Science.gov

Sample records for strand breaks dna

  1. Repair of DNA Double-Strand Breaks

    NASA Astrophysics Data System (ADS)

    Falk, Martin; Lukasova, Emilie; Kozubek, Stanislav

    The genetic information of cells continuously undergoes damage induced by intracellular processes including energy metabolism, DNA replication and transcription, and by environmental factors such as mutagenic chemicals and UV and ionizing radiation. This causes numerous DNA lesions, including double strand breaks (DSBs). Since cells cannot escape this damage or normally function with a damaged genome, several DNA repair mechanisms have evolved. Although most "single-stranded" DNA lesions are rapidly removed from DNA without permanent damage, DSBs completely break the DNA molecule, presenting a real challenge for repair mechanisms, with the highest risk among DNA lesions of incorrect repair. Hence, DSBs can have serious consequences for human health. Therefore, in this chapter, we will refer only to this type of DNA damage. In addition to the biochemical aspects of DSB repair, which have been extensively studied over a long period of time, the spatio-temporal organization of DSB induction and repair, the importance of which was recognized only recently, will be considered in terms of current knowledge and remaining questions.

  2. DNA Strand Breaks, Neurodegeneration and Aging in the Brain

    PubMed Central

    Katyal, Sachin; McKinnon, Peter J.

    2013-01-01

    Defective responses to DNA single- or double-strand breaks can result in neurological disease, underscoring the critical importance of DNA repair for neural homeostasis. Human DNA repair-deficient syndromes are generally congenital, in which brain pathology reflects the consequences of developmentally incurred DNA damage. Although, it is unclear to what degree DNA strand-break repair defects in mature neural cells contributes to disease pathology. However, DNA single-strand breaks are a relatively common lesion which if not repaired can impact cells via interference with transcription. Thus, this lesion, and probably to a lesser extent DNA double strand breaks, may be particularly relevant to aging in the neural cell population. In this review we will examine the consequences of defective DNA strand break repair towards homeostasis in the brain. Further, we also consider the utility of mouse models as reagents to understand the connection between DNA strand breaks and aging in the brain. PMID:18455751

  3. Biological consequences of strand breaks in plasmid and viral DNA.

    PubMed Central

    Schulte-Frohlinde, D.

    1987-01-01

    Some biological consequences of strand breakage in biologically active single- and double-stranded plasmid and viral DNA are examined. A double-strand break in DNA produced by restriction-endonucleases in aqueous solution is not a 100% lethal damage. The survival depends strongly on the structure of the end groups. Evidence is presented that survival is the result of a balance between degradation and repair. The enzymatically produced double-strand break (dsb) is a potentially lethal damage similar to the irradiation-produced dsb in cells. Results with double-stranded biologically active DNA treated either with gamma-rays, heat, pancrease nuclease or UV-light in aqueous solution suggest that a single-strand damage is also a potentially lethal damage. Mechanisms for conversion of single-strand damage to lethal events are discussed. PMID:3307866

  4. Targeting DNA double-strand breaks with TAL effector nucleases.

    PubMed

    Christian, Michelle; Cermak, Tomas; Doyle, Erin L; Schmidt, Clarice; Zhang, Feng; Hummel, Aaron; Bogdanove, Adam J; Voytas, Daniel F

    2010-10-01

    Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites.

  5. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways.

    PubMed Central

    Nelson, W G; Kastan, M B

    1994-01-01

    The tumor suppressor protein p53 serves as a critical regulator of a G1 cell cycle checkpoint and of apoptosis following exposure of cells to DNA-damaging agents. The mechanism by which DNA-damaging agents elevate p53 protein levels to trigger G1/S arrest or cell death remains to be elucidated. In fact, whether damage to the DNA template itself participates in transducing the signal leading to p53 induction has not yet been demonstrated. We exposed human cell lines containing wild-type p53 alleles to several different DNA-damaging agents and found that agents which rapidly induce DNA strand breaks, such as ionizing radiation, bleomycin, and DNA topoisomerase-targeted drugs, rapidly triggered p53 protein elevations. In addition, we determined that camptothecin-stimulated trapping of topoisomerase I-DNA complexes was not sufficient to elevate p53 protein levels; rather, replication-associated DNA strand breaks were required. Furthermore, treatment of cells with the antimetabolite N(phosphonoacetyl)-L-aspartate (PALA) did not cause rapid p53 protein increases but resulted in delayed increases in p53 protein levels temporally correlated with the appearance of DNA strand breaks. Finally, we concluded that DNA strand breaks were sufficient for initiating p53-dependent signal transduction after finding that introduction of nucleases into cells by electroporation stimulated rapid p53 protein elevations. While DNA strand breaks appeared to be capable of triggering p53 induction, DNA lesions other than strand breaks did not. Exposure of normal cells and excision repair-deficient xeroderma pigmentosum cells to low doses of UV light, under conditions in which thymine dimers appear but DNA replication-associated strand breaks were prevented, resulted in p53 induction attributable to DNA strand breaks associated with excision repair. Our data indicate that DNA strand breaks are sufficient and probably necessary for p53 induction in cells with wild-type p53 alleles exposed to DNA

  6. DNA double-strand break repair in a cellular context.

    PubMed

    Shibata, A; Jeggo, P A

    2014-05-01

    Substantial insight into the mechanisms responding to DNA double-strand breaks has been gained from molecular, biochemical and structural approaches. Attention is now focusing on understanding the interplay between the pathways, how they interface through the cell cycle and the communication with other DNA transactions, such as replication and transcription. Understanding these aspects will facilitate an assessment of how cancer cells have modified these processes to achieve unlimited proliferative capacity and adaptability, and pave the way to identify targets suitable for therapy. Here, we briefly overview the processes responding to double-strand breaks and discuss our current understanding of their interplay in a cellular context.

  7. DNA in motion during double-strand break repair.

    PubMed

    Miné-Hattab, Judith; Rothstein, Rodney

    2013-11-01

    DNA organization and dynamics profoundly affect many biological processes such as gene regulation and DNA repair. In this review, we present the latest studies on DNA mobility in the context of DNA damage. Recent studies demonstrate that DNA mobility is dramatically increased in the presence of double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae. As a consequence, chromosomes explore a larger nuclear volume, facilitating homologous pairing but also increasing the rate of ectopic recombination. Increased DNA dynamics is dependent on several homologous recombination (HR) proteins and we are just beginning to understand how chromosome dynamics is regulated after DNA damage.

  8. Repair of DNA Double-Strand Breaks in Heterochromatin

    PubMed Central

    Watts, Felicity Z.

    2016-01-01

    DNA double-strand breaks (DSBs) are among the most damaging lesions in DNA, since, if not identified and repaired, they can lead to insertions, deletions or chromosomal rearrangements. DSBs can be in the form of simple or complex breaks, and may be repaired by one of a number of processes, the nature of which depends on the complexity of the break or the position of the break within the chromatin. In eukaryotic cells, nuclear DNA is maintained as either euchromatin (EC) which is loosely packed, or in a denser form, much of which is heterochromatin (HC). Due to the less accessible nature of the DNA in HC as compared to that in EC, repair of damage in HC is not as straightforward as repair in EC. Here we review the literature on how cells deal with DSBs in HC. PMID:27999260

  9. DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair

    PubMed Central

    Abdou, Ismail; Poirier, Guy G.; Hendzel, Michael J.; Weinfeld, Michael

    2015-01-01

    In the current model of DNA SSBR, PARP1 is regarded as the sensor of single-strand breaks (SSBs). However, biochemical studies have implicated LIG3 as another possible SSB sensor. Using a laser micro-irradiation protocol that predominantly generates SSBs, we were able to demonstrate that PARP1 is dispensable for the accumulation of different single-strand break repair (SSBR) proteins at sites of DNA damage in live cells. Furthermore, we show in live cells for the first time that LIG3 plays a role in mediating the accumulation of the SSBR proteins XRCC1 and PNKP at sites of DNA damage. Importantly, the accumulation of LIG3 at sites of DNA damage did not require the BRCT domain-mediated interaction with XRCC1. We were able to show that the N-terminal ZnF domain of LIG3 plays a key role in the enzyme's SSB sensing function. Finally, we provide cellular evidence that LIG3 and not PARP1 acts as the sensor for DNA damage caused by the topoisomerase I inhibitor, irinotecan. Our results support the existence of a second damage-sensing mechanism in SSBR involving the detection of nicks in the genome by LIG3. PMID:25539916

  10. Genome-wide mapping of DNA strand breaks.

    PubMed

    Leduc, Frédéric; Faucher, David; Bikond Nkoma, Geneviève; Grégoire, Marie-Chantal; Arguin, Mélina; Wellinger, Raymund J; Boissonneault, Guylain

    2011-02-25

    Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  11. The invariance of the total direct DNA strand break yield

    SciTech Connect

    Bernal, M. A.; Almeida, C. E. de; Sampaio, C.; Incerti, S.; Champion, C.; Nieminen, P.

    2011-07-15

    Purpose: The invariance of the total direct strand break yield when DNA is irradiated by different types of particles and energies has been reported by previous works. This study is intended to explain the physical causes of this behavior. Methods: The geant4-dna extension of the geant4 general purpose Monte Carlo simulation toolkit has been used to determine direct strand break yields induced by protons and alpha particles impacting on a B-DNA geometrical model, including five organization levels of the human genetic material. The linear energy transfer (LET) of such particles ranges from 4.8 keV/{mu}m (10 MeV protons) to about 235 keV/{mu}m (2 MeV alpha particles), at 5.225 {mu}m depth (near the center of the region of interest). Direct total, single and double strand break probabilities have been determined in a liquid water homogeneous medium with a 1.06 g/cm {sup 3} density. The energetic spectra of single strand breaks (SSB), the number of energy deposition events, and the SSB/event ratio were determined. Results: The target-hit probability was found to be independent of both the type and the energy of the incident particle, even if this latter is a secondary electron. This probability is determined by the geometrical properties of the system. The total strand break yield and the number of energy deposition events required to reach a certain absorbed dose were found nearly independent of the type and energy of the incident ion (proton or alpha). In contrast, the double strand break (DSB) yield was found strongly dependent on the LET of the incident radiation. Conclusions: The SSB generation process is homogeneous and independent of the LET of the particles involved, at least within the proton and alpha particle energy range here studied. The target-hit probability is only determined by the ratio between the total volume occupied by targets and that of the ROI where the radiation deposits its energy. The maximum separation distance between two adjacent SSBs to

  12. Electromagnetic fields and the induction of DNA strand breaks.

    PubMed

    Ruiz-Gómez, Miguel J; Martínez-Morillo, Manuel

    2009-01-01

    The International Agency for Research on Cancer (IARC) has classified the extremely low-frequency (ELF) electromagnetic fields (EMF) as "possible carcinogenic" based on the reported effects. The purpose of this work is to review and compare the recent findings related to the induction of DNA strand breaks (DNA-SB) by magnetic field (MF) exposure. We found 29 studies (genotoxic and epigenetic) about the induction of DNA-SB by MF. 50% showed effect of MF and 50% showed no DNA-SB. Nevertheless, considering only genotoxic or only epigenetic studies, 37.5% and 69.2% found induction of DNA-SB by MF, respectively. In relation to these data it seems that MF could act as a co-inductor of DNA damage rather than as a genotoxic agent per se. Nevertheless, the published results, in some cases conflicting with negative findings, do not facilitate to obtain a common consensus about MF effects and biophysical interaction mechanisms.

  13. Repair of DNA double strand breaks: in vivo biochemistry.

    PubMed

    Sugawara, Neal; Haber, James E

    2006-01-01

    Double strand breaks (DSBs) can cause damage to the genomic integrity of a cell as well as initiate genetic recombination processes. The HO and I-SceI endonucleases from budding yeast have provided a way to study these events by inducing a unique DSB in vivo under the control of a galactose-inducible promoter. The GAL::HO construct has been used extensively to study processes such as nonhomologous end joining, intra- and interchromosomal gene conversion, single strand annealing and break-induced recombination. Synchronously induced DSBs have also been important in the study of the DNA damage checkpoint, adaptation, and recovery pathways of yeast. This chapter describes methods of using GAL::HO to physically monitor the progression of events following a DSB, specifically the events leading to the switching of mating type by gene conversion of MAT using the silent donors at HML and HMR. Southern blot analysis can be used to follow the overall events in this process such as the formation of the DSB and product. Denaturing alkaline gels and slot blot techniques can be employed to follow the 5' to 3' resection of DNA starting at the DSB. After resection, the 3' tail initiates a homology search and then strand invades its homologous sequence at the donor cassette. Polymerase chain reaction is an important means to assay strand invasion and the priming of new DNA synthesis as well as the completion of gene conversion. Methods such as chromatin immunoprecipitation have provided a means to study many proteins that associate with a DSB, including not only recombination proteins, but also proteins involved in nonhomologous end joining, cell cycle arrest, chromatin remodeling, cohesin function, and mismatch repair.

  14. DNA Double Strand Breaks: A Common Theme in Neurodegenerative Diseases.

    PubMed

    Merlo, Daniela; Mollinari, Cristiana; Racaniello, Mauro; Garaci, Enrico; Cardinale, Alessio

    2016-01-01

    Accumulation of DNA damage and impairment of DNA repair systems are involved in the pathogenesis of different neurodegenerative diseases. Whenever DNA damage is too extensive, the DNA damage response pathway provides for triggering cellular senescence and/or apoptosis. However, whether the increased level of DNA damage in neurodegenerative disorders is a cause rather than the consequence of neurodegenerative events remains to be established. Among possible DNA lesions, DNA double strand breaks (DSBs) are rare events, nevertheless they are the most lethal form of DNA damage. In neurons, DSBs are particularly deleterious because of their reduced DNA repair capability as compared to proliferating cells. Here, we provide a description of DSB repair systems and describe human studies showing the presence of several types of DNA lesions in three major neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Then, we analyze the role of DSB accumulation and deficiency of DSB repair systems in neurodegeneration by examining studies on animal models of neurodegenerative diseases.

  15. Chromatin remodeling in DNA double-strand break repair.

    PubMed

    Bao, Yunhe; Shen, Xuetong

    2007-04-01

    ATP-dependent chromatin remodeling complexes use ATP hydrolysis to remodel nucleosomes and have well-established functions in transcription. However, emerging lines of evidence suggest that chromatin remodeling complexes are important players in DNA double-strand break (DSB) repair as well. The INO80 and SWI2 subfamilies of chromatin remodeling complexes have been found to be recruited to the double-strand lesions and to function directly in both homologous recombination and non-homologous end-joining, the two major conserved DSB repair pathways. Improperly repaired DSBs are implicated in cancer development in higher organisms. Understanding how chromatin remodeling complexes contribute to DSB repair should provide new insights into the mechanisms of carcinogenesis and might suggest new targets for cancer treatment.

  16. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes

    PubMed Central

    Morales, Maria E.; Derbes, Rebecca S.; Ade, Catherine M.; Ortego, Jonathan C.; Stark, Jeremy; Deininger, Prescott L.; Roy-Engel, Astrid M.

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair. PMID:26966913

  17. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    PubMed

    Morales, Maria E; Derbes, Rebecca S; Ade, Catherine M; Ortego, Jonathan C; Stark, Jeremy; Deininger, Prescott L; Roy-Engel, Astrid M

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  18. Rejoining of DNA strand breaks by T4 DNA ligase in mammalian cells.

    PubMed

    Ortiz, T; Edreira, A; Piñero, J

    2002-06-01

    We have tested the ability of T4 DNA ligase to rejoin radiation-induced DNA strand breaks in living hamster cells (CHO-K1, EM9, xrs-5). T4 DNA ligase was introduced into cells by electroporation prior to x-irradiation. Single- and double-strand breaks were measured by the alkaline comet assay technique, and double-strand breaks (DSBs) were evaluated by the pulsed-field gel electrophoresis method. In the comet assay, the three cell lines showed reduced tail moments following pretreatment with T4 DNA ligase, both directly after irradiation and after repair incubation for 4 h. Similarly, the results obtained from pulsed-field gel electrophoresis showed reduced DSB frequencies after pretreatment with T4 DNA ligase. We conclude that exogeneous T4 ligase contributes to rejoining of radiation-induced strand breaks.

  19. Entropy in DNA Double-Strand Break, Detection and Signaling

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Schindler, Christina; Heermann, Dieter

    2014-03-01

    In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.

  20. DNA double-strand break repair pathway choice and cancer.

    PubMed

    Aparicio, Tomas; Baer, Richard; Gautier, Jean

    2014-07-01

    Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB "mis-repair", in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer.

  1. DNA double strand break repair, aging and the chromatin connection.

    PubMed

    Gorbunova, Vera; Seluanov, Andrei

    2016-06-01

    Are DNA damage and mutations possible causes or consequences of aging? This question has been hotly debated by biogerontologists for decades. The importance of DNA damage as a possible driver of the aging process went from being widely recognized to then forgotten, and is now slowly making a comeback. DNA double strand breaks (DSBs) are particularly relevant to aging because of their toxicity, increased frequency with age and the association of defects in their repair with premature aging. Recent studies expand the potential impact of DNA damage and mutations on aging by linking DNA DSB repair and age-related chromatin changes. There is overwhelming evidence that increased DNA damage and mutations accelerate aging. However, an ultimate proof of causality would be to show that enhanced genome and epigenome stability delays aging. This is not an easy task, as improving such complex biological processes is infinitely more difficult than disabling it. We will discuss the possibility that animal models with enhanced DNA repair and epigenome maintenance will be generated in the near future.

  2. Roles of chromatin remodellers in DNA double strand break repair.

    PubMed

    Jeggo, Penny A; Downs, Jessica A

    2014-11-15

    Now that we have a good understanding of the DNA double strand break (DSB) repair mechanisms and DSB-induced damage signalling, attention is focusing on the changes to the chromatin environment needed for efficient DSB repair. Mutations in chromatin remodelling complexes have been identified in cancers, making it important to evaluate how they impact upon genomic stability. Our current understanding of the DSB repair pathways suggests that each one has distinct requirements for chromatin remodelling. Moreover, restricting the extent of chromatin modifications could be a significant factor regulating the decision of pathway usage. In this review, we evaluate the distinct DSB repair pathways for their potential need for chromatin remodelling and review the roles of ATP-driven chromatin remodellers in the pathways.

  3. DNA double-strand break repair pathway choice in Dictyostelium.

    PubMed

    Hsu, Duen-Wei; Kiely, Rhian; Couto, C Anne-Marie; Wang, Hong-Yu; Hudson, Jessica J R; Borer, Christine; Pears, Catherine J; Lakin, Nicholas D

    2011-05-15

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). The mechanisms that govern whether a DSB is repaired by NHEJ or HR remain unclear. Here, we characterise DSB repair in the amoeba Dictyostelium. HR is the principal pathway responsible for resistance to DSBs during vegetative cell growth, a stage of the life cycle when cells are predominantly in G2. However, we illustrate that restriction-enzyme-mediated integration of DNA into the Dictyostelium genome is possible during this stage of the life cycle and that this is mediated by an active NHEJ pathway. We illustrate that Dclre1, a protein with similarity to the vertebrate NHEJ factor Artemis, is required for NHEJ independently of DNA termini complexity. Although vegetative dclre1(-) cells are not radiosensitive, they exhibit delayed DSB repair, further supporting a role for NHEJ during this stage of the life cycle. By contrast, cells lacking the Ku80 component of the Ku heterodimer that binds DNA ends to facilitate NHEJ exhibit no such defect and deletion of ku80 suppresses the DSB repair defect of dclre1(-) cells through increasing HR efficiency. These data illustrate a functional NHEJ pathway in vegetative Dictyostelium and the importance of Ku in regulating DSB repair choice during this phase of the life cycle.

  4. Simulation of 125I induced DNA strand breaks in a CAP-DNA complex.

    PubMed

    Li, W; Friedland, W; Jacob, P; Paretzke, H G; Panyutin, I; Neumann, R D

    2002-01-01

    The E. coli catabolite gene activator protein (CAP)-DNA complex with 125I located at the position of the H5 atom of the cytosine near the centre was incorporated into the PARTRAC track structure code. DNA strand breaks due to irradiation were calculated by track structure and radical attack simulations; strand breaks due to neutralisation of the highly charged 125Te ion were derived from a semi-empirical distribution. According to the calculations, the neutralisation effect dominates the strand breakage frequency at 2 bases away from the 125I decay site on both strands. The first breakage distribution counted from a 32P labelled end on the strand with 125I agreed well with experimental data, but on the opposite strand, the calculated distribution is more concentrated around the decay site and its yield is about 20% larger than the measured data.

  5. Detection of induced DNA strand breaks with improved sensitivity in human cells

    SciTech Connect

    Rydberg, B.

    1980-03-01

    When mixtures of two cell populations labeled with different radionuclides are tested with DNA unwinding technique, an accurate comparison with regard to DNA strand breaks can be made. In mixtures of irradiated and control cells, effects were detected by this technique down to a dose of 1 rad. This corresponds to 10 to 20 DNA single-strand breaks per cell, or less than one break per chromosome.

  6. Comparison of DNA strand-break simulated with different DNA models

    NASA Astrophysics Data System (ADS)

    Xie, Wenzhang; Li, Junli; Li, Chunyan; Qiu, Rui; Yan, Congchong; Zeng, Zhi

    2014-06-01

    In Monte Carlo simulation of DNA damage, the geometric model of DNA is of great importance. To study the influence of DNA model on the simulation of DNA damage, three DNA models were created in this paper. They were a volume model and two atomic models with different parameters. Direct DNA strand-break induced by low-energy electrons were simulated respectively with the three models. The results show that most of the energy depositions in the DNA segments do not lead to strand-breaks. The simple single strand-break (SSB) tends to be the predominant damage type, and the contribution of complex double strand-break (DSB) to the total DSB cannot be neglected. Among the yields of all the three DNA target models applied here, the yields of the volume model are the highest, the yields of the atomic model with double van der Waals radii (r) take the second place, whereas the yields of the atomic model with single r come last. On average, the ratios of SSB yields are approximately equivalent to the corresponding ratios of the models' volume. However, there seems to be no clear relationship between the DSB yields and the models' volume.

  7. Genetic and environmental influence on DNA strand break repair: a twin study.

    PubMed

    Garm, Christian; Moreno-Villanueva, Maria; Bürkle, Alexander; Larsen, Lisbeth Aagaard; Bohr, Vilhelm A; Christensen, Kaare; Stevnsner, Tinna

    2013-07-01

    Accumulation of DNA damage deriving from exogenous and endogenous sources has significant consequences for cellular survival, and is implicated in aging, cancer, and neurological diseases. Different DNA repair pathways have evolved in order to maintain genomic stability. Genetic and environmental factors are likely to influence DNA repair capacity. In order to gain more insight into the genetic and environmental contribution to the molecular basis of DNA repair, we have performed a human twin study, where we focused on the consequences of some of the most abundant types of DNA damage (single-strand breaks), and some of the most hazardous lesions (DNA double-strand breaks). DNA damage signaling response (Gamma-H2AX signaling), relative amount of endogenous damage, and DNA-strand break repair capacities were studied in peripheral blood mononuclear cells from 198 twins (94 monozygotic and 104 dizygotic). We did not detect genetic effects on the DNA-strand break variables in our study.

  8. DNA Double-Strand Breaks, Chromosomal Rearrangements, and GenomicInstability

    SciTech Connect

    Morgan, W.F.; Corcoran, J.; Hartmann, A.; Kaplan, M.I.; Limoli,C.L.; Ponnaiya, B.

    1998-03-09

    DNA double-strand breaks can lead to chromosomalrearrangements at the first mitosis after exposure to the DNAstrand-breaking agent. The evidence suggests a number of differentpathways for DNA double-strand break rejoining in mammalian cells, but itis unclear what factors determine the fate of the induced break andwhether or not it will lead to chromosomal rearrangement. If a cell doessurvive and proliferate after DNA cleavage, delayed chromosomalinstability can be observedin the clonal descendants of the exposedcell. Most, but not all DNA double-strand breaking agents are effectiveat inducing this delayed chromosomal instability. In this paper, wereview the evidence for the role of the DNA double-strand break indirectly induced and delayed chromosomal rearrangements. Copyright 1998Elsevier Science B.V.

  9. Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage.

    PubMed

    Zee, Yeng Peng; López-Fernández, Carmen; Arroyo, F; Johnston, Stephen D; Holt, William V; Gosalvez, Jaime

    2009-08-01

    In this study, we have used single and double comet assays to differentiate between single- and double-stranded DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa. We have also investigated the likelihood that single-stranded DNA breakage is part of the natural spermiogenic process in koalas, where its function would be the generation of structural bends in the DNA molecule so that appropriate packaging and compaction can occur. Koala spermatozoa were examined using the sperm chromatin dispersion test (SCDt) and comet assays to investigate non-orthodox double-stranded DNA. Comet assays were conducted under 1) neutral conditions; and 2) neutral followed by alkaline conditions (double comet assay); the latter technique enabled simultaneous visualisation of both single-stranded and double-stranded DNA breaks. Following the SCDt, there was a continuum of nuclear morphotypes, ranging from no apparent DNA fragmentation to those with highly dispersed and degraded chromatin. Dispersion morphotypes were mirrored by a similar diversity of comet morphologies that could be further differentiated using the double comet assay. The majority of koala spermatozoa had nuclei with DNA abasic-like residues that produced single-tailed comets following the double comet assay. The ubiquity of these residues suggests that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with 'true' DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA with a diffuse single tail to nuclei that exhibited both single- and double-stranded breaks with two comet tails.

  10. Prooxidant action of chebulinic acid and tellimagrandin I: causing copper-dependent DNA strand breaks.

    PubMed

    Yi, Zong-Chun; Liu, Yan-Ze; Li, Hai-Xia; Wang, Zhao

    2009-04-01

    The prooxidant activity of two hydrolysable tannins, chebulinic acid and tellimagrandin I, on plasmid DNA and genomic DNA of cultured MRC-5 human embryo lung fibroblasts was assessed. The results revealed that both hydrolysable tannins in combination with Cu(II) induced DNA strand breaks in pBR322 plasmid DNA in a concentration-dependent manner. Chebulinic acid and tellimagrandin I also induced genomic DNA strand breaks of MRC-5 human embryo lung fibroblasts in the presence of Cu(II). After treatment with chebulinic acid or tellimagrandin I alone, the pBR322 plasmid DNA and genomic DNA in MRC-5 cells kept intact. In addition, addition of Cu(I) reagent bathocuproinedisulfonic acid or catalase markedly inhibited the copper-dependent DNA strand breaks by both tannins. However, three typical hydroxyl radical scavengers, DMSO, ethanol and mannitol, did not inhibit the DNA strand breaks. Both tannins were able to reduce Cu(II) to Cu(I). These results indicated that chebulinic acid and tellimagrandin I induced the copper-dependent strand breaks of pBR322 plasmid DNA and MRC-5 genomic DNA with prooxidant action, in which Cu(II)/Cu(I) redox cycle and H(2)O(2) were involved and hydroxyl radical formation is important in the hypothetical mechanism by which DNA strand breaks are formed.

  11. BRCA1-CtIP interaction in the repair of DNA double-strand breaks.

    PubMed

    Aparicio, Tomas; Gautier, Jean

    2016-07-01

    DNA termini at double-strand breaks are often chemically heterogeneous and require processing before initiation of repair. In a recent report, we demonstrated that CtIP and the MRE11-RAD50-NBS1 (MRN) nuclease complex cooperate with BRCA1 to specifically repair topoisomerase II-DNA adducted breaks. In contrast, BRCA1 is dispensable for repair of restriction endonuclease-generated double-strand breaks.

  12. Structure of the Rad50 DNA double-strand break repair protein in complex with DNA.

    PubMed

    Rojowska, Anna; Lammens, Katja; Seifert, Florian U; Direnberger, Carolin; Feldmann, Heidi; Hopfner, Karl-Peter

    2014-12-01

    The Mre11-Rad50 nuclease-ATPase is an evolutionarily conserved multifunctional DNA double-strand break (DSB) repair factor. Mre11-Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50(NBD) (nucleotide-binding domain) in complex with Mre11(HLH) (helix-loop-helix domain), AMPPNP, and double-stranded DNA. DNA binds between both coiled-coil domains of the Rad50 dimer with main interactions to a strand-loop-helix motif on the NBD. Our analysis suggests that this motif on Rad50 does not directly recognize DNA ends and binds internal sites on DNA. Functional studies reveal that DNA binding to Rad50 is not critical for DNA double-strand break repair but is important for telomere maintenance. In summary, we provide a structural framework for DNA binding to Rad50 in the ATP-bound state.

  13. DNA Double-Strand Break Rejoining in Complex Normal Tissues

    SciTech Connect

    Ruebe, Claudia E.; Kuehne, Martin; Fricke, Andreas

    2008-11-15

    Purpose: The clinical radiation responses of different organs vary widely and likely depend on the intrinsic radiosensitivities of their different cell populations. Double-strand breaks (DSBs) are the most deleterious form of DNA damage induced by ionizing radiation, and the cells' capacity to rejoin radiation-induced DSBs is known to affect their intrinsic radiosensitivity. To date, only little is known about the induction and processing of radiation-induced DSBs in complex normal tissues. Using an in vivo model with repair-proficient mice, the highly sensitive {gamma}H2AX immunofluorescence was established to investigate whether differences in DSB rejoining could account for the substantial differences in clinical radiosensitivity observed among normal tissues. Methods and Materials: After whole body irradiation of C57BL/6 mice (0.1, 0.5, 1.0, and 2.0 Gy), the formation and rejoining of DSBs was analyzed by enumerating {gamma}H2AX foci in various organs representative of both early-responding (small intestine) and late-responding (lung, brain, heart, kidney) tissues. Results: The linear dose correlation observed in all analyzed tissues indicated that {gamma}H2AX immunofluorescence allows for the accurate quantification of DSBs in complex organs. Strikingly, the various normal tissues exhibited identical kinetics for {gamma}H2AX foci loss, despite their clearly different clinical radiation responses. Conclusion: The identical kinetics of DSB rejoining measured in different organs suggest that tissue-specific differences in radiation responses are independent of DSB rejoining. This finding emphasizes the fundamental role of DSB repair in maintaining genomic integrity, thereby contributing to cellular viability and functionality and, thus, tissue homeostasis.

  14. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    SciTech Connect

    Qin Xujun; Hudson, Laurie G.; Liu Wenlan; Timmins, Graham S.; Liu Kejian

    2008-10-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite ({<=} 2 {mu}M) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 {mu}M arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic.

  15. Non-Repairable Strand Breaks Induced by 125I Incorporated into Mammalian DNA

    PubMed Central

    Painter, R. B.; Young, B. R.; Burki, H. J.

    1974-01-01

    When 125I is incorporated into Chinese hamster DNA (via 125I-labeled iododeoxyuridine) and the cells are stored at 77°K, the resulting decays of the isotope cause 4 to 5 breaks/single-strand per disintegration. On the average, about 50% of these breaks are repaired. In contrast, under the same conditions of storage and in the same range of total strand breaks/cell, 70-100% of the breaks induced by x-radiation are repaired. Thus, the extreme toxicity of 125I when incorporated into DNA is correlated with the unrepaired breaks caused by decay of this isotope. These results suggest that unrepaired DNA strand breaks may be important in cell killing after treatments which damage DNA. PMID:4531021

  16. Distribution of DNA strand breaks produced by iodine-123 and indium-111 in synthetic oligodeoxynucleotides.

    PubMed

    Karamychev, V N; Reed, M W; Neumann, R D; Panyutin, I G

    2000-01-01

    Antigene radiotherapy, a procedure based on delivery of short-range Auger-electron-emitting radioisotopes to target genes via sequence-specific triplex-forming oligonucleotides, has been successfully demonstrated in vitro using the well-studied radionuclide 125I. To proceed with in vivo trials, Auger electron emitters with shorter half-lives than 125I are required. Here we report a study of the efficiency and distribution of sequence-specific DNA strand breaks produced by decay of 123I and mIIn. 123I and 111In were introduced into triplex-and duplex-forming oligodeoxyribonucleotides (ODNs) through carbohydrate linkers of various lengths. Labeling with radioiodine was performed through tributylstannylbenzamide intermediates while 111In was attached via DTPA. The Auger-emitter-labeled ODNs were hybridized to a single-stranded DNA target, to form duplexes. After decay accumulation, the target DNA samples were assayed for strand breaks using a sequencing gel-electrophoresis technique. For the first time, we observed footprints of DNA strand breaks produced by 123I and 111In. Most of the breaks were located within 10 nucleotides from the decay site. The yield of strand breaks per decay varies; decay of 111In breaks DNA almost 10 times more effectively than decay of 123I. Both 123I and 111In are less effective in breaking DNA strands than 121I, which reflects the higher total energy of the Auger decay process of 125I.

  17. A requirement for polymerized actin in DNA double-strand break repair.

    PubMed

    Andrin, Christi; McDonald, Darin; Attwood, Kathleen M; Rodrigue, Amélie; Ghosh, Sunita; Mirzayans, Razmik; Masson, Jean-Yves; Dellaire, Graham; Hendzel, Michael J

    2012-07-01

    Nuclear actin is involved in several nuclear processes from chromatin remodeling to transcription. Here we examined the requirement for actin polymerization in DNA double-strand break repair. Double-strand breaks are considered the most dangerous type of DNA lesion. Double-strand break repair consists of a complex set of events that are tightly regulated. Failure at any step can have catastrophic consequences such as genomic instability, oncogenesis or cell death. Many proteins involved in this repair process have been identified and their roles characterized. We discovered that some DNA double-strand break repair factors are capable of associating with polymeric actin in vitro and specifically, that purified Ku70/80 interacts with polymerized actin under these conditions. We find that the disruption of polymeric actin inhibits DNA double strand break repair both in vitro and in vivo. Introduction of nuclear targeted mutant actin that cannot polymerize, or the depolymerization of endogenous actin filaments by the addition of cytochalasin D, alters the retention of Ku80 at sites of DNA damage in live cells. Our results suggest that polymeric actin is required for proper DNA double-strand break repair and may function through the stabilization of the Ku heterodimer at the DNA damage site.

  18. A kinetic analysis of strand breaks on large DNA induced by cigarette smoke extract

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Takata, Tatsuya; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2010-06-01

    We report a kinetic analysis of strand breakages on large DNA molecules induced by cigarette smoke extract (CSE), an extract of soluble cigarette smoke components. Previously, this DNA damage was analyzed by agarose gel electrophoresis, whereas we used fluorescence to kinetically analyze damage to individual DNA molecules. CSE caused a marked change in length of DNA molecules. The rate of CSE-induced double-strand breakage on large random-coiled DNA molecules was determined using a simple theoretical model, allowing the facile estimation of the rate of double-strand breaks on large DNA molecules.

  19. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum

    NASA Astrophysics Data System (ADS)

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, Viliam; Čuba, Václav; Grisham, Michael E.; Heinbuch, Scott; Rocca, Jorge J.

    2015-04-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugars, and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. We have studied the nature of DNA damage induced directly by the pulsed 46.9-nm (26.5 eV) radiation provided by an extreme ultraviolet (XUV) capillary-discharge Ne-like Ar laser (CDL). Doses up to 45 kGy were delivered with a repetition rate of 3 Hz. We studied the dependence of the yield of SSBs and DSBs of a simple model of DNA molecule (pBR322) on the CDL pulse fluence. Agarose gel electrophoresis method was used for determination of both SSB and DSB yields. The action cross sections of the single- and double-strand breaks of pBR322 plasmid DNA in solid state were determined. We observed an increase in the efficiency of strand-break induction in the supercoiled DNA as a function of laser pulse fluence. Results are compared to those acquired at synchrotron radiation facilities and other sources of extreme-ultraviolet and soft x-ray radiation.

  20. DNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks

    PubMed Central

    Gan, Rui; Wu, Xiaolin; He, Wei; Liu, Zhenhua; Wu, Shuangju; Chen, Chao; Chen, Si; Xiang, Qianrong; Deng, Zixin; Liang, Dequan; Chen, Shi; Wang, Lianrong

    2014-01-01

    The modification of DNA by phosphorothioate (PT) occurs when the non-bridging oxygen in the sugar-phosphate backbone of DNA is replaced with sulfur. This DNA backbone modification was recently discovered and is governed by the dndABCDE genes in a diverse group of bacteria and archaea. However, the biological function of DNA PT modifications is poorly understood. In this study, we employed the RNA-seq analysis to characterize the global transcriptional changes in response to PT modifications. Our results show that DNA without PT protection is susceptible to DNA damage caused by the dndFGHI gene products. The DNA double-stranded breaks then trigger the SOS response, cell filamentation and prophage induction. Heterologous expression of dndBCDE conferring DNA PT modifications at GPSA and GPST prevented the damage in Salmonella enterica. Our data provide insights into the physiological role of the DNA PT system. PMID:25319634

  1. Induction of DNA strand breaks by H/sub 2/O/sub 2/ and PMA

    SciTech Connect

    Schraufstaetter, I.U.; Hyslop, P.A.; Jackson, J.; Cochrane, C.G.

    1986-03-01

    The authors have previously reported that oxidants induce cell lysis in P388Dl cells and lymphocytes which is caused by activation of poly-ADP-ribose polymerase leading to NAD and ATP depletion. Generally, poly-ADP-ribose polymerase is activated in the presence of single stranded DNA. Here they report that small concentrations of H/sub 2/O/sub 2/ (1-2 nmoles/min/ 2 x 10/sup 6/ cells produced by glucose oxidase-glucose) caused DNA strand breaks in human peripheral lymphocytes, P388Dl cells and freshly isolated rabbit pulmonary endothelial cells. DNA strand breaks were determined by an alkaline unwinding technique. To induce DNA strand breaks in rabbit alveolar macrophages or human monocytes higher concentrations of H/sub 2/O/sub 2/ (about 100 nmoles/ml) were necessary, presumably due to high activity of H/sub 2/O/sub 2/ catabolizing enzymes. Peripheral lymphocytes, which do not produce H/sub 2/O/sub 2/, did not form DNA strand breaks in the presence of 100 ng/ml phorbol myristate acetate (PMA). Few strand breaks were observed in monocytes (1.25 x 10/sup 6/ cells/ml) stimulated with PMA, since the concentration of H/sub 2/O/sub 2/ present under these conditions (20-30 nmoles) was insufficient to induce strand breaks in the cells. However, when lymphocytes and monocytes were mixed together in a ratio of 3:1, and exposed to PMA, DNA strand breaks occurred equivalent to those seen with 40 nmoles H/sub 2/O/sub 2/. Their results indicate that oxidants produced by stimulated leukocytes can induce DNA damage in neighboring cells.

  2. Altered conformation and increased strand breaks in neuronal and astroglial DNA of aging rat brain.

    PubMed

    Bhaskar, M S; Rao, K S

    1994-05-01

    Melting temperatures (Tm) of the DNA isolated from young, adult, and old rat brain neurons and astrocytes were recorded under different conditions. There was a rise in Tm and decrease in hyperchromicity in the old when compared to the young and adult. Single and double strand breaks were assessed by using nick translation type incubation of DNA with E. coli Pol I and addition of nucleotides at the terminal 3'-OH by calf thymus terminal deoxynucleotidyl transferase. Results show that DNA from old brain cells is more compact in conformation. However, there is also an increase in the number of single and double strand breaks with age in both neuronal and astroglial DNA.

  3. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants.

    PubMed

    Edlinger, Bernd; Schlögelhofer, Peter

    2011-03-01

    Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.

  4. A quantitative determination of free radicals and strand breaks in pure and radiosensitized DNA.

    PubMed Central

    Gräslund, A.

    1978-01-01

    The yields of free radicals and of single strand breaks were studied quantitatively after gamma-irradiation at 77 K of solid calf thymus DNA without and with incorporated misonidazole. At 77 K the rate of formation of the free radicals (the nature of which had been previously elucidated in oriented DNA samples) was found to be 1.7 x 10 (-12) and 2.4 x 10 (-12) per rad per dalton for DNA without and with misonidazole, respectively. The corresponding yield of single strand breaks in samples thawed and dissolved before alkaline sucrose gradient ultracentrifugation was found to be 1.2 x 10(-13) per rad per dalton, not significantly (within 30%) different for DNA without and with misonidazole. The significant quantitative difference between induction of free radicals and single strand breaks shows that there is no simple relation between the appearance of the two types of lesions. PMID:277257

  5. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    PubMed

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-05

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.

  6. Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection.

    PubMed

    Gospodinov, Anastas; Vaissiere, Thomas; Krastev, Dragomir B; Legube, Gaëlle; Anachkova, Boyka; Herceg, Zdenko

    2011-12-01

    Chromatin modifications/remodeling are important mechanisms by which cells regulate various functions through providing accessibility to chromatin DNA. Recent studies implicated INO80, a conserved chromatin-remodeling complex, in the process of DNA repair. However, the precise underlying mechanism by which this complex mediates repair in mammalian cells remains enigmatic. Here, we studied the effect of silencing of the Ino80 subunit of the complex on double-strand break repair in mammalian cells. Comet assay and homologous recombination repair reporter system analyses indicated that Ino80 is required for efficient double-strand break repair. Ino80 association with chromatin surrounding double-strand breaks suggested the direct involvement of INO80 in the repair process. Ino80 depletion impaired focal recruitment of 53BP1 but did not impede Rad51 focus formation, suggesting that Ino80 is required for the early steps of repair. Further analysis by using bromodeoxyuridine (BrdU)-labeled single-stranded DNA and replication protein A (RPA) immunofluorescent staining showed that INO80 mediates 5'-3' resection of double-strand break ends.

  7. Aberrant DNA Double-strand Break Repair Threads in Breast Carcinoma: Orchestrating Genomic Insult Survival.

    PubMed

    Kumar, Azad; Purohit, Shruti; Sharma, Nilesh Kumar

    2016-12-01

    Breast carcinoma is a heterogeneous disease that has exhibited rapid resistance to treatment in the last decade. Depending genotype and phenotype of breast cancer, there are discernible differences in DNA repair protein responses including DNA double strand break repair. It is a fact that different molecular sub-types of breast carcinoma activate these dedicated protein pathways in a distinct manner. The DNA double-strand damage repair machinery is manipulated by breast carcinoma to selectively repair the damage or insults inflicted by the genotoxic effects of chemotherapy or radiation therapy. The two DNA double-strand break repair pathways employed by breast carcinoma are homologous recombination and non-homologous end joining. In recent decades, therapeutic interventions targeting one or more factors involved in repairing DNA double-strand breaks inflicted by chemo/radiation therapy have been widely studied. Herein, this review paper summarizes the recent evidence and ongoing clinical trials citing potential therapeutic combinatorial interventions targeting DNA double-strand break repair pathways in breast carcinoma.

  8. Aberrant DNA Double-strand Break Repair Threads in Breast Carcinoma: Orchestrating Genomic Insult Survival

    PubMed Central

    Kumar, Azad; Purohit, Shruti; Sharma, Nilesh Kumar

    2016-01-01

    Breast carcinoma is a heterogeneous disease that has exhibited rapid resistance to treatment in the last decade. Depending genotype and phenotype of breast cancer, there are discernible differences in DNA repair protein responses including DNA double strand break repair. It is a fact that different molecular sub-types of breast carcinoma activate these dedicated protein pathways in a distinct manner. The DNA double-strand damage repair machinery is manipulated by breast carcinoma to selectively repair the damage or insults inflicted by the genotoxic effects of chemotherapy or radiation therapy. The two DNA double-strand break repair pathways employed by breast carcinoma are homologous recombination and non-homologous end joining. In recent decades, therapeutic interventions targeting one or more factors involved in repairing DNA double-strand breaks inflicted by chemo/radiation therapy have been widely studied. Herein, this review paper summarizes the recent evidence and ongoing clinical trials citing potential therapeutic combinatorial interventions targeting DNA double-strand break repair pathways in breast carcinoma. PMID:28053956

  9. Differential requirement for SUB1 in chromosomal and plasmid double-strand DNA break repair.

    PubMed

    Yu, Lijian; Volkert, Michael R

    2013-01-01

    Non homologous end joining (NHEJ) is an important process that repairs double strand DNA breaks (DSBs) in eukaryotic cells. Cells defective in NHEJ are unable to join chromosomal breaks. Two different NHEJ assays are typically used to determine the efficiency of NHEJ. One requires NHEJ of linearized plasmid DNA transformed into the test organism; the other requires NHEJ of a single chromosomal break induced either by HO endonuclease or the I-SceI restriction enzyme. These two assays are generally considered equivalent and rely on the same set of NHEJ genes. PC4 is an abundant DNA binding protein that has been suggested to stimulate NHEJ. Here we tested the role of PC4's yeast homolog SUB1 in repair of DNA double strand breaks using different assays. We found SUB1 is required for NHEJ repair of DSBs in plasmid DNA, but not in chromosomal DNA. Our results suggest that these two assays, while similar are not equivalent and that repair of plasmid DNA requires additional factor(s) that are not required for NHEJ repair of chromosomal double-strand DNA breaks. Possible roles for Sub1 proteins in NHEJ of plasmid DNA are discussed.

  10. DNA-PKcs and ATM Co-Regulate DNA Double-Strand Break Repair

    PubMed Central

    Shrivastav, Meena; Miller, Cheryl A.; De Haro, Leyma P.; Durant, Stephen T.; Chen, Benjamin P.C.; Chen, David J.; Nickoloff, Jac A.

    2009-01-01

    DNA double-strand breaks (DSBs) are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR). The NHEJ/HR decision is under complex regulation and involves DNA-dependent protein kinase (DNA-PKcs). HR is elevated in DNA-PKcs null cells, but suppressed by DNA-PKcs kinase inhibitors, suggesting that kinase-inactive DNA-PKcs (DNA-PKcs-KR) would suppress HR. Here we use a direct repeat assay to monitor HR repair of DSBs induced by I-SceI nuclease. Surprisingly, DSB-induced HR in DNA-PKcs-KR cells was 2- to 3-fold above the elevated HR level of DNA-PKcs null cells, and ∼4- to 7-fold above cells expressing wild-type DNA-PKcs. The hyperrecombination in DNA-PKcs-KR cells compared to DNA-PKcs null cells was also apparent as increased resistance to DNA crosslinks induced by mitomycin C. ATM phosphorylates many HR proteins, and ATM is expressed at a low level in cells lacking DNA-PKcs, but restored to wild-type level in cells expressing DNA-PKcs-KR. Several clusters of phosphorylation sites in DNA-PKcs, including the T2609 cluster, which is phosphorylated by DNA-PKcs and ATM, regulate access of repair factors to broken ends. Our results indicate that ATM-dependent phosphorylation of DNA-PKcs-KR contributes to the hyperrecombination phenotype. Interestingly, DNA-PKcs null cells showed more persistent ionizing radiation-induced RAD51 foci (but lower HR levels) compared to DNA-PKcs-KR cells, consistent with HR completion requiring RAD51 turnover. ATM may promote RAD51 turnover, suggesting a second (not mutually exclusive) mechanism by which restored ATM contributes to hyperrecombination in DNA-PKcs-KR cells. We propose a model in which DNA-PKcs and ATM coordinately regulate DSB repair by NHEJ and HR. PMID:19535303

  11. Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis.

    PubMed

    Keeney, Scott

    2008-01-01

    Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks made by the Spo11 protein, a relative of archaeal topoisomerase VI. This review summarizes recent studies that provide insight to the mechanism of DNA cleavage by Spo11, functional interactions of Spo11 with other proteins required for break formation, mechanisms that control the timing of recombination initiation, and evolutionary conservation and divergence of these processes.

  12. 53BP1-mediated DNA double strand break repair: insert bad pun here.

    PubMed

    Noon, Angela T; Goodarzi, Aaron A

    2011-10-10

    53BP1 is an established player in the cellular response to DNA damage and is a canonical component of ionizing-radiation induced foci--that cadre of proteins which assemble at DNA double strand breaks following radiation exposure and which are readily visualized by immunofluorescence microscopy. While its roles in p53 regulation and cell cycle checkpoint activation have been studied for some time, the impact of 53BP1 on DNA double strand break rejoining has only come to light in the past few years. Convincing evidence now exists for 53BP1 significantly affecting the outcome of DNA double strand break repair in several contexts, many of which hint to an important role in modulating chromatin structure surrounding the break site. Here, we highlight the known and emerging roles of 53BP1 in DNA double strand break repair, including the repair of lesions induced within heterochromatin, following telomere uncapping, in long-range V(D)J recombination, during immunoglobulin class switch recombination and its much debated role in regulating resection during homologous recombination.

  13. Structural chromosome abnormalities, increased DNA strand breaks and DNA strand break repair deficiency in dermal fibroblasts from old female human donors

    PubMed Central

    Kalfalah, Faiza; Seggewiß, Sabine; Walter, Regina; Tigges, Julia; Moreno-Villanueva, María; Bürkle, Alexander; Ohse, Sebastian; Busch, Hauke; Boerries, Melanie; Hildebrandt, Barbara; Royer-Pokora, Brigitte; Boege, Fritz

    2015-01-01

    Dermal fibroblasts provide a paradigmatic model of cellular adaptation to long-term exogenous stress and ageing processes driven thereby. Here we addressed whether fibroblast ageing analysed ex vivo entails genome instability. Dermal fibroblasts from human female donors aged 20–67 years were studied in primary culture at low population doubling. Under these conditions, the incidence of replicative senescence and rates of age-correlated telomere shortening were insignificant. Genome-wide gene expression analysis revealed age-related impairment of mitosis, telomere and chromosome maintenance and induction of genes associated with DNA repair and non-homologous end-joining, most notably XRCC4 and ligase 4. We observed an age-correlated drop in proliferative capacity and age-correlated increases in heterochromatin marks, structural chromosome abnormalities (deletions, translocations and chromatid breaks), DNA strand breaks and histone H2AX-phosphorylation. In a third of the cells from old and middle-aged donors repair of X-ray induced DNA strand breaks was impaired despite up-regulation of DNA repair genes. The distinct phenotype of genome instability, increased heterochromatinisation and (in 30% of the cases futile) up-regulation of DNA repair genes was stably maintained over several cell passages indicating that it represents a feature of geroconversion that is distinct from cellular senescence, as it does not encompass a block of proliferation. PMID:25678531

  14. Branch migration prevents DNA loss during double-strand break repair.

    PubMed

    Mawer, Julia S P; Leach, David R F

    2014-08-01

    The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating Escherichia coli sister chromosomes, we analyse the intermediates of sister-sister double-strand break repair. Using two-dimensional agarose gel electrophoresis, we show that when double-strand breaks are formed in the absence of RuvAB, 4-way DNA (Holliday) junctions are accumulated in a RecG-dependent manner, arguing against the long-standing view that the redundancy of RuvAB and RecG is in the resolution of Holliday junctions. Using pulsed-field gel electrophoresis, we explain the redundancy by showing that branch migration catalysed by RuvAB and RecG is required for stabilising the intermediates of repair as, when branch migration cannot take place, repair is aborted and DNA is lost at the break locus. We demonstrate that in the repair of correctly aligned sister chromosomes, an unstable early intermediate is stabilised by branch migration. This reliance on branch migration may have evolved to help promote recombination between correctly aligned sister chromosomes to prevent genomic rearrangements.

