accumulation also enhanced the fermentation ability in high-sucrose-containing dough. These results demonstrate the usefulness of proline-accumulating baker's yeast for sweet dough baking. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells.

  19. The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora.

    PubMed

    Nowrousian, Minou; Cebula, Patricia

    2005-11-03

    The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Deltatap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora.

  20. The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora

    PubMed Central

    Nowrousian, Minou; Cebula, Patricia

    2005-01-01

    Background The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Results Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Δtap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. Conclusion The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora. PMID:16266439

  1. Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory

    PubMed Central

    2010-01-01

    Background Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. Results Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. Conclusions The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins. PMID:20565740

  2. Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory.

    PubMed

    Ferndahl, Cecilia; Bonander, Nicklas; Logez, Christel; Wagner, Renaud; Gustafsson, Lena; Larsson, Christer; Hedfalk, Kristina; Darby, Richard A J; Bill, Roslyn M

    2010-06-17

    Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins.

  3. The Saccharomyces cerevisiae ETH1 Gene, an Inducible Homolog of Exonuclease III That Provides Resistance to DNA-Damaging Agents and Limits Spontaneous Mutagenesis

    PubMed Central

    Bennett, Richard A. O.

    1999-01-01

    The recently sequenced Saccharomyces cerevisiae genome was searched for a gene with homology to the gene encoding the major human AP endonuclease, a component of the highly conserved DNA base excision repair pathway. An open reading frame was found to encode a putative protein (34% identical to the Schizosaccharomyces pombe eth1+ [open reading frame SPBC3D6.10] gene product) with a 347-residue segment homologous to the exonuclease III family of AP endonucleases. Synthesis of mRNA from ETH1 in wild-type cells was induced sixfold relative to that in untreated cells after exposure to the alkylating agent methyl methanesulfonate (MMS). To investigate the function of ETH1, deletions of the open reading frame were made in a wild-type strain and a strain deficient in the known yeast AP endonuclease encoded by APN1. eth1 strains were not more sensitive to killing by MMS, hydrogen peroxide, or phleomycin D1, whereas apn1 strains were ∼3-fold more sensitive to MMS and ∼10-fold more sensitive to hydrogen peroxide than was the wild type. Double-mutant strains (apn1 eth1) were ∼15-fold more sensitive to MMS and ∼2- to 3-fold more sensitive to hydrogen peroxide and phleomycin D1 than were apn1 strains. Elimination of ETH1 in apn1 strains also increased spontaneous mutation rates 9- or 31-fold compared to the wild type as determined by reversion to adenine or lysine prototrophy, respectively. Transformation of apn1 eth1 cells with an expression vector containing ETH1 reversed the hypersensitivity to MMS and limited the rate of spontaneous mutagenesis. Expression of ETH1 in a dut-1 xthA3 Escherichia coli strain demonstrated that the gene product functionally complements the missing AP endonuclease activity. Thus, in apn1 cells where the major AP endonuclease activity is missing, ETH1 offers an alternate capacity for repair of spontaneous or induced damage to DNA that is normally repaired by Apn1 protein. PMID:10022867

  4. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples.

    PubMed

    Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8-100% sensitivity, 100% specificity, 86-89% efficiency and a limit of detection of 12-400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82-90% efficiency and limit of detection of 120-4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains.

  5. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    PubMed Central

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8–100% sensitivity, 100% specificity, 86–89% efficiency and a limit of detection of 12–400 copies per singleplex reactions. The VP4 qRT-PCRs exhibited 82–90% efficiency and limit of detection of 120–4000 copies in multiplex reaction. Discussion. The one-step multiplex qRT-PCR assay will facilitate high-throughput rotavirus genotype characterization for monitoring circulating rotavirus wild-type strains causing rotavirus infections, determining the frequency of Rotarix® and RotaTeq® vaccine strains and vaccine-derived reassortants associated with AGE, and help to identify novel rotavirus strains derived by reassortment between vaccine and wild-type strains. PMID:26839745

  6. Different virulence of influenza A virus strains and susceptibility to pneumococcal otitis media in chinchillas.

    PubMed Central

    Giebink, G S; Wright, P F

    1983-01-01

    We have previously shown that chinchillas infected with a multiply passaged laboratory strain of influenza A/NWS/33 (H1N1) develop negative middle-ear pressure; polymorphonuclear leukocyte oxidative, bactericidal, and chemotactic dysfunction; and increased susceptibility to pneumococcal otitis media. Because influenza A virus strains show different virulence in humans, three such strains were compared in the chinchilla model. Negative middle-ear pressure and tympanic membrane inflammation developed significantly more often in chinchillas infected with wild-type H3N2 virus than with either wild-type H1N1 virus or an attenuated, cold-adapted H3N2 vaccine strain, CR29. Marked depression in polymorphonuclear leukocyte chemiluminescent activity also developed significantly more often in H3N2 infected animals than in H1N1- or CR29-infected animals. Intranasal challenge of influenza virus-infected animals with type 7 Streptococcus pneumoniae resulted in a significantly greater occurrence of pneumococcal otitis media in H3N2-infected animals than in H1N1-, CR29-, or non-influenza-infected control animals. Clearance of pneumococci from nasal washings of animals infected with wild-type H3N2 was significantly delayed in comparison with the other groups. Thus, the previously demonstrated increased susceptibility to otitis media among children infected with H3N2 influenza virus may relate to the capacity of this strain to induce negative middle-ear pressure, polymorphonuclear leukocyte dysfunction, and alteration in the mucosal clearance of pneumococci. PMID:6885170

  7. SUC1 gene of Saccharomyces: a structural gene for the large (glycoprotein) and small (carbohydrate-free) forms of invertase.

    PubMed Central

    Rodriguez, L; Lampen, J O; MacKay, V L

    1981-01-01

    Saccharomyces cerevisiae revertant strain D10-ER1 has been shown to contain thermosensitive forms of the large (glycoprotein) and small (carbohydrate-free) invertases and a very low level of the small enzyme, along with a wild-type level of the large form (T. Mizunaga et al., Mol. Cell. Biol. 1:460-468, 1981). These characteristics cosegregated in crosses of the revertant strain with wild-type sucrose-fermenting (SUC1) or nonfermenting (suc0) strains. In addition, there is tight linkage between sucrose and maltose fermentation in revertant D10-ER1 (characteristic of the SUC1 and MAL1 genes). From this we infer that a single reversion event is responsible for the several changes observed in D10-ER1, and that this mutation maps within or very close to the SUC1 gene present in the ancestor strain 4059-358D. The revertant SUC1 allele in D10-ER1 (termed SUC1-R1) was expressed independently of the wild-type SUC1 gene when both were present in diploid cells. Diploids carrying only the wild-type or the mutant genes synthesized invertases with the characteristics of the parental Suc+ haploids. The possibility that a modifier gene was responsible for the alterations in the invertases of revertant D10-ER1 was ruled out by appropriate crosses. We conclude that SUC1 is a structural gene that codes for both the large and the small forms of invertase and suggest that SUC2 through SUC5 are structural genes as well. PMID:6765604

  8. The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures

    PubMed Central

    Faille, Christine; Sadovskaya, Irina; Charbit, Alain; Benezech, Thierry; Shen, Yang; Loessner, Martin J.; Bautista, Jean Romain; Midelet-Bourdin, Graziella

    2018-01-01

    The wall teichoic acid (WTA) is the major carbohydrate found within the extracellular matrix of the Listeria monocytogenes biofilm. We first addressed the frequency of spontaneous mutations in two genes (lmo2549 and lmo2550) responsible for the GlcNAcylation in 93 serotype 1/2a strains that were mainly isolated from seafood industries. We studied the impact of mutations in lmo2549 or lmo2550 genes on biofilm formation by using one mutant carrying a natural mutation inactivating the lmo2550 gene (DSS 1130 BFA2 strain) and two EGD-e mutants that lack respective genes by in-frame deletion of lmo2549 or lmo2550 using splicing-by-overlap-extension PCR, followed by allelic exchange mutagenesis. The lmo2550 gene mutation, occurring in around 50% isolates, caused a decrease in bacterial adhesion to stainless steel compared to wild-type EGD-e strain during the adhesion step. On the other hand, bacterial population weren’t significantly different after 24h-biofilm formation. The biofilm architecture was different between the wild-type strain and the two mutants inactivated for lmo2549 or lmo2550 genes respectively with the presence of bacterial micro-colonies for mutants which were not observed in the wild-type EGD-e strain biofilm. These differences might account for the stronger hydrophilic surface exhibited by the mutant cells. Upon a water flow or to a cleaning procedure at a shear stress of 0.16 Pa, the mutant biofilms showed the higher detachment rate compared to wild-type strain. Meanwhile, an increase in the amount of residual viable but non-culturable population on stainless steel was recorded in two mutants. Our data suggests that the GlcNAc residue of WTA played a role in adhesion and biofilm formation of Listeria monocyctogenes. PMID:29320565

  9. The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures.

    PubMed

    Brauge, Thomas; Faille, Christine; Sadovskaya, Irina; Charbit, Alain; Benezech, Thierry; Shen, Yang; Loessner, Martin J; Bautista, Jean Romain; Midelet-Bourdin, Graziella

    2018-01-01

    The wall teichoic acid (WTA) is the major carbohydrate found within the extracellular matrix of the Listeria monocytogenes biofilm. We first addressed the frequency of spontaneous mutations in two genes (lmo2549 and lmo2550) responsible for the GlcNAcylation in 93 serotype 1/2a strains that were mainly isolated from seafood industries. We studied the impact of mutations in lmo2549 or lmo2550 genes on biofilm formation by using one mutant carrying a natural mutation inactivating the lmo2550 gene (DSS 1130 BFA2 strain) and two EGD-e mutants that lack respective genes by in-frame deletion of lmo2549 or lmo2550 using splicing-by-overlap-extension PCR, followed by allelic exchange mutagenesis. The lmo2550 gene mutation, occurring in around 50% isolates, caused a decrease in bacterial adhesion to stainless steel compared to wild-type EGD-e strain during the adhesion step. On the other hand, bacterial population weren't significantly different after 24h-biofilm formation. The biofilm architecture was different between the wild-type strain and the two mutants inactivated for lmo2549 or lmo2550 genes respectively with the presence of bacterial micro-colonies for mutants which were not observed in the wild-type EGD-e strain biofilm. These differences might account for the stronger hydrophilic surface exhibited by the mutant cells. Upon a water flow or to a cleaning procedure at a shear stress of 0.16 Pa, the mutant biofilms showed the higher detachment rate compared to wild-type strain. Meanwhile, an increase in the amount of residual viable but non-culturable population on stainless steel was recorded in two mutants. Our data suggests that the GlcNAc residue of WTA played a role in adhesion and biofilm formation of Listeria monocyctogenes.

  10. Long-lived weight-reduced αMUPA mice show higher and longer maternal-dependent postnatal leptin surge

    PubMed Central

    Pinsky, Mariel; Rauch, Maayan; Abbas, Atallah; Sharabi-Nov, Adi; Tamir, Snait

    2017-01-01

    We investigated whether long-lived weight-reduced αMUPA mice differ from their wild types in postnatal body composition and leptin level, and whether these differences are affected by maternal-borne factors. Newborn αMUPA and wild type mice had similar body weight and composition up to the third postnatal week, after which αMUPA mice maintained lower body weight due to lower fat-free mass. Both strains showed a surge in leptin levels at the second postnatal week, initiating earlier in αMUPA mice, rising higher and lasting longer than in the wild types, mainly in females. Leptin level in dams’ serum and breast milk, and in their pup’s stomach content were also higher in αMUPA than in the WT during the surge peak. Leptin surge preceded the strain divergence in body weight, and was associated with an age-dependent decrease in the leptin:fat mass ratio—suggesting that postnatal sex and strain differences in leptin ontogeny are strongly influenced by processes independent of fat mass, such as production and secretion, and possibly outside fat tissues. Dam removal elevated corticosterone level in female pups from both strains similarly, yet mitigated the leptin surge only in αMUPA–eliminating the strain differences in leptin levels. Overall, our results indicate that αMUPA’s postnatal leptin surge is more pronounced than in the wild type, more sensitive to maternal deprivation, less related to pup’s total adiposity, and is associated with a lower post-weaning fat-free mass. These strain-related postnatal differences may be related to αMUPA’s higher milk-borne leptin levels. Thus, our results support the use of αMUPA mice in future studies aimed to explore the relationship between maternal (i.e. milk-borne) factors, postnatal leptin levels, and post-weaning body composition and energy homeostasis. PMID:29190757

  11. Complementation and Genetic Recombination in Candida lipolytica

    PubMed Central

    Bassel, John; Warfei, Jean; Mortimer, Robert

    1971-01-01

    Nutritional requirements were introduced into wild-type, heterothallic strains of Candida lipolytica by exposing the cells to X rays. Complementing hybrids were recovered from mixtures of the auxotrophic strains, and genetic recombination was observed in individually isolated ascospores from the hybrid strains. PMID:5122814

  12. Development of a Markerless Genetic Exchange System in Desulfovibrio vulgaris Hildenborough and Its Use in Generating a Strain with Increased Transformation Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Kimberly L.; Bender, Kelly S.; Wall, Judy D.

    2009-07-21

    In recent years, the genetic manipulation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough has seen enormous progress. In spite of this progress, the current marker exchange deletion method does not allow for easy selection of multiple sequential gene deletions in a single strain because of the limited number of selectable markers available in D. vulgaris. To broaden the repertoire of genetic tools for manipulation, an in-frame, markerless deletion system has been developed. The counterselectable marker that makes this deletion system possible is the pyrimidine salvage enzyme, uracil phosphoribosyltransferase, encoded by upp. In wild-type D. vulgaris, growth was shown to bemore » inhibited by the toxic pyrimidine analog 5-fluorouracil (5-FU); whereas, a mutant bearing a deletion of the upp gene was resistant to 5-FU. When a plasmid containing the wild-type upp gene expressed constitutively from the aph(3')-II promoter (promoter for the kanamycin resistance gene in Tn5) was introduced into the upp deletion strain, sensitivity to 5-FU was restored. This observation allowed us to develop a two-step integration and excision strategy for the deletion of genes of interest. Since this inframe deletion strategy does not retain an antibiotic cassette, multiple deletions can be generated in a single strain without the accumulation of genes conferring antibiotic resistances. We used this strategy to generate a deletion strain lacking the endonuclease (hsdR, DVU1703) of a type I restriction-modification system, that we designated JW7035. The transformation efficiency of the JW7035 strain was found to be 100 to 1000 times greater than that of the wild-type strain when stable plasmids were introduced via electroporation.« less

  13. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.

    PubMed

    Spaepen, Stijn; Bossuyt, Stijn; Engelen, Kristof; Marchal, Kathleen; Vanderleyden, Jos

    2014-02-01

    The auxin-producing bacterium Azospirillum brasilense Sp245 can promote the growth of several plant species. The model plant Arabidopsis thaliana was chosen as host plant to gain an insight into the molecular mechanisms that govern this interaction. The determination of differential gene expression in Arabidopsis roots after inoculation with either A. brasilense wild-type or an auxin biosynthesis mutant was achieved by microarray analysis. Arabidopsis thaliana inoculation with A. brasilense wild-type increases the number of lateral roots and root hairs, and elevates the internal auxin concentration in the plant. The A. thaliana root transcriptome undergoes extensive changes on A. brasilense inoculation, and the effects are more pronounced at later time points. The wild-type bacterial strain induces changes in hormone- and defense-related genes, as well as in plant cell wall-related genes. The A. brasilense mutant, however, does not elicit these transcriptional changes to the same extent. There are qualitative and quantitative differences between A. thaliana responses to the wild-type A. brasilense strain and the auxin biosynthesis mutant strain, based on both phenotypic and transcriptomic data. This illustrates the major role played by auxin in the Azospirillum-Arabidopsis interaction, and possibly also in other bacterium-plant interactions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. The Candida albicans Pho4 Transcription Factor Mediates Susceptibility to Stress and Influences Fitness in a Mouse Commensalism Model

    PubMed Central

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2016-01-01

    The Pho4 transcription factor is required for growth under low environmental phosphate concentrations in Saccharomyces cerevisiae. A characterization of Candida albicans pho4 mutants revealed that these cells are more susceptible to both osmotic and oxidative stress and that this effect is diminished in the presence of 5% CO2 or anaerobiosis, reflecting the relevance of oxygen metabolism in the Pho4-mediated response. A pho4 mutant was as virulent as wild type strain when assayed in the Galleria mellonella infection model and was even more resistant to murine macrophages in ex vivo killing assays. The lack of Pho4 neither impairs the ability to colonize the murine gut nor alters the localization in the gastrointestinal tract. However, we found that Pho4 influenced the colonization of C. albicans in the mouse gut in competition assays; pho4 mutants were unable to attain high colonization levels when inoculated simultaneously with an isogenic wild type strain. Moreover, pho4 mutants displayed a reduced adherence to the intestinal mucosa in a competitive ex vivo assays with wild type cells. In vitro competitive assays also revealed defects in fitness for this mutant compared to the wild type strain. Thus, Pho4, a transcription factor involved in phosphate metabolism, is required for adaptation to stress and fitness in C. albicans. PMID:27458452

  15. Role of Proteus mirabilis MR/P fimbriae and flagella in adhesion, cytotoxicity and genotoxicity induction in T24 and Vero cells.

    PubMed

    Scavone, Paola; Villar, Silvia; Umpiérrez, Ana; Zunino, Pablo

    2015-06-01

    Proteus mirabilis is frequently associated with complicated urinary tract infections (UTI). It is proposed that several virulence factors are associated with P. mirabilis uropathogenicity. The aim of this work was to elucidate genotoxic and cytotoxic effects mediated by MR/P fimbriae and flagella in eukaryotic cells in vitro. Two cell lines (kidney- and bladder-derived) were infected with a clinical wild-type P. mirabilis strain and an MR/P and a flagellar mutant. We evaluated adhesion, genotoxicity and cytotoxicity by microscopy, comet assay and triple staining technique, respectively. Mutant strains displayed lower adhesion rates than the P. mirabilis wild-type strain and were significantly less effective to induce genotoxic and cytotoxic effects compared to the wild type. We report for the first time that P. mirabilis MR/P fimbriae and flagella mediate genotoxic and cytotoxic effects on eukaryotic cells, at least in in vitro conditions. These results could contribute to design new strategies for the control of UTI. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Are cases of mumps in vaccinated patients attributable to mismatches in both vaccine T-cell and B-cell epitopes?

    PubMed Central

    Homan, E Jane; Bremel, Robert D

    2014-01-01

    Resurgent mumps outbreaks have raised questions about the current efficacy of mumps vaccines. We have applied immunoinformatics techniques based on principal component analysis to evaluate patterns in predicted B-cell linear epitopes, MHC binding affinity and cathepsin cleavage in the hemagglutinin neuraminidase protein of vaccine strains and wild-type mumps isolates. We have mapped predicted MHC-peptide binding for 37 MHC-I and 28 MHC-II alleles and predicted cleavage by cathepsin B, L and S. By all measures we applied Jeryl-Lynn JL5 major strain is an outlier with immunomic features arising from a small number of amino acid changes that distinguish it from other virus strains. Individuals vaccinated with Jeryl-Lynn who are not exposed to wild-type virus until their protective antibody titer has waned may be unable to recall a protective immune response when exposed to wild-type virus. Dependence on serology to evaluate mumps vaccines may have overemphasized the conservation of one neutralizing antibody epitope, at the expense of monitoring other related changes in the HN protein that could affect recall responses. PMID:24275080

  17. Genetic and physiological characterization of the purine salvage pathway in the archaebacterium Methanobacterium thermoautotrophicum Marburg.

    PubMed Central

    Worrell, V E; Nagle, D P

    1990-01-01

    The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines. PMID:2345148

  18. Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis.

    PubMed

    Funston, Scott J; Tsaousi, Konstantina; Smyth, Thomas J; Twigg, Matthew S; Marchant, Roger; Banat, Ibrahim M

    2017-12-01

    Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer, Pseudomonas aeruginosa, is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species Burkholderia thailandensis produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in Burkholderia thailandensis through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in B. thailandensis through comparison with known function genes in Pseudomonas aeruginosa. Multiple knockout strains for the phbA, phbB and phbC genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (ΔphbA1, ΔphbB1 and ΔphbC1) with the best enhancement of rhamnolipid production were selected for detailed study. ΔphbB1 produced the highest level of purified RL (3.78 g l -1 ) compared to the wild-type strain (1.28 g l -1 ). In ΔphbB1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three phb mutant strains, although never completely eliminated. These results suggest that, in contrast to Pseudomonas aeruginosa, knockout of the PHA synthesis pathway in Burkholderia thailandensis could be used to increase rhamnolipid production. The evidence of residual PHA production in the phb mutant strains suggests B. thailandensis possesses a secondary unelucidated PHA synthesis pathway.

  19. Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    PubMed Central

    Thelin, Jonas; Schouenborg, Jens

    2008-01-01

    Background Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR) system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1) if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2) if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR. The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP) in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO2 laser heat pulses. Results While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different. Conclusion Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting. PMID:18495020

  20. Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222

    PubMed Central

    Olaya-Abril, Alfonso; Luque-Almagro, Víctor M; Manso, Isabel; Gates, Andrew J; Moreno-Vivián, Conrado; Richardson, David J

    2017-01-01

    Abstract Paracoccus denitrificans PD1222 accumulates short-length polyhydroxyalkanoates, poly(3-hydroxybutyrate), under nitrogen-deficient conditions. Polyhydroxybutyrate metabolism requires the 3-ketoacyl-CoA thiolase PhaA, the acetoacetyl-CoA dehydrogenase/reductase PhaB and the synthase PhaC for polymerization. Additionally, P. denitrificans PD1222 grows aerobically with nitrate as sole nitrogen source. Nitrate assimilation is controlled negatively by ammonium through the two-component NtrBC system. NtrB is a sensor kinase that autophosphorylates a histidine residue under low-nitrogen concentrations and, in turn, transfers a phosphoryl group to an aspartate residue of the response regulator NtrC protein, which acts as a transcriptional activator of the P. denitrificans PD1222 nasABGHC genes. The P. denitrificans PD1222 NtrB mutant was unable to use nitrate efficiently as nitrogen source when compared to the wild-type strain, and it also overproduced poly(3-hydroxybutyrate). Acetyl-CoA concentration in the P. denitrificans PD1222 NtrB mutant strain was higher than in the wild-type strain. The expression of the phaC gene was also increased in the NtrB mutant when compared to the wild-type strain. These results suggest that accumulation of poly(3-hydroxybutyrate) in the NtrB mutant strain of PD1222 responds to the high levels of acetyl-CoA that accumulate in the cytoplasm as consequence of its inability to efficiently use nitrate as nitrogen source. PMID:29228177

  1. The genotyping of infectious bronchitis virus in Taiwan by a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction.

    PubMed

    Huang, Shr-Wei; Ho, Chia-Fang; Chan, Kun-Wei; Cheng, Min-Chung; Shien, Jui-Hung; Liu, Hung-Jen; Wang, Chi-Young

    2014-11-01

    Infectious bronchitis virus (IBV; Avian coronavirus) causes acute respiratory and reproductive and urogenital diseases in chickens. Following sequence alignment of IBV strains, a combination of selective primer sets was designed to individually amplify the IBV wild-type and vaccine strains using a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) approach. This system was shown to discriminate the IBV wild-type and vaccine strains. Moreover, an ARMS real-time RT-PCR (ARMS qRT-PCR) was combined with a high-resolution analysis (HRMA) to establish a melt curve analysis program. The specificity of the ARMS RT-PCR and the ARMS qRT-PCR was verified using unrelated avian viruses. Different melting temperatures and distinct normalized and shifted melting curve patterns for the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were detected. The new assays were used on samples of lung and trachea as well as virus from allantoic fluid and cell culture. In addition to being able to detect the presence of IBV vaccine and wild-type strains by ARMS RT-PCR, the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were distinguished using ARMS qRT-PCR by their melting temperatures and by HRMA. These approaches have acceptable sensitivities and specificities and therefore should be able to serve as options when carrying out differential diagnosis of IBV in Taiwan and China. © 2014 The Author(s).

  2. Mutagenic frequencies of site-specifically located O6-methylguanine in wild-type Escherichia coli and in a strain deficient in ada-methyltransferase.

    PubMed

    Rossi, S C; Topal, M D

    1991-02-01

    The adaptive response of Escherichia coli involves protection of the cells against the toxic and mutagenic consequences of exposure to high doses of a methylating agent by prior exposure to low doses of the agent. Ada protein, a major repair activity for O6-methylguanine, is activated to positively control the adaptive response; O6-methylguanine is one of the major mutagenic lesions produced by methylating agents. We investigated the mutation frequency of wild-type Escherichia coli and strains containing the ada-5 mutation in response to site-specifically synthesized O6-methylguanine under conditions in which the adaptive response was not induced. Site-directed mutagenesis and oligonucleotide self-selection techniques were used to isolate the progeny of M13mp18 DNAs constructed to contain O6-methylguanine at any of eight different positions. The progeny were isolated from E. coli strains isogeneic except for deficiency in Ada-methyltransferase repair, UvrABC excision repair, or both. The resulting O6-methylguanine mutation levels at each position were determined by using differential oligonucleotide hybridization. We found that the wild type had up to a 2.6-fold higher mutation frequency than ada-5 mutants. In addition, the mutation frequency varied with the position of the O6-methylguanine in the DNA in the wild type but not in ada-5 mutants; O6-methylguanine lesions at the 5' ends of runs of consecutive guanines gave the highest mutation frequencies. Determination of the mutation frequency of O6-methylguanine in wild-type and mutS cells showed that mismatch repair can affect O6-methylguanine mutation levels.

  3. Enhanced susceptibility to acute pneumococcal otitis media in mice deficient in complement C1qa, factor B, and factor B/C2.

    PubMed

    Tong, Hua Hua; Li, Yong Xing; Stahl, Gregory L; Thurman, Joshua M

    2010-03-01

    To define the roles of specific complement activation pathways in host defense against Streptococcus pneumoniae in acute otitis media (AOM), we investigated the susceptibility to AOM in mice deficient in complement factor B and C2 (Bf/C2(-/)(-)), C1qa (C1qa(-/)(-)), and factor B (Bf(-)(/)(-)). Bacterial titers of both S. pneumoniae serotype 6A and 14 in the middle ear lavage fluid samples from Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice were significantly higher than in samples from wild-type mice 24 h after transtympanical infection (P < 0.05) and remained persistently higher in samples from Bf/C2(-/)(-) mice than in samples from wild-type mice. Bacteremia occurred in Bf/C2(-/)(-), Bf(-)(/)(-), and C1qa(-/)(-) mice infected with both strains, but not in wild-type mice. Recruitment of inflammatory cells was paralleled by enhanced production of inflammatory mediators in the middle ear lavage samples from Bf/C2(-/)(-) mice. C3b deposition on both strains was greatest for sera obtained from wild-type mice, followed by C1qa(-)(/)(-) and Bf(-)(/)(-) mice, and least for Bf/C2(-)(/)(-) mice. Opsonophagocytosis and whole-blood killing capacity of both strains were significantly decreased in the presence of sera or whole blood from complement-deficient mice compared to wild-type mice. These findings indicate that both the classical and alternative complement pathways are critical for middle ear immune defense against S. pneumoniae. The reduced capacity of complement-mediated opsonization and phagocytosis in the complement-deficient mice appears to be responsible for the impaired clearance of S. pneumoniae from the middle ear and dissemination to the bloodstream during AOM.

  4. Production of the Plant Hormone Auxin by Salmonella and Its Role in the Interactions with Plants and Animals.

    PubMed

    Cox, Clayton E; Brandl, Maria T; de Moraes, Marcos H; Gunasekera, Sarath; Teplitski, Max

    2017-01-01

    The ability of human enteric pathogens to colonize plants and use them as alternate hosts is now well established. Salmonella , similarly to phytobacteria, appears to be capable of producing the plant hormone auxin via an indole-3-pyruvate decarboxylase (IpdC), a key enzyme of the IPyA pathway. A deletion of the Salmonella ipdC significantly reduced auxin synthesis in laboratory culture. The Salmonella ipdC gene was expressed on root surfaces of Medicago truncatula . M. truncatula auxin-responsive GH3::GUS reporter was activated by the wild type Salmonella , and not but the ipdC mutant, implying that the bacterially produced IAA (Indole Acetic Acid) was detected by the seedlings. Seedling infections with the wild type Salmonella caused an increase in secondary root formation, which was not observed in the ipdC mutant. The wild type Salmonella cells were detected as aggregates at the sites of lateral root emergence, whereas the ipdC mutant cells were evenly distributed in the rhizosphere. However, both strains appeared to colonize seedlings well in growth pouch experiments. The ipdC mutant was also less virulent in a murine model of infection. When mice were infected by oral gavage, the ipdC mutant was as proficient as the wild type strain in colonization of the intestine, but it was defective in the ability to cross the intestinal barrier. Fewer cells of the ipdC mutant, compared with the wild type strain, were detected in Peyer's patches, spleen and in the liver. Orthologs of ipdC are found in all Salmonella genomes and are distributed among many animal pathogens and plant-associated bacteria of the Enterobacteriaceae , suggesting a broad ecological role of the IpdC-catalyzed pathway.

  5. Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production.

    PubMed

    Shi, Jun; Zhang, Min; Zhang, Libin; Wang, Pin; Jiang, Li; Deng, Huiping

    2014-03-01

    Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild-type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high-ethanol-producing strain was obtained. Designated as TJ2-3, this strain could ferment xylose and produce 1.5 times more ethanol than wild-type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Vidal, Rebeca

    2017-04-01

    The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.

  7. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R. (Inventor); Kern, Roger G. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  8. Cytochrome and alternative pathway respiration in green algae : measurements using inhibitors and o(2) discrimination.

    PubMed

    Weger, H G; Guy, R D; Turpin, D H

    1990-05-01

    Inhibitor titration curves and discrimination against (18)O(2) by mitochondrial respiration in three strains of green algae (Selenastrum minutum [Naeg.] Collins, and two strains of Chlamydomonas reinhardtii Dangeard) with differing respiratory capabilities were determined. Discrimination for cytochrome pathway respiration ranged from 19.89 to 20.43%. Discrimination for alternative pathway respiration by wild-type C. reinhardtii (measured in the presence of KCN) was 25.46%, while discrimination values for a cytochrome oxidase deficient mutant of C. reinhardtii ranged from 24.24 to 24.96%. In the absence of KCN, the alternative pathway was not engaged in wild-type C. reinhardtii, the only algal strain that possessed both cytochrome and alternative pathway capacities.

  9. Repair of Ultraviolet Radiation Damage in Sensitive Mutants of Micrococcus radiodurans

    PubMed Central

    Moseley, B. E. B.

    1969-01-01

    Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision. PMID:5773016

  10. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Ren, Z.; Steinitz, B.; Parks, B.; Best, T. R.; Poff, K. L.

    1989-01-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive' phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.

  11. Prevalence of three campylobacter species, C. jejuni, C. coli, and C. lari, using multilocus sequence typing in wild birds of the Mid-Atlantic region, USA.

    PubMed

    Keller, Judith I; Shriver, W Gregory

    2014-01-01

    Campylobacter jejuni is responsible for the majority of bacterial foodborne gastroenteritis in the US, usually due to the consumption of undercooked poultry. Research on which avian species transmit the bacterium is limited, especially in the US. We sampled wild birds in three families-Anatidae, Scolopacidae, and Laridae-in eastern North America to determine the prevalence and specific strains of Campylobacter. The overall prevalence of Campylobacter spp. was 9.2% for all wild birds sampled (n = 781). Campylobacter jejuni was the most prevalent species (8.1%), while Campylobacter coli and Campylobacter lari prevalence estimates were low (1.4% and 0.3%, respectively). We used multilocus sequence typing PCR specific to C. jejuni to characterize clonal complexes and sequence types isolated from wild bird samples and detected 13 novel sequence types, along with a clonal complex previously only associated with human disease (ST-658). Wild birds share an increasing amount of habitat with humans as more landscapes become fragmented and developed for human needs. Wild birds are and will remain an important aspect of public health due to their ability to carry and disperse emerging zoonotic pathogens or their arthropod vectors. As basic information such as prevalence is limited or lacking from a majority of wild birds in the US, this study provides further insight into Campylobacter epidemiology, host preference, and strain characterization of C. jejuni.

  12. Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chia-wei; Spike, Thomas; Klingeman, Dawn M.

    Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pHmore » 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Here, recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.« less

  13. Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85

    DOE PAGES

    Wu, Chia-wei; Spike, Thomas; Klingeman, Dawn M.; ...

    2017-05-23

    Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pHmore » 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Here, recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.« less

  14. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions.

    PubMed

    Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R L

    2016-01-01

    Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after irradiation at 28 Gy dose in small vs large cages, with a higher male mating competitiveness index calculated from results of experiments in the large cages. Based on these results, we consider that the male mating performance of the triple infected strain after irradiation at 28 Gy, a dose required for complete female sterility and the avoidance of population replacement, is approximately equal to that of the wild type males under semi-field conditions. Though field evaluation is required, this suggests that the triple infected strain is suitable for irradiation and release as part of a combined SIT-IIT approach to Ae. albopictus control.

  15. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions

    PubMed Central

    Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R. L.

    2016-01-01

    Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after irradiation at 28 Gy dose in small vs large cages, with a higher male mating competitiveness index calculated from results of experiments in the large cages. Based on these results, we consider that the male mating performance of the triple infected strain after irradiation at 28 Gy, a dose required for complete female sterility and the avoidance of population replacement, is approximately equal to that of the wild type males under semi-field conditions. Though field evaluation is required, this suggests that the triple infected strain is suitable for irradiation and release as part of a combined SIT-IIT approach to Ae. albopictus control. PMID:26990981

  16. Intact long-type DupA protein in Helicobacter pylori is an ATPase involved in multifunctional biological activities.

    PubMed

    Wang, Ming-yi; Chen, Cheng; Shao, Chen; Wang, Shao-bo; Wang, Ai-chu; Yang, Ya-chao; Yuan, Xiao-yan; Shao, Shi-he

    2015-04-01

    The function of intact long-type DupA protein in Helicobacter pylori was analyzed using immunoblotting and molecular biology techniques in the study. After cloning, expression and purification, ATPase activity of DupA protein was detected. Antibody was produced for localization and interaction proteins analysis. The dupA-deleted mutant was generated for adhesion and CagA protein translocation assay, susceptibility to different pH, IL-8 secretion assay, cytotoxicity to MKN-45 cells and proteins-involved apoptosis analysis. DupA protein exhibited an ATPase activity (129.5±17.8 U/mgprot) and located in bacterial membrane, while it did not involve the adhesion and CagA protein delivery of H. pylori. DupA protein involved the urease secretion as the interaction proteins. The wild type strain had a stronger growth in low pH than the dupA-deleted mutant (p < 0.001). IL-8 productions from GES-1 cells infected with the wild type strain were significantly higher than from those with the mutant (p < 0.001). The amounts of vital MKN-45 cells were decreased and the numbers of apoptotic cells were increased with the wild type strain, compared to those with the mutant after 12 h (p < 0.05). The increase of cleaved Caspase-3 and Bax was significantly higher and the decrease of Bcl-2 was more obvious in MKN-45 cells exposed to the wild type strain than that exposed to the mutant after 6 h. We demonstrate that intact long-type DupA protein located in membrane as ATPase is a true virulence factor associated with duodenal ulcer development involving the IL-8 induction and urease secretion, while it inhibits gastric cancer cell growth in vitro by activating the mitochondria-mediated apoptotic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ribonucleotide reductase class III, an essential enzyme for the anaerobic growth of Staphylococcus aureus, is a virulence determinant in septic arthritis.

    PubMed

    Kirdis, Ebru; Jonsson, Ing-Marie; Kubica, Malgorzata; Potempa, Jan; Josefsson, Elisabet; Masalha, Mahmud; Foster, Simon J; Tarkowski, Andrzej

    2007-01-01

    Staphylococcus aureus is the most common cause of joint infections. It also contributes to several other diseases such as pneumonia, osteomyelitis, endocarditis, and sepsis. Bearing in mind that S. aureus becomes rapidly resistant to new antibiotics, many studies survey the virulence factors, with the aim to find alternative prophylaxis/treatment regimens. One potential virulence factor is the bacterial ability to survive at different oxygen tensions. S. aureus expresses ribonucleotide reductases (RNRs), which help it to grow under both aerobic and anaerobic conditions, by reducing ribonucleotides to deoxyribonucleotides. In this study, we investigated the role of RNR class III, which is required for anaerobic growth, as a virulence determinant in the pathogenesis of staphylococcal arthritis. The wild-type S. aureus strain and its isogenic mutant nrdDG mutant were inoculated intravenously into mice. Mice inoculated with the wild-type strain displayed significantly more severe arthritis, with significantly more synovitis and destruction of the bone and cartilage versus mutant strain inoculated mice. Further, the persistence of bacteria in the kidneys was significantly more pronounced in the group inoculated with the wild-type strain. Together these results indicate that RNR class III is an important virulence factor for the establishment of septic arthritis.

  18. Production of exopolysaccharide from rhizobia with potential biotechnological and bioremediation applications.

    PubMed

    Castellane, Tereza Cristina Luque; Persona, Michelli Romanoli; Campanharo, João Carlos; de Macedo Lemos, Eliana Gertrudes

    2015-03-01

    The potential use of rhizobia under controlled fermentation conditions may result in the production of new extracellular polymeric substances (EPS) having novel and superior properties that will open up new areas of industrial applications and thus increase their demand. The production of EPS and the stability of emulsions formed with soybean oil, diesel oil and toluene using different concentrations of purified EPS derived from wild-type and mutant strains of Rhizobium tropici SEMIA 4077 was investigated. The EPS was defined as a heteropolysaccharide composed of six constituent monosaccharides that displayed higher intrinsic viscosity and pseudoplastic non-Newtonian fluid behavior in an aqueous solution. The ratio between the total EPS production and the cellular biomass was 76.70 for the 4077::Z04 mutant strain and only 8.10 for the wild-type strain. The EPS produced by the wild-type R. tropici SEMIA 4077 resulted in more stable emulsions with the tested toluene than xanthan gum, and the emulsification indexes with hydrocarbons and soybean oil were higher than 50%, indicating strong emulsion-stabilizing capacity. These results demonstrate that the EPS of R. tropici strains could be attractive for use in industrial and environmental applications, as it had higher intrinsic viscosity and good emulsification activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The limits to growth - energetic burden of the endogenous antibiotic tropodithietic acid in Phaeobacter inhibens DSM 17395.

    PubMed

    Will, Sabine Eva; Neumann-Schaal, Meina; Heydorn, Raymond Leopold; Bartling, Pascal; Petersen, Jörn; Schomburg, Dietmar

    2017-01-01

    Phaeobacter inhibens DSM 17395, a model organism for marine Roseobacter group, was studied for its response to its own antimicrobial compound tropodithietic acid (TDA). TDA biosynthesis is encoded on the largest extrachromosomal element of P. inhibens, the 262 kb plasmid, whose curation leads to an increased growth and biomass yield. In this study, the plasmid-cured strain was compared to the wild-type strain and to transposon mutants lacking single genes of the TDA biosynthesis. The data show that the growth inhibition of the wild-type strain can be mainly attributed to the TDA produced by P. inhibens itself. Oxygen uptake rates remained constant in all strains but the growth rate dropped in the wild-type which supports the recently proposed mode of TDA action. Metabolome analysis showed no metabolic alterations that could be attributed directly to TDA. Taken together, the growth of P. inhibens is limited by its own antibacterial compound due to a partial destruction of the proton gradient which leads to a higher energetic demand. The universal presence of TDA biosynthesis in genome-sequenced isolates of the genus Phaeobacter shows that there must be a high benefit of TDA for P. inhibens in its ecological niche despite the drawback on its metabolism.

  20. Comparative 13C Metabolic Flux Analysis of Pyruvate Dehydrogenase Complex-Deficient, l-Valine-Producing Corynebacterium glutamicum▿†

    PubMed Central

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J.; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-01-01

    l-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by 13C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an l-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for l-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP. PMID:21784914

  1. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms.