  15. Hyperactivation of DNA-PK by double-strand break mimicking molecules disorganizes DNA damage response.

    PubMed

    Quanz, Maria; Chassoux, Danielle; Berthault, Nathalie; Agrario, Céline; Sun, Jian-Sheng; Dutreix, Marie

    2009-07-21

    Cellular response to DNA damage involves the coordinated activation of cell cycle checkpoints and DNA repair. The early steps of DNA damage recognition and signaling in mammalian cells are not yet fully understood. To investigate the regulation of the DNA damage response (DDR), we designed short and stabilized double stranded DNA molecules (Dbait) mimicking double-strand breaks. We compared the response induced by these molecules to the response induced by ionizing radiation. We show that stable 32-bp long Dbait, induce pan-nuclear phosphorylation of DDR components such as H2AX, Rpa32, Chk1, Chk2, Nbs1 and p53 in various cell lines. However, individual cell analyses reveal that differences exist in the cellular responses to Dbait compared to irradiation. Responses to Dbait: (i) are dependent only on DNA-PK kinase activity and not on ATM, (ii) result in a phosphorylation signal lasting several days and (iii) are distributed in the treated population in an "all-or-none" pattern, in a Dbait-concentration threshold dependant manner. Moreover, despite extensive phosphorylation of the DNA-PK downstream targets, Dbait treated cells continue to proliferate without showing cell cycle delay or apoptosis. Dbait treatment prior to irradiation impaired foci formation of Nbs1, 53BP1 and Rad51 at DNA damage sites and inhibited non-homologous end joining as well as homologous recombination. Together, our results suggest that the hyperactivation of DNA-PK is insufficient for complete execution of the DDR but induces a "false" DNA damage signaling that disorganizes the DNA repair system.

  16. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair.

    PubMed

    Sibanda, Bancinyane L; Chirgadze, Dimitri Y; Ascher, David B; Blundell, Tom L

    2017-02-03

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a central component of nonhomologous end joining (NHEJ), repairing DNA double-strand breaks that would otherwise lead to apoptosis or cancer. We have solved its structure in complex with the C-terminal peptide of Ku80 at 4.3 angstrom resolution using x-ray crystallography. We show that the 4128-amino acid structure comprises three large structural units: the N-terminal unit, the Circular Cradle, and the Head. Conformational differences between the two molecules in the asymmetric unit are correlated with changes in accessibility of the kinase active site, which are consistent with an allosteric mechanism to bring about kinase activation. The location of KU80ct194 in the vicinity of the breast cancer 1 (BRCA1) binding site suggests competition with BRCA1, leading to pathway selection between NHEJ and homologous recombination.

  17. DNA helicases Sgs1 and BLM promote DNA double-strand break resection.

    PubMed

    Gravel, Serge; Chapman, J Ross; Magill, Christine; Jackson, Stephen P

    2008-10-15

    A key cellular response to DNA double-strand breaks (DSBs) is 5'-to-3' DSB resection by nucleases to generate regions of ssDNA that then trigger cell cycle checkpoint signaling and DSB repair by homologous recombination (HR). Here, we reveal that in the absence of exonuclease Exo1 activity, deletion or mutation of the Saccharomyces cerevisiae RecQ-family helicase, Sgs1, causes pronounced hypersensitivity to DSB-inducing agents. Moreover, we establish that this reflects severely compromised DSB resection, deficient DNA damage signaling, and strongly impaired HR-mediated repair. Furthermore, we show that the mammalian Sgs1 ortholog, BLM--whose deficiency causes cancer predisposition and infertility in people--also functions in parallel with Exo1 to promote DSB resection, DSB signaling and resistance to DSB-generating agents. Collectively, these data establish evolutionarily conserved roles for the BLM and Sgs1 helicases in DSB processing, signaling, and repair.

  18. Simultaneous labeling of single- and double-strand DNA breaks by DNA breakage detection-FISH (DBD-FISH).

    PubMed

    Fernández, José Luis; Cajigal, Dioleyda; Gosálvez, Jaime

    2011-01-01

    DNA Breakage Detection-Fluorescence In Situ Hybridization (DBD-FISH) permits simultaneous and selective labeling of single- and double-strand DNA breaks in individual cells, either in the whole genome or within specific DNA sequences. In this technique, cells are embedded into agarose microgels, lysed and subjected to electrophoresis under nondenaturing conditions. Subsequently, the produced "comets" are exposed to a controlled denaturation step which transforms DNA breaks into single-stranded DNA regions, detected by hybridization with whole genome fluorescent probes or the probes to specific DNA sequences. This makes possible a targeted analysis of various chromatin areas for the presence of DNA breaks. The migration length of the DBD-FISH signal is proportional to the number of double strand breaks, whereas its fluorescence intensity depends on numbers of single-strand breaks.The detailed protocol for detection of two types of DNA breaks produced by ionizing radiation is presented. The technique can be used to determine intragenomic and intercellular heterogeneity in the induction and repair of DNA damage.

  19. Quantitative measurement of DNA strand breaks and repair in. gamma. -irradiated human leukocytes from normal and ataxia telangiectasia donors

    SciTech Connect

    Thierry, D.; Rigaud, O.; Duranton, I.; Moustacchi, E.; Magdelenat, H.

    1985-06-01

    Fluorimetric analysis of DNA unwinding, which allows measurement of DNA strand breaks in human leukocytes, has been optimized by reducing the amount of cells required for the test and by modifying the DNA alkali unwinding conditions. The permitted measurement of DNA strand-break induction in cells irradiated with low (0.5-7 Gy) or high doses (5-20 Gy) of ..gamma.. rays. Linear dose-response curves were obtained for both dose ranges. Presence of cysteamine during irradiation caused a decrease in the extent of DNA strand breaks. The kinetics of the DNA standard-break rejoining process appeared to be biphasic over the dose range of 2-20 Gy when plotted on a linear vs linear axis (percentage of damage as a function of time). No difference in the level of DNA strand breaks and the rate of repair of these breaks was observed between leukocytes from three ataxia telangiectasia patients and those from normal donors.

  20. FEN1 participates in repair of the 5'-phosphotyrosyl terminus of DNA single-strand breaks.

    PubMed

    Kametani, Yukiko; Takahata, Chiaki; Narita, Takashi; Tanaka, Kiyoji; Iwai, Shigenori; Kuraoka, Isao

    2016-01-01

    Etoposide is a widely used anticancer drug and a DNA topoisomerase II (Top2) inhibitor. Etoposide produces Top2-attached single-strand breaks (Top2-SSB complex) and double-strand breaks (Top2-DSB complex) that are thought to induce cell death in tumor cells. The Top2-SSB complex is more abundant than the Top2-DSB complex. Human tyrosyl-DNA phosphodiesterase 2 (TDP2) is required for efficient repair of Top2-DSB complexes. However, the identities of the proteins involved in the repair of Top2-SSB complexes are unknown, although yeast genetic data indicate that 5' to 3' structure-specific DNA endonuclease activity is required for alternative repair of Top2 DNA damage. In this study, we purified a flap endonuclease 1 (FEN1) and xeroderma pigmentosum group G protein (XPG) in the 5' to 3' structure-specific DNA endonuclease family and synthesized single-strand break DNA substrates containing a 5'-phoshotyrosyl bond, mimicking the Top2-SSB complex. We found that FEN1 and XPG did not remove the 5'-phoshotyrosyl bond-containing DSB substrates but removed the 5'-phoshotyrosyl bond-containing SSB substrates. Under DNA repair conditions, FEN1 efficiently repaired the 5'-phoshotyrosyl bond-containing SSB substrates in the presence of DNA ligase and DNA polymerase. Therefore, FEN1 may play an important role in the repair of Top2-SSB complexes in etoposide-treated cells.

  1. Double strand-breaks and DNA-to-protein cross-links induced by fast neutrons in bacteriophage DNA.

    PubMed

    Hawkins, R B

    1979-01-01

    Coliphage T7 was suspended in tryptone broth and exposed to a mixture of fast neutrons and gamma radiation. Plaque survival, double strand-breaks and DNA-to-protein cross-linkage were examined and the results compared with those found in phage exposed to gamma radiation alone. Neutral sucrose density sedimentation patterns indicate that neutron-induced double strand-breaks sometimes occur in clusters of more than 100 in the same phage and that the effeciency with which double strand-breaks form is about 50 times that of gamma-induced double strand-breaks. Neutron-induced protein-to-DNA cross-links probably also occur in clusters with enhanced efficiency relative to low LET radiation.

  2. ANALYSIS OF IN VITRO AND IN VIVO DNA STRAND BREAKS INDUCED BY TRIHALOMETHANES (THMS)

    EPA Science Inventory

    Analysis of In Vitro and In Vivo DNA Strand Breaks Induced by Trihalomethanes (TRMs)

    The THMs are the most widely distributed and the most concentrated of the cWorine disinfection by-products (D BPs) found in finished drinking water. All of the THMs, cWoroform (CHCI3), br...

  3. INDUCTION OF DNA STRAND BREAKS BY TRIHALOMETHANES IN PRIMARY HUMAN LUNG EPITHELIAL CELLS

    EPA Science Inventory


    Abstract

    Trihalomethanes (TEMs) are disinfection by-products and suspected human carcinogens present in chlorinated drinking water. Previous studies have shown that many THMs induce sister chromatid exchanges and DNA strand breaks in human peripheral blood lymphocyte...

  4. Zinc chromate induces chromosome instability and DNA double strand breaks in human lung cells

    SciTech Connect

    Xie Hong; Holmes, Amie L.; Young, Jamie L.; Qin Qin; Joyce, Kellie; Pelsue, Stephen C.; Peng Cheng; Wise, Sandra S.; Jeevarajan, Antony S.; Wallace, William T.; Hammond, Dianne; Wise, John Pierce E-mail: John.Wise@usm.maine.edu

    2009-02-01

    Hexavalent chromium Cr(VI) is a respiratory toxicant and carcinogen, with solubility playing an important role in its carcinogenic potential. Zinc chromate, a water insoluble or 'particulate' Cr(VI) compound, has been shown to be carcinogenic in epidemiology studies and to induce tumors in experimental animals, but its genotoxicity is poorly understood. Our study shows that zinc chromate induced concentration-dependent increases in cytotoxicity, chromosome damage and DNA double strand breaks in human lung cells. In response to zinc chromate-induced breaks, MRE11 expression was increased and ATM and ATR were phosphorylated, indicating that the DNA double strand break repair system was initiated in the cells. In addition, our data show that zinc chromate-induced double strand breaks were only observed in the G2/M phase population, with no significant amount of double strand breaks observed in G1 and S phase cells. These data will aid in understanding the mechanisms of zinc chromate toxicity and carcinogenesis.

  5. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Heilmann, J.; Rink, H.

    The lens epithelium is the initiation site for the development of radiation induced cataracts. While in the cortex and nucleus radiation interacts with proteins, experimental results from cultured lenses and lens epithelial cells demonstrate mutagenic and cytotoxic effects in the epithelium. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the radiation's relative biological effectiveness (RBE), because cosmic rays differ significantly from X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiations. Irradiations were performed either with 300 kV X-rays or at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. For strand break measurements hydroxyapatite chromatography of alka-line unwound DNA (overall strand breaks) and non-denaturing filter elution technique (double strand breaks) were applied. Experiments showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV/μm more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of

  6. RecG Directs DNA Synthesis during Double-Strand Break Repair.

    PubMed

    Azeroglu, Benura; Mawer, Julia S P; Cockram, Charlotte A; White, Martin A; Hasan, A M Mahedi; Filatenkova, Milana; Leach, David R F

    2016-02-01

    Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.

  7. Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosome.

    PubMed Central

    Phillips, J W; Morgan, W F

    1994-01-01

    We examined DNA double-strand-break-induced mutations in the endogenous adenine phosphoribosyl-transferase (APRT) gene in cultured Chinese hamster ovary cells after exposure to restriction endonucleases. PvuII, EcoRV, and StuI, all of which produce blunt-end DNA double-strand breaks, were electroporated into CHO-AT3-2 cells hemizygous at the APRT locus. Colonies of viable cells containing mutations at APRT were expanded, and the mutations that occurred during break repair were analyzed at the DNA sequence level. Restriction enzyme-induced mutations consisted of small deletions of 1 to 36 bp, insertions, and combinations of insertions and deletions at the cleavage sites. Most of the small deletions involved overlaps of one to four complementary bases at the recombination junctions. Southern blot analysis revealed more complex mutations, suggesting translocation, inversion, or insertion of larger chromosomal fragments. These results indicate that blunt-end DNA double-strand breaks can induce illegitimate (nonhomologous) recombination in mammalian chromosomes and that they play an important role in mutagenesis. Images PMID:8065314

  8. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.

    PubMed

    Zhu, Zhu; Chung, Woo-Hyun; Shim, Eun Yong; Lee, Sang Eun; Ira, Grzegorz

    2008-09-19

    Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that the Mre11-Rad50-Xrs2 complex (MRX) initiates 5' degradation, whereas Sgs1 and Dna2 degrade 5' strands exposing long 3' strands. Deletion of SGS1 or DNA2 reduces resection and DSB repair by single-strand annealing between distant repeats while the remaining long-range resection activity depends on the exonuclease Exo1. In exo1Deltasgs1Delta double mutants, the MRX complex together with Sae2 nuclease generate, in a stepwise manner, only few hundred nucleotides of ssDNA at the break, resulting in inefficient gene conversion and G2/M damage checkpoint arrest. These results provide important insights into the early steps of DSB repair in eukaryotes.

  9. Cell transcriptional state alters genomic patterns of DNA double-strand break repair in human astrocytes.

    PubMed

    Yong, Raymund L; Yang, Chunzhang; Lu, Jie; Wang, Huaien; Schlaff, Cody D; Tandle, Anita; Graves, Christian A; Elkahloun, Abdel G; Chen, Xiaoyuan; Zhuang, Zhengping; Lonser, Russell R

    2014-12-17

    The misrepair of DNA double-strand breaks in close spatial proximity within the nucleus can result in chromosomal rearrangements that are important in the pathogenesis of haematopoietic and solid malignancies. It is unknown why certain epigenetic states, such as those found in stem or progenitor cells, appear to facilitate neoplastic transformation. Here we show that altering the transcriptional state of human astrocytes alters patterns of DNA damage repair from ionizing radiation at a gene locus-specific and genome-wide level. Astrocytes induced into a reactive state exhibit increased DNA repair, compared with non-reactive cells, in actively transcribed chromatin after irradiation. In mapping these repair sites, we identify misrepair events and repair hotspots that are unique to each state. The precise characterization of genomic regions susceptible to mutation in specific transcriptional states provides new opportunities for addressing clonal evolution in solid cancers, in particular those where double-strand break induction is a cornerstone of clinical intervention.

  10. The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA

    NASA Astrophysics Data System (ADS)

    Colis, Laureen C.; Woo, Christina M.; Hegan, Denise C.; Li, Zhenwu; Glazer, Peter M.; Herzon, Seth B.

    2014-06-01

    The metabolite (-)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at nanomolar-picomolar concentrations; however, the mechanism responsible for the potent cytotoxicity of this natural product is not known. Here we report that (-)-lomaiviticin A nicks and cleaves plasmid DNA by a pathway that is independent of reactive oxygen species and iron, and that the potent cytotoxicity of (-)-lomaiviticin A arises from the induction of DNA double-strand breaks (dsbs). In a plasmid cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3 ± 0.6:1. Labelling studies suggest that this cleavage occurs via a radical pathway. The structurally related isolates (-)-lomaiviticin C and (-)-kinamycin C, which contain one diazofluorene, are demonstrated to be much less effective DNA cleavage agents, thereby providing an explanation for the enhanced cytotoxicity of (-)-lomaiviticin A compared to that of other members of this family.

  11. Dissociative Electron Attachment to Phosphoric Acid Esters: The Direct Mechanism for Single Strand Breaks in DNA

    SciTech Connect

    Koenig, Constanze; Kopyra, Janina; Bald, Ilko; Illenberger, Eugen

    2006-07-07

    We use dibutyl phosphate to simulate the behavior of the phosphate group in DNA towards the attack of low energy electrons. We find that the compound undergoes effective dissociative electron attachment within a low energy resonant feature at 1 eV and a further resonance peaking at 8 eV. The dissociative electron attachment (DEA) reactions are associated with the direct cleavage of the C-O and the P-O bond but also the excision of the PO{sup -}, PO{sub 3}{sup -}, H{sub 2}PO{sub 3}{sup -} units. For the phosphate group coupled in the DNA network these reactions represent single strand breaks. We hence propose that the most direct mechanism of single strand breaks occurring in DNA at subexcitation energies (<4 eV) is due to DEA directly to the phosphate group.

  12. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    SciTech Connect

    Larionov, V.; Kouprina, N. |; Edlarov, M. |; Perkins, E.; Porter, G.; Resnick, M.A.

    1993-12-31

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic growth. The frequency of recombination is partly dependent on the method of transformation in that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RADS2, RADI and the RNCI genes,

  13. Smoking during pregnancy causes double-strand DNA break damage to the placenta.

    PubMed

    Slatter, Tania L; Park, Lydia; Anderson, Karyn; Lailai-Tasmania, Viwa; Herbison, Peter; Clow, William; Royds, Janice A; Devenish, Celia; Hung, Noelyn A

    2014-01-01

    Despite the adverse effects of smoking, many pregnancies are exposed to tobacco smoke. Recent studies have investigated whether smoking damages placental DNA by measuring DNA adducts. This study investigated whether a more severe lesion, double-strand DNA breaks, was also present in the tobacco smoking-exposed placenta. Term placentae from women who smoked during their entire pregnancies (n = 52), from those who had ceased smoking for at least 4 weeks before delivery (previous smokers, n = 34), and from nonsmoking women (n = 150) were examined using the DNA double-strand break marker phosphorylated γ H2AX. The extent of DNA damage was assessed according to cell type and additional markers were applied for cell fate (apoptosis and DNA repair), and function (human chorionic gonadotropin, human placental lactogen, and glucose transporter 1), to characterize the effect of the DNA damage on placental integrity. Marked phosphorylated γ H2AX-positive cells occurred in the villous syncytiotrophoblast and syncytial knot nuclei in placentae from smokers (P < .001). Phosphorylated γ H2AX foci did not colocalize with the DNA repair protein 53BP1, and damaged nuclei had a marked reduction in expression of human chorionic gonadotropin, human placental lactogen, and glucose transporter 1. Minimal DNA damage, similar to nonsmokers, was present in previous smokers including those that had ceased smoking for just over 4 weeks before delivery. In summary, smoking during pregnancy was associated with marked double-strand DNA break damage to the syncytiotrophoblast. We suggest that smoking cessation is important to prevent additional DNA damage and to facilitate DNA repair.

  14. DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions.

    PubMed

    Sordet, Olivier; Nakamura, Asako J; Redon, Christophe E; Pommier, Yves

    2010-01-15

    A taxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA double-strand break (DSB) response. We recently showed that transcription-blocking topoisomerase I cleavage complexes (TOP1cc) produce DSBs related to R-loop formation and activate ATM in post-mitotic neurons and lymphocytes. Here we discuss how TOP1cc can produce transcription arrest with R-loop formation and generate DSBs that activate ATM, as well as data suggesting that those transcription-dependent DSBs tend to form at the IgH locus and at specific genomic sites. We also address the potential roles of ATM in response to transcription-blocking TOP1cc.

  15. DNA single-strand breaks, double-strand breaks, and crosslinks in rat testicular germ cells: Measurements of their formation and repair by alkaline and neutral filter elution

    SciTech Connect

    Bradley, M.O.; Dysart, G. )

    1985-06-01

    This work describes a neutral and alkaline elution method for measuring DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-DNA crosslinks in rat testicular germ cells after treatments in vivo or in vitro with both chemical mutagens and gamma-irradiation. The methods depend upon the isolation of testicular germ cells by collagenase and trypsin digestion, followed by filtration and centrifugation. {sup 137}Cs irradiation induced both DNA SSBs and DSBs in germ cells held on ice in vitro. Irradiation of the whole animal indicated that both types of DNA breaks are induced in vivo and can be repaired. A number of germ cell mutagens induced either DNA SSBs, DSBs, or cross-links after in vivo and in vitro dosing. These chemicals included methyl methanesulfonate, ethyl methanesulfonate, ethyl nitrosourea, dibromochlorpropane, ethylene dibromide, triethylene melamine, and mitomycin C. These results suggest that the blood-testes barrier is relatively ineffective for these mutagens, which may explain in part their in vivo mutagenic potency. This assay should be a useful screen for detecting chemical attack upon male germ-cell DNA and thus, it should help in the assessment of the mutagenic risk of chemicals. In addition, this approach can be used to study the processes of SSB, DSB, and crosslink repair in DNA of male germ cells, either from all stages or specific stages of development.

  16. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis

    SciTech Connect

    Olive, P.L.; Wlodek, D.; Banath, J.P. )

    1991-09-01

    Microscopic examination of individual mammalian cells embedded in agarose, subjected to electrophoresis, and stained with a fluorescent DNA-binding dye provides a novel way of measuring DNA damage and more importantly, of assessing heterogeneity in DNA damage within a mixed population of cells. With this method, DNA double-strand breaks can be detected in populations of cells exposed to X-ray doses as low as 5 Gy. The radiation dose-response relationship for initial formation of double-strand breaks was identical for cell lines irradiated in G1, regardless of their sensitivity to killing by ionizing radiation. However, for cells irradiated in S phase, DNA migration was significantly reduced. For Chinese hamster V79 cells, Chinese hamster ovary cells, WiDr human colon carcinoma cells, and L5178Y-R mouse lymphoblastoid cells, S-phase DNA appeared to be about 3 times less sensitive to X-ray damage than DNA from other phases of the cell cycle. However, for the very radiosensitive L5178Y-S cells, the migration of replicating DNA was reduced only slightly. For Chinese hamster V79 and Chinese hamster ovary cells, damage was repaired at a similar rate in all cells of the population, and 85% of the breaks were rejoined within 2 h after irradiation. The radiosensitive L5178Y-S cells repaired damage more slowly than V79 or Chinese hamster ovary cells; 2 h after exposure to 50 Gy, approximately 50% of the damage was still present.

  17. Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice.

    PubMed

    Jimeno, Sonia; Fernández-Ávila, María Jesús; Cruz-García, Andrés; Cepeda-García, Cristina; Gómez-Cabello, Daniel; Huertas, Pablo

    2015-01-01

    DNA double strand breaks are the most cytotoxic lesions that can occur on the DNA. They can be repaired by different mechanisms and optimal survival requires a tight control between them. Here we uncover protein deneddylation as a major controller of repair pathway choice. Neddylation inhibition changes the normal repair profile toward an increase on homologous recombination. Indeed, RNF111/UBE2M-mediated neddylation acts as an inhibitor of BRCA1 and CtIP-mediated DNA end resection, a key process in repair pathway choice. By controlling the length of ssDNA produced during DNA resection, protein neddylation not only affects the choice between NHEJ and homologous recombination but also controls the balance between different recombination subpathways. Thus, protein neddylation status has a great impact in the way cells respond to DNA breaks.

  18. Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice

    PubMed Central

    Jimeno, Sonia; Fernández-Ávila, María Jesús; Cruz-García, Andrés; Cepeda-García, Cristina; Gómez-Cabello, Daniel; Huertas, Pablo

    2015-01-01

    DNA double strand breaks are the most cytotoxic lesions that can occur on the DNA. They can be repaired by different mechanisms and optimal survival requires a tight control between them. Here we uncover protein deneddylation as a major controller of repair pathway choice. Neddylation inhibition changes the normal repair profile toward an increase on homologous recombination. Indeed, RNF111/UBE2M-mediated neddylation acts as an inhibitor of BRCA1 and CtIP-mediated DNA end resection, a key process in repair pathway choice. By controlling the length of ssDNA produced during DNA resection, protein neddylation not only affects the choice between NHEJ and homologous recombination but also controls the balance between different recombination subpathways. Thus, protein neddylation status has a great impact in the way cells respond to DNA breaks. PMID:25567988

  19. The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis.

    PubMed

    Jette, Nicholas; Lees-Miller, Susan P

    2015-03-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes.

  20. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Heilmann, J.; Rink, H.

    The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV μ -1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non

  1. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation.

    PubMed

    Baumstark-Khan, C; Heilmann, J; Rink, H

    2003-01-01

    The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV micrometers-1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of

  2. Simulation of the Formation of DNA Double Strand Breaks and Chromosome Aberrations in Irradiated Cells

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry

    2014-01-01

    The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.

  3. Alu elements and DNA double-strand break repair.

    PubMed

    White, Travis B; Morales, Maria E; Deininger, Prescott L

    2015-01-01

    Alu elements represent one of the most common sources of homology and homeology in the human genome. Homeologous recombination between Alu elements represents a major form of genetic instability leading to deletions and duplications. Although these types of events have been studied extensively through genomic sequencing to assess the impact of Alu elements on disease mutations and genome evolution, the overall abundance of Alu elements in the genome often makes it difficult to assess the relevance of the Alu elements to specific recombination events. We recently reported a powerful new reporter gene system that allows the assessment of various cis and trans factors on the contribution of Alu elements to various forms of genetic instability. This allowed a quantitative measurement of the influence of mismatches on Alu elements and instability. It also confirmed that homeologous Alu elements are able to stimulate non-homologous end joining events in their vicinity. This appears to be dependent on portions of the mismatch repair pathway. We are now in a position to begin to unravel the complex influences of Alu density, mismatch and location with alterations of DNA repair processes in various tissues and tumors.

  4. Reversible accumulation of double- and single-stranded DNA breaks in DNA in growth-arrested cells

    SciTech Connect

    S'yakste, N.I.; S'yakste, T.G.; Zaleskaya, N.D.

    1987-01-01

    The authors study the possibility of the formation and repair of double-stranded breaks in DNA during a change in the proliferative status of cells. Jungarian hamster fibroblasts, transformed by SV-40 virus, were cultured in Carrel's flasks in a nutrient mixture containing Eagle's medium, lactalbumin hydrolysate, and bovine serum in the ratio of 4.5:4.5:1. DNA was labelled by the addition of 0.4 MBq/ml of tritium-thymidine to the incubation medium for 2-7 days. To arrest cell growth, the monolayer formed seven days after seeding was placed in medium with the serum concentration lowered to 1%, and incubated for 7-9 days. The cells were restimulated for division with fresh complete medium. The mitotic index was 20% in the exponentially growing cultures while in the resting cultures it was 1-2% and rose to 16% 2 days after stimulation. Double-stranded DNA breaks were determined by neutral elution of DNA; single-stranded breaks were measured by the alkaline DNA uncoiling method with fixation of hydroxyapatite. The formation of double-stranded DNA breaks and their repair, in response to a change in the proliferative status of the cell, were discovered for the first time.

  5. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    PubMed

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  6. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends.

    PubMed

    Chen, Xuefeng; Cui, Dandan; Papusha, Alma; Zhang, Xiaotian; Chu, Chia-Dwo; Tang, Jiangwu; Chen, Kaifu; Pan, Xuewen; Ira, Grzegorz

    2012-09-27

    Chromosomal double-strand breaks (DSBs) are resected by 5' nucleases to form 3' single-stranded DNA substrates for binding by homologous recombination and DNA damage checkpoint proteins. Two redundant pathways of extensive resection have been described both in cells and in vitro, one relying on Exo1 exonuclease and the other on Sgs1 helicase and Dna2 nuclease. However, it remains unknown how resection proceeds within the context of chromatin, where histones and histone-bound proteins represent barriers for resection enzymes. Here we identify the yeast nucleosome-remodelling enzyme Fun30 as a factor promoting DSB end resection. Fun30 is the major nucleosome remodeller promoting extensive Exo1- and Sgs1-dependent resection of DSBs. The RSC and INO80 chromatin-remodelling complexes and Fun30 have redundant roles in resection adjacent to DSB ends. ATPase and helicase domains of Fun30, which are needed for nucleosome remodelling, are also required for resection. Fun30 is robustly recruited to DNA breaks and spreads along the DSB coincident with resection. Fun30 becomes less important for resection in the absence of the histone-bound Rad9 checkpoint adaptor protein known to block 5' strand processing and in the absence of either histone H3 K79 methylation or γ-H2A, which mediate recruitment of Rad9 (refs 9, 10). Together these data suggest that Fun30 helps to overcome the inhibitory effect of Rad9 on DNA resection.

  7. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines

    PubMed Central

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E.; Krishnan, Aswini R.; Tsui, Tzuhan; Aguilera, Joseph A.; Advani, Sunil; Crotty Alexander, Laura E.; Brumund, Kevin T.; Wang-Rodriguez, Jessica

    2016-01-01

    Objectives Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. Materials and Methods HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 hours to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. Results E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. Conclusion E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. PMID:26547127

  8. DNA Strand Breaks in Fibroblasts Exposed to a 50-Hz Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nakayama, Maresuke; Hondou, Tsuyoshi; Miyata, Hidetake

    A large number of studies have reported DNA damages caused by low frequency magnetic field (LFMF). However, the mechanism of the DNA damage is not well understood, partly because of a lack of reproducibility. Because DNA integrity is essential for the activities of life, the present study focused on DNA damages induced by LFMF. Fibroblast cells (3T3 Swiss albino) were exposed for various periods (15, 18 and 24 h) to 50-Hz magnetic fields (MF) of various intensities (100, 500 and 1000 µT). Two modes of exposure, intermittent (on for 5 min, off for 10 min) and continuous, were employed. DNA damages were evaluated by the alkaline comet assay. This assay semi-quantify the degree of DNA strand breaks. With the intermittent 500 µT MF, the degree of DNA strand breaks was higher in the exposed cells than non-exposed cells, and the difference was maximal at 18 h (statistically significant difference was observed at 18 and 24 h). Also with the intermittexnt, 100 and 1000 µT MFs, the degree of DNA strand breaks of exposed cells was higher than non-exposed cells, but the statistically significant difference was observed only at 1000 µT, 18 h exposure. The continuous exposure for 15, 18 and 24 h at 500 µT exhibited a significant difference between the exposed and non-exposed cells only at 18 h, but the difference was not as prominent as that observed under the intermittent exposure.

  9. Molecular basis for DNA double-strand break annealing and primer extension by an NHEJ DNA polymerase.

    PubMed

    Brissett, Nigel C; Martin, Maria J; Bartlett, Edward J; Bianchi, Julie; Blanco, Luis; Doherty, Aidan J

    2013-11-27

    Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5'-3' direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3' overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3' overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3' ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.

  10. DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis.

    PubMed

    Inagaki, Akiko; Schoenmakers, Sam; Baarends, Willy M

    2010-05-16

    Chromosome pairing and synapsis during meiotic prophase requires the formation and repair of DNA double-strand breaks (DSBs) by the topoisomerase-like enzyme SPO11. Chromosomes, or chromosomal regions, that lack a pairing partner, such as the largely heterologous X and Y chromosomes, show delayed meiotic DSB repair and are transcriptionally silenced. Herein, we review meiosis-specific aspects of DSB repair in relation to homology recognition and meiotic silencing of heterologous regions. We propose a dynamic interplay between progression of synapsis and persistent meiotic DSBs. Signaling from these persistent breaks could inhibit heterologous synapsis and stimulate meiotic silencing of the X and Y chromosomes.

  11. Identification and Characterization of a Human DNA Double-Strand Break Repair Complex

    SciTech Connect

    Chen, D.J.; Cary, R.B.

    1999-07-12

    The authors have used atomic force microscopy (AFM) to characterize the assembly and structure of the macromolecular assemblies involved in DNA repair. They have demonstrated using AFM that the DNA-dependent protein kinase can play a structural role in the repair of DNA double-strand breaks (DSBs) by physically holding DNA ends together. They have extended these studies to include other DNA damage response proteins, these efforts have resulted in important and novel findings regarding the ATM protein. Specifically, the work has demonstrated, for the first time, that the ATM protein binds with specificity to a DNA end. This finding is the first to implicate the ATM protein in the detection of DNA damage by direct physical interaction with DSBs.

  12. Yields of single-strand breaks in double-stranded calf thymus DNA irradiated in aqueous solution in the presence of oxygen and scavengers

    SciTech Connect

    Udovicic, Lj.; Mark, F.; Bothe, E.

    1994-11-01

    Yields of radiation-induced single-strand breaks in double-stranded calf thymus DNA have been measured as a function of OH scavenger concentration in N{sub 2}O/O{sub 2}-saturated aqueous solution. The experimental data are well represented by a theoretical model based on non-homogeneous reaction kinetics, without the need to adjust any parameter. The good agreement between experimental and theoretical data is taken as evidence that, in the presence of oxygen, the main effect of added scavengers with respect to the formation of single-strand breaks in double-stranded DNA is OH radical scavenging. 30 refs., 3 figs., 1 tab.

  13. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage.

    PubMed

    Vu, Giang T H; Cao, Hieu X; Reiss, Bernd; Schubert, Ingo

    2017-02-28

    In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.

  14. DNA double-strand break repair: Genetic determinants of flanking crossing-over

    SciTech Connect

    Kusano, Kohji; Sunohara, Yukari; Kobayashi, Ichizo; Takahashi, Noriko; Yoshikura, Hiroshi )

    1994-02-01

    Whether or not homologous interaction of two DNA molecules results in crossing-over of the flanking sequences is an important decision in view of genome organization. Several homologous recombination models, including the double-strand break repair models, explain this decision as choice between two alternative modes of resolution of Holliday-type intermediates. The authors have demonstrated that a double-strand gap can be repaired through gene conversion copying a homologous duplex, as predicted by the double-strand break repair models, in the RecE pathway of Escherichia coli. This gap repair is often accompanied by crossing-over of the flanking sequences. Mutations in ruvC and recG, whose products interact with Holliday structures in vitro, do not block double-strand gap repair or its association with flanking crossing-over. However, two mutations in the recJ gene, which encodes a single-strand 5[prime][yields]3[prime] exonuclease, severely decrease association of flanking crossing-over. Two mutations in the recQ gene, which encodes a helicase, moderately decrease association of flanking crossing-over by themselves and suppress the severe effect of a recJ mutation. Similar relationships of recJ and recQ mutations are observed in cell survival after ultraviolet light irradiation, [gamma]-ray irradiation, and H[sub 2]O[sub 2] treatment. The authors discuss how cooperation of the recQ gene product and the recJ gene product brings about double-strand break repair accompanied by flanking crossing-over. They also discuss how this reaction is related to repair of chromosome damages.

  15. Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion.

    PubMed

    Ira, Grzegorz; Satory, Dominik; Haber, James E

    2006-12-01

    To distinguish among possible mechanisms of repair of a double-strand break (DSB) by gene conversion in budding yeast, Saccharomyces cerevisiae, we employed isotope density transfer to analyze budding yeast mating type (MAT) gene switching in G2/M-arrested cells. Both of the newly synthesized DNA strands created during gene conversion are found at the repaired locus, leaving the donor unchanged. These results support suggestions that mitotic DSBs are primarily repaired by a synthesis-dependent strand-annealing mechanism. We also show that the proportion of crossing-over associated with DSB-induced ectopic recombination is not affected by the presence of nonhomologous sequences at one or both ends of the DSB or the presence of additional sequences that must be copied from the donor.

  16. Reactive oxygen species controllable non-thermal helium plasmas for evaluation of plasmid DNA strand breaks

    NASA Astrophysics Data System (ADS)

    Young Kim, Jae; Lee, Dong-Hoon; Ballato, John; Cao, Weiguo; Kim, Sung-O.

    2012-11-01

    Non-thermal, oxygen-rich helium plasmas were investigated to achieve an enhanced reactive oxygen species concentration at low voltage driving conditions. A non-thermal plasma device was fabricated based on a theta-shaped tube, and its potential was investigated for use in topological alteration of plasmid DNA. The optical emission spectra of the plasma showed that the oxygen flow affected the plasma properties, even though an oxygen plasma was not produced. The plasmid DNA strand breaks became more significant with the addition of oxygen flow to the helium in a single hollow, theta-shaped tube with other experimental conditions being unchanged.

  17. Modeling the repair of DNA strand breaks caused by γ-radiation in a minichromosome

    NASA Astrophysics Data System (ADS)

    Łakomiec, K.; Kumala, S.; Hancock, R.; Rzeszowska-Wolny, J.; Fujarewicz, K.

    2014-08-01

    The objective of the studies described here was the development of a mathematical model which would fit experimental data for the repair of single and double strand breaks induced in DNA in living cells by exposure to ionizing radiation, and which would allow to better understand the processes of DNA repair. DNA breaks are believed to play the major role in radiation-induced lethality and formation of chromosome deletions, and are therefore crucial to the response of cells to radiotherapy. In an initial model which we reported on the basis of data for the repair of Epstein-Barr minichromosomes in irradiated Raji cells, we assumed that DNA breaks are induced only at the moment of irradiation and are later removed by repair systems. This work gives a development of that mathematical model which fits the experimental results more precisely and suggests strongly that DNA breaks are generated not only by direct irradiation but also later, probably by systems engaged in repair of oxidative damage.

  18. Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair.

    PubMed

    Ohle, Corina; Tesorero, Rafael; Schermann, Géza; Dobrev, Nikolay; Sinning, Irmgard; Fischer, Tamás

    2016-11-03

    RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability.

  19. Splicing controls the ubiquitin response during DNA double-strand break repair

    PubMed Central

    Pederiva, C; Böhm, S; Julner, A; Farnebo, M

    2016-01-01

    Although evidence that splicing regulates DNA repair is accumulating, the underlying mechanism(s) remain unclear. Here, we report that short-term inhibition of pre-mRNA splicing by spliceosomal inhibitors impairs cellular repair of DNA double-strand breaks. Indeed, interference with splicing as little as 1 h prior to irradiation reduced ubiquitylation of damaged chromatin and impaired recruitment of the repair factors WRAP53β, RNF168, 53BP1, BRCA1 and RAD51 to sites of DNA damage. Consequently, splicing-deficient cells exhibited significant numbers of residual γH2AX foci, as would be expected if DNA repair is defective. Furthermore, we show that this is due to downregulation of the E3 ubiquitin ligase RNF8 and that re-introduction of this protein into splicing-deficient cells restores ubiquitylation at sites of DNA damage, accumulation of downstream factors and subsequent repair. Moreover, downregulation of RNF8 explains the defective repair associated with knockdown of various splicing factors in recent genome-wide siRNA screens and, significantly, overexpression of RNF8 counteracts this defect. These discoveries reveal a mechanism that may not only explain how splicing regulates repair of double-strand breaks, but also may underlie various diseases caused by deregulation of splicing factors, including cancer. PMID:27315300

  20. Detection of DNA single-strand breaks induced by procarcinogens in Chinese hamster ovary cells cocultured with rat hepatocytes

    SciTech Connect

    Yang, K.H.; Shin, C.G.; Choe, S.Y.; Kim, D.H.

    1984-01-01

    DNA single-strand breaks induced by procarcinogens were detected in Chinese hamster overy (CHO) cell cocultured with adult rat hepatocytes. Freshly isolated adult rat hepatocytes were added to the CHO cell culture prelabeled with (/sup 3/H) thymidine. After allowing the hepatocytes to attach on or near the CHO cells, aflatoxin B/sub 1/ or benzo(a)pyrene was added to the culture and incubated for the desired time. DNA single-strand breaks in CHO cells were measured by the alkaline elution technique. Aflatoxin B/sub 1/ induced some DNA single-strand breaks in CHO cells cultured alone, but in coculture system with hepatocytes the number of DNA single-strand breaks increased greatly. The magnitude of the increase was related to the dose and the time of exposure to aflatoxin B/sub 1/. Addition of proteinase-K to the cell lysates increased the elution of DNA compared to that of samples without proteinase-K. Benzo(a)pyrene did not induce any DNA single-strand breaks in CHO cells in the absence of liver cells, but a significant number of single-strand breaks were detected in the coculture system.

  1. Processing of 3'-Phosphoglycolate-Terminated DNA Double-StrandBreaks by Artemis Nuclease

    SciTech Connect

    Povrik, Lawrence F.; Zhou, Tong; Zhou, Ruizhe; Cowan, Morton J.; Yannone, Steven M.

    2005-10-01

    The Artemis nuclease is required for V(D)J recombination and for repair of an as yet undefined subset of radiation-induced DNA double-strand breaks. To assess the possibility that Artemis functions on oxidatively modified double-strand break termini, its activity toward model DNA substrates, bearing either 3{prime}-hydroxyl or 3{prime}-phosphoglycolate moieties, was examined. A 3{prime}-phosphoglycolate had little effect on Artemis-mediated trimming of long 3{prime} overhangs (>9 nucleotides), which were efficiently trimmed to 4-5 nucleotides. However, 3{prime}-phosphoglycolates on overhangs of 4-5 bases promoted selective Artemis-mediated trimming of a single 3{prime}-terminal nucleotide, while at least 2 nucleotides were trimmed from identical hydroxyl-terminated substrates. Artemis also efficiently removed a single nucleotide from a phosphoglycolate-terminated 3-base 3{prime} overhang, while leaving an analogous hydroxyl-terminated overhang largely intact. Such removal was dependent upon Ku, DNA-dependent protein kinase, and ATP. Together, these data suggest that Artemis-mediated cleavage of 3{prime} overhangs requires a minimum of 2 nucleotides, or a nucleotide plus a phosphoglycolate, 3{prime} to the cleavage site. Shorter 3{prime}-phosphoglycolate-terminated overhangs and blunt ends were also processed by Artemis, but much less efficiently. Consistent with the in vitro substrate specificity of Artemis, human cells lacking Artemis exhibited hypersensitivity to X-rays, bleomycin and neocarzinostatin, which all induce 3{prime}-phosphoglycolate-terminated double-strand breaks. Collectively, these results suggest that 3{prime}-phosphoglycolate termini and/or specific classes of DNA ends that arise from such blocked termini are relevant Artemis substrates in vivo.

  2. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro

    PubMed Central

    Talhaoui, Ibtissam; Lebedeva, Natalia A.; Zarkovic, Gabriella; Saint-Pierre, Christine; Kutuzov, Mikhail M.; Sukhanova, Maria V.; Matkarimov, Bakhyt T.; Gasparutto, Didier; Saparbaev, Murat K.; Lavrik, Olga I.; Ishchenko, Alexander A.

    2016-01-01

    Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and PARP2 proteins can directly ADP-ribosylate the termini of DNA oligonucleotides. PARP1 preferentially catalysed covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 3′-cordycepin, 5′- and 3′-phosphate and also to 5′-phosphate of a single-stranded oligonucleotide. PARP2 preferentially ADP-ribosylated the nicked/gapped DNA duplexes containing 5′-phosphate at the double-stranded termini. PAR glycohydrolase (PARG) restored native DNA structure by hydrolysing PAR-DNA adducts generated by PARP1 and PARP2. Biochemical and mass spectrometry analyses of the adducts suggested that PARPs utilise DNA termini as an alternative to 2′-hydroxyl of ADP-ribose and protein acceptor residues to catalyse PAR chain initiation either via the 2′,1″-O-glycosidic ribose-ribose bond or via phosphodiester bond formation between C1′ of ADP-ribose and the phosphate of a terminal deoxyribonucleotide. This new type of post-replicative modification of DNA provides novel insights into the molecular mechanisms underlying biological phenomena of ADP-ribosylation mediated by PARPs. PMID:27471034

  3. Detection of genotoxic insult as DNA strand breaks in fish blood cells by agarose gel electrophoresis

    SciTech Connect

    Theodorakis, C.W. ); D'Surney, S.J. . Dept. of Biology); Shugart, L.R. . Environmental Sciences Division)

    1994-07-01

    DNA, isolated from the blood cells of bluegill sunfish (Lepomis macrochirus) exposed in the lab to bedded sediment collected from a site contaminated with genotoxic compounds (i.e., PAHs, PCBs, and heavy metals), was examined for strand breakage by agarose gel electrophoresis. Before electrophoresis the blood cells were embedded in agarose plugs and incubated with proteinase. After electrophoresis under both neutral (pH 7) or alkaline (pH 12) conditions, the median molecular length (MML) of the DNA distributed in the gel was determined. These quantitative measures were used to estimate the difference in the number of double- and single-strand breaks between DNA preparations. Both types of strand breakage were found to be greater in fish exposed to sediment contaminated with genotoxic compounds as compared to nonexposed fish. A statistically significant correlation was demonstrated between the MML value obtained by the electrophoretic assay reported here and the F value (measure of DNA double-strandedness) obtained by the alkaline unwinding assay.

  4. DNA polymerase θ (POLQ), double-strand break repair, and cancer.

    PubMed

    Wood, Richard D; Doublié, Sylvie

    2016-08-01

    DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed "alternative end-joining" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. "Signatures" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization.

  5. Sp1 facilitates DNA double-strand break repair through a nontranscriptional mechanism.

    PubMed

    Beishline, Kate; Kelly, Crystal M; Olofsson, Beatrix A; Koduri, Sravanthi; Emrich, Jacqueline; Greenberg, Roger A; Azizkhan-Clifford, Jane

    2012-09-01

    Sp1 is a ubiquitously expressed transcription factor that is phosphorylated by ataxia telangiectasia mutated kinase (ATM) in response to ionizing radiation and H(2)O(2). Here, we show by indirect immunofluorescence that Sp1 phosphorylated on serine 101 (pSp1) localizes to ionizing radiation-induced foci with phosphorylated histone variant γH2Ax and members of the MRN (Mre11, Rad50, and Nbs1) complex. More precise analysis of occupancy of DNA double-strand breaks (DSBs) by chromatin immunoprecipitation (ChIP) shows that Sp1, like Nbs1, resides within 200 bp of DSBs. Using laser microirradiation of cells, we demonstrate that pSp1 is present at DNA DSBs by 7.5 min after induction of damage and remains at the break site for at least 8 h. Depletion of Sp1 inhibits repair of site-specific DNA breaks, and the N-terminal 182-amino-acid peptide, which contains targets of ATM kinase but lacks the zinc finger DNA binding domain, is phosphorylated, localizes to DSBs, and rescues the repair defect resulting from Sp1 depletion. Together, these data demonstrate that Sp1 is rapidly recruited to the region immediately adjacent to sites of DNA DSBs and is required for DSB repair, through a mechanism independent of its sequence-directed transcriptional effects.

  6. [Bacterial infections as seen from the eukaryotic genome: DNA double strand breaks, inflammation and cancer].

    PubMed

    Lemercier, Claudie

    2014-01-01

    An increasing number of studies report that infection by pathogenic bacteria alters the host genome, producing highly hazardous DNA double strand breaks for the eukaryotic cell. Even when DNA repair occurs, it often leaves "scars" on chromosomes that might generate genomic instability at the next cell division. Chronic intestinal inflammation promotes the expansion of genotoxic bacteria in the intestinal microbiote which in turn triggers tumor formation and colon carcinomas. Bacteria act at the level of the host DNA repair machinery. They also highjack the host cell cycle to allow themselves time for replication in an appropriate reservoir. However, except in the case of bacteria carrying the CDT nuclease, the molecular mechanisms responsible for DNA lesions are not well understood, even if reactive oxygen species released during infection make good candidates.

  7. ATP-dependent chromatin remodeling and DNA double-strand break repair.

    PubMed

    van Attikum, Haico; Gasser, Susan M

    2005-08-01

    The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic stability. Two pathways for the repair of DBSs, nonhomologous end-joining (NHEJ) and homologous recombination (HR), have evolved in eukaryotes. These pathways, like processes such as transcription and replication, act on DNA that is embedded in nucleosomes. Recent studies have shown that DNA repair, like transcription, is facilitated both by histone tail modification and by ATP-dependent chromatin remodeling. This review emphasizes recent reports that demonstrate a function for the ATP-dependent chromatin remodeling complexes INO80 and RSC in NHEJ and HR. We also discuss the possible role of SWR1- and TIP60-mediated nucleosomal histone exchange in DNA repair.

  8. Significant correlation of species longevity with DNA double strand break recognition but not with telomere length.

    PubMed

    Lorenzini, Antonello; Johnson, F Brad; Oliver, Anthony; Tresini, Maria; Smith, Jasmine S; Hdeib, Mona; Sell, Christian; Cristofalo, Vincent J; Stamato, Thomas D

    2009-01-01

    The identification of the cellular mechanisms responsible for the wide differences in species lifespan remains one of the major unsolved problems of the biology of aging. We measured the capacity of nuclear protein to recognize DNA double strand breaks (DSBs) and telomere length of skin fibroblasts derived from mammalian species that exhibit wide differences in longevity. Our results indicate DNA DSB recognition increases exponentially with longevity. Further, an analysis of the level of Ku80 protein in human, cow, and mouse suggests that Ku levels vary dramatically between species and these levels are strongly correlated with longevity. In contrast mean telomere length appears to decrease with increasing longevity of the species, although not significantly. These findings suggest that an enhanced ability to bind to DNA ends may be important for longevity. A number of possible roles for increased levels of Ku and DNA-PKcs are discussed.

  9. Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein

    PubMed Central

    Yuan, Ying; Britton, Sébastien; Delteil, Christine; Coates, Julia; Jackson, Stephen P.; Barboule, Nadia; Frit, Philippe; Calsou, Patrick

    2015-01-01

    In humans, DNA double-strand breaks (DSBs) are repaired by two mutually-exclusive mechanisms, homologous recombination or end-joining. Among end-joining mechanisms, the main process is classical non-homologous end-joining (C-NHEJ) which relies on Ku binding to DNA ends and DNA Ligase IV (Lig4)-mediated ligation. Mostly under Ku- or Lig4-defective conditions, an alternative end-joining process (A-EJ) can operate and exhibits a trend toward microhomology usage at the break junction. Homologous recombination relies on an initial MRN-dependent nucleolytic degradation of one strand at DNA ends. This process, named DNA resection generates 3′ single-stranded tails necessary for homologous pairing with the sister chromatid. While it is believed from the current literature that the balance between joining and recombination processes at DSBs ends is mainly dependent on the initiation of resection, it has also been shown that MRN activity can generate short single-stranded DNA oligonucleotides (ssO) that may also be implicated in repair regulation. Here, we evaluate the effect of ssO on end-joining at DSB sites both in vitro and in cells. We report that under both conditions, ssO inhibit C-NHEJ through binding to Ku and favor repair by the Lig4-independent microhomology-mediated A-EJ process. PMID:26350212

  10. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    SciTech Connect

    Larionov, V.; Kouprina, N. |; Eldarov, M. |; Perkins, E.; Porter, G.; Resnick, M.A.

    1994-10-01

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic-growth. The frequency of recombination is partly dependent on the method of transformation In that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RAD52, RAD1 and the RNC1 genes.

  11. DNA double strand breaks in the acute phase after synchrotron pencilbeam irradiation

    NASA Astrophysics Data System (ADS)

    Fernandez-Palomo, C.; Bräuer-Krisch, E.; Trippel, M.; Schroll, C.; Requardt, H.; Bartzsch, S.; Nikkhah, G.; Schültke, E.

    2013-07-01

    Introduction. At the biomedical beamline of the European Synchrotron Radiation Facility (ESRF), we have established a method to study pencilbeam irradiation in-vivoin small animal models. The pencilbeam irradiation technique is based on the principle of microbeam irradiation, a concept of spatially fractionated high-dose irradiation. Using γH2AX as marker, we followed the development of DNA double strand breaks over 48 hrs after whole brain irradiation with the pencilbeam technique. Method. Almost square pencilbeams with an individual size of 51 × 50 μm were produced with an MSC collimator using a step and shoot approach, while the animals were moved vertically through the beam. The center-to-center distance (ctc) was 400 μm, with a peak-to-valley dose ratio (PVDR) of about 400. Five groups of healthy adult mice received peak irradiation doses of either 330 Gy or 2,460 Gy and valley doses of 0.82 Gy and 6.15 Gy, respectively. Animals were sacrificed at 2, 12 and 48 hrs after irradiation. Results. DNA double strand breaks are observed in the path of the pencilbeam. The size of the damaged volume undergoes changes within the first 48 hours after irradiation. Conclusions. The extent of DNA damage caused by pencilbeam irradiation, as assessed by H2AX antibody staining, is dose- dependent.

  12. Excess electron interactions with solvated DNA nucleotides: strand breaks possible at room temperature.

    PubMed

    Smyth, Maeve; Kohanoff, Jorge

    2012-06-06

    When biological matter is subjected to ionizing radiation, a wealth of secondary low-energy (<20 eV) electrons are produced. These electrons propagate inelastically, losing energy to the medium until they reach energies low enough to localize in regions of high electron affinity. We have recently shown that in fully solvated DNA fragments, nucleobases are particularly attractive for such excess electrons. The next question is what is their longer-term effect on DNA. It has been advocated that they can lead to strand breaks by cleavage of the phosphodiester C(3')-O(3') bond. Here we present a first-principles study of free energy barriers for the cleavage of this bond in fully solvated nucleotides. We have found that except for dAMP, the barriers are on the order of 6 kcal/mol, suggesting that bond cleavage is a regular feature at 300 K. Such low barriers are possible only as a result of solvent and thermal fluctuations. These findings support the notion that low-energy electrons can indeed lead to strand breaks in DNA.

  13. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  14. Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen.

    PubMed Central

    Khan, A U; Di Mascio, P; Medeiros, M H; Wilson, T

    1992-01-01

    Oxidative damage to DNA induced by singlet molecular oxygen (1O2*) includes single-strand breaks, which the biologically occurring 1O2* quenchers spermine and spermidine are shown to prevent. These polyamines at a physiological concentration (10 mM) reduce the percentage of the open circular form of pBR322 plasmid DNA, which is generated at the expense of the native supercoiled form when the plasmids are incubated with a chemical source of 1O2*, the water-soluble endoperoxide of 3,3'-(1,4-naphthylidene)dipropionate. Spermine and spermidine can be expected to protect DNA against other damaging effects of 1O2*. Images PMID:1454831

  15. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair.

    PubMed

    Kato, Akihiro; Komatsu, Kenshi

    2015-07-14

    Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair.

  16. Pulsed-field gel electrophoresis analysis of multicellular DNA double-strand break damage and repair.

    PubMed

    Joshi, Nina; Grant, Stephen G

    2014-01-01

    This assay quantifies the extent of double-strand break (DSB) DNA damage in cell populations embedded in agarose and analyzed for migratory DNA using pulsed-field gel electrophoresis with ethidium bromide staining. The assay can measure preexisting damage as well as induction of DSB by chemical (e.g., bleomycin), physical (e.g., X-irradiation), or biological (e.g., restriction enzymes) agents. By incubating the cells under physiological conditions prior to processing, the cells can be allowed to repair DSB, primarily via the process of nonhomologous end joining. The amount of repair, corresponding to the repair capacity of the treated cells, is then quantified by determining the ratio of the fractions of activity released in the lanes in comparison to the total amount of DNA fragmentation following determination of an optimal exposure for maximum initial fragmentation. Repair kinetics can also be analyzed through a time-course regimen.

  17. ATM specifically mediates repair of double-strand breaks with blocked DNA ends.

    PubMed

    Álvarez-Quilón, Alejandro; Serrano-Benítez, Almudena; Lieberman, Jenna Ariel; Quintero, Cristina; Sánchez-Gutiérrez, Daniel; Escudero, Luis M; Cortés-Ledesma, Felipe

    2014-02-27

    Ataxia telangiectasia is caused by mutations in ATM and represents a paradigm for cancer predisposition and neurodegenerative syndromes linked to deficiencies in the DNA-damage response. The role of ATM as a key regulator of signalling following DNA double-strand breaks (DSBs) has been dissected in extraordinary detail, but the impact of this process on DSB repair still remains controversial. Here we develop novel genetic and molecular tools to modify the structure of DSB ends and demonstrate that ATM is indeed required for efficient and accurate DSB repair, preventing cell death and genome instability, but exclusively when the ends are irreversibly blocked. We therefore identify the nature of ATM involvement in DSB repair, presenting blocked DNA ends as a possible pathogenic trigger of ataxia telangiectasia and related disorders.

  18. ATM specifically mediates repair of double-strand breaks with blocked DNA ends

    PubMed Central

    Álvarez-Quilón, Alejandro; Serrano-Benítez, Almudena; Ariel Lieberman, Jenna; Quintero, Cristina; Sánchez-Gutiérrez, Daniel; Escudero, Luis M.; Cortés-Ledesma, Felipe

    2014-01-01

    Ataxia telangiectasia is caused by mutations in ATM and represents a paradigm for cancer predisposition and neurodegenerative syndromes linked to deficiencies in the DNA-damage response. The role of ATM as a key regulator of signalling following DNA double-strand breaks (DSBs) has been dissected in extraordinary detail, but the impact of this process on DSB repair still remains controversial. Here we develop novel genetic and molecular tools to modify the structure of DSB ends and demonstrate that ATM is indeed required for efficient and accurate DSB repair, preventing cell death and genome instability, but exclusively when the ends are irreversibly blocked. We therefore identify the nature of ATM involvement in DSB repair, presenting blocked DNA ends as a possible pathogenic trigger of ataxia telangiectasia and related disorders. PMID:24572510

  19. Subdiffusion Supports Joining Of Correct Ends During Repair Of DNA Double-Strand Breaks

    NASA Astrophysics Data System (ADS)

    Girst, S.; Hable, V.; Drexler, G. A.; Greubel, C.; Siebenwirth, C.; Haum, M.; Friedl, A. A.; Dollinger, G.

    2013-08-01

    The mobility of damaged chromatin regions in the nucleus may affect the probability of mis-repair. In this work, live-cell observation and distance tracking of GFP-tagged DNA damage response protein MDC1 was used to study the random-walk behaviour of chromatin domains containing radiation-induced DNA double-strand breaks (DSB). Our measurements indicate a subdiffusion-type random walk process with similar time dependence for isolated and clustered DSBs that were induced by 20 MeV proton or 43 MeV carbon ion micro-irradiation. As compared to normal diffusion, subdiffusion enhances the probability that both ends of a DSB meet, thus promoting high efficiency DNA repair. It also limits their probability of long-range movements and thus lowers the probability of mis-rejoining and chromosome aberrations.

  20. Long noncoding RNA LINP1 regulates double strand DNA break repair in triple negative breast cancer

    PubMed Central

    Zhang, Youyou; He, Qun; Hu, Zhongyi; Feng, Yi; Fan, Lingling; Tang, Zhaoqing; Yuan, Jiao; Shan, Weiwei; Li, Chunsheng; Hu, Xiaowen; Tanyi, Janos L; Fan, Yi; Huang, Qihong; Montone, Kathleen; Dang, Chi V; Zhang, Lin

    2016-01-01

    Long noncoding RNAs (lncRNAs), which are transcripts that are larger than 200 nucleotides but do not appear to have protein-coding potential, play critical roles during tumorigenesis by functioning as scaffolds to regulate protein-protein, protein-DNA or protein-RNA interactions. Using a clinically guided genetic screening approach, we identified (lncRNA in Non-homologous end joining [NHEJ] pathway 1) as a lncRNA that is overexpressed in human triple-negative breast cancer. We found that LINP1 enhances double-strand DNA break repair by serving as a scaffold that links Ku80 and DNA-PKcs, thereby coordinating the NHEJ pathway. Importantly, blocking LINP1, which is regulated by the p53 and epidermal growth factor receptor (EGFR) signaling, increases sensitivity of tumor cell response to radiotherapy in breast cancer. PMID:27111890

  1. Processing of meiotic DNA double strand breaks requires cyclin-dependent kinase and multiple nucleases.

    PubMed

    Manfrini, Nicola; Guerini, Ilaria; Citterio, Andrea; Lucchini, Giovanna; Longhese, Maria Pia

    2010-04-09

    Meiotic recombination requires the formation of programmed Spo11-dependent DNA double strand breaks (DSBs). In Saccharomyces cerevisiae, the Sae2 protein and the Mre11-Rad50-Xrs2 complex are necessary to remove the covalently attached Spo11 protein from the DNA ends, which are then resected by so far unknown nucleases. Here, we demonstrate that phosphorylation of Sae2 Ser-267 by cyclin-dependent kinase 1 (Cdk1) is required to initiate meiotic DSB resection by allowing Spo11 removal from DSB ends. This finding suggests that Cdk1 activity is required for the processing of Spo11-induced DSBs, thus providing a mechanism for coordinating DSB resection with progression through meiotic prophase. Furthermore, the helicase Sgs1 and the nucleases Exo1 and Dna2 participate in lengthening the 5'-3' resection tracts during meiosis by controlling a step subsequent to Spo11 removal.

  2. Molecular architecture of the HerA-NurA DNA double-strand break resection complex.

    PubMed

    Byrne, Robert Thomas; Schuller, Jan Michael; Unverdorben, Pia; Förster, Friedrich; Hopfner, Karl-Peter

    2014-12-20

    DNA double-strand breaks can be repaired by homologous recombination, during which the DNA ends are long-range resected by helicase-nuclease systems to generate 3' single strand tails. In archaea, this requires the Mre11-Rad50 complex and the ATP-dependent helicase-nuclease complex HerA-NurA. We report the cryo-EM structure of Sulfolobus solfataricus HerA-NurA at 7.4Å resolution and present the pseudo-atomic model of the complex. HerA forms an ASCE hexamer that tightly interacts with a NurA dimer, with each NurA protomer binding three adjacent HerA HAS domains. Entry to NurA's nuclease active sites requires dsDNA to pass through a 23Å wide channel in the HerA hexamer. The structure suggests that HerA is a dsDNA translocase that feeds DNA into the NurA nuclease sites.

  3. Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks

    PubMed Central

    Chanut, Pauline; Britton, Sébastien; Coates, Julia; Jackson, Stephen P.; Calsou, Patrick

    2016-01-01

    Repair of single-ended DNA double-strand breaks (seDSBs) by homologous recombination (HR) requires the generation of a 3′ single-strand DNA overhang by exonuclease activities in a process called DNA resection. However, it is anticipated that the highly abundant DNA end-binding protein Ku sequesters seDSBs and shields them from exonuclease activities. Despite pioneering works in yeast, it is unclear how mammalian cells counteract Ku at seDSBs to allow HR to proceed. Here we show that in human cells, ATM-dependent phosphorylation of CtIP and the epistatic and coordinated actions of MRE11 and CtIP nuclease activities are required to limit the stable loading of Ku on seDSBs. We also provide evidence for a hitherto unsuspected additional mechanism that contributes to prevent Ku accumulation at seDSBs, acting downstream of MRE11 endonuclease activity and in parallel with MRE11 exonuclease activity. Finally, we show that Ku persistence at seDSBs compromises Rad51 focus assembly but not DNA resection. PMID:27641979

  4. DNA double-strand breaks disrupted the spindle assembly in porcine oocytes.

    PubMed

    Wang, HaiYang; Luo, YiBo; Zhao, Ming-Hui; Lin, ZiLi; Kwon, Jeongwoo; Cui, Xiang-Shun; Kim, Nam-Hyung

    2016-02-01

    We used etoposide (25-100 µg/mL) to induce DNA double-strand breaks (DSBs) in porcine oocytes at the germinal vesicle (GV) stage to determine how such damage affects oocyte maturation. We observed that DNA damage did not delay the rate of germinal vesicle breakdown (GVBD), but did inhibit the final stages of maturation, as indicated by the failure to extrude the first polar body. Oocytes with low levels of DSBs failed to effectively activate ataxia telangiectasia-mutated (ATM) kinase, while those with severe DNA DSBs failed to activate checkpoint kinase 1 (CHK1)--the two regulators of the DNA damage response pathway--indicating that porcine oocytes lack an efficient G2/M phase checkpoint. DSBs induced spindle defects and chromosomal misalignments, leading to the arrest of these oocytes at meiotic metaphase I. The activity of maturation-promoting factor also did not increase appropriately in oocytes with DNA DSBs, although its abundance was sufficient to promote GVBD and chromosomal condensation. Following parthenogenetic activation, embryos from etoposide-treated oocytes formed numerous micronuclei. Thus, our results indicate that DNA DSBs do not efficiently activate the ATM/CHK1-dependent DNA-damage checkpoint in porcine oocytes, allowing these DNA-impaired oocytes to enter M phase. Oocytes with DNA damage did, however, arrest at metaphase I in response to spindle defects and chromosomal misalignments, which limited the ability of these oocytes to reach meiotic metaphase II.

  5. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks.

    PubMed

    Aymard, François; Bugler, Beatrix; Schmidt, Christine K; Guillou, Emmanuelle; Caron, Pierre; Briois, Sébastien; Iacovoni, Jason S; Daburon, Virginie; Miller, Kyle M; Jackson, Stephen P; Legube, Gaëlle

    2014-04-01

    Although both homologous recombination (HR) and nonhomologous end joining can repair DNA double-strand breaks (DSBs), the mechanisms by which one of these pathways is chosen over the other remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation-sequencing (ChIP-seq) to analyze repair of multiple DSBs induced throughout the human genome, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes and are targeted to HR repair via the transcription elongation-associated mark trimethylated histone H3 K36. Concordantly, depletion of SETD2, the main H3 K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role in DSB repair of the chromatin context in which a break occurs.

  6. DNA strand breaks detected in embryos of the adult snails, Potamopyrgus antipodarum, and in neonates exposed to genotoxic chemicals.

    PubMed

    Vincent-Hubert, Françoise; Revel, Messika; Garric, Jeanne

    2012-10-15

    We tested the freshwater mudsnail Potamopyrgus antipodarum, which is a species that has already been used for endocrine-disrupting compounds (EDCs) to determine whether early life stages of aquatic organisms are sensitive to genotoxic chemicals. For this purpose, we first developed the alkaline comet assay on adults, embryos, and neonates. The comet assay protocol was validated on both embryonic cells exposed in vitro to hydrogen peroxide and adult snails in the reproducing stage exposed to methyl methane sulfonate. During the latter experiment, DNA strand breaks were investigated on both embryonic cells and on adult gill cells. The second part of this study investigated the stability of DNA strand breaks in adult reproducing snails and neonates exposed to cadmium (Cd) and bisphenol A for 8 days. Hydrogen peroxide-induced DNA strand breaks in vitro in isolated embryonic cells. Exposure of adult reproducing snails to methyl methane sulfonate for 24h induced DNA strand breaks in embryos. Bisphenol A induced a significant increase in the DNA strand-break level in whole embryonic cells and whole neonate cells. Cd was genotoxic for both embryos and neonates during the exposure time and also after 7 days of depuration, suggesting that Cd could inhibit DNA repair enzymes. These preliminary results on this original model have encouraged us to consider the impact of genotoxic environmental contaminants on the F1 generation.

  7. Sodium azide-induced DNA single-strand breaks and DNA-protein crosslinks in barley embryos

    SciTech Connect

    Veleminsky, J.; Kleinhofs, A.; Nilan, R.A.

    1982-01-01

    Barley (Hordeum vulgare L., cv. Himalaya) embryos germinated for two days in sterile culture were exposed to 5 mM and 10 mM NaN/sub 3/ in pH 3 buffer for 2 h. (/sup 3/H) DNA from the isolated nuclei was analyzed by alkaline elution from PVC filters. DNA single-strand breaks and DNA-protein crosslinks, detected by proteinase K digestion, were detected both immediately and 24 h after the azide treatment. Repair of these lesions during 24 h of posttreatment incubation of embryos in nutrient medium was not observed.

  8. Real-time analysis of double-strand DNA break repair by homologous recombination.

    PubMed

    Hicks, Wade M; Yamaguchi, Miyuki; Haber, James E

    2011-02-22

    The ability to induce synchronously a single site-specific double-strand break (DSB) in a budding yeast chromosome has made it possible to monitor the kinetics and genetic requirements of many molecular steps during DSB repair. Special attention has been paid to the switching of mating-type genes in Saccharomyces cerevisiae, a process initiated by the HO endonuclease by cleaving the MAT locus. A DSB in MATa is repaired by homologous recombination--specifically, by gene conversion--using a heterochromatic donor, HMLα. Repair results in the replacement of the a-specific sequences (Ya) by Yα and switching from MATa to MATα. We report that MAT switching requires the DNA replication factor Dpb11, although it does not require the Cdc7-Dbf4 kinase or the Mcm and Cdc45 helicase components. Using Southern blot, PCR, and ChIP analysis of samples collected every 10 min, we extend previous studies of this process to identify the times for the loading of Rad51 recombinase protein onto the DSB ends at MAT, the subsequent strand invasion by the Rad51 nucleoprotein filament into the donor sequences, the initiation of new DNA synthesis, and the removal of the nonhomologous Y sequences. In addition we report evidence for the transient displacement of well-positioned nucleosomes in the HML donor locus during strand invasion.

  9. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks.

    PubMed

    Neale, Matthew J; Pan, Jing; Keeney, Scott

    2005-08-18

    DNA double-strand breaks (DSBs) with protein covalently attached to 5' strand termini are formed by Spo11 to initiate meiotic recombination. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal is unclear. Here we show that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3'-OH. Two discrete Spo11-oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step-much earlier than previously thought. SPO11-oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide-topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11-oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs.

  10. Defective DNA strand break repair after DNA damage in prostate cancer cells: implications for genetic instability and prostate cancer progression.

    PubMed

    Fan, Rong; Kumaravel, Tirukalikundram S; Jalali, Farid; Marrano, Paula; Squire, Jeremy A; Bristow, Robert G

    2004-12-01

    Together with cell cycle checkpoint control, DNA repair plays a pivotal role in protecting the genome from endogenous and exogenous DNA damage. Although increased genetic instability has been associated with prostate cancer progression, the relative role of DNA double-strand break repair in malignant versus normal prostate epithelial cells is not known. In this study, we determined the RNA and protein expression of a series of DNA double-strand break repair genes in both normal (PrEC-epithelial and PrSC-stromal) and malignant (LNCaP, DU-145, and PC-3) prostate cultures. Expression of genes downstream of ATM after ionizing radiation-induced DNA damage reflected the p53 status of the cell lines. In the malignant prostate cell lines, mRNA and protein levels of the Rad51, Xrcc3, Rad52, and Rad54 genes involved in homologous recombination were elevated approximately 2- to 5-fold in comparison to normal PrEC cells. The XRCC1, DNA polymerase-beta and -delta proteins were also elevated. There were no consistent differences in gene expression relating to the nonhomologous end-joining pathway. Despite increased expression of DNA repair genes, malignant prostate cancer cells had defective repair of DNA breaks, alkali-labile sites, and oxidative base damage. Furthermore, after ionizing radiation and mitomycin C treatment, chromosomal aberration assays confirmed that malignant prostate cells had defective DNA repair. This discordance between expression and function of DNA repair genes in malignant prostate cancer cells supports the hypothesis that prostate tumor progression may reflect aberrant DNA repair. Our findings support the development of novel treatment strategies designed to reinstate normal DNA repair in prostate cancer cells.

  11. DNA strand breaks in human nasal respiratory epithelium are induced upon exposure to urban pollution

    SciTech Connect

    Calderon-Garciduenas, L.; Osnaya-Brizuela, N.; Ramirez-Martinez, L.

    1996-02-01

    All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 males and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p>0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 {+-}8.34% in the first week to 67.29 {+-}2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be evaluated in ozone-exposed individuals. 43 refs., 5 figs., 4 tabs.

  12. Fine resolution mapping of double-strand break sites for human ribosomal DNA units.

    PubMed

    Pope, Bernard J; Mahmood, Khalid; Jung, Chol-Hee; Park, Daniel J

    2016-12-01

    DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011) [5]; Blondet et al., 2001 Blondet et al. (2001) [1]). Stults et al. (2009) Stults et al. (2009) [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA restructuring is among the most common chromosomal alterations in adult solid tumours. As such, analysis of rDNA regions is likely to have significant prognostic and predictive value, clinically. Tchurikov et al. (2015a, 2016) Tchurikov et al. (2015a, 2016) [7], [9] have made major advances in this direction, reporting that sites of human genome double-strand breaks (DSBs) occur frequently at sites in rDNA that are tightly linked with active transcription - the authors used a RAFT (rapid amplification of forum termini) protocol that selects for blunt-ended sites. They reported the relative frequency of these rDNA DSBs within defined co-ordinate 'windows' of varying size and made these data (as well as the relevant 'raw' sequencing information) available to the public (Tchurikov et al., 2015b). Assay designs targeting rDNA DSB hotspots will benefit greatly from the publication of break sites at greater resolution. Here, we re-analyse public RAFT data and make available rDNA DSB co-ordinates to the single-nucleotide level.

  13. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    EPA Science Inventory

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.

    ABSTRACT

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  14. Live cell microscopy analysis of radiation-induced DNA double-strand break motion

    PubMed Central

    Jakob, B.; Splinter, J.; Durante, M.; Taucher-Scholz, G.

    2009-01-01

    We studied the spatiotemporal organization of DNA damage processing by live cell microscopy analysis in human cells. In unirradiated U2OS osteosarcoma and HeLa cancer cells, a fast confined and Brownian-like motion of DNA repair protein foci was observed, which was not altered by radiation. By analyzing the motional activity of GFP-53BP1 foci in live cells up to 12-h after irradiation, we detected an additional slower mobility of damaged chromatin sites showing a mean square displacement of ≈0.6 μm2/h after exposure to densely- or sparsely-ionizing radiation, most likely driven by normal diffusion of chromatin. Only occasionally, larger translational motion connected to morphological changes of the whole nucleus could be observed. In addition, there was no general tendency to form repair clusters in the irradiated cells. We conclude that long-range displacements of damaged chromatin domains do not generally occur during DNA double-strand break repair after introduction of multiple damaged sites by charged particles. The occasional and in part transient appearance of cluster formation of radiation-induced foci may represent a higher mobility of chromatin along the ion trajectory. These observations support the hypothesis that spatial proximity of DNA breaks is required for the formation of radiation-induced chromosomal exchanges. PMID:19221031

  15. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair

    PubMed Central

    Ismail, Ismail Hassan; Andrin, Christi; McDonald, Darin

    2010-01-01

    Polycomb group (PcG) proteins are major determinants of cell identity, stem cell pluripotency, and epigenetic gene silencing during development. The polycomb repressive complex 1, which contains BMI1, RING1, and RING2, functions as an E3-ubuiquitin ligase. We found that BMI1 and RING2 are recruited to sites of DNA double-strand breaks (DSBs) where they contribute to the ubiquitylation of γ-H2AX. In the absence of BMI1, several proteins dependent on ubiquitin signaling, including 53BP1, BRCA1, and RAP80, are impaired in recruitment to DSBs. Loss of BMI1 sensitizes cells to ionizing radiation to the same extent as loss of RNF8. The simultaneous depletion of both proteins revealed an additive increase in radiation sensitivity. These data uncover an unexpected link between the polycomb and the DNA damage response pathways, and suggest a novel function for BMI1 in maintaining genomic stability. PMID:20921134

  16. Physiological Brain Activity Causes DNA Double Strand Breaks in Neurons — Exacerbation by Amyloid-β

    PubMed Central

    Suberbielle, Elsa; Sanchez, Pascal E.; Kravitz, Alexxai V.; Wang, Xin; Ho, Kaitlyn; Eilertson, Kirsten; Devidze, Nino; Kreitzer, Anatol C.; Mucke, Lennart

    2013-01-01

    We show that a natural behavior, exploration of a novel environment, causes DNA double-strand breaks (DSBs) in neurons of young adult wildtype mice. DSBs occurred in multiple brain regions, were most abundant in the dentate gyrus, which is involved in spatial learning and memory, and were repaired within 24 hours. Increasing neuronal activity by sensory or optogenetic stimulation increased neuronal DSBs in relevant but not irrelevant networks. Human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of Alzheimer's disease, had increased neuronal DSBs at baseline and more severe and prolonged DSBs after exploration. Interventions that suppress aberrant neuronal activity and improve memory in hAPP mice normalized their levels of DSBs. Blocking extrasynaptic NMDA-type glutamate receptors prevented amyloid-β (Aβ)-induced DSBs in neuronal cultures. Thus, transient increases in neuronal DSBs occur as a result of physiological brain activity and Aβ exacerbates DNA damage, most likely by eliciting synaptic dysfunction. PMID:23525040

  17. DNA single strand breaks in peripheral blood lymphocytes induced by three nitroimidazole derivatives.

    PubMed

    Rodriguez Ferreiro, Gisell; Cancino Badías, Lourdes; Lopez-Nigro, Marcela; Palermo, Ana; Mudry, Marta; González Elio, Prieto; Carballo, Marta Ana

    2002-06-14

    Tinidazole (TNZ), ornidazole (ONZ) and metronidazole (MTZ) are antiparasitic drugs (nitroimidazole derivatives) that have proven to be effective against Trichomonas vaginalis, Entoamoeba histolytica, Giardia lamblia and Helicobacter pylori. The reduction of the nitro group and the generation of short-lived reactive intermediates are the basis of its parasiticidal activity. This reduction is associated with its mutagenic activity in bacteria, although in mammalian cells DNA damage seems to be related to the production of reactive oxygen species (ROS). Using alkaline single cell electrophoresis, a significant increase in single strand breaks and alkali labile sites in human peripheral blood lymphocytes (PBL) exposed to MTZ, ONZ and TNZ at 10, 100 and 500 microg/ml is observed. MTZ causes less damage, especially at higher concentrations, when compared with TNZ, the most harmful of the drugs tested. These findings suggest that primary damage is induced under aerobic conditions and confirms that these nitroimidazoles are DNA damaging agents.

  18. Visualization of DNA Double-Strand Break Repair at the Single-Molecule Level

    SciTech Connect

    Dynan, William S.; Li, Shuyi; Mernaugh, Raymond; Wragg, Stephanie; Takeda, Yoshihiko

    2003-03-27

    Exposure to low doses of ionizing radiation is universal. The signature injury from ionizing radiation exposure is induction of DNA double-strand breaks (DSBs). The first line of defense against DSBs is direct ligation of broken DNA ends via the nonhomologous end-joining pathway. Because even a relatively high environmental exposure induces only a few DSBs per cell, our current understanding of the response to this exposure is limited by the ability to measure DSB repair events reliably in situ at a single-molecule level. To address this need, we have taken advantage of biological amplification, measuring relocalization of proteins and detection of protein phosphorylation as a surrogate for detection of broken ends themselves. We describe the use of specific antibodies to investigate the kinetics and mechanism of repair of very small numbers of DSBs in human cells by the nonhomologous end-joining pathway.

  19. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  20. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target?

    PubMed

    Haffner, Michael C; De Marzo, Angelo M; Meeker, Alan K; Nelson, William G; Yegnasubramanian, Srinivasan

    2011-06-15

    An emerging model of transcriptional activation suggests that induction of transcriptional programs, for instance by stimulating prostate or breast cells with androgens or estrogens, respectively, involves the formation of DNA damage, including DNA double strand breaks (DSB), recruitment of DSB repair proteins, and movement of newly activated genes to transcription hubs. The DSB can be mediated by the class II topoisomerase TOP2B, which is recruited with the androgen receptor and estrogen receptor to regulatory sites on target genes and is apparently required for efficient transcriptional activation of these genes. These DSBs are recognized by the DNA repair machinery triggering the recruitment of repair proteins such as poly(ADP-ribose) polymerase 1 (PARP1), ATM, and DNA-dependent protein kinase (DNA-PK). If illegitimately repaired, such DSBs can seed the formation of genomic rearrangements like the TMPRSS2-ERG fusion oncogene in prostate cancer. Here, we hypothesize that these transcription-induced, TOP2B-mediated DSBs can also be exploited therapeutically and propose that, in hormone-dependent tumors like breast and prostate cancers, a hormone-cycling therapy, in combination with topoisomerase II poisons or inhibitors of the DNA repair components PARP1 and DNA-PK, could overwhelm cancer cells with transcription-associated DSBs. Such strategies may find particular utility in cancers, like prostate cancer, which show low proliferation rates, in which other chemotherapeutic strategies that target rapidly proliferating cells have had limited success.

  1. Homozygous mutation of MTPAP causes cellular radiosensitivity and persistent DNA double-strand breaks

    PubMed Central

    Martin, N T; Nakamura, K; Paila, U; Woo, J; Brown, C; Wright, J A; Teraoka, S N; Haghayegh, S; McCurdy, D; Schneider, M; Hu, H; Quinlan, A R; Gatti, R A; Concannon, P

    2014-01-01

    The study of rare human syndromes characterized by radiosensitivity has been instrumental in identifying novel proteins and pathways involved in DNA damage responses to ionizing radiation. In the present study, a mutation in mitochondrial poly-A-polymerase (MTPAP), not previously recognized for its role in the DNA damage response, was identified by exome sequencing and subsequently associated with cellular radiosensitivity. Cell lines derived from two patients with the homozygous MTPAP missense mutation were radiosensitive, and this radiosensitivity could be abrogated by transfection of wild-type mtPAP cDNA into mtPAP-deficient cell lines. Further analysis of the cellular phenotype revealed delayed DNA repair, increased levels of DNA double-strand breaks, increased reactive oxygen species (ROS), and increased cell death after irradiation (IR). Pre-IR treatment of cells with the potent anti-oxidants, α-lipoic acid and n-acetylcysteine, was sufficient to abrogate the DNA repair and clonogenic survival defects. Our results firmly establish that mutation of the MTPAP gene results in a cellular phenotype of increased DNA damage, reduced repair kinetics, increased cell death by apoptosis, and reduced clonogenic survival after exposure to ionizing radiation, suggesting a pathogenesis that involves the disruption of ROS homeostasis. PMID:24651433

  2. Generation of Gross Chromosomal Rearrangements by a Single Engineered DNA Double Strand Break

    PubMed Central

    Qiu, Zhijun; Zhang, Zhenhua; Roschke, Anna; Varga, Tamas; Aplan, Peter D.

    2017-01-01

    Gross chromosomal rearrangements (GCRs), including translocations, inversions amplifications, and deletions, can be causal events leading to malignant transformation. GCRs are thought to be triggered by DNA double strand breaks (DSBs), which in turn can be spontaneous or induced by external agents (eg. cytotoxic chemotherapy, ionizing radiation). It has been shown that induction of DNA DSBs at two defined loci can produce stable balanced chromosomal translocations, however, a single engineered DNA DSB could not. Herein, we report that although a single engineered DNA DSB in H2AX “knockdown” cells did not generate GCRs, repair of a single engineered DNA DSB in fibroblasts that had ablated H2ax did produce clonal, stable GCRs, including balanced translocations and megabase-pair inversions. Upon correction of the H2ax deficiency, cells no longer generated GCRs following a single engineered DNA DSB. These findings demonstrate that clonal, stable GCRs can be produced by a single engineered DNA DSB in H2ax knockout cells, and that the production of these GCRs is ameliorated by H2ax expression. PMID:28225067

  3. Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells.

    PubMed

    Liu, Xinjian; Li, Fang; Huang, Qian; Zhang, Zhengxiang; Zhou, Ling; Deng, Yu; Zhou, Min; Fleenor, Donald E; Wang, He; Kastan, Michael B; Li, Chuan-Yuan

    2017-03-24

    DNA double-strand breaks (DSBs) are traditionally associated with cancer through their abilities to cause chromosomal instabilities or gene mutations. Here we report a new class of self-inflicted DNA DSBs that can drive tumor growth irrespective of their effects on genomic stability. We discover a mechanism through which cancer cells cause DSBs in their own genome spontaneously independent of reactive oxygen species or replication stress. In this mechanism, low-level cytochrome c leakage from the mitochondria leads to sublethal activation of apoptotic caspases and nucleases, which causes DNA DSBs. In response to these spontaneous DNA DSBs, ATM, a key factor involved in DNA damage response, is constitutively activated. Activated ATM leads to activation of transcription factors NF-κB and STAT3, known drivers of tumor growth. Moreover, self-inflicted DNA DSB formation and ATM activation are important in sustaining the stemness of patient-derived glioma cells. In human tumor tissues, elevated levels of activated ATM correlate with poor patient survival. Self-inflicted DNA DSBs therefore are functionally important for maintaining the malignancy of cancer cells.Cell Research advance online publication 24 March 2017; doi: 10.1038/cr.2017.41.

  4. Detection of DNA strand breaks by comet assay in sputum leucocytes of bitumen-exposed workers: a pilot study.

    PubMed

    Marczynski, B; Raulf-Heimsoth, M; Pesch, B; Kendzia, B; Käfferlein, H U; Vosshans, B; Borowitzki, G; Lee, E-H; Bramer, R; Brüning, T

    2010-09-01

    DNA strand breaks were determined in leucocytes of induced sputum (IS) and compared with DNA strand breaks in blood lymphocytes from 42 bitumen-exposed workers pre and post shift. Comet assay results were expressed in arbitrary units based on visual scoring (sputum leucocytes) and Olive tail moment (OTM, blood lymphocytes). DNA damage in IS leucocytes was overall high but did not change during shift. Level of DNA strand breaks in IS samples correlated with total cell count and neutrophil content (Spearman rank correlation coefficient r(s) = 0.47, p = 0.001, r(s)= 0.48, p = 0.001, respectively) and with IL-8 concentration before and after shift (r(s) = 0.31, P = 0.048, and r(s) = 0.43, P = 0.005). DNA damage in IS was not associated with DNA strand breaks in blood lymphocytes (r(s) = -0.04, p = 0.802 before shift, r(s) = 0.27, p = 0.088 after shift). A higher level of DNA strand breaks was measured in blood lymphocytes before shift (median OTM 1.7 before and 1.3 after shift, p = 0.023). A strong correlation was found between the number of neutrophils and IL-8 concentration in IS before and after shift (r(s) = 0.77 and r(s)= 0.75, p < 0.001). This study showed an association between genotoxic and inflammatory effects in the lower airways and compared simultaneously DNA strand breaks in IS and blood of bitumen-exposed workers.

  5. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens

    PubMed Central

    Kamisugi, Yasuko; Whitaker, John W.

    2016-01-01

    The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency. PMID:27537368

  6. Validation of freezing tissues and cells for analysis of DNA strand break levels by comet assay

    PubMed Central

    Jackson, Petra

    2013-01-01

    The comet analysis of DNA strand break levels in tissues and cells has become a common method of screening for genotoxicity. The large majority of published studies have used fresh tissues and cells processed immediately after collection. However, we have used frozen tissues and cells for more than 10 years, and we believe that freezing samples improve efficiency of the method. We compared DNA strand break levels measured in fresh and frozen bronchoalveolar cells, and lung and liver tissues from mice exposed to the known mutagen methyl methanesulphonate (0, 25, 75, 112.5mg/kg). We used a high-throughput comet protocol with fully automated scoring of DNA strand break levels. The overall results from fresh and frozen samples were in agreement [R 2 = 0.93 for %DNA in tail (%TDNA) and R 2 = 0.78 for tail length (TL)]. A slightly increased %TDNA was observed in lung and liver tissue from vehicle controls; and TL was slightly reduced in bronchoalveolar lavage cells from the high-dose group. In our comet protocol, a small block of tissue designated for comet analysis is frozen immediately at tissue collection and kept deep frozen until rapidly homogenised and embedded in agarose. To demonstrate the feasibility of long-term freezing of samples, we analysed the day-to-day variation of our internal historical negative and positive comet assay controls collected over a 10-year period (1128 observations, 11 batches of frozen untreated and H2O2-treated A549 lung epithelial cells). The H2O2 treatment explained most of the variation 57–77% and the day-to-day variation was only 2–12%. The presented protocol allows analysis of samples collected over longer time span, at different locations, with reduced variation by reducing number of electrophoreses and is suitable for both toxicological and epidemiological studies. The use of frozen tissues; however, requires great care during preparation before analysis, with handling as a major risk factor. PMID:24136994

  7. Relative biological effectiveness for photons: implication of complex DNA double-strand breaks as critical lesions.

    PubMed

    Liang, Ying; Fu, Qibin; Wang, Xudong; Liu, Feng; Yang, Gen; Luo, Chunxiong; Ouyang, Qi; Wang, Yugang

    2017-03-21

    Current knowledge in radiobiology ascribes the adverse biological effects of ionizing radiation primarily to the induction of DNA double-strand breaks (DSBs), which is supposed to be potentially lethal and may be converted to lethal damage due to misrepair. Soft and ultrasoft x-rays have been found to bear elevated biological effectiveness for cell killing compared with conventional x-rays or (60)Co γ-rays. This phenomenon is qualitatively interpreted as the increased level of DSB induction for low energy photons, however, a thorough quantitative reasoning is lacking. Here, we systematically compared the relative biological effectiveness (RBE) with relative DSB induction for photons from several hundreds of eV up to MeV. Although there is an approximate two-fold increase in the yields of DSB for low energy photons found in our calculation and a large number of experimental measurements, it is far from enough to account for the three- to four-fold increase in RBE. Further theoretical investigations show that DSB complexity (additional single-strand breaks and base damage within 10 base pairs) increases notably for low energy photons, which largely reconciles the discrepancy between RBE and DSB induction. Our theoretical results are in line with accumulating experimental evidence that complex DSBs are refractory to repair machinery and may contribute predominantly to the formation of lethal damage.

  8. Relative biological effectiveness for photons: implication of complex DNA double-strand breaks as critical lesions

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Fu, Qibin; Wang, Xudong; Liu, Feng; Yang, Gen; Luo, Chunxiong; Ouyang, Qi; Wang, Yugang

    2017-03-01

    Current knowledge in radiobiology ascribes the adverse biological effects of ionizing radiation primarily to the induction of DNA double-strand breaks (DSBs), which is supposed to be potentially lethal and may be converted to lethal damage due to misrepair. Soft and ultrasoft x-rays have been found to bear elevated biological effectiveness for cell killing compared with conventional x-rays or 60Co γ-rays. This phenomenon is qualitatively interpreted as the increased level of DSB induction for low energy photons, however, a thorough quantitative reasoning is lacking. Here, we systematically compared the relative biological effectiveness (RBE) with relative DSB induction for photons from several hundreds of eV up to MeV. Although there is an approximate two-fold increase in the yields of DSB for low energy photons found in our calculation and a large number of experimental measurements, it is far from enough to account for the three- to four-fold increase in RBE. Further theoretical investigations show that DSB complexity (additional single-strand breaks and base damage within 10 base pairs) increases notably for low energy photons, which largely reconciles the discrepancy between RBE and DSB induction. Our theoretical results are in line with accumulating experimental evidence that complex DSBs are refractory to repair machinery and may contribute predominantly to the formation of lethal damage.

  9. DNA double-strand break repair in Penaeus monodon is predominantly dependent on homologous recombination.

    PubMed

    Srivastava, Shikha; Dahal, Sumedha; Naidu, Sharanya J; Anand, Deepika; Gopalakrishnan, Vidya; Kooloth Valappil, Rajendran; Raghavan, Sathees C

    2017-01-24

    DNA double-strand breaks (DSBs) are mostly repaired by nonhomologous end joining (NHEJ) and homologous recombination (HR) in higher eukaryotes. In contrast, HR-mediated DSB repair is the major double-strand break repair pathway in lower order organisms such as bacteria and yeast. Penaeus monodon, commonly known as black tiger shrimp, is one of the economically important crustaceans facing large-scale mortality due to exposure to infectious diseases. The animals can also get exposed to chemical mutagens under the culture conditions as well as in wild. Although DSB repair mechanisms have been described in mammals and some invertebrates, its mechanism is unknown in the shrimp species. In the present study, we show that HR-mediated DSB repair is the predominant mode of repair in P. monodon Robust repair was observed at a temperature of 30 °C, when 2 µg of cell-free extract derived from hepatopancreas was used for the study. Although HR occurred through both reciprocal recombination and gene conversion, the latter was predominant when the bacterial colonies containing recombinants were evaluated. Unlike mammals, NHEJ-mediated DSB repair was undetectable in P. monodon However, we could detect evidence for an alternative mode of NHEJ that uses microhomology, termed as microhomology-mediated end joining (MMEJ). Interestingly, unlike HR, MMEJ was predominant at lower temperatures. Therefore, the results suggest that, while HR is major DSB repair pathway in shrimp, MMEJ also plays a role in ensuring the continuity and stability of the genome.

  10. RNF4 is required for DNA double-strand break repair in vivo.

    PubMed

    Vyas, R; Kumar, R; Clermont, F; Helfricht, A; Kalev, P; Sotiropoulou, P; Hendriks, I A; Radaelli, E; Hochepied, T; Blanpain, C; Sablina, A; van Attikum, H; Olsen, J V; Jochemsen, A G; Vertegaal, A C O; Marine, J-C

    2013-03-01

    Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signaling and repair proteins to the sites of DNA lesions. Coordinated protein SUMOylation and ubiquitylation have crucial roles in regulating the dynamic assembly of protein complexes at these sites. However, how SUMOylation influences protein ubiquitylation at DSBs is poorly understood. We show herein that Rnf4, an E3 ubiquitin ligase that targets SUMO-modified proteins, accumulates in DSB repair foci and is required for both homologous recombination (HR) and non-homologous end joining repair. To establish a link between Rnf4 and the DNA damage response (DDR) in vivo, we generated an Rnf4 allelic series in mice. We show that Rnf4-deficiency causes persistent ionizing radiation-induced DNA damage and signaling, and that Rnf4-deficient cells and mice exhibit increased sensitivity to genotoxic stress. Mechanistically, we show that Rnf4 targets SUMOylated MDC1 and SUMOylated BRCA1, and is required for the loading of Rad51, an enzyme required for HR repair, onto sites of DNA damage. Similarly to inactivating mutations in other key regulators of HR repair, Rnf4 deficiency leads to age-dependent impairment in spermatogenesis. These findings identify Rnf4 as a critical component of the DDR in vivo and support the possibility that Rnf4 controls protein localization at DNA damage sites by integrating SUMOylation and ubiquitylation events.

  11. Epidermal growth factor receptor and DNA double strand break repair: the cell's self-defence.

    PubMed

    Szumiel, Irena

    2006-10-01

    The purpose of this review is to discuss the relation between the repair of DNA double strand breaks (DSB)--the main lethal lesion inflicted by ionising radiation-and the function of receptors of epidermal growth factor (EGFR) and similar ligands (other members of the ERBB family). The reviewed experimental data support the assumption that in mammalian cells, one consequence of EGFR/ERBB activation by X-rays is its internalisation and nuclear translocation together with DNA-dependent protein kinase (DNA-PK) subunits present in lipid rafts or cytoplasm. The effect of EGFR/ERBB stimulation on DSB rejoining would be due to an increase in the nuclear content of DNA-PK subunits and hence, in activity increase of the DNA-PK dependent non-homologous end-joining (D-NHEJ) system. Such mechanism explains the radiosensitising action of "membrane-active drugs", hypertonic media, and other agents that affect nuclear translocation of proteins. Also, one radiosensitising effect of the recently introduced into clinical practice EGFR/ERBB inhibitors would consist on counteracting the nuclear translocation of DNA-PK subunits. In result, D-NHEJ may be less active in inhibitor-treated cells and this will contribute to an enhanced lethal effect of irradiation. The reviewed observations point to a heretofore not understood mechanism of the cell's self-defence against X-rays which can be exploited in combined radio- and chemotherapy.

  12. RecQ helicases in DNA double strand break repair and telomere maintenance.

    PubMed

    Singh, Dharmendra Kumar; Ghosh, Avik K; Croteau, Deborah L; Bohr, Vilhelm A

    2012-08-01

    Organisms are constantly exposed to various environmental insults which could adversely affect the stability of their genome. To protect their genomes against the harmful effect of these environmental insults, organisms have evolved highly diverse and efficient repair mechanisms. Defective DNA repair processes can lead to various kinds of chromosomal and developmental abnormalities. RecQ helicases are a family of evolutionarily conserved, DNA unwinding proteins which are actively engaged in various DNA metabolic processes, telomere maintenance and genome stability. Bacteria and lower eukaryotes, like yeast, have only one RecQ homolog, whereas higher eukaryotes including humans possess multiple RecQ helicases. These multiple RecQ helicases have redundant and/or non-redundant functions depending on the types of DNA damage and DNA repair pathways. Humans have five different RecQ helicases and defects in three of them cause autosomal recessive diseases leading to various kinds of cancer predisposition and/or aging phenotypes. Emerging evidence also suggests that the RecQ helicases have important roles in telomere maintenance. This review mainly focuses on recent knowledge about the roles of RecQ helicases in DNA double strand break repair and telomere maintenance which are important in preserving genome integrity.

  13. BCL10 is recruited to sites of DNA damage to facilitate DNA double-strand break repair

    PubMed Central

    Ismail, Ismail Hassan; Dronyk, Ashley; Hu, Xiuying; Hendzel, Michael J.; Shaw, Andrew R.

    2016-01-01

    ABSTRACT Recent studies have found BCL10 can localize to the nucleus and that this is linked to tumor aggression and poorer prognosis. These studies suggest that BCL10 localization plays a novel role in the nucleus that may contribute to cellular transformation and carcinogenesis. In this study, we show that BCL10 functions as part of the DNA damage response (DDR). We found that BCL10 facilitates the rapid recruitment of RPA, BRCA1 and RAD51 to sites of DNA damage. Furthermore, we also found that ATM phosphorylates BCL10 in response to DNA damage. Functionally, BCL10 promoted DNA double-strand breaks repair, enhancing cell survival after DNA damage. Taken together our results suggest a novel role for BCL10 in the repair of DNA lesions. PMID:26771713

  14. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells.

    PubMed

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-06-24

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague-Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  15. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair

    PubMed Central

    Yu, Helen; Pak, Helen; Hammond-Martel, Ian; Ghram, Mehdi; Rodrigue, Amélie; Daou, Salima; Barbour, Haithem; Corbeil, Luc; Hébert, Josée; Drobetsky, Elliot; Masson, Jean Yves; Di Noia, Javier M.; Affar, El Bachir

    2014-01-01

    The cellular response to highly genotoxic DNA double-strand breaks (DSBs) involves the exquisite coordination of multiple signaling and repair factors. Here, we conducted a functional RNAi screen and identified BAP1 as a deubiquitinase required for efficient assembly of the homologous recombination (HR) factors BRCA1 and RAD51 at ionizing radiation (IR) -induced foci. BAP1 is a chromatin-associated protein frequently inactivated in cancers of various tissues. To further investigate the role of BAP1 in DSB repair, we used a gene targeting approach to knockout (KO) this deubiquitinase in chicken DT40 cells. We show that BAP1-deficient cells are (i) sensitive to IR and other agents that induce DSBs, (ii) defective in HR-mediated immunoglobulin gene conversion, and (iii) exhibit an increased frequency of chromosomal breaks after IR treatment. We also show that BAP1 is recruited to chromatin in the proximity of a single site-specific I-SceI–induced DSB. Finally, we identified six IR-induced phosphorylation sites in BAP1 and showed that mutation of these residues inhibits BAP1 recruitment to DSB sites. We also found that both BAP1 catalytic activity and its phosphorylation are critical for promoting DNA repair and cellular recovery from DNA damage. Our data reveal an important role for BAP1 in DSB repair by HR, thereby providing a possible molecular basis for its tumor suppressor function. PMID:24347639

  16. Controlled DNA double-strand break induction in mice reveals post-damage transcriptome stability.

    PubMed

    Kim, Jeongkyu; Sturgill, David; Tran, Andy D; Sinclair, David A; Oberdoerffer, Philipp

    2016-04-20

    DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction.

  17. Sequencing Spo11 Oligonucleotides for Mapping Meiotic DNA Double-Strand Breaks in Yeast.

    PubMed

    Lam, Isabel; Mohibullah, Neeman; Keeney, Scott

    2017-01-01

    Meiosis is a specialized form of cell division resulting in reproductive cells with a reduced, usually haploid, genome complement. A key step after premeiotic DNA replication is the occurrence of homologous recombination at multiple places throughout the genome, initiated with the formation of DNA double-strand breaks (DSBs) catalyzed by the topoisomerase-like protein Spo11. DSBs are distributed non-randomly in genomes, and understanding the mechanisms that shape this distribution is important for understanding how meiotic recombination influences heredity and genome evolution. Several methods exist for mapping where Spo11 acts. Of these, sequencing of Spo11-associated oligonucleotides (Spo11 oligos) is the most precise, specifying the locations of DNA breaks to the base pair. In this chapter we detail the steps involved in Spo11-oligo mapping in the SK1 strain of budding yeast Saccharomyces cerevisiae, from harvesting cells of highly synchronous meiotic cultures, through preparation of sequencing libraries, to the mapping pipeline used for processing the data.

  18. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons.

    PubMed

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Zheng, Yi; Sanche, Léon

    2016-12-07

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2-20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of supercoiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure-response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2-20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions.

  19. Different fates of oocytes with DNA double-strand breaks in vitro and in vivo.

    PubMed

    Lin, Fei; Ma, Xue-Shan; Wang, Zhen-Bo; Wang, Zhong-Wei; Luo, Yi-Bo; Huang, Lin; Jiang, Zong-Zhe; Hu, Meng-Wen; Schatten, Heide; Sun, Qing-Yuan

    2014-01-01

    In female mice, despite the presence of slight DNA double-strand breaks (DSBs), fully grown oocytes are able to undergo meiosis resumption as indicated by germinal vesicle breakdown (GVBD); however, severe DNA DSBs do reduce and delay entry into M phase through activation of the DNA damage checkpoint. But little is known about the effect of severe DNA DSBs on the spindle assembly checkpoint (SAC) during oocyte maturation. We showed that nearly no first polar body (PB1) was extruded at 12 h of in vitro maturation (IVM) in severe DNA DSBs oocytes, and the limited number of oocytes with PB1 were actually at telophase. However, about 60% of the severe DNA DSBs oocytes which underwent GVBD at 2 h of IVM released a PB1 at 18 h of IVM and these oocytes did reach the second metaphase (MII) stage. Chromosome spread at MI and MII stages showed that chromosomes fragmented after GVBD in severe DNA DSBs oocytes. The delayed PB1 extrusion was due to the disrupted attachment of microtubules to kinetochores and activation of the SAC. At the same time, misaligned chromosome fragments became obvious at the first metaphase (MI) in severe DNA DSBs oocytes. These data implied that the inactivation of SAC during the metaphase-anaphase transition of first meiosis was independent of chromosome integrity. Next, we induced DNA DSBs in vivo, and found that the number of superovulated oocytes per mouse was significantly reduced; moreover, this treatment increased the percentage of apoptotic oocytes. These results suggest that DNA DSBs oocytes undergo apoptosis in vivo.

  20. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    PubMed Central

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  1. Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery

    PubMed Central

    Noël, Georges; Giocanti, Nicole; Fernet, Marie; Mégnin-Chanet, Frédérique; Favaudon, Vincent

    2003-01-01

    Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose) polymerase (PARP-1) in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose) synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose) synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks. PMID:12866953

  2. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation.