    PubMed

    Pezzoni, Magdalena; Pizarro, Ramón A; Costa, Cristina S

    2014-02-05

    One of the more stressful factors that Pseudomonas aeruginosa must face in nature is solar UVA radiation. In this study, the protective role of KatA catalase in both planktonic cells and biofilms of P. aeruginosa against UVA radiation was determined by using the wild-type (PAO1) and an isogenic catalase deficient strain (katA). The katA strain was more sensitive than the wild-type, especially in the case of biofilms. Moreover, the wild-type biofilm was more resistant than its planktonic counterpart, but this was not observed in the katA strain. Striking KatA activity was detected in the matrix of katA(+) strains, and to our knowledge, this is the first report of this activity in the matrix of P. aeruginosa biofilms. Provision of bovine catalase or KatA to the matrix of a katA biofilm significantly increased its UVA tolerance, demonstrating that extracellular KatA is essential to optimal defense against UVA in P. aeruginosa biofilms. Efficiency of photocatalytic treatments using TiO2 and UVA was lower in biofilms than in planktonic cells, but KatA and KatB catalases seem not to be responsible for the higher resistance of the sessile cells to this treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Cloning and expression of vgb gene in Bacillus cereus, improve phenol and p-nitrophenol biodegradation

    NASA Astrophysics Data System (ADS)

    Vélez-Lee, Angel Eduardo; Cordova-Lozano, Felipe; Bandala, Erick R.; Sanchez-Salas, Jose Luis

    2016-02-01

    In this work, the vgb gene from Vitrocilla stercoraria was used to genetically modify a Bacillus cereus strain isolated from pulp and paper wastewater effluent. The gene was cloned in a multicopy plasmid (pUB110) or uni-copy gene using a chromosome integrative vector (pTrpBG1). B. cereus and its recombinant strains were used for phenol and p-nitrophenol biodegradation using aerobic or micro-aerobic conditions and two different temperatures (i.e. 37 and 25 °C). Complete (100%) phenol degradation was obtained for the strain where the multicopy of vgb gene was present, 98% for the strain where uni-copy gene was present and 45% for wild type strain for the same experimental conditions (i.e. 37 °C and aerobic condition). For p-nitrophenol degradation at the same conditions, the strain with the multi-copy vgb gene was capable to achieve 50% of biodegradation, ˜100% biodegradation was obtained using the uni-copy strain and ˜24% for wild type strain. When the micro-aerobic condition was tested, the biodegradation yield showed a significant decreased. The biodegradation trend observed for aerobic was similar for micro-aerobic assessments: the modified strains showed higher degradation rates when compared with wild type strain. For all experimental conditions, the highest p-nitrophenol degradation was observed using the strain with uni-copy of vgb gene. Besides the increase of biodegradative capability of the strain, insertion of the vgb gene was observed able to modify other morphological characteristics such as avoiding the typical flake formation in the B. cereus culture. In both cases, the modification seems to be related with the enhancement of oxygen supply to the cells generated by the vgb gene insertion. The application of the genetically modified microorganism (GMM) to the biodegradation of pollutants in contaminated water possesses high potential as an environmentally friendly technology to facing this emergent problem.

  3. Alterations of neutral glycolipids in cells infected with syncytium-producing mutants of herpes simplex virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlig, M.A.; Person, S.

    1977-11-01

    The isolation of syncytium-producing mutants of herpes simplex virus type 1 (KOS strain), which cause extensive cell fusion during otherwise normal infections, has been reported previously (S. Person, R.W. Knowles, G.S. Read, S.C. Warner, and V.C. Bond, J. Virol. 17:183-190, 1976). Seven of these mutants, plus two syncytial strains obtained elsewhere were used to compare the incorporation of labeled galactose into neutral glycolipids of mock-infected, wild-type-infected, and syncytially infected human embryonic lung cells. Five predominant cellular glycolipid species were observed, denoted GL-1 through GL-5 in order of increasing oligosaccharide chain length; for example, GL-1 and GL-2 correspond to glycolipids thatmore » contain mono- and disaccharide units, respectively. Wild-type virus infection caused an increase in galactose incorporation into GL-1 and GL-2 relative to GL-3 through GL-5. For a single labeling interval from 4 to 10 h after adsorption, syncytial infections generally resulted in a relatively greater incorporation into more complex glycolipids than did wild-type infections. One mutant, syn 20, was compared with wild-type virus throughout infection by using a series of shorter labeling pulses and appeared to delay by at least 2 h the alterations observed during wild-type infections. These alterations are apparently due to defects in synthesis, since prelabeled cellular glycolipids were not differentially degraded during mock or virus infection.« less

  4. Molecular characterization of wild-type polioviruses isolated in Greece during the 1996 outbreak in Albania.

    PubMed

    Kyriakopoulou, Zaharoula; Kottaridi, Christine; Dedepsidis, Evaggelos; Bolanaki, Eugenia; Levidiotou-Stefanou, Stamatina; Markoulatos, Panayotis

    2006-03-01

    During the present study three type 1 poliovirus strains isolated in Greece during the 1996 poliomyelitis outbreak in Albania were retrospectively investigated and determination of their relationship with other epidemic strains isolated in Albania or elsewhere during previous epidemics was attempted. SimPlot analysis revealed that the three Greek strains are the result of a recombination event in the VP2 coding region.

  5. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with the wild type, the rosR mutant infected host plant roots much less effectively and its nodule occupation was disturbed. At the ultrastructural level, the most striking differences between the mutant and the wild-type nodules concerned the structure of infection threads, release of bacteria, and bacteroid differentiation. This confirms an essential role of RosR in establishment of successful symbiotic interaction of R. leguminosarum bv. trifolii with clover plants. PMID:27602024

  6. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.

    PubMed

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with the wild type, the rosR mutant infected host plant roots much less effectively and its nodule occupation was disturbed. At the ultrastructural level, the most striking differences between the mutant and the wild-type nodules concerned the structure of infection threads, release of bacteria, and bacteroid differentiation. This confirms an essential role of RosR in establishment of successful symbiotic interaction of R. leguminosarum bv. trifolii with clover plants.

  7. Construction and application of a Xanthomonas campestris CGMCC15155 strain that produces white xanthan gum.

    PubMed

    Dai, Xiaohui; Gao, Ge; Wu, Mengmeng; Wei, Weiying; Qu, Jianmei; Li, Guoqiang; Ma, Ting

    2018-04-15

    In the industrial production of xanthan gum using Xanthomonas campestris CGMCC15155, large amounts of ethanol are required to extract xanthan gum from the fermentation broth and remove xanthomonadin impurities. To reduce the amount of ethanol and the overall production cost of xanthan gum, a xanthomonadin-deficient strain of CGMCC15155 was constructed by inserting the Vitreoscilla globin (vgb) gene, under the control of the LacZ promoter, into the region of the pigA gene, which is involved in xanthomonadin synthesis. The insertion of vgb inactivated pigA, resulting in the production of white xanthan gum. The lack of xanthomonadins resulted in a decreased yield of xanthan gum. However, the expression product of vgb gene, VHb, could increase the metabolism of X. campestris, which allowed the production of xanthan gum to reach wild-type levels in the engineered strain. The yield, molecular weight, and rheological properties of the xanthan gum synthesized by the engineered and wild-type bacteria were essentially the same. When the same volume of ethanol was used, the whiteness values of the xanthan gum extracted from engineered and wild-type bacteria were 65.20 and 38.17, respectively. To extract xanthan gum with the same whiteness, three and seven times the fermentation volume of ethanol was required for the engineered and wild-type strains, respectively. Thus, the engineered train reduced the requirement for ethanol in xanthan gum production by 133.3%. The results demonstrated that the engineered bacteria used less ethanol, thus reducing the downstream processing cost in xanthan gum production. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Coagulase-positive Staphylococcus isolated from wildlife: Identification, molecular characterization and evaluation of resistance profiles with focus on a methicillin-resistant strain.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Gnat, Sebastian; Wojtanowicz-Markiewicz, Katarzyna; Trościańczyk, Aleksandra

    2016-02-01

    The aim of the study was molecular analysis of coagulase-positive isolates of Staphylococcus bacteria obtained from wild animals and evaluation of their resistance to antimicrobial agents. A total of 76 rectal swabs were taken from wild animals. The species of the Staphylococcus isolates was determined by MALDI TOF MS, susceptibility to antimicrobials was evaluated by phenotypic and molecular methods, epidemiological analysis (ADSRRS-fingerprinting) was also carried out. MRSA isolate was typed by MLST and spa-typing. The animals tested, were carriers (n=38) of coagulase-positive Staphylococcus (S. aureus, S. pseudintermedius and S. delphini B). Analyzed isolates were resistant to 1 or 2 antimicrobials, which was confirmed by the presence of genes (blaZ, ermA, ermB, msrA, tetK and tetM). A multi-drug resistant and methicillin-resistant isolate of S. aureus was obtained as well (MRSA, ST8, t1635, PVL-positive and ACME-negative). The ADSRRS-fingerprinting method enabled interspecific and intraspecific differentiation of coagulase-positive Staphylococcus isolates, revealing a certain degree of correlation between the species of the isolate, and the degree of similarity between the isolates. The presence of resistance genes in 13% (5/38) of the isolates obtained from wild animals, including one methicillin-resistant isolate, is relatively small in comparison to the degree of colonization by resistant strains in humans, livestock or pets. Nevertheless, due to the possibility of contact between wild animals, domestic animals and humans, transmission of resistant strains is possible, as suggested by our isolation of a MRSA strain typed as ST8 and specific spa type t1635, which had previously been isolated exclusively from humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli.

    PubMed

    Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara

    2009-09-23

    One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48% of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA(-) strain were G:C --> T:A transversions, occurring within the sequence which in recA(+) strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C --> A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.

  10. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli

    PubMed Central

    Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara

    2009-01-01

    One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations. PMID:19834545

  11. Assessment of the Toxicity of CuO Nanoparticles by Using Saccharomyces cerevisiae Mutants with Multiple Genes Deleted

    PubMed Central

    Bao, Shaopan; Lu, Qicong; Dai, Heping; Zhang, Chao

    2015-01-01

    To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles. PMID:26386067

  12. Biotechnological Approaches to Enhance Halotolerance and Photosynthetic Efficacy in the Cyanobacterium, Fremyella diplosiphon

    NASA Astrophysics Data System (ADS)

    Tabatabai, Ben

    Growing concerns over dwindling energy supplies linked to nonrenewable fossil fuels have driven profound interest in biofuels as a clean and sustainable alternative. Cyanobacteria are a promising source of third-generation biofuel due to their fast generation time and high net biomass conversion. In this study, the effect of salinity stress on Fremyella diplosiphon, a model organism for studying photosynthetic pathways, was investigated and nanobiotechnological approaches undertaken to enhance its halotolerance and photosynthetic efficacy. Heat-induced mutagenesis resulted in a mutant strain that could survive in 20 g L-1 sodium chloride (NaCl) with no loss in pigmentation. To further enhance F. diplosiphon halotolerance, expression plasmids harboring the hlyB and mdh genes were overexpressed in the wild type resulting in two transformants that thrived in 35 g L-1 NaCl, the average salinity of sea water. In addition, no significant reduction in photosynthetic efficacy was detected in the halotolerant strains relative to the wild type. Total lipid content and fatty acid methyl ester composition of wild type and halotolerant strains were assessed for their potential as a production-scale biofuel agent. Methyl palmitate, the methyl ester of hexodeconoate (C16:0), was found to be most abundant in the wild type and transformants accounting for 60-70% of total FAMEs produced. Efforts to enhance the photosynthetic efficiency of the strains revealed that gold nanoparticle-derived surface plasmon resonance augmented culture growth and pigment accumulation. Cell-nanoparticles interactions were visualized using scanning and transmission electron microscopy. Our findings address two key challenges that cyanobacterial biofuel agents need to overcome: enhanced halotolerance and photosynthetic efficacy to minimize freshwater input and artificial light supply. These innovations have paved the way for an efficient cyanobacterial cultivation system for large-scale production of biofuel.

  13. Designed Reduction of Streptococcus pneumoniae Pathogenicity via Synthetic Changes in Virulence Factor Codon-pair Bias

    PubMed Central

    Coleman, J. Robert; Papamichail, Dimitris; Yano, Masahide; García-Suárez, María del Mar

    2011-01-01

    In this study, we used a previously described method of controlling gene expression with computer-based gene design and de novo DNA synthesis to attenuate the virulence of Streptococcus pneumoniae. We produced 2 S. pneumoniae serotype 3 (SP3) strains in which the pneumolysin gene (ply) was recoded with underrepresented codon pairs while retaining its amino acid sequence and determined their ply expression and pneumolysin production in vitro and their virulence in a mouse pulmonary infection model. Expression of ply and production of pneumolysin of the recoded SP3 strains were decreased, and the recoded SP3 strains were less virulent in mice than the wild-type SP3 strain or a Δply SP3 strain. Further studies showed that the least virulent recoded strain induced a markedly reduced inflammatory response in the lungs compared with the wild-type or Δply strain. These findings suggest that reducing pneumococcal virulence gene expression by altering codon-pair bias could hold promise for rational design of live-attenuated pneumococcal vaccines. PMID:21343143

  14. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation.

    PubMed

    Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan

    2016-11-01

    Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could predict the virulence of a S. pyogenes strain in mice and which could be used to identify key aspects of this bacteria's pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Comparative proteomic analysis of virulent and rifampicin attenuated Flavobacterium psychrophilum

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease and rainbow trout fry syndrome. In this study we compared a wild-type strain (CSF 259.93) with a rifampicin resistant and virulence attenuated strain of F. psychrophilum (CSF 259.93B.17). The attenuated strain harbour...

  16. Isolation of noninhibitory strains of Zymomonas mobilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haffie, T.L.; Louie, P.W.; Khachatourians, G.G.

    1985-04-01

    Wild-type Zymomonas mobilis strains inhibit the growth of Escherichia coli. The authors report the first isolation of noninhibitory strains, called Zymomonas inhibition negative (Zin/sup -/), after treatment with N-methyl-N'-nitro-N-nitrosoguanidine. A standardized soft-agar overlay procedure for detecting E. coli growth inhibition was also developed.

  17. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase.

    PubMed

    Miyazawa, Ken; Yoshimi, Akira; Zhang, Silai; Sano, Motoaki; Nakayama, Mayumi; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.

  18. Evaluation of Quality Production Parameters and Mating Behavior of Novel Genetic Sexing Strains of the Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae)

    PubMed Central

    Haq, Ihsan ul; Wornayporn, Viwat; Ahmad, Sohel; Sto Tomas, Ulysses; Dammalage, Thilakasiri; Gembinsky, Keke; Franz, Gerald; Cáceres, Carlos; Vreysen, Marc J. B.

    2016-01-01

    The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is one of the most important pest of fruits and vegetables in tropical and subtropical countries. The sterile insect technique (SIT) as a component of area-wide integrated pest management (AW-IPM) approaches is being used for the successful management of this pest. VIENNA 8 is a genetic sexing strain (GSS) that has a white pupae (wp) and temperature sensitive lethal (tsl) mutation, the latter killing all female embryos when eggs are exposed to high temperatures (34°C). The use of this GSS permits production and the release of only males which has increased the cost effectiveness of the SIT several fold for this pest. An efficient method of identification of recaptured sterile males can further increase the cost effectiveness of the SIT for this pest. Therefore, VIENNA 8-Sergeant2 (Sr2) strain and the transgenic strain VIENNA 8–1260 having visible markers were constructed. All three strains were evaluated for egg production, egg hatch, and egg sterility parameters under semi mass-rearing conditions and mating competitiveness in field cages. VIENNA 8–1260 females produced significantly fewer eggs as compared with the two other strains, which produced similar numbers of eggs. However, egg hatch of all strains was similar. Egg hatch of eggs produced by untreated females that had mated with adult males that had been irradiated with 100 Gy as pupae 2 days before emergence, was different for the three strains, i.e., egg hatch of 0.63%, 0.77%, 0.89% for VIENNA 8, VIENNA 8–1260, and VIENNA 8-Sr2, respectively. Differences in male mating competitiveness of the three strains against wild-type males were gradually reduced with successive generations under semi mass-rearing conditions. However, VIENNA 8 males adapted faster to laboratory conditions as compared with VIENNA 8-Sr2 and VIENNA 8–1260 males with respect to mating competitiveness. VIENNA 8 males of the F10 generation were equally competitive with wild-type males, whereas the mating competitiveness of VIENNA 8-Sr2 and VIENNA 8–1260 males was similar but lower as compared with wild-type males. Males from all three strains copulated earlier than wild-type males. Results are discussed in relation with the potential benefits of incorporating novel strains for more effective SIT application. PMID:27336737

  19. Mechanisms Relevant to the Enhanced Virulence of a Dihydroxynaphthalene-Melanin Metabolically Engineered Entomopathogen

    PubMed Central

    Tseng, Min-Nan; Chung, Chia-Ling; Tzean, Shean-Shong

    2014-01-01

    The entomopathogenic fungus Metarhizium anisopliae MA05-169 is a transformant strain that has been metabolically engineered to express dihydroxynaphthalene-melanin biosynthesis genes. In contrast to the wild type strain, the transformant displays a greater resistance to environmental stress and a higher virulence toward target insect host. However, the underlying mechanisms for these characteristics remain unclear; hence experiments were initiated to explore the possible mechanism(s) through physiological and molecular approaches. Although both transformant and wild type strains could infect and share the same insect host range, the former germinated faster and produced more appressoria than the latter, both in vivo and in vitro. The transformant showed a significantly shorter median lethal time (LT50) when infecting the diamondback moth (Plutella xylostella) and the striped flea beetle (Phyllotreta striolata), than the wild type. Additionally, the transformant was more tolerant to reactive oxygen species (ROS), produced 40-fold more orthosporin and notably overexpressed the transcripts of the pathogenicity-relevant hydrolytic enzymes (chitinase, protease, and phospholipase) genes in vivo. In contrast, appressorium turgor pressure and destruxin A content were slightly decreased compared to the wild type. The transformant's high anti-stress tolerance, its high virulence against five important insect pests (cowpea aphid Aphis craccivora, diamondback moth Pl. xylostella, striped flea beetle Ph. striolata, and silverleaf whitefly Bemisia argentifolii) and its capacity to colonize the root system are key properties for its potential bio-control field application. PMID:24662974

  20. [The spread of the wild Poliovirus in the rural environment, the case of the Adzopé health district, Côte d'Ivoire].

    PubMed

    Akoua-Koffi, C G; Nekouressi, G; Tieoulou, L; Guillot, S; Faye-Kette, H; Ehouman, A

    2004-05-01

    Wild Poliovirus spreading in rural environment in Adzopé, Côte d'Ivoire In order to determine the level of wild Poliovirus spreading among rural children in an endemic poliomyelitis country 469 stools samples, from children aged between three weeks and twelve years old were processed according to WHO procedures for transportation, conservation, isolation and identification of Poliovirus. Intratypic differenciation was performed by an antigenic method using monoclonal antibodies and a genomic RFLP (Restriction Fragment Length Polymorphism). 50 Poliovirus strains (10.7%) were isolated and analyzed: 15 vaccine-like Poliovirus type 1 (30%), 30 vaccine-like Poliovirus type 2 (60%), 4 vaccine-like Poliovirus type 3 (8%) and one wild Poliovirus type 3 (2%). As expected, in the major cases the duration of post-vaccinal viral excretion did not exceed two months. However, in 14% of cases, it varied between 3 and 9 months after the third OPV dose. This long excretion could be due to an inefficient local intestinal immunity or no local immunity at all, in spite of the three OPV doses. These results argue in favor of an increase of the number of OPV doses in such endemic zones. Moreover, OPV strains are well-known to revert to pathogenicity in vaccinees, therefore, the long term excretion of pathogenic OPV derived strains by a certain amount of vaccinees needs to be considered quite seriously.

  1. Identification, Isolation, and Phylogenetic Analysis of Clostridium perfringens Type A and Type C from Wild Boar ( Sus scrofa ) in the People's Republic of China.

    PubMed

    Li, Meng; Zhang, Xu; Zhu, Lingwei; Wang, Haifeng; Zhao, Na; Luo, Jing; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; Zhou, Wei; Zhang, Bikai; Guo, Huancheng; He, Hongxuan

    2017-07-01

    Clostridium perfringens is a Gram-positive, anaerobic, spore-forming bacterium that can induces gas gangrene or enteritis in poultry and humans and many other mammalian species. Here, we report an outbreak of C. perfringens type A and type C coinfection in wild boars ( Sus scrofa ). In February 2016, 10 dead wild boars, including two fresh carcasses, were found in Zhaosu County, Xinjiang Province, People's Republic of China. The two fresh carcasses were included in this study. Two strains of C. perfringens were isolated, identified, genotyped, and phylogenetically analyzed. Based on postmortem examination, bacterium isolation and identification, enterotoxin detection, and auxiliary tests, we made a diagnosis that the wild boar were killed by C. perfringens . Our findings provide the evidence that wild boar can be killed by C. perfringens intoxication. Wild boars are important reservoirs for many zoonotic agents. Therefore, more actions should be taken on the surveillance, prevention, and control of wild pig-borne diseases.

  2. Cotransformation of Trichoderma harzianum with β-Glucuronidase and Green Fluorescent Protein Genes Provides a Useful Tool for Monitoring Fungal Growth and Activity in Natural Soils†

    PubMed Central

    Bae, Yeoung-Seuk; Knudsen, Guy R.

    2000-01-01

    Trichoderma harzianum was cotransformed with genes encoding green fluorescent protein (GFP), β-glucuronidase (GUS), and hygromycin B (hygB) resistance, using polyethylene glycol-mediated transformation. One cotransformant (ThzID1-M3) was mitotically stable for 6 months despite successive subculturing without selection pressure. ThzID1-M3 morphology was similar to that of the wild type; however, the mycelial growth rate on agar was reduced. ThzID1-M3 was formed into calcium alginate pellets and placed onto buried glass slides in a nonsterile soil, and its ability to grow, sporulate, and colonize sclerotia of Sclerotinia sclerotiorum was compared with that of the wild-type strain. Wild-type and transformant strains both colonized sclerotia at levels above those of indigenous Trichoderma spp. in untreated controls. There were no significant differences in colonization levels between wild-type and cotransformant strains; however, the presence of the GFP and GUS marker genes permitted differentiation of introduced Trichoderma from indigenous strains. GFP activity was a useful tool for nondestructive monitoring of the hyphal growth of the transformant in a natural soil. The green color of cotransformant hyphae was clearly visible with a UV epifluorescence microscope, while indigenous fungi in the same samples were barely visible. Green-fluorescing conidiophores and conidia were observed within the first 3 days of incubation in soil, and this was followed by the formation of terminal and intercalary chlamydospores and subsequent disintegration of older hyphal segments. Addition of 5-bromo-4-chloro-3-indolyl-β-d-glucuronic acid (X-Gluc) substrate to recovered glass slides confirmed the activity of GUS as well as GFP in soil. Our results suggest that cotransformation with GFP and GUS can provide a valuable tool for the detection and monitoring of specific strains of T. harzianum released into the soil. PMID:10653755

  3. Hha Controls Escherichia coli O157:H7 Biofilm Formation by Differential Regulation of Global Transcriptional Regulators FlhDC and CsgD

    PubMed Central

    Bearson, Bradley L.

    2013-01-01

    Although molecular mechanisms promoting adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 on epithelial cells are well characterized, regulatory mechanisms controlling biofilm formation are not fully understood. In this study, we demonstrate that biofilm formation in EHEC O157:H7 strain 86-24 is highly repressed compared to that in an isogenic hha mutant. The hha mutant produced large quantities of biofilm compared to the wild-type strain at 30°C and 37°C. Complementation of the hha mutant reduced the level of biofilm formation to that of the wild-type strain, indicating that Hha is a negative regulator of biofilm production. While swimming motility and expression of the flagellar gene fliC were significantly reduced, the expression of csgA (encoding curlin of curli fimbriae) and the ability to bind Congo red were significantly enhanced. The expression of both fliC and csgA and the phenotypes of motility and curli production affected by these two genes, respectively, were restored to wild-type levels in the complemented hha mutant. The csgA deletion abolished biofilm formation in the hha mutant and wild-type strain, and csgA complementation restored biofilm formation to these strains, indicating the importance of csgA and curli in biofilm formation. The regulatory effects of Hha on flagellar and curli gene expression appear to occur via the induction and repression of FlhDC and CsgD, as demonstrated by reduced flhD and increased csgD transcription in the hha mutant, respectively. In gel shift assays Hha interacted with flhDC and csgD promoters. In conclusion, Hha regulates biofilm formation in EHEC O157:H7 by differential regulation of FlhDC and CsgD, the global regulators of motility and curli production, respectively. PMID:23377937

  4. Hha controls Escherichia coli O157:H7 biofilm formation by differential regulation of global transcriptional regulators FlhDC and CsgD.

    PubMed

    Sharma, Vijay K; Bearson, Bradley L

    2013-04-01

    Although molecular mechanisms promoting adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 on epithelial cells are well characterized, regulatory mechanisms controlling biofilm formation are not fully understood. In this study, we demonstrate that biofilm formation in EHEC O157:H7 strain 86-24 is highly repressed compared to that in an isogenic hha mutant. The hha mutant produced large quantities of biofilm compared to the wild-type strain at 30°C and 37°C. Complementation of the hha mutant reduced the level of biofilm formation to that of the wild-type strain, indicating that Hha is a negative regulator of biofilm production. While swimming motility and expression of the flagellar gene fliC were significantly reduced, the expression of csgA (encoding curlin of curli fimbriae) and the ability to bind Congo red were significantly enhanced. The expression of both fliC and csgA and the phenotypes of motility and curli production affected by these two genes, respectively, were restored to wild-type levels in the complemented hha mutant. The csgA deletion abolished biofilm formation in the hha mutant and wild-type strain, and csgA complementation restored biofilm formation to these strains, indicating the importance of csgA and curli in biofilm formation. The regulatory effects of Hha on flagellar and curli gene expression appear to occur via the induction and repression of FlhDC and CsgD, as demonstrated by reduced flhD and increased csgD transcription in the hha mutant, respectively. In gel shift assays Hha interacted with flhDC and csgD promoters. In conclusion, Hha regulates biofilm formation in EHEC O157:H7 by differential regulation of FlhDC and CsgD, the global regulators of motility and curli production, respectively.

  5. Examine the Correlation between Heat Shock Protein IbpA and Heat Tolerance in Cronobacter sakazakii.

    PubMed

    Zhao, Zhi Jing; Wang, Bin; Yuan, Jing; Liang, Hao Yu; Dong, Si Guo; Zeng, Ming

    2017-08-01

    We used a proteomic approach to identify IbpA in Cronobacter sakazakii (C. sakazaki), which is related to heat tolerance in this strain. The abundance of IbpA in C. sakazakii strains strongly increased after heat shock. C. sakazakii CMCC 45402 ibpA deletion mutants were successfully constructed. The C. sakazakii CMCC 45402 ΔibpA and wild-type strains could not be distinguished based on colony morphology on LB agar plates or biochemical assays. The growth of the C. sakazakii CMCC 45402 ΔibpA mutant in heat shock conditions was indistinguishable from that of the isogenic wild-type, but showed greater heat resistance than E. coli O157:H7 strain CMCC 44828. This study suggests that the absence of a single ibpA gene has no obvious effect on the phenotype or heat resistance of the strain C. sakazakii CMCC 45402. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. Acetone, butanol, and ethanol production from gelatinized cassava flour by a new isolates with high butanol tolerance.

    PubMed

    Li, Han-Guang; Ofosu, Fred Kwame; Li, Kun-Tai; Gu, Qiu-Ya; Wang, Qiang; Yu, Xiao-Bin

    2014-11-01

    To obtain native strains resistant to butanol toxicity, a new isolating method and serial enrichment was used in this study. With this effort, mutant strain SE36 was obtained, which could withstand 35g/L (compared to 20g/L of the wild-type strain) butanol challenge. Based on 16s rDNA comparison, the mutant strain was identified as Clostridium acetobutylicum. Under the optimized condition, the phase shift was smoothly triggered and fermentation performances were consequently enhanced. The maximum total solvent and butanol concentration were 23.6% and 24.3%, respectively higher than that of the wild-type strain. Furthermore, the correlation between butanol produced and the butanol tolerance was investigated, suggesting that enhancing butanol tolerance could improve butanol production. These results indicate that the simple but effective isolation method and acclimatization process are a promising technique for isolation and improvement of butanol tolerance and production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene.

    PubMed Central

    Schocken, M J; Gibson, D T

    1984-01-01

    A Beijerinckia sp. and a mutant strain, Beijerinckia sp. strain B8/36, were shown to cooxidize the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Both organisms oxidized acenaphthene to the same spectrum of metabolites, which included 1-acenaphthenol, 1-acenaphthenone, 1,2-acenaphthenediol, acenaphthenequinone, and a compound that was tentatively identified as 1,2-dihydroxyacenaphthylene. In contrast, acenaphthylene was oxidized to acenaphthenequinone and the compound tentatively identified as 1,2-dihydroxyacenaphthylene by the wild-type strain of Beijerinckia. Both of these products were also formed when the organism was incubated with synthetic cis-1,2-acenaphthenediol. A metabolite identified as cis-1,2-acenaphthenediol was formed from acenaphthylene by the mutant Beijerinckia sp. strain B8/36. Cell extracts prepared from the wild-type Beijerinckia strain contain a constitutive pyridine nucleotide-dependent dehydrogenase which can oxidize 1-acenaphthenol and 9-fluorenol. The results indicate that although acenaphthene and acenaphthylene are both oxidized to acenaphthenequinone, the pathways leading to the formation of this end product are different. PMID:6089663

  8. Genetic conversion of a fungal plant pathogen to a non-pathogenic, endophytic mutualist

    USGS Publications Warehouse

    Freeman, Stanley; Rodriguez, Rusty J.

    1993-01-01

    The filamentous fungal ascomycete Colletotrichum magna causes anthracnose in cucurbit plants. Isolation of a nonpathogenic mutant of this species (path-1) resulted in maintained wild-type levels of in vitro sporulation, spore adhesion, appressorial formation, and infection. Path-1 grew throughout host tissues as an endophyte and retained the wild-type host range, which indicates that the genetics involved in pathogenicity and host specificity are distinct. Prior infection with path-1 protected plants from disease caused by Colletotrichum and Fusarium.Genetic analysis of a cross between path-1 and wild-type strains indicated mutation of a single locus.

  9. Six new leptospiral serovars isolated from wild animals in Peru.

    PubMed Central

    Liceras de Hidalgo, J L; Sulzer, K R

    1984-01-01

    Six new serovars of Leptospira interrogans were isolated from opossums (Didelphis marsupialis and Philander opossum) trapped in the Peruvian jungle. The proposed names, type strain designation, and serogroup of the serovars, respectively, were: huallaga, strain M-7, Djasiman serogroup; luis, strain M-6, Tarassovi serogroup; machiguenga, strain MMD-3, Icterohaemorrhagiae serogroup; rioja, strain MR-12, Bataviae serogroup; rupa rupa, strain M-3, Sejroe serogroup; and tingomaria, strain M-13, Cynopteri serogroup. PMID:6470106

  10. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.

    PubMed

    Hanly, Timothy J; Henson, Michael A

    2011-02-01

    Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture. © 2010 Wiley Periodicals, Inc.

  11. Defining wild-type life span in Caenorhabditis elegans.

    PubMed

    Gems, D; Riddle, D L

    2000-05-01

    The nematode Caenorhabditis elegans reproduces predominantly as a self-fertilizing hermaphrodite, and this drives laboratory populations to be homozygous at all genetic loci. Passaging of stocks can lead to fixation of spontaneous mutations, especially when the latter do not result in a selective disadvantage under laboratory conditions. Life span may be such a trait, since a comparison of six wild-type N2 lines derived from a common ancestor (but maintained separately in several laboratories) revealed four variants with median adult life spans ranging from 12.0 +/- 0.8 to 17.0 +/- 0.6 days at 20 degrees C. Fertility was also reduced in the two shortest-lived strains. We determined which life span most closely corresponds to that of the authentic wild type by two means. Firstly, N2 hermaphrodites were compared with seven C. elegans wild isolates. The latter were found to resemble only the longest-lived N2 strain. Comparison of male life spans of six lines also revealed additional strain variation. Secondly, life spans of F1 progeny issuing from crosses between N2 variants showed that short life spans were recessive, indicating that they result from loss-of-function mutations. We infer that the longest-lived N2 variant best resembles the original N2 isolate. This is the N2 male stock currently distributed by the Caenorhabditis Genetics Center.

  12. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis.

    PubMed

    Moriwaki, Hiroshi; Koide, Remi; Yoshikawa, Ritsuko; Warabino, Yuya; Yamamoto, Hiroki

    2013-04-01

    The aim of this study is to investigate the potential of cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis 168 to adsorb rare earth ions. Freeze-dried cell powders prepared from both strains were used for the evaluation of adsorption ability for the rare earth ions, namely, La(III), Eu(III), and Tm(III). The rare earth ions were efficiently adsorbed onto powders of both wild-type strain (WT powder) and lipoteichoic acid-defective strain (∆LTA powder) at pH 3. The maximum adsorption capacities for Tm(III) by WT and ∆LTA powders were 43 and 37 mg g(-1), respectively. Removal (in percent) of Tm(III), La(III), and Eu(III) from aqueous solution by WT powder was greater than by ∆LTA powder. These results indicate that rare earth ions are adsorbed to functional groups, such as phosphate and carboxyl groups, of lipoteichoic acid. We observed coagulated ∆LTA powder in the removal of rare earth ions (1-20 mg L(-1)) from aqueous solution. In contrast, sedimentation of WT powder did not occur under the same conditions. This unique feature of ∆LTA powder may be caused by the difference of the distribution between lipoteichoic acid and wall teichoic acid. It appears that ∆LTA powder is useful for removal of rare earth ions by adsorption, because aggregation allows for rapid separation of the adsorbent by filtration.

  13. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.

    PubMed

    Pi, Jian; Jawed, Muhammad; Wang, Jun; Xu, Li; Yan, Yunjun

    2016-01-01

    In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD(+) ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD(+) ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cloning of the Koi Herpesvirus Genome as an Infectious Bacterial Artificial Chromosome Demonstrates That Disruption of the Thymidine Kinase Locus Induces Partial Attenuation in Cyprinus carpio koi▿

    PubMed Central

    Costes, B.; Fournier, G.; Michel, B.; Delforge, C.; Raj, V. Stalin; Dewals, B.; Gillet, L.; Drion, P.; Body, A.; Schynts, F.; Lieffrig, F.; Vanderplasschen, A.

    2008-01-01

    Koi herpesvirus (KHV) is the causative agent of a lethal disease in koi and common carp. In the present study, we describe the cloning of the KHV genome as a stable and infectious bacterial artificial chromosome (BAC) clone that can be used to produce KHV recombinant strains. This goal was achieved by the insertion of a loxP-flanked BAC cassette into the thymidine kinase (TK) locus. This insertion led to a BAC plasmid that was stably maintained in bacteria and was able to regenerate virions when permissive cells were transfected with the plasmid. Reconstituted virions free of the BAC cassette but carrying a disrupted TK locus (the FL BAC-excised strain) were produced by the transfection of Cre recombinase-expressing cells with the BAC. Similarly, virions with a wild-type revertant TK sequence (the FL BAC revertant strain) were produced by the cotransfection of cells with the BAC and a DNA fragment encoding the wild-type TK sequence. Reconstituted recombinant viruses were compared to the wild-type parental virus in vitro and in vivo. The FL BAC revertant strain and the FL BAC-excised strain replicated comparably to the parental FL strain. The FL BAC revertant strain induced KHV infection in koi carp that was indistinguishable from that induced by the parental strain, while the FL BAC-excised strain exhibited a partially attenuated phenotype. Finally, the usefulness of the KHV BAC for recombination studies was demonstrated by the production of an ORF16-deleted strain by using prokaryotic recombination technology. The availability of the KHV BAC is an important advance that will allow the study of viral genes involved in KHV pathogenesis, as well as the production of attenuated recombinant candidate vaccines. PMID:18337580

  15. Comparative proteomic profiles of Aspergillus fumigatus and Aspergillus lentulus strains by surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS)

    PubMed Central

    2011-01-01

    Background Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was applied to analyze the protein profiles in both somatic and metabolic extracts of Aspergillus species. The study was carried out on some Aspergillus species within the Fumigati section (Aspergillus fumigatus wild-types and natural abnormally pigmented mutants, and Aspergillus lentulus). The aim was to validate whether mass spectrometry protein profiles can be used as specific signatures to discriminate different Aspergillus species or even mutants within the same species. Results The growth conditions and the SELDI-TOF parameters were determined to generate characteristic protein profiles of somatic and metabolic extracts of Aspergillus fumigatus strains using five different ProteinChips®, eight growth conditions combining two temperatures, two media and two oxygenation conditions. Nine strains were investigated: three wild-types and four natural abnormally pigmented mutant strains of A. fumigatus and two strains of A. lentulus. A total of 242 fungal extracts were prepared. The spectra obtained are protein signatures linked to the physiological states of fungal strains depending on culture conditions. The best resolutions were obtained using the chromatographic surfaces CM10, NP20 and H50 with fractions of fungi grown on modified Sabouraud medium at 37°C in static condition. Under these conditions, the SELDI-TOF analysis allowed A. fumigatus and A. lentulus strains to be grouped into distinct clusters. Conclusions SELDI-TOF analysis distinguishes A. fumigatus from A. lentulus strains and moreover, permits separate clusters of natural abnormally pigmented A. fumigatus strains to be obtained. In addition, this methodology allowed us to point out fungal components specifically produced by a wild-type strain or natural mutants. It offers attractive potential for further studies of the Aspergillus biology or pathogenesis. PMID:21798007

  16. Comparative proteomic profiles of Aspergillus fumigatus and Aspergillus lentulus strains by surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS).

    PubMed

    Pinel, Claudine; Arlotto, Marie; Issartel, Jean-Paul; Berger, François; Pelloux, Hervé; Grillot, Renée; Symoens, Françoise

    2011-07-28

    Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was applied to analyze the protein profiles in both somatic and metabolic extracts of Aspergillus species. The study was carried out on some Aspergillus species within the Fumigati section (Aspergillus fumigatus wild-types and natural abnormally pigmented mutants, and Aspergillus lentulus). The aim was to validate whether mass spectrometry protein profiles can be used as specific signatures to discriminate different Aspergillus species or even mutants within the same species. The growth conditions and the SELDI-TOF parameters were determined to generate characteristic protein profiles of somatic and metabolic extracts of Aspergillus fumigatus strains using five different ProteinChips®, eight growth conditions combining two temperatures, two media and two oxygenation conditions. Nine strains were investigated: three wild-types and four natural abnormally pigmented mutant strains of A. fumigatus and two strains of A. lentulus. A total of 242 fungal extracts were prepared. The spectra obtained are protein signatures linked to the physiological states of fungal strains depending on culture conditions. The best resolutions were obtained using the chromatographic surfaces CM10, NP20 and H50 with fractions of fungi grown on modified Sabouraud medium at 37 °C in static condition. Under these conditions, the SELDI-TOF analysis allowed A. fumigatus and A. lentulus strains to be grouped into distinct clusters. SELDI-TOF analysis distinguishes A. fumigatus from A. lentulus strains and moreover, permits separate clusters of natural abnormally pigmented A. fumigatus strains to be obtained. In addition, this methodology allowed us to point out fungal components specifically produced by a wild-type strain or natural mutants. It offers attractive potential for further studies of the Aspergillus biology or pathogenesis. © 2011 Pinel et al; licensee BioMed Central Ltd.

  17. Development of three Drosophila melanogaster strains with different sensitivity to volatile anesthetics.

    PubMed

    Liu, Jin; Hu, Zhao-yang; Ye, Qi-quan; Dai, Shuo-hua

    2009-03-05

    The mechanisms of action for volatile anesthetics remain unknown for centuries partly owing to the insufficient or ineffective research models. We designed this study to develop three strains derived from a wild-type Drosophila melanogaster with different sensitivities to volatile anesthetics, which may ultimately facilitate molecular and genetic studies of the mechanism involved. Median effective doses (ED(50)) of sevoflurane in seven-day-old virgin female and male wild-type Drosophila melanogaster were determined. The sensitive males and females of percentile 6 - 10 were cultured for breeding sensitive offspring (S(1)). So did median ones of percentile 48 - 52 for breeding median offspring (M(1)), resistant ones of percentile 91 - 95 for breeding resistant offspring (R(1)). Process was repeated through 31 generations, in the 37th generation, S(37), M(37) and R(37) were used to determine ED(50) for enflurane, isoflurane, sevoflurane, desflurane, halothane, methoxyflurane, chloroform and trichloroethylene, then ED(50) values were correlated with minimum alveolar concentration (MAC) values in human. From a wild-type Drosophila melanogaster we were able to breed three strains with high, median and low sevoflurane requirements. The ratio of sevoflurane requirements of three strains were 1.20:1.00:0.53 for females and 1.22:1.00:0.72 for males. Strains sensitive, median and resistant to sevoflurane were also sensitive, median and resistant to other volatile anesthetics. For eight anesthetics, ED(50) values in three strains correlated directly with MAC values in human. Three Drosophila melanogaster strains with high, median and low sensitivity to volatile anesthetics, but with same hereditary background were developed. The ED(50) are directly correlated with MAC in human for eight volatile anesthetics.

  18. Prevalence and genotype identification of Toxoplasma gondii in wild animals from southwestern Spain.

    PubMed

    Calero-Bernal, Rafael; Saugar, José M; Frontera, Eva; Pérez-Martín, Juan E; Habela, Miguel A; Serrano, Francisco J; Reina, David; Fuentes, Isabel

    2015-01-01

    We used PCR to detect Toxoplasma gondii in the principal game species in southwestern Spain. We detected T. gondii in 32.2% of animals tested. Prevalences varied from 14.7% in wild boar (Sus scrofa) to 51.2% in red fox (Vulpes vulpes). The most prevalent genotype was type II (50.0%), followed by type III (20.6%) and type I (5.9%). Mixed infections (11.8%) were detected in wild boar (types I+III) and red fox (types II+III). Polymorphic strains (11.8%) were detected in several species. The high prevalence and the genetic variability shown could have implications for infection of farm animals and humans.

  19. Characterisation of a type 1 Avian Paramyxovirus belonging to a divergent group.

    PubMed

    Briand, François-Xavier; Massin, Pascale; Jestin, Véronique

    2014-01-10

    Newcastle disease, induced by a type 1 Avian Paramyxovirus (APMV-1), is one of the most serious poultry diseases. APMV-1 are divided into two classes based on genetic analysis: class II strains have been recovered from wild or domestic birds and include virulent and avirulent isolates whereas class I strains have been mainly isolated from wild birds and are avirulent. Within class I, a new proposed genotype has recently been reported. The only full genome strain of this group is presently characterised from the point of view of codon usage with reference to class I and class II specificities. Class-specific residues were identified on HN and F proteins that are the two major proteins involved in cell attachment and pathogenicity. Comparison of protein patterns and codon usage for this newly identified APMV-1 strain indicates it is similar to class I viruses but contains a few characteristics close to the viruses of class II. Transmission of viruses from this recently identified divergent group from wild birds to domestic birds could have a major impact on the domestic poultry industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation.

    PubMed Central

    Blanc, P L; Tuveson, R W; Sargent, M L

    1976-01-01

    Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10% survival. The same strains were about equally sensitive to shortwave ultraviolet (UV) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0% survival) than are conidia from a UV-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably no cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas UV-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment. PMID:128556

  1. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.

    PubMed

    Li, Jihong; Freedman, John C; Evans, Daniel R; McClane, Bruce A

    2017-03-01

    Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY -null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY -null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY -null mutant strain but significantly increased in the SM101 codY -null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. Copyright © 2017 American Society for Microbiology.

  2. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101

    PubMed Central

    Li, Jihong; Freedman, John C.; Evans, Daniel R.

    2017-01-01

    ABSTRACT Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY-null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY-null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY-null mutant strain but significantly increased in the SM101 codY-null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. PMID:28052992

  3. Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus.

    PubMed

    de Ronde, A; van Dooren, M; van Der Hoek, L; Bouwhuis, D; de Rooij, E; van Gemen, B; de Boer, R; Goudsmit, J

    2001-01-01

    Sequence analysis of human immunodeficiency virus type 1 (HIV-1) from 74 persons with acute infections identified eight strains with mutations in the reverse transcriptase (RT) gene at positions 41, 67, 68, 70, 215, and 219 associated with resistance to the nucleoside analogue zidovudine (AZT). Follow-up of the fate of these resistant HIV-1 strains in four newly infected individuals revealed that they were readily replaced by sensitive strains. The RT of the resistant viruses changed at amino acid 215 from tyrosine (Y) to aspartic acid (D) or serine (S), with asparagine (N) as a transient intermediate, indicating the establishment of new wild types. When we introduced these mutations and the original threonine (T)-containing wild type into infectious molecular clones and assessed their competitive advantage in vitro, the order of fitness was in accord with the in vivo observations: 215Y < 215D = 215S = 215T. As detected by real-time nucleic acid sequence-based amplification with two molecular beacons, the addition of AZT or stavudine (d4T) to the viral cultures favored the 215Y mutant in a dose-dependent manner. Our results illustrate that infection with nucleoside analogue-resistant HIV leads in newly infected individuals to mutants that are sensitive to nucleoside analogues, but only a single mutation removed from drug-resistant HIV. Such mutants were shown to be transmissible, stable, and prone to rapid selection for resistance to AZT or d4T as soon as antiretroviral therapy was administered. Monitoring of patients for the presence of new HIV-1 wild types with D, S, or N residues at position 215 may be warranted in order to estimate the threat to long-term efficacy of regimens including nucleoside analogues.

  4. Isolation of Clostridium perfringens type A from wild bharals (Pseudois nayaur) following sudden death in Tibet, China.

    PubMed

    Zhu, Lingwei; Zhou, Wei; Wang, Tiecheng; Xiang, Haiyang; Ji, Xue; Han, Yixiao; Tian, Yuan; Sun, Yang; Liu, Jun; Guo, Xuejun

    2017-04-01

    Dozens of wild bharals died suddenly in Tibet. Necropsy showed severe congestion and hemorrhage in multiple organs, with large numbers of Gram-positive bacilli. Strains of Clostridium perfringens type A were isolated from the different organs and the intestinal contents. The other possible pathogens were ruled out by PCR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Neurovirulent pathotype of Newcastle disease virus associated with the reduced capacity of NDV to replicate in vivo and in vitro

    USDA-ARS?s Scientific Manuscript database

    Reverse genetics was used to create two recombinant Newcastle disease viruses derived from a velogenic viscerotropic NDV strain from China, wild type ZJI (wt-ZJ1). One of the recombinant viruses (rZJ1) was identical to the wild type and the other had the gene for the green fluorescent protein (GFP)...

  6. Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sporty, J; Lin, S; Kato, M

    2009-02-18

    Nicotinamide adenine dinucleotide (NAD{sup +}) is synthesized via two major pathways in prokaryotic and eukaryotic systems: the de novo biosynthesis pathway from tryptophan precursors, or by the salvage biosynthesis pathway from either extracellular nicotinic acid or various intracellular NAD{sup +} decomposition products. NAD{sup +} biosynthesis via the salvage pathway has been linked to an increase in yeast replicative lifespan under calorie restriction (CR). However, the relative contribution of each pathway to NAD{sup +} biosynthesis under both normal and CR conditions is not known. Here, we have performed lifespan, NAD{sup +} and NADH (the reduced form of NAD{sup +}) analyses onmore » BY4742 wild type, NAD+ salvage pathway knockout (npt1{Delta}), and NAD+ de novo pathway knockout (qpt1{Delta}) yeast strains cultured in media containing either 2% glucose (normal growth) or 0.5% glucose (CR). We have utilized {sup 14}C labeled nicotinic acid in the culture media combined with HPLC speciation and both UV and {sup 14}C detection to quantitate the total amounts of NAD{sup +} and NADH and the amounts derived from the salvage pathway. We observe that wild type and qpt1{Delta} yeast exclusively utilize extracellular nicotinic acid for NAD{sup +} and NADH biosynthesis under both the 2% and 0.5% glucose growth conditions suggesting that the de novo pathway plays little role if a functional salvage pathway is present. We also observe that NAD{sup +} concentrations decrease in all three strains under CR. However, unlike the wild type strain, NADH concentrations do not decrease and NAD{sup +}:NADH ratios do not increase under CR for either knockout strain. Lifespan analyses reveal that CR results in a lifespan increase of approximately 25% for the wild type and qpt1{Delta} strains, while no increase in lifespan is observed for the npt1{Delta} strain. In combination these data suggest that having a functional salvage pathway is more important than the absolute levels of NAD{sup +} or NADH for lifespan extension under CR.« less

  7. The pathogenicity of Beauveria bassiana: what happens after an endophytic phase in plants?

    PubMed

    Akello, J; Dubois, T; Coyne, D; Kyamanywa, S

    2010-01-01

    The banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is a serious constraint to banana (Musa spp.) production throughout the world. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) offers a potential weevil management option, but conventional delivery mechanisms have limited its success. As an endophyte, however, B. bassiana can be efficiently delivered to banana planting materials for the potential management of C. sordidus. However, entomopathogens can change morphology and efficacy against their target host when successively sub-cultured on artificial media or when exposed to certain physical and chemical environmental conditions. Whether such changes occur in B. bassiana after an endophytic phase inside a banana plant remains unknown. The primary aim of our study was to evaluate the viability, growth, sporulation and pathogenicity of endophytic B. bassiana. To attain this, two sets of experiments, namely morphological characterization and larval bioassays, were conducted under laboratory conditions. In these experiments, growth and pathogenicity of the wild-type B. bassiana strain G41, obtained originally from banana farms, was compared with the endophytic B. bassiana strain G41, re-isolated from the rhizome of B. bassiana-inoculated banana plants at one month post-inoculation. Morphological characterization, conidial germination, colony growth and sporulation rate was assessed on SDAY media while pathogenicity was determined 15 days after immersing the larvae of C. sordidus in different conidial doses. No differences were observed in colony appearance and growth rate between the endophytic and wild-type strain. Percentage conidial germination for the endophytic strain (91.4-94.0%) was higher than for the wild-type (86.6-89.7%). LD50 equated 1.76 x 10(5) and 0.71 x 10(5) conidia/ml for the wild-type and endophytic B. bassiana strains, respectively, but did not differ between strains. Our study demonstrated that, after an endophytic phase inside the banana plant, B. bassiana retains it morphology and pathogenicity against the banana weevil larvae; and thus can offer protection against the damaging larvae feeding inside the rhizome.

  8. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined method employing long-term continuous fermentation of acid-production processes. PMID:24533663

  9. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch.

    PubMed

    Zhou, Xiang; Lu, Xi-Hong; Li, Xue-Hu; Xin, Zhi-Jun; Xie, Jia-Rong; Zhao, Mei-Rong; Wang, Liang; Du, Wen-Yue; Liang, Jian-Ping

    2014-02-18

    Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined method employing long-term continuous fermentation of acid-production processes.

  10. Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains.

    PubMed

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2006-11-01

    We improved the hydrogen yield from glucose using a genetically modified Escherichia coli. E. coli strain SR15 (DeltaldhA, DeltafrdBC), in which glucose metabolism was directed to pyruvate formate lyase (PFL), was constructed. The hydrogen yield of wild-type strain of 1.08 mol/mol glucose, was enhanced to 1.82 mol/mol glucose in strain SR15. This figure is greater than 90 % of the theoretical hydrogen yield of facultative anaerobes (2.0 mol/mol glucose). Moreover, the specific hydrogen production rate of strain SR15 (13.4 mmol h(-1) g(-1) dry cell) was 1.4-fold higher than that of wild-type strain. In addition, the volumetric hydrogen production rate increased using the process where cells behaved as an effective catalyst. At 94.3 g dry cell/l, a productivity of 793 mmol h(-1) l(-1) (20.2 l h(-1) l(-1) at 37 degrees C) was achieved using SR15. The reported productivity substantially surpasses that of conventional biological hydrogen production processes and can be a trigger for practical applications.

  11. Antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralizes a heterologous wild-type mumps virus associated with a large outbreak.

    PubMed

    Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy

    2008-08-15

    Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.

  12. Type 1 fimbriae are important factors limiting the dissemination and colonization of mice by Salmonella Enteritidis and contribute to the induction of intestinal inflammation during Salmonella invasion

    PubMed Central

    Kuźmińska-Bajor, Marta; Grzymajło, Krzysztof; Ugorski, Maciej

    2015-01-01

    We have recently shown that Salmonella Gallinarum type 1 fimbriae with endogenous mannose-resistant (MR) variant of the FimH protein increase systemic dissemination of S. Gallinarum and colonization of internal organs in comparison to the S. Gallinarum fimH knockout strain or the mutant expressing mannose-sensitive (MS) FimH variant from S. Enteritidis. Elaborating from these studies, we proposed that MS variants of FimH are advantageous in gastrointestinal infections, in contrast to MR FimH variants which decrease intestinal colonization and promote their systemic spreading. To support our hypothesis, we carried out in vivo studies using mice infected with wild-type S. Enteritidis and its fimH knockout strain (S. Enteritidis), which was characterized by significantly lower adhesion and invasiveness of murine ICE-1 intestinal cells. Using bioluminescence imaging, we observed that the loss of MS FimH adhesin correlates well with the highly increased colonization of mice by these bacteria. The appearance of the mutant strain was observed much earlier than wild-type Salmonella, and mice infected with 104–107 S. Enteritidis fimH::kan CFUs had significantly (P < 0.05) shorter infection-free time than animals inoculated with wild-type S. Enteritidis. Infections caused by non-typhoid Salmonella, such as S. Enteritidis, are associated with massive inflammation of the lamina propria and lymph nodes in the intestinal tract. Therefore, we evaluated the role of MS type 1 fimbriae in the induction of cytokine expression and secretion, using murine ICE-1 intestinal cells. We showed that the expression, as well as secretion, of Il-1b, Il-6, Il-10, and Il-12b was significantly higher in cells infected with wild-type S. Enteritidis compared to cells infected with the mutant strain. Based on our results, we propose that type 1 fimbriae may play an important role in the pathogenicity of S. Enteritidis and may contribute to an intestinal inflammatory response. PMID:25914682

  13. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes.

    PubMed Central

    Johansen, L; Bryn, K; Stormer, F C

    1975-01-01

    Aerobacter (Enterobacter) aerogenes wild type and three mutants deficient in the formation of acetoin and 2,3-butanediol were grown in a glucose minimal medium. Culture densities, pH, and diacetyl, acetoin, and 2,3-butanediol levels were recorded. The pH in wild-type cultures dropped from 7.0 to 5.8, remained constant while acetoin and 2,3-butanediol were formed, and increased to pH 6.5 after exhaustion of the carbon source. More 2,3-butanediol than acetoin was formed initially, but after glucose exhaustion reoxidation to acetoin occurred. The three mutants differed from the wild type in yielding acid cultures (pH below 4.5). The wild type and one of the mutants were grown exponentially under aerobic and anaerobic conditions with the pH fixed at 7.0, 5.8, and 5.0, respectively. Growth rates decreased with decreasing pH values. Aerobically, this effect was weak, and the two strains were affected to the same degree. Under anaerobic conditions, the growth rates were markedly inhibited at a low pH, and the mutant was slightly more affected than the wild type. Levels of alcohol dehydrogenase were low under all conditions, indicating that the enzyme plays no role during exponential growth. The levels of diacetyl (acetoin) reductase, lactate dehydrogenase, and phosphotransacetylase were independent of the pH during aerobic growth of the two strains. Under anaerobic conditions, the formation of diacetyl (acetoin) reductase was pH dependent, with much higher levels of the enzyme at pH 5.0 than at pH 7.0. Lactate dehydrogenase and phosphotransacetylase revealed the same pattern of pH-dependent formation in the mutant, but not in the wild type. PMID:239921

  14. The β-Hemolysin and Intracellular Survival of Streptococcus agalactiae in Human Macrophages

    PubMed Central

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches. PMID:23593170

  15. The β-hemolysin and intracellular survival of Streptococcus agalactiae in human macrophages.

    PubMed

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.

  16. Thinking outside the "bug": a unique assay to measure intracellular drug penetration in gram-negative bacteria.

    PubMed

    Zhou, Ying; Joubran, Camil; Miller-Vedam, Lakshmi; Isabella, Vincent; Nayar, Asha; Tentarelli, Sharon; Miller, Alita

    2015-04-07

    Significant challenges are present in antibiotic drug discovery and development. One of these is the number of efficient approaches Gram-negative bacteria have developed to avoid intracellular accumulation of drugs and other cell-toxic species. In order to better understand these processes and correlate in vitro enzyme inhibition to whole cell activity, a better assay to evaluate a key factor, intracellular accumulation of the drug, is urgently needed. Here, we describe a unique liquid chromatography (LC)-mass spectrometry (MS) approach to measure the amount of cellular uptake of antibiotics by Gram-negative bacteria. This method, which measures the change of extracellular drug concentration, was evaluated by comparing the relative uptake of linezolid by Escherichia coli wild-type versus an efflux pump deficient strain. A higher dosage of the drug showed a higher accumulation in these bacteria in a dosing range of 5-50 ng/mL. The Escherichia coli efflux pump deficient strain had a higher accumulation of the drug than the wild-type strain as predicted. The approach was further validated by determining the relative meropenem uptake by Pseudomonas aeruginosa wild-type versus a mutant strain lacking multiple porins. These studies show great promise of being applied within antibiotic drug discovery, as a universal tool to aid in the search for compounds that can easily penetrate bacterial cells.

  17. Missense suppression in Coprinus lagopus associated wtih a chromosome duplication.

    PubMed

    Lewis, D; Casselton, L A

    1975-05-01

    Amongst some 70 recessive suppressors of a met-I mutation in Coprinus lagopus, one unstable suppressor was identified. The unstable suppressor, designated sup-6plus, could be maintained on minimal medium, but was lost within 24h on minimal medium containing more than 1-7 p.p.m. DL-methionine or 0-75 p.p.m. L-methionine. Isolation of hyphal tips from the monokaryotic strain carrying sup-6plus yielded three types of colony: the unstable parental type, the stable met-I auxotroph and a stable prototroph which was slow-growing and inhibited by methionine in the growth medium. This stable sup-6plus type was recovered with difficulty by resolving dikaryons formed between the unstable sup-6plus strain and strains carring the wild-type allele of the suppressor gene. From sexual crosses, neither the unstable nor stable sup-6plus type segregated, only the met-I auxotrophic revertant. The unstable sup-6plus strain is thought to have an extra chromosome carrying the sup-6plus mutation. For vigorous growth the wild-type allele, sup-6, is indispensable and would be carried on the homologous chromosome. The selective pressures on different media account for loss of the duplicated chromosomes. The results are interpreted as missense suppression by a mutant of an indispensable tRNA.

  18. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells

    PubMed Central

    Cong, Yu; McArthur, Monica A.; Cohen, Melanie; Jahrling, Peter B.; Janosko, Krisztina B.; Josleyn, Nicole; Kang, Kai; Zhang, Tengfei; Holbrook, Michael R.

    2016-01-01

    Humans infected with yellow fever virus (YFV), a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM) and dendritic cells (MoDC) from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease. PMID:27191161

  19. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    PubMed

    Cong, Yu; McArthur, Monica A; Cohen, Melanie; Jahrling, Peter B; Janosko, Krisztina B; Josleyn, Nicole; Kang, Kai; Zhang, Tengfei; Holbrook, Michael R

    2016-05-01

    Humans infected with yellow fever virus (YFV), a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM) and dendritic cells (MoDC) from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.

  20. Emergence of Atypical Mycoplasma agalactiae Strains Harboring a New Prophage and Associated with an Alpine Wild Ungulate Mortality Episode

    PubMed Central

    Tardy, Florence; Baranowski, Eric; Nouvel, Laurent-Xavier; Mick, Virginie; Manso-Silvàn, Lucía; Thiaucourt, François; Thébault, Patricia; Breton, Marc; Sirand-Pugnet, Pascal; Blanchard, Alain; Garnier, Alexandre; Gibert, Philippe; Game, Yvette; Poumarat, François

    2012-01-01

    The bacterium Mycoplasma agalactiae is responsible for contagious agalactia (CA) in small domestic ruminants, a syndrome listed by the World Organization for Animal Health and responsible for severe damage to the dairy industry. Recently, we frequently isolated this pathogen from lung lesions of ibexes during a mortality episode in the French Alps. This situation was unusual in terms of host specificity and tissue tropism, raising the question of M. agalactiae emergence in wildlife. To address this issue, the ibex isolates were characterized using a combination of approaches that included antigenic profiles, molecular typing, optical mapping, and whole-genome sequencing. Genome analyses showed the presence of a new, large prophage containing 35 coding sequences (CDS) that was detected in most but not all ibex strains and has a homolog in Mycoplasma conjunctivae, a species causing keratoconjunctivitis in wild ungulates. This and the presence in all strains of large integrated conjugative elements suggested highly dynamic genomes. Nevertheless, M. agalactiae strains circulating in the ibex population were shown to be highly related, most likely originating from a single parental clone that has also spread to another wild ungulate species of the same geographical area, the chamois. These strains clearly differ from strains described in Europe so far, including those found nearby, before CA eradication a few years ago. While M. agalactiae pathogenicity in ibexes remains unclear, our data showed the emergence of atypical strains in Alpine wild ungulates, raising the question of a role for the wild fauna as a potential reservoir of pathogenic mycoplasmas. PMID:22522685

  1. ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa

    PubMed Central

    Jones, Christopher J.; Newsom, David; Kelly, Benjamin; Irie, Yasuhiko; Jennings, Laura K.; Xu, Binjie; Limoli, Dominique H.; Harrison, Joe J.; Parsek, Matthew R.; White, Peter; Wozniak, Daniel J.

    2014-01-01

    The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for AmrZ regulation of biofilm formation and chronicity. PMID:24603766

  2. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khurana, J.P.; Ren, Zhangling; Steinitz, B.

    1989-10-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in first positive phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable tomore » the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.« less

  3. Genetic recombination of tick-borne flaviviruses among wild-type strains.

    PubMed

    Norberg, Peter; Roth, Anette; Bergström, Tomas

    2013-06-05

    Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Tianyong; Olson, Daniel G.; Tian, Liang

    Clostridium thermocellum and Thermoanaerobacterium saccharolyticumare thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticumproduce ethanol with a yield of 90% of the theoretical maximum, engineered strains ofC. thermocellumproduce ethanol at lower yields (~50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in theiradhEgenes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, theadhEgenes from six strains ofC. thermocellumandT. saccharolyticumwere cloned and expressed inEscherichia coli, the enzymesmore » produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains ofT. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain ofC. thermocellumhas acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced intoC. thermocellumandT. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. This work describes the characterization of the AdhE enzyme from different strains ofC. thermocellumandT. saccharolyticum.C. thermocellumandT. saccharolyticumare thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains, several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity. We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol production byC. thermocellumandT. saccharolyticum.« less

  5. Biodiversity of dairy Propionibacterium isolated from dairy farms in Minas Gerais, Brazil.

    PubMed

    de Freitas, Rosangela; Chuat, Victoria; Madec, Marie-Noelle; Nero, Luis Augusto; Thierry, Anne; Valence, Florence; de Carvalho, Antonio Fernandes

    2015-06-16

    Dairy propionibacteria are used as ripening cultures for the production of Swiss-type cheeses, and some strains have potential for use as probiotics. This study investigated the biodiversity of wild dairy Propionibacteria isolates in dairy farms that produce Swiss-type cheeses in Minas Gerais State, Brazil. RAPD and PFGE were used for molecular typing of strains and MLST was applied for phylogenetic analysis of strains of Propionibacterium freudenreichii. The results showed considerable genetic diversity of the wild dairy propionibacteria, since three of the main species were observed to be randomly distributed among the samples collected from different farms in different biotopes (raw milk, sillage, soil and pasture). Isolates from different farms showed distinct genetic profiles, suggesting that each location represented a specific niche. Furthermore, the STs identified for the strains of P. freudenreichii by MLST were not related to any specific origin. The environment of dairy farms and milk production proved to be a reservoir for Propionibacterium strains, which are important for future use as possible starter cultures or probiotics, as well as in the study of prevention of cheese defects. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background.

    PubMed

    Zhang, Hui; Wang, Shuang; Zhang, Xiang Xiang; Ji, Wei; Song, Fuping; Zhao, Yue; Li, Jie

    2016-04-28

    The filamentous fungus Aspergillus niger is widely exploited as an important expression host for industrial production. The glucoamylase high-producing strain A. niger CICC2462 has been used as a host strain for the establishment of a secretion expression system. It expresses recombinant xylanase, mannase and asparaginase at a high level, but some high secretory background proteins in these recombinant strains still remain, such as alpha-amylase and alpha-glucosidase; lead to a low-purity of fermentation products. The aim was to construct an A. niger host strain with a low background of protein secretion. The transcription factor amyR was deleted in A. niger CICC2462, and the results from enzyme activity assays and SDS-PAGE analysis showed that the glucoamylase and amylase activities of the ∆amyR strains were significantly lower than those of the wild-type strain. High-throughput RNA-sequencing and shotgun LC-MS/MS proteomic technology analysis demonstrated that the expression of amylolytic enzymes was decreased at both the transcriptional and translational levels in the ∆amyR strain. Interestingly, the ∆amyR strain growth rate better than the wild-type strain. Our findings clearly indicated that the ∆amyR strain of A. niger CICC2462 can be used as a host strain with a low background of protein secretion.

  7. Ubiquinone Function in Neurospora crassa

    PubMed Central

    Drabikowska, Alicja K.; Kruszewska, Anna

    1972-01-01

    Mitochondria of cytoplasmic respiratory mutants [mi-1] (poky) and [mi-4] contain about a fourfold molar excess of ubiquinone as compared to the wild-type strain of Neurospora crassa. In the wild type and [mi-1] cultures the concentration of ubiquinone remains constant during the exponential and stationary phase of growth. In [mi-4] cultures it markedly decreases in the stationary phase. The reduction of ubiquinone by substrates is approximately the same in the three strains tested and amounts 60 to 70% of total ubiquinone present in mitochondria, independent of its absolute amount. The reduction of ubiquinone on addition of substrates is accompanied by the similar reduction of cytochrome c. These indicate that mitochondrial ubiquinone and cytochrome c are involved in processes of oxidation in Neurospora and that ubiquinone belongs mainly if not entirely to the cytochrome system of electron transport in these strains. PMID:4344917

  8. Mutations in GAL2 or GAL4 alleviate catabolite repression produced by galactose in Saccharomyces cerevisiae.

    PubMed

    Rodríguez; Flores

    2000-06-01

    Galactose does not allow growth of pyruvate carboxylase mutants in media with ammonium as a nitrogen source, and inhibits growth of strains defective in phosphoglyceromutase in ethanol-glycerol mixtures. Starting with pyc1, pyc2, and gpm1 strains, we isolated mutants that eliminated those galactose effects. The mutations were recessive and were named dgr1-1 and dgr2-1. Strains bearing those mutations in an otherwise wild-type background grew slower than the wild type in rich galactose media, and their growth was dependent on respiration. Galactose repression of several enzymes was relieved in the mutants. Biochemical and genetic evidence showed that dgr1-1 was allelic with GAL2 and dgr2-1 with GAL4. The results indicate that the rate of galactose consumption is critical to cause catabolite repression.

  9. Role of the Trichoderma harzianum Endochitinase Gene, ech42, in Mycoparasitism

    PubMed Central

    Carsolio, Carolina; Benhamou, Nicole; Haran, Shoshan; Cortés, Carlos; Gutiérrez, Ana; Chet, Ilan; Herrera-Estrella, Alfredo

    1999-01-01

    The role of the Trichoderma harzianum endochitinase (Ech42) in mycoparasitism was studied by genetically manipulating the gene that encodes Ech42, ech42. We constructed several transgenic T. harzianum strains carrying multiple copies of ech42 and the corresponding gene disruptants. The level of extracellular endochitinase activity when T. harzianum was grown under inducing conditions increased up to 42-fold in multicopy strains as compared with the wild type, whereas gene disruptants exhibited practically no activity. The densities of chitin labeling of Rhizoctonia solani cell walls, after interactions with gene disruptants were not statistically significantly different than the density of chitin labeling after interactions with the wild type. Finally, no major differences in the efficacies of the strains generated as biocontrol agents against R. solani or Sclerotium rolfsii were observed in greenhouse experiments. PMID:10049844

  10. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose.

    PubMed

    Divate, Nileema R; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-11-01

    A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress.

  11. In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production.

    PubMed

    Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami

    2015-08-01

    Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Streptococcus mutans in a Wild, Sucrose-Eating Rat Population

    PubMed Central

    Coykendall, Alan L.; Specht, Patricia A.; Samol, Harry H.

    1974-01-01

    Streptococcus mutans, an organism implicated in dental caries and not previously found outside of man and certain laboratory animals, was isolated from the mouths of wild rats which ate sugar cane. The strains isolated fermented mannitol and sorbitol, and failed to grow in 6.5% NaCl or at 45 C. They formed in vitro plaques on nichrome wires when grown in sucrose broth. They also stored intracellular polysaccharide which could be catabolized by washed, resting cells. Deoxyribonucleic acid-deoxyribonucleic acid reassociations revealed two genetic types. One type shared extensive deoxyribonucleic acid base sequences with S. mutans strains HS6 and OMZ61, two members of a genetic type found in man and laboratory hamsters. The other type seemed unrelated to any S. mutans genetic type previously encountered. It is concluded that the ecological triad of tooth-sucrose-S. mutans is not a phenomenon unique to man and experimental animals. Images PMID:4601769

  13. A Mutation in PGM2 Causing Inefficient Galactose Metabolism in the Probiotic Yeast Saccharomyces boulardii.

    PubMed

    Liu, Jing-Jing; Zhang, Guo-Chang; Kong, In Iok; Yun, Eun Ju; Zheng, Jia-Qi; Kweon, Dae-Hyuk; Jin, Yong-Su

    2018-05-15

    The probiotic yeast Saccharomyces boulardii has been extensively studied for the prevention and treatment of diarrheal diseases, and it is now commercially available in some countries. S. boulardii displays notable phenotypic characteristics, such as a high optimal growth temperature, high tolerance against acidic conditions, and the inability to form ascospores, which differentiate S. boulardii from Saccharomyces cerevisiae The majority of prior studies stated that S. boulardii exhibits sluggish or halted galactose utilization. Nonetheless, the molecular mechanisms underlying inefficient galactose uptake have yet to be elucidated. When the galactose utilization of a widely used S. boulardii strain, ATCC MYA-796, was examined under various culture conditions, the S. boulardii strain could consume galactose, but at a much lower rate than that of S. cerevisiae While all GAL genes were present in the S. boulardii genome, according to analysis of genomic sequencing data in a previous study, a point mutation (G1278A) in PGM2 , which codes for phosphoglucomutase, was identified in the genome of the S. boulardii strain. As the point mutation resulted in the truncation of the Pgm2 protein, which is known to play a pivotal role in galactose utilization, we hypothesized that the truncated Pgm2 might be associated with inefficient galactose metabolism. Indeed, complementation of S. cerevisiae PGM2 in S. boulardii restored galactose utilization. After reverting the point mutation to a full-length PGM2 in S. boulardii by Cas9-based genome editing, the growth rates of wild-type (with a truncated PGM2 gene) and mutant (with a full-length PGM2 ) strains with glucose or galactose as the carbon source were examined. As expected, the mutant (with a full-length PGM2 ) was able to ferment galactose faster than the wild-type strain. Interestingly, the mutant showed a lower growth rate than that of the wild-type strain on glucose at 37°C. Also, the wild-type strain was enriched in the mixed culture of wild-type and mutant strains on glucose at 37°C, suggesting that the truncated PGM2 might offer better growth on glucose at a higher temperature in return for inefficient galactose utilization. Our results suggest that the point mutation in PGM2 might be involved in multiple phenotypes with different effects. IMPORTANCE Saccharomyces boulardii is a probiotic yeast strain capable of preventing and treating diarrheal diseases. However, the genetics and metabolism of this yeast are largely unexplored. In particular, molecular mechanisms underlying the inefficient galactose metabolism of S. boulardii remain unknown. Our study reports that a point mutation in PGM2 , which codes for phosphoglucomutase, is responsible for inferior galactose utilization by S. boulardii After correction of the mutated PGM2 via genome editing, the resulting strain was able to use galactose faster than a parental strain. While the PGM2 mutation made the yeast use galactose slowly, investigation of the genomic sequencing data of other S. boulardii strains revealed that the PGM2 mutation is evolutionarily conserved. Interestingly, the PGM2 mutation was beneficial for growth at a higher temperature on glucose. We speculate that the PGM2 mutation was enriched due to selection of S. boulardii in the natural habitat (sugar-rich fruits in tropical areas). Copyright © 2018 American Society for Microbiology.

  14. Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2.

    PubMed

    Sitkiewicz, Izabela; Nagiec, Michal J; Sumby, Paul; Butler, Stephanie D; Cywes-Bentley, Colette; Musser, James M

    2006-10-24

    The molecular basis of pathogen clone emergence is relatively poorly understood. Acquisition of a bacteriophage encoding a previously unknown secreted phospholipase A(2) (designated SlaA) has been implicated in the rapid emergence in the mid-1980s of a new hypervirulent clone of serotype M3 group A Streptococcus. Although several lines of circumstantial evidence suggest that SlaA is a virulence factor, this issue has not been addressed experimentally. We found that an isogenic DeltaslaA mutant strain was significantly impaired in ability to adhere to and kill human epithelial cells compared with the wild-type parental strain. The mutant strain was less virulent for mice than the wild-type strain, and immunization with purified SlaA significantly protected mice from invasive disease. Importantly, the mutant strain was significantly attenuated for colonization in a monkey model of pharyngitis. We conclude that transductional acquisition of the ability of a GAS strain to produce SlaA enhanced the spread and virulence of the serotype M3 precursor strain. Hence, these studies identified a crucial molecular event underlying the evolution, rapid emergence, and widespread dissemination of unusually severe human infections caused by a distinct bacterial clone.

  15. First report of wild boar susceptibility to Porcine circovirus type 3: High prevalence in the Colli Euganei Regional Park (Italy) in the absence of clinical signs.

    PubMed

    Franzo, Giovanni; Tucciarone, Claudia Maria; Drigo, Michele; Cecchinato, Mattia; Martini, Marco; Mondin, Alessandra; Menandro, Maria Luisa

    2018-05-18

    The genus Circovirus includes one of the most relevant infectious agents affecting domestic pigs, Porcine circovirus type 2 (PCV-2). The wild boar susceptibility to this pathogen has also been demonstrated although the actual epidemiological role of wild populations is still debated. In recent times, a new circovirus, Porcine circovirus type 3 (PCV-3), has been discovered and reported in the presence of several clinical conditions. However, no information is currently available about PCV-3 circulation and prevalence in wild boar. To fill this gap, 187 wild boar serum samples were collected in the Colli Euganei Regional Park (Northern Italy) and screened for PCV-3, demonstrating a high viral prevalence (approximately 30%). No gender differences were demonstrated while a lower infection prevalence was observed in animals younger than 12 months compared to older ones, differently from what described in commercial pigs. Almost all sampled animals were in good health conditions and no association was proven between PCV-3 status and clinical syndromes in wild animals. The genetic characterization of selected strains enlightened a relevant variability and the absence of closely related strains originating from domestic pigs. Therefore, the observed scenario is suggestive of multiple introductions from other wild or domestic swine populations followed by prolonged circulation and independent evolution. Worldwide, this study reports for the first time the high susceptibility of the wild boar to PCV-3 infection. The high prevalence and the absence of association with clinical signs support the marginal role of this virus in the wild boar population ecology. However, its epidemiological role as reservoir endangering commercial swine cannot be excluded and will require further investigations. © 2018 Blackwell Verlag GmbH.

  16. A gene block causing cross-incompatibility hidden in wild and cultivated rice.

    PubMed Central

    Matsubara, Kazuki; Khin-Thidar; Sano, Yoshio

    2003-01-01

    Unidirectional cross-incompatibility was detected in advanced generations of backcrossing between wild (Oryza rufipogon) and cultivated (O. sativa) rice strains. The near-isogenic line (NIL) of T65wx (Japonica type) carrying an alien segment of chromosome 6 from a wild strain gave a reduced seed setting only when crossed with T65wx as the male. Cytological observations showed that abortion of hybrid seeds occurred as a consequence of a failure of early endosperm development followed by abnormalities in embryo development. The genetic basis of cross-incompatibility reactions in the female and male was investigated by testcrosses using recombinant inbred lines (RILs) that were established through dissecting the introgressed segments of wild and cultivated (Indica type) strains. The results revealed that the cross-incompatibility reaction was controlled by Cif in the female and by cim in the male. When the female plant with Cif was crossed with the male plant with cim, a failure of early endosperm development was observed in the hybrid zygotes. Among cultivars of O. sativa, cim was distributed predominantly in the Japonica type but not in the Indica type. In addition, a dominant suppressor, Su-Cif, which changes the reaction in the female from incompatible to compatible was proposed to present near the centromere of chromosome 6 of the Indica type. Further, the death of young F(1) zygotes was controlled by the parental genotypes rather than by the genotype of the hybrid zygote itself since all three genes acted sporophytically, which strongly suggests an involvement of parent-of-origin effects. We discuss the results in relation to the origin of a crossing barrier as well as their maintenance within the primary gene pool. PMID:14504241

  17. Effect of Trehalose and Trehalose Transport on the Tolerance of Clostridium perfringens to Environmental Stress in a Wild Type Strain and Its Fluoroquinolone-Resistant Mutant

    PubMed Central

    Park, Miseon; Mitchell, Wilfrid J.

    2016-01-01

    Trehalose has been shown to protect bacterial cells from environmental stress. Its uptake and osmoprotective effect in Clostridium perfringens were investigated by comparing wild type C. perfringens ATCC 13124 with a fluoroquinolone- (gatifloxacin-) resistant mutant. In a chemically defined medium, trehalose and sucrose supported the growth of the wild type but not that of the mutant. Microarray data and qRT-PCR showed that putative genes for the phosphorylation and transport of sucrose and trehalose (via phosphoenolpyruvate-dependent phosphotransferase systems, PTS) and some regulatory genes were downregulated in the mutant. The wild type had greater tolerance than the mutant to salts and low pH; trehalose and sucrose further enhanced the osmotolerance of the wild type to NaCl. Expression of the trehalose-specific PTS was lower in the fluoroquinolone-resistant mutant. Protection of C. perfringens from environmental stress could therefore be correlated with the ability to take up trehalose. PMID:28058047

  18. Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus.

    PubMed

    Chen, Chun-Yen; Kao, Ai-Ling; Tsai, Zheng-Chia; Chow, Te-Jin; Chang, Hsin-Yueh; Zhao, Xin-Qing; Chen, Po-Ting; Su, Hsiang-Yen; Chang, Jo-Shu

    2016-03-01

    Microalgal strains of Scenedesmus obliquus have the great potential for the production of biofuels, CO2 fixation, and bioremediation. However, metabolic engineering of S. obliquus to improve their useful phenotypes are still not fully developed. In this study, S. obliquus strain CPC2 was genetically engineered to promote the autotrophic growth and lipid productivity. The overexpression plasmid containing the type 2 diacylglycerol acyltransferse (DGAT) gene DGTT1 from Chlamydomonas reinhardtii was constructed and transformed into S. obliquus CPC2, and the positive transformants were obtained. The expression of DGTT1 gene was confirmed by reverse transcription PCR analysis. Enhanced lipid content of the transformant S. obliquus CPC2-G1 by nearly two-fold was observed. The biomass concentration of the recombinant strains was also 29% higher than that of the wild-type strain. Furthermore, the recombinant strain CPC2-G1 was successfully grown in 40 L tubular type photobioreactor and open pond system in an outdoor environment. The lipid content, biomass concentration, and biomass productivity obtained from 40 L tubular PBR were 127.8% 20.0%, and 232.6% higher than those obtained from the wild-type strain. The major aim of this work is to develop a tool to genetically engineer an isolated S. obliquus strain for the desired purpose. This is the first report that genetic engineering of S. obliquus has been successful employed to improve both the microalgal cell growth and the lipid production. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular characterization, fitness and mycotoxin production of Fusarium graminearum laboratory strains resistant to benzimidazoles.