    PubMed

    Chen, Xuefeng; Niu, Hengyao; Chung, Woo-Hyun; Zhu, Zhu; Papusha, Alma; Shim, Eun Yong; Lee, Sang Eun; Sung, Patrick; Ira, Grzegorz

    2011-08-14

    DNA recombination pathways are regulated by the cell cycle to coordinate with replication. Cyclin-dependent kinase (Cdk1) promotes efficient 5' strand resection at DNA double-strand breaks (DSBs), the initial step of homologous recombination and damage checkpoint activation. The Mre11-Rad50-Xrs2 complex with Sae2 initiates resection, whereas two nucleases, Exo1 and Dna2, and the DNA helicase-topoisomerase complex Sgs1-Top3-Rmi1 generate longer ssDNA at DSBs. Using Saccharomyces cerevisiae, we provide evidence for Cdk1-dependent phosphorylation of the resection nuclease Dna2 at Thr4, Ser17 and Ser237 that stimulates its recruitment to DSBs, resection and subsequent Mec1-dependent phosphorylation. Poorly recruited dna2T4A S17A S237A and dna2ΔN248 mutant proteins promote resection only in the presence of Exo1, suggesting cross-talk between Dna2- and Exo1-dependent resection pathways.

  3. Double strand breaks induced by low doses of {gamma} rays or heavy ions: Quantitation in nonradioactive human DNA

    SciTech Connect

    Sutherland, B.M.; Bennett, P.V.; Sutherland, J.C.

    1996-07-15

    We have developed a method of quantitating low frequencies (0-30 sites/10{sup 9} base pairs) of double strand breaks in {approximately}1 {mu}g of nonradioactive human DNA. Unirradiated or irradiated DNA is digested with the restriction endonuclease NotI, producing cleavage fragments that include a major group centered at {approximately}1.2-1.3 Mbp. The DNA molecules are separated as a function of size by transverse alternating field electrophoresis. The frequency of double strand breaks is computed directly from the decrease in number average molecular length induced in the 1.2 to 1.3-Mbp cleavage fragment group by {sup 137}Cs {gamma} or Fe{sup 26+} (1.1 GeV/nucleon) irradiation vs the corresponding unirradiated DNA samples. The double strand break frequency can be quantitated easily in the dose range of 0-10 cGy of {gamma} rays. The frequency of breaks per unit dose calculated for {gamma} irradiation of DNA in human cells ({approximately}4.6 double strand breaks/10{sup 9} bp/Gy) who used methods requiring higher doses. 55 refs., 4 figs.

  4. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair

    PubMed Central

    Tsabar, Michael; Waterman, David P.; Aguilar, Fiona; Katsnelson, Lizabeth; Eapen, Vinay V.; Memisoglu, Gonen; Haber, James E.

    2016-01-01

    To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair. PMID:27222517

  5. DNA Double-Strand Breaks: A Potential Causative Factor for Mammalian Aging?

    PubMed Central

    Han, Li; Mitchell, James R.; Hasty, Paul

    2008-01-01

    Aging is a pleiotropic and stochastic process influenced by both genetics and environment. As a result the fundamental underlying causes of aging are controversial and likely diverse. Genome maintenance and in particular the repair of DNA damage is critical to ensure longevity needed for reproduction and as a consequence imperfections or defects in maintaining the genome may contribute to aging. There are many forms of DNA damage with double-strand breaks (DSBs) being the most toxic. Here we discuss DNA DSBs as a potential causative factor for aging including factors that generate DNA DSBs, pathways that repair DNA DSBs, consequences of faulty or failed DSB repair and how these consequences may lead to age-dependent decline in fitness. At the end we compare mouse models of premature aging that are defective for repairing either DSBs or UV light-induced lesions. Based on these comparisons we believe the basic mechanisms responsible for their aging phenotypes are fundamentally different demonstrating the complex and pleiotropic nature of this process. PMID:18346777

  6. Accumulation of Ku80 proteins at DNA double-strand breaks in living cells

    SciTech Connect

    Koike, Manabu Koike, Aki

    2008-03-10

    Ku plays a key role in multiple nuclear processes, e.g., DNA double-strand break (DSB) repair. The regulation mechanism of the localizations of Ku70 and Ku80 plays a key role in regulating the multiple functions of Ku. Although numerous biochemical studies in vitro have elucidated the DNA binding mechanism of Ku, no accumulation mechanisms of Ku70 and Ku80 at DSBs have been clarified in detail in vivo. In this study, we examined the accumulation mechanism of Ku80 at DSBs in living cells. EGFP-Ku80 accumulation at DSBs began immediately after irradiation. On the other hand, our data show that Ku70 alone, which has DNA binding activity independent of Ku80, cannot accumulate at the DSBs, whereas Ku70 bound to Ku80 can. The deletion of the C-terminal DNA-PKcs-binding domain and the mutation at the SUMOylation site of Ku80 had no effect on Ku80 accumulation. Unexpectedly, N-terminal deletion mutants of Ku80 fully lost their accumulation activity, although the mutants retained their Ku70 binding activity. Altogether, these data demonstrate that Ku80 is essential for Ku70 accumulation at DSBs. Furthermore, three domains of Ku80, i.e., the N-terminal {alpha}/{beta}, the DNA-binding, and Ku70-binding domains, seem to necessary for the accumulation at or recognition of DSBs in the early stage after irradiation.

  7. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair.

    PubMed

    Tsabar, Michael; Waterman, David P; Aguilar, Fiona; Katsnelson, Lizabeth; Eapen, Vinay V; Memisoglu, Gonen; Haber, James E

    2016-05-15

    To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair.

  8. LINE-1 methylation status of endogenous DNA double-strand breaks.

    PubMed

    Pornthanakasem, Wichai; Kongruttanachok, Narisorn; Phuangphairoj, Chutipa; Suyarnsestakorn, Chotika; Sanghangthum, Taweap; Oonsiri, Sornjarod; Ponyeam, Wanpen; Thanasupawat, Thatchawan; Matangkasombut, Oranart; Mutirangura, Apiwat

    2008-06-01

    DNA methylation and the repair of DNA double-strand breaks (DSBs) are important processes for maintaining genomic integrity. Although DSBs can be produced by numerous agents, they also occur spontaneously as endogenous DSBs (EDSBs). In this study, we evaluated the methylation status of EDSBs to determine if there is a connection between DNA methylation and EDSBs. We utilized interspersed repetitive sequence polymerase chain reaction (PCR), ligation-mediated PCR and combined bisulfite restriction analysis to examine the extent of EDSBs and methylation at long interspersed nuclear element-1 (LINE-1) sequences nearby EDSBs. We tested normal white blood cells and several cell lines derived from epithelial cancers and leukemias. Significant levels of EDSBs were detectable in all cell types. EDSBs were also found in both replicating and non-replicating cells. We found that EDSBs contain higher levels of methylation than the cellular genome. This hypermethylation is replication independent and the methylation was present in the genome at the location prior to the DNA DSB. The differences in methylation levels between EDSBs and the rest of the genome suggests that EDSBs are differentially processed, by production, end-modification, or repair, depending on the DNA methylation status.

  9. DNA double-strand breaks activate ATM independent of mitochondrial dysfunction in A549 cells.

    PubMed

    Kalifa, Lidza; Gewandter, Jennifer S; Staversky, Rhonda J; Sia, Elaine A; Brookes, Paul S; O'Reilly, Michael A

    2014-10-01

    Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.

  10. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin

    PubMed Central

    El-Khamisy, Sherif F.; Katyal, Sachin; Patel, Poorvi; Ju, Limei; McKinnon, Peter J.; Caldecott, Keith W.

    2009-01-01

    Ataxia oculomotor apraxia-1 (AOA1) is an autosomal recessive neurodegenerative disease that results from mutations of aprataxin (APTX). APTX associates with the DNA single- and double-strand break repair machinery and is able to remove AMP from 5′-termini at DNA strand breaks in vitro. However, attempts to establish a DNA strand break repair defect in APTX-defective cells have proved conflicting and unclear. We reasoned that this may reflect that DNA strand breaks with 5′-AMP represent only a minor subset of breaks induced in cells, and/or the availability of alternative mechanisms for removing AMP from 5′-termini. Here, we have attempted to increase the dependency of chromosomal single- and double-strand break repair on aprataxin activity by slowing the rate of repair of 3′-termini in aprataxin-defective neural cells, thereby increasing the likelihood that the 5′-termini at such breaks become adenylated and/or block alternative repair mechanisms. To do this, we generated a mouse model in which APTX is deleted together with tyrosyl DNA phosphodiesterase (TDP1), an enzyme that repairs 3′-termini at a subset of single-strand breaks (SSBs), including those with 3′-topoisomerase-1 (Top1) peptide. Notably, the global rate of repair of oxidative and alkylation-induced SSBs was significantly slower in Tdp1−/−/Aptx−/− double knockout quiescent mouse astrocytes compared with Tdp1−/− or Aptx−/− single knockouts. In contrast, camptothecin-induced Top1-SSBs accumulated to similar levels in Tdp1−/− and Tdp1−/−/Aptx−/− double knockout astrocytes. Finally, we failed to identify a measurable defect in double-strand break repair in Tdp1−/−, Aptx−/− or Tdp1−/−/Aptx−/− astrocytes. These data provide direct evidence for a requirement for aprataxin during chromosomal single-strand break repair in primary neural cells lacking Tdp1. PMID:19303373

  11. Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway.

    PubMed

    Brissett, Nigel C; Doherty, Aidan J

    2009-06-01

    The NHEJ (non-homologous end-joining) pathway is one of the major mechanisms for repairing DSBs (double-strand breaks) that occur in genomic DNA. In common with eukaryotic organisms, many prokaryotes possess a conserved NHEJ apparatus that is essential for the repair of DSBs arising in the stationary phase of the cell cycle. Although the bacterial NHEJ complex is much more minimal than its eukaryotic counterpart, both pathways share a number of common mechanistic features. The relative simplicity of the prokaryotic NHEJ complex makes it a tractable model system for investigating the cellular and molecular mechanisms of DSB repair. The present review describes recent advances in our understanding of prokaryotic end-joining, focusing primarily on biochemical, structural and cellular aspects of the mycobacterial NHEJ repair pathway.

  12. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy

    PubMed Central

    Oike, Takahiro; Niimi, Atsuko; Okonogi, Noriyuki; Murata, Kazutoshi; Matsumura, Akihiko; Noda, Shin-Ei; Kobayashi, Daijiro; Iwanaga, Mototaro; Tsuchida, Keisuke; Kanai, Tatsuaki; Ohno, Tatsuya; Shibata, Atsushi; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy shows great potential as a cure for X-ray-resistant tumors. Basic research suggests that the strong cell-killing effect induced by carbon ions is based on their ability to cause complex DNA double-strand breaks (DSBs). However, evidence supporting the formation of complex DSBs in actual patients is lacking. Here, we used advanced high-resolution microscopy with deconvolution to show that complex DSBs are formed in a human tumor clinically treated with carbon ion radiotherapy, but not in a tumor treated with X-ray radiotherapy. Furthermore, analysis using a physics model suggested that the complexity of radiotherapy-induced DSBs is related to linear energy transfer, which is much higher for carbon ion beams than for X-rays. Visualization of complex DSBs in clinical specimens will help us to understand the anti-tumor effects of carbon ion radiotherapy. PMID:26925533

  13. Functions and regulation of the MRX complex at DNA double-strand breaks

    PubMed Central

    Gobbini, Elisa; Cassani, Corinne; Villa, Matteo; Bonetti, Diego; Longhese, Maria P.

    2016-01-01

    DNA double-strand breaks (DSBs) pose a serious threat to genome stability and cell survival. Cells possess mechanisms that recognize DSBs and promote their repair through either homologous recombination (HR) or non-homologous end joining (NHEJ). The evolutionarily conserved Mre11-Rad50-Xrs2 (MRX) complex plays a central role in the cellular response to DSBs, as it is implicated in controlling end resection and in maintaining the DSB ends tethered to each other. Furthermore, it is responsible for DSB signaling by activating the checkpoint kinase Tel1 that, in turn, supports MRX function in a positive feedback loop. The present review focuses mainly on recent works in the budding yeast Saccharomyces cerevisiae to highlight structure and regulation of MRX as well as its interplays with Tel1. PMID:28357369

  14. Radiation-induced heat-labile sites that convert into DNA double-strand breaks

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    The yield of DNA double-strand breaks (DSBs) in SV40 DNA irradiated in aqueous solution was found to increase by more than a factor of two as a result of postirradiation incubation of the DNA at 50 degrees C and pH 8.0 for 24 h. This is in agreement with data from studies performed at 37 degrees C that were published previously. Importantly, similar results were also obtained from irradiation of mammalian DNA in agarose plugs. These results suggest that heat-labile sites within locally multiply damaged sites are produced by radiation and are subsequently transformed into DSBs. Since incubation at 50 degrees C is typically employed for lysis of cells in commonly used pulsed-field gel assays for detection of DSBs in mammalian cells, the possibility that heat-labile sites are present in irradiated cells was also studied. An increase in the apparent number of DSBs as a function of lysis time at 50 degrees C was found with kinetics that was similar to that for irradiated DNA, although the magnitude of the increase was smaller. This suggests that heat-labile sites are also formed in the cell. If this is the case, a proportion of DSBs measured by the pulsed-field gel assays may occur during the lysis step and may not be present in the cell as breaks but as heat-labile sites. It is suggested that such sites consist mainly of heat-labile sugar lesions within locally multiply damaged sites. Comparing rejoining of DSBs measured with short and long lysis procedure indicates that the heat-labile sites are repaired with fast kinetics in comparison with repair of the bulk of DSBs.

  15. The effects of radioprotectors on DNA polymerase I-directed repair synthesis and DNA strand breaks in toluene-treated and X-irradiated Escherichia coli

    SciTech Connect

    Billen, D.

    1983-07-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is induced by exposure to X rays. This repair synthesis may be amplified and easily measured through inhibition of DNA ligase action. In an effort to learn more of the relationship between X-ray-induced strand breaks in cellular DNA and the extent of this repair synthesis, experiments designed to compare the influence of radioprotectors on both strand-break production and repair synthesis have been carried out. The results show that cysteamine, sodium formate, and glycerol not only protect against strand breaks but also reduce DNA polymerase I-directed repair synthesis. However, I-, an efficient hydroxyl radical scavenger, is not as effective a protective agent against strand breaks and does not measurably affect repair synthesis in our system.

  16. Effects of radioprotectors on DNA polymerase I-directed repair synthesis and DNA strand breaks in toluene-treated and x-irradiated Escherichia coli

    SciTech Connect

    Billen, D.

    1983-07-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is induced by exposure to x rays. This repair synthesis may be amplified and easily measured through inhibition of DNA ligase action. In an effort to learn more of the relationship between x-ray-induced strand breaks in cellular DNA and the extent of this repair synthesis, experiments designed to compare the influence of radioprotectors on both strand-break production and repair synthesis have been carried out. The results show that cysteamine, sodium formate, and glycerol not only protect against strand breaks but also reduce DNA polymerase I-directed repair synthesis. However, I/sup -/, an efficient hydroxyl radical scavenger, is not as effective a protective agent against strand breaks and does not measurably affect repair synthesis in our system.

  17. Targeting abnormal DNA double strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias

    PubMed Central

    Tobin, Lisa A.; Robert, Carine; Rapoport, Aaron P.; Gojo, Ivana; Baer, Maria R.; Tomkinson, Alan E.; Rassool, Feyruz V.

    2013-01-01

    Resistance to imatinib (IM) and other BCR-ABL1 tyrosine kinase inhibitors (TKI)s is an increasing problem in leukemias caused by expression of BCR-ABL1. Since chronic myeloid leukemia (CML) cell lines expressing BCR-ABL1 utilize an alternative non-homologous end-joining pathway (ALT NHEJ) to repair DNA double strand breaks (DSB)s, we asked whether this repair pathway is a novel therapeutic target in TKI-resistant disease. Notably, the steady state levels of two ALT NHEJ proteins, poly-(ADP-ribose) polymerase 1 (PARP1) and DNA ligase IIIα were increased in the BCR-ABL1-positive CML cell line K562 and, to a greater extent, in its imatinib resistant (IMR) derivative. Incubation of these cell lines with a combination of DNA ligase and PARP inhibitors inhibited ALT NHEJ and selectively decreased survival with the effect being greater in the IMR derivative. Similar results were obtained with TKI-resistant derivatives of two hematopoietic cell lines that had been engineered to stably express BCR-ABL1. Together our results show that the sensitivity of cell lines expressing BCR-ABL1 to the combination of DNA ligase and PARP inhibitors correlates with the steady state levels of PARP1 and DNA ligase IIIα, and ALT NHEJ activity. Importantly, analysis of clinical samples from CML patients confirmed that the expression levels of PARP1 and DNA ligase IIIα correlated with sensitivity to the DNA repair inhibitor combination. Thus, the expression levels of PARP1 and DNA ligase IIIα serve as biomarkers to identify a subgroup of CML patients who may be candidates for therapies that target the ALT NHEJ pathway when treatment with TKIs has failed. PMID:22641215

  18. Methylating agents and DNA repair responses: methylated bases and sources of strand breaks

    PubMed Central

    Wyatt, Michael D.; Pittman, Douglas L.

    2008-01-01

    The chemical methylating agents methylmethane sulfonate (MMS) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) have been used for decades as classical DNA damaging agents. These agents have been utilized to uncover and explore pathways of DNA repair, DNA damage response, and mutagenesis. MMS and MNNG modify DNA by adding methyl groups to a number of nucleophilic sites on the DNA bases, although MNNG produces a greater percentage of O-methyl adducts. There has been substantial progress elucidating direct reversal proteins that remove methyl groups and base excision repair (BER), which removes and replaces methylated bases. Direct reversal proteins and BER thus counteract the toxic, mutagenic and clastogenic effects of methylating agents. Despite recent progress, the complexity of DNA damage responses to methylating agents is still being discovered. In particular, there is growing understanding of pathways such as homologous recombination, lesion bypass, and mismatch repair that react when the response of direct reversal proteins and BER is insufficient. Furthermore, the importance of proper balance within the steps in BER has been uncovered with the knowledge that DNA structural intermediates during BER are deleterious. A number of issues complicate elucidating the downstream responses when direct reversal is insufficient or BER is imbalanced. These include inter-species differences, cell-type specific differences within mammals and between cancer cell lines, and the type of methyl damage or BER intermediate encountered. MMS also carries a misleading reputation of being a ‘radiomimetic,’ i.e., capable of directly producing strand breaks. This review focuses on the DNA methyl damage caused by MMS and MNNG for each site of potential methylation to summarize what is known about the repair of such damage and the downstream responses and consequences if not repaired. PMID:17173371

  19. Quantification and genome-wide mapping of DNA double-strand breaks.

    PubMed

    Grégoire, Marie-Chantal; Massonneau, Julien; Leduc, Frédéric; Arguin, Mélina; Brazeau, Marc-André; Boissonneault, Guylain

    2016-12-01

    DNA double-strand breaks (DSBs) represent a major threat to the genetic integrity of the cell. Knowing both their genome-wide distribution and number is important for a better assessment of genotoxicity at a molecular level. Available methods may have underestimated the extent of DSBs as they are based on markers specific to those undergoing active repair or may not be adapted for the large diversity of naturally occurring DNA ends. We have established conditions for an efficient first step of DNA nick and gap repair (NGR) allowing specific determination of DSBs by end labeling with terminal transferase. We used DNA extracted from HeLa cells harboring an I-SceI cassette to induce a targeted nick or DSB and demonstrated by immunocapture of 3'-OH that a prior step of NGR allows specific determination of loci-specific or genome wide DSBs. This method can be applied to the global determination of DSBs using radioactive end labeling and can find several applications aimed at understanding the distribution and kinetics of DSBs formation and repair.

  20. Cdc14A and Cdc14B Redundantly Regulate DNA Double-Strand Break Repair

    PubMed Central

    Lin, Han; Ha, Kyungsoo; Lu, Guojun; Fang, Xiao; Cheng, Ranran; Zuo, Qiuhong

    2015-01-01

    Cdc14 is a phosphatase that controls mitotic exit and cytokinesis in budding yeast. In mammals, the two Cdc14 homologues, Cdc14A and Cdc14B, have been proposed to regulate DNA damage repair, whereas the mitotic exit and cytokinesis rely on another phosphatase, PP2A-B55α. It is unclear if the two Cdc14s work redundantly in DNA repair and which repair pathways they participate in. More importantly, their target(s) in DNA repair remains elusive. Here we report that Cdc14B knockout (Cdc14B−/−) mouse embryonic fibroblasts (MEFs) showed defects in repairing ionizing radiation (IR)-induced DNA double-strand breaks (DSBs), which occurred only at late passages when Cdc14A levels were low. This repair defect could occur at early passages if Cdc14A levels were also compromised. These results indicate redundancy between Cdc14B and Cdc14A in DSB repair. Further, we found that Cdc14B deficiency impaired both homologous recombination (HR) and nonhomologous end joining (NHEJ), the two major DSB repair pathways. We also provide evidence that Cdh1 is a downstream target of Cdc14B in DSB repair. PMID:26283732

  1. Cell cycle-dependent resolution of DNA double-strand breaks

    PubMed Central

    Ambrosio, Susanna; Di Palo, Giacomo; Napolitano, Giuliana; Amente, Stefano; Dellino, Gaetano Ivan; Faretta, Mario; Pelicci, Pier Giuseppe; Lania, Luigi; Majello, Barbara

    2016-01-01

    DNA double strand breaks (DSBs) elicit prompt activation of DNA damage response (DDR), which arrests cell-cycle either in G1/S or G2/M in order to avoid entering S and M phase with damaged DNAs. Since mammalian tissues contain both proliferating and quiescent cells, there might be fundamental difference in DDR between proliferating and quiescent cells (or G0-arrested). To investigate these differences, we studied recruitment of DSB repair factors and resolution of DNA lesions induced at site-specific DSBs in asynchronously proliferating, G0-, or G1-arrested cells. Strikingly, DSBs occurring in G0 quiescent cells are not repaired and maintain a sustained activation of the p53-pathway. Conversely, re-entry into cell cycle of damaged G0-arrested cells, occurs with a delayed clearance of DNA repair factors initially recruited to DSBs, indicating an inefficient repair when compared to DSBs induced in asynchronously proliferating or G1-synchronized cells. Moreover, we found that initial recognition of DSBs and assembly of DSB factors is largely similar in asynchronously proliferating, G0-, or G1-synchronized cells. Our study thereby demonstrates that repair and resolution of DSBs is strongly dependent on the cell-cycle state. PMID:26700820

  2. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells

    PubMed Central

    Kaushik Tiwari, Meetu; Adaku, Nneoma; Peart, Natoya; Rogers, Faye A.

    2016-01-01

    Structural alterations in DNA can serve as natural impediments to replication fork stability and progression, resulting in DNA damage and genomic instability. Naturally occurring polypurine mirror repeat sequences in the human genome can create endogenous triplex structures evoking a robust DNA damage response. Failures to recognize or adequately process these genomic lesions can result in loss of genomic integrity. Nucleotide excision repair (NER) proteins have been found to play a prominent role in the recognition and repair of triplex structures. We demonstrate using triplex-forming oligonucleotides that chromosomal triplexes perturb DNA replication fork progression, eventually resulting in fork collapse and the induction of double strand breaks (DSBs). We find that cells deficient in the NER damage recognition proteins, XPA and XPC, accumulate more DSBs in response to chromosomal triplex formation than NER-proficient cells. Furthermore, we demonstrate that XPC-deficient cells are particularly prone to replication-associated DSBs in the presence of triplexes. In the absence of XPA or XPC, deleterious consequences of triplex-induced genomic instability may be averted by activating apoptosis via dual phosphorylation of the H2AX protein. Our results reveal that damage recognition by XPC and XPA is critical to maintaining replication fork integrity and preventing replication fork collapse in the presence of triplex structures. PMID:27298253

  3. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity.

    PubMed

    Oeck, S; Al-Refae, K; Riffkin, H; Wiel, G; Handrick, R; Klein, D; Iliakis, G; Jendrossek, V

    2017-02-17

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition.

  4. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells

    PubMed Central

    2014-01-01

    Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758

  5. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation

    PubMed Central

    Yu, Zhenbao; Vogel, Gillian; Coulombe, Yan; Dubeau, Danielle; Spehalski, Elizabeth; Hébert, Josée; Ferguson, David O; Masson, Jean Yves; Richard, Stéphane

    2012-01-01

    The MRE11/RAD50/NBS1 complex is the primary sensor rapidly recruited to DNA double-strand breaks (DSBs). MRE11 is known to be arginine methylated by PRMT1 within its glycine-arginine-rich (GAR) motif. In this study, we report a mouse knock-in allele of Mre11 that substitutes the arginines with lysines in the GAR motif and generates the MRE11RK protein devoid of methylated arginines. The Mre11RK/RK mice were hypersensitive to γ-irradiation (IR) and the cells from these mice displayed cell cycle checkpoint defects and chromosome instability. Moreover, the Mre11RK/RK MEFs exhibited ATR/CHK1 signaling defects and impairment in the recruitment of RPA and RAD51 to the damaged sites. The MRKRN complex formed and localized to the sites of DNA damage and normally activated the ATM pathway in response to IR. The MRKRN complex exhibited exonuclease and DNA-binding defects in vitro responsible for the impaired DNA end resection and ATR activation observed in vivo in response to IR. Our findings provide genetic evidence for the critical role of the MRE11 GAR motif in DSB repair, and demonstrate a mechanistic link between post-translational modifications at the MRE11 GAR motif and DSB processing, as well as the ATR/CHK1 checkpoint signaling. PMID:21826105

  6. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase.

    PubMed

    Lee, Kyung-Jong; Saha, Janapriya; Sun, Jingxin; Fattah, Kazi R; Wang, Shu-Chi; Jakob, Burkhard; Chi, Linfeng; Wang, Shih-Ya; Taucher-Scholz, Gisela; Davis, Anthony J; Chen, David J

    2016-02-29

    Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.

  7. Yields of strand breaks and base lesions induced by soft X-rays in plasmid DNA.

    PubMed

    Yokoya, A; Fujii, K; Ushigome, T; Shikazono, N; Urushibara, A; Watanabe, R

    2006-01-01

    The yields of soft-X-ray-induced DNA damages have been measured by using closed-circular plasmid DNA. Several DNA solutions with three kinds of radical scavenger capacity and also fully hydrated DNA samples were irradiated to compare the contribution by indirect reaction of diffusible water radicals, such as OH*, with those by direct action of secondary electrons. The yields of prompt single- (SSBs) and double-strand breaks (DSBs) decrease with increasing scavenging capacity. The SSB yields for soft X-rays are approximately midway those between gamma-ray and ultrasoft X-ray data previously reported. Heat labile sites are observed only in the low scavenger condition. The yields of the base lesions revealed by post irradiation treatment with base excision repair enzymes showed a similar value for Nth and Fpg protein except in the hydrated sample. These results indicate that the direct effect of soft X-rays induces the damages with different efficiency from those by indirect effect.

  8. Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus.

    PubMed

    Martínez, Isidoro; García-Carpizo, Verónica; Guijarro, Trinidad; García-Gomez, Ana; Navarro, Diego; Aranda, Ana; Zambrano, Alberto

    2016-05-18

    Human respiratory syncytial virus (HRSV) accounts for the majority of lower respiratory tract infections during infancy and childhood and is associated with significant morbidity and mortality. HRSV provokes a proliferation arrest and characteristic syncytia in cellular systems such as immortalized epithelial cells. We show here that HRSV induces the expression of DNA damage markers and proliferation arrest such as P-TP53, P-ATM, CDKN1A and γH2AFX in cultured cells secondary to the production of mitochondrial reactive oxygen species (ROS). The DNA damage foci contained γH2AFX and TP53BP1, indicative of double-strand breaks (DSBs) and could be reversed by antioxidant treatments such as N-Acetylcysteine (NAC) or reduced glutathione ethyl ester (GSHee). The damage observed is associated with the accumulation of senescent cells, displaying a canonical senescent phenotype in both mononuclear cells and syncytia. In addition, we show signs of DNA damage and aging such as γH2AFX and CDKN2A expression in the respiratory epithelia of infected mice long after viral clearance. Altogether, these results show that HRSV triggers a DNA damage-mediated cellular senescence program probably mediated by oxidative stress. The results also suggest that this program might contribute to the physiopathology of the infection, tissue remodeling and aging, and might be associated to long-term consequences of HRSV infections.

  9. Accumulation of Ku70 at DNA double-strand breaks in living epithelial cells

    SciTech Connect

    Koike, Manabu; Yutoku, Yasutomo; Koike, Aki

    2011-10-15

    Ku70 and Ku80 play an essential role in the DNA double-strand break (DSB) repair pathway, i.e., nonhomologous DNA-end-joining (NHEJ). No accumulation mechanisms of Ku70 at DSBs have been clarified in detail, although the accumulation mechanism of Ku70 at DSBs plays key roles in regulating the NHEJ activity. Here, we show the essential domains for the accumulation and function of Ku70 at DSBs in living lung epithelial cells. Our results showed that EGFP-Ku70 accumulation at DSBs began immediately after irradiation. Our findings demonstrate that three domains of Ku70, i.e., the {alpha}/{beta}, DNA-binding, and Ku80-binding domains, but not the SAP domain, are necessary for the accumulation at or recognition of DSBs in the early stage after irradiation. Moreover, our findings demonstrate that the leucine at amino acid 385 of Ku70 in the Ku80-binding domain, but not the three target amino acids for acetylation in the DNA-binding domain, is involved in the localization and accumulation of Ku70 at DSBs. Furthermore, accumulations of XRCC4 and XLF, but not that of Artemis, at DSBs are dependent on the presence of Ku70. These findings suggest that Artemis can work in not only the Ku-dependent repair process, but also the Ku-independent process at DSBs in living epithelial cells.

  10. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase

    PubMed Central

    Lee, Kyung-Jong; Saha, Janapriya; Sun, Jingxin; Fattah, Kazi R.; Wang, Shu-Chi; Jakob, Burkhard; Chi, Linfeng; Wang, Shih-Ya; Taucher-Scholz, Gisela; Davis, Anthony J.; Chen, David J.

    2016-01-01

    Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells. PMID:26712563

  11. Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus

    PubMed Central

    Martínez, Isidoro; García-Carpizo, Verónica; Guijarro, Trinidad; García-Gomez, Ana; Navarro, Diego; Aranda, Ana; Zambrano, Alberto

    2016-01-01

    ABSTRACT Human respiratory syncytial virus (HRSV) accounts for the majority of lower respiratory tract infections during infancy and childhood and is associated with significant morbidity and mortality. HRSV provokes a proliferation arrest and characteristic syncytia in cellular systems such as immortalized epithelial cells. We show here that HRSV induces the expression of DNA damage markers and proliferation arrest such as P-TP53, P-ATM, CDKN1A and γH2AFX in cultured cells secondary to the production of mitochondrial reactive oxygen species (ROS). The DNA damage foci contained γH2AFX and TP53BP1, indicative of double-strand breaks (DSBs) and could be reversed by antioxidant treatments such as N-Acetylcysteine (NAC) or reduced glutathione ethyl ester (GSHee). The damage observed is associated with the accumulation of senescent cells, displaying a canonical senescent phenotype in both mononuclear cells and syncytia. In addition, we show signs of DNA damage and aging such as γH2AFX and CDKN2A expression in the respiratory epithelia of infected mice long after viral clearance. Altogether, these results show that HRSV triggers a DNA damage-mediated cellular senescence program probably mediated by oxidative stress. The results also suggest that this program might contribute to the physiopathology of the infection, tissue remodeling and aging, and might be associated to long-term consequences of HRSV infections. PMID:26809688

  12. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    PubMed Central

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  13. Nanoneedle insertion into the cell nucleus does not induce double-strand breaks in chromosomal DNA.

    PubMed

    Ryu, Seunghwan; Kawamura, Ryuzo; Naka, Ryohei; Silberberg, Yaron R; Nakamura, Noriyuki; Nakamura, Chikashi

    2013-09-01

    An atomic force microscope probe can be formed into an ultra-sharp cylindrical shape (a nanoneedle) using micro-fabrication techniques such as focused ion beam etching. This nanoneedle can be effectively inserted through the plasma membrane of a living cell to not only access the cytosol, but also to penetrate through the nuclear membrane. This technique shows great potential as a tool for performing intranuclear measurements and manipulations. Repeated insertions of a nanoneedle into a live cell were previously shown not to affect cell viability. However, the effect of nanoneedle insertion on the nucleus and nuclear components is still unknown. DNA is the most crucial component of the nucleus for proper cell function and may be physically damaged by a nanoneedle. To investigate the integrity of DNA following nanoneedle insertion, the occurrence of DNA double-strand breaks (DSBs) was assessed. The results showed that there was no chromosomal DNA damage due to nanoneedle insertion into the nucleus, as indicated by the expression level of γ-H2AX, a molecular marker of DSBs.

  14. DNA strand breaks in human nasal respiratory epithelium are induced upon exposure to urban pollution.

    PubMed Central

    Calderon-Garciduenas, L; Osnaya-Brizuela, N; Ramirez-Martinez, L; Villarreal-Calderon, A

    1996-01-01

    All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant induces SSBs in nasal epithelium, we studied 139 volunteers, including a control population of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 males and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p<0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 +/- 8.34% in the first week to 67.29 +/- 2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be

  15. DNA strand breaks in human nasal respiratory epithelium are induced upon exposure to urban pollution.

    PubMed

    Calderon-Garciduenas, L; Osnaya-Brizuela, N; Ramirez-Martinez, L; Villarreal-Calderon, A

    1996-02-01

    All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant induces SSBs in nasal epithelium, we studied 139 volunteers, including a control population of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 males and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p<0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 +/- 8.34% in the first week to 67.29 +/- 2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be

  16. SIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair

    PubMed Central

    McCord, Ronald A.; Michishita, Eriko; Hong, Tao; Berber, Elisabeth; Boxer, Lisa D.; Kusumoto, Rika; Guan, Shenheng; Shi, Xiaobing; Gozani, Or; Burlingame, Alma L.; Bohr, Vilhelm A.; Chua, Katrin F.

    2009-01-01

    The Sir2 chromatin regulatory factor links maintenance of genomic stability to life span extension in yeast. The mammalian Sir2 family member SIRT6 has been proposed to have analogous functions, because SIRT6-deficiency leads to shortened life span and an aging-like degenerative phenotype in mice, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA-PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor with chromatin impacts on the efficiency of repair, and establish a link between chromatin regulation, DNA repair, and a mammalian Sir2 factor. PMID:20157594

  17. Sensitivity of peripheral blood lymphocytes of pilots and astronauts to gamma-radiation: induction of double-stranded DNA breaks.

    PubMed

    Vorobyova, N Yu; Osipova, A N; Pelevina, I I

    2007-10-01

    The levels of DNA breaks before and after in vitro irradiation (1 Gy) of lymphocytes from 17 donors, 41 pilots, and 8 astronauts were studied by comet assay. Seventeen donors. 41 pilots, and 8 astronauts were examined. The flights augmented individual differences in the levels of DNA breaks in blood lymphocytes and in the severity of injuries inflicted by radiation exposure to lymphocyte DNA. Dispersions in the distribution of the initial levels of DNA breaks in pilots and astronauts differed significantly from the control according to Fisher's F test. The dispersion of distribution of the levels of double-stranded DNA breaks after in vitro irradiation in the group of pilots also differed significantly from the control distribution. These results necessitate evaluation of individual sensitivity to the mission conditions during medical selection.

  18. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks

    PubMed Central

    Rozacky, Jenna; Nemec, Antoni A.; Sweasy, Joann B.; Kidane, Dawit

    2015-01-01

    DNA polymerase beta (Pol β) is a key enzymefor the protection against oxidative DNA lesions via itsrole in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5′ phosphate group (5′-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5′-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation. PMID:26090616

  19. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work

    PubMed Central

    Citterio, Elisabetta

    2015-01-01

    Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer. PMID:26442100

  20. Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells.

    PubMed

    Sekine-Suzuki, Emiko; Yu, Dong; Kubota, Nobuo; Okayasu, Ryuichi; Anzai, Kazunori

    2008-12-12

    Cytotoxicity and DNA double strand breaks (DSBs) were studied in HeLa cells treated with sulforaphane (SFN), a well-known chemo-preventive agent. Cell survival was impaired by SFN in a concentration and treatment time-dependent manner. Both constant field gel electrophoresis (CFGE) and gamma-H2AX assay unambiguously indicated formation of DSBs by SFN, reflecting the cell survival data. These DSBs were predominantly processed by homologous recombination repair (HRR), judging from the SFN concentration-dependent manner of Rad51 foci formation. On the other hand, the phosphorylation of DNA-PKcs, a key non-homologous end joining (NHEJ) protein, was not observed by SFN treatment, suggesting that NHEJ may not be involved in DSBs induced by this chemical. G2/M arrest by SFN, a typical response for cells exposed to ionizing radiation was also observed. Our new data indicate the clear induction of DSBs by SFN and a useful anti-tumor aspect of SFN through the induction of DNA DSBs.

  1. Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells

    SciTech Connect

    Sekine-Suzuki, Emiko; Yu, Dong; Kubota, Nobuo; Okayasu, Ryuichi; Anzai, Kazunori

    2008-12-12

    Cytotoxicity and DNA double strand breaks (DSBs) were studied in HeLa cells treated with sulforaphane (SFN), a well-known chemo-preventive agent. Cell survival was impaired by SFN in a concentration and treatment time-dependent manner. Both constant field gel electrophoresis (CFGE) and {gamma}-H2AX assay unambiguously indicated formation of DSBs by SFN, reflecting the cell survival data. These DSBs were predominantly processed by homologous recombination repair (HRR), judging from the SFN concentration-dependent manner of Rad51 foci formation. On the other hand, the phosphorylation of DNA-PKcs, a key non-homologous end joining (NHEJ) protein, was not observed by SFN treatment, suggesting that NHEJ may not be involved in DSBs induced by this chemical. G2/M arrest by SFN, a typical response for cells exposed to ionizing radiation was also observed. Our new data indicate the clear induction of DSBs by SFN and a useful anti-tumor aspect of SFN through the induction of DNA DSBs.

  2. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks.

    PubMed

    Sordet, Olivier; Redon, Christophe E; Guirouilh-Barbat, Josée; Smith, Susan; Solier, Stéphanie; Douarre, Céline; Conti, Chiara; Nakamura, Asako J; Das, Benu B; Nicolas, Estelle; Kohn, Kurt W; Bonner, William M; Pommier, Yves

    2009-08-01

    Ataxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA damage response (DDR). As neurons have high rates of transcription that require topoisomerase I (TOP1), we investigated whether TOP1 cleavage complexes (TOP1cc)-which are potent transcription-blocking lesions-also produce transcription-dependent DNA double-strand breaks (DSBs) with ATM activation. We show the induction of DSBs and DDR activation in post-mitotic primary neurons and lymphocytes treated with camptothecin, with the induction of nuclear DDR foci containing activated ATM, gamma-H2AX (phosphorylated histone H2AX), activated CHK2 (checkpoint kinase 2), MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1). The DSB-ATM-DDR pathway was suppressed by inhibiting transcription and gamma-H2AX signals were reduced by RNase H1 transfection, which removes transcription-mediated R-loops. Thus, we propose that Top1cc produce transcription arrests with R-loop formation and generate DSBs that activate ATM in post-mitotic cells.

  3. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation.

    PubMed

    Batenburg, Nicole L; Thompson, Elizabeth L; Hendrickson, Eric A; Zhu, Xu-Dong

    2015-05-12

    Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation.

  4. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner.

    PubMed

    Kuo, Ching-Ying; Li, Xu; Stark, Jeremy M; Shih, Hsiu-Ming; Ann, David K

    2016-01-01

    Both RNF4 and KAP1 play critical roles in the response to DNA double-strand breaks (DSBs), but the functional interplay of RNF4 and KAP1 in regulating DNA damage response remains unclear. We have previously demonstrated the recruitment and degradation of KAP1 by RNF4 require the phosphorylation of Ser824 (pS824) and SUMOylation of KAP1. In this report, we show the retention of DSB-induced pS824-KAP1 foci and RNF4 abundance are inversely correlated as cell cycle progresses. Following irradiation, pS824-KAP1 foci predominantly appear in the cyclin A (-) cells, whereas RNF4 level is suppressed in the G0-/G1-phases and then accumulates during S-/G2-phases. Notably, 53BP1 foci, but not BRCA1 foci, co-exist with pS824-KAP1 foci. Depletion of KAP1 yields opposite effect on the dynamics of 53BP1 and BRCA1 loading, favoring homologous recombination repair. In addition, we identify p97 is present in the RNF4-KAP1 interacting complex and the inhibition of p97 renders MCF7 breast cancer cells relatively more sensitive to DNA damage. Collectively, these findings suggest that combined effect of dynamic recruitment of RNF4 to KAP1 regulates the relative occupancy of 53BP1 and BRCA1 at DSB sites to direct DSB repair in a cell cycle-dependent manner.

  5. Dynamic monitoring of oxidative DNA double-strand break and repair in cardiomyocytes.

    PubMed

    Ye, Bo; Hou, Ning; Xiao, Lu; Xu, Yifan; Xu, Haodong; Li, Faqian

    2016-01-01

    DNA double-strand breaks (DSBs) are most dangerous lesions. To determine whether oxidative stress can induce DSBs and how they are repaired in cardiomyocytes (CMs), cultured neonatal rat CMs were treated with different doses of H2O2 and followed for up to 72 h for monitoring the spatiotemporal dynamics of DNA repair protein assembly/disassembly at DSB foci. The protein levels and foci numbers of histone H2AX phosphorylated at serine 139 (γ-H2AX) increased proportionally to 50, 100, and 200 μmol/L H2O2 after 30 min treatment. When H2O2 was at or above 400 μmol/L, γ-H2AX became predominantly pannuclear. After 30 min, 200 μmol/L of H2O2 treatment, γ-H2AX levels were highest within the first hour and then gradually declined during the recovery and returned to basal levels at 48 h. Among DNA damage transducer kinases, ataxia telangiectasia mutated (ATM) was significantly activated by H2O2 in contrast to mild activation of ATR (ATM and Rad3-related). A DSB binding protein, p53 binding protein 1, formed distinct nuclear foci that colocalized with γ-H2AX foci and phosphorylated ATM. Our findings indicate that DSBs can be induced by H2O2 and ATM is the main kinase to mediate DSB repair in CMs. Therefore, monitoring DSB repair can assess oxidative injury and response in CMs.

  6. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair.

    PubMed

    Smeenk, Godelieve; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose faulty repair may alter the content and organization of cellular genomes. To counteract this threat, numerous signaling and repair proteins are recruited hierarchically to the chromatin areas surrounding DSBs to facilitate accurate lesion repair and restoration of genome integrity. In vertebrate cells, ubiquitin-dependent modifications of histones adjacent to DSBs by RNF8, RNF168, and other ubiquitin ligases have a key role in promoting the assembly of repair protein complexes, serving as direct recruitment platforms for a range of genome caretaker proteins and their associated factors. These DNA damage-induced chromatin ubiquitylation marks provide an essential component of a histone code for DSB repair that is controlled by multifaceted regulatory circuits, underscoring its importance for genome stability maintenance. In this review, we provide a comprehensive account of how DSB-induced histone ubiquitylation is sensed, decoded and modulated by an elaborate array of repair factors and regulators. We discuss how these mechanisms impact DSB repair pathway choice and functionality for optimal protection of genome integrity, as well as cell and organismal fitness.

  7. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1

    PubMed Central

    Eustermann, Sebastian; Wu, Wing-Fung; Langelier, Marie-France; Yang, Ji-Chun; Easton, Laura E.; Riccio, Amanda A.; Pascal, John M.; Neuhaus, David

    2015-01-01

    Summary Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins. PMID:26626479

  8. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1.

    PubMed

    Eustermann, Sebastian; Wu, Wing-Fung; Langelier, Marie-France; Yang, Ji-Chun; Easton, Laura E; Riccio, Amanda A; Pascal, John M; Neuhaus, David

    2015-12-03

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1's function remained obscure; inherent dynamics of SSBs and PARP-1's multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1's signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodification in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.

  9. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair

    PubMed Central

    Smeenk, Godelieve; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose faulty repair may alter the content and organization of cellular genomes. To counteract this threat, numerous signaling and repair proteins are recruited hierarchically to the chromatin areas surrounding DSBs to facilitate accurate lesion repair and restoration of genome integrity. In vertebrate cells, ubiquitin-dependent modifications of histones adjacent to DSBs by RNF8, RNF168, and other ubiquitin ligases have a key role in promoting the assembly of repair protein complexes, serving as direct recruitment platforms for a range of genome caretaker proteins and their associated factors. These DNA damage-induced chromatin ubiquitylation marks provide an essential component of a histone code for DSB repair that is controlled by multifaceted regulatory circuits, underscoring its importance for genome stability maintenance. In this review, we provide a comprehensive account of how DSB-induced histone ubiquitylation is sensed, decoded and modulated by an elaborate array of repair factors and regulators. We discuss how these mechanisms impact DSB repair pathway choice and functionality for optimal protection of genome integrity, as well as cell and organismal fitness. PMID:27446204

  10. Radiation-induced DNA double-strand break rejoining in human tumour cells.

    PubMed Central

    Núñez, M. I.; Villalobos, M.; Olea, N.; Valenzuela, M. T.; Pedraza, V.; McMillan, T. J.; Ruiz de Almodóvar, J. M.

    1995-01-01

    Five established human breast cancer cell lines and one established human bladder cancer cell line of varying radiosensitivity have been used to determine whether the rejoining of DNA double-strand breaks (dsbs) shows a correlation with radiosensitivity. The kinetics of dsb rejoining was biphasic and both components proceeded exponentially with time. The half-time (t1/2) of rejoining ranged from 18.0 +/- 1.4 to 36.4 +/- 3.2 min (fast rejoining process) and from 1.5 +/- 0.2 to 5.1 +/- 0.2 h (slow rejoining process). We found a statistically significant relationship between the survival fraction at 2 Gy (SF2) and the t1/2 of the fast rejoining component (r = 0.949, P = 0.0039). Our results suggest that cell lines which show rapid rejoining are more radioresistant. These results support the view that, as well as the level of damage induction that we have reported previously, the repair process is a major determinant of cellular radiosensitivity. It is possible that the differences found in DNA dsb rejoining and the differences in DNA dsb induction are related by a common mechanism, e.g. conformation of chromatin in the cell. PMID:7841046

  11. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner

    PubMed Central

    Kuo, Ching-Ying; Li, Xu; Stark, Jeremy M.; Shih, Hsiu-Ming; Ann, David K.

    2016-01-01

    Abstract Both RNF4 and KAP1 play critical roles in the response to DNA double-strand breaks (DSBs), but the functional interplay of RNF4 and KAP1 in regulating DNA damage response remains unclear. We have previously demonstrated the recruitment and degradation of KAP1 by RNF4 require the phosphorylation of Ser824 (pS824) and SUMOylation of KAP1. In this report, we show the retention of DSB-induced pS824-KAP1 foci and RNF4 abundance are inversely correlated as cell cycle progresses. Following irradiation, pS824-KAP1 foci predominantly appear in the cyclin A (-) cells, whereas RNF4 level is suppressed in the G0-/G1-phases and then accumulates during S-/G2-phases. Notably, 53BP1 foci, but not BRCA1 foci, co-exist with pS824-KAP1 foci. Depletion of KAP1 yields opposite effect on the dynamics of 53BP1 and BRCA1 loading, favoring homologous recombination repair. In addition, we identify p97 is present in the RNF4-KAP1 interacting complex and the inhibition of p97 renders MCF7 breast cancer cells relatively more sensitive to DNA damage. Collectively, these findings suggest that combined effect of dynamic recruitment of RNF4 to KAP1 regulates the relative occupancy of 53BP1 and BRCA1 at DSB sites to direct DSB repair in a cell cycle-dependent manner. PMID:26766492

  12. Immunofluorescent Detection of DNA Double Strand Breaks induced by High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Desai, Nirav

    2004-01-01

    Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.

  13. DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC.

    PubMed

    Li, Junli; Li, Chunyan; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Wu, Zhen; Zeng, Zhi; Tung, Chuanjong

    2015-09-01

    The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway.

  14. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation

    PubMed Central

    Batenburg, Nicole L; Thompson, Elizabeth L; Hendrickson, Eric A; Zhu, Xu-Dong

    2015-01-01

    Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation. PMID:25820262

  15. Mechanisms and Consequences of Double-strand DNA Break Formation in Chromatin

    PubMed Central

    Cannan, Wendy J.; Pederson, David S.

    2016-01-01

    All organisms suffer double-strand breaks (DSBs) in their DNA as a result of exposure to ionizing radiation. DSBs can also form when replication forks encounter DNA lesions or repair intermediates. The processing and repair of DSBs can lead to mutations, loss of heterozygosity, and chromosome rearrangements that result in cell death or cancer. The most common pathway used to repair DSBs in metazoans (non-homologous DNA end joining) is more commonly mutagenic than the alternative pathway (homologous recombination mediated repair). Thus, factors that influence the choice of pathways used DSB repair can affect an individual’s mutation burden and risk of cancer. This review describes radiological, chemical and biological mechanisms that generate DSBs, and discusses the impact of such variables as DSB etiology, cell type, cell cycle, and chromatin structure on the yield, distribution, and processing of DSBs. The final section focuses on nucleosome-specific mechanisms that influence DSB production, and the possible relationship between higher order chromosome coiling and chromosome shattering (chromothripsis). PMID:26040249

  16. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1

    DOE PAGES

    Eustermann, Sebastian; Wu, Wing -Fung; Langelier, Marie -France; ...

    2015-11-25

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformabilitymore » of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.« less

  17. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1

    SciTech Connect

    Eustermann, Sebastian; Wu, Wing -Fung; Langelier, Marie -France; Yang, Ji -Chun; Easton, Laura E.; Riccio, Amanda A.; Pascal, John M.; Neuhaus, David

    2015-11-25

    Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.

  18. Two-Tailed Comet Assay (2T-Comet): Simultaneous Detection of DNA Single and Double Strand Breaks.

    PubMed

    Cortés-Gutiérrez, Elva I; Fernández, José Luis; Dávila-Rodríguez, Martha I; López-Fernández, Carmen; Gosálvez, Jaime

    2017-01-01

    A modification of the original comet assay was developed for the simultaneous evaluation of DNA single strand breaks (SSBs) and double strand breaks (DSBs) in human spermatozoa. The two-dimensional perpendicular tail comet assay (2T-comet) combines non-denaturing and denaturant conditions to the same sperm nucleoid. In this case, the species-specific deproteinized sperm is first subjected to an electrophoretic field under non-denaturing conditions to mobilize isolated free discrete DNA fragments produced from DSBs; this is then followed by a second electrophoresis running perpendicular to the first one but under alkaline conditions to produce DNA denaturation, exposing SSBs on the same linear DNA chain or DNA fragments flanked by DSBs. This procedure results in a two dimensional comet tail emerging from the core where two types of original DNA affected molecule can be simultaneously discriminated. The 2T-comet is a fast, sensitive, and reliable procedure to distinguish between single and double strand DNA damage within the same cell. It is an innovative method for assessing sperm DNA integrity, which has important implications for human fertility and andrological pathology. This technique may be adapted to assess different DNA break types in other species and other cell types.

  19. Deficiency in the response to DNA double-strand breaks in mouse early preimplantation embryos

    SciTech Connect

    Yukawa, Masashi; Oda, Shoji; Mitani, Hiroshi; Nagata, Masao; Aoki, Fugaku . E-mail: aokif@k.u-tokyo.ac.jp

    2007-06-29

    DNA double-strand breaks (DSBs) are caused by various environmental stresses, such as ionizing radiation and DNA-damaging agents. When DSBs occur, cell cycle checkpoint mechanisms function to stop the cell cycle until all DSBs are repaired; the phosphorylation of H2AX plays an important role in this process. Mouse preimplantation-stage embryos are hypersensitive to ionizing radiation, and X-irradiated mouse zygotes are arrested at the G2 phase of the first cell cycle. To investigate the mechanisms responding to DNA damage at G2 in mouse preimplantation embryos, we examined G2/M checkpoint and DNA repair mechanisms in these embryos. Most of the one- and two-cell embryos in which DSBs had been induced by {gamma}-irradiation underwent a delay in cleavage and ceased development before the blastocyst stage. In these embryos, phosphorylated H2AX ({gamma}-H2AX) was not detected in the one- or two-cell stages by immunocytochemistry, although it was detected after the two-cell stage during preimplantation development. These results suggest that the G2/M checkpoint and DNA repair mechanisms have insufficient function in one- and two-cell embryos, causing hypersensitivity to {gamma}-irradiation. In addition, phosphorylated ataxia telangiectasia mutated protein and DNA protein kinase catalytic subunits, which phosphorylate H2AX, were detected in the embryos at one- and two-cell stages, as well as at other preimplantation stages, suggesting that the absence of {gamma}-H2AX in one- and two-cell embryos depends on some factor(s) other than these kinases.

  20. Inhibition of Poly(ADP-Ribose) Polymerase Enhances Radiochemosensitivity in Cancers Proficient in DNA Double-Strand Break Repair.

    PubMed

    Shunkwiler, Lauren; Ferris, Gina; Kunos, Charles

    2013-02-08

    Pharmacologic inhibitors of poly(ADP-ribose) polymerase (PARP) putatively enhance radiation toxicity in cancer cells. Although there is considerable information on the molecular interactions of PARP and BRCA1- and BRCA2-deficient cancers, very little is known of the PARP inhibition effect upon cancers proficient in DNA double-strand break repair after ionizing radiation or after stalled replication forks. In this work, we investigate whether PARP inhibition by ABT-888 (veliparib) augments death-provoking effects of ionizing radiation, or of the topoisomerase I poison topotecan, within uterine cervix cancers cells harboring an unfettered, overactive ribonucleotide reductase facilitating DNA double-strand break repair and contrast these findings with ovarian cancer cells whose regulation of ribonucleotide reductase is relatively intact. Cell lethality of a radiation-ABT-888 combination is radiation and drug dose dependent. Data particularly highlight an enhanced topotecan-ABT-888 cytotoxicity, and corresponds to an increased number of unrepaired DNA double-strand breaks. Overall, our findings support enhanced radiochemotherapy toxicity in cancers proficient in DNA double-strand break repair when PARP is inhibited by ABT-888.

  1. Lack of dependence on p53 for DNA double strand break repair of episomal vectors in human lymphoblasts

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines. Copyright 1999 Academic Press.

  2. EFFECTS OF FOUR TRIHALOMETHANES ON DNA STRAND BREAKS, RENAL HYALINE DROPLET FORMATION AND SERUM TESTOSTERONE IN MALE F-344 RATS

    EPA Science Inventory

    All four possible trihalomethanes (THMs) containing bromine and chlorine, as well as perchloroethylene (PCE), were evaluated for their ability to produce DNA strand breaks, a2u-globulin rich renal deposits, and testosterone changes in male F-344 rats. Rats received daily equimola...

  3. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells.

    PubMed

    Elsen, Sylvie; Collin-Faure, Véronique; Gidrol, Xavier; Lemercier, Claudie

    2013-11-01

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.

  4. Defective DNA Ligation during Short-Patch Single-Strand Break Repair in Ataxia Oculomotor Apraxia 1 ▿

    PubMed Central

    Reynolds, John J.; El-Khamisy, Sherif F.; Katyal, Sachin; Clements, Paula; McKinnon, Peter J.; Caldecott, Keith W.

    2009-01-01

    Ataxia oculomotor apraxia 1 (AOA1) results from mutations in aprataxin, a component of DNA strand break repair that removes AMP from 5′ termini. Despite this, global rates of chromosomal strand break repair are normal in a variety of AOA1 and other aprataxin-defective cells. Here we show that short-patch single-strand break repair (SSBR) in AOA1 cell extracts bypasses the point of aprataxin action at oxidative breaks and stalls at the final step of DNA ligation, resulting in the accumulation of adenylated DNA nicks. Strikingly, this defect results from insufficient levels of nonadenylated DNA ligase, and short-patch SSBR can be restored in AOA1 extracts, independently of aprataxin, by the addition of recombinant DNA ligase. Since adenylated nicks are substrates for long-patch SSBR, we reasoned that this pathway might in part explain the apparent absence of a chromosomal SSBR defect in aprataxin-defective cells. Indeed, whereas chemical inhibition of long-patch repair did not affect SSBR rates in wild-type mouse neural astrocytes, it uncovered a significant defect in Aptx−/− neural astrocytes. These data demonstrate that aprataxin participates in chromosomal SSBR in vivo and suggest that short-patch SSBR arrests in AOA1 because of insufficient nonadenylated DNA ligase. PMID:19103743

  5. Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation

    SciTech Connect

    Birnboim, H.C.; Jevcak, J.J.

    1981-05-01

    DNA strand breaks can be detected with great sensitivity by exposing crude cell lysates to alkaline solutions and monitoring the rate of strand unwinding. As little as one strand break per chromosome can be detected. Previous methods for measuring strand unwinding have required physical separation of single- from double-stranded molecules. We now describe conditions under which unwinding can be monitored directly using a fluorescent dye, thus greatly simplifying the analysis. Breaks due to irradiation of blood samples by /sup 60/Co gamma-rays at doses as low as 0.05 to 0.1 gray (5 to 10 rads) were detectable. Rapid rejoining of strand breaks during in vitro incubation at 37 degrees could readily be observed following a dose of one gray. Since the procedure is very rapid and cells can be analyzed directly without the requirement for culturing or radiolabeling, the procedure could be useful in cancer chemotherapy if in vivo damage is to be monitored or for testing the in vitro sensitivity of cells to drugs.

  6. Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation

    SciTech Connect

    Birnboim, H.C.; Jevcak, J.J.

    1981-05-01

    DNA strand breaks can be detected with great sensitivity by exposing crude cell lysates to alkaline solutions and monitoring the rate of strand unwinding. As little as one strand break per chromosome can be detected. Previous methods for measuring strand unwinding have required physical separation of single- from double-stranded molecules. Researchers now describe conditions under which unwinding can be monitored directly using a fluorescent dye, thus greatly simplifying the analysis. Breaks due to irradiation of blood samples by 60Co gamma-rays at doses as low as 0.05 to 0.1 gray were detectable. Rapid rejoining of strand breaks during in vitro incubation at 37 degrees could readily be observed following a dose of one gray. Since the procedure is very rapid and cells can be analyzed directly without the requirement for culturing or radiolabeling, the procedure could be useful in cancer chemotherapy if in vivo damage is to be monitored or for testing the in vitro sensitivity of cells to drugs.

  7. Mechanism-based drug combinations with the DNA-strand-breaking nucleoside analog, CNDAC

    PubMed Central

    Liu, Xiaojun; Jiang, Yingjun; Nowak, Billie; Hargis, Sarah; Plunkett, William

    2016-01-01

    CNDAC (2’-C-cyano-2’-deoxy-1-β-D-arabino-pentofuranosyl-cytosine, DFP10917) and its orally bioavailable prodrug, sapacitabine, are undergoing clinical trials for hematological malignancies and solid tumors. The unique action mechanism of inducing DNA strand breaks distinguishes CNDAC from other deoxycytidine analogs. To optimize the clinical potentials of CNDAC, we explored multiple strategies combining CNDAC with chemotherapeutic agents targeting distinct DNA damage repair pathways that are currently in clinical use. The ability of each agent to decrease proliferative potential, determined by clonogenic assays, was determined in paired cell lines proficient and deficient in certain DNA repair proteins. Subsequently each agent was used in combination with CNDAC at fixed concentration ratios. The clonogenicity was quantitated by median effect analysis, and a combination index was calculated. The c-Abl kinase inhibitor, imatinib, had synergy with CNDAC in HCT116 cells, regardless of p53 status. Inhibitors of PARP1 that interfere with homologous recombination (HR) repair or base excision repair (BER) and agents such as temozolomide that cause DNA damage repaired by the BER pathway were also synergistic with CNDAC. The toxicity of the nitrogen mustards, bendamustine and cytoxan, or of platinum compounds, which generate DNA adducts repaired by nucleotide excision repair and HR, was additive with CNDAC. An additive cell killing was also achieved by the combination of CNDAC with taxane mitotic inhibitors (paclitaxel and docetaxel). At concentrations which allow survival of the majority of wild type cells, the synergistic or additive combination effects were selective in HR-deficient cells. This study provides mechanistic rationales for combining CNDAC with other active drugs. PMID:27474148

  8. Accumulation of DNA Double-Strand Breaks in Normal Tissues After Fractionated Irradiation

    SciTech Connect

    Ruebe, Claudia E.

    2010-03-15

    Purpose: There is increasing evidence that genetic factors regulating the recognition and/or repair of DNA double-strand breaks (DSBs) are responsible for differences in radiosensitivity among patients. Genetically defined DSB repair capacities are supposed to determine patients' individual susceptibility to develop adverse normal tissue reactions after radiotherapy. In a preclinical murine model, we analyzed the impact of different DSB repair capacities on the cumulative DNA damage in normal tissues during the course of fractionated irradiation. Material and Methods: Different strains of mice with defined genetic backgrounds (SCID{sup -/-} homozygous, ATM{sup -/-} homozygous, ATM{sup +/-}heterozygous, and ATM{sup +/+}wild-type mice) were subjected to single (2 Gy) or fractionated irradiation (5 x 2 Gy). By enumerating gammaH2AX foci, the formation and rejoining of DSBs were analyzed in organs representative of both early-responding (small intestine) and late-responding tissues (lung, kidney, and heart). Results: In repair-deficient SCID{sup -/-} and ATM{sup -/-}homozygous mice, large proportions of radiation-induced DSBs remained unrepaired after each fraction, leading to the pronounced accumulation of residual DNA damage after fractionated irradiation, similarly visible in early- and late-responding tissues. The slight DSB repair impairment of ATM{sup +/-}heterozygous mice was not detectable after single-dose irradiation but resulted in a significant increase in unrepaired DSBs during the fractionated irradiation scheme. Conclusions: Radiation-induced DSBs accumulate similarly in acute- and late-responding tissues during fractionated irradiation, whereas the whole extent of residual DNA damage depends decisively on the underlying genetically defined DSB repair capacity. Moreover, our data indicate that even minor impairments in DSB repair lead to exceeding DNA damage accumulation during fractionated irradiation and thus may have a significant impact on normal

  9. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells

    PubMed Central

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-01-01

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo. PMID:26114388

  10. Analysis of DNA double-strand break response and chromatin structure in mitosis using laser microirradiation

    PubMed Central

    Gomez-Godinez, Veronica; Wu, Tao; Sherman, Adria J.; Lee, Christopher S.; Liaw, Lih-Huei; Zhongsheng, You; Yokomori, Kyoko; Berns, Michael W.

    2010-01-01

    In this study the femtosecond near-IR and nanosecond green lasers are used to induce alterations in mitotic chromosomes. The subsequent double-strand break responses are studied. We show that both lasers are capable of creating comparable chromosomal alterations and that a phase paling observed within 1–2 s of laser exposure is associated with an alteration of chromatin as confirmed by serial section electron microscopy, DAPI, γH2AX and phospho-H3 staining. Additionally, the accumulation of dark material observed using phase contrast light microscopy (indicative of a change in refractive index of the chromatin) ∼34 s post-laser exposure corresponds spatially to the accumulation of Nbs1, Ku and ubiquitin. This study demonstrates that chromosomes selectively altered in mitosis initiate the DNA damage response within 30 s and that the accumulation of proteins are visually represented by phase-dark material at the irradiation site, allowing us to determine the fate of the damage as cells enter G1. These results occur with two widely different laser systems, making this approach to study DNA damage responses in the mitotic phase generally available to many different labs. Additionally, we present a summary of most of the published laser studies on chromosomes in order to provide a general guide of the lasers and operating parameters used by other laboratories. PMID:20923785

  11. REV7 counteracts DNA double-strand break resection and impacts PARP inhibition

    PubMed Central

    Xu, Guotai; Yuan, Jingsong; Mistrik, Martin; Bouwman, Peter; Bartkova, Jirina; Gogola, Ewa; Warmerdam, Daniël; Barazas, Marco; Jaspers, Janneke E.; Watanabe, Kenji; Pieterse, Mark; Kersbergen, Ariena; Sol, Wendy; Celie, Patrick H. N.; Schouten, Philip C.; van den Broek, Bram; Salman, Ahmed; Nieuwland, Marja; de Rink, Iris; de Ronde, Jorma; Jalink, Kees; Boulton, Simon J.; Chen, Junjie; van Gent, Dik C.; Bartek, Jiri; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2015-01-01

    Summary Error-free repair of DNA double-strand breaks (DSB) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway1. In the absence of BRCA1-mediated HR, administration of PARP inhibitors induces synthetic lethality of tumor cells of patients with breast or ovarian cancers2,3. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration4. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases5. In particular, little is known about BRCA1-independent restoration of HR. Here, we show that loss of REV7 (also known as MAD2L2) re-establishes CtIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and appears to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance6. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining (NHEJ) during immunoglobulin class switch recombination. Our results reveal an unexpected critical function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells. PMID:25799992

  12. Ferulic acid inhibits gamma radiation-induced DNA strand breaks and enhances the survival of mice.

    PubMed

    Maurya, Dharmendra Kumar; Devasagayam, Thomas Paul Asir

    2013-02-01

    Ferulic acid (FA) is a monophenolic phenylpropanoid occurring in plant products such as rice bran, green tea, and coffee beans. It has been shown to have significant antioxidant effects in many studies. In the present study, we show that intraperitoneal administration of FA at a dose of 50 mg/kg body weight 1 hour prior to or immediately after whole-body γ-irradiation of mice with 4 Gy results in considerable reduction in the micronuclei formation in peripheral blood reticulocytes. Administration of the same amount of FA immediately after 4 Gy γ-irradiation showed significant decrease in the amount of DNA strand breaks in murine peripheral blood leukocytes and bone marrow cells as examined by comet assay. Further, immunostaining of mouse splenic lymphocytes for phspho-γH2AX was carried out, and it was observed that FA inhibits the γH2AX foci formation. Finally, the survival of mice upon 6, 8, and 10 Gy γ-ray exposure was monitored. FA enhances the survival of mice by a factor of 2.5 at a dose of 6 Gy γ-radiation but not at higher doses. In conclusion, FA has protective potential in both pre- and postirradiation exposure scenarios and enhances the survival of mice possibly by decreasing DNA damage as examined by γH2AX foci, micronuclei formation, and comet assay.

  13. Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation.

    PubMed

    Pickering, M T; Kowalik, T F

    2006-02-02

    Although it is unclear which cellular factor(s) is responsible for the genetic instability associated with initiating and sustaining cell transformation, it is known that many cancers have mutations that inactivate the Rb-mediated proliferation pathway. We show here that pRb inactivation and the resultant deregulation of one E2F family member, E2F1, leads to DNA double-strand break (DSB) accumulation in normal diploid human cells. These DSBs occur independent of Atm, p53, caspases, reactive oxygen species, and apoptosis. Moreover, E2F1 does not contribute to c-Myc-associated DSBs, indicating that the DSBs associated with these oncoproteins arise through distinct pathways. We also find E2F1-associated DSBs in an Rb mutated cancer cell line in the absence of an exogenous DSB stimulus. These basal, E2F1-associated DSBs are not observed in a p16(ink4a) inactivated cancer cell line that retains functional pRb, unless pRb is depleted. Thus, Rb status is key to regulating both the proliferation promoting functions associated with E2F and for preventing DNA damage accumulation if E2F1 becomes deregulated. Taken together, these data suggest that loss of Rb creates strong selective pressure, via DSB accumulation, for inactivating p53 mutations and that E2F1 contributes to the genetic instability associated with transformation and tumorigenesis.

  14. DNA double-strand breaks induced along the trajectory of particles

    NASA Astrophysics Data System (ADS)

    Cho, I. C.; Niu, H.; Chen, C. H.; Yu, Y. C.; Hsu, C. H.

    2011-12-01

    It is well-known that the DNA damage caused by charged particles considerably differs from damage due to electromagnetic radiation. In the case of irradiation by charged particles the DNA lesions are more complex and clustered. Such clustered damage is presumed difficult to be repaired, and is potentially lethal. In this study, we utilize a 90°-scattering system and related imaging techniques to investigate the accumulation of γ-H2AX along the trajectory of charged particles. By immunostaining the γ-H2AX protein, optical images of corresponding double strand breaks were observed using a high resolution confocal microscope. We demonstrate the difference in the accumulation of γ-H2AX from irradiation by 1 MeV protons and that of 150 keV X-rays. The acquired images were arranged and reconstructed into a 3D image using ImageJ software. We discovered that the γ-H2AX foci, following irradiation by protons, have a tendency to extend in the beam direction, while those from X-ray irradiation tend to be smaller and more randomly distributed. These results can be explained by the physical model of energy deposition.

  15. The COP9 signalosome is vital for timely repair of DNA double-strand breaks

    PubMed Central

    Meir, Michal; Galanty, Yaron; Kashani, Lior; Blank, Michael; Khosravi, Rami; Fernández-Ávila, María Jesús; Cruz-García, Andrés; Star, Ayelet; Shochot, Lea; Thomas, Yann; Garrett, Lisa J.; Chamovitz, Daniel A.; Bodine, David M.; Kurz, Thimo; Huertas, Pablo; Ziv, Yael; Shiloh, Yosef

    2015-01-01

    The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection—the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability. PMID:25855810

  16. DNA repair by thiols in air shows two radicals make a double-strand break

    SciTech Connect

    Milligan, J.R.; Ng J.Y.Y.; Wu, C.C.L.

    1995-09-01

    Using agarose gel electrophoresis, we have measured the yields of DNA single- and double-strand breaks (SSBs and DSBs) for plasmid DNA {gamma}-irradiated in aerobic aqueous solution. The presence during irradiation of either of the thiols cysteamine or N-(2-thioethyl)-1,3-diaminopropane (WR-1065) resulted in a concentration-dependent decrease in the yield of SSBs and a much greater decrease in the yield of DSBs. This large differential protective effect was not produced by thioethers or an alcohol of structural similarity to the two thiols, suggesting that repair of DSB radical precursors by thiols is more efficient than for SSB precursors. These observations suggest the existence of a diradical intermediate in the formation of DSBs. The results argue against a major contribution by a single radical mechanism involving interstrand radical transfer via hydrogen abstraction by a peroxyl intermediate, since the half-life of this radical transfer reaction appears to be significantly greater than the lifetime of the intermediate. 35 refs., 7 figs.

  17. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene.

    PubMed

    Furukawa, Tomoyuki; Angelis, Karel J; Britt, Anne B

    2015-01-01

    The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway.

  18. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene

    PubMed Central

    Furukawa, Tomoyuki; Angelis, Karel J.; Britt, Anne B.

    2015-01-01

    The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway. PMID:26074930

  19. Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages*

    PubMed Central

    Cannan, Wendy J.; Tsang, Betty P.; Wallace, Susan S.; Pederson, David S.

    2014-01-01

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. PMID:24891506

  20. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment.

    PubMed

    van Oorschot, Bregje; Granata, Giovanna; Di Franco, Simone; Ten Cate, Rosemarie; Rodermond, Hans M; Todaro, Matilde; Medema, Jan Paul; Franken, Nicolaas A P

    2016-10-04

    Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation.The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found.In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.

  1. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment

    PubMed Central

    van Oorschot, Bregje; Granata, Giovanna; Di Franco, Simone; Cate, Rosemarie ten; Rodermond, Hans M.; Todaro, Matilde; Medema, Jan Paul; Franken, Nicolaas A.P.

    2016-01-01

    Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation. The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found. In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome. PMID:27602767

  2. Boric Acid Reduces the Formation of DNA Double Strand Breaks and Accelerates Wound Healing Process.

    PubMed

    Tepedelen, Burcu Erbaykent; Soya, Elif; Korkmaz, Mehmet

    2016-12-01

    Boron is absorbed by the digestive and respiratory system, and it was considered that it is converted to boric acid (BA), which was distributed to all tissues above 90 %. The biochemical essentiality of boron element is caused by boric acid because it affects the activity of several enzymes involved in the metabolism. DNA damage repair mechanisms and oxidative stress regulation is quite important in the transition stage from normal to cancerous cells; thus, this study was conducted to investigate the protective effect of boric acid on DNA damage and wound healing in human epithelial cell line. For this purpose, the amount of DNA damage occurred with irinotecan (CPT-11), etoposide (ETP), doxorubicin (Doxo), and H2O2 was determined by immunofluorescence through phosphorylation of H2AX((Ser139)) and pATM((Ser1981)) in the absence and presence of BA. Moreover, the effect of BA on wound healing has been investigated in epithelial cells treated with these agents. Our results demonstrated that H2AX((Ser139)) foci numbers were significantly decreased in the presence of BA while wound healing was accelerated by BA compared to that in the control and only drug-treated cells. Eventually, the results indicate that BA reduced the formation of DNA double strand breaks caused by agents as well as improving the wound healing process. Therefore, we suggest that boric acid has important therapeutical effectiveness and may be used in the treatment of inflammatory diseases where oxidative stress and wound healing process plays an important role.

  3. Non-random distribution of DNA double-strand breaks induced by particle irradiation

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Cooper, P. K.; Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Induction of DNA double-strand breaks (dsbs) in mammalian cells is dependent on the spatial distribution of energy deposition from the ionizing radiation. For high LET particle radiations the primary ionization sites occur in a correlated manner along the track of the particles, while for X-rays these sites are much more randomly distributed throughout the volume of the cell. It can therefore be expected that the distribution of dsbs linearly along the DNA molecule also varies with the type of radiation and the ionization density. Using pulsed-field gel and conventional gel techniques, we measured the size distribution of DNA molecules from irradiated human fibroblasts in the total range of 0.1 kbp-10 Mbp for X-rays and high LET particles (N ions, 97 keV/microns and Fe ions, 150 keV/microns). On a mega base pair scale we applied conventional pulsed-field gel electrophoresis techniques such as measurement of the fraction of DNA released from the well (FAR) and measurement of breakage within a specific NotI restriction fragment (hybridization assay). The induction rate for widely spaced breaks was found to decrease with LET. However, when the entire distribution of radiation-induced fragments was analysed, we detected an excess of fragments with sizes below about 200 kbp for the particles compared with X-irradiation. X-rays are thus more effective than high LET radiations in producing large DNA fragments but less effective in the production of smaller fragments. We determined the total induction rate of dsbs for the three radiations based on a quantitative analysis of all the measured radiation-induced fragments and found that the high LET particles were more efficient than X-rays at inducing dsbs, indicating an increasing total efficiency with LET. Conventional assays that are based only on the measurement of large fragments are therefore misleading when determining total dsb induction rates of high LET particles. The possible biological significance of this non

  4. Synergistic cytotoxicity and DNA strand breaks in cells and plasmid DNA exposed to uranyl acetate and ultraviolet radiation.

    PubMed

    Wilson, Janice; Zuniga, Mary C; Yazzie, Filbert; Stearns, Diane M

    2015-04-01

    Depleted uranium (DU) has a chemical toxicity that is independent of its radioactivity. The purpose of this study was to explore the photoactivation of uranyl ion by ultraviolet (UV) radiation as a chemical mechanism of uranium genotoxicity. The ability of UVB (302 nm) and UVA (368 nm) radiation to photoactivate uranyl ion to produce single strand breaks was measured in pBR322 plasmid DNA, and the presence of adducts and apurinic/apyrimidinic sites that could be converted to single strand breaks by heat and piperidine was analyzed. Results showed that DNA lesions in plasmid DNA exposed to UVB- or UVA-activated DU were only slightly heat reactive, but were piperidine sensitive. The cytotoxicity of UVB-activated uranyl ion was measured in repair-proficient and repair-deficient Chinese hamster ovary cells and human keratinocyte HaCaT cells. The cytotoxicity of co-exposures of uranyl ion and UVB radiation was dependent on the order of exposure and was greater than co-exposures of arsenite and UVB radiation. Uranyl ion and UVB radiation were synergistically cytotoxic in cells, and cells exposed to photoactivated DU required different DNA repair pathways than cells exposed to non-photoactivated DU. This study contributes to our understanding of the DNA lesions formed by DU, as well as their repair. Results suggest that excitation of uranyl ion by UV radiation can provide a pathway for uranyl ion to be chemically genotoxic in populations with dermal exposures to uranium and UV radiation, which would make skin an overlooked target organ for uranium exposures.

  5. Synergistic cytotoxicity and DNA strand breaks in cells and plasmid DNA exposed to uranyl acetate and ultraviolet radiation

    PubMed Central

    Wilson, Janice; Zuniga, Mary C.; Yazzie, Filbert; Stearns, Diane M.

    2015-01-01

    Depleted uranium (DU) has a chemical toxicity that is independent of its radioactivity. The purpose of this study was to explore the photoactivation of uranyl ion by ultraviolet (UV) radiation as a chemical mechanism of uranium genotoxicity. The ability of UVB (302 nm) and UVA (368 nm) radiation to photoactivate uranyl ion to produce single strand breaks was measured in pBR322 plasmid DNA, and the presence of adducts and apurinic/apyrimidinic sites that could be converted to single strand breaks by heat and piperidine was analyzed. Results showed that DNA lesions in plasmid DNA exposed to UVB- or UVA-activated DU were only slightly heat reactive, but were piperidine sensitive. The cytotoxicity of UVB-activated uranyl ion was measured in repair-proficient and repair-deficient Chinese hamster ovary cells and human keratinocyte HaCaT cells. The cytotoxicity of co-exposures of uranyl ion and UVB radiation was dependent on the order of exposure and was greater than co-exposures of arsenite and UVB radiation. Uranyl ion and UVB radiation were synergistically cytotoxic in cells, and cells exposed to photoactivated DU required different DNA repair pathways than cells exposed to non-photoactivated DU. This study contributes to our understanding of the DNA lesions formed by DU, as well as their repair. Results suggest that excitation of uranyl ion by UV radiation can provide a pathway for uranyl ion to be chemically genotoxic in populations with dermal exposures to uranium and UV radiation, which would make skin an overlooked target organ for uranium exposures. PMID:24832689

  6. Non-histone chromosomal proteins HMG1 and 2 enhance ligation reaction of DNA double-strand breaks.

    PubMed

    Nagaki, S; Yamamoto, M; Yumoto, Y; Shirakawa, H; Yoshida, M; Teraoka, H

    1998-05-08

    DNA ligase IV in a complex with XRCC4 is responsible for DNA end-joining in repair of DNA double-strand breaks (DSB) and V(D)J recombination. We found that non-histone chromosomal high mobility group (HMG) proteins 1 and 2 enhanced the ligation of linearized pUC119 DNA with DNA ligase IV from rat liver nuclear extract. Intra-molecular and inter-molecular ligations of cohesive-ended and blunt-ended DNA were markedly stimulated by HMG1 and 2. Recombinant HMG2-domain A, B, and (A + B) polypeptides were similarly, but non-identically, effective for the stimulation of DSB ligation reaction. Ligation of single-strand breaks (nicks) was only slightly activated by the HMG proteins. The DNA end-binding Ku protein singly or in combination with the catalytic component of DNA-dependent protein kinase (DNA-PK) as the DNA-PK holoenzyme was ineffective for the ligation of linearized pUC119 DNA. Although the stimulatory effect of HMG1 and 2 on ligation of DSB in vitro was not specific to DNA ligase IV, these results suggest that HMG1 and 2 are involved in the final ligation step in DNA end-joining processes of DSB repair and V(D)J recombination.

  7. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation.

    PubMed

    Lai, H; Singh, N P

    1996-04-01

    We investigated the effects of acute (2-h) exposure to pulsed (2-micros pulse width, 500 pulses s(-1)) and continuous wave 2450-MHz radiofrequency electromagnetic radiation on DNA strand breaks in brain cells of rat. The spatial averaged power density of the radiation was 2mW/cm2, which produced a whole-body average-specific absorption rate of 1.2W/kg. Single- and double-strand DNA breaks in individual brain cells were measured at 4h post-exposure using a microgel electrophoresis assay. An increase in both types of DNA strand breaks was observed after exposure to either the pulsed or continuous-wave radiation, No significant difference was observed between the effects of the two forms of radiation. We speculate that these effects could result from a direct effect of radiofrequency electromagnetic energy on DNA molecules and/or impairment of DNA-damage repair mechanisms in brain cells. Our data further support the results of earlier in vitro and in vivo studies showing effects of radiofrequency electromagnetic radiation on DNA.

  8. Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection.

    PubMed

    Chen, Xuefeng; Niu, Hengyao; Yu, Yang; Wang, Jingjing; Zhu, Shuangyi; Zhou, Jianjie; Papusha, Alma; Cui, Dandan; Pan, Xuewen; Kwon, Youngho; Sung, Patrick; Ira, Grzegorz

    2016-04-07

    DNA double-strand breaks (DSBs) are one of the most cytotoxic types of DNA lesion challenging genome integrity. The activity of cyclin-dependent kinase Cdk1 is essential for DSB repair by homologous recombination and for DNA damage signaling. Here we identify the Fun30 chromatin remodeler as a new target of Cdk1. Fun30 is phosphorylated by Cdk1 on Serine 28 to stimulate its functions in DNA damage response including resection of DSB ends. Importantly, Cdk1-dependent phosphorylation of Fun30-S28 increases upon DNA damage and requires the recruitment of Fun30 to DSBs, suggesting that phosphorylation increases in situ at the DNA damage. Consistently, we find that Cdk1 and multiple cyclins become highly enriched at DSBs and that the recruitment of Cdk1 and cyclins Clb2 and Clb5 ensures optimal Fun30 phosphorylation and checkpoint activation. We propose that the enrichment of Cdk1-cyclin complexes at DSBs serves as a mechanism for enhanced targeting and modulating of the activity of DNA damage response proteins.

  9. Carboplatin enhances the production and persistence of radiation-induced DNA single-strand breaks

    SciTech Connect

    Yang, L.; Douple, E.B.; O`Hara, J.A.; Wang, H.J.

    1995-09-01

    Fluorometric analysis of DNA unwinding and alkaline elution were used to investigate the production and persistence of DNA single-strand breaks (SSBs) in Chinese hamster V79 and xrs-5 cells treated with the chemotherapeutic agent carboplatin in combination with radiation. Carboplatin was administered to cells before irradiation in hypoxic conditions, or the drug was added immediately after irradiation during the postirradiation recovery period in air. The results of DNA unwinding studies suggest that carboplatin enhances the production of radiation-induced SSBs in hypoxic V79 cells and xrs-5 cells by a factor of 1.86 and 1.83, respectively, when combined with radiation compared to the SSBs produced by irradiation alone. Carboplatin alone did not produce a measureable number of SSBs. Alkaline elution profiles also indicated that the rate of elution of SSBs was higher in cells treated with the carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs by a factor of 1.46 in V79 cells with 20 Gy irradiation and by a factor of 2.02 in xrs-5 cells with 20 Gy irradiation. When carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs is inhibited during this postirradiation incubation period (radiopotentiation) with a relative inhibition factor at 1 h postirradiation of 1.25 in V79 cells and 1.15 in xrs-5 cells. An increased production and persistence of SSBs resulting from the interaction of carboplatin with radiation may be an important step in the mechanism responsible for the potentiated cell killing previously from studies in animal tumors and in cultured cells. 31 refs., 7 figs.

  10. A DNA double-strand break kinetic rejoining model based on the local effect model.

    PubMed

    Tommasino, F; Friedrich, T; Scholz, U; Taucher-Scholz, G; Durante, M; Scholz, M

    2013-11-01

    We report here on a DNA double-strand break (DSB) kinetic rejoining model applicable to a wide range of radiation qualities based on the DNA damage pattern predicted by the local effect model (LEM). In the LEM this pattern is derived from the SSB and DSB yields after photon irradiation in combination with an amorphous track structure approach. Together with the assumption of a giant-loop organization to describe the higher order chromatin structure this allows the definition of two different classes of DSB. These classes are defined by the level of clustering on a micrometer scale, i.e., "isolated DSB" (iDSB) are characterized by a single DSB in a giant loop and "clustered DSB" (cDSB) by two or more DSB in a loop. Clustered DSB are assumed to represent a more difficult challenge for the cell repair machinery compared to isolated DSB, and we thus hypothesize here that the fraction of isolated DSB can be identified with the fast component of rejoining, whereas clustered DSB are identified with the slow component of rejoining. The resulting predicted bi-exponential decay functions nicely reproduce the experimental curves of DSB rejoining over time obtained by means of gel electrophoresis elution techniques as reported by different labs, involving different cell types and a wide spectrum of radiation qualities. New experimental data are also presented aimed at investigating the effects of the same ion species accelerated at different energies. The results presented here further support the relevance of the proposed two classes of DSB as a basis for understanding cell response to ion irradiation. Importantly the density of DSB within DNA giant loops of around 2 Mbp size, i.e., on a micrometer scale, is identified as a key parameter for the description of radiation effectiveness.

  11. Chromatin modification and NBS1: their relationship in DNA double-strand break repair.

    PubMed

    Saito, Yuichiro; Zhou, Hui; Kobayashi, Junya

    2016-01-01

    The importance of chromatin modification, including histone modification and chromatin remodeling, for DNA double-strand break (DSB) repair, as well as transcription and replication, has been elucidated. Phosphorylation of H2AX to γ-H2AX is one of the first responses following DSB detection, and this histone modification is important for the DSB damage response by triggering several events, including the accumulation of DNA damage response-related proteins and subsequent homologous recombination (HR) repair. The roles of other histone modifications such as acetylation, methylation and ubiquitination have also been recently clarified, particularly in the context of HR repair. NBS1 is a multifunctional protein that is involved in various DNA damage responses. Its recently identified binding partner RNF20 is an E3 ubiquitin ligase that facilitates the monoubiquitination of histone H2B, a process that is crucial for recruitment of the chromatin remodeler SNF2h to DSB damage sites. Evidence suggests that SNF2h functions in HR repair, probably through regulation of end-resection. Moreover, several recent reports have indicated that SNF2h can function in HR repair pathways as a histone remodeler and that other known histone remodelers can also participate in DSB damage responses. On the other hand, information about the roles of such chromatin modifications and NBS1 in non-homologous end joining (NHEJ) repair of DSBs and stalled fork-related damage responses is very limited; therefore, these aspects and processes need to be further studied to advance our understanding of the mechanisms and molecular players involved.

  12. BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1.

    PubMed

    Ge, Chunmin; Che, Lixiao; Ren, Jinyu; Pandita, Raj K; Lu, Jing; Li, Kaiyi; Pandita, Tej K; Du, Chunying

    2015-03-17

    The DNA damage response (DDR) is crucial for genomic integrity. BRIT1 (breast cancer susceptibility gene C terminus-repeat inhibitor of human telomerase repeat transcriptase expression), a tumor suppressor and early DDR factor, is recruited to DNA double-strand breaks (DSBs) by phosphorylated H2A histone family, member X (γ-H2AX), where it promotes chromatin relaxation by recruiting the switch/sucrose nonfermentable (SWI-SNF) chromatin remodeler to facilitate DDR. However, regulation of BRIT1 recruitment is not fully understood. The baculovirus IAP repeat (BIR)-containing ubiquitin-conjugating enzyme (BRUCE) is an inhibitor of apoptosis protein (IAP). Here, we report a non-IAP function of BRUCE in the regulation of the BRIT1-SWI-SNF DSB-response pathway and genomic stability. We demonstrate that BRIT1 is K63 ubiquitinated in unstimulated cells and that deubiquitination of BRIT1 is a prerequisite for its recruitment to DSB sites by γ-H2AX. We show mechanistically that BRUCE acts as a scaffold, bridging the ubiquitin-specific peptidase 8 (USP8) and BRIT1 in a complex to coordinate USP8-catalyzed deubiquitination of BRIT1. Loss of BRUCE or USP8 impairs BRIT1 deubiquitination, BRIT1 binding with γ-H2AX, the formation of BRIT1 DNA damage foci, and chromatin relaxation. Moreover, BRUCE-depleted cells display reduced homologous recombination repair, and BRUCE-mutant mice exhibit repair defects and genomic instability. These findings identify BRUCE and USP8 as two hitherto uncharacterized critical DDR regulators and uncover a deubiquitination regulation of BRIT1 assembly at damaged chromatin for efficient DDR and genomic stability.

  13. Heavy ion-induced lesions in DNA: A theoretical model for the initial induction of DNA strand breaks and chromatin breaks

    SciTech Connect

    Schmidt, J.B.

    1993-01-01

    A theoretical model has been developed and used to calculate yields and spatial distributions of DNA strand breaks resulting from the interactions of heavy ions with chromatin in aqueous systems. The three dimensional spatial distribution of ionizing events has been modeled for charged particles as a function of charge and velocity. Chromatin has been modeled as a 30 nm diameter solenoid of nucleosomal DNA. The Monte Carlo methods used by Chatterjee et al. have been applied to DNA in a chromatin conformation. Refinements to their methods include: a combined treatment of primary and low energy (<2 keV) secondary electron interactions, an improved low energy delta ray model, and the combined simulation of direct energy deposition on the DNA and attack by diffusing hydroxyl radicals. Individual particle tracks are treated independently, which is assumed to be applicable to low fluence irradiations in which multiple particle effects are negligible. Single strand break cross section [open quotes]hooks[close quotes] seen in experiments at very high LET appear to be due to the collapsing radial extent of the track, as predicted in the [open quotes]deep sieve[close quotes] hypothesis proposed by Tobias et al. Spatial distributions of lesions produced by particles have been found to depend on chromatin structure. In the future, heavy ions may be used as a tool to probe the organization of DNA in chromatin. A Neyman A-binomial variation of the [open quotes]cluster model[close quotes] for the distribution of chromatin breaks per irradiated cell has been theoretically tested. The model includes a treatment of the chromatin fragment detection technique's resolution, which places a limitation on the minimum size of fragments which can be detected. The model appears to fit some of the experimental data reasonably well. However, further experimental and theoretical refinements are desirable.

  14. Mutator Phenotype and DNA Double-Strand Break Repair in BLM Helicase-Deficient Human Cells

    PubMed Central

    Suzuki, Tetsuya; Yasui, Manabu

    2016-01-01

    Bloom syndrome (BS), an autosomal recessive disorder of the BLM gene, predisposes sufferers to various cancers. To investigate the mutator phenotype and genetic consequences of DNA double-strand breaks (DSBs) in BS cells, we developed BLM helicase-deficient human cells by disrupting the BLM gene. Cells with a loss of heterozygosity (LOH) due to homologous recombination (HR) or nonhomologous end joining (NHEJ) can be restored with or without site-directed DSB induction. BLM cells exhibited a high frequency of spontaneous interallelic HR with crossover, but noncrossover events with long-tract gene conversions also occurred. Despite the highly interallelic HR events, BLM cells predominantly produced hemizygous LOH by spontaneous deletion. These phenotypes manifested during repair of DSBs. Both NHEJ and HR appropriately repaired DSBs in BLM cells, resulting in hemizygous and homozygous LOHs, respectively. However, the magnitude of the LOH was exacerbated in BLM cells, as evidenced by large deletions and long-tract gene conversions with crossover. BLM helicase suppresses the elongation of branch migration and crossover of double Holliday junctions (HJs) during HR repair, and a deficiency in this enzyme causes collapse, abnormal elongation, and/or preferable resolution to crossover of double HJs, resulting in a large-scale LOH. This mechanism underlies the predisposition for cancer in BS. PMID:27601585

  15. How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability.

    PubMed

    Jeggo, Penny A; Löbrich, Markus

    2015-10-01

    DNA DSBs (double-strand breaks) are a significant threat to the viability of a normal cell, since they can result in loss of genetic material if mitosis or replication is attempted in their presence. Consequently, evolutionary pressure has resulted in multiple pathways and responses to enable DSBs to be repaired efficiently and faithfully. Cancer cells, which are under pressure to gain genomic instability, have a striking ability to avoid the elegant mechanisms by which normal cells maintain genomic stability. Current models suggest that, in normal cells, DSB repair occurs in a hierarchical manner that promotes rapid and efficient rejoining first, with the utilization of additional steps or pathways of diminished accuracy if rejoining is unsuccessful or delayed. In the present review, we evaluate the fidelity of DSB repair pathways and discuss how cancer cells promote the utilization of less accurate processes. Homologous recombination serves to promote accuracy and stability during replication, providing a battlefield for cancer to gain instability. Non-homologous end-joining, a major DSB repair pathway in mammalian cells, usually operates with high fidelity and only switches to less faithful modes if timely repair fails. The transition step is finely tuned and provides another point of attack during tumour progression. In addition to DSB repair, a DSB signalling response activates processes such as cell cycle checkpoint arrest, which enhance the possibility of accurate DSB repair. We consider the ways by which cancers modify and hijack these processes to gain genomic instability.

  16. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL.

    PubMed

    di Masi, A; Cilli, D; Berardinelli, F; Talarico, A; Pallavicini, I; Pennisi, R; Leone, S; Antoccia, A; Noguera, N I; Lo-Coco, F; Ascenzi, P; Minucci, S; Nervi, C

    2016-07-28

    Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis.

  17. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells

    NASA Astrophysics Data System (ADS)

    Cveticanin, Jelena; Joksic, Gordana; Leskovac, Andreja; Petrovic, Sandra; Valenta Sobot, Ana; Neskovic, Olivera

    2010-01-01

    Carbon nanotubes are unique one-dimensional macromolecules with promising applications in biology and medicine. Since their toxicity is still under debate, here we present a study investigating the genotoxic properties of purified single wall carbon nanotubes (SWCNTs), multiwall carbon nanotubes (MWCNTs), and amide functionalized purified SWCNTs on cultured human lymphocytes employing cytokinesis block micronucleus assay and enumeration of γH2AX foci as a measure of double strand breaks (DSBs) of the DNA in normal human fibroblasts. SWCNTs induce micronuclei (MN) formation in lymphocytes and decrease the proliferation potential (CBPI) of cells. In a fibroblast cell line the same dose of SWCNTs induces γH2AX foci 2.7-fold higher than in a control. Amide functionalized purified SWCNTs behave differently: they do not disturb the cell proliferation potential of harvested lymphocytes, but induce micronuclei to a higher extent than SWCNTs. When applied on fibroblasts, amide functionalized SWCNTs also induce γH2AX foci, 3.18-fold higher than the control. The cellular effects of MWCNTs display the broad spectrum of clastogenic properties seen as the highest incidence of induced lymphocyte micronuclei and anaphase bridges among nuclei in binucleated cells. Surprisingly, the incidence of induced γH2AX foci was not as high as was expected by the micronucleus test, which indicates that MWCNTs act as clastogen and aneugen agents simultaneously. Biological endpoints investigated in this study indicate a close relationship between the electrochemical properties of carbon nanotubes and observed genotoxicity.

  18. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL

    PubMed Central

    di Masi, A; Cilli, D; Berardinelli, F; Talarico, A; Pallavicini, I; Pennisi, R; Leone, S; Antoccia, A; Noguera, N I; Lo-Coco, F; Ascenzi, P; Minucci, S; Nervi, C

    2016-01-01

    Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis. PMID:27468685

  19. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.

    PubMed

    Frock, Richard L; Hu, Jiazhi; Meyers, Robin M; Ho, Yu-Jui; Kii, Erina; Alt, Frederick W

    2015-02-01

    Although great progress has been made in the characterization of the off-target effects of engineered nucleases, sensitive and unbiased genome-wide methods for the detection of off-target cleavage events and potential collateral damage are still lacking. Here we describe a linear amplification-mediated modification of a previously published high-throughput, genome-wide, translocation sequencing (HTGTS) method that robustly detects DNA double-stranded breaks (DSBs) generated by engineered nucleases across the human genome based on their translocation to other endogenous or ectopic DSBs. HTGTS with different Cas9:sgRNA or TALEN nucleases revealed off-target hotspot numbers for given nucleases that ranged from a few or none to dozens or more, and extended the number of known off-targets for certain previously characterized nucleases more than tenfold. We also identified translocations between bona fide nuclease targets on homologous chromosomes, an undesired collateral effect that has not been described previously. Finally, HTGTS confirmed that the Cas9D10A paired nickase approach suppresses off-target cleavage genome-wide.

  20. Modulation of Saccharomyces Cerevisiae DNA Double-Strand Break Repair by Srs2 and Rad51

    PubMed Central

    Milne, G. T.; Ho, T.; Weaver, D. T.

    1995-01-01

    RAD52 function is required for virtually all DNA double-strand break repair and recombination events in Saccharomyces cerevisiae. To gain greater insight into the mechanism of RAD52-mediated repair, we screened for genes that suppress partially active alleles of RAD52 when mutant or overexpressed. Described here is the isolation of a phenotypic null allele of SRS2 that suppressed multiple alleles of RAD52 (rad52B, rad52D, rad52-1 and KlRAD52) and RAD51 (KlRAD51) but failed to suppress either a rad52δ or a rad51δ. These results indicate that SRS2 antagonizes RAD51 and RAD52 function in recombinational repair. The mechanism of suppression of RAD52 alleles by srs2 is distinct from that which has been previously described for RAD51 overexpression, as both conditions were shown to act additively with respect to the rad52B allele. Furthermore, overexpression of either RAD52 or RAD51 enhanced the recombination-dependent sensitivity of an srs2δ RAD52 strain, suggesting that RAD52 and RAD51 positively influence recombinational repair mechanisms. Thus, RAD52-dependent recombinational repair is controlled both negatively and positively. PMID:7768432

  1. Meiotic chromosome synapsis in yeast can occur without spo11-induced DNA double-strand breaks.

    PubMed

    Bhuiyan, Hasanuzzaman; Schmekel, Karin

    2004-10-01

    Proper chromosome segregation and formation of viable gametes depend on synapsis and recombination between homologous chromosomes during meiosis. Previous reports have shown that the synaptic structures, the synaptonemal complexes (SCs), do not occur in yeast cells with the SPO11 gene removed. The Spo11 enzyme makes double-strand breaks (DSBs) in the DNA and thereby initiates recombination. The view has thus developed that synapsis in yeast strictly depends on the initiation of recombination. Synapsis in some other species (Drosophila melanogaster and Caenorhabditis elegans) is independent of recombination events, and SCs are found in spo11 mutants. This difference between species led us to reexamine spo11 deletion mutants of yeast. Using antibodies against Zip1, a SC component, we found that a small fraction (1%) of the spo11 null mutant cells can indeed form wild-type-like SCs. We further looked for synapsis in a spo11 mutant strain that accumulates pachytene cells (spo11Delta ndt80Delta), and found that the frequency of cells with apparently complete SC formation was 10%. Other phenotypic criteria, such as spore viability and homologous chromosome juxtaposition measured by FISH labeling of chromosomal markers, agree with several previous reports of the spo11 mutant. Our results demonstrate that although the Spo11-induced DSBs obviously promote synapsis in yeast, the presence of Spo11 is not an absolute requirement for synapsis.

  2. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells.

    PubMed

    Lai, H; Singh, N P

    1997-01-01

    Effects of in vivo microwave exposure on DNA strand breaks, a form of DNA damage, were investigated in rat brain cells. In previous research, we have found that acute (2 hours) exposure to pulsed (2 microseconds pulses, 500 pps) 2450-MHz radiofrequency electromagnetic radiation (RFR) (power density 2 mW/cm2, average whole body specific absorption rate 1.2 W/kg) caused an increase in DNA single- and double-strand breaks in brain cells of the rat when assayed 4 hours post exposure using a microgel electrophoresis assay. In the present study, we found that treatment of rats immediately before and after RFR exposure with either melatonin (1 mg/kg/injection, SC) or the spin-trap compound N-tert-butyl-alpha-phenylnitrone (PBN) (100 mg/kg/injection, i.p.) blocks this effects of RFR. Since both melatonin and PBN are efficient free radical scavengers it is hypothesized that free radicals are involved in RFR-induced DNA damage in the brain cells of rats. Since cumulated DNA strand breaks in brain cells can lead to neurodegenerative diseases and cancer and an excess of free radicals in cells has been suggested to be the cause of various human diseases, data from this study could have important implications for the health effects of RFR exposure.

  3. Effects of Breast Shielding during Heart Imaging on DNA Double-Strand-Break Levels: A Prospective Randomized Controlled Trial.

    PubMed

    Cheezum, Michael K; Redon, Christophe E; Burrell, Allison S; Kaviratne, Anthony S; Bindeman, Jody; Maeda, Daisuke; Balmakhtar, Houria; Pezel, Ashly; Wisniewski, Piotr; Delacruz, Panfilo; Nguyen, Binh; Bonner, William M; Villines, Todd C

    2016-10-01

    Purpose To examine the effect of breast shielding on blood lymphocyte deoxyribonucleic acid (DNA) double-strand-break levels resulting from in vivo radiation and ex vivo radiation at breast-tissue level, and the effect of breast shielding on image quality. Materials and Methods The study was approved by institutional review and commpliant with HIPAA guidelines. Adult women who underwent 64-section coronary computed tomographic (CT) angiography and who provided informed consent were prospectively randomized to the use (n = 50) or absence (n = 51) of bismuth breast shields. Peripheral blood samples were obtained before and 30 minutes after in vivo radiation during CT angiography to compare DNA double-strand-break levels by γ-H2AX immunofluorescence in blood lymphocytes. To estimate DNA double-strand-break induction at breast-tissue level, a blood sample was taped to the sternum for ex vivo radiation with or without shielding. Data were analyzed by linear regression and independent sample t tests. Results Breast shielding had no effect on DNA double-strand-break levels from ex vivo radiation of blood samples under shields at breast-tissue level (unadjusted regression: β = .08; P = .43 versus no shielding), or in vivo radiation of circulating lymphocytes (β = -.07; P = .50). Predictors of increased DNA double-strand-break levels included total radiation dose, increasing tube potential, and tube current (P < .05). With current radiation exposures (median, 3.4 mSv), breast shielding yielded a 33% increase in image noise and 19% decrease in the rate of excellent quality ratings. Conclusion Among women who underwent coronary CT angiography, breast shielding had no effect on DNA double-strand-break levels in blood lymphocytes exposed to in vivo radiation, or ex vivo radiation at breast-tissue level. At present relatively low radiation exposures, breast shielding contributed to an increase in image noise and a decline in image quality. The findings support efforts to

  4. Double strand break unwinding and resection by the mycobacterial helicase-nuclease AdnAB in the presence of single strand DNA-binding protein (SSB).