    PubMed

    Sevastos, A; Markoglou, A; Labrou, N E; Flouri, F; Malandrakis, A

    2016-03-01

    Six benzimidazole (BMZ)-resistant Fusarium graminearum strains were obtained after UV mutagenesis and selection on carbendazim (MBC)-amended medium. In vitro bioassays resulted in the identification of two resistant phenotypes that were highly HR (Rf: 40-170, based on EC50) and moderately MR (Rf: 10-20) resistant to carbendazim. Cross resistance studies with other fungicides showed that all mutant strains tested were also resistant to other BMZs, such as benomyl and thiabendazole, but retained their parental sensitivity to fungicides belonging to other chemical groups. A point mutation at codon 6 (His6Asn) was found in the β2-tubulin gene of MR isolates while another mutation at codon 200 (Phe200Tyr) was present in one MR and one HR isolates. Interestingly, low temperatures suppressed MBC-resistance in all isolates bearing the H6N mutation. The three-dimensional homology model of the wild-type and mutants of β-tubulins were constructed, and the possible carbendazim binding site was analyzed. Studies on fitness parameters showed that the mutation(s) for resistance to BMZs did not affect the mycelial growth rate whereas adverse effects were found in sporulation and conidial germination in most of the resistant mutants. Pathogenicity tests on corn cobs revealed that mutants were less or equally aggressive to the wild-type strain but expressed their BMZ-resistance after inoculation on maize cobs treated with MBC. Analysis of mycotoxin production by high performance liquid chromatography revealed that only two HR strains produced zearalenone (ZEA) at concentrations similar to that of the wild-type strain, while no ZEA levels were detected in the rest of the mutants. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling

    PubMed Central

    Marroquin-Guzman, Margarita; Wilson, Richard A.

    2015-01-01

    Fungal plant pathogens are persistent and global food security threats. To invade their hosts they often form highly specialized infection structures, known as appressoria. The cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as positive-acting pathways required for appressorium development. Negative-acting regulatory pathways that block appressorial development are not known. Here, we present the first detailed evidence that the conserved Target of Rapamycin (TOR) signaling pathway is a powerful inhibitor of appressorium formation by the rice blast fungus Magnaporthe oryzae. We determined TOR signaling was activated in an M. oryzae mutant strain lacking a functional copy of the GATA transcription factor-encoding gene ASD4. Δasd4 mutant strains could not form appressoria and expressed GLN1, a glutamine synthetase-encoding orthologue silenced in wild type. Inappropriate expression of GLN1 increased the intracellular steady-state levels of glutamine in Δasd4 mutant strains during axenic growth when compared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4 mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium development. Rapamycin was also shown to induce appressorium formation by wild type and Δcpka mutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP kinase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glutamine levels in order to modulate TOR inhibition of appressorium formation downstream of cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin the highly regulated process of appressorium development. PMID:25901357

  1. Comparative Transcriptome of Wild Type and Selected Strains of the Microalgae Tisochrysis lutea Provides Insights into the Genetic Basis, Lipid Metabolism and the Life Cycle

    PubMed Central

    Carrier, Gregory; Garnier, Matthieu; Le Cunff, Loïc; Bougaran, Gaël; Probert, Ian; De Vargas, Colomban; Corre, Erwan; Cadoret, Jean-Paul; Saint-Jean, Bruno

    2014-01-01

    The applied exploitation of microalgae cultures has to date almost exclusively involved the use of wild type strains, deposited over decades in dedicated culture collections. Concomitantly, the concept of improving algae with selection programs for particular specific purposes is slowly emerging. Studying since a decade an economically and ecologically important haptophyte Tisochrysis lutea (Tiso), we took advantage of the availability of wild type (Tiso-Wt) and selected (Tiso-S2M2) strains to conduct a molecular variations study. This endeavour presented substantial challenges: the genome assembly was not yet available, the life cycle unknown and genetic diversity of Tiso-Wt poorly documented. This study brings the first molecular data in order to set up a selection strategy for that microalgae. Following high-throughput Illumina sequencing, transcriptomes of Tiso-Wt and Tiso-S2M2 were de novo assembled and annotated. Genetic diversity between both strains was analyzed and revealed a clear conservation, while a comparison of transcriptomes allowed identification of polymorphisms resulting from the selection program. Of 34,374 transcripts, 291 were differentially expressed and 165 contained positional polymorphisms (SNP, Indel). We focused on lipid over-accumulation of the Tiso-S2M2 strain and 8 candidate genes were identified by combining analysis of positional polymorphism, differential expression levels, selection signature and by study of putative gene function. Moreover, genetic analysis also suggests the existence of a sexual cycle and genetic recombination in Tisochrysis lutea. PMID:24489800

  2. OxyR of Haemophilus parasuis is a global transcriptional regulator important in oxidative stress resistance and growth.

    PubMed

    Wen, Yongping; Wen, Yiping; Wen, Xintian; Cao, Sanjie; Huang, Xiaobo; Wu, Rui; Zhao, Qin; Liu, Mafeng; Huang, Yong; Yan, Qigui; Han, Xinfeng; Ma, Xiaoping; Dai, Ke; Ding, Lingqiang; Liu, Sitong; Yang, Jian

    2018-02-15

    Haemophilus parasuis is an opportunistic pathogen and the causative agent of Glässer's disease in swine. This disease has high morbidity and mortality rates in swine populations, and is responsible for major economic losses worldwide. Survival of H. parasuis within the host requires mechanisms for coping with oxidative stress conditions. In many bacteria, OxyR is known to mediate protection against oxidative stress; however, little is known about the role of OxyR in H. parasuis. In the current study, an oxyR mutant strain was constructed in H. parasuis strain SC1401 and designated H. parasuis SC1401∆oxyR. The oxyR mutant strain had a slower growth rate and impaired biofilm formation compared to the wild type strain. Complementation restored the growth-associated phenotypes to wild type levels. Oxidative stress susceptibility testing, using a range of concentrations of H 2 O 2 , indicated that H. parasuis SC1401∆oxyR was more sensitive to oxidative stress than the wild type strain. RNA sequencing transcriptome analysis comparing H. parasuis SC1401 with H. parasuis SC1401∆oxyR identified 466 differentially expressed genes. These genes were involved in a wide range of biological processes, including: oxidative stress, transcriptional regulation, and DNA replication, recombination, and repair. These findings provide a foundation for future research to examine the role of OxyR as a global transcriptional regulator and to better define its role in oxidative stress resistance in H. parasuis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Geographic separation of domestic and wild strains of Toxoplasma gondii in French Guiana correlates with a monomorphic version of chromosome1a.

    PubMed

    Khan, Asis; Ajzenberg, Daniel; Mercier, Aurélien; Demar, Magalie; Simon, Stéphane; Dardé, Marie Laure; Wang, Qiuling; Verma, Shiv Kumar; Rosenthal, Benjamin M; Dubey, Jitender P; Sibley, L David

    2014-09-01

    Previous studies have stressed the genetic divergence and high pathogenicity of strains of T. gondii from French Guiana. Although strains from coastal, human adapted environments (so called anthropized) resemble those found in other regions of the Caribbean, strains collected from inland jungle environment are genetically quite diverse. To better understand the composition of these distinct strain types, we undertook a more in depth analysis of T. gondii strains from French Guiana including profiling of chromosome 1a (Chr1a), which is often shared as a single monomorphic haplotype among lineages that are otherwise genetically distinct. Comparison of intron sequences from selectively neutral genes indicated that anthropized strains were most closely related to clonal type III strains from North America, although wider RFLP analysis revealed that they are natural hybrids. In contrast, strains isolated from the jungle were genetically very diverse. Remarkably, nearly all anthropized strains contained the monomorphic version of Chr1a while wild stains were extremely divergent. The presence of the monomorphic Chr1a strongly correlated with greater transmission in domestic cats, although there were several exceptions, indicating that other factors also contribute. Anthropized strains also varied in their virulence in laboratory mice, and this pattern could not be explained by the simple combination of previously identified virulence factors, indicating that other genetic determinants influence pathogenicity. Our studies underscore the marked genetic separation of anthropized and wild strains of T. gondii in French Guiana and provide additional evidence that the presence of Chr1a is associated with successful expansion of widely different lineages within diverse geographic areas. The predominance of Chr1a among strains in the anthropized environment suggests that it may confer an advantage for transmission in this environment, and thus potentially contribute to the spread of pathogenecity determinants.

  4. Geographic Separation of Domestic and Wild Strains of Toxoplasma gondii in French Guiana Correlates with a Monomorphic Version of Chromosome1a

    PubMed Central

    Khan, Asis; Ajzenberg, Daniel; Mercier, Aurélien; Demar, Magalie; Simon, Stéphane; Dardé, Marie Laure; Wang, Qiuling; Verma, Shiv Kumar; Rosenthal, Benjamin M.; Dubey, Jitender P.; Sibley, L. David

    2014-01-01

    Background Previous studies have stressed the genetic divergence and high pathogenicity of strains of T. gondii from French Guiana. Although strains from coastal, human adapted environments (so called anthropized) resemble those found in other regions of the Caribbean, strains collected from inland jungle environment are genetically quite diverse. To better understand the composition of these distinct strain types, we undertook a more in depth analysis of T. gondii strains from French Guiana including profiling of chromosome 1a (Chr1a), which is often shared as a single monomorphic haplotype among lineages that are otherwise genetically distinct. Methodology/Principal Findings Comparison of intron sequences from selectively neutral genes indicated that anthropized strains were most closely related to clonal type III strains from North America, although wider RFLP analysis revealed that they are natural hybrids. In contrast, strains isolated from the jungle were genetically very diverse. Remarkably, nearly all anthropized strains contained the monomorphic version of Chr1a while wild stains were extremely divergent. The presence of the monomorphic Chr1a strongly correlated with greater transmission in domestic cats, although there were several exceptions, indicating that other factors also contribute. Anthropized strains also varied in their virulence in laboratory mice, and this pattern could not be explained by the simple combination of previously identified virulence factors, indicating that other genetic determinants influence pathogenicity. Conclusions/Significance Our studies underscore the marked genetic separation of anthropized and wild strains of T. gondii in French Guiana and provide additional evidence that the presence of Chr1a is associated with successful expansion of widely different lineages within diverse geographic areas. The predominance of Chr1a among strains in the anthropized environment suggests that it may confer an advantage for transmission in this environment, and thus potentially contribute to the spread of pathogenecity determinants. PMID:25233228

  5. Phylogenetic analysis of the haemagglutinin gene of canine distemper virus strains detected from breeding foxes, raccoon dogs and minks in China.

    PubMed

    Zhao, Jian-Jun; Yan, Xi-Jun; Chai, Xiu-Li; Martella, Vito; Luo, Guo-Liang; Zhang, Hai-Ling; Gao, Han; Liu, Ying-Xue; Bai, Xue; Zhang, Lei; Chen, Tao; Xu, Lei; Zhao, Chun-Fei; Wang, Feng-Xue; Shao, Xi-Qun; Wu, Wei; Cheng, Shi-Peng

    2010-01-06

    Canine distemper virus (CDV) infects a variety of carnivores, including wild and domestic Canidae. Genetic/antigenic heterogeneity has been observed among the various CDV strains, notably in the haemagglutinin (H) gene, that appears as a good target to gather epidemiological information. Based on sequence analysis of the H gene, wild-type CDV strains cluster into distinct geographic lineages (genotypes), irrespective of the species of isolation. The sequence of the H gene of 28 CDV strains detected from both vaccinated and non-vaccinated breeding foxes, raccoon dogs and minks from different geographical areas of China during the years 2004-2008 was determined. All the CDV strains but two (strains HL and HLJ2) were characterized as Asia-1 genotype and were highly similar to each other (96.2-99.7% at the amino acid [aa] level) and to other Asia-1 strains (96.1-99.5% aa) previously detected in China. The CDV strains HL and HLJ2 were both collected from foxes in Heilongjiang province in 2005. Strain HL resembled CDVs of the Arctic genotype (GR88-like) and displayed high aa identity (98.0%) to the Chinese canine strain Liu. By converse, strain HLJ2 was barely related to CDVs of the Asia-2 genotype (88.7-90.3% aa identity), and could represent a novel CDV genotype, tentatively proposed as Asia-3. These results suggest that at least three different CDV genotypes, distantly related (81.8-91.6% aa identity) to the vaccine strains, Onderstepoort-like (America-1 genotype), are currently circulating in breeding foxes, raccoon dogs and minks in China, and that the genotype Asia-1 is predominant. Whether the diversity between wild-type CDVs and the vaccine strains may affect, to some extent, the efficacy of the vaccines deserves further investigations.

  6. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.

    PubMed

    Chen, Yuan Yao; Gänzle, Michael G

    2016-04-02

    Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (P<0.05). The Δcfa mutant strains did not produce CFAs, and the corresponding substrates C16:1 and C18:1 accumulated in membrane lipids. The deletion of cfa did not alter resistance to H2O2 but increased the lethality of heat, high pressure and acid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum

    DOE PAGES

    Papanek, Beth A.; Biswas, Ranjita; Rydzak, Thomas; ...

    2015-09-12

    Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, we study a mutant strain of C. thermocellum that was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulosemore » Avicel, effectively eliminating formate, acetate, and lactate production and reducing H 2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4 mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO 2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1 mM ethanol on 10 g/L Avicel. In conclusion, with the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass.« less

  8. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

    PubMed

    McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A

    2018-06-01

    Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).

  9. Deletion of HAPS_2096 Increases Sensitivity to Cecropin B in Haemophilus parasuis.

    PubMed

    Chen, Fanjie; Hu, Han; Li, Zhonghua; Huang, Jiacheng; Cai, Xuwang; Wang, Chunmei; He, Qigai; Cao, Jiyue

    2015-01-01

    Cecropin B (CB) is a very effective natural antimicrobial peptide that has shown great potential for future antimicrobial drug development. HAPS_2096 is a Haemophilus parasuis gene that encodes the periplasmic substrate-binding protein of an ATP-binding cassette-type amino acid transporter. In this research, we constructed and verified an HAPS_2096 deletion mutant and a complementary HAPS_2096 mutant of H. parasuis JS0135. A bactericidal assay revealed that the HAPS_2096 deletion mutant was significantly more sensitive than the wild-type strain to 0.25-0.5 µg/ml CB. However, the gene complementation alleviated the CB sensitivity of the mutant. Immunoelectron microscopy observation following a 30-min treatment with a sublethal concentration of CB (0.25 μg/ml) revealed more extensive morphological damage in the mutant strain than in the wild-type strain. Hence, our results suggest that the HAPS_2096 gene contributes to H. parasuis resistance to CB. © 2015 S. Karger AG, Basel.

  10. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X.

    PubMed

    Meng, Xianrong; Liu, Xueling; Zhang, Liyuan; Hou, Bo; Li, Binyou; Tan, Chen; Li, Zili; Zhou, Rui; Li, Shaowen

    2016-09-01

    Outer membrane protein X (OmpX) and its homologues have been proposed to contribute to the virulence in various bacterial species. But, their role in virulence of extraintestinal pathogenic Escherichia coli (ExPEC) is yet to be determined. This study evaluates the role of OmpX in ExPEC virulence in vitro and in vivo using a clinical strain PPECC42 of porcine origin. The ompX deletion mutant exhibited increased swimming motility and decreased adhesion to, and invasion of pulmonary epithelial A549 cell, compared to the wild-type strain. A mild increase in LD50 and distinct decrease in bacterial load in such organs as heart, liver, spleen, lung and kidney were observed in mice infected with the ompX mutant. Complementation of the complete ompX gene in trans restored the virulence of mutant strain to the level of wild-type strain. Our results reveal that OmpX contributes to ExPEC virulence, but may be not an indispensable virulence determinant.

  11. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins.

    PubMed Central

    Bayer, A S; Ramos, M D; Menzies, B E; Yeaman, M R; Shen, A J; Cheung, A L

    1997-01-01

    Staphylococcal alpha-toxin targets several cell types which are important components of cardiac vegetations in endocarditis, including platelets, erythrocytes, and endothelial cells. We evaluated the in vivo role of Staphylococcus aureus alpha-toxin in experimental endocarditis by using isogenic strains differing in the capacity to produce functional alpha-toxin, including 8325-4 (wild-type strain), DU-1090 (a mutant strain with allelic replacement of the alpha-toxin gene [hla]), DU1090(pH35L) (a mutant strain producing a target cell-binding but nonlytic toxin), DU1090(pDU1212) (a variant of DU1090 carrying the cloned hla gene on a multicopy plasmid), and DU1090(pCL84::hla) (a variant of DU1090 with a single copy of the hla gene cloned into the chromosomal lipase locus). In vitro, wild-type alpha-toxin (from parental strain 8325-4) extensively lysed both erythrocytes and platelets. In contrast, mutant alpha-toxin [from strain DU1090(pH35L)] lysed neither cell type. Following exposure to the wild-type alpha-toxin, platelet lysates were found to contain microbicidal activity against Bacillus subtilis (but not against Micrococcus luteus), as well as against the parental and alpha-toxin variant S. aureus strains noted above. Furthermore, lysate microbicidal activity was heat stable, neutralized by polyanionic filters or compounds, and recoverable from anionic filter membranes by hypertonic saline elution. These characteristics are consistent with those of cationic platelet microbicidal proteins (PMPs). Reverse-phase high-pressure liquid chromatography and polyacrylamide gel electrophoresis confirmed the presence of three distinct PMPs (1, 2, and 3) in platelet lysates. In experimental endocarditis, the two variant staphylococcal strains producing either minimal alpha-toxin or nonlytic alpha-toxin in vitro [strains DU1090 and DU1090(pH35L), respectively] exhibited significantly lower virulence in vivo than the parental strain (decreased intravegetation staphylococcal densities). Paradoxically, the two variant staphylococcal strains producing alpha-toxin at supraparental levels in vitro [strains DU1090(p1212) and DU1090(pCL84::hla)] also exhibited significantly decreased induction rates and intravegetation staphylococcal densities in experimental endocarditis versus the parental strain. The reduced in vivo virulence of the latter variant staphylococcal strains could not be explained by differences in bacteremic clearance or initial adherence to sterile vegetations (compared to the parental strain). These findings suggest that the reduced virulence exhibited by the variant staphylococcal strains in this model was related to pathogenetic events subsequent to bacterial adherence to the damaged endocardium. Excess intravegetation secretion of alpha-toxin, leading to increased PMP release (secondary to either increased platelet secretion or lysis), may well explain the reduced virulence observed in experimental endocarditis. PMID:9353046

  12. Construction and characterization of outbreak Escherichia coli O157:H7 surrogate strains for use in field studies.

    PubMed

    Webb, Cathy C; Erickson, Marilyn C; Davey, Lindsey E; Payton, Alison S; Doyle, Michael P

    2014-11-01

    Escherichia coli O157:H7 has been the causative agent of many outbreaks associated with leafy green produce consumption. Elucidating the mechanism by which contamination occurs requires monitoring interactions between the pathogen and the plant under typical production conditions. Intentional introduction of virulent strains into fields is not an acceptable practice. As an alternative, attenuated strains of natural isolates have been used as surrogates of the virulent strains; however, the attachment properties and environmental stabilities of these attenuated isolates may differ from the unattenuated outbreak strains. In this study, the Shiga toxin (stx1, stx2, and/or stx2c) genes as well as the eae gene encoding intimin of two E. coli O157:H7 outbreak isolates, F4546 (1997 alfalfa sprout) and K4492 (2006 lettuce), were deleted. Individual gene deletions were confirmed by polymerase chain reaction (PCR) and DNA sequencing. The mutant strains did not produce Shiga toxin. The growth kinetics of these mutant strains under nutrient-rich and minimal conditions were identical to those of their wild-type strains. Attachment to the surface of lettuce leaves was comparable between wild-type/mutant pairs F4546/MD46 and K4492/MD47. Adherence to soil particles was also comparable between the virulent and surrogate pairs, although the F4546/MD46 pair exhibited statistically greater attachment than the K4492/MD47 pair (p≤0.05). Wild-type and mutant pairs F4546/MD46 and K4492/MD47 inoculated into wet or dry soils had statistically similar survival rates over the 7-day storage period at 20°C. A plasmid, pGFPuv, containing green fluorescent protein was transformed into each of the mutant strains, allowing for ease of identification and detection of surrogate strains on plant material or soil. These pGFPuv-containing surrogate strains will enable the investigation of pathogen interaction with plants and soil in the farm production environment where the virulent pathogen cannot be used.

  13. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project.

    PubMed

    Santpere, Gabriel; Darre, Fleur; Blanco, Soledad; Alcami, Antonio; Villoslada, Pablo; Mar Albà, M; Navarro, Arcadi

    2014-04-01

    Most people in the world (∼90%) are infected by the Epstein-Barr virus (EBV), which establishes itself permanently in B cells. Infection by EBV is related to a number of diseases including infectious mononucleosis, multiple sclerosis, and different types of cancer. So far, only seven complete EBV strains have been described, all of them coming from donors presenting EBV-related diseases. To perform a detailed comparative genomic analysis of EBV including, for the first time, EBV strains derived from healthy individuals, we reconstructed EBV sequences infecting lymphoblastoid cell lines (LCLs) from the 1000 Genomes Project. As strain B95-8 was used to transform B cells to obtain LCLs, it is always present, but a specific deletion in its genome sets it apart from natural EBV strains. After studying hundreds of individuals, we determined the presence of natural EBV in at least 10 of them and obtained a set of variants specific to wild-type EBV. By mapping the natural EBV reads into the EBV reference genome (NC007605), we constructed nearly complete wild-type viral genomes from three individuals. Adding them to the five disease-derived EBV genomic sequences available in the literature, we performed an in-depth comparative genomic analysis. We found that latency genes harbor more nucleotide diversity than lytic genes and that six out of nine latency-related genes, as well as other genes involved in viral attachment and entry into host cells, packaging, and the capsid, present the molecular signature of accelerated protein evolution rates, suggesting rapid host-parasite coevolution.

  14. Natural and Unanticipated Modifiers of RNAi Activity in Caenorhabditis elegans

    PubMed Central

    Asad, Nadeem; Aw, Wen Yih; Timmons, Lisa

    2012-01-01

    Organisms used as model genomics systems are maintained as isogenic strains, yet evidence of sequence differences between independently maintained wild-type stocks has been substantiated by whole-genome resequencing data and strain-specific phenotypes. Sequence differences may arise from replication errors, transposon mobilization, meiotic gene conversion, or environmental or chemical assault on the genome. Low frequency alleles or mutations with modest effects on phenotypes can contribute to natural variation, and it has proven possible for such sequences to become fixed by adapted evolutionary enrichment and identified by resequencing. Our objective was to identify and analyze single locus genetic defects leading to RNAi resistance in isogenic strains of Caenorhabditis elegans. In so doing, we uncovered a mutation that arose de novo in an existing strain, which initially frustrated our phenotypic analysis. We also report experimental, environmental, and genetic conditions that can complicate phenotypic analysis of RNAi pathway defects. These observations highlight the potential for unanticipated mutations, coupled with genetic and environmental phenomena, to enhance or suppress the effects of known mutations and cause variation between wild-type strains. PMID:23209671

  15. The Pseudorabies Virus Glycoprotein gE/gI Complex Suppresses Type I Interferon Production by Plasmacytoid Dendritic Cells

    PubMed Central

    Lamote, Jochen A. S.; Kestens, Manon; Van Waesberghe, Cliff; Delva, Jonas; De Pelsmaeker, Steffi; Devriendt, Bert

    2017-01-01

    ABSTRACT Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity. IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The impact of Bartha on the immune response is still poorly understood. Type I interferon (TI-IFN)-producing plasmacytoid dendritic cells (pDC) may play an important role in vaccine development. Here, we show that Bartha elicits a dramatically increased type I interferon (TI-IFN) response in primary porcine pDC compared to wild-type strains. In addition, we found that the gE/gI complex, which is absent in Bartha, inhibits the pDC TI-IFN response. This is the first description of an immune cell type that is differentially affected by Bartha versus wild-type PRV and is the first report describing an alphaherpesvirus protein that inhibits the TI-IFN response by pDC. These data may therefore contribute to the rational design of other alphaherpesvirus vaccines. PMID:28122975

  16. The Pseudorabies Virus Glycoprotein gE/gI Complex Suppresses Type I Interferon Production by Plasmacytoid Dendritic Cells.

    PubMed

    Lamote, Jochen A S; Kestens, Manon; Van Waesberghe, Cliff; Delva, Jonas; De Pelsmaeker, Steffi; Devriendt, Bert; Favoreel, Herman W

    2017-04-01

    Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity. IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The impact of Bartha on the immune response is still poorly understood. Type I interferon (TI-IFN)-producing plasmacytoid dendritic cells (pDC) may play an important role in vaccine development. Here, we show that Bartha elicits a dramatically increased type I interferon (TI-IFN) response in primary porcine pDC compared to wild-type strains. In addition, we found that the gE/gI complex, which is absent in Bartha, inhibits the pDC TI-IFN response. This is the first description of an immune cell type that is differentially affected by Bartha versus wild-type PRV and is the first report describing an alphaherpesvirus protein that inhibits the TI-IFN response by pDC. These data may therefore contribute to the rational design of other alphaherpesvirus vaccines. Copyright © 2017 American Society for Microbiology.

  17. Production and purification of anti-bacterial biometabolite from wild-type Lactobacillus, isolated from fermented bamboo shoot: future suggestions and a proposed system for secondary metabolite onsite recovery during continuous fermentation.

    PubMed

    Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C

    2015-02-01

    Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.

  18. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens.

    PubMed

    Matthysse, Ann G; Marry, Mazz; Krall, Leonard; Kaye, Mitchell; Ramey, Bronwyn E; Fuqua, Clay; White, Alan R

    2005-09-01

    Agrobacterium tumefaciens growing in liquid attaches to the surface of tomato and Arabidopsis thaliana roots, forming a biofilm. The bacteria also colonize roots grown in sterile quartz sand. Attachment, root colonization, and biofilm formation all were markedly reduced in celA and chvB mutants, deficient in production of cellulose and cyclic beta-(1,2)-D-glucans, respectively. We have identified two genes (celG and cell) in which mutations result in the overproduction of cellulose as judged by chemical fractionation and methylation analysis. Wild-type and chvB mutant strains carrying a cDNA clone of a cellulose synthase gene from the marine urochordate Ciona savignyi also overproduced cellulose. The overproduction in a wild-type strain resulted in increased biofilm formation on roots, as evaluated by light microscopy, and levels of root colonization intermediate between those of cellulose-minus mutants and the wild type. Overproduction of cellulose by a nonattaching chvB mutant restored biofilm formation and bacterial attachment in microscopic and viable cell count assays and partially restored root colonization. Although attachment to plant surfaces was restored, overproduction of cellulose did not restore virulence in the chvB mutant strain, suggesting that simple bacterial binding to plant surfaces is not sufficient for pathogenesis.

  19. Molecular characterization and phylogenetic relationship of wild type 1 poliovirus strains circulating across Pakistan and Afghanistan bordering areas during 2010-2012.

    PubMed

    Shaukat, Shahzad; Angez, Mehar; Alam, Muhammad Masroor; Sharif, Salmaan; Khurshid, Adnan; Malik, Farzana; Rehman, Lubna; Zaidi, Syed Sohail Zahoor

    2014-01-01

    Pakistan and Afghanistan share a long uncontrolled border with extensive population movement on both sides. Wild poliovirus transmission has never been interrupted in this block due to war against terrorism, poor public health infrastructure, misconceptions about polio vaccines and inadequate immunization activities. All these issues complicate the eradication operations and reinforce the complexity of wiping out poliomyelitis from this region. This study illustrates the origins and routes of cross-border wild poliovirus type 1 (WPV1) transmission during 2010-2012 between Pakistan and Afghanistan. Sequence analyses were conducted based on complete VP1 capsid protein sequences for WPV1 study strains to determine the origin of poliovirus genetic lineages and their evolutionary relationships. Phylogenetic tree was constructed from VP1 gene sequences applying Maximum Likelihood method using Kimura 2- parameter model in MEGA program v 5.0. A total of 72 (14.3%) out of 502 wild-type 1 polioviruses were found circulating in border areas of both countries during 2010-2012. Molecular phylogenetic analysis classified these strains in to two sub-genotypes with four clusters and 18 lineages. Genetic data confirmed that the most of WPV1 lineages (12; 66.6%) were transmitted from Pakistan to Afghanistan. However, the genetic diversity was significantly reduced during 2012 as most of the lineages were completely eliminated. In conclusion, Pakistan-Afghanistan block has emerged as a single poliovirus reservoir sharing the multiple poliovirus lineages due to uncontrolled movement of people across the borders between two countries. If it is neglected, it can jeopardize the extensive global efforts done so-far to eradicate the poliovirus infection. Our data will be helpful to devise the preventive strategies for effective control of wild poliovirus transmission in this region.

  20. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration.

    PubMed

    Gutiérrez-Lomelí, Melesio; Torres-Guzmán, Juan Carlos; González-Hernández, Gloria Angélica; Cira-Chávez, Luis Alberto; Pelayo-Ortiz, Carlos; Ramírez-Córdova, Jose de Jesús

    2008-05-01

    This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.

  1. Establishment of uracil auxotrophic dikaryotic strains of Lentinula edodes by crossbreeding.

    PubMed

    Zhou, Chenli; Xi, Liping; Mao, Wenjun; Wan, Jianing; Li, Yan; Wang, Ying; Bao, Dapeng

    2017-03-01

    The uracil auxotrophic monokaryotic strain 423-9 of Lentinula edodes was crossed with nine monokaryons (cro2-2-9, W66-1, xd2-3-2, QingKe 20A, 241-1-1, 9015-1, L66-2, 241-1-2, and Qing 23A) derived from wild type strains of L. edodes . Nine dikaryotic hybrids were established from these crosses. These hybrids were fruited and 496 single spore isolates were obtained. Among these single spore isolates, 166 were identified as monokaryons under a microscope. We screened these monokaryons on selective medium and obtained 19 uracil auxotrophic monokaryons. By using the Monkaryon-monkaryon crossing method among the uracil auxotrophic monokaryons, 56 uracil auxotrophic dikaryotic strains were established on selective medium. These dikaryotic strains were unable to grow on minimal medium without uracil and exhibited slow growth rates on PDA plates compared to the wild type strain. The uracil auxotrophic dikaryotic strains also showed more vigorous growth on sawdust cultivation medium containing uracil than that without uracil. The fruiting tests showed that they formed normal fruiting bodies on the sawdust medium containing uracil. The results show that the uracil auxotrophic dikaryotic strain of L. edodes could be produced by mating, and will provide a valuable resource for future genetic studies and for spawn protection and identification.

  2. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species

    PubMed Central

    Nagayoshi, Yohsuke; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi

    2017-01-01

    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions. PMID:28700656

  3. Clinical resistance and decreased susceptibility in Streptococcus suis isolates from clinically healthy fattening pigs.

    PubMed

    Callens, Bénédicte F; Haesebrouck, Freddy; Maes, Dominiek; Butaye, Patrick; Dewulf, Jeroen; Boyen, Filip

    2013-04-01

    Streptococcus suis (S. suis) has often been reported as an important swine pathogen and is considered as a new emerging zoonotic agent. Consequently, it is important to be informed on its susceptibility to antimicrobial agents. In the current study, the Minimum Inhibitory Concentration (MIC) population distribution of nine antimicrobial agents has been determined for nasal S. suis strains, isolated from healthy pigs at the end of the fattening period from 50 closed or semiclosed pig herds. The aim of the study was to report resistance based on both clinical breakpoints (clinical resistance percentage) and epidemiological cutoff values (non-wild-type percentage). Non-wild-type percentages were high for tetracycline (98%), lincomycin (92%), tilmicosin (72%), erythromycin (70%), tylosin (66%), and low for florfenicol (0%) and enrofloxacin (0.3%). Clinical resistance percentages were high for tetracycline (95%), erythromycin (66%), tylosin (66%), and low for florfenicol (0.3%) and enrofloxacin (0.3%). For tiamulin, for which no clinical breakpoint is available, 57% of the isolates did not belong to the wild-type population. Clinical resistance and non-wild-type percentages differed substantially for penicillin. Only 1% of the tested S. suis strains was considered as clinically resistant, whereas 47% of the strains showed acquired resistance when epidemiological cutoff values were used. In conclusion, MIC values for penicillin are gradually increasing, compared to previous reports, although pigs infected with strains showing higher MICs may still respond to treatment with penicillin. The high rate of acquired resistance against tiamulin has not been reported before. Results from this study clearly demonstrate that the use of different interpretive criteria contributes to the extent of differences in reported antimicrobial resistance results. The early detection of small changes in the MIC population distribution of isolates, while clinical failure may not yet be observed, provides the opportunity to implement appropriate risk management steps.

  4. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species.

    PubMed

    Nagayoshi, Yohsuke; Miyazaki, Taiga; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi

    2017-01-01

    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions.

  5. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions.

    PubMed

    Reenan, R A; Kolodner, R D

    1992-12-01

    The MSH1 and MSH2 genes of Saccharomyces cerevisiae are predicted to encode proteins that are homologous to the Escherichia coli MutS and Streptococcus pneumoniae HexA proteins and their homologs. Disruption of the MSH1 gene caused a petite phenotype which was established rapidly. A functional MSH1 gene present on a single-copy centromere plasmid was incapable of rescuing the established msh1 petite phenotype. Analysis of msh1 strains demonstrated that mutagenesis and large-scale rearrangement of mitochondrial DNA had occurred. 4',6-Diamidino-2-phenylindole (DAPI) staining of msh1 yeast revealed an aberrant distribution of mtDNA. Haploid msh2 mutants displayed an increase of 85-fold in the rate of spontaneous mutation to canavanine resistance. Sporulation of homozygous msh2/msh2 diploids gave rise to a high level of lethality which was compounded during increased vegetative growth prior to sporulation. msh2 mutations also affected gene conversion of two HIS4 alleles. The his4x mutation, lying near the 5' end of the gene, was converted with equal frequency in both wild-type and msh2 strains. However, many of the events in the msh2 background were post-meiotic segregation (PMS) events (46.4%) while none (< 0.25%) of the aberrant segregations in wild type were PMS events. The his4b allele, lying 1.6 kb downstream of his4x, was converted at a 10-fold higher frequency in the msh2 background than in the corresponding wild-type strain. Like the his4x allele, his4b showed a high level of PMS (30%) in the msh2 background compared to the corresponding wild-type strain where no (< 0.26%) PMS events were observed. These results indicate that MSH1 plays a role in repair or stability of mtDNA and MSH2 plays a role in repair of 4-bp insertion/deletion mispairs in the nucleus.

  6. Mutation of the Maturase Lipoprotein Attenuates the Virulence of Streptococcus equi to a Greater Extent than Does Loss of General Lipoprotein Lipidation▿

    PubMed Central

    Hamilton, Andrea; Robinson, Carl; Sutcliffe, Iain C.; Slater, Josh; Maskell, Duncan J.; Davis-Poynter, Nick; Smith, Ken; Waller, Andrew; Harrington, Dean J.

    2006-01-01

    Streptococcus equi is the causative agent of strangles, a prevalent and highly contagious disease of horses. Despite the animal suffering and economic burden associated with strangles, little is known about the molecular basis of S. equi virulence. Here we have investigated the contributions of a specific lipoprotein and the general lipoprotein processing pathway to the abilities of S. equi to colonize equine epithelial tissues in vitro and to cause disease in both a mouse model and the natural host in vivo. Colonization of air interface organ cultures after they were inoculated with a mutant strain deficient in the maturase lipoprotein (ΔprtM138-213, with a deletion of nucleotides 138 to 213) was significantly less than that for cultures infected with wild-type S. equi strain 4047 or a mutant strain that was unable to lipidate preprolipoproteins (Δlgt190-685). Moreover, mucus production was significantly greater in both wild-type-infected and Δlgt190-685-infected organ cultures. Both mutants were significantly attenuated compared with the wild-type strain in a mouse model of strangles, although 2 of 30 mice infected with the Δlgt190-685 mutant did still exhibit signs of disease. In contrast, only the ΔprtM138-213 mutant was significantly attenuated in a pony infection study, with 0 of 5 infected ponies exhibiting pathological signs of strangles compared with 4 of 4 infected with the wild-type and 3 of 5 infected with the Δlgt190-685 mutant. We believe that this is the first study to evaluate the contribution of lipoproteins to the virulence of a gram-positive pathogen in its natural host. These data suggest that the PrtM lipoprotein is a potential vaccine candidate, and further investigation of its activity and its substrate(s) are warranted. PMID:17015455

  7. Genetic characterization of the hemagglutinin genes of wild-type measles virus circulating in china, 1993-2009.

    PubMed

    Xu, Songtao; Zhang, Yan; Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J; Rota, Paul A; Xu, Wenbo

    2013-01-01

    China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993-2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10(-3) substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China.

  8. Spontaneous Gac Mutants of Pseudomonas Biological Control Strains: Cheaters or Mutualists? ▿

    PubMed Central

    Driscoll, William W.; Pepper, John W.; Pierson, Leland S.; Pierson, Elizabeth A.

    2011-01-01

    Bacteria rely on a range of extracellular metabolites to suppress competitors, gain access to resources, and exploit plant or animal hosts. The GacS/GacA two-component regulatory system positively controls the expression of many of these beneficial external products in pseudomonad bacteria. Natural populations often contain variants with defective Gac systems that do not produce most external products. These mutants benefit from a decreased metabolic load but do not appear to displace the wild type in nature. How could natural selection maintain the wild type in the presence of a mutant with enhanced growth? One hypothesis is that Gac mutants are “cheaters” that do not contribute to the public good, favored within groups but selected against between groups, as groups containing more mutants lose access to ecologically important external products. An alternative hypothesis is that Gac mutants have a mutualistic interaction with the wild type, so that each variant benefits by the presence of the other. In the biocontrol bacterium Pseudomonas chlororaphis strain 30-84, Gac mutants do not produce phenazines, which suppress competitor growth and are critical for biofilm formation. Here, we test the predictions of these alternative hypotheses by quantifying interactions between the wild type and the phenazine- and biofilm-deficient Gac mutant within growing biofilms. We find evidence that the wild type and Gac mutants interact mutualistically in the biofilm context, whereas a phenazine-defective structural mutant does not. Our results suggest that the persistence of alternative Gac phenotypes may be due to the stabilizing role of local mutualistic interactions. PMID:21873476

  9. Mutants with Altered Sensitivity to a Calmodulin Antagonist Affect the Circadian Clock in Neurospora Crassa

    PubMed Central

    Suzuki, S.; Katagiri, S.; Nakashima, H.

    1996-01-01

    Two newly isolated mutant strains of Neurospora crassa, cpz-1 and cpz-2, were hypersensitive to chlorpromazine with respect to mycelial growth but responded differently to the drug with respect to the circadian conidiation rhythm. In the wild type, chlorpromazine caused shortening of the period length of the conidiation rhythm. Pulse treatment with the drug shifted the phase and inhibited light-induced phase shifting in Neurospora. By contrast to the wild type, the cpz-2 strain was resistant to these inhibitory effects of chlorpromazine. Inhibition of cpz-2 function by chlorpromazine affected three different parameters of circadian conidiation rhythm, namely, period length, phase and light-induced phase shifting. These results indicate that the cpz-2 gene must be involved in or related closely to the clock mechanism of Neurospora. By contrast, the cpz-1 strain was hypersensitive to chlorpromazine with respect to the circadian conidiation rhythm. PMID:8807291

  10. The pso4-1 mutation reduces spontaneous mitotic gene conversion and reciprocal recombination in Saccharomyces cerevisiae.

    PubMed

    Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A

    1992-11-01

    Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.

  11. Genetic studies of cell fusion induced by herpes simplex virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, G.S.; Person, S.; Keller, P.M.

    1980-07-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was amore » significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.« less

  12. Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains

    USDA-ARS?s Scientific Manuscript database

    Cuticle tanning in insects involves simultaneous cuticular hardening and pigmentation. The dynamic mechanical properties of the highly modified and cuticle-rich forewings (elytra) from Tribolium castaneum (red flour beetle) body color mutant strains were investigated to determine the relationship b...

  13. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    PubMed

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  14. Temperature-Sensitive Salmonella enterica Serovar Enteritidis PT13a Expressing Essential Proteins of Psychrophilic Bacteria.

    PubMed

    Duplantis, Barry N; Puckett, Stephanie M; Rosey, Everett L; Ameiss, Keith A; Hartman, Angela D; Pearce, Stephanie C; Nano, Francis E

    2015-10-01

    Synthetic genes based on deduced amino acid sequences of the NAD-dependent DNA ligase (ligA) and CTP synthetase (pyrG) of psychrophilic bacteria were substituted for their native homologues in the genome of Salmonella enterica serovar Enteritidis phage type 13a (PT13a). The resulting strains were rendered temperature sensitive (TS) and did not revert to temperature resistance at a detectable level. At permissive temperatures, TS strains grew like the parental strain in broth medium and in macrophage-like cells, but their growth was slowed or stopped when they were shifted to a restrictive temperature. When injected into BALB/c mice at the base of the tail, representing a cool site of the body, the strains with restrictive temperatures of 37, 38.5, and 39°C persisted for less than 1 day, 4 to 7 days, and 20 to 28 days, respectively. The wild-type strain persisted at the site of inoculation for at least 28 days. The wild-type strain, but not the TS strains, was also found in spleen-plus-liver homogenates within 1 day of inoculation of the tail and was detectable in these organs for at least 28 days. Intramuscular vaccination of White Leghorn chickens with the PT13a strain carrying the psychrophilic pyrG gene provided some protection against colonization of the reproductive tract and induced an anti-S. enterica antibody response. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Temperature-Sensitive Salmonella enterica Serovar Enteritidis PT13a Expressing Essential Proteins of Psychrophilic Bacteria

    PubMed Central

    Duplantis, Barry N.; Puckett, Stephanie M.; Rosey, Everett L.; Ameiss, Keith A.; Hartman, Angela D.; Pearce, Stephanie C.

    2015-01-01

    Synthetic genes based on deduced amino acid sequences of the NAD-dependent DNA ligase (ligA) and CTP synthetase (pyrG) of psychrophilic bacteria were substituted for their native homologues in the genome of Salmonella enterica serovar Enteritidis phage type 13a (PT13a). The resulting strains were rendered temperature sensitive (TS) and did not revert to temperature resistance at a detectable level. At permissive temperatures, TS strains grew like the parental strain in broth medium and in macrophage-like cells, but their growth was slowed or stopped when they were shifted to a restrictive temperature. When injected into BALB/c mice at the base of the tail, representing a cool site of the body, the strains with restrictive temperatures of 37, 38.5, and 39°C persisted for less than 1 day, 4 to 7 days, and 20 to 28 days, respectively. The wild-type strain persisted at the site of inoculation for at least 28 days. The wild-type strain, but not the TS strains, was also found in spleen-plus-liver homogenates within 1 day of inoculation of the tail and was detectable in these organs for at least 28 days. Intramuscular vaccination of White Leghorn chickens with the PT13a strain carrying the psychrophilic pyrG gene provided some protection against colonization of the reproductive tract and induced an anti-S. enterica antibody response. PMID:26187965

  16. Use of an in vivo titration method to study a global regulator: effect of varying Lrp levels on expression of gltBDF in Escherichia coli.

    PubMed

    Borst, D W; Blumenthal, R M; Matthews, R G

    1996-12-01

    Most studies of global regulatory proteins are performed in vitro or involve phenotypic comparisons between wild-type and mutant strains. We report the use of strains in which the gene for the leucine-responsive regulatory protein (lrp) is transcribed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters for the purpose of continuously varying the in vivo concentration of Lrp. To obtain a broad range of Lrp concentrations, strains were employed that contained the lrp fusion either in the chromosome (I. C. Blomfield, P. J. Calie, K. J. Eberhardt, M. S. McClain, and B. I. Eisenstein, J. Bacteriol. 175:27-36, 1993) or on a multicopy plasmid. Western blot (immunoblot) analysis with polyclonal antiserum to Lrp confirmed that Lrp levels could be varied more than 70-fold by growing the strains in glucose minimal 3-(N-morpholino)propanesulfonic acid (MOPS) medium containing different amounts of IPTG. Expression of an Lrp-regulated gltB::lacZ operon fusion was measured over this range of Lrp concentrations. beta-Galactosidase activity rose with increasing Lrp levels up to the level of Lrp found in wild-type strains, at which point expression is maximal. The presence of leucine in the medium increased the level of Lrp necessary to achieve half-maximal expression of the gltB::lacZ fusion, as predicted by earlier in vitro studies (B. R. Ernsting, J. W. Denninger, R. M. Blumenthal, and R. G. Matthews, J. Bacteriol. 175:7160-7169, 1993). Interestingly, levels of Lrp greater than those in wild-type cells interfered with activation of gltB::lacZ expression. The growth rate of cultures correlated with the intracellular Lrp concentration: levels of Lrp either lower or higher than wild-type levels resulted in significantly slower growth rates. Thus, the level of Lrp in the cell appears to be optimal for rapid growth in minimal medium, and the gltBDF control region is designed to give maximal expression at this Lrp level.

  17. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions

    PubMed Central

    Voisard, Christophe; Keel, Christoph; Haas, Dieter; Dèfago, Geneviève

    1989-01-01

    Pseudomonas fluorescens CHA0 suppresses black root rot of tobacco, a disease caused by the fungus Thielaviopsis basicola. Strain CHA0 excretes several metabolites with antifungal properties. The importance of one such metabolite, hydrogen cyanide, was tested in a gnotobiotic system containing an artificial, iron-rich soil. A cyanidenegative (hcn) mutant, CHA5, constructed by a gene replacement technique, protected the tobacco plant less effectively than did the wild-type CHA0. Complementation of strain CHA5 by the cloned wild-type hcn+ genes restored the strain's ability to suppress disease. An artificial transposon carrying the hcn+ genes of strain CHA0 (Tnhcn) was constructed and inserted into the genome of another P.fluorescens strain, P3, which naturally does not produce cyanide and gives poor plant protection. The P3::Tnhcn derivative synthesized cyanide and exhibited an improved ability to suppress disease. All bacterial strains colonized the roots similarly and did not influence significantly the survival of T.basicola in soil. We conclude that bacterial cyanide is an important but not the only factor involved in suppression of black root rot. Images PMID:16453871

  18. Sabin and wild type polioviruses from children who presented with acute flaccid paralysis in Nigeria.

    PubMed

    Adedeji, A O; Okonko, I O; Adu, F D

    2012-09-01

    Sensitive poliovirus surveillance to detect vaccine-derived-polioviruses will continue to increase in importance. Isolating and identifying poliovirus strains from children of pediatrics age in Nigeria. A total of 120 fecal samples were randomly collected from children under the age of five who presented with acute flaccid paralysis. Samples were tested by tissue culture technique and further characterized by intratypic differentiation testing using ELISA and PCR methods. The study confirmed the presence of 22(18.3%) enteroviral isolates comprising 19(86.4%) polioviruses and 3(13.6%) non-polio enteroviruses. These 19 polioviruses include: Sabin-type poliovirus-1 (15.8%), poliovirus-2 (10.5%), poliovirus-3 (10.5%) and wild-type poliovirus-1 (63.2%) isolates. It showed that poliovirus infection was higher in children ages 6-11 months (18.9%), females (18.4%), northern states (91.0%) with no vaccination record (75.0%). Wild-type poliovirus-1 was isolated from the stool samples of 12(54.6%) children from northern states and in all age groups except 18-23 months. No significant differences (P >0.05) between poliovirus infection and age (18.9% vs. 17.7%; 81.9% vs. 18.2%) and sex (18.3% vs. 18.4%). There was significant differences (P<0.05) between poliovirus infection and location (91.0% vs. 9.0%) and history of polio vaccination (75.0% vs. 0.0%). No wild-type poliovirus was found in those with complete vaccination. This study further confirms the presence of Sabin and wild-type poliovirus among children in Nigeria. The isolation of Sabin strain of poliovirus is advantageous to the polio eradication program as it is capable of inducing natural immunity in susceptible hosts. Transmission of wild-type poliovirus among children with incomplete vaccination poses a serious threat to polio eradication program in Nigeria. Environmental and serological surveillance with larger sample size are important for monitoring poliovirus circulation in Nigeria.

  19. Wide Distribution of Mitochondrial Genome Rearrangements in Wild Strains of the Cultivated Basidiomycete Agrocybe aegerita

    PubMed Central

    Barroso, G.; Blesa, S.; Labarere, J.

    1995-01-01

    We used restriction fragment length polymorphisms to examine mitochondrial genome rearrangements in 36 wild strains of the cultivated basidiomycete Agrocybe aegerita, collected from widely distributed locations in Europe. We identified two polymorphic regions within the mitochondrial DNA which varied independently: one carrying the Cox II coding sequence and the other carrying the Cox I, ATP6, and ATP8 coding sequences. Two types of mutations were responsible for the restriction fragment length polymorphisms that we observed and, accordingly, were involved in the A. aegerita mitochondrial genome evolution: (i) point mutations, which resulted in strain-specific mitochondrial markers, and (ii) length mutations due to genome rearrangements, such as deletions, insertions, or duplications. Within each polymorphic region, the length differences defined only two mitochondrial types, suggesting that these length mutations were not randomly generated but resulted from a precise rearrangement mechanism. For each of the two polymorphic regions, the two molecular types were distributed among the 36 strains without obvious correlation with their geographic origin. On the basis of these two polymorphisms, it is possible to define four mitochondrial haplotypes. The four mitochondrial haplotypes could be the result of intermolecular recombination between allelic forms present in the population long enough to reach linkage equilibrium. All of the 36 dikaryotic strains contained only a single mitochondrial type, confirming the previously described mitochondrial sorting out after cytoplasmic mixing in basidiomycetes. PMID:16534984

  20. [Beta-lactamase synthesis and excretion in a non-leaky wild strain and a leaky mutant of Escherichia coli K-12].

    PubMed

    Fognini-Lefebvre, N; Portalier, R

    1983-01-17

    After transformation of Escherichia coli strains with plasmid pBR 322 and growth in rich L medium, the total amount of beta-lactamase produced, strongly decreased when the temperature was raised from 30 to 42 degrees C, but increased after addition of ampicillin or tetracycline to the medium. beta-lactamase was synthesized and exported into the periplasmic space of wild-type strain, but was not significantly released into the extracellular medium, after growth at low temperature. We have identified an E. coli mutant which excreted up to 90% of total amount of beta-lactamase activity, any temperature. This mutant has been used as an indicator strain, for the development of an in situ test allowing the detection of beta-lactamase excretion.

  1. A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae.

    PubMed

    Philipps, Gabriele; Krawietz, Danuta; Hemschemeier, Anja; Happe, Thomas

    2011-04-01

    The green alga Chlamydomonas reinhardtii has a complex anaerobic metabolism characterized by a plastidic hydrogenase (HYD1) coupled to photosynthesis and a bacterial-type fermentation system in which pyruvate formate lyase (PFL1) is the central fermentative enzyme. To identify mutant strains with altered hydrogen metabolism, a C. reinhardtii nuclear transformant library was screened. Mutant strain 48F5 showed lower light-dependent hydrogen (H₂) evolution rates and reduced in vitro hydrogenase activity, and fermentative H₂ production in the dark was enhanced. The transformant has a single integration of the paromomycin resistance cassette within the PFL1 gene, and is unable to synthesize PFL1 protein. 48F5 secretes no formate, but produces more ethanol, D-lactate and CO₂ than the wild type. Moreover, HYD1 transcript and HYD1 protein levels were lower in the pfl1 mutant strain. Complementation of strain 48F5 with an intact copy of the PFL1 gene restored formate excretion and hydrogenase activity to the wild type level. This analysis shows that the PFL1 pathway has a significant impact on hydrogen metabolism in C. reinhardtii. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  2. HlyU Is a Positive Regulator of Hemolysin Expression in Vibrio anguillarum ▿

    PubMed Central

    Li, Ling; Mou, Xiangyu; Nelson, David R.

    2011-01-01

    The two hemolysin gene clusters previously identified in Vibrio anguillarum, the vah1 cluster and the rtxACHBDE cluster, are responsible for the hemolytic and cytotoxic activities of V. anguillarum in fish. In this study, we used degenerate PCR to identify a positive hemolysin regulatory gene, hlyU, from the unsequenced V. anguillarum genome. The hlyU gene of V. anguillarum encodes a 92-amino-acid protein and is highly homologous to other bacterial HlyU proteins. An hlyU mutant was constructed, which exhibited an ∼5-fold decrease in hemolytic activity on sheep blood agar with no statistically significant decrease in cytotoxicity of the wild-type strain. Complementation of the hlyU mutation restored both hemolytic activity and cytotoxic activity. Both semiquantitative reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR (qRT-PCR) were used to examine expression of the hemolysin genes under exponential and stationary-phase conditions in wild-type, hlyU mutant, and hlyU complemented strains. Compared to the wild-type strain, expression of rtx genes decreased in the hlyU mutant, while expression of vah1 and plp was not affected in the hlyU mutant. Complementation of the hlyU mutation restored expression of the rtx genes and increased vah1 and plp expression to levels higher than those in the wild type. The transcriptional start sites in both the vah1-plp and rtxH-rtxB genes' intergenic regions were determined using 5′ random amplification of cDNA ends (5′-RACE), and the binding sites for purified HlyU were discovered using DNA gel mobility shift experiments and DNase protection assays. PMID:21764937

  3. Increased sensitivity to protein synthesis inhibitors in cells lacking tmRNA.

    PubMed Central

    de la Cruz, J; Vioque, A

    2001-01-01

    tmRNA (also known as SsrA or 10Sa RNA) is involved in a trans-translation reaction that contributes to the recycling of stalled ribosomes at the 3' end of an mRNA lacking a stop codon or at an internal mRNA cluster of rare codons. Inactivation of the ssrA gene in most bacteria results in viable cells bearing subtle phenotypes, such as temperature-sensitive growth. Herein, we report on the functional characterization of the ssrA gene in the cyanobacterium Synechocystis sp. strain PCC6803. Deletion of the ssrA gene in Synechocystis resulted in viable cells with a growth rate identical to wild-type cells. However, null ssrA cells (deltassrA) were not viable in the presence of the protein synthesis inhibitors chloramphenicol, lincomycin, spiramycin, tylosin, erythromycin, and spectinomycin at low doses that do not significantly affect the growth of wild-type cells. Sensitivity of deltassrA cells similar to wild-type cells was observed with kasugamycin, fusidic acid, thiostrepton, and puromycin. Antibiotics unrelated to protein synthesis, such as ampicillin or rifampicin, had no differential effect on the deltassrA strain. Furthermore, deletion of the ssrA gene is sufficient to impair global protein synthesis when chloramphenicol is added at sublethal concentrations for the wild-type strain. These results indicate that ribosomes stalled by some protein synthesis inhibitors can be recycled by tmRNA. In addition, this suggests that the first elongation cycle with tmRNA, which incorporates a noncoded alanine on the growing peptide chain, may have mechanistic differences with the normal elongation cycles that bypasses the block produced by these specific antibiotics. tmRNA inactivation could be an useful therapeutic target to increase the sensitivity of pathogenic bacteria against antibiotics. PMID:11780628

  4. Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection.

    PubMed

    Nielubowicz, Greta R; Smith, Sara N; Mobley, Harry L T

    2010-06-01

    Proteus mirabilis, a Gram-negative bacterium, represents a common cause of complicated urinary tract infections in catheterized patients or those with functional or anatomical abnormalities of the urinary tract. ZnuB, the membrane component of the high-affinity zinc (Zn(2+)) transport system ZnuACB, was previously shown to be recognized by sera from infected mice. Since this system has been shown to contribute to virulence in other pathogens, its role in Proteus mirabilis was investigated by constructing a strain with an insertionally interrupted copy of znuC. The znuC::Kan mutant was more sensitive to zinc limitation than the wild type, was outcompeted by the wild type in minimal medium, displayed reduced swimming and swarming motility, and produced less flaA transcript and flagellin protein. The production of flagellin and swarming motility were restored by complementation with znuCB in trans. Swarming motility was also restored by the addition of Zn(2+) to the agar prior to inoculation; the addition of Fe(2+) to the agar also partially restored the swarming motility of the znuC::Kan strain, but the addition of Co(2+), Cu(2+), or Ni(2+) did not. ZnuC contributes to but is not required for virulence in the urinary tract; the znuC::Kan strain was outcompeted by the wild type during a cochallenge experiment but was able to colonize mice to levels similar to the wild-type level during independent challenge. Since we demonstrated a role for ZnuC in zinc transport, we hypothesize that there is limited zinc present in the urinary tract and P. mirabilis must scavenge this ion to colonize and persist in the host.

  5. Wild-type MIC distributions of four fluoroquinolones active against Mycobacterium tuberculosis in relation to current critical concentrations and available pharmacokinetic and pharmacodynamic data.

    PubMed

    Angeby, K A; Jureen, P; Giske, C G; Chryssanthou, E; Sturegård, E; Nordvall, M; Johansson, A G; Werngren, J; Kahlmeter, G; Hoffner, S E; Schön, T

    2010-05-01

    To describe wild-type distributions of the MIC of fluoroquinolones for Mycobacterium tuberculosis in relation to current critical concentrations used for drug susceptibility testing and pharmacokinetic/pharmacodynamic (PK/PD) data. A 96-stick replicator on Middlebrook 7H10 medium was used to define the MICs of ciprofloxacin, ofloxacin, moxifloxacin and levofloxacin for 90 consecutive clinical strains and 24 drug-resistant strains. The MICs were compared with routine BACTEC 460 susceptibility results and with MIC determinations in the BACTEC MGIT 960 system in a subset of strains using ofloxacin as a class representative. PK/PD data for each drug were reviewed in relation to the wild-type MIC distribution. The wild-type MICs of ciprofloxacin, ofloxacin, moxifloxacin and levofloxacin were distributed from 0.125 to 1, 0.25 to 1, 0.032 to 0.5 and 0.125 to 0.5 mg/L, respectively. The MIC data correlated well with the BACTEC 960 MGIT and BACTEC 460 results. PD indices were the most favourable for levofloxacin, followed by moxifloxacin, ofloxacin and ciprofloxacin. We propose S (susceptible)

  6. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Phosphoethanolamine Decoration of Neisseria gonorrhoeae Lipid A Plays a Dual Immunostimulatory and Protective Role during Experimental Genital Tract Infection

    PubMed Central

    Packiam, Mathanraj; Yedery, Roshan D.; Begum, Afrin A.; Carlson, Russell W.; Ganguly, Jhuma; Sempowski, Gregory D.; Ventevogel, Melissa S.; Shafer, William M.

    2014-01-01

    The induction of an intense inflammatory response by Neisseria gonorrhoeae and the persistence of this pathogen in the presence of innate effectors is a fascinating aspect of gonorrhea. Phosphoethanolamine (PEA) decoration of lipid A increases gonococcal resistance to complement-mediated bacteriolysis and cationic antimicrobial peptides (CAMPs), and recently we reported that wild-type N. gonorrhoeae strain FA1090 has a survival advantage relative to a PEA transferase A (lptA) mutant in the human urethral-challenge and murine lower genital tract infection models. Here we tested the immunostimulatory role of this lipid A modification. Purified lipooligosaccharide (LOS) containing lipid A devoid of the PEA modification and an lptA mutant of strain FA19 induced significantly lower levels of NF-κB in human embryonic kidney Toll-like receptor 4 (TLR4) cells and murine embryonic fibroblasts than wild-type LOS of the parent strain. Moreover, vaginal proinflammatory cytokines and chemokines were not elevated in female mice infected with the isogenic lptA mutant, in contrast to mice infected with the wild-type and complemented lptA mutant bacteria. We also demonstrated that lptA mutant bacteria were more susceptible to human and murine cathelicidins due to increased binding by these peptides and that the differential induction of NF-κB by wild-type and unmodified lipid A was more pronounced in the presence of CAMPs. This work demonstrates that PEA decoration of lipid A plays both protective and immunostimulatory roles and that host-derived CAMPs may further reduce the capacity of PEA-deficient lipid A to interact with TLR4 during infection. PMID:24686069

  8. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose

    PubMed Central

    Divate, Nileema R.; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-01-01

    ABSTRACT A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress. PMID:27484300

  9. Altering the Ratio of Phenazines in Pseudomonas chlororaphis (aureofaciens) Strain 30-84: Effects on Biofilm Formation and Pathogen Inhibition▿

    PubMed Central

    Maddula, V. S. R. K.; Pierson, E. A.; Pierson, L. S.

    2008-01-01

    Pseudomonas chlororaphis strain 30-84 is a plant-beneficial bacterium that is able to control take-all disease of wheat caused by the fungal pathogen Gaeumannomyces graminis var. tritici. The production of phenazines (PZs) by strain 30-84 is the primary mechanism of pathogen inhibition and contributes to the persistence of strain 30-84 in the rhizosphere. PZ production is regulated in part by the PhzR/PhzI quorum-sensing (QS) system. Previous flow cell analyses demonstrated that QS and PZs are involved in biofilm formation in P. chlororaphis (V. S. R. K. Maddula, Z. Zhang, E. A. Pierson, and L. S. Pierson III, Microb. Ecol. 52:289-301, 2006). P. chlororaphis produces mainly two PZs, phenazine-1-carboxylic acid (PCA) and 2-hydroxy-PCA (2-OH-PCA). In the present study, we examined the effect of altering the ratio of PZs produced by P. chlororaphis on biofilm formation and pathogen inhibition. As part of this study, we generated derivatives of strain 30-84 that produced only PCA or overproduced 2-OH-PCA. Using flow cell assays, we found that these PZ-altered derivatives of strain 30-84 differed from the wild type in initial attachment, mature biofilm architecture, and dispersal from biofilms. For example, increased 2-OH-PCA production promoted initial attachment and altered the three-dimensional structure of the mature biofilm relative to the wild type. Additionally, both alterations promoted thicker biofilm development and lowered dispersal rates compared to the wild type. The PZ-altered derivatives of strain 30-84 also differed in their ability to inhibit the fungal pathogen G. graminis var. tritici. Loss of 2-OH-PCA resulted in a significant reduction in the inhibition of G. graminis var. tritici. Our findings suggest that alterations in the ratios of antibiotic secondary metabolites synthesized by an organism may have complex and wide-ranging effects on its biology. PMID:18263718

  10. In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1-producing Enterobacteriaceae.

    PubMed

    Wiskirchen, Dora E; Nordmann, Patrice; Crandon, Jared L; Nicolau, David P

    2014-01-01

    Doripenem and ertapenem have demonstrated efficacy against several NDM-1-producing isolates in vivo, despite having high MICs. In this study, we sought to further characterize the efficacy profiles of humanized regimens of standard (500 mg given every 8 h) and high-dose, prolonged infusion of doripenem (2 g given every 8 h, 4-h infusion) and 1 g of ertapenem given intravenously every 24 h and the comparator regimens of ceftazidime at 2 g given every 8 h (2-h infusion), levofloxacin at 500 mg every 24 h, and aztreonam at 2 g every 6 h (1-h infusion) against a wider range of isolates in a murine thigh infection model. An isogenic wild-type strain and NDM-1-producing Klebsiella pneumoniae and eight clinical NDM-1-producing members of the family Enterobacteriaceae were tested in immunocompetent- and neutropenic-mouse models. The wild-type strain was susceptible to all of the agents, while the isogenic NDM-1-producing strain was resistant to ceftazidime, doripenem, and ertapenem. Clinical NDM-1-producing strains were resistant to nearly all five of the agents (two were susceptible to levofloxacin). In immunocompetent mice, all of the agents produced ≥1-log10 CFU reductions of the isogenic wild-type and NDM-1-producing strains after 24 h. Minimal efficacy of ceftazidime, aztreonam, and levofloxacin against the clinical NDM-1-producing strains was observed. However, despite in vitro resistance, ≥1-log10 CFU reductions of six of eight clinical strains were achieved with high-dose, prolonged infusion of doripenem and ertapenem. Slight enhancements of doripenem activity over the standard doses were obtained with high-dose, prolonged infusion for three of the four isolates tested. Similar efficacy observations were noted in neutropenic mice. These data suggest that carbapenems are a viable treatment option for infections caused by NDM-1-producing Enterobacteriaceae.

  11. Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots.

    PubMed

    Santos, Adrian Richard Schenberger; Etto, Rafael Mazer; Furmam, Rafaela Wiegand; Freitas, Denis Leandro de; Santos, Karina Freire d'Eça Nogueira; Souza, Emanuel Maltempi de; Pedrosa, Fábio de Oliveira; Ayub, Ricardo Antônio; Steffens, Maria Berenice Reynaud; Galvão, Carolina Weigert

    2017-09-01

    Soil bacteria colonization in plants is a complex process, which involves interaction between many bacterial characters and plant responses. In this work, we labeled Azospirillum brasilense FP2 (wild type) and HM053 (excretion-ammonium) strains by insertion of the reporter gene gusA-kanamycin into the dinitrogenase reductase coding gene, nifH, and evaluated bacteria colonization in barley (Hordeum vulgare). In addition, we determined inoculation effect based on growth promotion parameters. We report an uncommon endophytic behavior of A. brasilense Sp7 derivative inside the root hair cells of barley and highlight the promising use of A. brasilense HM053 as plant growth-promoting bacterium. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Strain improvement of Lactobacillus lactis for D-lactic acid production.

    PubMed

    Joshi, D S; Singhvi, M S; Khire, J M; Gokhale, D V

    2010-04-01

    Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased D: -lactic acid concentrations. These mutants were compared with the wild type using 100 g hydrolyzed cane sugar/l in the fermentation medium. One mutant, RM2-24, produced 81 g lactic acid/l which was over three times that of the wild type. The highest D: -lactic acid (110 g/l) in batch fermentation was obtained with 150 g cane sugar/l with a 73% lactic acid yield. The mutant utilizes cellobiose efficiently, converting it into D-lactic acid suggesting the presence of cellobiase. Thus, this strain could be used to obtain D-lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.

  13. Deciphering the Principles of Bacterial Nitrogen Dietary Preferences: a Strategy for Nutrient Containment

    PubMed Central

    Wang, Jilong; Yan, Dalai

    2016-01-01

    ABSTRACT A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. PMID:27435461

  14. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock.

    PubMed

    Yi, Xia; Zhang, Peng; Sun, Jiaoe; Tu, Yi; Gao, Qiuqiang; Zhang, Jian; Bao, Jie

    2016-01-10

    Pediococcus acidilactici TY112 producing L-lactic acid and P. acidilactici ZP26 producing D-lactic acid, were engineered from the wild-type P. acidilactici DQ2 by ldhD or ldh gene disruption, and the robustness of the wild-type strain to the inhibitors derived from lignocellulose pretreatment was maintained well. In simultaneous saccharification and fermentation (SSF), 77.66 g L(-1) of L-lactic acid and 76.76 g L(-1) of D-lactic acid were obtained at 25% (w/w) solids content of dry dilute acid pretreated and biodetoxified corn stover feedstock. L- and D-Lactic acid yield and productivity were highly dependent on the inhibitor removal extent due to the significant down-regulation on the expressions of ldh and ldhD encoding lactate dehydrogenase by inhibitor, especially syringaldehyde and vanillin at the low concentrations. This study provided a prototype of industrial process for high titer L- and D-lactic acid production from lignocellulose feedstock. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1

    PubMed Central

    Schmerk, Crystal L.; Duplantis, Barry N.; Howard, Perry L.; Nano, Francis E.

    2009-01-01

    Several genes contained in the Francisella pathogenicity island (FPI) encode proteins needed for intracellular growth and virulence of Francisella tularensis. The pdpA gene is the first cistron in the larger of the two operons found in the FPI. In this work we studied the intracellular growth phenotype of a Francisella novicida mutant in the pdpA gene. The ΔpdpA strain was capable of a small amount of intracellular replication but, unlike wild-type F. novicida, remained associated with the lysosomal marker LAMP-1, suggesting that PdpA is necessary for progression from the early phagosome phase of infection. Strains with in cis complementation of the ΔpdpA lesion showed a restoration of intracellular growth to wild-type levels. Infection of macrophages with the ΔpdpA mutant generated a host-cell mRNA profile distinct from that generated by infection with wild-type F. novicida. The transcriptional response of the host macrophage indicates that PdpA functions directly or indirectly to suppress macrophage ability to signal via growth factors, cytokines and adhesion ligands. PMID:19372155

  16. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains.

    PubMed

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2005-11-01

    Genetic recombination of Escherichia coli in conjunction with process manipulation was employed to elevate the efficiency of hydrogen production in the resultant strain SR13 2 orders of magnitude above that of conventional methods. The formate hydrogen lyase (FHL)-overexpressing strain SR13 was constructed by combining FHL repressor (hycA) inactivation with FHL activator (fhlA) overexpression. Transcription of large-subunit formate dehydrogenase, fdhF, and large-subunit hydrogenase, hycE, in strain SR13 increased 6.5- and 7.0-fold, respectively, compared to the wild-type strain. On its own, this genetic modification effectively resulted in a 2.8-fold increase in hydrogen productivity of SR13 compared to the wild-type strain. Further enhancement of productivity was attained by using a novel method involving the induction of the FHL complex with high-cell-density filling of a reactor under anaerobic conditions. Continuous hydrogen production was achieved by maintaining the reactor concentration of the substrate (free formic acid) under 25 mM. An initial productivity of 23.6 g hydrogen h(-1) liter(-1) (300 liters h(-1) liter(-1) at 37 degrees C) was achieved using strain SR13 at a cell density of 93 g (dry weight) cells/liter. The hydrogen productivity reported in this work has great potential for practical application.

  17. The Salmonella dublin virulence plasmid mediates systemic but not enteric phases of salmonellosis in cattle.

    PubMed Central

    Wallis, T S; Paulin, S M; Plested, J S; Watson, P R; Jones, P W

    1995-01-01

    Plasmid-bearing and plasmid-free isolates and a plasmid-cured strain of Salmonella dublin were compared for virulence in calves. The plasmid-bearing strains were highly virulent, causing severe enteric and systemic disease with high mortality. In contrast, the plasmid-free strains caused diarrhea but only low mortality. The infection kinetics of a wild-type and a derivative plasmid-cured strain were compared. Both strains were isolated in high numbers from intestinal sites at 3 and 6 days after oral challenge and were isolated at comparable frequencies from systemic sites at 3 days, but not at 6 days, when the wild-type strain was predominant. The strains were equally invasive in intestinal epithelia with and without Peyer's patch and elicited comparable secretory and inflammatory responses and intestinal pathology in ligated ileal loops. The effect of the virulence plasmid on growth kinetics and on the outer membrane protein profile was assessed in an in vivo growth chamber. The virulence plasmid did not influence either extracellular growth or the expression of major outer membrane proteins. These observations demonstrate that the virulence plasmid is not involved in either the enteric phase of infection or the systemic dissemination of S. dublin but probably mediates the persistence of S. dublin at systemic sites. PMID:7790094

  18. Using molecular epidemiology to track Toxoplasma gondii from terrestrial carnivores to marine hosts: implications for public health and conservation.

    PubMed

    VanWormer, Elizabeth; Miller, Melissa A; Conrad, Patricia A; Grigg, Michael E; Rejmanek, Daniel; Carpenter, Tim E; Mazet, Jonna A K

    2014-01-01

    Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes) for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range. Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico) were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3-148.6) for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3-250.7). A spatial cluster of terrestrial Type II infection (P = 0.04) was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P ≤ 0.01) were detected in less developed landscapes. Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife.

  19. Self-Assembling Protein Materials for Metal Nanoparticle Templation

    DTIC Science & Technology

    2015-05-01

    conductivity of the wild type biofilm compared to a control of buffer and PilA-deficient mutant strain (c).146 .............................. 113...micrograph of biofilm and pili nanofilaments grown on the electrode surface (b) and the conductivity of the wild type biofilm compared to a control of buffer ...to obtain conductive amyloid fibers deposited on Si3N4 viewed by AFM (b) and TEM (c), where diameters of coated fibers were enlarged from 50 nm to 100

  20. Two Novel Functions of Hyaluronidase from Streptococcus agalactiae Are Enhanced Intracellular Survival and Inhibition of Proinflammatory Cytokine Expression

    PubMed Central

    Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping

    2014-01-01

    Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl+ isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl+ strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity. PMID:24711564

  1. Two novel functions of hyaluronidase from Streptococcus agalactiae are enhanced intracellular survival and inhibition of proinflammatory cytokine expression.

    PubMed

    Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping; Liu, Yongjie

    2014-06-01

    Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl(+) strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.

  2. Enhanced xylitol production: Expression of xylitol dehydrogenase from Gluconobacter oxydans and mixed culture of resting cell.

    PubMed

    Qi, Xiang-Hui; Zhu, Jing-Fei; Yun, Jun-Hua; Lin, Jing; Qi, Yi-Lin; Guo, Qi; Xu, Hong

    2016-09-01

    Xylitol has numerous applications in food and pharmaceutical industry, and it can be biosynthesized by microorganisms. In the present study, xdh gene, encoding xylitol dehydrogenase (XDH), was cloned from the genome of Gluconobacter oxydans CGMCC 1.49 and overexpressed in Escherichia coli BL21. Sequence analysis revealed that XDH has a TGXXGXXG NAD(H)-binding motif and a YXXXK active site motif, and belongs to the short-chain dehydrogenase/reductase family. And then, the enzymatic properties and kinetic parameter of purified recombinant XDH were investigated. Subsequently, transformations of xylitol from d-xylulose and d-arabitol, respectively, were studied through mixed culture of resting cells of G. oxydans wild-type strain and recombinant strain BL21-xdh. We obtained 28.80 g/L xylitol by mixed culture from 30 g/L d-xylulose in 28 h. The production was increased by more than three times as compared with that of wild-type strain. Furthermore, 25.10 g/L xylitol was produced by the mixed culture from 30 g/L d-arabitol in 30 h with a yield of 0.837 g/g, and the max volumetric productivity of 0.990 g/L h was obtained at 22 h. These contrast to the fact that wild-type strain G. oxydans only produced 8.10 g/L xylitol in 30 h with a yield of 0.270 g/g. To our knowledge, these values are the highest among the reported yields and productivity efficiencies of xylitol from d-arabitol with engineering strains. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain.

    PubMed

    Isasawin, Siriwan; Aketarawong, Nidchaya; Lertsiri, Sittiwat; Thanaphum, Sujinda

    2014-01-01

    The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization. Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions. Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.

  4. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus

    PubMed Central

    2010-01-01

    Background Canine distemper virus (CDV) is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hence, it is worthy of developing a simple and rapid nucleotide-based assay for differentiation of wild-type CDV which is a cause of disease from attenuated CDVs after vaccination. High frequency variations have been found in the region spanning from the 3'-untranslated region (UTR) of the matrix (M) gene to the fusion (F) gene (designated M-F UTR) in a few CDV strains. To establish a differential diagnosis assay, an amplification refractory mutation analysis was established based on the highly variable region on M-F UTR and F regions. Results Sequences of frequent polymorphisms were found scattered throughout the M-F UTR region; the identity of nucleic acid between local strains and vaccine strains ranged from 82.5% to 93.8%. A track of AAA residue located 35 nucleotides downstream from F gene start codon highly conserved in three vaccine strains were replaced with TGC in the local strains; that severed as target sequences for deign of discrimination primers. The method established in the present study successfully differentiated seven Taiwanese CDV field isolates, all belonging to the Asia-1 lineage, from vaccine strains. Conclusions The method described herein would be useful for several clinical applications, such as confirmation of nature CDV infection, evaluation of vaccination status and verification of the circulating viral genotypes. PMID:20534175

  5. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus.

    PubMed

    Chulakasian, Songkhla; Lee, Min-Shiuh; Wang, Chi-Young; Chiou, Shyan-Song; Lin, Kuan-Hsun; Lin, Fong-Yuan; Hsu, Tien-Huan; Wong, Min-Liang; Chang, Tien-Jye; Hsu, Wei-Li

    2010-06-10

    Canine distemper virus (CDV) is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hence, it is worthy of developing a simple and rapid nucleotide-based assay for differentiation of wild-type CDV which is a cause of disease from attenuated CDVs after vaccination. High frequency variations have been found in the region spanning from the 3'-untranslated region (UTR) of the matrix (M) gene to the fusion (F) gene (designated M-F UTR) in a few CDV strains. To establish a differential diagnosis assay, an amplification refractory mutation analysis was established based on the highly variable region on M-F UTR and F regions. Sequences of frequent polymorphisms were found scattered throughout the M-F UTR region; the identity of nucleic acid between local strains and vaccine strains ranged from 82.5% to 93.8%. A track of AAA residue located 35 nucleotides downstream from F gene start codon highly conserved in three vaccine strains were replaced with TGC in the local strains; that severed as target sequences for deign of discrimination primers. The method established in the present study successfully differentiated seven Taiwanese CDV field isolates, all belonging to the Asia-1 lineage, from vaccine strains. The method described herein would be useful for several clinical applications, such as confirmation of nature CDV infection, evaluation of vaccination status and verification of the circulating viral genotypes.

  6. The Lymantria dispar nucleopolyhedrovirus contains the capsid-associated p24 protein gene

    Treesearch

    James M. Slavicek; Nancy Hayes-Plazolles

    2003-01-01

    During the course of investigations on a wild-type strain of Lymantria dispar multinucleocapsid nucleopolyhedrovirus (LdMNPV), a region of the viral genome was analyzed and found to contain 697 bp that is lacking in the sequenced strain (5-6) of LdMNPV (Kuzio et al., Virology 253, 17-34, 1999). The sequenced strain of LdMNPV contains a mutation in...

  7. Safety and immunogenicity of a primary series of Sabin-IPV with and without aluminum hydroxide in infants.

    PubMed

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Weldon, William C; Oberste, M Steven; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2014-09-03

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle-income countries in the context of the global polio eradication initiative. Safety and immunogenicity of Sabin-IPV (sIPV) was evaluated in a double-blind, randomized, controlled, dose-escalation trial in the target population. Healthy infants (n=20/group) aged 56-63 days, received a primary series of three intramuscular injections with low-, middle- or high-dose sIPV with or without aluminum hydroxide or with the conventional IPV based on wild poliovirus strains (wIPV). Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after three vaccinations. The incidence of local and systemic reactions was comparable with the wIPV. Seroconversion rates after three vaccinations were 100% for type 2 and type 3 polioviruses (both Sabin and wild strains) and 95-100% for type 1 polioviruses. Median titers were high in all groups. Titers were well above the log2(titer) correlated with protection (=3) for all groups. Median titers for Sabin-2 were 9.3 (range 6.8-11.5) in the low-dose sIPV group, 9.2 (range 6.8-10.2) in the low-dose adjuvanted sIPV group and 9.8 (range 5.5-15.0) in the wIPV group, Median titers against MEF-1 (wild poliovirus type 2) were 8.2 (range 4.8-10.8) in the low-dose sIPV group, 7.3 (range 4.5-10.2) in the low-dose adjuvanted Sabin-IPV group and 10.3 (range 8.5-17.0) in the wIPV group. For all poliovirus types the median titers increased with increasing dose levels. sIPV and sIPV adjuvanted with aluminum hydroxide were immunogenic and safe at all dose levels, and comparable with the wIPV. EudraCTnr: 2011-003792-11, NCT01709071. Copyright © 2014. Published by Elsevier Ltd.

  8. Comparative studies on soluble protein profiles and isozyme patterns of seven Trichinella isolates.

    PubMed

    Fukumoto, S; Takechi, M; Kamo, H; Yamaguchi, T

    1987-01-01

    Soluble protein profiles and isozyme patterns of eight enzymes were compared for extracts of muscle stage larvae of the seven Trichinella isolates, using isoelectric focusing in polyacrylamide gel. Soluble protein profiles and isozyme patterns of four enzymes: malic enzyme, glucosephosphate isomerase, phosphoglucomutase, superoxide dismutase of them were clearly divided into four types. T. pseudospiralis from a racoon and the Polar strain from a polar bear formed type 1 and type 2. The Iwasaki strain from a Japanese black bear and the Yamagata strain from a racoon dog, both from Japan, were type 3. Type 4 consisted of three remaining strains, the Polish strain from a wild pig, the USA strain from a pig and the Thai strain from a human case, which have similar infectivities to pigs. The Thai strain varied a bit electrophoretically from other members of type 4. Zymograms of adenylate kinase and malate dehydrogenase were similar in types 2 and 3. The 6-phosphogluconate dehydrogenase zymogram of type 3, similar to that of type 4, was different from that of type 2. It is assumed from the data that type 3 (Japanese strain) was genetically intermediate to types 2 and 4. T. pseudospiralis and the Polar strain had a common main isozyme of 6-phosphogluconate dehydrogenase. The zymogram of lactate dehydrogenase was common except for T. pseudospiralis.