    PubMed

    Unciuleac, Mihaela-Carmen; Shuman, Stewart

    2010-11-05

    Mycobacterial AdnAB is a heterodimeric DNA helicase-nuclease and 3' to 5' DNA translocase implicated in the repair of double strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Inclusion of mycobacterial single strand DNA-binding protein (SSB) in reactions containing linear plasmid dsDNA allowed us to study the AdnAB helicase under conditions in which the unwound single strands are coated by SSB and thereby prevented from reannealing or promoting ongoing ATP hydrolysis. We found that the AdnAB motor catalyzed processive unwinding of 2.7-11.2-kbp linear duplex DNAs at a rate of ∼250 bp s(-1), while hydrolyzing ∼5 ATPs per bp unwound. Crippling the AdnA phosphohydrolase active site did not affect the rate of unwinding but lowered energy consumption slightly, to ∼4.2 ATPs bp(-1). Mutation of the AdnB phosphohydrolase abolished duplex unwinding, consistent with a model in which the "leading" AdnB motor propagates a Y-fork by translocation along the 3' DNA strand, ahead of the "lagging" AdnA motor domain. By tracking the resection of the 5' and 3' strands at the DSB ends, we illuminated a division of labor among the AdnA and AdnB nuclease modules during dsDNA unwinding, whereby the AdnA nuclease processes the unwound 5' strand to liberate a short oligonucleotide product, and the AdnB nuclease incises the 3' strand on which the motor translocates. These results extend our understanding of presynaptic DSB processing by AdnAB and engender instructive comparisons with the RecBCD and AddAB clades of bacterial helicase-nuclease machines.

  5. PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks.

    PubMed

    Krietsch, Jana; Caron, Marie-Christine; Gagné, Jean-Philippe; Ethier, Chantal; Vignard, Julien; Vincent, Michel; Rouleau, Michèle; Hendzel, Michael J; Poirier, Guy G; Masson, Jean-Yves

    2012-11-01

    After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood.

  6. Non-redundant Functions of ATM and DNA-PKcs in Response to DNA Double-Strand Breaks.

    PubMed

    Caron, Pierre; Choudjaye, Jonathan; Clouaire, Thomas; Bugler, Béatrix; Daburon, Virginie; Aguirrebengoa, Marion; Mangeat, Thomas; Iacovoni, Jason S; Álvarez-Quilón, Alejandro; Cortés-Ledesma, Felipe; Legube, Gaëlle

    2015-11-24

    DNA double-strand breaks (DSBs) elicit the so-called DNA damage response (DDR), largely relying on ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PKcs), two members of the PI3K-like kinase family, whose respective functions during the sequential steps of the DDR remains controversial. Using the DIvA system (DSB inducible via AsiSI) combined with high-resolution mapping and advanced microscopy, we uncovered that both ATM and DNA-PKcs spread in cis on a confined region surrounding DSBs, independently of the pathway used for repair. However, once recruited, these kinases exhibit non-overlapping functions on end joining and γH2AX domain establishment. More specifically, we found that ATM is required to ensure the association of multiple DSBs within "repair foci." Our results suggest that ATM acts not only on chromatin marks but also on higher-order chromatin organization to ensure repair accuracy and survival.

  7. Non-redundant Functions of ATM and DNA-PKcs in Response to DNA Double-Strand Breaks

    PubMed Central

    Caron, Pierre; Choudjaye, Jonathan; Clouaire, Thomas; Bugler, Béatrix; Daburon, Virginie; Aguirrebengoa, Marion; Mangeat, Thomas; Iacovoni, Jason S.; Álvarez-Quilón, Alejandro; Cortés-Ledesma, Felipe; Legube, Gaëlle

    2015-01-01

    Summary DNA double-strand breaks (DSBs) elicit the so-called DNA damage response (DDR), largely relying on ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PKcs), two members of the PI3K-like kinase family, whose respective functions during the sequential steps of the DDR remains controversial. Using the DIvA system (DSB inducible via AsiSI) combined with high-resolution mapping and advanced microscopy, we uncovered that both ATM and DNA-PKcs spread in cis on a confined region surrounding DSBs, independently of the pathway used for repair. However, once recruited, these kinases exhibit non-overlapping functions on end joining and γH2AX domain establishment. More specifically, we found that ATM is required to ensure the association of multiple DSBs within “repair foci.” Our results suggest that ATM acts not only on chromatin marks but also on higher-order chromatin organization to ensure repair accuracy and survival. PMID:26586426

  8. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting.

    PubMed

    Chung, Woo-Hyun; Zhu, Zhu; Papusha, Alma; Malkova, Anna; Ira, Grzegorz

    2010-05-13

    The formation of single-stranded DNA (ssDNA) at double-strand break (DSB) ends is essential in repair by homologous recombination and is mediated by DNA helicases and nucleases. Here we estimated the length of ssDNA generated during DSB repair and analyzed the consequences of elimination of processive resection pathways mediated by Sgs1 helicase and Exo1 nuclease on DSB repair fidelity. In wild-type cells during allelic gene conversion, an average of 2-4 kb of ssDNA accumulates at each side of the break. Longer ssDNA is formed during ectopic recombination or break-induced replication (BIR), reflecting much slower repair kinetics. This relatively extensive resection may help determine sequences involved in homology search and prevent recombination within short DNA repeats next to the break. In sgs1Delta exo1Delta mutants that form only very short ssDNA, allelic gene conversion decreases 5-fold and DSBs are repaired by BIR or de novo telomere formation resulting in loss of heterozygosity. The absence of the telomerase inhibitor, PIF1, increases de novo telomere pathway usage to about 50%. Accumulation of Cdc13, a protein recruiting telomerase, at the break site increases in sgs1Delta exo1Delta, and the requirement of the Ku complex for new telomere formation is partially bypassed. In contrast to this decreased and alternative DSB repair, the efficiency and accuracy of gene targeting increases dramatically in sgs1Delta exo1Delta cells, suggesting that transformed DNA is very stable in these mutants. Altogether these data establish a new role for processive resection in the fidelity of DSB repair.

  9. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair.

    PubMed

    Davis, Luther; Maizels, Nancy

    2014-03-11

    DNA nicks are the most common form of DNA damage, and if unrepaired can give rise to genomic instability. In human cells, nicks are efficiently repaired via the single-strand break repair pathway, but relatively little is known about the fate of nicks not processed by that pathway. Here we show that homology-directed repair (HDR) at nicks occurs via a mechanism distinct from HDR at double-strand breaks (DSBs). HDR at nicks, but not DSBs, is associated with transcription and is eightfold more efficient at a nick on the transcribed strand than at a nick on the nontranscribed strand. HDR at nicks can proceed by a pathway dependent upon canonical HDR factors RAD51 and BRCA2; or by an efficient alternative pathway that uses either ssDNA or nicked dsDNA donors and that is strongly inhibited by RAD51 and BRCA2. Nicks generated by either I-AniI or the CRISPR/Cas9(D10A) nickase are repaired by the alternative HDR pathway with little accompanying mutagenic end-joining, so this pathway may be usefully applied to genome engineering. These results suggest that alternative HDR at nicks may be stimulated in physiological contexts in which canonical RAD51/BRCA2-dependent HDR is compromised or down-regulated, which occurs frequently in tumors.

  10. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.

    PubMed

    Van Meter, Michael; Simon, Matthew; Tombline, Gregory; May, Alfred; Morello, Timothy D; Hubbard, Basil P; Bredbenner, Katie; Park, Rosa; Sinclair, David A; Bohr, Vilhelm A; Gorbunova, Vera; Seluanov, Andrei

    2016-09-06

    The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  11. Restriction-endonuclease-induced DNA double-strand breaks and chromosomal aberrations in mammalian cells.

    PubMed

    Bryant, P E; Johnston, P J

    1993-05-01

    Restriction endonucleases (RE) can be used to mimic and model the clastogenic effects of ionising radiation. With the development of improved techniques for cell poration: electroporation and recently streptolysin O (SLO), it has become possible more confidently to study the relationships between DNA double-strand breaks (dsb) of various types (e.g. blunt or cohesive-ended) and the frequencies of induced metaphase chromosomal aberrations or micronuclei in cytokinesis-blocked cells. Although RE-induced dsb do not mimic the chemical end-structure of radiation-induced dsb (i.e. the 'dirty' ends of radiation-induced dsb), it has become clear that cohesive-ended dsb, which are thought to be the major type of dsb induced by radiation, are much less clastogenic than blunt-ended dsb. It has also been possible, with the aid of electroporation or SLO to measure the kinetics of dsb in cells as a function of time after treatment. These experiments have shown that some RE (e.g. Pvu II) are extremely stable inside CHO cells and at high concentrations persist and induce dsb over a period of many hours following treatment. Cutting of DNA by RE is thought to be at specific recognition sequences (as in free DNA) although the frequencies of sites in native chromatin available to RE is not yet known. DNA condensation and methylation are both factors limiting the numbers of available cutting sites. Relatively little is known about the kinetics of incision or repair of RE-induced dsb in cells. Direct ligation may be a method used by cells to rejoin the bulk of RE-induced dsb, since inhibitors such as araA, araC and aphidicolin appear not prevent rejoining, although these inhibitors have been found to lead to enhanced frequencies of chromosomal aberrations. 3-Aminobenzimide, the poly-ADP ribose polymerase inhibitor is the only agent that has so far been shown to inhibit rejoining of RE-induced dsb. Data from the radiosensitive xrs5 cell line, where chromosomal aberration frequencies are

  12. Homologous recombination is a primary pathway to repair DNA double-strand breaks generated during DNA rereplication.

    PubMed

    Truong, Lan N; Li, Yongjiang; Sun, Emily; Ang, Katrina; Hwang, Patty Yi-Hwa; Wu, Xiaohua

    2014-10-17

    Re-initiation of DNA replication at origins within a given cell cycle would result in DNA rereplication, which can lead to genome instability and tumorigenesis. DNA rereplication can be induced by loss of licensing control at cellular replication origins, or by viral protein-driven multiple rounds of replication initiation at viral origins. DNA double-strand breaks (DSBs) are generated during rereplication, but the mechanisms of how these DSBs are repaired to maintain genome stability and cell viability are poorly understood in mammalian cells. We generated novel EGFP-based DSB repair substrates, which specifically monitor the repair of rereplication-associated DSBs. We demonstrated that homologous recombination (HR) is an important mechanism to repair rereplication-associated DSBs, and sister chromatids are used as templates for such HR-mediated DSB repair. Micro-homology-mediated non-homologous end joining (MMEJ) can also be used but to a lesser extent compared to HR, whereas Ku-dependent classical non-homologous end joining (C-NHEJ) has a minimal role to repair rereplication-associated DSBs. In addition, loss of HR activity leads to severe cell death when rereplication is induced. Therefore, our studies identify HR, the most conservative repair pathway, as the primary mechanism to repair DSBs upon rereplication.

  13. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks

    PubMed Central

    Dantuma, Nico P.; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  14. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    PubMed

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.

  15. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    SciTech Connect

    Wang, Chen; Lees-Miller, Susan P.

    2013-07-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.

  16. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang

    2016-01-01

    Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for 60Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with 60Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.

  17. Preferential repair of DNA double-strand break at the active gene in vivo.

    PubMed

    Chaurasia, Priyasri; Sen, Rwik; Pandita, Tej K; Bhaumik, Sukesh R

    2012-10-19

    Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3' end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells.

  18. The Contribution of Alu Elements to Mutagenic DNA Double-Strand Break Repair

    PubMed Central

    Streva, Vincent A.; DeFreece, Cecily B.; Hedges, Dale J.; Deininger, Prescott L.

    2015-01-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both

  19. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    PubMed

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.

  20. The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway

    PubMed Central

    Tounekti, O; Kenani, A; Foray, N; Orlowski, S; Mir, L M

    2001-01-01

    Bleomycin is a cytotoxic antibiotic that generates DNA double-strand breaks (DSB) and DNA single-strand breaks (SSB). It is possible to introduce known quantities of bleomycin molecules into cells. Low amounts kill the cells by a slow process termed mitotic cell death, while high amounts produce a fast process that has been termed pseudoapoptosis. We previously showed that these types of cell death are a direct consequence of the DSB generated by bleomycin. Here, we use deglyco-bleomycin, a bleomycin derivative lacking the carbohydrate moiety. Although this molecule performs the same nucleophilic attacks on DNA as bleomycin, we show that deglyco-bleomycin is at least 100 times less toxic to Chinese hamster fibroblasts than bleomycin. In fact, deglyco-bleomycin treatment results in apoptosis induction. In contrast, however, deglyco-bleomycin was found to generate almost exclusively SSB. Our results suggest that more than 150 000 SSB per cell are required to trigger apoptosis in Chinese hamster fibroblasts and that SSB are 300 times less toxic than DSB. Taken together with previous studies on bleomycin, our data demonstrates that cells can die by apoptosis, mitotic cell death, or pseudoapoptosis, depending on the number of DNA breaks and on the ratio of SSB to DSB. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11336481

  1. Probability of double-strand breaks in genome-sized DNA by {gamma}-ray decreases markedly as the DNA concentration increases

    SciTech Connect

    Shimobayashi, Shunsuke F.; Iwaki, Takafumi; Mori, Toshiaki; Yoshikawa, Kenichi

    2013-05-07

    By use of the single-molecule observation, we count the number of DNA double-strand breaks caused by {gamma}-ray irradiation with genome-sized DNA molecules (166 kbp). We find that P{sub 1}, the number of double-strand breaks (DSBs) per base pair per unit Gy, is nearly inversely proportional to the DNA concentration above a certain threshold DNA concentration. The inverse relationship implies that the total number of DSBs remains essentially constant. We give a theoretical interpretation of our experimental results in terms of attack of reactive species upon DNA molecules, indicating the significance of the characteristics of genome-sized giant DNA as semiflexible polymers for the efficiency of DSBs.

  2. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  3. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination.

    PubMed

    Sansam, Christopher L; Pezza, Roberto J

    2015-07-01

    During prophase of meiosis I, homologous chromosomes interact and undergo recombination. Successful completion of these processes is required in order for the homologous chromosomes to mount the meiotic spindle as a pair. The organization of the chromosomes into pairs ensures orderly segregation to opposite poles of the dividing cell, such that each gamete receives one copy of each chromosome. Chiasmata, the cytological manifestation of crossover products of recombination, physically connect the homologs in pairs, providing a linkage that facilitates their segregation. Consequently, mutations that reduce the level of recombination are invariably associated with increased errors in meiotic chromosome segregation. In this review, we focus on recent biochemical and genetic advances in elucidating the mechanisms of meiotic DNA strand exchange catalyzed by the Dmc1 protein. We also discuss the mode by which two recombination mediators, Hop2 and Mnd1, facilitate rate-limiting steps of DNA strand exchange catalyzed by Dmc1.

  4. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination

    PubMed Central

    Sansam, Christopher L; Pezza, Roberto J

    2015-01-01

    During prophase of meiosis I, homologous chromosomes interact and undergo recombination. Successful completion of these processes is required in order for the homologous chromosomes to mount the meiotic spindle as a pair. The organization of the chromosomes into pairs ensures orderly segregation to opposite poles of the dividing cell, such that each gamete receives one copy of each chromosome. Chiasmata, the cytological manifestation of crossover products of recombination, physically connect the homologs in pairs, providing a linkage that facilitates their segregation. Consequently, mutations that reduce the level of recombination are invariably associated with increased errors in meiotic chromosome segregation. In this review, we focus on recent biochemical and genetic advances in elucidating the mechanisms of meiotic DNA strand exchange catalyzed by the Dmc1 protein. We also discuss the mode by which two recombination mediators, Hop2 and Mnd1, facilitate rate-limiting steps of DNA strand exchange catalyzed by Dmc1. PMID:25953379

  5. Role for the mammalian Swi5-Sfr1 complex in DNA strand break repair through homologous recombination.

    PubMed

    Akamatsu, Yufuko; Jasin, Maria

    2010-10-14

    In fission yeast, the Swi5-Sfr1 complex plays an important role in homologous recombination (HR), a pathway crucial for the maintenance of genomic integrity. Here we identify and characterize mammalian Swi5 and Sfr1 homologues. Mouse Swi5 and Sfr1 are nuclear proteins that form a complex in vivo and in vitro. Swi5 interacts in vitro with Rad51, the DNA strand-exchange protein which functions during HR. By generating Swi5(-/-) and Sfr1(-/-) embryonic stem cell lines, we found that both proteins are mutually interdependent for their stability. Importantly, the Swi5-Sfr1 complex plays a role in HR when Rad51 function is perturbed in vivo by expression of a BRC peptide from BRCA2. Swi5(-/-) and Sfr1(-/-) cells are selectively sensitive to agents that cause DNA strand breaks, in particular ionizing radiation, camptothecin, and the Parp inhibitor olaparib. Consistent with a role in HR, sister chromatid exchange induced by Parp inhibition is attenuated in Swi5(-/-) and Sfr1(-/-) cells, and chromosome aberrations are increased. Thus, Swi5-Sfr1 is a newly identified complex required for genomic integrity in mammalian cells with a specific role in the repair of DNA strand breaks.

  6. Measurement of intracellular DNA double-strand break induction and rejoining along the track of carbon and neon particle beams in water

    SciTech Connect

    Heilmann, J.; Taucher-Scholz, G.; Haberer, T.

    1996-02-01

    The study was aimed at the measurement of effect-depth distributions of intracellularly induced DNA damage in water as tissue equivalent after heavy ion irradiation with therapy particle beams. An assay involving embedding of Chinese hamster ovary (CHO-K1) cells in large agarose plugs and electrophoretic elution of radiation induced DNA fragments by constant field gel electrophoresis was developed. Double-strand break production was quantified by densitometric analysis of DNA-fluorescence after staining with ethidium-bromide and determination of the fraction of DNA eluted out of the agarose plugs. Intracellular double-strand break induction and the effect of a 3 h rejoining incubation were investigated following irradiation with 250 kV x-rays and 190 MeV/u carbon- and 295 MeV/u neon-ions. While the DNA damage induced by x-irradiation decreased continuously with penetration depth, a steady increase in the yield of double-strand breaks was observed for particle radiation, reaching distinct maxima at the position of the physical Bragg peaks. Beyond this, the extent of radiation damage dropped drastically. From comparison of DNA damage and calculated dose profiles, relative biological efficiencies (RBEs) for both double-strand break induction and unrejoined strand breaks after 3 h were determined. While RBE for the induction of DNA double-strand breaks decreased continuously with penetration depth, RBE maxima greater than unity were found with carbon- and neon-ions for double-strand break rejoining near the maximum range of the particles. The method presented here allows for a fast and accurate determination of depth profiles of relevant radiobiological effects for mixed particle fields in tissue equivalent. DNA DSB-induction, Strand break rejoining, CHO-K1 cells, Heavy ion therapy beams, Effect-depth distribution. 35 refs., 8 figs.

  7. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes

    PubMed Central

    Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  8. Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias.

    PubMed

    Shcherbakov, Victor P; Shcherbakova, Tamara; Plugina, Lidiya; Sizova, Svetlana; Kudryashova, Elena; Granovsky, Igor

    2008-06-01

    The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.

  9. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance.

    PubMed

    Ribas-Maynou, J; Gawecka, J E; Benet, J; Ward, W S

    2014-04-01

    We used a mouse model in which sperm DNA damage was induced to understand the relationship of double-stranded DNA (dsDNA) breaks to sperm chromatin structure and to the Comet assay. Sperm chromatin fragmentation (SCF) produces dsDNA breaks located on the matrix attachment regions, between protamine toroids. In this model, epididymal sperm induced to undergo SCF can religate dsDNA breaks while vas deferens sperm cannot. Here, we demonstrated that the conventional neutral Comet assay underestimates the epididymal SCF breaks because the broken DNA ends remain attached to the nuclear matrix, causing the DNA to remain associated with the dispersion halo, and the Comet tails to be weak. Therefore, we term these hidden dsDNA breaks. When the Comet assay was modified to include an additional incubation with sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) after the conventional lysis, thereby solubilizing the nuclear matrix, the broken DNA was released from the matrix, which resulted in a reduction of the sperm head halo and an increase in the Comet tail length, exposing the hidden dsDNA breaks. Conversely, SCF-induced vas deferens sperm had small halos and long tails with the conventional neutral Comet assay, suggesting that the broken DNA ends were not tethered to the nuclear matrix. These results suggest that the attachment to the nuclear matrix is crucial for the religation of SCF-induced DNA breaks in sperm. Our data suggest that the neutral Comet assay identifies only dsDNA breaks that are released from the nuclear matrix and that the addition of an SDS treatment can reveal these hidden dsDNA breaks.

  10. Coordinateendonucleolytic 5' and 3' trimming of terminally blocked blunt DNA double-strand break ends by Artemis nuclease and DNA-dependent protein kinase

    SciTech Connect

    Povirk, Lawrence; Yannone, Steven M.; Khan, Imran S.; Zhou, Rui-Zhe; Zhou, Tong; Valerie, Kristoffer; F., Lawrence

    2008-02-18

    Previous work showed that, in the presence of DNA-PK, Artemis slowly trims 3'-phosphoglycolate-terminated blunt ends. To examine the trimming reaction in more detail, long internally labeled DNA substrates were treated with Artemis. In the absence of DNA-PK, Artemis catalyzed extensive 5' {yields} 3' exonucleolytic resection of double-stranded DNA. This resection required a 5'-phosphate but did not require ATP, and was accompanied by endonucleolytic cleavage of the resulting 3' overhang. In the presence of DNA-PK, Artemis-mediated trimming was more limited, was ATP-dependent, and did not require a 5'-phosphate. For a blunt end with either a 3'-phosphoglycolate or 3'-hydroxyl terminus, endonucleolytic trimming of 2-4 nucleotides from the 3'-terminal strand was accompanied by trimming of 6 nucleotides from the 5'-terminal strand. The results suggest that autophosphorylated DNA-PK suppresses the exonuclease activity of Artemis toward blunt-ended DNA, and promotes slow and limited endonucleolytic trimming of the 5'-terminal strand, resulting in short 3' overhangs that are trimmed endonucleolytically. Thus, Artemis and DNA-PK can convert terminally blocked DNA ends of diverse geometry and chemical structure to a form suitable for polymerase mediated patching and ligation, with minimal loss of terminal sequence. Such processing could account for the very small deletions often found at DNA double-strand break repair sites.

  11. The Deubiquitylating Enzyme USP4 Cooperates with CtIP in DNA Double-Strand Break End Resection.

    PubMed

    Liu, Hailong; Zhang, Haoxing; Wang, Xiaohui; Tian, Qingsong; Hu, Zhaohua; Peng, Changmin; Jiang, Pei; Wang, TingTing; Guo, Wei; Chen, Yali; Li, Xinzhi; Zhang, Pumin; Pei, Huadong

    2015-10-06

    DNA end resection is a highly regulated and critical step in DNA double-stranded break (DSB) repair. In higher eukaryotes, DSB resection is initiated by the collaborative action of CtIP and the MRE11-RAD50-NBS1 (MRN) complex. Here, we find that the deubiquitylating enzyme USP4 directly participates in DSB resection and homologous recombination (HR). USP4 confers resistance to DNA damage-inducing agents. Mechanistically, USP4 interacts with CtIP and MRN via a specific, conserved region and the catalytic domain of USP4, respectively, and regulates CtIP recruitment to sites of DNA damage. We also find that USP4 autodeubiquitylation is essential for its HR functions. Collectively, our findings identify USP4 as a key regulator of DNA DSB end resection.

  12. Inhibition of radical-induced DNA strand breaks by water-soluble constituents of coffee: phenolics and caffeine metabolites.

    PubMed

    Rathod, M A; Patel, D; Das, A; Tipparaju, S R; Shinde, S S; Anderson, R F

    2013-07-01

    Epidemiological studies have associated coffee consumption with an inverse risk of developing Parkinson's disease, hepatocellular carcinoma and cirrhosis. The molecular mechanisms by which low concentrations of the constituents of coffee measured in human plasma can reduce the incidence of such diseases are not clear. Using an in vitro plasmid DNA system and radiolytically generated reactive oxygen species under constant radical scavenging conditions, we have shown that coffee chlorogenic acid, its derivatives and certain metabolites of caffeine reduce some of the free radical damage sustained to the DNA. A reduction in the amount of prompt DNA single-strand breaks (SSBs) was observed for all compounds whose radical one-electron reduction potential is < 1.0 V. However, except for chlorogenic acid, the compounds were found to be inactive in reducing the amount of radical damage to the DNA bases. These results support a limited antioxidant role for such compounds in their interaction with DNA radicals.

  13. RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks.

    PubMed

    Oum, Ji-Hyun; Seong, Changhyun; Kwon, Youngho; Ji, Jae-Hoon; Sid, Amy; Ramakrishnan, Sreejith; Ira, Grzegorz; Malkova, Anna; Sung, Patrick; Lee, Sang Eun; Shim, Eun Yong

    2011-10-01

    Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.

  14. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection.

    PubMed

    Heaton, Brook E; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C; Glickman, Michael S

    2014-08-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis.

  15. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising.

    PubMed

    Jekimovs, Christian; Bolderson, Emma; Suraweera, Amila; Adams, Mark; O'Byrne, Kenneth J; Richard, Derek J

    2014-01-01

    The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell's genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.

  16. Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms.

    PubMed

    Kostyrko, Kaja; Mermod, Nicolas

    2016-04-07

    DNA double stranded breaks (DSBs) are one of the most deleterious types of DNA lesions. The main pathways responsible for repairing these breaks in eukaryotic cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). However, a third group of still poorly characterized DSB repair pathways, collectively termed microhomology-mediated end-joining (MMEJ), relies on short homologies for the end-joining process. Here, we constructed GFP reporter assays to characterize and distinguish MMEJ variant pathways, namely the simple MMEJ and the DNA synthesis-dependent (SD)-MMEJ mechanisms. Transfection of these assay vectors in Chinese hamster ovary (CHO) cells and characterization of the repaired DNA sequences indicated that while simple MMEJ is able to mediate relatively efficient DSB repair if longer microhomologies are present, the majority of DSBs were repaired using the highly error-prone SD-MMEJ pathway. To validate the involvement of DNA synthesis in the repair process, siRNA knock-down of different genes proposed to play a role in MMEJ were performed, revealing that the knock-down of DNA polymerase θ inhibited DNA end resection and repair through simple MMEJ, thus favoring the other repair pathway. Overall, we conclude that this approach provides a convenient assay to study MMEJ-related DNA repair pathways.

  17. Tbf1 and Vid22 promote resection and non-homologous end joining of DNA double-strand break ends.

    PubMed

    Bonetti, Diego; Anbalagan, Savani; Lucchini, Giovanna; Clerici, Michela; Longhese, Maria Pia

    2013-01-23

    The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. The Saccharomyces cerevisiae protein Tbf1, which is characterized by a Myb domain and is related to mammalian TRF1 and TRF2, has been proposed to act as a transcriptional activator. Here, we show that Tbf1 and its interacting protein Vid22 are new players in the response to DSBs. Inactivation of either TBF1 or VID22 causes hypersensitivity to DSB-inducing agents and shows strong negative interactions with mutations affecting homologous recombination. Furthermore, Tbf1 and Vid22 are recruited to an HO-induced DSB, where they promote both resection of DNA ends and repair by non-homologous end joining. Finally, inactivation of either Tbf1 or Vid22 impairs nucleosome eviction around the DSB, suggesting that these proteins promote efficient repair of the break by influencing chromatin identity in its surroundings.

  18. What fraction of DNA double-strand breaks produced by the direct effect is accounted for by radical pairs?

    PubMed

    Peoples, Anita R; Mercer, Kermit R; Bernhard, William A

    2010-07-22

    The purpose of this investigation was to determine what fraction of double strand breaks (dsb's), generated by the direct effect of ionizing radiation on DNA, can be accounted for by radical pairs. A radical pair is defined as two radicals trapped within a separation distance of <3 nm. Q-band EPR was used to measure the yield of radical pairs in calf thymus DNA films X-irradiated at 4 K. The EPR spectrum of DNA showed no evidence of radical pairs. To determine the relative sensitivity for radical pair detection via Q-band EPR, we measured the yield of radical pairs in single crystals of thymine, G(rp-Thy). Under the same conditions employed for DNA, G(rp-Thy) was approximately 8 nmol/J. The value of G(rp-Thy), in conjunction with the measured signal-to-noise, was used to calculate an upper limit for the yield of radical pairs in DNA, G(max)(rp-DNA) < 0.7-1.4 nmol/J. The upper limit, G(max)(rp-DNA), was compared with the yield of dsb's, G(total)(dsb) = 10 nmol/J, previously measured in pUC18 DNA films by Purkayastha, S.; Milligan, J. R.; Bernhard, W. A. Radiat. Res. 2007, 168, 357. We found that G(total)(dsb) > 2 x G(max)(rp-DNA), implying that a significant fraction of dsb's were not derived from a pair of trappable radicals. At least one of the two precursors needed to form a dsb was a diamagnetic (molecular) product. The hypothesis is that EPR silent lesions are formed through a molecular pathway. For example, a two-electron oxidation of deoxyribose would result in a deoxyribose carbocation intermediate that ultimately leads to a strand break.

  19. Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double-strand DNA break repair.

    PubMed

    Alonso-González, Carolina; González, Alicia; Martínez-Campa, Carlos; Gómez-Arozamena, José; Cos, Samuel

    2015-03-01

    Radiation and adjuvant endocrine therapy are nowadays considered a standard treatment option after surgery in breast cancer. Melatonin exerts oncostatic actions on human breast cancer cells. In the current study, we investigated the effects of a combination of radiotherapy and melatonin on human breast cancer cells. Melatonin (1 mm, 10 μm and 1 nm) significantly inhibited the proliferation of MCF-7 cells. Radiation alone inhibited the MCF-7 cell proliferation in a dose-dependent manner. Pretreatment of breast cancer cells with melatonin 1 wk before radiation led to a significantly greater decrease of MCF-7 cell proliferation compared with radiation alone. Melatonin pretreatment before radiation also decreased G2 -M phase arrest compared with irradiation alone, with a higher percentage of cells in the G0 -G1 phase and a lower percentage of cells in S phase. Radiation alone diminished RAD51 and DNA-protein kinase (PKcs) mRNA expression, two main proteins involved in double-strand DNA break repair. Treatment with melatonin for 7 days before radiation led to a significantly greater decrease in RAD51 and DNA-PKcs mRNA expression compared with radiation alone. Our findings suggest that melatonin pretreatment before radiation sensitizes breast cancer cells to the ionizing effects of radiation by decreasing cell proliferation, inducing cell cycle arrest and downregulating proteins involved in double-strand DNA break repair. These findings may have implications for designing clinical trials using melatonin and radiotherapy.

  20. Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli.

    PubMed

    Khairnar, Nivedita P; Kamble, Vidya A; Mangoli, Suhas H; Apte, Shree K; Misra, Hari S

    2007-07-01

    The involvement of signal transduction in the repair of radiation-induced damage to DNA has been known in eukaryotes but remains understudied in bacteria. This article for the first time demonstrates a role for the periplasmic lipoprotein (YfgL) with protein kinase activity transducing a signal for DNA strand break repair in Escherichia coli. Purified YfgL protein showed physical as well as functional interaction with pyrroloquinoline-quinone in solution and the protein kinase activity of YfgL was strongly stimulated in the presence of pyrroloquinoline-quinone. Transgenic E. coli cells producing Deinococcus radiodurans pyrroloquinoline-quinone synthase showed nearly four log cycle improvement in UVC dark survival and 10-fold increases in gamma radiation resistance as compared with untransformed cells. Pyrroloquinoline-quinone enhanced the UV resistance of E. coli through the YfgL protein and required the active recombination repair proteins. The yfgL mutant showed higher sensitivity to UVC, mitomycin C and gamma radiation as compared with wild-type cells and showed a strong impairment in homologous DNA recombination. The mutant expressing an active YfgL in trans recovered the lost phenotypes to nearly wild-type levels. The results strongly suggest that the periplasmic phosphoquinolipoprotein kinase YfgL plays an important role in radiation-induced DNA strand break repair and homologous recombination in E. coli.

  1. Detection of DNA single-strand breaks during the repair of UV damage in xeroderma pigmentosum cells

    SciTech Connect

    Fornace, A.J. Jr.; Seres, D.S.

    1983-01-01

    In this investigation, xeroderma pigmentosum (XP) fibroblasts, XP12BE, were uv-irradiated and then incubated with cytosine arabinoside and hydroxyurea for 4 hr to inhibit the polymerase step of DNA excision repair. By alkaline elution, DNA single-strand breaks (SSB) were detected in XP cells with this regimen with an efficiency of 0.1-0.2 SSB per 10/sup 9/ daltons of DNA per J m/sup -2/. There was an approximately linear relation between the SSB frequency and uv dose over a range of 0.2 to 25 J m/sup -2/. This effect was approximately two orders of magnitude greater in excision-proficient normal human fibroblasts than in XP cells. These results support the conclusion that a low residual level of DNA excision repair occurs in XP group A cells and that the SSB generated during this repair can be accumulated with this polymerase inhibitor.

  2. Promyelocytic leukemia nuclear bodies support a late step in DNA double-strand break repair by homologous recombination.

    PubMed

    Yeung, Percy Luk; Denissova, Natalia G; Nasello, Cara; Hakhverdyan, Zhanna; Chen, J Don; Brenneman, Mark A

    2012-05-01

    The PML protein and PML nuclear bodies (PML-NB) are implicated in multiple cellular functions relevant to tumor suppression, including DNA damage response. In most cases of acute promyelocytic leukemia, the PML and retinoic acid receptor alpha (RARA) genes are translocated, resulting in expression of oncogenic PML-RARα fusion proteins. PML-NB fail to form normally, and promyelocytes remain in an undifferentiated, abnormally proliferative state. We examined the involvement of PML protein and PML-NB in homologous recombinational repair (HRR) of chromosomal DNA double-strand breaks. Transient overexpression of wild-type PML protein isoforms produced hugely enlarged or aggregated PML-NB and reduced HRR by ~2-fold, suggesting that HRR depends to some extent upon normal PML-NB structure. Knockdown of PML by RNA interference sharply attenuated formation of PML-NB and reduced HRR by up to 20-fold. However, PML-knockdown cells showed apparently normal induction of H2AX phosphorylation and RAD51 foci after DNA damage by ionizing radiation. These findings indicate that early steps in HRR, including recognition of DNA double-strand breaks, initial processing of ends, and assembly of single-stranded DNA/RAD51 nucleoprotein filaments, do not depend upon PML-NB. The HRR deficit in PML-depleted cells thus reflects inhibition of later steps in the repair pathway. Expression of PML-RARα fusion proteins disrupted PML-NB structure and reduced HRR by up to 10-fold, raising the possibility that defective HRR and resulting genomic instability may figure in the pathogenesis, progression and relapse of acute promyelocytic leukemia.

  3. Repair on the go: E. coli maintains a high proliferation rate while repairing a chronic DNA double-strand break.

    PubMed

    Darmon, Elise; Eykelenboom, John K; Lopez-Vernaza, Manuel A; White, Martin A; Leach, David R F

    2014-01-01

    DNA damage checkpoints exist to promote cell survival and the faithful inheritance of genetic information. It is thought that one function of such checkpoints is to ensure that cell division does not occur before DNA damage is repaired. However, in unicellular organisms, rapid cell multiplication confers a powerful selective advantage, leading to a dilemma. Is the activation of a DNA damage checkpoint compatible with rapid cell multiplication? By uncoupling the initiation of DNA replication from cell division, the Escherichia coli cell cycle offers a solution to this dilemma. Here, we show that a DNA double-strand break, which occurs once per replication cycle, induces the SOS response. This SOS induction is needed for cell survival due to a requirement for an elevated level of expression of the RecA protein. Cell division is delayed, leading to an increase in average cell length but with no detectable consequence on mutagenesis and little effect on growth rate and viability. The increase in cell length caused by chronic DNA double-strand break repair comprises three components: two types of increase in the unit cell size, one independent of SfiA and SlmA, the other dependent of the presence of SfiA and the absence of SlmA, and a filamentation component that is dependent on the presence of either SfiA or SlmA. These results imply that chronic checkpoint induction in E. coli is compatible with rapid cell multiplication. Therefore, under conditions of chronic low-level DNA damage, the SOS checkpoint operates seamlessly in a cell cycle where the initiation of DNA replication is uncoupled from cell division.

  4. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    PubMed Central

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  5. Nucleotide excision repair-dependent DNA double-strand break formation and ATM signaling activation in mammalian quiescent cells.

    PubMed

    Wakasugi, Mitsuo; Sasaki, Takuma; Matsumoto, Megumi; Nagaoka, Miyuki; Inoue, Keiko; Inobe, Manabu; Horibata, Katsuyoshi; Tanaka, Kiyoji; Matsunaga, Tsukasa

    2014-10-10

    Histone H2A variant H2AX is phosphorylated at Ser(139) in response to DNA double-strand break (DSB) and single-stranded DNA (ssDNA) formation. UV light dominantly induces pyrimidine photodimers, which are removed from the mammalian genome by nucleotide excision repair (NER). We previously reported that in quiescent G0 phase cells, UV induces ATR-mediated H2AX phosphorylation plausibly caused by persistent ssDNA gap intermediates during NER. In this study, we have found that DSB is also generated following UV irradiation in an NER-dependent manner and contributes to an earlier fraction of UV-induced H2AX phosphorylation. The NER-dependent DSB formation activates ATM kinase and triggers the accumulation of its downstream factors, MRE11, NBS1, and MDC1, at UV-damaged sites. Importantly, ATM-deficient cells exhibited enhanced UV sensitivity under quiescent conditions compared with asynchronously growing conditions. Finally, we show that the NER-dependent H2AX phosphorylation is also observed in murine peripheral T lymphocytes, typical nonproliferating quiescent cells in vivo. These results suggest that in vivo quiescent cells may suffer from NER-mediated secondary DNA damage including ssDNA and DSB.

  6. The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks

    PubMed Central

    Bates, Andrew D.; Berger, James M.; Maxwell, Anthony

    2011-01-01

    Type II DNA topoisomerases (topos) catalyse changes in DNA topology by passing one double-stranded DNA segment through another. This reaction is essential to processes such as replication and transcription, but carries with it the inherent danger of permanent double-strand break (DSB) formation. All type II topos hydrolyse ATP during their reactions; however, only DNA gyrase is able to harness the free energy of hydrolysis to drive DNA supercoiling, an energetically unfavourable process. A long-standing puzzle has been to understand why the majority of type II enzymes consume ATP to support reactions that do not require a net energy input. While certain type II topos are known to ‘simplify’ distributions of DNA topoisomers below thermodynamic equilibrium levels, the energy required for this process is very low, suggesting that this behaviour is not the principal reason for ATP hydrolysis. Instead, we propose that the energy of ATP hydrolysis is needed to control the separation of protein–protein interfaces and prevent the accidental formation of potentially mutagenic or cytotoxic DSBs. This interpretation has parallels with the actions of a variety of molecular machines that catalyse the conformational rearrangement of biological macromolecules. PMID:21525132

  7. Phototriggered formation and repair of DNA containing a site-specific single strand break of the type produced by ionizing radiation or AP lyase activity.

    PubMed

    Zhang, K; Taylor, J S

    2001-01-09

    DNA strand breaks are produced by a variety of agents and processes such as ionizing radiation, xenobiotics, oxidative metabolism, and enzymatic processing of DNA base damage. One of the major types of strand breaks produced by these processes is a single nucleotide gap terminating in 5'- and 3'-phosphates. Previously, we had developed a method for sequence-specifically producing such phosphate-terminated strand breaks in an oligodeoxynucleotide by way of two photochemically activated (caged) building blocks placed in tandem. We now report the design and synthesis of a single caged building block consisting of 1,3-(2-nitrophenyl)-1,3-propanediol, for producing phosphate-terminated strand breaks, and its use producing such a break at a specific site in a double-stranded circular DNA vector. To produce the site-specific break in a duplex vector, a primer containing the caged single strand break was extended opposite the single strand form of a circular DNA vector followed by enzymatic ligation and purification. The single strand break could then be formed in quantitative yield by irradiation of the vector with 365 nm light. In contrast to a previous study, it was found that the strand break can be repaired by Escherichia coli DNA polymerase I and E. coli DNA ligase alone, though less efficiently than in the presence of the 3'-phosphate processing enzyme E. coli endonuclease IV. Repair in the absence of endonuclease IV could be attributed to hydrolysis of the 3'-phosphate in the presence of dNTP and to a lesser extent to exonucleolytic removal of the 3'-phosphate-bearing terminal nucleotide by way of the 3' --> 5' exonuclease activity of polymerase I. This work demonstrates that specialized 3'-end processing enzymes such as endonuclease IV or exonuclease III are not absolutely required for repair of phosphate-terminated gaps. In addition to preparing single strand breaks, the caged building block described should also be useful for preparing double strand breaks and

  8. The cytotoxicity of (–)-lomaiviticin A arises from induction of double-strand breaks in DNA

    PubMed Central

    Colis, Laureen C.; Woo, Christina M.; Hegan, Denise C.; Li, Zhenwu; Glazer, Peter M.; Herzon, Seth B.

    2014-01-01

    The metabolite (–)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at nanomolar–picomolar concentrations; however, the mechanism responsible for the potent cytotoxicity of this natural product is not known. Here we report that (–)-lomaiviticin A nicks and cleaves plasmid DNA by an ROS- and iron-independent pathway and that the potent cytotoxicity of (–)-lomaiviticin A arises from induction of DNA double-strand breaks (dsbs). In a plasmid cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3±0.6:1. Labeling studies suggest this cleavage occurs via a radical pathway. The structurally related isolates (–)-lomaiviticin C and (–)-kinamycin C, which contain one diazofluorene, are demonstrated to be much less effective DNA cleavage agents, thereby providing an explanation for the enhanced cytotoxicity of (–)-lomaiviticin A compared to other members of this family. PMID:24848236

  9. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions.

    PubMed

    Tadi, Satish Kumar; Sebastian, Robin; Dahal, Sumedha; Babu, Ravi K; Choudhary, Bibha; Raghavan, Sathees C

    2016-01-15

    Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.

  10. Cumulus Cells Block Oocyte Meiotic Resumption via Gap Junctions in Cumulus Oocyte Complexes Subjected to DNA Double-Strand Breaks.

    PubMed

    Sun, Ming-Hong; Zheng, Jie; Xie, Feng-Yun; Shen, Wei; Yin, Shen; Ma, Jun-Yu

    2015-01-01

    During mammalian oocyte growth, genomic DNA may accumulate DNA double-strand breaks (DSBs) induced by factors such as reactive oxygen species. Recent evidence demonstrated that slight DSBs do not activate DNA damage checkpoint proteins in denuded oocytes. These oocytes, even with DNA DSBs, can resume meiosis and progress to metaphase of meiosis II. Meiotic resumption in oocytes is also controlled by the surrounding cumulus cells; accordingly, we analyzed whether cumulus-cell enclosed oocytes (CEOs) with DNA damage are able to resume meiosis. Compared with DNA-damaged denuded oocytes, we found that meiotic resumption rates of CEOs significantly decreased. To assess the mechanism by which cumulus cells block meiotic resumption in CEOs with DNA DSBs, we treated the cumulus oocyte complex with the gap junction inhibitor carbenoxolone and found that carbenoxolone can rescue the block in CEO meiosis induced by DNA DSBs. Since cumulus cell-synthesized cAMPs can pass through the gap junctions between oocyte and cumulus cell to block oocyte meiosis, we measured the expression levels of adenylate cyclase 1 (Adcy1) in cumulus cells, and G-protein coupled receptor 3 (Gpr3) and phosphodiesterase 3A (Pde3a) in oocytes, and found that the mRNA expression level of Adcy1 increased significantly in DNA-damaged cumulus cells. In conclusion, our results indicate that DNA DSBs promote cAMP synthesis in cumulus cells, and cumulus cAMPs can inhibit meiotic resumption of CEOs through gap junctions.

  11. CtIP-BRCA1 modulates the choice of DNA double-strand break repair pathway throughout the cell cycle

    PubMed Central

    Yun, Maximina H.; Hiom, Kevin

    2009-01-01

    The repair of DNA double-strand breaks (DSB) is tightly regulated during the cell cycle. In G1 phase, the absence of a sister chromatid means that repair of DSB occurs through non-homologous end-joining (NHEJ) or microhomology-mediated end-joining (MMEJ)1. These pathways often involve loss of DNA sequences at the break site and are therefore error-prone. In late S and G2 phases, even though DNA end-joining pathways remain functional2, there is an increase in repair of DSB by homologous recombination (HR), which is mostly error-free3,4. Consequently, the relative contribution of these different pathways to DSB repair in the cell cycle has a profound influence on the maintenance of genetic integrity. How then are DSB directed for repair by different, potentially competing, repair pathways? Here we identify a role for CtIP in this process in DT40. We establish that CtIP is not only required for repair of DSB by HR in S/G2 phase, but also for MMEJ in G1. The function of CtIP in HR, but not MMEJ, is dependent on the phosphorylation of serine residue 327 and recruitment of BRCA1. Cells expressing CtIP protein that cannot be phosphorylated at serine 327 are specifically defective in HR and exhibit decreased level of single-stranded DNA (ssDNA) after DNA damage, while MMEJ remains unaffected. Our data support a model in which phosphorylation of serine 327 of CtIP as cells enter S-phase and the recruitment of BRCA1 functions as a molecular switch to shift the balance of DSB repair from error-prone DNA end-joining to error-free homologous recombination (Supplementary Fig. 1). PMID:19357644

  12. The scaffold protein WRAP53β orchestrates the ubiquitin response critical for DNA double-strand break repair

    PubMed Central

    Henriksson, Sofia; Rassoolzadeh, Hanif; Hedström, Elisabeth; Coucoravas, Christos; Julner, Alexander; Goldstein, Michael; Imreh, Gabriela; Zhivotovsky, Boris; Kastan, Michael B.; Helleday, Thomas

    2014-01-01

    The WD40 domain-containing protein WRAP53β (WD40 encoding RNA antisense to p53; also referred to as WDR79/TCAB1) controls trafficking of splicing factors and the telomerase enzyme to Cajal bodies, and its functional loss has been linked to carcinogenesis, premature aging, and neurodegeneration. Here, we identify WRAP53β as an essential regulator of DNA double-strand break (DSB) repair. WRAP53β rapidly localizes to DSBs in an ATM-, H2AX-, and MDC1-dependent manner. We show that WRAP53β targets the E3 ligase RNF8 to DNA lesions by facilitating the interaction between RNF8 and its upstream partner, MDC1, in response to DNA damage. Simultaneous binding of MDC1 and RNF8 to the highly conserved WD40 scaffold domain of WRAP53β facilitates their interaction and accumulation of RNF8 at DSBs. In this manner, WRAP53β controls proper ubiquitylation at DNA damage sites and the downstream assembly of 53BP1, BRCA1, and RAD51. Furthermore, we reveal that knockdown of WRAP53β impairs DSB repair by both homologous recombination (HR) and nonhomologous end-joining (NHEJ), causes accumulation of spontaneous DNA breaks, and delays recovery from radiation-induced cell cycle arrest. Our findings establish WRAP53β as a novel regulator of DSB repair by providing a scaffold for DNA repair factors. PMID:25512560

  13. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells.

    PubMed Central

    Galli, A; Schiestl, R H

    1998-01-01

    Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombination events between duplicated alleles of CDC28 and TUB2. We determined effects of double-strand breaks (DSBs) and single-strand breaks (SSBs) between the duplicated alleles on DEL recombination when induced in dividing cells or cells arrested in G1 or G2. Site-specific DSBs and SSBs were produced by overexpression of the I-Sce I endonuclease and the gene II protein (gIIp), respectively. I-Sce I-induced DSBs caused an increase in DEL recombination frequencies in both dividing and cell-cycle-arrested cells, indicating that G1- and G2-arrested cells are capable of completing DSB repair. In contrast, gIIp-induced SSBs caused an increase in DEL recombination frequency only in dividing cells. To further examine these phenomena we used both gamma-irradiation, inducing DSBs as its most relevant lesion, and UV, inducing other forms of DNA damage. UV irradiation did not increase DEL recombination frequencies in G1 or G2, whereas gamma-rays increased DEL recombination frequencies in both phases. Both forms of radiation, however, induced DEL recombination in dividing cells. The results suggest that DSBs but not SSBs induce DEL recombination, probably via the single-strand annealing pathway. Further, DSBs in dividing cells may result from the replication of a UV or SSB-damaged template. Alternatively, UV induced events may occur by replication slippage after DNA polymerase pausing in front of the damage. PMID:9649517

  14. Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation.

    PubMed

    Chung, Woo-Hyun

    2016-01-01

    Atmospheric pressure plasma has been developed for a variety of biomedical applications due to its chemically reactive components. Recently, the plasma has emerged as a promising novel cancer therapy based on its ability to selectively ablate cancer cells while leaving normal cells essentially unaffected. The therapeutic effect of plasma is attributed to intracellular generation of reactive oxygen/nitrogen species (ROS/RNS) leading to mitochondria-mediated apoptosis and to activation of the DNA damage checkpoint signaling pathway via severe DNA strand break formation. However, the biochemical mechanisms responsible for appropriate activation of these physiological events and which pathway is more crucial for plasma-mediated cytotoxicity have not been clarified. Understanding the molecular link between ROS/RNS-mediated apoptosis and DNA damage-involved chromosome instability is critical for the development of more efficacious therapeutic strategies for selective killing of diverse cancer cells.

  15. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair**

    PubMed Central

    Coates, Julia; Jhujh, Satpal; Mehmood, Shahid; Tamura, Naoka; Travers, Jon; Wu, Qian; Draviam, Viji M.; Robinson, Carol V.; Blundell, Tom L.; Jackson, Stephen P.

    2014-01-01

    XRCC4 and XLF are two structurally-related proteins that function in DNA double-strand break (DSB) repair. Here, we identify human PAXX (PAralog of XRCC4 and XLF; also called C9orf142) as a new XRCC4-superfamily member, and show that its crystal structure resembles that of XRCC4. PAXX interacts directly with the DSB-repair protein Ku and is recruited to DNA-damage sites in cells. Using RNA interference and CRISPR-Cas9 to generate PAXX−/− cells, we demonstrate that PAXX functions with XRCC4 and XLF to mediate DSB repair and cell survival in response to DSB-inducing agents. Finally, we reveal that PAXX promotes Ku-dependent DNA ligation in vitro, and assembly of core non-homologous end-joining (NHEJ) factors on damaged chromatin in cells. These findings identify PAXX as a new component of the NHEJ machinery. PMID:25574025

  16. The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation.

    PubMed

    Robert, T; Nore, A; Brun, C; Maffre, C; Crimi, B; Bourbon, H-M; de Massy, B

    2016-02-26

    Meiotic recombination is induced by the formation of DNA double-strand breaks (DSBs) catalyzed by SPO11, the ortholog of subunit A of TopoVI DNA topoisomerase (TopoVIA). TopoVI activity requires the interaction between A and B subunits. We identified a conserved family of plant and animal proteins [the TOPOVIB-Like (TOPOVIBL) family] that share strong structural similarity to the TopoVIB subunit of TopoVI DNA topoisomerase. We further characterize the meiotic recombination proteins Rec102 (Saccharomyces cerevisiae), Rec6 (Schizosaccharomyces pombe), and MEI-P22 (Drosophila melanogaster) as homologs to the transducer domain of TopoVIB. We demonstrate that the mouse TOPOVIBL protein interacts and forms a complex with SPO11 and is required for meiotic DSB formation. We conclude that meiotic DSBs are catalyzed by a complex involving SPO11 and TOPOVIBL.

  17. Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Delgado, Oliver; Ding, Liang-Hao; Story, Michael D.; Minna, John D.; Shay, Jerry W.; Chen, David J.

    2011-01-01

    DNA damage and consequent mutations initiate the multistep carcinogenic process. Differentiated cells have a reduced capacity to repair DNA lesions, but the biological impact of unrepaired DNA lesions in differentiated lung epithelial cells is unclear. Here, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We showed, consistent with existing notions that the kinetics of loss of simple double-strand breaks (DSBs) were significantly reduced in organotypic 3D culture compared to kinetics of repair in two-dimensional (2D) culture. Strikingly, we found that, unlike simple DSBs, a majority of complex DNA lesions were irreparable in organotypic 3D culture. Levels of expression of multiple DNA damage repair pathway genes were significantly reduced in the organotypic 3D culture compared with those in 2D culture providing molecular evidence for the defective DNA damage repair in organotypic culture. Further, when differentiated cells with unrepaired DNA lesions re-entered the cell cycle, they manifested a spectrum of gross-chromosomal aberrations in mitosis. Our data suggest that downregulation of multiple DNA repair pathway genes in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis. PMID:21421565

  18. SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice.

    PubMed

    Horigome, Chihiro; Oma, Yukako; Konishi, Tatsunori; Schmid, Roger; Marcomini, Isabella; Hauer, Michael H; Dion, Vincent; Harata, Masahiko; Gasser, Susan M

    2014-08-21

    Persistent DNA double-strand breaks (DSBs) are recruited to the nuclear periphery in budding yeast. Both the Nup84 pore subcomplex and Mps3, an inner nuclear membrane (INM) SUN domain protein, have been implicated in DSB binding. It was unclear what, if anything, distinguishes the two potential sites of repair. Here, we characterize and distinguish the two binding sites. First, DSB-pore interaction occurs independently of cell-cycle phase and requires neither the chromatin remodeler INO80 nor recombinase Rad51 activity. In contrast, Mps3 binding is S and G2 phase specific and requires both factors. SWR1-dependent incorporation of Htz1 (H2A.Z) is necessary for break relocation to either site in both G1- and S-phase cells. Importantly, functional assays indicate that mutations in the two sites have additive repair defects, arguing that the two perinuclear anchorage sites define distinct survival pathways.

  19. Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double-strand breaks in switch regions.

    PubMed

    Zan, Hong; Zhang, Jinsong; Al-Qahtani, Ahmed; Pone, Egest J; White, Clayton A; Lee, Derrik; Yel, Leman; Mai, Thach; Casali, Paolo

    2011-01-01

    Immunoglobulin (Ig) class switch DNA recombination (CSR) is the crucial mechanism diversifying the biological effector functions of antibodies. Generation of double-strand DNA breaks (DSBs), particularly staggered DSBs, in switch (S) regions of the upstream and downstream CH genes involved in the specific recombination process is an absolute requirement for CSR. Staggered DSBs would be generated through deamination of dCs on opposite DNA strands by activation-induced cytidine deaminase (AID), subsequent dU deglycosylation by uracil DNA glycosylase (Ung) and abasic site nicking by apurinic/apyrimidic endonuclease. However, consistent with the findings that significant amounts of DSBs can be detected in the IgH locus in the absence of AID or Ung, we have shown in human and mouse B cells that AID generates staggered DSBs not only by cleaving intact double-strand DNA, but also by processing blunt DSB ends generated in an AID-independent fashion. How these AID-independent DSBs are generated is still unclear. It is possible that S region DNA may undergo AID-independent cleavage by structure-specific nucleases, such as endonuclease G (EndoG). EndoG is an abundant nuclease in eukaryotic cells. It cleaves single and double-strand DNA, primarily at dG/dC residues, the preferential sites of DSBs in S region DNA. We show here that EndoG can localize to the nucleus of B cells undergoing CSR and binds to S region DNA, as shown by specific chromatin immunoprecipitation assays. Using knockout EndoG(-/-) mice and EndoG(-/-) B cells, we found that EndoG deficiency resulted in a two-fold reduction in CSR in vivo and in vitro, as demonstrated by reduced cell surface IgG1, IgG2a, IgG3 and IgA, reduced secreted IgG1, reduced circle Iγ1-Cμ, Iγ3-Cμ, Iɛ-Cμ, Iα-Cμ transcripts, post-recombination Iμ-Cγ1, Iμ-Cγ3, Iμ-Cɛ and Iμ-Cα transcripts. In addition to reduced CSR, EndoG(-/-) mice showed a significantly altered spectrum of mutations in IgH J(H)-iEμ DNA. Impaired CSR in

  20. Molecular Analysis of Base Damage Clustering Associated with a Site-Specific Radiation-Induced DNA Double-Strand Break

    PubMed Central

    Datta, Kamal; Jaruga, Pawel; Dizdaroglu, Miral; Neumann, Ronald D.; Winters, Thomas A.

    2010-01-01

    Base damage flanking a radiation-induced DNA double-strand break (DSB) may contribute to DSB complexity and affect break repair. However, to date, an isolated radiation-induced DSB has not been assessed for such structures at the molecular level. In this study, an authentic site-specific radiation-induced DSB was produced in plasmid DNA by triplex forming oligonucleotide-targeted 125I decay. A restriction fragment terminated by the DSB was isolated and probed for base damage with the E. coli DNA repair enzymes, endonuclease III and formamidopyrimidine-DNA glycosylase. Our results demonstrate base damage clustering within 8 bases of the 125I-targeted base in the DNA duplex. An increased yield of base damage (purine>pyrimidine) was observed for DSBs formed by irradiation in the absence of DMSO. An internal control fragment 1354 bp upstream from the targeted base was insensitive to enzymatic probing, indicating the damage detected proximal to the DSB was produced by the 125I decay that formed the DSB. Gas chromatography-mass spectrometry identified three types of damaged bases in the ~32 bp region proximal to the DSB. These base lesions were 8-hydroxyguanine, 8-hydroxyadenine, and 5-hydroxycytosine. Finally, evidence is presented for base damage >24 bp upstream from the 125I-decay site that may form via a charge migration mechanism. PMID:17067210

  1. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    SciTech Connect

    Fukumoto, Yasunori Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  2. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-strand break repair model for T-DNA integration.

    PubMed

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-02-28

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-strand break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-strand break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosome 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. This article is protected by copyright. All rights reserved.

  3. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells

    PubMed Central

    Nassour, Joe; Martien, Sébastien; Martin, Nathalie; Deruy, Emeric; Tomellini, Elisa; Malaquin, Nicolas; Bouali, Fatima; Sabatier, Laure; Wernert, Nicolas; Pinte, Sébastien; Gilson, Eric; Pourtier, Albin; Pluquet, Olivier; Abbadie, Corinne

    2016-01-01

    The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis. PMID:26822533

  4. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers

    SciTech Connect

    Ljungman, M. )

    1991-04-01

    To assess the influence of chromatin structure on the frequency of radiation-induced DNA strand breaks, the alkaline unwinding technique was applied to nuclear and nucleoid monolayers. These chromatin substrates were prepared by treating human fibroblasts grown as monolayers with the nonionic detergent Triton X-100 and varying concentrations of cations. The chromatin structure was modified either by a stepwise removal of DNA-bound proteins by extraction in increasing concentrations of monovalent salt, or by the addition or deletion of mono- and divalent cations to condense or decondense the chromatin, respectively. It was found that the stepwise removal of DNA-bound proteins from the chromatin dramatically increased the frequency of radiation-induced DNA strand breaks. The DNA-bound proteins showed a qualitative difference in their ability to protect the DNA where proteins removed by salt concentrations above 1.0 M exerted the greatest protection. Furthermore, the frequency of radiation-induced DNA strand breaks was found to be 6 times lower in condensed chromatin than in decondensed chromatin and about 80 times lower than in protein-depleted chromatin. It is concluded that the presence of DNA-bound proteins and the folding of the chromatin into higher-order structures protect the DNA against radiation-induced strand breaks.

  5. Inhibition of X-ray-induced DNA strand break repair in polyamine-depleted HeLa cells.

    PubMed

    Snyder, R D

    1989-05-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO + MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal.

  6. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice

    PubMed Central

    Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether sleep provides any selective advantage over wake in their repair. In flies and mice, we find that enriched wake, more than simply time spent awake, induces DSBs, and their repair in mice is delayed or prevented by subsequent wake. In both species the repair of irradiation-induced neuronal DSBs is also quicker during sleep, and mouse genes mediating the response to DNA damage are upregulated in sleep. Thus, sleep facilitates the repair of neuronal DSBs. PMID:27830758

  7. Parole terms for a killer: directing caspase3/CAD induced DNA strand breaks to coordinate changes in gene expression.

    PubMed

    Larsen, Brian D; Megeney, Lynn A

    2010-08-01

    In a series of discoveries over the preceding decade, a number of laboratories have unequivocally established that apoptotic proteins and pathways are well conserved cell fate determinants, which act independent of a cell death response. Within this context, the role for apoptotic proteins in the induction of cell differentiation has been widely documented. Despite these discoveries, little information has been forthcoming regarding a conserved mechanism by which apoptotic proteins achieve this non-death outcome. In the following discussion, we will explore the premise that the penultimate step in apoptosis, genome wide DNA damage/strand breaks act as a conserved genomic reprogramming event necessary for cell differentiation (Larsen et al. Proc Natl Acad Sci USA 2010; 107:4230-5). Moreover, we hypothesis that directed DNA damage, as mediated by known apoptotic proteins, may participate in numerous forms of regulated gene expression.

  8. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair

    PubMed Central

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-01-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs—c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142—XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells. PMID:25941166

  9. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells.

    PubMed

    Kansara, Krupa; Patel, Pal; Shah, Darshini; Shukla, Ritesh K; Singh, Sanjay; Kumar, Ashutosh; Dhawan, Alok

    2015-03-01

    TiO2 nanoparticles (NPs) have the second highest global annual production (∼3000 tons) among the metal-containing NPs. These NPs are used as photocatalysts for bacterial disinfection, and in various other consumer products including sunscreen, food packaging, therapeutics, biosensors, surface cleaning agents, and others. Humans are exposed to these NPs during synthesis (laboratory), manufacture (industry), and use (consumer products, devices, medicines, etc.), as well as through environmental exposures (disposal). Hence, there is great concern regarding the health effects caused by exposure to NPs and, in particular, to TiO2 NPs. In the present study, the genotoxic potential of TiO2 NPs in A549 cells was examined, focusing on their potential to induce ROS, different types of DNA damage, and cell cycle arrest. We show that TiO2 NPs can induce DNA damage and a corresponding increase in micronucleus frequency, as evident from the comet and cytokinesis-block micronucleus assays. We demonstrate that DNA damage may be attributed to increased oxidative stress and ROS generation. Furthermore, genomic and proteomic analyses showed increased expression of ATM, P53, and CdC-2 and decreased expression of ATR, H2AX, and Cyclin B1 in A549 cells, suggesting induction of DNA double strand breaks. The occurrence of double strand breaks was correlated with cell cycle arrest in G2/M phase. Overall, the results indicate the potential for genotoxicity following exposure to these TiO2 NPs, suggesting that use should be carefully monitored.

  10. [Double-strand DNA breaks induction and repair in human blood lymphocytes irradiated with adapting dose].

    PubMed

    Osipov, A N; Lizunova, E Iu; Vorob'eva, N Iu; Pelevina, I I

    2009-01-01

    Using a DNA-comet assay was shown that irradiation of human blood lymphocytes at G1 cell cycle with a low conditioning dose (5 cGy) induces an adaptive response (AR) manifested in reduction of the double-strand DNA (DSB) amount induced by challenging dose at 10 Gy. 24 h after conditioning irradiation (48 h after PHA addition) in cells irradiated at both conditioning and challenging doses a relative DBS amount was approximately 24% less in comparison to versus a control irradiated at challenging dose only. 48 h after adapting irradiation this index increased to approximately 35%, while 72 h after was decreased to approximately 29%. AR observed by us during 72 h after its induction did not accompanied by statistically significant changes in DBS repair enhancing. It is possible to assume that basic role in AR forming in lymphocytes under experimental conditions used by us playing the processes preventing radiation-induced DBS formation (antioxidant defense system activation, chromatin conformation changes ets).

  11. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome.

    PubMed

    Iacovoni, Jason S; Caron, Pierre; Lassadi, Imen; Nicolas, Estelle; Massip, Laurent; Trouche, Didier; Legube, Gaëlle

    2010-04-21

    Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein-genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of gammaH2AX around DSBs. We found that all DSBs trigger large gammaH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of gammaH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that gammaH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within gammaH2AX domains, indicating that mechanisms may exist to protect gene transcription from gammaH2AX spreading and from the chromatin rearrangements induced by DSBs.

  12. Reinvestigation of in vivo genotoxicity studies in man. I. No induction of DNA strand breaks in peripheral lymphocytes after metronidazole therapy.

    PubMed

    Fahrig, R; Engelke, M

    1997-12-12

    Although a rodent carcinogen, metronidazole is widely used in humans for the treatment of infections with anaerobic organisms. Metronidazole is mutagenic for microorganisms, but has a mainly negative data base for mammals and humans. Therefore, metronidazole is generally considered as a non-genotoxic carcinogen. Only the results of two human in vivo studies would allow the classification of metronidazole as genotoxic carcinogen: (1) the induction of DNA strand breaks; and (2) the induction of chromosome aberrations in peripheral lymphocytes after metronidazole therapy. Because the classification of metronidazole as genotoxic carcinogen would imply enormous consequences with respect to its application, both studies were reinvestigated very thoroughly. The present report describes the reinvestigation of the induction of DNA strand breaks after metronidazole therapy. Each two probes of lymphocytes of metronidazole-treated patients (3 x 500 to 3 x 750 mg/day for 5-8 days) were examined separately for the appearance of DNA strand breaks before and after treatment. In total, 400 nuclei were examined per patient. Immediately before the first, and 30 min to 2 h after the last application, 2 x 10 ml blood per patient was sampled, transported to the laboratory at 15-20 degrees C to make DNA repair more difficult, and examined within the next 4-7 h for DNA strand breaks. At the same time, the individual metronidazole blood plasma levels were measured. In contrast to the published reports, no induction of DNA strand breaks after metronidazole therapy could be observed in the present study. As the applied doses (15,750 mg vs. 4800 mg) and the plasma level (up to 25 micrograms/ml vs. not measured) of metronidazole were much higher than in the published study, the relevance of the clearly negative result is obvious. As induction of DNA strand breaks is a frequent prerequisite for genotoxicity, metronidazole should be considered as a non-genotoxic carcinogen, and not as a

  13. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan.

    PubMed

    Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Juhn-Cherng; Tsai, Ming-Hsui; Lin, Cheng-Chieh; Bau, Da-Tian

    2014-06-01

    The DNA repair gene X-ray repair cross complementing protein 3 (XRCC3) is thought to play a major role in double-strand break repair and in maintaining genomic stability. Very possibly, defective double-strand break repair of cells can lead to carcinogenesis. Therefore, a case-control study was performed to reveal the contribution of XRCC3 genotypes to individual oral cancer susceptibility. In this hospital-based research, the association of XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotypes with oral cancer risk in a Taiwanese population was investigated. In total, 788 patients with oral cancer and 956 age- and gender-matched healthy controls were genotyped. The results showed that there was significant differential distribution among oral cancer and controls in the genotypic (p=0.001428) and allelic (p=0.0013) frequencies of XRCC3 rs861539. As for the other polymorphisms, there was no difference between case and control groups. In gene-lifestyle interaction analysis, we have provided the first evidence showing that there is an obvious joint effect of XRCC3 rs861539 genotype with individual areca chewing habits on oral cancer risk. In conclusion, the T allele of XRCC3 rs861539, which has an interaction with areca chewing habit in oral carcinogenesis, may be an early marker for oral cancer in Taiwanese.

  14. Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis.

    PubMed

    Kim, Soohyun; Ghafoor, Kashif; Lee, Jooyoung; Feng, Mei; Hong, Jungyeon; Lee, Dong-Un; Park, Jiyong

    2013-09-01

    The effects of UV-assisted TiO2-photocatalytic oxidation (PCO) inactivation of pathogenic bacteria (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium) in a liquid culture using different domains of UV irradiation (A, B and C) were evaluated. Structural changes in super-coiled plasmid DNA (pUC19) and genomic DNA of E. coli were observed using gel electrophoresis to demonstrate the photodynamic DNA strand breaking activity of UV-assisted TiO2-PCO. Membrane damage in bacterial cells was observed using both a scanning electron microscope (SEM) and a confocal laser scanning microscope (CLSM). Both UVC-TiO2-PCO and UVC alone resulted in an earlier bactericidal phase (initial counts of approximately 6 log CFU/mL) in 60 s and 90 s, respectively, in liquid culture. UVC-TiO2-PCO treatment for 6 min converted all plasmid DNA to the linear form; however, under UVC irradiation alone, super-coiled DNA remained. Prolonged UVC-TiO2-PCO treatment resulted in structural changes in genomic DNA from E. coli. SEM observations revealed that bacteria suffered severe visible cell damage after UVC-TiO2-PCO treatment for 30-60 min. S. typhimurium cells showed visible damage after 30 min, which was confirmed using CLSM. All treated cells were stained red using propidium iodide under a fluorescent light.

  15. Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells

    SciTech Connect

    Bauerschmidt, Christina; Helleday, Thomas

    2011-02-01

    Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.

  16. Relative rates of repair of single-strand breaks and postirradiation DNA degradation in normal and induced cells of Escherichia coli.

    PubMed Central

    Pollard, E C; Fugate, J K

    1978-01-01

    Labeled DNA from irradiated Excherichia coli cells has been studied on an alkaline sucrose gradient without acid precipitation of the DNA. This enables the observation of both DNA repair and DNA degradation. The use of a predose of ultraviolet light (UV) causes induction of an inhibitor of postirradiation DNA degradation in lex+ strains. The effect of this induction on both the repair of single-strand breaks and DNA degradation has been followed in strains WU3610 (uvr+) and WU3610-89 (uvr-). The repair process is more rapid than the degradation, and when degradation is inhibited more repair is apparent. Cells that are lex- (Bs-1 and AB2474) cannot be induced for inhibition of degradation. Nevertheless, by observation at short times repair can be seen clearly. This repaired DNA is degraded, suggesting that the signal for DNA degradation is not a single-strand break. PMID:365253

  17. hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks

    SciTech Connect

    Berglund, Fredrik M.; Clarke, Paul R.

    2009-03-27

    Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.

  18. Reduced contribution of thermally-labile sugar lesions to DNA double-strand break formation after exposure to neutrons.

    PubMed

    Singh, Satyendra K; Wu, Wenqi; Stuschke, Martin; Bockisch, Andreas; Iliakis, George

    2012-12-01

    In cells exposed to ionizing radiation, double-strand breaks (DSBs) form within clustered damage sites from lesions disrupting the DNA sugar-phosphate backbone. It is commonly assumed that DSBs form promptly and are immediately detected and processed by the cellular DNA damage response apparatus. However, DSBs also form by delayed chemical conversion of thermally-labile sugar lesions (TLSL) to breaks. We recently reported that conversion of thermally-labile sugar lesions to breaks occurs in cells maintained at physiological temperatures. Here, we investigate the influence of radiation quality on the formation of thermally-labile sugar lesions dependent DSBs. We show that, although the yields of total DSBs are very similar after exposure to neutrons and X rays, the yields of thermally-labile sugar lesions dependent DSBs from neutrons are decreased in comparison to that from X rays. Thus, the yields of prompt DSBs for neutrons are greater than for X rays. Notably, after neutron irradiation the decreased yield of thermally-labile sugar lesion dependent DSBs is strongly cell line dependent, likely reflecting subtle differences in DNA organization. We propose that the higher ionization density of neutrons generates with higher probability prompt DSBs within ionization clusters and renders the ensuing chemical evolution of thermally-labile sugar lesions inconsequential to DNA integrity. Modification of thermally-labile sugar lesion evolution may define novel radiation protection strategies aiming at decreasing DSB formation by chemically preserving thermally-labile sugar lesions until other DSB contributing lesions within the clustered damage site are removed by non-DSB repair pathways.

  19. Single-step procedure for labeling DNA strand breaks with fluorescein- or BODIPY-conjugated deoxynucleotides: Detection of apoptosis and bromodeoxyuridine incorporation

    SciTech Connect

    Xun Li; Traganos, F.; Melamed, M.R.; Darzynkiewicz, Z.

    1995-06-01

    The methods of in situ labeling of DNA strand breaks have been used to identify apoptotic cells and/or DNA replicating cells. While discrimination of apoptotic cells is based on the inherent presence of numerous DNA strand breaks in their chromatin, DNA proliferating cells can be discriminated by the selective DNA strand break induction by photolysis (SBIP) methodology at the sites that contain incorporated bromodeoxyuridine (BrdUrd) or iododeoxyuridine (IdUrd). In both instances, DNA strand breaks are labeled with biotin- or digoxygenin-conjugated deoxynucleotides, preferably in the reaction catalyzed by exogenous terminal deoxynucleotidyl transferase; fluorescein tagged avidin (streptavidin) or digoxygenin antibody is used in the second step of the reaction. In the present study, DNA strand break labeling was simplified by using directly labeled deoxynucleotides, in a single-step reaction. Apoptotic cells in HL-60 cultures treated with camptothecin or in primary cultures of non-Hodgkin`s lymphoma cells treated with prednisolone were easily identified utilizing BODIPY-conjugated dUTP (B-dUTP). The single-step procedure, requiring fewer centrifugation steps, resulted in less cell loss compared to the two-step cell labeling technique. The morphology of cells subjected to SBIP was excellent, allowing visualization of distinct DNA replication points. Because, unlike the immunocytochemical methods used to detect BrdUrd incorporation, the SBIP methodology does not require DNA denaturation by heat or acid, nuclear proteins are expected to remain undenatured in situ, allowing one to study colocalization of various constituents, detected immunocytochemically, at the DNA replication points. 30 refs., 7 figs.

  20. Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks

    PubMed Central

    Rakhimova, Alina; Ura, Seiji; Hsu, Duen-Wei; Wang, Hong-Yu; Pears, Catherine J.; Lakin, Nicholas D.

    2017-01-01

    ADP-ribosyltransferases (ARTs) modify proteins with single units or polymers of ADP-ribose to regulate DNA repair. However, the substrates for these enzymes are ill-defined. For example, although histones are modified by ARTs, the sites on these proteins ADP-ribosylated following DNA damage and the ARTs that catalyse these events are unknown. This, in part, is due to the lack of a eukaryotic model that contains ARTs, in addition to histone genes that can be manipulated to assess ADP-ribosylation events in vivo. Here we exploit the model Dictyostelium to identify site-specific histone ADP-ribosylation events in vivo and define the ARTs that mediate these modifications. Dictyostelium histones are modified in response to DNA double strand breaks (DSBs) in vivo by the ARTs Adprt1a and Adprt2. Adprt1a is a mono-ART that modifies H2BE18 in vitro, although disruption of this site allows ADP-ribosylation at H2BE19. Although redundancy between H2BE18 and H2BE19 ADP-ribosylation is also apparent following DSBs in vivo, by generating a strain with mutations at E18/E19 in the h2b locus we demonstrate these are the principal sites modified by Adprt1a/Adprt2. This identifies DNA damage induced histone mono-ADP-ribosylation sites by specific ARTs in vivo, providing a unique platform to assess how histone ADP-ribosylation regulates DNA repair. PMID:28252050

  1. Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair

    PubMed Central

    Singh, Satyendra K.; Wang, Minli; Staudt, Christian; Iliakis, George

    2011-01-01

    In cells exposed to ionizing radiation (IR), double-strand breaks (DSBs) form within clustered-damage sites from lesions disrupting the DNA sugar–phosphate backbone. It is commonly assumed that these DSBs form promptly and are immediately detected and processed by the cellular DNA damage response (DDR) apparatus. This assumption is questioned by the observation that after irradiation of naked DNA, a fraction of DSBs forms minutes to hours after exposure as a result of temperature dependent, chemical processing of labile sugar lesions. Excess DSBs also form when IR-exposed cells are processed at 50°C, but have been hitherto considered method-related artifact. Thus, it remains unknown whether DSBs actually develop in cells after IR exposure from chemically labile damage. Here, we show that irradiation of ‘naked’ or chromatin-organized mammalian DNA produces lesions, which evolve to DSBs and add to those promptly induced, after 8–24 h in vitro incubation at 37°C or 50°C. The conversion is more efficient in chromatin-associated DNA, completed within 1 h in cells and delayed in a reducing environment. We conclude that IR generates sugar lesions within clustered-damage sites contributing to DSB formation only after chemical processing, which occurs efficiently at 37°C. This subset of delayed DSBs may challenge DDR, may affect the perceived repair kinetics and requires further characterization. PMID:21745815

  2. A single subexcitation-energy electron can induce a double-strand break in DNA modified by platinum chemotherapeutic drugs.

    PubMed

    Rezaee, Mohammad; Alizadeh, Elahe; Cloutier, Pierre; Hunting, Darel J; Sanche, Léon

    2014-06-01

    The sensitization of malignant cells to ionizing radiation is the clinical rationale for the use of platinum-drug-based concurrent chemoradiotherapy (CCRT) for cancer treatment; however, the specific mechanisms of radiosensitization and their respective contributions still remain unknown. Biological mechanisms such as inhibition of DNA repair may contribute to the efficacy of CCRT; nevertheless, there is a dearth of information on the possible contribution of nanoscopic mechanisms to the generation of lethal DNA lesions, such as double-strand breaks (DSB). The present study demonstrates that the abundant near zero-eV (0.5 eV) electrons, created by ionizing radiation during radiotherapy, induce DSB in supercoiled plasmid DNA modified by platinum-containing anticancer drugs (Pt drugs), but not in unmodified DNA. They do so more efficiently than other types of radiation, including soft X-rays and 10 eV electrons. The formation of DSB by 0.5 eV electrons is found to be a single-hit process. These findings reveal insights into the radiosensitization mechanism of Pt drugs that can have implications for the development of optimal clinical protocols for platinum-based CCRT and the deployment of in situ sources of subexcitation-energy electrons (e.g., Auger electron-emitting radionuclides) to efficiently enhance DSB formation in DNA modified by Pt drugs in malignant cells.

  3. Synthetic lethal targeting of DNA double strand break repair deficient cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors

    PubMed Central

    Sultana, Rebeka; McNeill, Daniel R.; Abbotts, Rachel; Mohammed, Mohammed Z.; Zdzienicka, Małgorzata Z.; Qutob, Haitham; Seedhouse, Claire; Laughton, Charles A.; Fischer, Peter M.; Patel, Poulam M.; Wilson, David M.; Madhusudan, Srinivasan

    2013-01-01

    An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In the current study we have investigated the ability of APE1 inhibitors to induce synthetic lethality in a panel of DNA double strand break (DSB) repair deficient and proficient cells; a) Chinese hamster (CH) cells: BRCA2 deficient (V-C8), ATM deficient (V-E5), wild type (V79) and BRCA2 revertant (V-C8(Rev1)). b) Human cancer cells: BRCA1 deficient (MDA-MB-436), BRCA1 proficient (MCF-7), BRCA2 deficient (CAPAN-1 and HeLa SilenciX cells), BRCA2 proficient (PANC1 and control SilenciX cells). We also tested synthetic lethality (SL) in CH ovary cells expressing a dominant–negative form of APE1 (E8 cells) using ATM inhibitors and DNA-PKcs inhibitors (DSB inhibitors). APE1 inhibitors are synthetically lethal in BRCA and ATM deficient cells. APE1 inhibition resulted in accumulation of DNA DSBs and G2/M cell cycle arrest. Synthetic lethality was also demonstrated in CH cells expressing a dominant–negative form of APE1 treated with ATM or DNA-PKcs inhibitors. We conclude that APE1 is a promising synthetic lethality target in cancer. PMID:22377908

  4. Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break.

    PubMed

    Brown, M Scott; Grubb, Jennifer; Zhang, Annie; Rust, Michael J; Bishop, Douglas K

    2015-12-01

    The Eukaryotic RecA-like proteins Rad51 and Dmc1 cooperate during meiosis to promote recombination between homologous chromosomes by repairing programmed DNA double strand breaks (DSBs). Previous studies showed that Rad51 and Dmc1 form partially overlapping co-foci. Here we show these Rad51-Dmc1 co-foci are often arranged in pairs separated by distances of up to 400 nm. Paired co-foci remain prevalent when DSBs are dramatically reduced or when strand exchange or synapsis is blocked. Super-resolution dSTORM microscopy reveals that individual foci observed by conventional light microscopy are often composed of two or more substructures. The data support a model in which the two tracts of ssDNA formed by a single DSB separate from one another by distances of up to 400 nm, with both tracts often bound by one or more short (about 100 nt) Rad51 filaments and also by one or more short Dmc1 filaments.

  5. The structure of ends determines the pathway choice and Mre11 nuclease dependency of DNA double-strand break repair

    PubMed Central

    Liao, Shuren; Tammaro, Margaret; Yan, Hong

    2016-01-01

    The key event in the choice of repair pathways for DNA double-strand breaks (DSBs) is the initial processing of ends. Non-homologous end joining (NHEJ) involves limited processing, but homology-dependent repair (HDR) requires extensive resection of the 5′ strand. How cells decide if an end is channeled to resection or NHEJ is not well understood. We hypothesize that the structure of ends is a major determinant and tested this hypothesis with model DNA substrates in Xenopus egg extracts. While ends with normal nucleotides are efficiently channeled to NHEJ, ends with damaged nucleotides or bulky adducts are channeled to resection. Resection is dependent on Mre11, but its nuclease activity is critical only for ends with 5′ bulky adducts. CtIP is absolutely required for activating the nuclease-dependent mechanism of Mre11 but not the nuclease-independent mechanism. Together, these findings suggest that the structure of ends is a major determinant for the pathway choice of DSB repair and the Mre11 nuclease dependency of resection. PMID:27084932

  6. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Background. Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis. PMID:26273425

  7. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein

    PubMed Central

    Ravindranathan, Ramya; Dereli, Ihsan; Stanzione, Marcello; Tóth, Attila

    2016-01-01

    Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair. Here, we addressed the function of MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not been reported. While we did not find an important role for MCMDC2 in mitotically dividing cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial function in meiotic recombination. Meiotic recombination begins with the introduction of DNA double-strand breaks into the genome. DNA ends at break sites are resected. The resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple strand invasions on each chromosome promote the alignment of homologous chromosomes, which is a prerequisite for inter-homologue crossover formation during meiosis. We found that although DNA ends at break sites were evidently resected, and they recruited RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting alignment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51 and DMC1 foci, which are thought to mark early recombination intermediates, were abnormally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4 protein, which marks more advanced recombination intermediates, did not efficiently form foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important role in either the formation, or the stabilization, of DNA strand invasion events that promote homologue alignment and provide the basis for inter-homologue crossover formation during

  8. The DNA-Binding Domain of Human PARP-1 Interacts with DNA Single-Strand Breaks as a Monomer through Its Second Zinc Finger

    PubMed Central

    Eustermann, Sebastian; Videler, Hortense; Yang, Ji-Chun; Cole, Paul T.; Gruszka, Dominika; Veprintsev, Dmitry; Neuhaus, David

    2011-01-01

    Poly(ADP-ribose)polymerase-1 (PARP-1) is a highly abundant chromatin-associated enzyme present in all higher eukaryotic cell nuclei, where it plays key roles in the maintenance of genomic integrity, chromatin remodeling and transcriptional control. It binds to DNA single- and double-strand breaks through an N-terminal region containing two zinc fingers, F1 and F2, following which its C-terminal catalytic domain becomes activated via an unknown mechanism, causing formation and addition of polyadenosine-ribose (PAR) to acceptor proteins including PARP-1 itself. Here, we report a biophysical and structural characterization of the F1 and F2 fingers of human PARP-1, both as independent fragments and in the context of the 24-kDa DNA-binding domain (F1 + F2). We show that the fingers are structurally independent in the absence of DNA and share a highly similar structural fold and dynamics. The F1 + F2 fragment recognizes DNA single-strand breaks as a monomer and in a single orientation. Using a combination of NMR spectroscopy and other biophysical techniques, we show that recognition is primarily achieved by F2, which binds the DNA in an essentially identical manner whether present in isolation or in the two-finger fragment. F2 interacts much more strongly with nicked or gapped DNA ligands than does F1, and we present a mutational study that suggests origins of this difference. Our data suggest that different DNA lesions are recognized by the DNA-binding domain of PARP-1 in a highly similar conformation, helping to rationalize how the full-length protein participates in multiple steps of DNA single-strand breakage and base excision repair. PMID:21262234

  9. The catalytic subunit of DNA-dependent protein kinase is required for cellular resistance to oxidative stress independent of DNA double-strand break repair.

    PubMed

    Li, Mengxia; Lin, Yu-Fen; Palchik, Guillermo A; Matsunaga, Shinji; Wang, Dong; Chen, Benjamin P C

    2014-11-01

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. Whereas ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the nonhomologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in the oxidative stress response and could be activated directly in vitro on hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double-strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs-deficient, but not Ligase 4-deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a noncanonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS buildup independently of its function in DSB repair.

  10. Impact of Charged Particle Exposure on Homologous DNA Double-Strand Break Repair in Human Blood-Derived Cells.

    PubMed

    Rall, Melanie; Kraft, Daniela; Volcic, Meta; Cucu, Aljona; Nasonova, Elena; Taucher-Scholz, Gisela; Bönig, Halvard; Wiesmüller, Lisa; Fournier, Claudia

    2015-01-01

    Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X-rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET) in HSPC versus PBL. For higher LET, 53BP1 foci kinetics was similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.

  11. Impact of Charged Particle Exposure on Homologous DNA Double-Strand Break Repair in Human Blood-Derived Cells

    PubMed Central

    Rall, Melanie; Kraft, Daniela; Volcic, Meta; Cucu, Aljona; Nasonova, Elena; Taucher-Scholz, Gisela; Bönig, Halvard; Wiesmüller, Lisa; Fournier, Claudia

    2015-01-01

    Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X-rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET) in HSPC versus PBL. For higher LET, 53BP1 foci kinetics was similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment. PMID:26618143

  12. Quantitation of radiation-, chemical-, or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers

    SciTech Connect

    Freeman, S.E.; Blackett, A.D.; Monteleone, D.C.; Setlow, R.B.; Sutherland, B.M.; Sutherland, J.C.

    1986-10-01

    The authors have developed an alkaline agarose gel method for quantitating single strand breaks in nanogram quantities of nonradioactive DNA. After electrophoresis together with molecular length standards, the DNA is neutralized, stained with ethidium bromide, photographed, and the density profiles recorded with a computer controller scanner. The medium lengths, number average molecular lengths, and length average molecular lengths of the DNAs can be computed by using the mobilities of the molecular length standards. The frequency of single strand breaks can then be determined by comparison of the corresponding average molecular lengths of DNAs treated and not treated with single stand break-inducing agents (radiation, chemicals, or lesion-specific endonuclease). Single stand break yields (induced at pyrimidine dimer sites in uv-irradiated human fibroblasts DNA by the dimer-specific endonuclease from Micrococcus luteus) from our method agree with values obtained for the same DNAs from alkaline sucrose gradient analysis. The method has been used to determined pyrimidine dimer yields in DNA from biopsies of human skin irradiated in situ. It will be especially useful in determining the frequency of single strand breaks (or lesions convertible to single stand breaks by specific cleaving reagents or enzymes) in small quantities of DNA from cells or tissues not amendable to radioactive labeling.

  13. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair.

    PubMed

    Malewicz, Michal; Kadkhodaei, Banafsheh; Kee, Nigel; Volakakis, Nikolaos; Hellman, Ulf; Viktorsson, Kristina; Leung, Chuen Yan; Chen, Benjamin; Lewensohn, Rolf; van Gent, Dik C; Chen, David J; Perlmann, Thomas

    2011-10-01

    DNA-dependent protein kinase (DNA-PK) is a central regulator of DNA double-strand break (DSB) repair; however, the identity of relevant DNA-PK substrates has remained elusive. NR4A nuclear orphan receptors function as sequence-specific DNA-binding transcription factors that participate in adaptive and stress-related cell responses. We show here that NR4A proteins interact with the DNA-PK catalytic subunit and, upon exposure to DNA damage, translocate to DSB foci by a mechanism requiring the activity of poly(ADP-ribose) polymerase-1 (PARP-1). At DNA repair foci, NR4A is phosphorylated by DNA-PK and promotes DSB repair. Notably, NR4A transcriptional activity is entirely dispensable in this function, and core components of the DNA repair machinery are not transcriptionally regulated by NR4A. Instead, NR4A functions directly at DNA repair sites by a process that requires phosphorylation by DNA-PK. Furthermore, a severe combined immunodeficiency (SCID)-causing mutation in the human gene encoding the DNA-PK catalytic subunit impairs the interaction and phosphorylation of NR4A at DSBs. Thus, NR4As represent an entirely novel component of DNA damage response and are substrates of DNA-PK in the process of DSB repair.

  14. RhoB Promotes γH2AX Dephosphorylation and DNA Double-Strand Break Repair

    PubMed Central

    Mamouni, Kenza; Cristini, Agnese; Guirouilh-Barbat, Josée; Monferran, Sylvie; Lemarié, Anthony; Faye, Jean-Charles; Lopez, Bernard S.

    2014-01-01

    Unlike other Rho GTPases, RhoB is rapidly induced by DNA damage, and its expression level decreases during cancer progression. Because inefficient repair of DNA double-strand breaks (DSBs) can lead to cancer, we investigated whether camptothecin, an anticancer drug that produces DSBs, induces RhoB expression and examined its role in the camptothecin-induced DNA damage response. We show that in camptothecin-treated cells, DSBs induce RhoB expression by a mechanism that depends notably on Chk2 and its substrate HuR, which binds to RhoB mRNA and protects it against degradation. RhoB-deficient cells fail to dephosphorylate γH2AX following camptothecin removal and show reduced efficiency of DSB repair by homologous recombination. These cells also show decreased activity of protein phosphatase 2A (PP2A), a phosphatase for γH2AX and other DNA damage and repair proteins. Thus, we propose that DSBs activate a Chk2-HuR-RhoB pathway that promotes PP2A-mediated dephosphorylation of γH2AX and DSB repair. Finally, we show that RhoB-deficient cells accumulate endogenous γH2AX and chromosomal abnormalities, suggesting that RhoB loss increases DSB-mediated genomic instability and tumor progression. PMID:24912678

  15. Polo-like kinase 1 mediates BRCA1 phosphorylation and recruitment at DNA double-strand breaks

    PubMed Central

    Chabalier-Taste, Corinne; Canitrot, Yvan; Calsou, Patrick; Larminat, Florence

    2016-01-01

    Accurate repair of DNA double-strand breaks (DSB) caused during DNA replication and by exogenous stresses is critical for the maintenance of genomic integrity. There is growing evidence that the Polo-like kinase 1 (Plk1) that plays a number of pivotal roles in cell proliferation can directly participate in regulation of DSB repair. In this study, we show that Plk1 regulates BRCA1, a key mediator protein required to efficiently repair DSB through homologous recombination (HR). Following induction of DSB, BRCA1 concentrates in distinctive large nuclear foci at damage sites where multiple DNA repair factors accumulate. First, we found that inhibition of Plk1 shortly before DNA damage sensitizes cells to ionizing radiation and reduces DSB repair by HR. Second, we provide evidence that BRCA1 foci formation induced by DSB is reduced when Plk1 is inhibited or depleted. Third, we identified BRCA1 as a novel Plk1 substrate and determined that Ser1164 is the major phosphorylation site for Plk1 in vitro. In cells, mutation of Plk1 sites on BRCA1 significantly delays BRCA1 foci formation following DSB, recapitulating the phenotype observed upon Plk1 inhibition. Our data then assign a key function to Plk1 in BRCA1 foci formation at DSB, emphasizing Plk1 importance in the HR repair of human cells. PMID:26745677

  16. VCP/p97 Extracts Sterically Trapped Ku70/80 Rings from DNA in Double-Strand Break Repair.

    PubMed

    van den Boom, Johannes; Wolf, Markus; Weimann, Lena; Schulze, Nina; Li, Fanghua; Kaschani, Farnusch; Riemer, Anne; Zierhut, Christian; Kaiser, Markus; Iliakis, George; Funabiki, Hironori; Meyer, Hemmo

    2016-10-06

    During DNA double-strand break (DSB) repair, the ring-shaped Ku70/80 complex becomes trapped on DNA and needs to be actively extracted, but it has remained unclear what provides the required energy. By means of reconstitution of DSB repair on beads, we demonstrate here that DNA-locked Ku rings are released by the AAA-ATPase p97. To achieve this, p97 requires ATP hydrolysis, cooperates with the Ufd1-Npl4 ubiquitin-adaptor complex, and specifically targets Ku80 that is modified by K48-linked ubiquitin chains. In U2OS cells, chemical inhibition of p97 or siRNA-mediated depletion of p97 or its adapters impairs Ku80 removal after non-homologous end joining of DSBs. Moreover, this inhibition attenuates early steps in homologous recombination, consistent with p97-driven Ku release also affecting repair pathway choice. Thus, our data answer a central question regarding regulation of Ku in DSB repair and illustrate the ability of p97 to segregate even tightly bound protein complexes for release from DNA.

  17. Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes.

    PubMed

    Hung, Putzer J; Chen, Bo-Ruei; George, Rosmy; Liberman, Caleb; Morales, Abigail J; Colon-Ortiz, Pedro; Tyler, Jessica K; Sleckman, Barry P; Bredemeyer, Andrea L

    2017-02-01

    Non-homologous end joining (NHEJ) is a major DNA double-strand break (DSB) repair pathway that functions in all phases of the cell cycle. NHEJ repairs genotoxic and physiological DSBs, such as those generated by ionizing radiation and during V(D)J recombination at antigen receptor loci, respectively. DNA end joining by NHEJ relies on the core factors Ku70, Ku80, XRCC4, and DNA Ligase IV. Additional proteins also play important roles in NHEJ. The XRCC4-like factor (XLF) participates in NHEJ through its interaction with XRCC4, and XLF deficiency in humans leads to immunodeficiency and increased sensitivity to ionizing radiation. However, XLF is dispensable for NHEJ-mediated DSB repair during V(D)J recombination in murine lymphocytes, where it may have redundant functions with other DSB repair factors. Paralog of XRCC4 and XLF (PAXX) is a recently identified NHEJ factor that has structural similarity to XRCC4 and XLF. Here we show that PAXX is also dispensable for NHEJ during V(D)J recombination and during the repair of genotoxic DSBs in lymphocytes. However, a combined deficiency of PAXX and XLF blocks NHEJ with a severity comparable to that observed in DNA Ligase IV-deficient cells. Similar to XLF, PAXX interacts with Ku through its C-terminal region, and mutations that disrupt Ku binding prevent PAXX from promoting NHEJ in XLF-deficient lymphocytes. Our findings suggest that the PAXX and XLF proteins may have redundant functions during NHEJ.

  18. Mdt1 Facilitates Efficient Repair of Blocked DNA Double-Strand Breaks and Recombinational Maintenance of Telomeres▿

    PubMed Central

    Pike, Brietta L.; Heierhorst, Jörg

    2007-01-01

    DNA recombination plays critical roles in DNA repair and alternative telomere maintenance. Here we show that absence of the SQ/TQ cluster domain-containing protein Mdt1 (Ybl051c) renders Saccharomyces cerevisiae particularly hypersensitive to bleomycin, a drug that causes 3′-phospho-glycolate-blocked DNA double-strand breaks (DSBs). mdt1Δ also hypersensitizes partially recombination-defective cells to camptothecin-induced 3′-phospho-tyrosyl protein-blocked DSBs. Remarkably, whereas mdt1Δ cells are unable to restore broken chromosomes after bleomycin treatment, they efficiently repair “clean” endonuclease-generated DSBs. Epistasis analyses indicate that MDT1 acts in the repair of bleomycin-induced DSBs by regulating the efficiency of the homologous recombination pathway as well as telomere-related functions of the KU complex. Moreover, mdt1Δ leads to severe synthetic growth defects with a deletion of the recombination facilitator and telomere-positioning factor gene CTF18 already in the absence of exogenous DNA damage. Importantly, mdt1Δ causes a dramatic shift from the usually prevalent type II to the less-efficient type I pathway of recombinational telomere maintenance in the absence of telomerase in liquid senescence assays. As telomeres resemble protein-blocked DSBs, the results indicate that Mdt1 acts in a novel blocked-end-specific recombination pathway that is required for the efficiency of both drug-induced DSB repair and telomerase-independent telomere maintenance. PMID:17636027

  19. Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance.

    PubMed

    Kozak, Jaroslav; West, Christopher E; White, Charles; da Costa-Nunes, José A; Angelis, Karel J

    2009-03-01

    DNA double strand breaks (DSBs) are one of the most cytotoxic forms of DNA damage and must be repaired by recombination, predominantly via non-homologous joining of DNA ends (NHEJ) in higher eukaryotes. However, analysis of DSB repair kinetics of plant NHEJ mutants atlig4-4 and atku80 with the neutral comet assay shows that alternative DSB repair pathways are active. Surprisingly, these kinetic measurements show that DSB repair was faster in the NHEJ mutant lines than in wild-type Arabidopsis. Here we provide the first characterization of this KU-independent, rapid DSB repair pathway operating in Arabidopsis. The alternate pathway that rapidly removes the majority of DSBs present in nuclear DNA depends upon structural maintenance of chromosomes (SMC) complex proteins, namely MIM/AtRAD18 and AtRAD21.1. An absolute requirement for SMC proteins and kleisin for rapid repair of DSBs in Arabidopsis opens new insight into the mechanism of DSB removal in plants.

  20. Nej1 recruits the Srs2 helicase to DNA double-strand breaks and supports repair by a single-strand annealing-like mechanism.

    PubMed

    Carter, Sidney D; Vigasová, Dana; Chen, Jiang; Chovanec, Miroslav; Aström, Stefan U

    2009-07-21

    Double-strand breaks (DSBs) represent the most severe DNA lesion a cell can suffer, as they pose the risk of inducing loss of genomic integrity and promote oncogenesis in mammals. Two pathways repair DSBs, nonhomologous end joining (NHEJ) and homologous recombination (HR). With respect to mechanism and genetic requirements, characterization of these pathways has revealed a large degree of functional separation between the two. Nej1 is a cell-type specific regulator essential to NHEJ in Saccharomyces cerevisiae. Srs2 is a DNA helicase with multiple roles in HR. In this study, we show that Nej1 physically interacts with Srs2. Furthermore, mutational analysis of Nej1 suggests that the interaction was strengthened by Dun1-dependent phosphorylation of Nej1 serines 297/298. Srs2 was previously shown to be recruited to replication forks, where it promotes translesion DNA synthesis. We demonstrate that Srs2 was also efficiently recruited to DSBs generated by the HO endonuclease. Additionally, efficient Srs2 recruitment to this DSB was dependent on Nej1, but independent of mechanisms facilitating Srs2 recruitment to replication forks. Functionally, both Nej1 and Srs2 were required for efficient repair of DSBs with 15-bp overhangs, a repair event reminiscent of a specific type of HR called single-strand annealing (SSA). Moreover, absence of Rad51 suppressed the SSA-defect in srs2 and nej1 strains. We suggest a model in which Nej1 recruits Srs2 to DSBs to promote NHEJ/SSA-like repair by dismantling inappropriately formed Rad51 nucleoprotein filaments. This unexpected link between NHEJ and HR components may represent cross-talk between DSB repair pathways to ensure efficient repair.

  1. Nej1 recruits the Srs2 helicase to DNA double-strand breaks and supports repair by a single-strand annealing-like mechanism

    PubMed Central

    Carter, Sidney D.; Vigašová, Dana; Chen, Jiang; Chovanec, Miroslav; Åström, Stefan U.

    2009-01-01

    Double-strand breaks (DSBs) represent the most severe DNA lesion a cell can suffer, as they pose the risk of inducing loss of genomic integrity and promote oncogenesis in mammals. Two pathways repair DSBs, nonhomologous end joining (NHEJ) and homologous recombination (HR). With respect to mechanism and genetic requirements, characterization of these pathways has revealed a large degree of functional separation between the two. Nej1 is a cell-type specific regulator essential to NHEJ in Saccharomyces cerevisiae. Srs2 is a DNA helicase with multiple roles in HR. In this study, we show that Nej1 physically interacts with Srs2. Furthermore, mutational analysis of Nej1 suggests that the interaction was strengthened by Dun1-dependent phosphorylation of Nej1 serines 297/298. Srs2 was previously shown to be recruited to replication forks, where it promotes translesion DNA synthesis. We demonstrate that Srs2 was also efficiently recruited to DSBs generated by the HO endonuclease. Additionally, efficient Srs2 recruitment to this DSB was dependent on Nej1, but independent of mechanisms facilitating Srs2 recruitment to replication forks. Functionally, both Nej1 and Srs2 were required for efficient repair of DSBs with 15-bp overhangs, a repair event reminiscent of a specific type of HR called single-strand annealing (SSA). Moreover, absence of Rad51 suppressed the SSA-defect in srs2 and nej1 strains. We suggest a model in which Nej1 recruits Srs2 to DSBs to promote NHEJ/SSA-like repair by dismantling inappropriately formed Rad51 nucleoprotein filaments. This unexpected link between NHEJ and HR components may represent cross-talk between DSB repair pathways to ensure efficient repair. PMID:19571008

  2. Response of V79 cells to low doses of X-rays and negative pi-mesons: clonogenic survival and DNA strand breaks.

    PubMed

    Marples, B; Adomat, H; Koch, C J; Skov, K A

    1996-10-01

    Mammalian cells are hypersensitive to very low doses of X-rays (< 0.2 Gy), a response which is followed by increased radioresistance up to 1 Gy. Increased radioresistance is postulated to be a response to DNA damage, possibly single-strand breaks, and it appears to be a characteristic of low linear energy transfer (LET) radiation. Here we demonstrate a correspondence between the extent of the increased radioresistance and linear energy transfer of 250 kVp X-rays and plateau and Bragg peak negative pi-mesons. The results support our hypothesis since the size of the increased radioresistant response appears to correspond to the number of radiation induced single-strand breaks. Furthermore, since survival prior to the increased radioresistant response (< 0.2 Gy) was LET-independent, these data support the notion that the increased radioresistant response may dictate the overall survival response to higher doses. However, while these data provide further circumstantial evidence for the involvement of DNA strand breaks in the triggering of increased radioresistance, more direct conclusions cannot be made. The data are not accurate enough to detect structure in the single-strand break profiles, the production of single-strand breaks being apparently linear with dose.

  3. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    PubMed

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion.

  4. Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe.

    PubMed

    Lenglez, Sandrine; Hermand, Damien; Decottignies, Anabelle

    2010-09-01

    Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites.

  5. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    PubMed Central

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway. PMID:26983989

  6. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair.