  9. Mechanistic studies of DepR in regulating FK228 biosynthesis in Chromobacterium violaceum no. 968

    PubMed Central

    Xue, Jiao; Lin, Wenjing; Deng, Zixin; Cheng, Yi-Qiang

    2018-01-01

    DepR, a LysR-type transcriptional regulator encoded by the last gene of the putative min operon (orf21-20-19-depR) located at the downstream region of the anticancer agent FK228 biosynthetic gene cluster in Chromobacterium violaceum No. 968, positively regulates the biosynthesis of FK228. In this work, the mechanism underlining this positive regulation was probed by multiple approaches. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay (DIFA) identified a conserved 35-nt DNA segment in the orf21-orf22 intergenic region where the purified recombinant DepR binds to. Quantitative reverse transcription PCR (RT-qPCR) and green fluorescent protein (GFP) promoter probe assays established that transcription of phasin gene orf22 increases in the depR deletion mutant of C. violaceum (CvΔdepR) compared to the wild-type strain. FK228 production in the orf22-overexpressed strain C. violaceum was reduced compared with the wild-type strain. DepR has two conserved cysteine residues C199 and C208 presumed to form a disulfide bridge upon sensing oxidative stress. C199X point mutations that locked DepR in a reduced conformation decreased the DNA-binding affinity of DepR; T232A or R278A mutation also had a negative impact on DNA binding of DepR. Complementation of CvΔdepR with any of those versions of depR carrying a single codon mutation was not able to restore FK228 production to the level of wild-type strain. All evidences collectively suggested that DepR positively regulates the biosynthesis of FK228 through indirect metabolic networking. PMID:29672625

  10. Mechanistic studies of DepR in regulating FK228 biosynthesis in Chromobacterium violaceum no. 968.

    PubMed

    Qiao, Yongjian; Tong, Tiantian; Xue, Jiao; Lin, Wenjing; Deng, Zixin; Cheng, Yi-Qiang; Zhu, Dongqing

    2018-01-01

    DepR, a LysR-type transcriptional regulator encoded by the last gene of the putative min operon (orf21-20-19-depR) located at the downstream region of the anticancer agent FK228 biosynthetic gene cluster in Chromobacterium violaceum No. 968, positively regulates the biosynthesis of FK228. In this work, the mechanism underlining this positive regulation was probed by multiple approaches. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay (DIFA) identified a conserved 35-nt DNA segment in the orf21-orf22 intergenic region where the purified recombinant DepR binds to. Quantitative reverse transcription PCR (RT-qPCR) and green fluorescent protein (GFP) promoter probe assays established that transcription of phasin gene orf22 increases in the depR deletion mutant of C. violaceum (CvΔdepR) compared to the wild-type strain. FK228 production in the orf22-overexpressed strain C. violaceum was reduced compared with the wild-type strain. DepR has two conserved cysteine residues C199 and C208 presumed to form a disulfide bridge upon sensing oxidative stress. C199X point mutations that locked DepR in a reduced conformation decreased the DNA-binding affinity of DepR; T232A or R278A mutation also had a negative impact on DNA binding of DepR. Complementation of CvΔdepR with any of those versions of depR carrying a single codon mutation was not able to restore FK228 production to the level of wild-type strain. All evidences collectively suggested that DepR positively regulates the biosynthesis of FK228 through indirect metabolic networking.

  11. Virulence of luminescent and non-luminescent isogenic vibrios towards gnotobiotic Artemia franciscana larvae and specific pathogen-free Litopenaeus vannamei shrimp.

    PubMed

    Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P

    2009-04-01

    This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.

  12. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae.

    PubMed

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir

    2016-05-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae

    PubMed Central

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M. Q.; Bruna, Roberto E.; García-Véscovi, Eleonora

    2016-01-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well. S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. PMID:26896140

  14. Vegetative Incompatibility and the Mating-Type Locus in the Cellular Slime Mold DICTYOSTELIUM DISCOIDEUM

    PubMed Central

    Robson, Gillian E.; Williams, Keith L.

    1979-01-01

    The genetic basis of vegetative incompatibility in the cellular slime mold, Dictyostelium discoideum, is elucidated. Vegetatively compatible haploid strains from parasexual diploids at a frequency of between 10-6 and 10-5, whereas "escaped" diploids are formed between vegetatively incompatible strains at a frequency of ∼10-8. There is probably only a single vegetative incompatibility site, which appears to be located at, or closely linked to, the mating-type locus. The nature of the vegetative incompatibility is deduced from parasexual diploid formation between wild isolates and tester strains of each mating type, examination of the frequency of formation of "escaped" diploids formed between vegetatively incompatible strains, and examination of the mating type and vegetative incompatibility of haploid segregants obtained from "escaped" diploids. PMID:17248984

  15. Effect of anilinopyrimidine resistance on aflatoxin production and fitness parameters in Aspergillus parasiticus Speare.

    PubMed

    Markoglou, Anastasios N; Doukas, Eleftherios G; Malandrakis, Anastasios A

    2011-03-30

    Mutants of Aspergillus parasiticus resistant to the anilinopyrimidine fungicides were isolated at a high mutation frequency after UV-mutagenesis and selection on media containing cyprodinil. In vitro fungitoxicity tests resulted in the identification of two predominant resistant phenotypes that were highly (R(1)-phenotype) and moderately (R(2)-phenotype) resistant to the anilinopyrimidines cyprodinil, pyrimethanil and mepanipyrim. Cross-resistance studies with fungicides from other chemical groups showed that the highly resistance mutation(s) did not affect the sensitivity of R(1)-mutant strains to fungicides affecting other cellular pathways. Contrary to that, a reduction in the sensitivity to the triazoles epoxiconazole and flusilazole, the benzimidazole carbendazim, the phenylpyrrole fludioxonil, the dicarboximide iprodione and to the strobilurin-type fungicide pyraclostrobin was observed in R(2)-mutant strains. Study of fitness parameters of anilinopyrimidine-resistant strains of both phenotypic classes showed that all R(1) mutant strains had mycelial growth rate, sporulation and conidial germination similar to or even higher than the wild-type parent strain, while these fitness parameters were negatively affected in R(2) mutant strains. Analysis of the aflatoxin production showed that most R(1) mutant strains produced aflatoxins at concentrations markedly higher than the wild-type parent strain. A considerable reduction in the aflatoxin production was observed on cultured medium and on wheat grains by all R(2) mutant strains, indicating a possible correlation between fitness penalties and aflatoxigenic ability of A. parasiticus. The potential risk of increased aflatoxin contamination of agricultural products and their byproducts by the appearance and predominance of highly aflatoxigenic mutant strains of A. parasiticus resistant to the anilinopyrimidines is discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Occurrence of Carbapenemase-Producing Enterobacteriaceae Isolates in the Wildlife: First Report of OXA-48 in Wild Boars in Algeria.

    PubMed

    Bachiri, Taous; Bakour, Sofiane; Lalaoui, Rym; Belkebla, Nadia; Allouache, Meriem; Rolain, Jean Marc; Touati, Abdelaziz

    2018-04-01

    The aim of the present study was to screen for the presence of carbapenemase-producing Enterobacteriaceae (CPE) isolates from wild boars and Barbary macaques in Algeria. Fecal samples were collected from wild boars (n = 168) and Barbary macaques (n = 212), in Bejaia, Algeria, between September 2014 and April 2016. The isolates were identified and antimicrobial susceptibility was determined. Carbapenem resistance determinants were studied using PCR and sequencing, while clonal relatedness was performed using multilocus sequence typing (MLST). PCR was used to investigate certain virulence genes. Three CPE isolates from three different samples (1.8%) recovered from wild boars were identified as Escherichia coli (two isolates) and Klebsiella pneumoniae (one isolate). These isolates were resistant to amoxicillin, amoxicillin-clavulanate, tobramycin, ertapenem, and meropenem. The results of PCR and sequencing analysis showed that all three isolates produced the OXA-48 enzyme. The MLST showed that the two E. coli isolates were assigned to the same sequence type, ST635, and belonged to phylogroup A, whereas K. pneumoniae strain belonged to ST13. The K. pneumoniae strain was positive for multiple virulence factors, whereas no virulence determinants were found in E. coli isolates. This is the first report of OXA-48-producing Enterobacteriaceae in wild animals from Algeria and Africa.

  17. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Bradford, C. Samuel; Cooley, Ben; Yoshinaga, Allen S.; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H.; Bakalinsky, Alan T.

    2017-01-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671

  18. Phylogenetic analysis of the haemagglutinin gene of canine distemper virus strains detected from giant panda and raccoon dogs in China

    PubMed Central

    2013-01-01

    Background Canine distemper virus (CDV) infects a variety of carnivores, including wild and domestic Canidae. In this study, we sequenced and phylogenetic analyses of the hemagglutinin (H) genes from eight canine distemper virus (CDV) isolates obtained from seven raccoon dogs (Nyctereutes procyonoides) and a giant panda (Ailuropoda melanoleuca) in China. Results Phylogenetic analysis of the partial hemagglutinin gene sequences showed close clustering for geographic lineages, clearly distinct from vaccine strains and other wild-type foreign CDV strains, all the CDV strains were characterized as Asia-1 genotype and were highly similar to each other (91.5-99.8% nt and 94.4-99.8% aa). The giant panda and raccoon dogs all were 549Y on the HA protein in this study, irrespective of the host species. Conclusions These findings enhance our knowledge of the genetic characteristics of Chinese CDV isolates, and may facilitate the development of effective strategies for monitoring and controlling CDV for wild canids and non-cainds in China. PMID:23566727

  19. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant.

    PubMed

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.

  20. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant

    PubMed Central

    Kramer, Annemarie; Beck, Hans Christian; Kumar, Abhishek; Kristensen, Lars Peter; Imhoff, Johannes F.; Labes, Antje

    2015-01-01

    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum. PMID:26460745

  1. Immune Serum From Sabin Inactivated Poliovirus Vaccine Immunization Neutralizes Multiple Individual Wild and Vaccine-Derived Polioviruses.

    PubMed

    Sun, Mingbo; Li, Changgui; Xu, Wenbo; Liao, Guoyang; Li, Rongcheng; Zhou, Jian; Li, Yanping; Cai, Wei; Yan, Dongmei; Che, Yanchun; Ying, Zhifang; Wang, Jianfeng; Yang, Huijuan; Ma, Yan; Ma, Lei; Ji, Guang; Shi, Li; Jiang, Shude; Li, Qihan

    2017-05-15

    A Sabin strain-based inactivated poliomyelitis vaccine (Sabin-IPV) is the rational option for completely eradicating poliovirus transmission. The neutralizing capacity of Sabin-IPV immune serum to different strains of poliovirus is a key indicator of the clinical protective efficacy of this vaccine. Sera collected from 500 infants enrolled in a randomized, blinded, positive control, phase 2 clinical trial were randomly divided into 5 groups: Groups A, B, and C received high, medium, and low doses, respectively, of Sabin-IPV, while groups D and E received trivalent oral polio vaccine and Salk strain-based IPV, respectively, all on the same schedule. Immune sera were collected after the third dose of primary immunization, and tested in cross-neutralization assays against 19 poliovirus strains of all 3 types. All immune sera from all 5 groups interacted with the 19 poliovirus strains with various titers and in a dose-dependent manner. One type 2 immunodeficiency-associated vaccine-derived poliovirus strain was not recognized by these immune sera. Sabin-IPV vaccine can induce protective antibodies against currently circulating and reference wild poliovirus strains and most vaccine-derived poliovirus strains, with rare exceptions. NCT01056705. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Requirement of histidine 217 for ubiquinone reductase activity (Qi site) in the cytochrome bc1 complex.

    PubMed

    Gray, K A; Dutton, P L; Daldal, F

    1994-01-25

    Folding models suggest that the highly conserved histidine 217 of the cytochrome b subunit from the cytochrome bc1 complex is close to the quinone reductase (Qi) site. This histidine (bH217) in the cytochrome b polypeptide of the photosynthetic bacterium Rhodobacter capsulatus has been replaced with three other residues, aspartate (D), arginine (R), and leucine (L). bH217D and bH217R are able to grow photoheterotrophically and contain active cytochrome bc1 complexes (60% of wild-type activity), whereas the bH217L mutant is photosynthetically incompetent and contains a cytochrome bc1 complex that has only 10% of the wild-type activity. Single-turnover flash-activated electron transfer experiments show that cytochrome bH is reduced via the Qo site with near native rates in the mutant strains but that electron transfer between cytochrome bH and quinone bound at the Qi site is greatly slowed. These results are consistent with redox midpoint potential (Em) measurements of the cytochrome b subunit hemes and the Qi site quinone. The Em values of cyt bL and bH are approximately the same in the mutants and wild type, although the mutant strains have a larger relative concentration of what may be the high-potential form of cytochrome bH, called cytochrome b150. However, the redox properties of the semiquinone at the Qi site are altered significantly. The Qi site semiquinone stability constant of bH217R is 10 times higher than in the wild type, while in the other two strains (bH217D and bH217L) the stability constant is much lower than in the wild type. Thus H217 appears to have major effects on the redox properties of the quinone bound at the Qi site. These data are incorporated into a suggestion that H217 forms part of the binding pocket of the Qi site in a manner reminiscent of the interaction between quinone bound at the Qb site and H190 of the L subunit of the bacterial photosynthetic reaction center.

  3. Enhanced Shewanella biofilm promotes bioelectricity generation.

    PubMed

    Liu, Ting; Yu, Yang-Yang; Deng, Xiao-Peng; Ng, Chun Kiat; Cao, Bin; Wang, Jing-Yuan; Rice, Scott A; Kjelleberg, Staffan; Song, Hao

    2015-10-01

    Electroactive biofilms play essential roles in determining the power output of microbial fuel cells (MFCs). To engineer the electroactive biofilm formation of Shewanella oneidensis MR-1, a model exoelectrogen, we herein heterologously overexpressed a c-di-GMP biosynthesis gene ydeH in S. oneidensis MR-1, constructing a mutant strain in which the expression of ydeH is under the control of IPTG-inducible promoter, and a strain in which ydeH is under the control of a constitutive promoter. Such engineered Shewanella strains had significantly enhanced biofilm formation and bioelectricity generation. The MFCs inoculated with these engineered strains accomplished a maximum power density of 167.6 ± 3.6 mW/m(2) , which was ∼ 2.8 times of that achieved by the wild-type MR-1 (61.0 ± 1.9 mW/m(2) ). In addition, the engineered strains in the bioelectrochemical system at poised potential of 0.2 V vs. saturated calomel electrode (SCE) generated a stable current density of 1100 mA/m(2) , ∼ 3.4 times of that by wild-type MR-1 (320 mA/m(2) ). © 2015 Wiley Periodicals, Inc.

  4. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene.

    PubMed

    Li, Nan; Wang, Yuanlong; Zhu, Ping; Liu, Zhenmin; Guo, Benheng; Ren, Jing

    2015-02-01

    Lactobacillus casei LC2W is an exopolysaccharide (EPS)-producing strain with probiotic effects. To investigate the regulation mechanism of EPS biosynthesis and to improve EPS production through cofactor engineering, a H₂O-forming NADH oxidase gene was cloned from Streptococcus mutans and overexpressed in L. casei LC2W under the control of constitutive promoter P₂₃. The recombinant strain LC-nox exhibited 0.854 U/mL of NADH oxidase activity, which was elevated by almost 20-fold in comparison with that of wild-type strain. As a result, overexpression of NADH oxidase resulted in a reduction in growth rate. In addition, lactate production was decreased by 22% in recombinant strain. It was proposed that more carbon source was saved and used for the biosynthesis of EPS, the production of which was reached at 219.4 mg/L, increased by 46% compared to that of wild-type strain. This work provided a novel and convenient genetic approach to manipulate metabolic flux and to increase EPS production. To the best of our knowledge, this is the first report which correlates cofactor engineering with EPS production. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Investigation of a Possible Link Between Vaccination and the 2010 Sheep Pox Epizootic in Morocco.

    PubMed

    Haegeman, A; Zro, K; Sammin, D; Vandenbussche, F; Ennaji, M M; De Clercq, K

    2016-12-01

    Sheep pox is endemic in most parts of Northern Africa and has the potential to cause severe economic problems. Live attenuated vaccines are used in Morocco, and in many other countries, to control the disease. Sheep pox virus (SPPV) re-appeared in 2010 causing a nodular clinical form previously not observed in Morocco. The severe clinical signs observed during the course of this outbreak and initial reports citing similarity in nucleotide sequence between the Moroccan vaccine strain and field isolates warranted a more in depth analysis of this epizootic. In this study, sequence analysis showed that isolates obtained from four provinces of eastern Morocco were identical, demonstrating that a single SPPV strain was responsible for the 2010 epizootic. In addition, the genome fragments sequenced and phylogenetic analyses undertaken as part of this study showed significant differences between field isolates and the Moroccan vaccine strain. New PCR methods were developed to differentiate between wild-type isolates and vaccine strains of SPPV. Using these methods, no trace of wild-type SPPV was found in the vaccine and no evidence was found to suggest that the vaccine strain was causing clinical disease. © 2015 Blackwell Verlag GmbH.

  6. A Glycine Betaine Importer Limits Salmonella Stress Resistance and Tissue Colonization by Reducing Trehalose Production

    PubMed Central

    Pilonieta, M. Carolina; Nagy, Toni A.; Jorgensen, Dana R.; Detweiler, Corrella S.

    2012-01-01

    SUMMARY Mechanisms by which Salmonella establish chronic infections are not well understood. Microbes respond to stress by importing or producing compatible solutes, small molecules that stabilize proteins and lipids. The Salmonella locus opuABCD (also called OpuC) encodes a predicted importer of the compatible solute glycine betaine. Under stress conditions, if glycine betaine cannot be imported, S. enterica produce the disaccharide trehalose, a highly effective compatible solute. We demonstrate that strains lacking opuABCD accumulate more trehalose under stress conditions than wild-type strains. ΔopuABCD mutant strains are more resistant to high salt, low pH and hydrogen peroxide, conditions that mimic aspects of innate immunity, in a trehalose-dependent manner. In addition, ΔopuABCD mutant strains require the trehalose production genes to out-compete wild-type strains in mice and macrophages. These data suggest that in the absence of opuABCD, trehalose accumulation increases bacterial resistance to stress in broth and mice. Thus, opuABCD reduces bacterial colonization via a mechanism that limits trehalose production. Mechanisms by which microbes limit disease may reveal novel pathways as therapeutic targets. PMID:22375627

  7. Deletion of pilA, a Minor Pilin-Like Gene, from Xanthomonas citri subsp. citri Influences Bacterial Physiology and Pathogenesis.

    PubMed

    Petrocelli, Silvana; Arana, Maite R; Cabrini, Marcela N; Casabuono, Adriana C; Moyano, Laura; Beltramino, Matías; Moreira, Leandro M; Couto, Alicia S; Orellano, Elena G

    2016-12-01

    Type IV pili (Tfp) are widely distributed adhesins of bacterial surfaces. In plant pathogenic bacteria, Tfp are involved in host colonization and pathogenesis. Xanthomonas citri subsp. citri (Xcc) is the phytopathogen responsible for citrus canker disease. In this work, three Tfp structural genes, fimA, fimA1, and pilA from Xcc were studied. A pilA mutant strain from Xcc (XccΔpilA) was constructed and differences in physiological features, such as motilities, adhesion, and biofilm formation, were observed. A structural study of the purified Tfp fractions from Xcc wild-type and Xcc∆pilA showed that pilins are glycosylated in both strains and that FimA and FimA1 are the main structural components of the pili. Furthermore, smaller lesion symptoms and reduced bacterial growth were produced by Xcc∆pilA in orange plants compared to the wild-type strain. These results indicate that the minor pilin-like gene, pilA, is involved in Tfp performance during the infection process.

  8. Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates

    NASA Astrophysics Data System (ADS)

    Parra-Belky, Karlett

    2002-11-01

    A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.

  9. Heterologous expression of Oenococcus oeni malolactic enzyme in Lactobacillus plantarum for improved malolactic fermentation

    PubMed Central

    2012-01-01

    Lactobacillus plantarum is involved in a multitude of food related industrial fermentation processes including the malolactic fermentation (MLF) of wine. This work is the first report on a recombinant L. plantarum strain successfully conducting MLF. The malolactic enzyme (MLE) from Oenococcus oeni was cloned into the lactobacillal expression vector pSIP409 which is based on the sakacin P operon of Lactobacillus sakei and expressed in the host strain L. plantarum WCFS1. Both recombinant and wild-type L. plantarum strains were tested for MLF using a buffered malic acid solution in absence of glucose. Under the conditions with L-malic acid as the only energy source and in presence of Mn2+ and NAD+, the recombinant L. plantarum and the wild-type strain converted 85% (2.5 g/l) and 51% (1.5 g/l), respectively, of L-malic acid in 3.5 days. Furthermore, the recombinant L. plantarum cells converted in a modified wine 15% (0.4 g/l) of initial L-malic acid concentration in 2 days. In conclusion, recombinant L. plantarum cells expressing MLE accelerate the malolactic fermentation. PMID:22452826

  10. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.

    PubMed

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-11-25

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.

  11. Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii.

    PubMed

    Qawasmeh, Abdelqader; Obied, Hassan K; Raman, Anantanarayanan; Wheatley, Warwick

    2012-04-04

    Lolium perenne is a major forage and turf grass, which is often naturally infected with a "wild-type" strain (E(WT)) of the fungal endophyte Neotyphodium lolii , establishing a symbiotic relationship. In this study, the impacts of different strains wild type E(WT), AR1 (E(AR1)) and AR37 (E(AR37)), of N. lolii on the phenolic profile, phenolic content, and antioxidant capacity of L. perenne were examined. Samples could be ranked according to their phenol content as follows: E(AR1) > E(AR37) ≥ E(-) > E(WT). Radical-scavenging assays showed the same relative ranking of extracts. Flavonoid glycosides and hydroxycinnamic acids were the most abundant polyphenols in L. perenne extracts. Chlorogenic acid and its derivatives were the major compounds responsible for the antioxidant activity. Infection with N. lolii significantly influenced L. perenne phenolic content and antioxidant activity. In conclusion, changes in phenolic composition were merely quantitative. Endophyte infection can have zero, positive, or negative effect on phenol content depending on the endophyte strain.

  12. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.

    PubMed

    Sandoval, Celeste M; Ayson, Marites; Moss, Nathan; Lieu, Bonny; Jackson, Peter; Gaucher, Sara P; Horning, Tizita; Dahl, Robert H; Denery, Judith R; Abbott, Derek A; Meadows, Adam L

    2014-09-01

    We observed that removing pantothenate (vitamin B5), a precursor to co-enzyme A, from the growth medium of Saccharomyces cerevisiae engineered to produce β-farnesene reduced the strain׳s farnesene flux by 70%, but increased its viability, growth rate and biomass yield. Conversely, the growth rate and biomass yield of wild-type yeast were reduced. Cultivation in media lacking pantothenate eliminates the growth advantage of low-producing mutants, leading to improved production upon scale-up to lab-scale bioreactor testing. An omics investigation revealed that when exogenous pantothenate levels are limited, acyl-CoA metabolites decrease, β-oxidation decreases from unexpectedly high levels in the farnesene producer, and sterol and fatty acid synthesis likely limits the growth rate of the wild-type strain. Thus pantothenate supplementation can be utilized as a "metabolic switch" for tuning the synthesis rates of molecules relying on CoA intermediates and aid the economic scale-up of strains producing acyl-CoA derived molecules to manufacturing facilities. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates.

    PubMed

    Ault, Alida; Tennant, Sharon M; Gorres, J Patrick; Eckhaus, Michael; Sandler, Netanya G; Roque, Annelys; Livio, Sofie; Bao, Saran; Foulds, Kathryn E; Kao, Shing-Fen; Roederer, Mario; Schmidlein, Patrick; Boyd, Mary Adetinuke; Pasetti, Marcela F; Douek, Daniel C; Estes, Jacob D; Nabel, Gary J; Levine, Myron M; Rao, Srinivas S

    2013-12-02

    Nontyphoidal Salmonella (NTS) serovars are a common cause of acute food-borne gastroenteritis worldwide and can cause invasive systemic disease in young infants, the elderly, and immunocompromised hosts, accompanied by high case fatality. Vaccination against invasive NTS disease is warranted where the disease incidence and mortality are high and multidrug resistance is prevalent, as in sub-Saharan Africa. Live-attenuated vaccines that mimic natural infection constitute one strategy to elicit protection. However, they must particularly be shown to be adequately attenuated for consideration of immunocompromised subjects. Accordingly, we examined the safety and tolerability of an oral live attenuated Salmonella typhimurium vaccine candidate, CVD 1921, in an established chronic simian immunodeficiency virus (SIV)-infected rhesus macaque model. We evaluated clinical parameters, histopathology, and measured differences in mucosal permeability to wild-type and vaccine strains. Compared to the wild-type S. typhimurium strain I77 in both SIV-infected and SIV-uninfected nonhuman primate hosts, this live-attenuated vaccine shows reduced shedding and systemic spread, exhibits limited pathological disease manifestations in the digestive tract, and induces low levels of cellular infiltration in tissues. Furthermore, wild-type S. typhimurium induces increased intestinal epithelial damage and permeability, with infiltration of neutrophils and macrophages in both SIV-infected and SIV-uninfected nonhuman primates compared to the vaccine strain. Based on shedding, systemic spread, and histopathology, the live-attenuated S. typhimurium strain CVD 1921 appears to be safe and well-tolerated in the nonhuman primate model, including chronically SIV-infected rhesus macaques. Copyright © 2013. Published by Elsevier Ltd.

  14. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.

    PubMed

    Chen, Hailong; Wang, Zhou; Wang, Zhilai; Dou, Jie; Zhou, Changlin

    2016-04-01

    S-adenosyl-L-methionine (SAM), biosynthesized from methionine and ATP, exhibited diverse pharmaceutical applications. To enhance SAM accumulation in S. cerevisiae CGMCC 2842 (wild type), improvement of methionine and ATP availability through MET6 and SAM2 co-expression combined with sodium citrate feeding was investigated here. Feeding 6 g/L methionine at 12 h into medium was found to increase SAM accumulation by 38 % in wild type strain. Based on this result, MET6, encoding methionine synthase, was overexpressed, which caused a 59 % increase of SAM. To redirect intracellular methionine into SAM, MET6 and SAM2 (encoding methionine adenosyltransferase) were co-expressed to obtain the recombinant strain YGSPM in which the SAM accumulation was 2.34-fold of wild type strain. The data obtained showed that co-expression of MET6 and SAM2 improved intracellular methionine availability and redirected the methionine to SAM biosynthesis. To elevate intracellular ATP levels, 6 g/L sodium citrate, used as an auxiliary energy substrate, was fed into the batch fermentation medium, and an additional 19 % increase of SAM was observed after sodium citrate addition. Meanwhile, it was found that addition of sodium citrate improved the isocitrate dehydrogenase activity which was associated with the intracellular ATP levels. The results demonstrated that addition of sodium citrate improved intracellular ATP levels which promoted conversion of methionine into SAM. This study presented a feasible approach with considerable potential for developing highly SAM-productive strains based on improving methionine and ATP availability.

  15. UDP-N-acetylmuramic acid l-alanine ligase (MurC) inhibition in a tolC mutant Escherichia coli strain leads to cell death.

    PubMed

    Humnabadkar, Vaishali; Prabhakar, K R; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P; Ravishankar, Sudha; Chatterji, Monalisa

    2014-10-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tolC mutant revealed accumulation of the MurC substrate and a decrease in the level of product upon treatment with compound A ,: indicating inhibition of MurC enzyme in these cells. Such a modulation was not observed in the E. coli wild-type cells. Further, overexpression of MurC in the E. coli tolC mutant led to an increase in the compound A MIC by ≥16-fold, establishing a correlation between MurC inhibition and cellular activity. In addition, estimation of the intracellular compound A level showed an accumulation of the compound over time in the tolC mutant strain. A significant compound A level was not detected in the wild-type E. coli strain even upon treatment with high concentrations of the compound. Therefore, the lack of MIC and absence of MurC inhibition in wild-type E. coli were possibly due to suboptimal compound concentration as a consequence of a high efflux level and/or poor permeativity of compound A. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. UDP-N-Acetylmuramic Acid l-Alanine Ligase (MurC) Inhibition in a tolC Mutant Escherichia coli Strain Leads to Cell Death

    PubMed Central

    Humnabadkar, Vaishali; Prabhakar, K. R.; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P.; Ravishankar, Sudha

    2014-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tolC mutant revealed accumulation of the MurC substrate and a decrease in the level of product upon treatment with compound A, indicating inhibition of MurC enzyme in these cells. Such a modulation was not observed in the E. coli wild-type cells. Further, overexpression of MurC in the E. coli tolC mutant led to an increase in the compound A MIC by ≥16-fold, establishing a correlation between MurC inhibition and cellular activity. In addition, estimation of the intracellular compound A level showed an accumulation of the compound over time in the tolC mutant strain. A significant compound A level was not detected in the wild-type E. coli strain even upon treatment with high concentrations of the compound. Therefore, the lack of MIC and absence of MurC inhibition in wild-type E. coli were possibly due to suboptimal compound concentration as a consequence of a high efflux level and/or poor permeativity of compound A. PMID:25114134

  17. The Early Innate Response of Chickens to Salmonella enterica Is Dependent on the Presence of O-Antigen but Not on Serovar Classification

    PubMed Central

    Varmuzova, Karolina; Matulova, Marta Elsheimer; Sebkova, Alena; Sekelova, Zuzana; Havlickova, Hana; Sisak, Frantisek; Babak, Vladimir; Rychlik, Ivan

    2014-01-01

    Salmonella vaccines used in poultry in the EU are based on attenuated strains of either Salmonella serovar Enteritidis or Typhimurium which results in a decrease in S. Enteritidis and S. Typhimurium but may allow other Salmonella serovars to fill an empty ecological niche. In this study we were therefore interested in the early interactions of chicken immune system with S. Infantis compared to S. Enteritidis and S. Typhimurium, and a role of O-antigen in these interactions. To reach this aim, we orally infected newly hatched chickens with 7 wild type strains of Salmonella serovars Enteritidis, Typhimurium and Infantis as well as with their rfaL mutants and characterized the early Salmonella-chicken interactions. Inflammation was characterized in the cecum 4 days post-infection by measuring expression of 43 different genes. All wild type strains stimulated a greater inflammatory response than any of the rfaL mutants. However, there were large differences in chicken responses to different wild type strains not reflecting their serovar classification. The initial interaction between newly-hatched chickens and Salmonella was found to be dependent on the presence of O-antigen but not on its structure, i.e. not on serovar classification. In addition, we observed that the expression of calbindin or aquaporin 8 in the cecum did not change if inflammatory gene expression remained within a 10 fold fluctuation, indicating the buffering capacity of the cecum, preserving normal gut functions even in the presence of minor inflammatory stimuli. PMID:24763249

  18. Automated UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 and selection for microaerophilic growth and ethanol production at elevated temperature on biomass sugars.

    PubMed

    Hughes, Stephen R; Bang, Sookie S; Cox, Elby J; Schoepke, Andrew; Ochwat, Kate; Pinkelman, Rebecca; Nelson, Danielle; Qureshi, Nasib; Gibbons, William R; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Cote, Gregory L; Rich, Joseph O; Jones, Marjorie A; Cedeño, David; Doran-Peterson, Joy; Riaño-Herrera, Nestor M; Rodríguez-Valencia, Nelson; López-Núñez, Juan C

    2013-08-01

    The yeast Kluyveromyces marxianus is a potential microbial catalyst for fuel ethanol production from a wide range of biomass substrates. To improve its growth and ethanol yield at elevated temperature under microaerophilic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C using automated protocols on a robotic platform for picking and spreading irradiated cultures and for processing the resulting plates. The plates were incubated under anaerobic conditions on xylose or glucose for 5 mo at 46 °C. Two K. marxianus mutant strains (designated 7-1 and 8-1) survived and were isolated from the glucose plates. Both mutant strains, but not wild type, grew aerobically on glucose at 47 °C. All strains grew anaerobically at 46 °C on glucose, galactose, galacturonic acid, and pectin; however, only 7-1 grew anaerobically on xylose at 46 °C. Saccharomyces cerevisiae NRRL Y-2403 did not grow at 46 °C on any of these substrates. With glucose as a carbon source, ethanol yield after 3 d at 46 °C was higher for 8-1 than for wild type (0.51 and 0.43 g ethanol/g glucose, respectively). With galacturonic acid as a carbon source, the ethanol yield after 7 d at 46 °C was higher for 7-1 than for wild type (0.48 and 0.34 g ethanol/g galacturonic acid, respectively). These mutant strains have potential application in fuel ethanol production at elevated temperature from sugar constituents of starch, sucrose, pectin, and cellulosic biomass.

  19. Wild-type Measles Virus in Brain Tissue of Children with Subacute Sclerosing Panencephalitis, Argentina

    PubMed Central

    Barrero, Paola Roxana; Grippo, Jorge; Viegas, Mariana

    2003-01-01

    We studied eight children who had measles at 6 to 10 months of age during the 1998 Argentine measles outbreak and in whom subacute sclerosing panencephalitis developed 4 years later. We report the genetic characterization of brain tissue–associated measles virus samples from three patients. Phylogenetic relationships clustered these viruses with the wild-type D6 genotype isolated during the 1998 outbreak. The children received measles vaccine; however, vaccinal strains were not found. PMID:14609476

  20. Allohumibacter endophyticus gen. nov., sp. nov., isolated from the root of wild Artemisia princeps (mugwort).

    PubMed

    Ri Kim, Yu; Kim, Tae-Su; Han, Ji-Hye; Joung, Yochan; Park, Jisun; Kim, Seung Bum

    2016-04-01

    A novel actinobacterium designated strain MWE-A11T was isolated from the root of wild Artemisia princeps (mugwort). The isolate was aerobic, Gram-stain-positive and short rod-shaped, and the colonies were yellow and circular with entire margin. Strain MWE-A11T grew at 15-37 °C and pH 6.0-8.0. The predominant isoprenoid quinones were MK-11 and MK-10. The predominant fatty acids were anteiso-C15:0 and iso-C16:0, and the DNA G+C content was 68.8 mol%. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The peptidoglycan contained 2,4-diaminobutyric acid as the diagnostic diamino acid, and the acyl type was glycolyl. Phylogenetic analyses based on 16S rRNA gene sequence comparisons indicated that strain MWE-A11T was affiliated with the family Microbacteriaceae, and was most closely related to the type strains of Humibacter antri (96.4% 16S rRNA gene sequence similarity), Herbiconiux moechotypicola (96.3%), Leifsonia soli (96.3%), Leifsonia lichenia (96.2%), Leifsonia xyli subsp. cynodontis (96.1%), Microbacterium testaceum (96.0%) and Humibacter albus (96.0%). However, the combination of chemotaxonomic properties clearly distinguished strain MWE-A11T from the related taxa at genus level. Accordingly, Allohumibacter endophyticus gen. nov., sp. nov. is proposed to accommodate a new member of the family Microbacteriaceae. The type strain of the type species is MWE-A11T (=JCM 19371T=KCTC 29232T).

  1. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    PubMed Central

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  2. Finished Genome Sequence of Escherichia coli K-12 Strain HMS174 (ATCC 47011).

    PubMed

    Mairhofer, Juergen; Krempl, Peter M; Thallinger, Gerhard G; Striedner, Gerald

    2014-11-20

    Escherichia coli strain K-12 substrain HMS174 is an engineered descendant of the E. coli K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is used in fermentation processes for heterologous protein production. Here, we report the complete genome sequence of E. coli HMS174 (ATCC 47011). Copyright © 2014 Mairhofer et al.

  3. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies.

    PubMed

    Brown, Sam P; West, Stuart A; Diggle, Stephen P; Griffin, Ashleigh S

    2009-11-12

    Medical science is typically pitted against the evolutionary forces acting upon infective populations of bacteria. As an alternative strategy, we could exploit our growing understanding of population dynamics of social traits in bacteria to help treat bacterial disease. In particular, population dynamics of social traits could be exploited to introduce less virulent strains of bacteria, or medically beneficial alleles into infective populations. We discuss how bacterial strains adopting different social strategies can invade a population of cooperative wild-type, considering public good cheats, cheats carrying medically beneficial alleles (Trojan horses) and cheats carrying allelopathic traits (anti-competitor chemical bacteriocins or temperate bacteriophage viruses). We suggest that exploitation of the ability of cheats to invade cooperative, wild-type populations is a potential new strategy for treating bacterial disease.

  4. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies

    PubMed Central

    Brown, Sam P.; West, Stuart A.; Diggle, Stephen P.; Griffin, Ashleigh S.

    2009-01-01

    Medical science is typically pitted against the evolutionary forces acting upon infective populations of bacteria. As an alternative strategy, we could exploit our growing understanding of population dynamics of social traits in bacteria to help treat bacterial disease. In particular, population dynamics of social traits could be exploited to introduce less virulent strains of bacteria, or medically beneficial alleles into infective populations. We discuss how bacterial strains adopting different social strategies can invade a population of cooperative wild-type, considering public good cheats, cheats carrying medically beneficial alleles (Trojan horses) and cheats carrying allelopathic traits (anti-competitor chemical bacteriocins or temperate bacteriophage viruses). We suggest that exploitation of the ability of cheats to invade cooperative, wild-type populations is a potential new strategy for treating bacterial disease. PMID:19805424

  5. Role of actin depolymerizing factor cofilin in Aspergillus fumigatus oxidative stress response and pathogenesis.

    PubMed

    Jia, Xiaodong; Zhang, Xi; Hu, Yingsong; Hu, Mandong; Tian, Shuguang; Han, Xuelin; Sun, Yansong; Han, Li

    2018-06-01

    Aspergillus fumigatus is a major fungal pathogen that is responsible for approximately 90% of human aspergillosis. Cofilin is an actin depolymerizing factor that plays crucial roles in multiple cellular functions in many organisms. However, the functions of cofilin in A. fumigatus are still unknown. In this study, we constructed an A. fumigatus strain overexpressing cofilin (cofilin OE). The cofilin OE strain displayed a slightly different growth phenotype, significantly increased resistance against H 2 O 2 and diamide, and increased activation of the high osmolarity glycerol pathway compared to the wild-type strain (WT). The cofilin OE strain internalized more efficiently into lung epithelial A549 cells, and induced increased transcription of inflammatory factors (MCP-1, TNF-α and IL-8) compared to WT. Cofilin overexpression also resulted in increased polysaccharides including β-1, 3-glucan and chitin, and increased transcription of genes related to oxidative stress responses and polysaccharide synthesis in A. fumigatus. However, the cofilin OE strain exhibited similar virulence to the wild-type strain in murine and Galleria mellonella infection models. These results demonstrated for the first time that cofilin, a regulator of actin cytoskeleton dynamics, might play a critical role in the regulation of oxidative stress responses and cell wall polysaccharide synthesis in A. fumigatus.

  6. Influence of yeast macromolecules on sweetness in dry wines: role of the saccharomyces cerevisiae protein Hsp12.

    PubMed

    Marchal, Axel; Marullo, Philippe; Moine, Virginie; Dubourdieu, Denis

    2011-03-09

    Yeast autolysis during lees contact influences the organoleptic properties of wines especially by increasing their sweet taste. Although observed by winemakers, this phenomenon is poorly explained in enology. Moreover, the compounds responsible for sweetness in wine remain unidentified. This work provides new insights in this way by combining sensorial, biochemical and genetic approaches. First, we verified by sensory analysis that yeast autolysis in red wine has a significant effect on sweetness. Moderate additions of ethanol or glycerol did not have the same effect. Second, a sapid fraction was isolated from lees extracts by successive ultrafiltrations and HPLC purifications. Using nano-LC-MS/MS, peptides released by the yeast heat shock protein Hsp12p were distinctly identified in this sample. Third, we confirmed the sweet contribution of this protein by sensorial comparison of red wines incubated with two kinds of yeast strains: a wild-type strain containing the native Hsp12p and a deletion mutant strain that lacks the Hsp12p protein (Δ°HSP12 strain). Red wines incubated with wild-type strain showed a significantly higher sweetness than control wines incubated with Δ°HSP12 strains. These results demonstrated the contribution of protein Hsp12p in the sweet perception consecutive to yeast autolysis in wine.

  7. Role of the rttA gene in morphogenesis, stress response, and virulence in the human pathogenic fungus Penicillium marneffei.

    PubMed

    Suwunnakorn, Sumanun; Cooper, Chester R; Kummasook, Aksarakorn; Pongpom, Monsicha; Vanittanakom, Pramote; Vanittanakom, Nongnuch

    2015-02-01

    Penicillium marneffei is a human pathogenic fungus and the only thermally dimorphic species of the genus. At 25°C, P. marneffei grows as a mycelium that produces conidia in chains. However, when incubated at 37°C or following infection of host tissue, the fungus develops as a fission yeast. Previously, a mutant (strain I133) defective in morphogenesis was generated via Agrobacterium-mediated transformation. Specifically, the rtt109 gene (subsequently designated rttA) in this mutant was interrupted by T-DNA insertion. We characterized strain I133 and the possible roles of the mutated rttA gene in altered P. marneffei phenotypes. At 25°C, the rttA mutant produces fewer conidia than the wild type and a complemented mutant strain, as well as slower rates of conidial germination; however, strain I133 continued to grow as a yeast in 37°C-incubated cultures. Furthermore, whereas the wild type exhibited increased expression of rttA at 37°C in response to the DNA-damaging agent methyl methane sulfonate, strain I133 was hypersensitive to this and other genotoxic agents. Under similar conditions, the rttA mutant exhibited decreased expression of genes associated with carbohydrate metabolism and oxidative stress. Importantly, when compared with the wild-type and the complemented strain, I133 was significantly less virulent in a Galleria infection model when the larvae were incubated at 37°C. Moreover, the mutant exhibited inappropriate phase transition in vivo. In conclusion, the rttA gene plays important roles in morphogenesis, carbohydrate metabolism, stress response, and pathogenesis in P. marneffei, suggesting that this gene may be a potential target for the development of antifungal compounds. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Contribution of the NADH-oxidase (Nox) to the aerobic life of Lactobacillus sanfranciscensis DSM20451T.

    PubMed

    Jänsch, André; Freiding, Simone; Behr, Jürgen; Vogel, Rudi F

    2011-02-01

    Lactobacillus sanfranciscensis is the key bacterium in traditional sourdough fermentation. The molecular background of its oxygen tolerance was investigated by comparison of wild type and NADH-oxidase (Nox) knock out mutants. The nox gene of L. sanfranciscensis DSM20451(T) coding for a NADH-oxidase (Nox) was inactivated by single crossover integration to yield strain L. sanfranciscensis DSM20451Δnox. By inactivation of the native NADH-oxidase gene, it was ensured that besides fructose, O(2) can react as an electron acceptor. In aerated cultures the mutant strain was only able to grow in MRS media supplemented with fructose as electron acceptor, whereas the wild type strain showed a fructose independent growth response. The use of oxygen as an external electron acceptor enables L. sanfranciscensis to shift from acetyl-phosphate into the acetate branch and gain an additionally ATP, while the reduced cofactors were regenerated by Nox-activity. In aerated cultures the wild type strain formed a fermentation ratio of lactate to acetate of 1.09 in MRS supplemented with fructose after 24 h of fermentation, while the mutant strain formed a fermentation ratio of 3.05. Additionally, L. sanfranciscensis showed manganese-dependent growth response in aerated cultures, the final OD and growth velocity was increased in media supplemented with manganese. The expression of two predicted Mn(2+)/Fe(2+) transporters MntH1 and MntH2 in L. sanfranciscensis DSM20451(T) was verified by amplification of a 318 bp fragment of MntH1 and a 239 bp fragment of MntH2 from cDNA library obtained from aerobically, exponentially growing cells of L. sanfranciscensis DSM20451(T) in MRS. Moreover, the mutant strain DSM20451Δnox was more sensitive to the superoxide generating agent paraquat and showed inhibition of growth on diamide-treated MRS-plates without fructose supplementation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Isolation, Oxygen Sensitivity, and Virulence of NADH Oxidase Mutants of the Anaerobic Spirochete Brachyspira (Serpulina) hyodysenteriae, Etiologic Agent of Swine Dysentery

    PubMed Central

    Stanton, Thad B.; Rosey, Everett L.; Kennedy, Michael J.; Jensen, Neil S.; Bosworth, Brad T.

    1999-01-01

    Brachyspira (Serpulina) hyodysenteriae, the etiologic agent of swine dysentery, uses the enzyme NADH oxidase to consume oxygen. To investigate possible roles for NADH oxidase in the growth and virulence of this anaerobic spirochete, mutant strains deficient in oxidase activity were isolated and characterized. The cloned NADH oxidase gene (nox; GenBank accession no. U19610) on plasmid pER218 was inactivated by replacing 321 bp of coding sequence with either a gene for chloramphenicol resistance (cat) or a gene for kanamycin resistance (kan). The resulting plasmids, respectively, pCmΔNOX and pKmΔNOX, were used to transform wild-type B. hyodysenteriae B204 cells and generate the antibiotic-resistant strains Nox-Cm and Nox-Km. PCR and Southern hybridization analyses indicated that the chromosomal wild-type nox genes in these strains had been replaced, through allelic exchange, by the inactivated nox gene containing cat or kan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblot analysis revealed that both nox mutant cell lysates were missing the 48-kDa Nox protein. Soluble NADH oxidase activity levels in cell lysates of Nox-Cm and Nox-Km were reduced 92 to 96% compared to the activity level in parent strain B204. In an aerotolerance test, cells of both nox mutants were at least 100-fold more sensitive to oxygen exposure than were cells of the wild-type parent strain B204. In swine experimental infections, both nox mutants were less virulent than strain B204 in that fewer animals were colonized by the mutant cells and infected animals displayed mild, transient signs of disease, with no deaths. These results provide evidence that NADH oxidase serves to protect B. hyodysenteriae cells against oxygen toxicity and that the enzyme, in that role, contributes to the pathogenic ability of the spirochete. PMID:10543819

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hervey, IV, William Judson; Khalsa-Moyers, Gurusahai K; Lankford, Patricia K

    Protein enrichments of engineered, affinity-tagged (or bait ) fusion proteins with interaction partners are often laden with background, non-specific proteins, due to interactions that occur in vitro as an artifact of the technique. Furthermore, the in vivo expression of the bait protein may itself affect physiology or metabolism. In this study, intrinsic affinity purification challenges were investigated in a model protein complex, DNA-dependent RNA polymerase (RNAP), encompassing chromosome- and plasmid-encoding strategies for bait proteins in two different microbial species: Escherichia coli and Rhodopseudomonas palustris. Isotope ratio measurements of bait protein expression strains relative to native, wild-type strains were performed bymore » liquid chromatography tandem mass spectrometry (LC-MS-MS) to assess bait protein expression strategies in each species. Authentic interacting proteins of RNAP were successfully discerned from artifactual co-isolating proteins by the isotopic differentiation of interactions as random or targeted (I-DIRT) method (A. J. Tackett et al. J. Proteome Res. 2005, 4 (5), 1752-1756). To investigate broader effects of bait protein production in the bacteria, we compared proteomes from strains harboring a plasmid that encodes an affinity-tagged subunit (RpoA) of the RNAP complex with the corresponding wild-type strains using stable isotope metabolic labeling. The ratio of RpoA abundance in plasmid strains versus wild type was 0.8 for R. palustris and 1.7 for E. coli. While most other proteins showed no appreciable difference, proteins significantly increased in abundance in plasmid-encoded bait-expressing strains of both species included the plasmid encoded antibiotic resistance protein, GenR and proteins involved in amino acid biosynthesis. Together, these local, complex-specific and more global, whole proteome isotopic abundance ratio measurements provided a tool for evaluating both in vivo and in vitro effects of plasmid-encoding strategies for bait protein expression. This approach has the potential for enabling discovery of protein-protein interactions among the growing number of sequenced microbial species without the need for development of chromosomal insertion systems.« less

  11. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.

    PubMed

    Ikeda, Masato; Mitsuhashi, Satoshi; Tanaka, Kenji; Hayashi, Mikiro

    2009-03-01

    Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (Delta argR), the production was further increased. The best mutation set, Delta argR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical L-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance, thus allowing significantly higher productivity of arginine/citrulline even at the suboptimal 38 degrees C.

  12. Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide.

    PubMed

    Verdon, Julien; Labanowski, Jérome; Sahr, Tobias; Ferreira, Thierry; Lacombe, Christian; Buchrieser, Carmen; Berjeaud, Jean-Marc; Héchard, Yann

    2011-04-01

    Warnericin RK is an antimicrobial peptide, produced by a Staphyloccocus warneri strain, described to be specifically active against Legionella, the pathogenic bacteria responsible for Legionnaires' disease. Warnericin RK is an amphiphilic alpha-helical peptide, which possesses a detergent-like mode of action. Two others peptides, δ-hemolysin I and II, produced by the same S. warneri strain, are highly similar to S. aureus δ-hemolysin and also display anti-Legionella activity. It has been recently reported that S. aureus δ-hemolysin activity on vesicles is likewise related to phospholipid acyl-chain structure, such as chain length and saturation. As staphylococcal δ-hemolysins were highly similar, we thus hypothesized that fatty acid composition of Legionella's membrane might influence the sensitivity of the bacteria to warnericin RK. Relationship between sensitivity to the peptide and fatty acid composition was then followed in various conditions. Cells in stationary phase, which were already described as less resistant than cells in exponential phase, displayed higher amounts of branched-chain fatty acids (BCFA) and short chain fatty acids. An adapted strain, able to grow at a concentration 33 fold higher than minimal inhibitory concentration of the wild type (i.e. 1μM), was isolated after repeated transfers of L. pneumophila in the presence of increased concentrations of warnericin RK. The amount of BCFA was significantly higher in the adapted strain than in the wild type strain. Also, a transcriptomic analysis of the wild type and adapted strains showed that two genes involved in fatty acid biosynthesis were repressed in the adapted strain. These genes encode enzymes involved in desaturation and elongation of fatty acids respectively. Their repression was in agreement with the decrease of unsaturated fatty acids and fatty acid chain length in the adapted strain. Conclusively, our results indicate that the increase of BCFA and the decrease of fatty acid chain length in membrane were correlated with the increase in resistance to warnericin RK. Therefore, fatty acid profile seems to play a critical role in the sensitivity of L. pneumophila to warnericin RK. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase.

    PubMed

    Cheng, Yu-Rong; Sun, Zhi-Jie; Cui, Gu-Zhen; Song, Xiaojin; Cui, Qiu

    2016-11-01

    Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4°C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120Gy yielded more DHA compared with cells from 40Gy, 80Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4°C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27g/Lh and 30% from 21 to 27g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Deduced sequences of the membrane fusion and attachment proteins of canine distemper viruses isolated from dogs and wild animals in Korea.

    PubMed

    Bae, Chae-Wun; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Nak-Hyung; Seo, Kun-Ho; Kang, Young-Sun; Park, Choi-Kyu; Choi, In-Soo

    2013-08-01

    Canine distemper virus (CDV) causes highly contagious respiratory, gastrointestinal, and neurological diseases in wild and domestic animal species. Despite a broad vaccination campaign, the disease is still a serious problem worldwide. In this study, six field CDV strains were isolated from three dogs, two raccoon dogs, and one badger in Korea. The full sequence of the genes encoding fusion (F) and hemagglutinin (H) proteins were compared with those of other CDVs including field and vaccine strains. The phylogenetic analysis for the F and H genes indicated that the two CDV strains isolated from dogs were most closely related to Chinese strains in the Asia-1 genotype. Another four strains were closely related to Japanese strains in the Asia-2 genotype. The six currently isolated strains shared 90.2-92.1% and 88.2-91.8% identities with eight commercial vaccine strains in their nucleotide and amino acid sequences of the F protein, respectively. They also showed 90.1-91.4% and 87.8-90.7% identities with the same vaccine strains in their nucleotide and deduced amino acid sequences of the H protein, respectively. Different N-linked glycosylation sites were identified in the F and H genes of the six isolates from the prototype vaccine strain Onderstepoort. Collectively, these results demonstrate that at least two different CDV genotypes currently exist in Korea. The considerable genetic differences between the vaccine strains and wild-type isolates would be a major factor of the incomplete protection of dogs from CDV infections.

  15. Chromosomal Diversity in Lactococcus lactis and the Origin of Dairy Starter Cultures

    PubMed Central

    Kelly, William J.; Ward, Lawrence J. H.; Leahy, Sinead C.

    2010-01-01

    A large collection of Lactococcus lactis strains, including wild-type isolates and dairy starter cultures, were screened on the basis of their phenotype and the macrorestriction patterns produced from pulsed-field gel electrophoresis (PFGE) analysis of SmaI digests of genomic DNA. Three groups of dairy starter cultures, used for different purposes in the dairy industry, and a fourth group made up of strains isolated from the environment were selected for analysis of their chromosomal diversity using the endonuclease I-CeuI. Chromosome architecture was largely conserved with each strain having six copies of the rRNA genes, and the chromosome size of individual strains ranged between 2,240 and 2,688 kb. The origin of L. lactis strains showed the greatest correlation with chromosome size, and dairy strains, particularly those with the cremoris phenotype, had smaller chromosomes than wild-type strains. Overall, this study, coupled with analysis of the sequenced L. lactis genomes, provides evidence that defined strain dairy starter cultures have arisen from plant L. lactis strains. Adaptation of these strains to the dairy environment has involved loss of functions resulting in smaller chromosomes and acquisition of genes (usually plasmid associated) that facilitate growth in milk. We conclude that dairy starter cultures generally and the industrially used cremoris and diacetylactis phenotype strains in particular comprise a specialized group of L. lactis strains that have been selected to become an essential component of industrial processes and have evolved accordingly, so that they are no longer fit to survive outside the dairy environment. PMID:20847124

  16. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    PubMed

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  17. Mutation-Screening of Pleurotus Ferulae with High Temperature Tolerance by Nitrogen Ion Implantation

    NASA Astrophysics Data System (ADS)

    Chen, Henglei; Wan, Honggui; Zhang, Jun; Zeng, Xianxian

    2008-08-01

    In order to obtain Pleurotus ferulae with high temperature tolerance, conidiophores of wild type strain ACK were implanted with nitrogen ions in energy of 5 ~15 keV and dose of 1.5 × 1015 ~ 1.5 × 1016 cm-2, and a mutant CGMCC1763 was isolated subsequently through thermotolerant screening method. It was found that during riper period the surface layer mycelium of the mutant in mushroom bag wasn't aging neither grew tegument even above 30° C. The mycelium endurable temperature of the mutant was increased by 5°C compared to that of the wild type strain. The fruiting bodies growth temperature of the mutant was 18 ~22°C in daytime and 8~14°C at night. The highest growth temperature of fruiting bodies of the mutant was increased about 7°C w.r.t. that of original strain. Through three generations investigations, it was found that the mutant CGMCC1763 was stable with high temperature tolerance.

  18. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum.

    PubMed

    Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D

    2013-11-01

    The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Isolation of Mycobacterium tuberculosis Strains with a Silent Mutation in rpoB Leading to Potential Misassignment of Resistance Category ▿

    PubMed Central

    Alonso, María; Palacios, Juan José; Herranz, Marta; Penedo, Ana; Menéndez, Ángela; Bouza, Emilio; García de Viedma, Darío

    2011-01-01

    Our study provides an alert regarding the transmission of rifampin-susceptible strains of Mycobacterium tuberculosis with a silent substitution in codon 514 of rpoB. Among 1,450 cases, we identified 12 isolates sharing this mutation and related restriction fragment length polymorphism (RFLP) types. The mutation impaired hybridization with the wild-type probes in three independent commercial assays, which could lead to misassignment of resistance. PMID:21562104

  20. Postreplication Repair of Ultraviolet Damage in Haemophilus influenzae

    PubMed Central

    Leclerc, J. Eugene; Setlow, Jane K.

    1972-01-01

    The deoxyribonucleic acid (DNA) synthesized following ultraviolet (UV) irradiation of wild-type (Rd) and recombination-defective strains of Haemophilus influenzae has been analyzed by alkaline sucrose gradient sedimentation. Strain Rd and a UV-resistant, recombination-defective strain Rd(DB117) rec− are able to carry out postreplication repair, i.e., close the single-strand gaps in the newly synthesized DNA; in the UV-sensitive, recombination-defective strain DB117, the gaps remain open. The lack of postreplication repair in this strain may be the result of degradation of the newly synthesized DNA. PMID:4537422

  1. Mesophilic Aeromonas sp. serogroup O:11 resistance to complement-mediated killing.

    PubMed Central

    Merino, S; Rubires, X; Aguilar, A; Albertí, S; Hernandez-Allés, S; Benedí, V J; Tomas, J M

    1996-01-01

    The complement activation by and resistance to complement-mediated killing of Aeromonas sp. strains from serogroup O:11 were investigated by using different wild-type strains (with an S-layer characteristic of this serogroup) and their isogenic mutants characterized for their surface components (S-layer and lipopolysaccharide [LPS]). All of the Aeromonas sp. serogroup O:11 wild-type strains are unable to activate complement, which suggested that the S-layer completely covered the LPS molecules. We found that the classical complement pathway is involved in serum killing of susceptible Aeromonas sp. mutant strains of serogroup O11, while the alternative complement pathway seems not to be involved, and that the complement activation seems to be independent of antibody. The smooth mutant strains devoid of the S-layer (S-layer isogenic mutants) or isogenic LPS mutant strains with a complete or rather complete LPS core (also without the S-layer) are able to activate complement but are resistant to complement-mediated killing. The reasons for this resistance are that C3b is rapidly degraded, and therefore the lytic membrane attack complex (C5b-9) is not formed. Isogenic LPS rough mutants with an incomplete LPS core are serum sensitive because they bind more C3b than the resistant strains, the C3b is not completely degraded, and therefore the lytic complex (C5b-9) is formed. PMID:8945581

  2. Enhanced Hydrogen Production from Formic Acid by Formate Hydrogen Lyase-Overexpressing Escherichia coli Strains

    PubMed Central

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2005-01-01

    Genetic recombination of Escherichia coli in conjunction with process manipulation was employed to elevate the efficiency of hydrogen production in the resultant strain SR13 2 orders of magnitude above that of conventional methods. The formate hydrogen lyase (FHL)-overexpressing strain SR13 was constructed by combining FHL repressor (hycA) inactivation with FHL activator (fhlA) overexpression. Transcription of large-subunit formate dehydrogenase, fdhF, and large-subunit hydrogenase, hycE, in strain SR13 increased 6.5- and 7.0-fold, respectively, compared to the wild-type strain. On its own, this genetic modification effectively resulted in a 2.8-fold increase in hydrogen productivity of SR13 compared to the wild-type strain. Further enhancement of productivity was attained by using a novel method involving the induction of the FHL complex with high-cell-density filling of a reactor under anaerobic conditions. Continuous hydrogen production was achieved by maintaining the reactor concentration of the substrate (free formic acid) under 25 mM. An initial productivity of 23.6 g hydrogen h−1 liter−1 (300 liters h−1 liter−1 at 37°C) was achieved using strain SR13 at a cell density of 93 g (dry weight) cells/liter. The hydrogen productivity reported in this work has great potential for practical application. PMID:16269707

  3. Regulated Exopolysaccharide Production in Myxococcus xanthus

    PubMed Central

    Kim, Sang-Hoon; Ramaswamy, Srinivas; Downard, John

    1999-01-01

    Myxococcus xanthus fibrils are cell surface-associated structures composed of roughly equal amounts of polysaccharide and protein. The level of M. xanthus polysaccharide production under different conditions in the wild type and in several mutants known to have alterations in fibril production was investigated. Wild-type exopolysaccharide increased significantly as cells entered the stationary phase of growth or upon addition of Ca2+ to growing cells, and the polysaccharide-induced cells exhibited an enhanced capacity for cell-cell agglutination. The activity of the key gluconeogenic pathway enzyme phosphoenolpyruvate carboxykinase (Pck) also increased under these conditions. Most fibril-deficient mutants failed to produce polysaccharide in a stationary-phase- or Ca2+-dependent fashion. However, regulation of Pck activity was generally unimpaired in these mutant strains. In an stk mutant, which overproduces fibrils, polysaccharide production and Pck activity were constitutively high under the conditions tested. Polysaccharide production increased in most fibril-deficient strains when an stk mutant allele was present, indicating that these fibril-deficient mutants retained the basic cellular components required for fibril polysaccharide production. In contrast to other divalent cations tested, Sr2+ effectively replaced Ca2+ in stimulating polysaccharide production, and either Ca2+ or Sr2+ was required for fruiting-body formation by wild-type cells. By using transmission electron microscopy of freeze-substituted log-phase wild-type cells, fibril material was observed as a cell surface-associated layer of uniform thickness composed of filaments with an ordered structure. PMID:10049381

  4. Detrimental Effects of Centrally Administered Angiotensin II are Enhanced in a Mouse Model of Alzheimer Disease Independently of Blood Pressure.

    PubMed

    Takane, Koki; Hasegawa, Yu; Lin, Bowen; Koibuchi, Nobutaka; Cao, Cheng; Yokoo, Takashi; Kim-Mitsuyama, Shokei

    2017-04-20

    The significance of brain angiotensin II in Alzheimer disease (AD) is unclear. To examine the role of brain angiotensin II in AD, intracerebroventricular angiotensin II infusion was performed on 5XFAD mice, a mouse model of AD, and wild-type mice, and the detrimental effects of brain angiotensin II was compared between the 2 strains of mice. Intracerebroventricular angiotensin II infusion significantly impaired cognitive function in 5XFAD mice but not in wild-type mice. This vulnerability of 5XFAD mice to brain angiotensin II was associated with enhancement of hippocampal inflammation and oxidative stress and with increased cerebrovascular amyloid β deposition. We also compared the effect of brain angiotensin II on the heart and skeletal muscle between the 2 strains because AD is associated with heart failure and sarcopenia. We found that cardiac compensatory response of 5XFAD mice to brain angiotensin II-induced hypertension was less than that of wild-type mice. Brain angiotensin II caused skeletal muscle atrophy and injury in 5XFAD mice more than in wild-type mice. Brain angiotensin II seems to be involved in cognitive impairment and brain injury in AD, which is associated with oxidative stress, inflammation, and cerebral amyloid angiopathy. Further, brain angiotensin II may participate in cardiac disease and sarcopenia observed in AD. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  5. The Klebsiella pneumoniae O Antigen Contributes to Bacteremia and Lethality during Murine Pneumonia

    PubMed Central

    Shankar-Sinha, Sunita; Valencia, Gabriel A.; Janes, Brian K.; Rosenberg, Jessica K.; Whitfield, Chris; Bender, Robert A.; Standiford, Ted J.; Younger, John G.

    2004-01-01

    Bacterial surface carbohydrates are important pathogenic factors in gram-negative pneumonia infections. Among these factors, O antigen has been reported to protect pathogens against complement-mediated killing. To examine further the role of O antigen, we insertionally inactivated the gene encoding a galactosyltransferase necessary for serotype O1 O-antigen synthesis (wbbO) from Klebsiella pneumoniae 43816. Analysis of the mutant lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the absence of O antigen. In vitro, there were no detectable differences between wild-type K. pneumoniae and the O-antigen-deficient mutant in regard to avid binding by murine complement C3 or resistance to serum- or whole-blood-mediated killing. Nevertheless, the 72-h 50% lethal dose of the wild-type strain was 30-fold greater than that of the mutant (2 × 103 versus 6 × 104 CFU) after intratracheal injection in ICR strain mice. Despite being less lethal, the mutant organism exhibited comparable intrapulmonary proliferation at 24 h compared to the level of the wild type. Whole-lung chemokine expression (CCL3 and CXCL2) and bronchoalveolar inflammatory cell content were also similar between the two infections. However, whereas the wild-type organism produced bacteremia within 24 h of infection in every instance, bacteremia was not seen in mutant-infected mice. These results suggest that during murine pneumonia caused by K. pneumoniae, O antigen contributes to lethality by increasing the propensity for bacteremia and not by significantly changing the early course of intrapulmonary infection. PMID:14977947

  6. Effect of Oseltamivir Carboxylate Consumption on Emergence of Drug-Resistant H5N2 Avian Influenza Virus in Mallard Ducks

    PubMed Central

    Achenbach, Jenna E.

    2013-01-01

    Oseltamivir carboxylate (OC) has been detected in environmental waters at various levels during recent influenza seasons in humans, reflecting levels of usage and stability of this drug. In consideration of the role of waterfowl as hosts for influenza viruses that may contribute to human infections, we evaluated the effect of consumption of low doses of OC on development of oseltamivir-resistant influenza virus mutants in mallard ducks (Anas platyrhynchos) infected with two different low-pathogenic (LP) H5N2 avian influenza viruses (AIV). We detected development of virus variants carrying a known molecular marker of oseltamivir resistance (neuraminidase E119V) in 4 out of 6 mallards infected with A/Mallard/Minnesota/182742/1998 (H5N2) and exposed to 1,000 ng/liter OC. The mutation first appeared as a minor population on days 5 to 6 and was the dominant genotype on days 6 to 8. Oseltamivir-resistant mutations were not detected in virus from ducks not exposed to the drug or in ducks infected with a second strain of virus and similarly exposed to OC. Virus isolates carrying the E119V mutation displayed in vitro replication kinetics similar to those of the wild-type virus, but in vivo, the E119V virus rapidly reverted back to wild type in the absence of OC, and only the wild-type parental strain was transmitted to contact ducks. These results indicate that consumption by wild waterfowl of OC in drinking water may promote selection of the E119V resistance mutation in some strains of H5N2 AIV that could contribute to viruses infecting human populations. PMID:23459475

  7. Genotype and Phenotype of Echinococcus granulosus Derived from Wild Sheep (Ovis orientalis) in Iran.

    PubMed

    Eslami, Ali; Meshgi, Behnam; Jalousian, Fatemeh; Rahmani, Shima; Salari, Mohammad Ali

    2016-02-01

    The aim of the present study is to determine the characteristics of genotype and phenotype of Echinococcus granulosus derived from wild sheep and to compare them with the strains of E. granulosus sensu stricto (sheep-dog) and E. granulosus camel strain (camel-dog) in Iran. In Khojir National Park, near Tehran, Iran, a fertile hydatid cyst was recently found in the liver of a dead wild sheep (Ovis orientalis). The number of protoscolices (n=6,000) proved enough for an experimental infection in a dog. The characteristics of large and small hooks of metacestode were statistically determined as the sensu stricto strain but not the camel strain (P=0.5). To determine E. granulosus genotype, 20 adult worms of this type were collected from the infected dog. The second internal transcribed spacer (ITS2) of the nuclear ribosomal DNA (rDNA) and cytochrome c oxidase 1 subunit (COX1) of the mitochondrial DNA were amplified from individual adult worm by PCR. Subsequently, the PCR product was sequenced by Sanger method. The lengths of ITS2 and COX1 sequences were 378 and 857 bp, respectively, for all the sequenced samples. The amplified DNA sequences from both ribosomal and mitochondrial genes were highly similar (99% and 98%, respectively) to that of the ovine strain in the GenBank database. The results of the present study indicate that the morpho-molecular features and characteristics of E. granulosus in the Iranian wild sheep are the same as those of the sheep-dog E. granulosus sensu stricto strain.

  8. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.

    PubMed

    Gonzalez, Ramon; Andrews, Barbara A; Molitor, Julia; Asenjo, Juan A

    2003-04-20

    The synthesis of human superoxide dismutase (SOD) in batch cultures of a Saccharomyces cerevisiae strain using a glucose-limited minimal medium was studied through metabolic flux analysis. A stoichiometric model was built, which included 78 reactions, according to metabolic pathways operative in these strains during respirofermentative and oxidative metabolism. It allowed calculation of the distribution of metabolic fluxes during diauxic growth on glucose and ethanol. Fermentation profiles and metabolic fluxes were analyzed at different phases of diauxic growth for the recombinant strain (P+) and for its wild type (P-). The synthesis of SOD by the strain P+ resulted in a decrease in specific growth rate of 34 and 54% (growth on glucose and ethanol respectively) in comparison to the wild type. Both strains exhibited similar flux of glucose consumption and ethanol synthesis but important differences in carbon distribution with biomass/substrate yields and ATP production 50% higher in P-. A higher contribution of fermentative metabolism, with 64% of the energy produced at the phosphorylation level, was observed during SOD production. The flux of precursors to amino acids and nucleotides was higher in the recombinant strain, in agreement with the higher total RNA and protein levels. Lower specific growth rates in strain P+ appear to be related to the decrease in the rate of synthesis of nonrecombinant protein, as well as a decrease in the activities of the pentose phosphate (PP) pathway and TCA cycle. A very different way of entry into the stationary phase was observed for each strain: in the wild-type strain most metabolic fluxes decreased and fluxes related to energy reserve synthesis increased, while in the P+ strain the flux of 22 reactions (including PP pathway and amino acids biosynthesis) related to SOD production increased their fluxes. Changes in SOD production rates at different physiological states appear to be related to the differences in building blocks availability between respirofermentative and oxidative metabolism. Using the present expression system, ideal conditions for SOD synthesis are represented by either active growth during respirofermentative metabolism or transition from a growing to a nongrowing state. An increase in SOD flux could be achieved using an expression system nonassociated to growth and potentially eliminating part of the metabolic burden. Copyright 2003 Wiley Periodicals, Inc.

  9. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants.

    PubMed

    Santos-Ocaña, Carlos; Do, Thai Q; Padilla, Sergio; Navas, Placido; Clarke, Catherine F

    2002-03-29

    Coenzyme Q (Q) is an essential component of the mitochondrial respiratory chain in eukaryotic cells but also is present in other cellular membranes where it acts as an antioxidant. Because Q synthesis machinery in Saccharomyces cerevisiae is located in the mitochondria, the intracellular distribution of Q indicates the existence of intracellular Q transport. In this study, the uptake of exogenous Q(6) by yeast and its transport from the plasma membrane to mitochondria was assessed in both wild-type and in Q-less coq7 mutants derived from four distinct laboratory yeast strains. Q(6) supplementation of medium containing ethanol, a non-fermentable carbon source, rescued growth in only two of the four coq7 mutant strains. Following culture in medium containing dextrose, the added Q(6) was detected in the plasma membrane of each of four coq7 mutants tested. This detection of Q(6) in the plasma membrane was corroborated by measuring ascorbate stabilization activity, as catalyzed by NADH-ascorbate free radical reductase, a transmembrane redox activity that provides a functional assay of plasma membrane Q(6). These assays indicate that each of the four coq7 mutant strains assimilate exogenous Q(6) into the plasma membrane. The two coq7 mutant strains rescued by Q(6) supplementation for growth on ethanol contained mitochondrial Q(6) levels similar to wild type. However, the content of Q(6) in mitochondria from the non-rescued strains was only 35 and 8%, respectively, of that present in the corresponding wild-type parental strains. In yeast strains rescued by exogenous Q(6), succinate-cytochrome c reductase activity was partially restored, whereas non-rescued strains contained very low levels of activity. There was a strong correlation between mitochondrial Q(6) content, succinate-cytochrome c reductase activity, and steady state levels of the cytochrome c(1) polypeptide. These studies show that transport of extracellular Q(6) to the mitochondria operates in yeast but is strain-dependent. When Q biosynthesis is disrupted in yeast strains with defects in the intracellular transport of exogenous Q, the bc(1) complex is unstable. These results indicate that delivery of exogenous Q(6) to mitochondria is required fore activity and stability of the bc(1) complex in yeast coq mutants.

  10. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    PubMed Central

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobactor sp. strain HO1-N. Images PMID:4066609

  11. Genetic Characterization of the Hemagglutinin Genes of Wild-Type Measles Virus Circulating in China, 1993–2009

    PubMed Central

    Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J.; Rota, Paul A.; Xu, Wenbo

    2013-01-01

    Background China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Principal Findings Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993–2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10−3 substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. Conclusions Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China. PMID:24073194

  12. Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability.

    PubMed

    Karmali, A; Pacheco, R; Tata, R; Brown, P

    2001-03-01

    Pseudomonas aeruginosa Ph1 is a mutant strain derived from strain AI3. The strain AI3 is able to use acetanilide as a carbon source through a mutation (T103I) in the amiE gene that encodes an aliphatic amidase (EC 3.5.1.4). The mutations in the amiE gene have been identified (Thr103Ile and Trp138Gly) by direct sequencing of PCR-amplified mutant gene from strain Ph1 and confirmed by sequencing the cloned PCR-amplified gene. Site-directed mutagenesis was used to alter the wild-type amidase gene at position 138 for Gly. The wild-type and mutant amidase genes (W138G, T103I-W138G, and T103I) were cloned into an expression vector and these enzymes were purified by affinity chromatography on epoxy-activated Sepharose 6B-acetamide/phenylacetamide followed by gel filtration chromatography. Altered amidases revealed several differences in kinetic properties, namely, in substrate specificity, sensitivity to urea, optimum pH, and enzyme stability, compared with the wild-type enzyme. The W138G enzyme acted on acetamide, acrylamide, phenylacetamide, and p-nitrophenylacetamide, whereas the double mutant (W138G and T103I) amidase acted only on p-nitrophenylacetamide and phenylacetamide. On the other hand, the T103I enzyme acted on p-nitroacetanilide and acetamide. The heat stability of altered enzymes revealed that they were less thermostable than the wild-type enzyme, as the mutant (W138G and W138G-T103I) enzymes exhibited t1/2 values of 7.0 and 1.5 min at 55 degrees C, respectively. The double substitution T103I and W138G on the amidase molecule was responsible for increased instability due to a conformational change in the enzyme molecule as detected by monoclonal antibodies. This conformational change in altered amidase did not alter its M(r) value and monoclonal antibodies reacted differently with the active and inactive T103I-W138G amidase.

  13. Cultivar-Dependent Transcript Accumulation in Wheat Roots Colonized by Pseudomonas fluorescens Q8r1-96 Wild Type and Mutant Strains

    USDA-ARS?s Scientific Manuscript database

    In Triticum aestivum L. (wheat), the root-colonizing bacterium Pseudomonas fluorescens strain Q8r1-96 produces the antifungal metabolite 2,4-diacetylphloroglucinol (DAPG), suppresses damage caused by soilborne root pathogens, and modulates multiple stress or defense pathways in wheat roots. To test...

  14. Pigmentation restored in mutant laboratory strain of the lady beetle Coleomegilla maculata through dietary supplementation

    USDA-ARS?s Scientific Manuscript database

    A laboratory colony of Coleomegilla maculata (DeGeer), ye, selected for a pigmentation deficiency, was restored to near wild type cuticle coloration by adding crushed heads and wings of the red colored parental strain to the diet. While the wings and other colored portions of the cuticle regained th...

  15. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum

    PubMed Central

    Knecht, David A.; Silale, Augustinas; Traynor, David; Williams, Thomas D.; Thomason, Peter A.; Insall, Robert H.; Chubb, Jonathan R.; Kay, Robert R.; Veltman, Douwe M.

    2018-01-01

    Dictyostelium has a mature technology for molecular-genetic manipulation based around transfection using several different selectable markers, marker re-cycling, homologous recombination and insertional mutagenesis, all supported by a well-annotated genome. However this technology is optimized for mutant, axenic cells that, unlike non-axenic wild type, can grow in liquid medium. There is a pressing need for methods to manipulate wild type cells and ones with defects in macropinocytosis, neither of which can grow in liquid media. Here we present a panel of molecular genetic techniques based on the selection of Dictyostelium transfectants by growth on bacteria rather than liquid media. As well as extending the range of strains that can be manipulated, these techniques are faster than conventional methods, often giving usable numbers of transfected cells within a few days. The methods and plasmids described here allow efficient transfection with extrachromosomal vectors, as well as chromosomal integration at a ‘safe haven’ for relatively uniform cell-to-cell expression, efficient gene knock-in and knock-out and an inducible expression system. We have thus created a complete new system for the genetic manipulation of Dictyostelium cells that no longer requires cell feeding on liquid media. PMID:29847546

  16. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain

    PubMed Central

    2014-01-01

    Background The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization. Results Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions. Conclusions Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases. PMID:25471905

  17. Copper/Zinc-Superoxide Dismutase Is Required for Oxytetracycline Resistance of Saccharomyces cerevisiae

    PubMed Central

    Avery, Simon V.; Malkapuram, Srividya; Mateus, Carolina; Babb, Kimberly S.

    2000-01-01

    Saccharomyces cerevisiae, along with other eukaryotes, is resistant to tetracyclines. We found that deletion of SOD1 (encoding Cu/Zn superoxide dismutase) rendered S. cerevisiae hypersensitive to oxytetracycline (OTC): a sod1Δ mutant exhibited a >95% reduction in colony-forming ability at an OTC concentration of 20 μg ml−1, whereas concentrations of up to 1,000 μg ml−1 had no effect on the growth of the wild type. OTC resistance was restored in the sod1Δ mutant by complementation with wild-type SOD1. The effect of OTC appeared to be cytotoxic and was not evident in a ctt1Δ (cytosolic catalase) mutant or in the presence of tetracycline. SOD1 transcription was not induced by OTC, suggesting that constitutive SOD1 expression is sufficient for wild-type OTC resistance. OTC uptake levels in wild-type and sod1Δ strains were similar. However, lipid peroxidation and protein oxidation were both enhanced during exposure of the sod1Δ mutant, but not the wild type, to OTC. We propose that Sod1p protects S. cerevisiae against a mode of OTC action that is dependent on oxidative damage. PMID:10613865

  18. Expression of a codon-optimized Aspergillus niger pectin methylesterase gene in the methylotrophic yeast Candida boidinii.

    PubMed

    Kawaguchi, Kosuke; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2014-01-01

    A codon-optimized Aspergillus niger pectin methylesterase (PME) gene was expressed in the methylotrophic yeast Canidia boidinii. The PME-producing strains showed better growth on pectin than the wild-type strains, suggesting that the PME-producing strains could efficiently utilize methyl ester moieties of pectin. On the other hand, overproduction of PME negatively affected the proliferation of C. boidinii on leaves of Arabidopsis thaliana.

  19. Finished Genome Sequence of the Laboratory Strain Escherichia coli K-12 RV308 (ATCC 31608).

    PubMed

    Krempl, Peter M; Mairhofer, Juergen; Striedner, Gerald; Thallinger, Gerhard G

    2014-11-20

    Escherichia coli strain K-12 substrain RV308 is an engineered descendant of the K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is heavily used for the expression of single-chain variable fragments. Here, we report the complete genome sequence of E. coli K-12 RV308 (ATCC 31608). Copyright © 2014 Krempl et al.

  20. Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation

    PubMed Central

    Ge, Xiuchun; Stone, Victoria; Zhu, Bin; Kitten, Todd

    2017-01-01

    Biofilm accounts for 65–80 % of microbial infections in humans. Considerable evidence links biofilm formation by oral microbiota to oral disease and consequently systemic infections. Streptococcus sanguinis, a Gram-positive bacterium, is one of the most abundant species of the oral microbiota and it contributes to biofilm development in the oral cavity. Due to its altered biofilm formation, we investigated a biofilm mutant, ΔSSA_0351, that is deficient in type I signal peptidase (SPase) in this study. Although the growth curve of the ΔSSA_0351 mutant showed no significant difference from that of the wild-type strain SK36, biofilm assays using both microtitre plate assay and confocal laser scanning microscopy (CLSM) confirmed a sharp reduction in biofilm formation in the mutant compared to the wild-type strain and the paralogous mutant ΔSSA_0849. Scanning electron microscopy (SEM) revealed remarkable differences in the cell surface morphologies and chain length of the ΔSSA_0351 mutant compared with those of the wild-type strain. Transcriptomic and proteomic assays using RNA sequencing and mass spectrometry, respectively, were conducted on the ΔSSA_0351 mutant to evaluate the functional impact of SPase on biofilm formation. Subsequently, bioinformatics analysis revealed a number of proteins that were differentially regulated in the ΔSSA_0351 mutant, narrowing down the list of SPase substrates involved in biofilm formation to lactate dehydrogenase (SSA_1221) and a short-chain dehydrogenase (SSA_0291). With further experimentation, this list defined the link between SSA_0351-encoded SPase, cell wall biosynthesis and biofilm formation. PMID:28869408

  1. Detection of wide genetic diversity and several novel strains among non-avium nontuberculous mycobacteria isolated from farmed and wild animals in Hungary.

    PubMed

    Rónai, Z; Eszterbauer, E; Csivincsik, Á; Guti, C F; Dencső, L; Jánosi, S; Dán, Á

    2016-07-01

    Besides Mycobacterium avium numerous nontuberculous Mycobacterium (NTM) species exist, which pose constant health risk to both humans and animals. The aim of our study was to identify non-avium NTM isolates from veterinary origin in Hungary, and to detect the occurrence of rifampicin resistance among them. Two hundred and twenty-five strains isolated between 2006 and 2013 from domestic and wild animals and veterinary important samples were identified on the basis of partial DNA sequences of different structural or coding genes, besides commercial kits and multiplex PCR. From 14 different sources, 28 NTM strains and 8 hitherto unidentified strain types were detected. Mycobacterium nonchromogenicum was the most frequently occurring strain (25·78%). Besides, new hosts and mycobacteria-related pathological symptoms were detected. Noticeable rifampicin resistance (42·76%) was found among 159 strains from six different host species. Furthermore, we described the problematics of strain-misidentifications using commercial kits. Our study identified the most common non-avium NTM strains in Hungary, and provided account of their occurrence, host range, and pathogenicity. The detected high rifampicin resistance among the strains isolated mainly from fallow and red deer clearly shows that more attention should be paid to the examination of wild animals especially to those ones which may have contact or shared territory with farmed animals. In domestic animal husbandry the maintenance of tuberculosis free status is of primary importance. As immunological cross-reactions due to NTM hamper the diagnosis of bovine tuberculosis, the precise identification of NTM strains would be essential in the veterinary diagnostics, especially for potentially zoonotic strains. This is the first study investigating the strain diversity of non-avium NTM in Hungary. © 2016 The Society for Applied Microbiology.

  2. Interaction between the Bacterium Pseudomonas fluorescens strain CHA0, its genetic derivatives and vermiculite: Effects on chemical, mineralogical and mechanical properties of vermiculite

    NASA Astrophysics Data System (ADS)

    Mueller, Barbara

    2016-04-01

    Using bacteria of the strain Pseudomonas fluorescens wild type CHA0 and its genetic derivative strains CHA77, CHA89, CHA400, CHA631 and CHA661 (which differ in one gene only) the changes in chemical, mineralogical and rheological properties of the clay mineral vermiculite affected by microbial activity were studied in order to test whether the individually different production of metabolites by the genetically engineered strains may alter the clay mineral vermiculite in distinct ways. With the novel strategy of working with living wild type bacteria, their genetic derivatives and clay, the following properties of the mineral altered by the various strains of Pseudomonas fluorescens were determined: grain size, X-Ray diffraction pattern, intercrystalline swelling with glycerol, layer charge, CEC, BET surface and uptake of trace elements. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine the changes in major, minor and trace elements of the clay vermiculite affected by microbial activity. Among all analyzed trace elements, Fe, Mn and Cu are the most interesting. Fe and Mn are taken up from the clay mineral by all bacterial strains whereas Cu is only removed from vermiculite by strains CHA0, CHA77, CHA400 and CHA661. The latter mentioned strains all produce the antibiotics 2,4-diacetylphloroglucinol and monoacetylphloroglucinol which can complex Cu efficiently. Therefore the alteration of only one gene of the bacteria is causing significant effects on the clay mineral.

  3. Relating the physical properties of Pseudomonas aeruginosa lipopolysaccharides to virulence by atomic force microscopy.

    PubMed

    Ivanov, Ivan E; Kintz, Erica N; Porter, Laura A; Goldberg, Joanna B; Burnham, Nancy A; Camesano, Terri A

    2011-03-01

    Lipopolysaccharides (LPS) are an important class of macromolecules that are components of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. P. aeruginosa contains two different sugar chains, the homopolymer common antigen (A band) and the heteropolymer O antigen (B band), which impart serospecificity. The characteristics of LPS are generally assessed after isolation rather than in the context of whole bacteria. Here we used atomic force microscopy (AFM) to probe the physical properties of the LPS of P. aeruginosa strain PA103 (serogroup O11) in situ. This strain contains a mixture of long and very long polymers of O antigen, regulated by two different genes. For this analysis, we studied the wild-type strain and four mutants, ΔWzz1 (producing only very long LPS), ΔWzz2 (producing only long LPS), DΔM (with both the wzz1 and wzz2 genes deleted), and Wzy::GM (producing an LPS core oligosaccharide plus one unit of O antigen). Forces of adhesion between the LPS on these strains and the silicon nitride AFM tip were measured, and the Alexander and de Gennes model of steric repulsion between a flat surface and a polymer brush was used to calculate the LPS layer thickness (which we refer to as length), compressibility, and spacing between the individual molecules. LPS chains were longest for the wild-type strain and ΔWzz1, at 170.6 and 212.4 nm, respectively, and these values were not statistically significantly different from one another. Wzy::GM and DΔM have reduced LPS lengths, at 34.6 and 37.7 nm, respectively. Adhesion forces were not correlated with LPS length, but a relationship between adhesion force and bacterial pathogenicity was found in a mouse acute pneumonia model of infection. The adhesion forces with the AFM probe were lower for strains with LPS mutations, suggesting that the wild-type strain is optimized for maximal adhesion. Our research contributes to further understanding of the role of LPS in the adhesion and virulence of P. aeruginosa.

  4. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.

    PubMed

    Gopinath, Vipin; Meiswinkel, Tobias M; Wendisch, Volker F; Nampoothiri, K Madhavan

    2011-12-01

    Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the L-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more L-glutamate and L-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM L-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM L-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.

  5. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.

    PubMed

    Fan, Haiyan; Ru, Jinjiang; Zhang, Yuanyuan; Wang, Qi; Li, Yan

    2017-06-01

    Apple ring rot, caused by Botryosphaeria dothidea, is a serious apple disease in China. Bacillus subtilis 9407 was isolated from healthy apples and showed strong antifungal activity against B. dothidea. To identify the primary antifungal compound of B. subtilis 9407 and determine its role in controlling apple ring rot, a transposon mutant library was constructed using TnYLB-1, and a mutant completely defective in antifungal activity was obtained. The gene inactivated in the antifungal activity mutant had 98.5% similarity to ppsB in B. subtilis subsp. subtilis str. 168, which encodes one of the five synthetases responsible for synthesizing fengycin. A markerless ppsB deletion mutant was constructed. Compared with the wild-type strain, lipopeptide crude extracts from ΔppsB showed almost no inhibition of B. dothidea mycelial growth. Furthermore, fengycin-like lipopeptides (retention factor 0.1-0.2) that exhibited antifungal activity against B. dothidea were observed in the wild-type strain by thin-layer chromatography (TLC)-bioautography analysis, but not in ΔppsB. Semipreparative reverse-phase high performance liquid chromatography (RP-HPLC) detection revealed that ΔppsB lost the ability to synthesize fengycin. These results suggest that ppsB is responsible for synthesizing fengycin and that fengycin is the major antifungal compound produced by B. subtilis 9407 against B. dothidea. Moreover, a biocontrol assay showed that the control efficacy of ΔppsB was reduced by half compared with the wild-type strain, indicating that fengycin plays a major role in controlling apple ring rot disease. This is the first report on the use of a B. subtilis strain as a potential biological control agent to control apple ring rot disease by the production of fengycin. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: a mechanisms for chromium resistance.

    PubMed

    Pereira, M; Bartolomé, M C; Sánchez-Fortún, S

    2013-10-01

    Anthropogenic activity constantly releases heavy metals into the environment. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. While hexavalent chromium uptake in plant cells has been reported that an active process by carrying essential anions, the cation Cr(III) appears to be taken up inactively. Dictyosphaerium chlorelloides (Dc1M), an unicellular green alga is a well-studied cell biological model organism. The present study was carried out to investigate the toxic effect of chromium exposures on wild-type Cr(III)-sensitive (Dc1M(wt)) and Cr(III)-tolerant (Dc1M(Cr(III)R30)) strains of these green algae, and to determine the potential mechanism of chromium resistance. Using cell growth as endpoint to determine Cr(III)-sensitivity, the IC₅₀(₇₂) values obtained show significant differences of sensitivity between wild type and Cr(III)-tolerant cells. Scanning electron microscopy (SEM) showed significant morphological differences between both strains, such as decrease in cell size or reducing the coefficient of form; and transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization and cell wall thickening in the Cr(III)-tolerant strain with respect to the wild-type strain. Energy dispersive X-ray analysis (SEM/XEDS) revealed that Cr(III)-tolerant D. chlorelloides cells are able to accumulate considerable amounts of chromium distributed in cell wall (bioadsorption) as well as in cytoplasm, vacuoles, and chloroplast (bio-accumulation). Morphological changes of Cr(III)-tolerant D. chlorelloides cells and the presence of these electron-dense bodies in their cell structures can be understood as a Cr(III) detoxification mechanism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    PubMed

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but <30% of the xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Safety, Protective Immunity, and DIVA Capability of a Rough Mutant Salmonella Pullorum Vaccine Candidate in Broilers.

    PubMed

    Guo, Rongxian; Jiao, Yang; Li, Zhuoyang; Zhu, Shanshan; Fei, Xiao; Geng, Shizhong; Pan, Zhiming; Chen, Xiang; Li, Qiuchun; Jiao, Xinan

    2017-01-01

    Salmonella enterica subsp. enterica serovar Gallinarum biovar Pullorum ( Salmonella Pullorum) is highly adapted to chickens causing an acute systemic disease that results in high mortality. Vaccination represents one approach for promoting animal health, food safety and reducing environmental persistence in Salmonella control. An important consideration is that Salmonella vaccination in poultry should not interfere with the salmonellosis monitoring program. This is the basis of the DIVA (Differentiation of Infected and Vaccinated Animals) program. In order to achieve this goal, waaL mutant was developed on a spiC mutant that was developed previously. The safety, efficacy, and DIVA features of this vaccine candidate ( Salmonella Pullorum Δ spiC Δ waaL ) were evaluated in broilers. Our results show that the truncated LPS in the vaccine strain has a differentiating use as both a bacteriological marker (rough phenotype) and also as a serological marker facilitating the differentiation between infected and vaccinated chickens. The rough mutant showed adequate safety being avirulent in the host chicks and showed increased sensitivity to environmental stresses. Single intramuscular immunization of day-old broiler chicks with the mutant confers ideal protection against lethal wild type challenge by significantly stimulating both humoral and cellular immune responses as well as reducing the colonization of the challenge strain. Significantly lower mean pathology scores were observed in the vaccination group compared to the control group. Additionally, the mutant strain generated cross-protection against challenge with the wild type Salmonella Gallinarum thereby improving survival and with the wild type Salmonella Enteritidis thereby reducing colonization. These results suggest that the double-mutant strain may be a safe, effective, and cross-protective vaccine against Salmonella infection in chicks while conforming to the requirements of the DIVA program.

  9. Evidence for a Role of rpoE in Stressed and Unstressed Cells of Marine Vibrio angustum Strain S14

    PubMed Central

    Hild, Erika; Takayama, Kathy; Olsson, Rose-Marie; Kjelleberg, Staffan

    2000-01-01

    We report the cloning, sequencing, and characterization of the rpoE homolog in Vibrio angustum S14. The rpoE gene encodes a protein with a predicted molecular mass of 19.4 kDa and has been demonstrated to be present as a single-copy gene by Southern blot analysis. The deduced amino acid sequence of RpoE is most similar to that of the RpoE homolog of Sphingomonas aromaticivorans, ς24, displaying sequence similarity and identity of 63 and 43%, respectively. Northern blot analysis demonstrated the induction of rpoE 6, 12, and 40 min after a temperature shift to 40°C. An rpoE mutant was constructed by gene disruption. There was no difference in viability during logarithmic growth, stationary phase, or carbon starvation between the wild type and the rpoE mutant strain. In contrast, survival of the mutant was impaired following heat shock during exponential growth, as well as after oxidative stress at 24 h of carbon starvation. The mutant exhibited microcolony formation during optimal growth temperatures (22 to 30°C), and cell area measurements revealed an increase in cell volume of the mutant during growth at 30°C, compared to the wild-type strain. Moreover, outer membrane and periplasmic space protein analysis demonstrated many alterations in the protein profiles for the mutant during growth and carbon starvation, as well as following oxidative stress, in comparison with the wild-type strain. It is thereby concluded that RpoE has an extracytoplasmic function and mediates a range of specific responses in stressed as well as unstressed cells of V. angustum S14. PMID:11092857

  10. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis

    PubMed Central

    Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh

    2017-01-01

    ABSTRACT Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis. PMID:28674029

  11. Prevalence of Streptococcus suis Genotypes in Wild Boars of Northwestern Germany▿

    PubMed Central

    Baums, Christoph G.; Verkühlen, Gerd Josef; Rehm, Thomas; Silva, Luciana M. G.; Beyerbach, Martin; Pohlmeyer, Klaus; Valentin-Weigand, Peter

    2007-01-01

    Invasive serotype 2 (cps2+) strains of Streptococcus suis cause meningitis in pigs and humans. Four case reports of S. suis meningitis in hunters suggest transmission of S. suis through the butchering of wild boars. Therefore, the objective of this study was to investigate the prevalence of potentially human-pathogenic S. suis strains in wild boars. S. suis was isolated from 92% of all tested tonsils (n = 200) from wild boars. A total of 244 S. suis isolates were genotyped using PCR assays for the detection of serotype-specific genes, the hemolysin gene sly, and the virulence-associated genes mrp and epf. The prevalence of the cps2+ genotype among strains from wild boars was comparable to that of control strains from domestic pig carriers. Ninety-five percent of the cps2+ wild boar strains were positive for mrp, sly, and epf*, the large variant of epf. Interestingly, epf* was significantly more frequently detected in cps2+ strains from wild boars than in those from domestic pigs; epf* is also typically found in European S. suis isolates from humans, including a meningitis isolate from a German hunter. These results suggest that at least 10% of wild boars in Northwestern Germany carry S. suis strains that are potentially virulent in humans. Additional amplified fragment length polymorphism analysis supported this hypothesis, since homogeneous clustering of the epf* mrp+ sly+ cps2+ strains from wild boars with invasive human and porcine strains was observed. PMID:17085699

  12. Prevalence of Streptococcus suis genotypes in wild boars of Northwestern Germany.

    PubMed

    Baums, Christoph G; Verkühlen, Gerd Josef; Rehm, Thomas; Silva, Luciana M G; Beyerbach, Martin; Pohlmeyer, Klaus; Valentin-Weigand, Peter

    2007-02-01

    Invasive serotype 2 (cps2+) strains of Streptococcus suis cause meningitis in pigs and humans. Four case reports of S. suis meningitis in hunters suggest transmission of S. suis through the butchering of wild boars. Therefore, the objective of this study was to investigate the prevalence of potentially human-pathogenic S. suis strains in wild boars. S. suis was isolated from 92% of all tested tonsils (n=200) from wild boars. A total of 244 S. suis isolates were genotyped using PCR assays for the detection of serotype-specific genes, the hemolysin gene sly, and the virulence-associated genes mrp and epf. The prevalence of the cps2+ genotype among strains from wild boars was comparable to that of control strains from domestic pig carriers. Ninety-five percent of the cps2+ wild boar strains were positive for mrp, sly, and epf*, the large variant of epf. Interestingly, epf* was significantly more frequently detected in cps2+ strains from wild boars than in those from domestic pigs; epf* is also typically found in European S. suis isolates from humans, including a meningitis isolate from a German hunter. These results suggest that at least 10% of wild boars in Northwestern Germany carry S. suis strains that are potentially virulent in humans. Additional amplified fragment length polymorphism analysis supported this hypothesis, since homogeneous clustering of the epf* mrp+ sly+ cps2+ strains from wild boars with invasive human and porcine strains was observed.

  13. Inherited differences in crossing over and gene conversion frequencies between wild strains of Sordaria fimicola from "Evolution Canyon".

    PubMed Central

    Saleem, M; Lamb, B C; Nevo, E

    2001-01-01

    Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II. PMID:11779798

  14. Inherited differences in crossing over and gene conversion frequencies between wild strains of Sordaria fimicola from "Evolution Canyon".

    PubMed

    Saleem, M; Lamb, B C; Nevo, E

    2001-12-01

    Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II.

  15. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells.

    PubMed

    Mohanty, Madhu C; Deshpande, Jagadish M

    2013-01-01

    Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.

  16. A mutated ARO4 gene for feedback-resistant DAHP synthase which causes both o-fluoro-DL-phenylalanine resistance and beta-phenethyl-alcohol overproduction in Saccharomyces cerevisiae.

    PubMed

    Fukuda, K; Watanabe, M; Asano, K; Ouchi, K; Takasawa, S

    1991-12-01

    o-Fluoro-DL-phenylalanine (OFP)-resistant mutants which overproduce beta-phenethyl-alcohol were isolated from a laboratory strain of Saccharomyces cerevisiae. Cells of one of the mutants accumulated tyrosine and phenylalanine 1.5-3 fold more than did wild-type cells. Its 3-deoxy-D-arabino-hepturosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15), encoded by ARO4, was free from feedback inhibition by tyrosine. Genetic analysis revealed that the mutation was controlled by a single dominant gene, ARO4-OFP, encoding feedback-resistant DAHP synthase by tyrosine, and that this gene caused both the OFP resistance and beta-phenethyl-alcohol overproduction. This was supported by molecular genetic studies using cloned ARO4 both from the wild-type and its mutant strain.

  17. Genetic Pathway in Acquisition and Loss of Vancomycin Resistance in a Methicillin Resistant Staphylococcus aureus (MRSA) Strain of Clonal Type USA300

    PubMed Central

    Gardete, Susana; Kim, Choonkeun; Hartmann, Boris M.; Mwangi, Michael; Roux, Christelle M.; Dunman, Paul M.; Chambers, Henry F.; Tomasz, Alexander

    2012-01-01

    An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy to evade detection by the host immune system. PMID:22319446

  18. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.

    PubMed

    Hughes, Stephen R; Cox, Elby J; Bang, Sookie S; Pinkelman, Rebecca J; López-Núñez, Juan Carlos; Saha, Badal C; Qureshi, Nasib; Gibbons, William R; Fry, Michelle R; Moser, Bryan R; Bischoff, Kenneth M; Liu, Siqing; Sterner, David E; Butt, Tauseef R; Riedmuller, Steven B; Jones, Marjorie A; Riaño-Herrera, Néstor M

    2015-12-01

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains. © 2015 Society for Laboratory Automation and Screening.

  19. [Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum].

    PubMed

    Zheng, Yueliang; Cao, Shuang; Huang, Yuqi; Liao, Guojian; Hu, Changhua

    2014-12-04

    To study the regulation of laeA overexpression on mevastatin production and sporulation in Penicillium citrinum. We cloned the laeA gene from Penicillium citrinum and constructed the vector pGiHTGi-laeA. The plasmid pGiHTGi-laeA was transformed in Penicillium citrinum by agrobacterium tumefaciens-mediated transformation. Positive transformants were detected by cloning the hygromycin gene. The mevastatin production of the wild type and OE:: laeA was compared by HPLC. The conidia number was counted by blood counting chamber. The biosynthetic gene cluster expression quantity of mevastatin in the wild type and OE: :laeA were analyzed by qRT-PCR. We constructed the plasmid pGiHTGi-laeA, and screened the positive transformants that overexpress the laeA in Penicillium citrinum. With the overexpression of laeA, the mevastatin production was increased from (0.69 ± 0.12) mg/g to (4.02 ± 0.50) mg/g dry cell weight. Compared to the wild type strain, the laeA expression quantity in the OE :: laeA strain increased 29%, and the mlcB expression increased 72%, the mlcR expression increased 153%. Moreover, the overexpression of laeA would decrease the conidia number. Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum, with increases expression of pathway-regulator mlcR, and biosynthetic gene MlcR. These results could guide global regulatory mechanism of mevastatin biosynthesis and the exploitation of high-production strain.

  20. Enhanced Single-Step Bioproduction of the Simvastatin Precursor Monacolin J in an Industrial Strain of Aspergillus terreus by Employing the Evolved Lovastatin Hydrolase.

    PubMed

    Liang, Bo; Huang, Xuenian; Teng, Yun; Liang, Yajing; Yang, Yong; Zheng, Linghui; Lu, Xuefeng

    2018-06-01

    Biosynthesis of simvastatin, the active pharmaceutical ingredient of cholesterol-lowering drug Zocor, has drawn increasing global attention in recent years. Although single-step in vivo production of monacolin J, the intermediate biosynthetic precursor of simvastatin, has been realized by utilizing lovastatin hydrolase (PcEST) in our previous study, about 5% of residual lovastatin is still a problem for industrial production and quality control. In order to improve conversion efficiency and reduce lovastatin residues, modification of PcEST is carried out through directed evolution and a novel two-step high-throughput screening method. The mutant Q140L shows 18-fold improved whole-cell activity as compared to the wild-type, and one fold enhanced catalytic efficiency and 3 °C increased T 50 10 over the wild-type are observed by characterizing the purified protein. Finally, the engineered A. terreus strain overexpressing Q140L mutant exhibited the increased conversion efficiency and the reduced lovastatin residues by comparing with A. terreus strain overexpressing the wild-type PcEST, where almost 100% of the produced lovastatin is hydrolyzed to monacolin J. Therefore, this improved microbial cell factory can realize single-step bioproduction of monacolin J in a more efficient way, providing an attractive and eco-friendly substitute over the existing chemical synthetic routes of monacolin J and promoting complete bioproduction of simvastatin at industrial scale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Bordetella bhu Locus Is Required for Heme Iron Utilization

    PubMed Central

    Vanderpool, Carin K.; Armstrong, Sandra K.

    2001-01-01

    Bordetella pertussis and Bordetella bronchiseptica are capable of obtaining iron from hemin and hemoglobin. Genes encoding a putative bacterial heme iron acquisition system (bhu, for Bordetella heme utilization) were identified in a B. pertussis genomic sequence database, and the corresponding DNA was isolated from a virulent strain of B. pertussis. A B. pertussis bhuR mutant, predicted to lack the heme outer membrane receptor, was generated by allelic exchange. In contrast to the wild-type strain, bhuR mutant PM5 was incapable of acquiring iron from hemin and hemoglobin; genetic complementation of PM5 with the cloned bhuRSTUV genes restored heme utilization to wild-type levels. In parallel studies, B. bronchiseptica bhu sequences were also identified and a B. bronchiseptica bhuR mutant was constructed and confirmed to be defective in heme iron acquisition. The wild-type B. bronchiseptica parent strain grown under low-iron conditions produced the presumptive BhuR protein, which was absent in the bhuR mutant. Furthermore, production of BhuR by iron-starved B. bronchiseptica was markedly enhanced by culture in hemin-supplemented medium, suggesting that these organisms sense and respond to heme in the environment. Analysis of the genetic region upstream of the bhu cluster identified open reading frames predicted to encode homologs of the Escherichia coli ferric citrate uptake regulators FecI and FecR. These putative Bordetella regulators may mediate heme-responsive positive transcriptional control of the bhu genes. PMID:11418569

  2. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction.

    PubMed

    Gil-Bona, Ana; Reales-Calderon, Jose A; Parra-Giraldo, Claudia M; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a "veil growth," never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.

  3. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host–Cell Interaction

    PubMed Central

    Gil-Bona, Ana; Reales-Calderon, Jose A.; Parra-Giraldo, Claudia M.; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a “veil growth,” never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain. PMID:26870022

  4. Complete Genome Sequence of an Avian Paramyxovirus Type 4 Strain Isolated from Domestic Duck at a Live Bird Market in South Korea.

    PubMed

    Tseren-Ochir, Erdene-Ochir; Yuk, Seong-Su; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Kim, Yu-Jin; Kim, Kyu-Jik; Lee, Ji-Ho; Kim, Jun-Beom; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2017-05-18

    We report here the first full-genome sequence of an avian paramyxovirus type 4 (APMV-4) strain isolated from a domestic mallard duck at a live bird market in South Korea. Phylogenetic analyses provide genetic information on a new genetic clade, APMV-4, isolated from a domestic duck and evidence of APMV-4 exchange between poultry and wild birds. Copyright © 2017 Tseren-Ochir et al.

  5. Type 1 wild poliovirus and putative enterovirus 109 in an outbreak of acute flaccid paralysis in Congo, October-November 2010.

    PubMed

    Grard, G; Drexler, J F; Lekana-Douki, S; Caron, M; Lukashev, A; Nkoghe, D; Gonzalez, J P; Drosten, C; Leroy, E

    2010-11-25

    An outbreak of flaccid paralysis syndrome in adults is ongoing in Congo. Molecular analysis of faecal, throat and cerebrospinal samples identified wildtype 1 poliovirus and an additional enterovirus C strain related to enterovirus 109 as the cause. As of 22 November, the cumulative number of cases was 409, of which 169 (41.3%) were fatal. This is one of the largest wild type 1 poliovirus outbreaks ever described associated with an unusually high case fatality rate.

  6. The CpAL Quorum Sensing System Regulates Production of Hemolysins CPA and PFO To Build Clostridium perfringens Biofilms

    PubMed Central

    Shak, Joshua R.; Canizalez-Roman, Adrian

    2015-01-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. PMID:25824838

  7. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein.

    PubMed

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.

  8. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis.

    PubMed

    Wang, Yi; Chen, Zhenmin; Zhao, Ruili; Jin, Tingting; Zhang, Xiaoming; Chen, Xiangdong

    2014-08-31

    Bacillus subtilis is widely used in agriculture and industrial biotechnology; however, cell autolysis significantly decreases its yield in liquid cultures. Numerous factors mediate the lysis of B. subtilis, such as cannibalism factors, prophages, and peptidoglycan (PG) hydrolases. The aim of this work was to use molecular genetic techniques to develop a new strategy to prevent cell lysis and enhance biomass as well as the production of recombinant proteins. Five genes or genetic elements representing three different functional categories were studied as follows: lytC encoding PG hydrolases, the prophage genes xpf and yqxG-yqxH-cwlA (yGlA), and skfA and sdpC that encode cannibalism factors. Cell lysis was reduced and biomass was enhanced by deleting individually skfA, sdpC, xpf, and lytC. We constructed the multiple deletion mutant LM2531 (skfA sdpC lytC xpf) and found that after 4 h of culture, its biomass yield was significantly increased compared with that of prototypical B. subtilis 168 (wild-type) strain and that 15% and 92% of the cells were lysed in cultures of LM2531 and wild-type, respectively. Moreover, two expression vectors were constructed for producing recombinant proteins (β-galactosidase and nattokinase) under the control of the P43 promoter. Cultures of LM2531 and wild-type transformants produced 13741 U/ml and 7991 U/ml of intracellular β-galactosidase, respectively (1.72-fold increase). Further, the level of secreted nattokinase produced by strain LM2531 increased by 2.6-fold compared with wild-type (5226 IU/ml vs. 2028 IU/ml, respectively). Our novel, systematic multigene deletion approach designed to inhibit cell lysis significantly increased the biomass yield and the production of recombinant proteins by B. subtilis. These findings show promise for guiding efforts to manipulate the genomes of other B. subtilis strains that are used for industrial purposes.

  9. Using Molecular Epidemiology to Track Toxoplasma gondii from Terrestrial Carnivores to Marine Hosts: Implications for Public Health and Conservation

    PubMed Central

    VanWormer, Elizabeth; Miller, Melissa A.; Conrad, Patricia A.; Grigg, Michael E.; Rejmanek, Daniel; Carpenter, Tim E.; Mazet, Jonna A. K.

    2014-01-01

    Background Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes) for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range. Methodology/Principal Findings Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico) were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3–148.6) for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3–250.7). A spatial cluster of terrestrial Type II infection (P = 0.04) was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P≤0.01) were detected in less developed landscapes. Conclusions Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife. PMID:24874796

  10. Identifying the seasonal origins of human campylobacteriosis

    PubMed Central

    STRACHAN, N. J. C.; ROTARIU, O.; SMITH-PALMER, A.; COWDEN, J.; SHEPPARD, S. K.; O’BRIEN, S. J.; MAIDEN, M. C. J.; MACRAE, M.; BESSELL, P. R.; MATTHEWS, L.; REID, S. W. J.; INNOCENT, G. T.; OGDEN, I. D.; FORBES, K. J.

    2014-01-01

    SUMMARY Human campylobacteriosis exhibits a distinctive seasonality in temperate regions. This paper aims to identify the origins of this seasonality. Clinical isolates [typed by multi-locus sequence typing (MLST)] and epidemiological data were collected from Scotland. Young rural children were found to have an increased burden of disease in the late spring due to strains of non-chicken origin (e.g. ruminant and wild bird strains from environmental sources). In contrast the adult population had an extended summer peak associated with chicken strains. Travel abroad and UK mainland travel were associated with up to 17% and 18% of cases, respectively. International strains were associated with chicken, had a higher diversity than indigenous strains and a different spectrum of MLST types representative of these countries. Integrating empirical epidemiology and molecular subtyping can successfully elucidate the seasonal components of human campylobacteriosis. The findings will enable public health officials to focus strategies to reduce the disease burden. PMID:22989449

  11. Yersinia pestis caf1 variants and the limits of plague vaccine protection.

    PubMed

    Quenee, Lauriane E; Cornelius, Claire A; Ciletti, Nancy A; Elli, Derek; Schneewind, Olaf

    2008-05-01

    Yersinia pestis, the highly virulent agent of plague, is a biological weapon. Strategies that prevent plague have been sought for centuries, and immunization with live, attenuated (nonpigmented) strains or subunit vaccines with F1 (Caf1) antigen is considered effective. We show here that immunization with live, attenuated strains generates plague-protective immunity and humoral immune responses against F1 pilus antigen and LcrV. Y. pestis variants lacking caf1 (F1 pili) are not only fully virulent in animal models of bubonic and pneumonic plague but also break through immune responses generated with live, attenuated strains or F1 subunit vaccines. In contrast, immunization with purified LcrV, a protein at the tip of type III needles, generates protective immunity against the wild-type and the fully virulent caf1 mutant strain, in agreement with the notion that LcrV can elicit vaccine protection against both types of virulent plague strains.

  12. Combinatorial analysis of enzymatic bottlenecks of L-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae.

    PubMed

    Mao, Jiwei; Liu, Quanli; Song, Xiaofei; Wang, Hesuiyuan; Feng, Hui; Xu, Haijin; Qiao, Mingqiang

    2017-07-01

    To identify new enzymatic bottlenecks of L-tyrosine pathway for further improving the production of L-tyrosine and its derivatives. When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l -1 , respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l -1 ) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain. Combinatorial metabolic engineering provides a new strategy for further improvement of L-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.

  13. Deletion endpoint allele-specificity in the developmentally regulated elimination of an internal sequence (IES) in Paramecium.

    PubMed Central

    Dubrana, K; Le Mouël, A; Amar, L

    1997-01-01

    Ciliated protozoa undergo thousands of site-specific DNA deletion events during the programmed development of micronuclear genomes to macronuclear genomes. Two deletion elements, W1 and W2, were identified in the Paramecium primaurelia wild-type 156 strain. Here, we report the characterization of both elements in wild-type strain 168 and show that they display variant deletion patterns when compared with those of strain 156. The W1 ( 168 ) element is defective for deletion. The W2 ( 168 ) element is excised utilizing two alternative boundaries on one side, both are different from the boundary utilized to excise the W2156 element. By crossing the 156 and 168 strains, we demonstrate that the definition of all deletion endpoints are each controlled by cis -acting determinant(s) rather than by strain-specific trans-acting factor(s). Sequence comparison of all deleted DNA segments indicates that the 5'-TA-3'terminal sequence is strictly required at their ends. Furthermore the identity of the first eight base pairs of these ends to a previously established consensus sequence correlates with the frequency of the corresponding deletion events. Our data implies the existence of an adaptive convergent evolution of these Paramecium deleted DNA segment end sequences. PMID:9171098

  14. Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production

    PubMed Central

    Cho, Jung-Hee; Yoon, Joo-Mi; Lee, Sang-Won; Noh, Young-Hee; Cha, Jae-Soon

    2013-01-01

    It has been known that most regulation of pathogenicity factor (rpf) genes in xanthomonads regulates virulence in response to the diffusible signal factor, DSF. Although many rpf genes have been functionally characterized, the function of rpfE is still unknown. We cloned the rpfE gene from a Xanthomonas oryzae pv. oryzae (Xoo) Korean race KACC10859 and generated mutant strains to elucidate the role of RpfE with respect to the rpf system. Through experiments using the rpfE-deficient mutant strain, we found that mutation in rpfE gene in Xoo reduced virulence, swarm motility, and production of virulence factors such as cellulase and extracellular polysaccharide. Disease progress by the rpfE-deficient mutant strain was significantly slowed compared to disease progress by the wild type and the number of the rpfE-deficient mutant strain was lower than that of the wild type in the early phase of infection in the inoculated rice leaf. The rpfE mutant strain was unable to utilize sucrose or xylose as carbon sources efficiently in culture. The mutation in rpfE, however, did not affect DSF synthesis. Our results suggest that the rpfE gene regulates the virulence of Xoo under different nutrient conditions without change of DSF production. PMID:25288965

  15. Effect of an ntrC mutation on amino acid or urea utilization and on nitrogenase switch-off in Herbaspirillum seropedicae.

    PubMed

    Gusso, Claudio L; de Souza, Emanuel M; Rigo, Liu Un; de Oliveira Pedrosa, Fábio; Yates, M G; de M Rego, Fabiane G; Klassen, Giseli

    2008-03-01

    Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with L-alanine, L-serine, L-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol.L-1 ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol x L-1 urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.

  16. Protective Role of the Capsule and Impact of Serotype 4 Switching on Streptococcus mitis

    PubMed Central

    Rukke, Håkon V.; Kalluru, Raja Sab; Repnik, Urska; Gerlini, Alice; José, Ricardo J.; Periselneris, Jimstan; Marshall, Helina; Griffiths, Gareth; Oggioni, Marco Rinaldo; Brown, Jeremy S.

    2014-01-01

    The polysaccharide capsule surrounding Streptococcus pneumoniae is essential for virulence. Recently, Streptococcus mitis, a human commensal and a close relative of S. pneumoniae, was also shown to have a capsule. In this study, the S. mitis type strain switched capsule by acquisition of the serotype 4 capsule locus of S. pneumoniae TIGR4, following induction of competence for natural transformation. Comparison of the wild type with the capsule-switching mutant and with a capsule deletion mutant showed that the capsule protected S. mitis against phagocytosis by RAW 264.7 macrophages. This effect was enhanced in the S. mitis strain expressing the S. pneumoniae capsule, which showed, in addition, increased resistance against early clearance in a mouse model of lung infection. Expression of both capsules also favored survival in human blood, and the effect was again more pronounced for the capsule-switching mutant. S. mitis survival in horse blood or in a mouse model of bacteremia was not significantly different between the wild type and the mutant strains. In all models, S. pneumoniae TIGR4 showed higher rates of survival than the S. mitis type strain or the capsule-switching mutant, except in the lung model, in which significant differences between S. pneumoniae TIGR4 and the capsule-switching mutant were not observed. Thus, we identified conditions that showed a protective function for the capsule in S. mitis. Under such conditions, S. mitis resistance to clearance could be enhanced by capsule switching to serotype 4, but it was enhanced to levels lower than those for the virulent strain S. pneumoniae TIGR4. PMID:24958712

  17. Molecular characterization of Belgian pseudorabies virus isolates from domestic swine and wild boar.

    PubMed

    Verpoest, Sara; Cay, Ann Brigitte; De Regge, Nick

    2014-08-06

    Aujeszky's disease is an economically important disease in domestic swine caused by suid herpesvirus 1, also called pseudorabies virus (PRV). In several European countries, including Belgium, the virus has successfully been eradicated from the domestic swine population. The presence of PRV in the wild boar population however poses a risk for possible reintroduction of the virus into the domestic pig population. It is therefore important to assess the genetic relatedness between circulating strains and possible epidemiological links. In this study, nine historical Belgian domestic swine isolates that circulated before 1990 and five recent wild boar isolates obtained since 2006 from Belgium and the Grand Duchy of Luxembourg were genetically characterized by restriction fragment length polymorphism (RFLP) analysis and phylogenetic analysis. While all wild boar isolates were characterized as type I RFLP genotypes, the RFLP patterns of the domestic swine isolates suggest that a shift from genotype I to genotype II might have occurred in the 1980s in the domestic population. By phylogenetic analysis, Belgian wild boar isolates belonging to both clade A and B were observed, while all domestic swine isolates clustered within clade A. The joint phylogenetic analysis of both wild boar and domestic swine strains showed that some isolates with identical sequences were present within both populations, raising the question whether these strains represent an increased risk for reintroduction of the virus into the domestic population. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. [Analysis of genetic characteristics of type II non-wild poliovirus in mainland China, 2010].

    PubMed

    Jiang, Hua-Fang; Yan, Dong-Mei; Zhu, Shuang-Li; Wang, Dong-Yan; Zhang, Yong; Zhu, Hui; An, Hong-Qiu; Xu, Wen-Bo; Kong, Xiao-Hui

    2012-03-01

    To study the genetic characteristics of 123 type II non-wild polioviruses isolated from acute flaccid paralysis (AFP) cases in mainland China in 2010, provide the scientific basis for maintaining the "polio-free" status, and the switching use of polio vaccine for China. VP1 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and the PCR products were then sequenced. The sequence results were analyzed with Sequencher 4.8, BioEdit 7.0.9 and MEGA 5.0. Of 65 strains, nt2909 was found to be a mutation hotspot, and also a neurovirulence determinant in VP1 region. During 2010, two vaccine-derived polioviruses (VDPVs) were isolated from Yunnan province, China and no wild poliovirus (WPV) was isolated. The epidemiological studies and laboratory results of the two VDPVs showed that they were newly discovered VDPVs because of the genetic difference from other VDPVs strains isolated in the world, implying the sensitive poliovirus surveillance network could timely detect the transmission of VDPVs and the importation of WPV.

  19. Molecular characterization of enteroviruses including a new type EV-C99 isolated from Xinjiang students in Shandong, China in 2011.

    PubMed

    Tao, Zexin; Yuan, Qun; Lin, Xiaojuan; Wang, Suting; Liu, Yao; Ji, Feng; Xiong, Ping; Cui, Ning; Song, Lizhi; Wang, Mei; Xu, Aiqiang

    2014-10-09

    The last case of infection with wild-type poliovirus indigenous to China was reported in 1994. In 2011, a poliomyelitis outbreak caused by imported wide-type poliovirus occurred in Xinjiang Uighur Autonomous Region. Here, we report the results of enterovirus (EV) isolation from Xinjiang students that returned to school in Shandong after summer vacation during this outbreak. Stool specimens from 376 students were collected and 10 EV strains were isolated including 4 polioviruses (All Sabin strains), 1 coxsackievirus (CV) A13, 3 CVA17 and 2 EV-C99. VP1 sequence analysis revealed these CVA13, CVA17 and EV-C99 strains had 71.3-81.8%, 76.5-84.6% and 74.2-82.9% nucleotide similarity with strains from other countries within a serotype, respectively. EV-C99 strains had 82.7-92.8% VP1 similarity with two previously reported Xinjiang strains. Complete genome analysis on EV-C99 strains revealed intra-serotypic genetic recombination events. These findings reflect great genetic divergence between Chinese strains and strains from other countries of the three types, and provide valuable information on monitoring EV transmission over long distance.

  20. Creation of High-Yield Polyhydroxyalkanoates Engineered Strains by Low Energy Ion Implantation

    NASA Astrophysics Data System (ADS)

    Qian, Shiquan; Cheng, Ying; Zhu, Suwen; Cheng, Beijiu

    2008-12-01

    Polyhydroxyalkanoates (PHAs), as a candidate for biodegradable plastic materials, can be synthesized by numerous microorganisms. However, as its production cost is high in comparison with those of chemically synthesized plastics, a lot of research has been focused on the efficient production of PHAs using different methods. In the present study, the mutation effects of PHAs production in strain pCB4 were investigated with implantation of low energy ions. It was found that under the implantation conditions of 7.8 × 1014 N+/cm2 at 10 keV, a high-yield PHAs strain with high genetic stability was generated from many mutants. After optimizing its fermentation conditions, the biomass, PHAs concentration and PHAs content of pCBH4 reached 2.26 g/L, 1.81 g/L, and 80.08% respectively, whereas its wild type controls were about 1.24 g/L, 0.61 g/L, and 49.20%. Moreover, the main constituent of PHAs was identified as poly-3-hydroxybutyrates (PHB) in the mutant stain and the yield of this compound was increased up to 41.33% in contrast to that of 27.78% in the wild type strain.

Top