    PubMed

    Belov, Oleg V; Krasavin, Eugene A; Lyashko, Marina S; Batmunkh, Munkhbaatar; Sweilam, Nasser H

    2015-02-07

    We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the non-homologous end-joining (NHEJ), homologous recombination (HR), single-strand annealing (SSA) and two alternative end-joining pathways. It reconstructs the time-courses of radiation-induced foci specific to particular repair processes including the major intermediate stages. The model is validated for ionizing radiations of a wide range of linear energy transfer (0.2-236 keV/µm) including a relatively broad spectrum of heavy ions. The appropriate set of reaction rate constants was suggested to satisfy the kinetics of DSB rejoining for the considered types of exposure. The simultaneous assessment of several repair pathways allows to describe their possible biological relations in response to irradiation. With the help of the proposed approach, we reproduce several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions. The results produced confirm the hypothesis suggesting existence of at least two alternative Ku-independent end-joining pathways.

  7. Myricetin induces apoptosis via endoplasmic reticulum stress and DNA double-strand breaks in human ovarian cancer cells

    PubMed Central

    XU, YE; XIE, QI; WU, SHAOHUA; YI, DAN; YU, YANG; LIU, SHIBING; LI, SONGYAN; LI, ZHIXIN

    2016-01-01

    The mechanisms underlying myricetin-induced cancer cell apoptosis remain to be elucidated. Certain previous studies have shown that myricetin induces apoptosis through the mitochondrial pathway. Apoptosis, however, can also be induced by other classical pathways, including endoplasmic reticulum (ER) stress and DNA double-strand breaks (DSBs). The aim of the present study was to assess whether these two apoptotic pathways are involved in myricetin-induced cell death in SKOV3 ovarian cancer cells. The results revealed that treatment with myricetin inhibited viability of SKOV3 cells in a dose-dependent manner. Myricetin induced nuclear chromatin condensation and fragmentation, and also upregulated the protein levels of active caspase 3 in a time-dependent manner. In addition, myricetin upregulated ER stress-associated proteins, glucose-regulated protein-78 and C/EBP homologous protein in SKOV3 cells. Phosphorylation of H2AX, a marker of DNA DSBs, was revealed to be upregulated in myricetin-treated cells. The data indicated that myricetin induces DNA DSBs and ER stress, which leads to apoptosis in SKOV3 cells. PMID:26782830

  8. c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair.

    PubMed

    Chiang, Yu-Chi; Teng, Shu-Chun; Su, Yi-Ning; Hsieh, Fon-Jou; Wu, Kou-Juey

    2003-05-23

    The c-myc proto-oncogene encodes a ubiquitous transcription factor involved in the control of cell growth and implicated in inducing tumorigenesis. Understanding the function of c-Myc and its role in cancer depends upon the identification of c-Myc target genes. Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, and chromosomal instability. The NBS gene product, NBS1 (p95 or nibrin), is a part of the hMre11 complex, a central player associated with double-strand break (DSB) repair. NBS1 contains domains characteristic for proteins involved in DNA repair, recombination, and replication. Here we show that c-Myc directly activates NBS1. c-Myc-mediated induction of NBS1 gene transcription occurs in different tissues, is independent of cell proliferation, and is mediated by a c-Myc binding site in the intron 1 region of NBS1 gene. Overexpression of NBS1 in Rat1a cells increased cell proliferation. These results indicate that NBS1 is a direct transcriptional target of c-Myc and links the function of c-Myc to the regulation of DNA DSB repair pathway operating during DNA replication.

  9. Epigenetic Modifications and Accumulation of DNA Double-Strand Breaks in Oral Lichen Planus Lesions Presenting Poor Response to Therapy

    PubMed Central

    Dillenburg, Caroline S.; Martins, Marco A.T.; Almeida, Luciana O.; Meurer, Luise; Squarize, Cristiane H.; Martins, Manoela D.; Castilho, Rogerio M.

    2015-01-01

    Abstract Epigenetics refers to changes in cell characteristics that occur independently of modifications to the deoxyribonucleic acid (DNA) sequence. Alterations mediated by epigenetic mechanisms are important factors in cancer progression. Although an exciting prospect, the identification of early epigenetic markers associated with clinical outcome in premalignant and malignant disorders remains elusive. We examined alterations in chromatin acetylation in oral lichen planus (OLP) with distinct clinical behavior and compared the alterations to the levels of DNA double-strand breaks (DSBs). We analyzed 42 OLP patients, who had different responses to therapy, for acetyl-histone H3 at lys9 (H3K9ac), which is associated with enhanced transcription and nuclear decondensation, and the presence of DSBs, as determined by accumulation of phosphorylated γH2AX foci. Patients with high levels of H3K9ac acetylation failed to respond to therapy or experienced disease recurrence shortly after therapy. Similar to H3K9ac, patients who responded poorly to therapy had increased accumulation of DNA DSB, indicating genomic instability. These findings suggest that histone modifications occur in OLP, and H3K9ac and γH2AX histones may serve as epigenetic markers for OLP recurrence. PMID:26222871

  10. Formation of 8-hydroxy(deoxy)guanosine and generation of strand breaks at guanine residues in DNA by singlet oxygen

    SciTech Connect

    Devasagayam, T.P.A.; Obendorf, M.S.W.; Schulz, W.A.; Sies, H. ); Steenken, S. )

    1991-06-25

    Singlet molecular oxygen ({sup 1}O{sub 2}) was generated in aqueous solution (H{sub 2}O or D{sub 2}O) at 37 C by the thermal dissociation of the endoperoxide of 3,3'-(1,4-naphthylidene) dipropionate (NDPO{sub 2}). Guanosine and deoxyguanosine quench {sup 1}O{sub 2} with overall quenching rate constants of 6.2 {times} 10{sup 6} M{sup {minus}1} s{sup {minus}1} and 5.2 {times} 10{sup 6} M{sup {minus}1} s{sup {minus}1}, respectively. Reaction with {sup 1}O{sub 2} results in the formation of 8-hydroxyguanosine (8-OH-Guo) and 8-hydroxydeoxyguanosine (8-OH-dGuo), respectively, with a yield of 1.5% at 1 mM substrate with an NDPO{sub 2} concentration of 40 mM; a corresponding 8-hydroxy derivative is not formed from deoxyadenosine. in D{sub 2}O the yield of 8-OH-Guo is 1.5-fold that in H{sub 2}O. Sodium azide suppresses 8-OH-Guo and 8-OH-dGuo production. in contrast, the hydroxyl radical scavengers, tert-butanol, 2-propanol, or sodium formate, do not decrease the production of the 8-OH derivatives. The formation of 8-OH derivatives is significantly increased (2-5-fold) by thiols such as dithiothreitol, glutathione, cysteine, and cysteamine. With use of a plasmid containing a fragment of the mouse metallothionein 1 promoter (pMTP3') and a novel end-labeling technique, the position of {sup 1}O{sub 2}-induced single-strand breaks in DNA was examined. Strand breaks occur selectively at dGuo; no major differences (hot spots) were observed between individual guanines.

  11. ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair.

    PubMed

    Kwon, S-J; Park, J-H; Park, E-J; Lee, S-A; Lee, H-S; Kang, S W; Kwon, J

    2015-01-15

    ATP-dependent chromatin remodeling complexes such as SWI/SNF (SWItch/Sucrose NonFermentable) have been implicated in DNA double-strand break (DSB) repair and damage responses. However, the regulatory mechanisms that control the function of chromatin remodelers in DNA damage response are largely unknown. Here, we show that ataxia telangiectasia mutated (ATM) mediates the phosphorylation of BRG1, the catalytic ATPase of the SWI/SNF complex that contributes to DSB repair by binding γ-H2AX-containing nucleosomes via interaction with acetylated histone H3 and stimulating γ-H2AX formation, at Ser-721 in response to DNA damage. ATM-mediated phosphorylation of BRG1 occurs rapidly and transiently after DNA damage. Phosphorylated BRG1 binds γ-H2AX-containing nucleosomes to form the repair foci. The Ser-721 phosphorylation of BRG1 is critical for binding γ-H2AX-containing nucleosomes and stimulating γ-H2AX formation and DSB repair. BRG1 binds to acetylated H3 peptides much better after phosphorylation at Ser-721 by DNA damage. However, the phosphorylation of Ser-721 does not significantly affect the ATPase and transcriptional activities of BRG1. These results, establishing BRG1 as a novel and functional ATM substrate, suggest that the ATM-mediated phosphorylation of BRG1 facilitates DSB repair by stimulating the association of this remodeler with γ-H2AX nucleosomes via enhancing the affinity to acetylated H3. Our work also suggests that the mechanism of BRG1 stimulation of DNA repair is independent of the remodeler's enzymatic or transcriptional activities.

  12. Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams

    PubMed Central

    Chaudhary, Pankaj; Marshall, Thomas I.; Currell, Frederick J.; Kacperek, Andrzej; Schettino, Giuseppe; Prise, Kevin M.

    2016-01-01

    Purpose To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams. Methods and Materials Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, and distal positions of SOBP and the entrance and peak position for the pristine beam. Results A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci. Conclusions The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions. PMID:26452569

  13. Rad54B Targeting to DNA Double-Strand Break Repair Sites Requires Complex Formation with S100A11

    PubMed Central

    Murzik, Ulrike; Hemmerich, Peter; Weidtkamp-Peters, Stefanie; Ulbricht, Tobias; Bussen, Wendy; Hentschel, Julia; von Eggeling, Ferdinand

    2008-01-01

    S100A11 is involved in a variety of intracellular activities such as growth regulation and differentiation. To gain more insight into the physiological role of endogenously expressed S100A11, we used a proteomic approach to detect and identify interacting proteins in vivo. Hereby, we were able to detect a specific interaction between S100A11 and Rad54B, which could be confirmed under in vivo conditions. Rad54B, a DNA-dependent ATPase, is described to be involved in recombinational repair of DNA damage, including DNA double-strand breaks (DSBs). Treatment with bleomycin, which induces DSBs, revealed an increase in the degree of colocalization between S100A11 and Rad54B. Furthermore, S100A11/Rad54B foci are spatially associated with sites of DNA DSB repair. Furthermore, while the expression of p21WAF1/CIP1 was increased in parallel with DNA damage, its protein level was drastically down-regulated in damaged cells after S100A11 knockdown. Down-regulation of S100A11 by RNA interference also abolished Rad54B targeting to DSBs. Additionally, S100A11 down-regulated HaCaT cells showed a restricted proliferation capacity and an increase of the apoptotic cell fraction. These observations suggest that S100A11 targets Rad54B to sites of DNA DSB repair sites and identify a novel function for S100A11 in p21-based regulation of cell cycle. PMID:18463164

  14. Induction of DNA strand breaks, base lesions and clustered damage sites in hydrated plasmid DNA films by ultrasoft X rays around the phosphorus K edge.

    PubMed

    Yokoya, Akinari; Cunniffe, Siobhan M T; Watanabe, Ritsuko; Kobayashi, Katsumi; O'Neill, Peter

    2009-09-01

    To characterize the DNA damage induced by K-shell ionization of phosphorus atom in DNA backbone on the level of hydration, the yields of DNA strand breaks and base lesions arising from the interaction of ultrasoft X rays with energies around the phosphorus K edge were determined using dry and fully hydrated pUC18 plasmid DNA samples. Base lesions and bistranded clustered DNA damage sites were revealed by postirradiation treatment with the base excision repair proteins endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). The yield of prompt single-strand breaks (SSBs) with dry DNA irradiated at the phosphorus K resonance energy (2153 eV) is about one-third that below the phosphorus K edge (2147 eV). The yields of prompt double-strand breaks (DSBs) were found to be less dependent on the X-ray energy, with the yields being about two times lower when irradiated at 2153 eV. Heat-labile sites were not produced in detectable amounts. The yields of base lesions were dependent on the energy of the X rays, especially when the DNA was fully hydrated. Bistranded clustered DNA damage sites, revealed enzymatically as additional DSBs, were produced in dry as well as in hydrated DNA with all three energies of X rays. The yields of these enzyme-sensitive sites were also lower when irradiated at the phosphorus K resonance energy. On the other hand, the yields of prompt SSBs and enzyme-sensitive sites for the two off-resonance energies were, larger than those determined previously for gamma radiation. The results indicate that the photoelectric effect caused by X rays and dense ionization and excitation events along the tracks of low-energy secondary electrons are more effective at inducing SSBs and enzyme-sensitive sites. The complex types of damage, prompt and enzymatically induced DSBs, are preferentially induced by phosphorus K resonance at 2153 eV rather than simple SSBs and isolated base lesions, particularly in hydrated conditions. It is concluded that not

  15. Differential Expression of DNA Double-Strand Break Repair Proteins in Breast Cells

    DTIC Science & Technology

    2001-07-01

    resting breast tissues from 10 different patients express both components of DNA-PK, DNAPKcs and Ku. These tissues also expressed XRCC4, DNA Ligase IV...DNA-PK in human breast tissues by immuno-histochemistry and extended these studies to two other components of the NHEJ repair pathway, XRCC4 and DNA ... ligase IV, as well as three other DNA repair components NBS1, MRE11, and PCNA. In contrast to the original report, 90% of the epithelial cells in normal

  16. DNA replication and the repair of DNA strand breaks in nuclei of Physarum polycephalum. Terminal report, August 1, 1978-March 31, 1980

    SciTech Connect

    Brewer, E.N.; Evans, T.E.

    1980-01-01

    Nuclei isolated from Physarum are able to replicate approximately 15% of the total genome in a manner which is qualitatively similar to the DNA replication process occurring in the intact organism. Such nuclei, however, are defective in the joining of Okazaki intermediates in vitro. Two DNA polymerase species, isolated from nuclei or intact plasmodia of this organism, can be separated by sucrose density gradient centrifugation. Total DNA polymerase activity is low in nuclei isolated during mitosis. A heat-stable glycoprotein material present in aqueous nuclear extracts stimulates DNA synthesis in well-washed nuclei. A sub-nuclear preparation active in DNA synthesis in vitro has been obtained from isolated nuclei of Physarum. Radiation-induced DNA double-strand breaks are rejoined in intact plasmodia and isolated nuclei of Physarum in a cell cycle-dependent manner. This phenomenon does not appear to be due to an intrinsic difference in nuclear DNA endonuclease activity at different times of the mitotic cycle. DNA strand breaks and repair induced by the carcinogen 4-nitroquinoline-1-oxide is similar in several respects to that resulting from exposure of the organism to ionizing radiation. Temperature sensitive strains of Physarum have been constructed and preliminary genetical and biochemical characterizations have been carried out. Two of the strains appear to be conditionally defective in DNA metabolism. An isogenic ploidal series of amoebae has been prepared and characterized as to uv and ionizing radiation sensitivity (in terms of cell survival). There is a direct relationship between ploidy and resistance to uv whereas ploidal change does not appear to affect the response to ionizing radiation.

  17. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining

    PubMed Central

    Lu, Guangqing; Duan, Jinzhi; Shu, Sheng; Wang, Xuxiang; Gao, Linlin; Guo, Jing; Zhang, Yu

    2016-01-01

    In eukaryotes, DNA double-strand breaks (DSBs), one of the most harmful types of DNA damage, are repaired by homologous repair (HR) and nonhomologous end-joining (NHEJ). Surprisingly, in cells deficient for core classic NHEJ factors such as DNA ligase IV (Lig4), substantial end-joining activities have been observed in various situations, suggesting the existence of alternative end-joining (A-EJ) activities. Several putative A-EJ factors have been proposed, although results are mostly controversial. By using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we generated mouse CH12F3 cell lines in which, in addition to Lig4, either Lig1 or nuclear Lig3, representing the cells containing a single DNA ligase (Lig3 or Lig1, respectively) in their nucleus, was completely ablated. Surprisingly, we found that both Lig1- and Lig3-containing complexes could efficiently catalyze A-EJ for class switching recombination (CSR) in the IgH locus and chromosomal deletions between DSBs generated by CRISPR/Cas9 in cis-chromosomes. However, only deletion of nuclear Lig3, but not Lig1, could significantly reduce the interchromosomal translocations in Lig4−/− cells, suggesting the unique role of Lig3 in catalyzing chromosome translocation. Additional sequence analysis of chromosome translocation junction microhomology revealed the specificity of different ligase-containing complexes. The data suggested the existence of multiple DNA ligase-containing complexes in A-EJ. PMID:26787905

  18. CtIP Protein Dimerization Is Critical for Its Recruitment to Chromosomal DNA Double-stranded Breaks*

    PubMed Central

    Wang, Hailong; Shao, Zhengping; Shi, Linda Z.; Hwang, Patty Yi-Hwa; Truong, Lan N.; Berns, Michael W.; Chen, David J.; Wu, Xiaohua

    2012-01-01

    CtIP (CtBP-interacting protein) associates with BRCA1 and the Mre11-Rad50-Nbs1 (MRN) complex and plays an essential role in homologous recombination (HR)-mediated DNA double-stranded break (DSB) repair. It has been described that CtIP forms dimers in mammalian cells, but the biological significance is not clear. In this study, we identified a conserved motif in the N terminus of CtIP, which is required for dimer formation. We further showed that CtIP mutants impaired in forming dimers are strongly defective in HR, end resection, and activation of the ataxia telangiectasia and Rad3-related pathway, without notable change of CtIP interactions with BRCA1 or Nbs1. In addition to HR, CtIP dimerization is also required for microhomology-mediated end joining. Live cell imaging of enhanced GFP-tagged CtIP demonstrates that the CtIP dimerization mutant fails to be localized to DSBs, whereas placing a heterologous dimerization motif to the dimerization mutant restores CtIP recruitment to DSBs. These studies suggest that CtIP dimer formation is essential for its recruitment to DSBs on chromatin upon DNA damage. Furthermore, DNA damage-induced phosphorylation of CtIP is significantly reduced in the CtIP dimerization mutants. Therefore, in addition to the C-terminal conserved domains critical for CtIP function, the dimerization motif on the N terminus of CtIP is also conserved and essential for its function in DNA damage responses. The severe repair defects of CtIP dimerization mutants are likely due to the failure in localization to chromosomal DSBs upon DNA damage. PMID:22544744

  19. Differential Expression of DNA Double-Strand Break Repair Proteins in Breast Cells

    DTIC Science & Technology

    2002-07-01

    DNA-PK in human breast tissues by immuno-histochemistry and extended these studies to two other components of the NHEJ repair pathway, XRCC4 and DNA ... ligase IV, as well as other DNA repair components including NBS 1 and MRE11. In contrast to the original report, 90% of the epithelial cells in normal

  20. Differential Expression of DNA Double-Strand Break Repair Proteins in Breast Cells

    DTIC Science & Technology

    2003-07-01

    DNA-PK in human breast tissues by immuno-histochemistry and extended these studies to two other components of the NHEJ repair pathway, XRCC4 and DNA ... ligase IV, as well as other DNA repair components including NBSl and MRE11. In contrast to the original report, 90% of the epithelial cells in normal

  1. ATM protein is indispensable to repair complex-type DNA double strand breaks induced by high LET heavy ion irradiation.

    NASA Astrophysics Data System (ADS)

    Sekine, Emiko; Yu, Dong; Fujimori, Akira; Anzai, Kazunori; Okayasu, Ryuichi

    ATM (ataxia telangiectasia-mutated) protein responsible for a rare genetic disease with hyperradiosensitivity, is the one of the earliest repair proteins sensing DNA double-strand breaks (DSB). ATM is known to phosphorylate DNA repair proteins such as MRN complex (Mre11, Rad50 and NBS1), 53BP1, Artemis, Brca1, gamma-H2AX, and MDC. We studied the interactions between ATM and DNA-PKcs, a crucial NHEJ repair protein, after cells exposure to high and low LET irradiation. Normal human (HFL III, MRC5VA) and AT homozygote (AT2KY, AT5BIVA, AT3BIVA) cells were irradiated with X-rays and high LET radiation (carbon ions: 290MeV/n initial energy at 70 keV/um, and iron ions: 500MeV/n initial energy at 200KeV/um), and several critical end points were examined. AT cells with high LET irradiation showed a significantly higher radiosensitivity when compared with normal cells. The behavior of DNA DSB repair was monitored by immuno-fluorescence techniques using DNA-PKcs (pThr2609, pSer2056) and ATM (pSer1981) antibodies. In normal cells, the phosphorylation of DNA-PKcs was clearly detected after high LET irradiation, though the peak of phosphorylation was delayed when compared to X-irradiation. In contrast, almost no DNA-PKcs phosphorylation foci were detected in AT cells irradiated with high LET radiation. A similar result was also observed in normal cells treated with 10 uM ATM kinase specific inhibitor (KU55933) one hour before irradiation. These data suggest that the phosphorylation of DNA-PKcs with low LET X-rays is mostly ATM-independent, and the phosphorylation of DNA-PKcs with high LET radiation seems to require ATM probably due to its complex nature of DSB induced. Our study indicates that high LET heavy ion irradiation which we can observe in the space environment would provide a useful tool to study the fundamental mechanism associated with DNA DSB repair.

  2. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival.

    PubMed

    Bozulic, Lana; Surucu, Banu; Hynx, Debby; Hemmings, Brian A

    2008-04-25

    Protein kinase B (PKB/Akt) is a well-established regulator of several essential cellular processes. Here, we report a route by which activated PKB promotes survival in response to DNA insults in vivo. PKB activation following DNA damage requires 3-phosphoinositide-dependent kinase 1 (PDK1) and DNA-dependent protein kinase (DNA-PK). Active PKB localizes in the nucleus of gamma-irradiated cells adjacent to DNA double-strand breaks, where it colocalizes and interacts with DNA-PK. Levels of active PKB inversely correlate with DNA damage-induced apoptosis. A significant portion of p53- and DNA damage-regulated genes are misregulated in cells lacking PKBalpha. PKBalpha knockout mice show impaired DNA damage-dependent induction of p21 and increased tissue apoptosis after single-dose whole-body irradiation. Our findings place PKB downstream of DNA-PK in the DNA damage response signaling cascade, where it provides a prosurvival signal, in particular by affecting transcriptional p21 regulation. Furthermore, this function is apparently restricted to the PKBalpha isoform.

  3. Loss of p15/Ink4b accompanies tumorigenesis triggered by complex DNA double-strand breaks

    PubMed Central

    Camacho, Cristel V.; Mukherjee, Bipasha; McEllin, Brian; Ding, Liang-Hao; Hu, Burong; Habib, Amyn A.; Xie, Xian-Jin; Nirodi, Chaitanya S.; Saha, Debabrata; Story, Michael D.; Balajee, Adayabalam S.; Bachoo, Robert M.; Boothman, David A.; Burma, Sandeep

    2010-01-01

    DNA double-strand breaks (DSBs) are the most deleterious lesion inflicted by ionizing radiation. Although DSBs are potentially carcinogenic, it is not clear whether complex DSBs that are refractory to repair are more potently tumorigenic compared with simple breaks that can be rapidly repaired, correctly or incorrectly, by mammalian cells. We previously demonstrated that complex DSBs induced by high-linear energy transfer (LET) Fe ions are repaired slowly and incompletely, whereas those induced by low-LET gamma rays are repaired efficiently by mammalian cells. To determine whether Fe-induced DSBs are more potently tumorigenic than gamma ray-induced breaks, we irradiated ‘sensitized’ murine astrocytes that were deficient in Ink4a and Arf tumor suppressors and injected the surviving cells subcutaneously into nude mice. Using this model system, we find that Fe ions are potently tumorigenic, generating tumors with significantly higher frequency and shorter latency compared with tumors generated by gamma rays. Tumor formation by Fe-irradiated cells is accompanied by rampant genomic instability and multiple genomic changes, the most interesting of which is loss of the p15/Ink4b tumor suppressor due to deletion of a chromosomal region harboring the CDKN2A and CDKN2B loci. The additional loss of p15/Ink4b in tumors derived from cells that are already deficient in p16/Ink4a bolsters the hypothesis that p15 plays an important role in tumor suppression, especially in the absence of p16. Indeed, we find that reexpression of p15 in tumor-derived cells significantly attenuates the tumorigenic potential of these cells, indicating that p15 loss may be a critical event in tumorigenesis triggered by complex DSBs. PMID:20663777

  4. Triggering of DNA strand breaks by 45 degrees C hyperthermia and its influence on the repair of gamma-radiation damage in human white blood cells

    SciTech Connect

    Mitchel, R.E.; Birnboim, H.C.

    1985-05-01

    Human peripheral white blood cells, freshly isolated from normal individual donors, were exposed to hyperthermia. Heat-generated DNA strand break damage and white blood cell capacity to repair radiation-induced breaks were determined by a fluorometric alkaline unwinding assay. Strand breaks could be readily detected when white blood cells were incubated in a physiological salt solution at temperatures between 41 degrees and 46 degrees C, for times up to 90 min. The time course of strand break induction at 45 degrees C was characterized by a short initial lag, followed by a period of rapid break induction and subsequently a lower rate. Evidence is presented which suggests that the induction of DNA damage involved a triggering mechanism; a short treatment at 45 degrees C (10 to 20 min) initiated a cellular event which led to a rapid increase in the number of strand breaks during subsequent incubation of 37 degrees C. Continuous incubation at 45 degrees C produced less DNA damage than an initial period at 45 degrees C followed by incubation at 37 degrees C. This apparent triggering phenomenon was not due to a triggering of the respiratory burst in phagocytic cells, since no O/sub 2/- could be detected; in fact, a 30-min treatment at 45 degrees C largely blocked the capacity of the cells to respond normally to a soluble stimulator of the respiratory burst. Unlike gamma-ray-induced breaks, 45 degrees C hyperthermia-induced breaks did not rejoin during subsequent incubation for up to 1 h at 37 degrees C.

  5. Thrombospondin-1 might be a therapeutic target to suppress RB cells by regulating the DNA double-strand breaks repair

    PubMed Central

    Zhang, Zhang; Zhang, Ping; Yang, Ying; Wu, Nandan; Xu, Lijun; Zhang, Jing; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-01-01

    Retinoblastoma (RB) arises from the retina, and its growth usually occurs under the retina and toward the vitreous. Ideal therapy should aim to inhibit the tumor and protect neural cells, increasing the patient's life span and quality of life. Previous studies have demonstrated that Thrombospondin-1 (TSP-1) is associated with neurogenesis, neovascularization and tumorigenesis. However, at present, the bioactivity of TSP-1 in retinoblastoma has not been defined. Herein, we demonstrated that TSP-1 was silenced in RB cell lines and clinical tumor samples. HDAC inhibitor, Trichostatin A (TSA), could notably transcriptionally up-regulate TSP-1 in RB cells, WERI-Rb1 cells and Y79 cells. Moreover, we found human recombinant TSP-1 (hTSP-1) could significantly inhibit the cell viability of RB cells both in vitro and in vivo. Interestingly, hTSP-1 could significantly induce the expression of γ-H2AX, a well-characterized in situ marker of DNA double-strand breaks (DSBs) in RB cells. The DNA NHEJ pathway in WERI-Rb1 cells could be significantly inhibited by hTSP-1. A mutation in Rb1 might be involved in the hTSP-1-medicated γ-H2AX increasing in WERI-Rb1 cells. Furthermore, hTSP-1 could inhibit RB cells while promoting retinal neurocyte survival in the neuronal and retinoblastoma cell co-culture system. As such, TSP-1 may become a therapeutic target for treatment of retinoblastoma. PMID:26756218

  6. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks

    PubMed Central

    Seki, Yoshitaka; Mizukami, Tatsuji; Kohno, Takashi

    2015-01-01

    Constitutive activation of oncogenes by fusion to partner genes, caused by chromosome translocation and inversion, is a critical genetic event driving lung carcinogenesis. Fusions of the tyrosine kinase genes ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) occur in 1%–5% of lung adenocarcinomas (LADCs) and their products constitute therapeutic targets for kinase inhibitory drugs. Interestingly, ALK, RET, and ROS1 fusions occur preferentially in LADCs of never- and light-smokers, suggesting that the molecular mechanisms that cause these rearrangements are smoking-independent. In this study, using previously reported next generation LADC genome sequencing data of the breakpoint junction structures of chromosome rearrangements that cause oncogenic fusions in human cancer cells, we employed the structures of breakpoint junctions of ALK, RET, and ROS1 fusions in 41 LADC cases as “traces” to deduce the molecular processes of chromosome rearrangements caused by DNA double-strand breaks (DSBs) and illegitimate joining. We found that gene fusion was produced by illegitimate repair of DSBs at unspecified sites in genomic regions of a few kb through DNA synthesis-dependent or -independent end-joining pathways, according to DSB type. This information will assist in the understanding of how oncogene fusions are generated and which etiological factors trigger them. PMID:26437441

  7. The mutagenic potential of a single DNA double-strand break in a mammalian chromosome is not influenced by transcription.

    PubMed

    Allen, Chris; Miller, Cheryl A; Nickoloff, Jac A

    2003-10-07

    In eukaryotes, DNA double-strand breaks (DSBs) are repaired by competing HR and non-homologous end-joining (NHEJ) pathways. DSB repair by HR is highly accurate, while NHEJ can result in deletions and insertions. Transcription enhances certain DNA repair pathways and spontaneous homologous recombination (HR). As a means to promote accurate repair in active genes, we thought it possible that the balance between HR and NHEJ would be shifted toward HR in highly transcribed regions. We tested this idea by examining products of DSB repair in integrated neo-direct repeats under conditions of low-level constitutive, or high-level induced transcription regulated by the dexamethasone (Dex)-responsive mouse mammary tumor virus (MMTV) promoter. DSBs were introduced into one copy of neo by expressing I-SceI nuclease, and DSB repair products were isolated and characterized with an efficient, non-selective assay. We found that transcription does not significantly change the relative frequencies of HR and NHEJ, the relative frequencies of sequence capture and gross chromosomal rearrangement, nor the average size of deletions. About one-third of DSB repair products showed large-scale rearrangements, indicating that a single DSB in a mammalian chromosome has significant mutagenic potential.

  8. The mismatch repair system modulates curcumin sensitivity through induction of DNA strand breaks and activation of G2-M checkpoint.

    PubMed

    Jiang, Zhihua; Jin, ShunQian; Yalowich, Jack C; Brown, Kevin D; Rajasekaran, Baskaran

    2010-03-01

    The highly conserved mismatch (MMR) repair system corrects postreplicative errors and modulates cellular responses to genotoxic agents. Here, we show that the MMR system strongly influences cellular sensitivity to curcumin. Compared with MMR-proficient cells, isogenically matched MMR-deficient cells displayed enhanced sensitivity to curcumin. Similarly, cells suppressed for MLH1 or MSH2 expression by RNA interference displayed increased curcumin sensitivity. Curcumin treatment generated comparable levels of reactive oxygen species and the mutagenic adduct 8-oxo-guanine in MMR-proficient and MMR-deficient cells; however, accumulation of gammaH2AX foci, a marker for DNA double-strand breaks (DSB), occurred only in MMR-positive cells in response to curcumin treatment. Additionally, MMR-positive cells showed activation of Chk1 and induction of G(2)-M cell cycle checkpoint following curcumin treatment and inhibition of Chk1 by UCN-01 abrogated Chk1 activation and heightened apoptosis in MMR-proficient cells. These results indicate that curcumin triggers the accumulation of DNA DSB and induction of a checkpoint response through a MMR-dependent mechanism. Conversely, in MMR-compromised cells, curcumin-induced DSB is significantly blunted, and as a result, cells fail to undergo cell cycle arrest, enter mitosis, and die through mitotic catastrophe. The results have potential therapeutic value, especially in the treatment of tumors with compromised MMR function.

  9. Thrombospondin-1 might be a therapeutic target to suppress RB cells by regulating the DNA double-strand breaks repair.

    PubMed

    Chen, Pei; Yu, Na; Zhang, Zhang; Zhang, Ping; Yang, Ying; Wu, Nandan; Xu, Lijun; Zhang, Jing; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-02-02

    Retinoblastoma (RB) arises from the retina, and its growth usually occurs under the retina and toward the vitreous. Ideal therapy should aim to inhibit the tumor and protect neural cells, increasing the patient's life span and quality of life. Previous studies have demonstrated that Thrombospondin-1 (TSP-1) is associated with neurogenesis, neovascularization and tumorigenesis. However, at present, the bioactivity of TSP-1 in retinoblastoma has not been defined. Herein, we demonstrated that TSP-1 was silenced in RB cell lines and clinical tumor samples. HDAC inhibitor, Trichostatin A (TSA), could notably transcriptionally up-regulate TSP-1 in RB cells, WERI-Rb1 cells and Y79 cells. Moreover, we found human recombinant TSP-1 (hTSP-1) could significantly inhibit the cell viability of RB cells both in vitro and in vivo. Interestingly, hTSP-1 could significantly induce the expression of γ-H2AX, a well-characterized in situ marker of DNA double-strand breaks (DSBs) in RB cells. The DNA NHEJ pathway in WERI-Rb1 cells could be significantly inhibited by hTSP-1. A mutation in Rb1 might be involved in the hTSP-1-medicated γ-H2AX increasing in WERI-Rb1 cells. Furthermore, hTSP-1 could inhibit RB cells while promoting retinal neurocyte survival in the neuronal and retinoblastoma cell co-culture system. As such, TSP-1 may become a therapeutic target for treatment of retinoblastoma.

  10. Quiescent human peripheral blood lymphocytes do not contain a sizable amount of preexistent DNA single-strand breaks

    SciTech Connect

    Boerrigter, M.E.; Mullaart, E.; van der Schans, G.P.; Vijg, J.

    1989-02-01

    Sedimentation of nucleoids through neutral sucrose density gradients has shown that nucleoids isolated from phytohemagglutinin (PHA)-stimulated human peripheral blood lymphocytes (PBL) sediment faster than nucleoids derived from quiescent lymphocytes, which was attributed to rejoining of DNA single-strand breaks (SSB) present in the resting cells. We isolated PBL from donors and determined the amount of SSB in nonradiolabeled, untreated resting and PHA-stimulated cells by applying the alkaline filter elution technique. Calibration was based on dose-dependent induction of SSB by /sup 60/Co-gamma-radiation. Quiescent cells did not contain a sizable amount of SSB. Mitogen-stimulated cells showed equally low amounts of SSB per cell. The present study indicates that the interpretation of the results obtained with the nucleoid sedimentation technique concerning the supposed rejoining of SSB in PHA-stimulated human lymphocytes is incorrect. Other, equally sensitive, techniques such as alkaline filter elution appear to be preferable for studies on DNA damage and repair.

  11. Bevacizumab radiosensitizes non-small cell lung cancer xenografts by inhibiting DNA double-strand break repair in endothelial cells.

    PubMed

    Gao, Hui; Xue, Jianxin; Zhou, Lin; Lan, Jie; He, Jiazhuo; Na, Feifei; Yang, Lifei; Deng, Lei; Lu, You

    2015-08-28

    The aims of this study were to evaluate the effects of biweekly bevacizumab administration on a tumor microenvironment and to investigate the mechanisms of radiosensitization that were induced by it. Briefly, bevacizumab was administered intravenously to Balb/c nude mice bearing non-small cell lung cancer (NSCLC) H1975 xenografts; in addition, bevacizumab was added to NSCLC or endothelial cells (ECs) in vitro, followed by irradiation (IR). The anti-tumor efficacy, anti-angiogenic efficacy and repair of DNA double-strand breaks (DSBs) were evaluated. The activation of signaling pathways was determined using immunoprecipitation (IP) and WB analyses. Finally, biweekly bevacizumab administration inhibited the growth of H1975 xenografts and induced vascular normalization periodically. Bevacizumab more significantly increased cellular DSB and EC apoptosis when administered 1 h prior to 12 Gy/1f IR than when administered 5 days prior to IR, thereby inhibiting tumor angiogenesis and growth. In vitro, bevacizumab more effectively increased DSBs and apoptosis prior to IR and inhibited the clonogenic survival of ECs but not NSCLC cells. Using IP and WB analyses, we confirmed that bevacizumab can directly inhibit the phosphorylation of components of the VEGR2/PI3K/Akt/DNA-PKcs signaling pathway that are induced by IR in ECs. In conclusion, bevacizumab radiosensitizes NSCLC xenografts mainly by inhibiting DSB repair in ECs rather than by inducing vascular normalization.

  12. Phosphorylation-regulated binding of Ctp1 to Nbs1 is critical for repair of DNA double-strand breaks

    PubMed Central

    Dodson, Gerald E.; Limbo, Oliver; Nieto, Devon; Russell, Paul

    2011-01-01

    Repair of DNA double-strand breaks (DSBs) is critical for cell survival and for maintaining genome stability in eukaryotes. In Schizosaccharomyces pombe, the Mre11-Rad50-Nbs1 (MRN) complex and Ctp1 cooperate to perform the initial steps that process and repair these DNA lesions via homologous recombination (HR). While Ctp1 is recruited to DSBs in an MRN-dependent manner, the specific mechanism of this process remained unclear. We recently found that Ctp1 is phosphorylated on a domain rich in putative Casein kinase 2 (CK2) phosphoacceptor sites that resembles the SDTD repeats of Mdc1. Furthermore, phosphorylation of this motif is required for interaction with the FHA domain of Nbs1 that localizes Ctp1 to DSB sites. Here, we review and discuss these findings, and we present new data that further characterize the cellular consequences of mutating CK2 phosphorylation motifs of Ctp1, including data showing that these sites are critical for meiosis. PMID:20421724

  13. End-processing nucleases and phosphodiesterases: An elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair.

    PubMed

    Menon, Vijay; Povirk, Lawrence F

    2016-07-01

    Nonhomologous end joining (NHEJ) is an error-prone DNA double-strand break repair pathway that is active throughout the cell cycle. A substantial fraction of NHEJ repair events show deletions and, less often, insertions in the repair joints, suggesting an end-processing step comprising the removal of mismatched or damaged nucleotides by nucleases and other phosphodiesterases, as well as subsequent strand extension by polymerases. A wide range of nucleases, including Artemis, Metnase, APLF, Mre11, CtIP, APE1, APE2 and WRN, are biochemically competent to carry out such double-strand break end processing, and have been implicated in NHEJ by at least circumstantial evidence. Several additional DNA end-specific phosphodiesterases, including TDP1, TDP2 and aprataxin are available to resolve various non-nucleotide moieties at DSB ends. This review summarizes the biochemical specificities of these enzymes and the evidence for their participation in the NHEJ pathway.

  14. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment

    PubMed Central

    Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George

    2016-01-01

    Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect. PMID:27257076

  15. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage

    PubMed Central

    Ju, Xiaoming; Vetuschi, Antonella; Sferra, Roberta; Casimiro, Mathew C.; Pompili, Simona; Festuccia, Claudio; Colapietro, Alessandro; Gaudio, Eugenio; Di Cesare, Ernesto; Tombolini, Vincenzo; Pestell, Richard G.

    2016-01-01

    Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA. Tumorigenicity and radiosensitivity were investigated using in vitro and in vivo experimental assays. Cyclin D1 silencing interfered with PCa oncogenic phenotype by inducing growth arrest in the G1 phase of cell cycle and reducing soft agar colony formation, migration, invasion in vitro and tumor formation and neo-angiogenesis in vivo. Depletion of cyclin D1 significantly radiosensitizes PCa cells by increasing the RT-induced DNA damages by affecting the NHEJ and HR pathways responsible of the DNA double-strand break repair. Following treatment of cells with RT the abundance of a biomarker of DNA damage, γ-H2AX, was dramatically increased in sh-cyclin D1 treated cells compared to shRNA control. Concordant with these observations DNA-PKcs-activation and RAD51-accumulation, part of the DNA double-strand break repair machinery, were reduced in shRNA-cyclin D1 treated cells compared to shRNA control. We further demonstrate the physical interaction between CCND1 with activated-ATM, -DNA-PKcs and RAD51 is enhanced by RT. Finally, siRNA-mediated silencing experiments indicated DNA-PKcs and RAD51 are downstream targets of CCND1-mediated PCa cells radioresistance. In summary, these observations suggest that CCND1 is a key mediator of PCa radioresistance and could represent a potential target for radioresistant hormone-resistant PCa. PMID:26689991

  16. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage.

    PubMed

    Marampon, Francesco; Gravina, Giovanni; Ju, Xiaoming; Vetuschi, Antonella; Sferra, Roberta; Casimiro, Mathew C; Pompili, Simona; Festuccia, Claudio; Colapietro, Alessandro; Gaudio, Eugenio; Di Cesare, Ernesto; Tombolini, Vincenzo; Pestell, Richard G

    2016-02-02

    Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA. Tumorigenicity and radiosensitivity were investigated using in vitro and in vivo experimental assays. Cyclin D1 silencing interfered with PCa oncogenic phenotype by inducing growth arrest in the G1 phase of cell cycle and reducing soft agar colony formation, migration, invasion in vitro and tumor formation and neo-angiogenesis in vivo. Depletion of cyclin D1 significantly radiosensitizes PCa cells by increasing the RT-induced DNA damages by affecting the NHEJ and HR pathways responsible of the DNA double-strand break repair. Following treatment of cells with RT the abundance of a biomarker of DNA damage, γ-H2AX, was dramatically increased in sh-cyclin D1 treated cells compared to shRNA control. Concordant with these observations DNA-PKcs-activation and RAD51-accumulation, part of the DNA double-strand break repair machinery, were reduced in shRNA-cyclin D1 treated cells compared to shRNA control. We further demonstrate the physical interaction between CCND1 with activated-ATM, -DNA-PKcs and RAD51 is enhanced by RT. Finally, siRNA-mediated silencing experiments indicated DNA-PKcs and RAD51 are downstream targets of CCND1-mediated PCa cells radioresistance. In summary, these observations suggest that CCND1 is a key mediator of PCa radioresistance and could represent a potential target for radioresistant hormone-resistant PCa.

  17. The involvement of c-Myc in the DNA double-strand break repair via regulating radiation-induced phosphorylation of ATM and DNA-PKcs activity.

    PubMed

    Cui, Fengmei; Fan, Rong; Chen, Qiu; He, Yongming; Song, Man; Shang, Zengfu; Zhang, Shimeng; Zhu, Wei; Cao, Jianping; Guan, Hua; Zhou, Ping-Kun

    2015-08-01

    Deregulation of c-Myc often occurs in various human cancers, which not only contributes to the genesis and progression of cancers but also affects the outcomes of cancer radio- or chemotherapy. In this study, we have investigated the function of c-Myc in the repair of DNA double-strand break (DSB) induced by γ-ray irradiation. A c-Myc-silenced Hela-630 cell line was generated from HeLa cells using RNA interference technology. The DNA DSBs were detected by γ-H2AX foci, neutral comet assay and pulsed-field gel electrophoresis. We found that the capability of DNA DSB repair in Hela-630 cells was significantly reduced, and the repair kinetics of DSB was delayed as compared to the control Hela-NC cells. Silence of c-myc sensitized the cellular sensitivity to ionizing radiation. The phosphorylated c-Myc (Thr58/pSer62) formed the consistent co-localisation foci with γ-H2AX as well as the phosphorylated DNA-PKcs/S2056 in the irradiated cells. Moreover, depression of c-Myc largely attenuated the ionizing radiation-induced phosphorylation of the ataxia telangiectasia mutated (ATM) and decreased the in vitro kinase activity of DNA-PKcs. Taken together, our results demonstrated that c-Myc protein functions in the process of DNA double-strand break repair, at least partially, through affecting the ATM phosphorylation and DNA-PKcs kinase activity. The overexpression of c-Myc in tumours can account for the radioresistance of some tumour cell types.

  18. Polycomb repressive complex 2 contributes to DNA double-strand break repair

    PubMed Central

    Campbell, Stuart; Ismail, Ismail Hassan; Young, Leah C; Poirier, Guy G; Hendzel, Michael J

    2013-01-01

    Polycomb protein histone methyltransferase, enhancer of Zeste homolog 2 (EZH2), is frequently overexpressed in human malignancy and is implicated in cancer cell proliferation and invasion. However, it is largely unknown whether EZH2 has a role in modulating the DNA damage response. Here, we show that polycomb repressive complex 2 (PRC2) is recruited to sites of DNA damage. This recruitment is independent of histone 2A variant X (H2AX) and the PI-3-related kinases ATM and DNA-PKcs. We establish that PARP activity is required for retaining PRC2 at sites of DNA damage. Furthermore, depletion of EZH2 in cells decreases the efficiency of DSB repair and increases sensitivity of cells to gamma-irradiation. These data unravel a crucial role of PRC2 in determining cancer cellular sensitivity following DNA damage and suggest that therapeutic targeting of EZH2 activity might serve as a strategy for improving conventional chemotherapy in a given malignancy. PMID:23907130

  19. Double strand breaks in DNA inhibit nucleotide excision repair in vitro.

    PubMed

    Calsou, P; Frit, P; Salles, B

    1996-11-01

    Nucleotide excision repair (NER) was measured in human cell extracts incubated with either supercoiled or linearized damaged plasmid DNA as repair substrate. NER, as quantified by the extent of repair synthesis activity, was reduced by up to 80% in the case of linearized plasmid DNA when compared with supercoiled DNA. An excess of undamaged linearized plasmid in the repair mixture did not interfere with DNA repair synthesis activity on a supercoiled damaged plasmid, indicating a cis-acting inhibiting effect. In contrast, gaps on circular or linearized plasmids were filled in identically by the DNA polymerases operating in the extracts. When the extent of damage-dependent incision activity was measured, a approximately 70% reduction of repair incision activity by human cell extract was observed on linearized damaged plasmids. Recessed, protruding, or blunt ends were similarly inhibitory. NER activity was partly restored when the extracts were preincubated with autoimmune human sera containing antibodies against the nuclear DNA end-binding heterodimer Ku. In addition, the inhibition of repair activity on linear damaged plasmids was released in extracts from rodent cells deficient in Ku activity but not in extracts from murine scid cells devoid of Ku-associated DNA-dependent kinase activity.

  20. Triggering of DNA strand breaks by 45/sup 0/C hyperthermia and its influence on the repair of. gamma. -radiation damage in human white blood cells

    SciTech Connect

    Mitchel, R.E.J.; Birnboim, H.C.

    1985-05-01

    Human peripheral white blood cells, freshly isolated from normal individual donors, were exposed to hyperthermia. Heat-generated DNA strand break damage and white blood cell capacity to repair radiation-induced breaks were determined by a fluorometric alkaline unwinding assay. Strand breaks could be readily detected when white blood cells were incubated in a physiological salt solution at temperatures between 41/sup 0/ and 46/sup 0/C, for times up to 90 min. The time course of strand break induction at 45/sup 0/C was characterized by a short initial lag, followed by a period of rapid break induction and subsequently a lower rate. Evidence is presented which suggests that the induction of DNA damage involved a triggering mechanism; a short treatment at 45/sup 0/C (10 to 20 min) initiated a cellular event which led to a rapid increase in the number of stand breaks during subsequent incubation of 37/sup 0/C. Continuous incubation at 45/sup 0/C produced less DNA damage than an initial period at 45/sup 0/C followed by incubation at 37/sup 0/C. This apparent triggering phenomenon was not due to a triggering of the respiratory burst in phagocytic cells, since no O/sub 2//sup -/ could be detected; in fact, a 30-min treatment at 45/sup 0/C largely blocked the capacity of the cells to respond normally to a soluble stimulator of the respiratory burst. Unlike ..gamma..-ray-induced breaks, 45/sup 0/C hyperthermia-induced breaks did not rejoin during subsequent incubation for up to 1 h at 37/sup 0/C. Additionally, 45/sup 0/C hyperthermia treatment progressively inhibited the ability of the cells to repair subsequent ..gamma..-ray-induced breaks (4 Gy). 17 references, 1 table.

  1. Evolution of DNA strand-breaks in cultured spermatocytes: the Comet Assay reveals differences in normal and gamma-irradiated germ cells.

    PubMed

    Perrin, J; Lussato, D; De Méo, M; Durand, P; Grillo, J-M; Guichaoua, M-R; Botta, A; Bergé-Lefranc, J-L

    2007-02-01

    In reproductive toxicity assessment, in vitro systems can be used to determine mechanisms of action of toxicants. However, they generally investigate the immediate effects of toxicants, on isolated germ cells or spermatozoa. We report here the usefulness of in vitro cultures of rat spermatocytes and Sertoli cells, in conjunction with the Comet Assay to analyze the evolution of DNA strand-breaks and thus to determine DNA damage in germ cells. We compared cultures of normal and gamma-irradiated germ cells. In non-irradiated spermatocytes, the Comet Assay revealed the presence of DNA strand-breaks, which numbers decreased with the duration of the culture, suggesting the involvement of DNA repair mechanisms related to the meiotic recombination. In irradiated cells, the evolution of DNA strand-breaks was strongly modified. Thus our model is able to detect genotoxic lesions and/or DNA repair impairment in cultured spermatocytes. We propose this model as an in vitro tool for the study of genotoxic injuries on spermatocytes.

  2. Spatial distribution and yield of DNA double-strand breaks induced by 3-7 MeV helium ions in human fibroblasts

    NASA Technical Reports Server (NTRS)

    Rydberg, Bjorn; Heilbronn, Lawrence; Holley, William R.; Lobrich, Markus; Zeitlin, Cary; Chatterjee, Aloke; Cooper, Priscilla K.

    2002-01-01

    Accelerated helium ions with mean energies at the target location of 3-7 MeV were used to simulate alpha-particle radiation from radon daughters. The experimental setup and calibration procedure allowed determination of the helium-ion energy distribution and dose in the nuclei of irradiated cells. Using this system, the induction of DNA double-strand breaks and their spatial distributions along DNA were studied in irradiated human fibroblasts. It was found that the apparent number of double-strand breaks as measured by a standard pulsed-field gel assay (FAR assay) decreased with increasing LET in the range 67-120 keV/microm (corresponding to the energy of 7-3 MeV). On the other hand, the generation of small and intermediate-size DNA fragments (0.1-100 kbp) increased with LET, indicating an increased intratrack long-range clustering of breaks. The fragment size distribution was measured in several size classes down to the smallest class of 0.1-2 kbp. When the clustering was taken into account, the actual number of DNA double-strand breaks (separated by at least 0.1 kbp) could be calculated and was found to be in the range 0.010-0.012 breaks/Mbp Gy(-1). This is two- to threefold higher than the apparent yield obtained by the FAR assay. The measured yield of double-strand breaks as a function of LET is compared with theoretical Monte Carlo calculations that simulate the track structure of energy depositions from helium ions as they interact with the 30-nm chromatin fiber. When the calculation is performed to include fragments larger than 0.1 kbp (to correspond to the experimental measurements), there is good agreement between experiment and theory.

  3. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions.

    PubMed

    Cristini, Agnese; Park, Joon-Hyung; Capranico, Giovanni; Legube, Gaëlle; Favre, Gilles; Sordet, Olivier

    2016-02-18

    Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.

  4. Drosophila Claspin is required for the G2 arrest that is induced by DNA replication stress but not by DNA double-strand breaks.

    PubMed

    Lee, Eun-Mi; Trinh, Tram Thi Bich; Shim, Hee Jin; Park, Suk-Young; Nguyen, Trang Thi Thu; Kim, Min-Joo; Song, Young-Han

    2012-09-01

    ATR and Chk1 are protein kinases that perform major roles in the DNA replication checkpoint that delays entry into mitosis in response to DNA replication stress by hydroxyurea (HU) treatment. They are also activated by ionizing radiation (IR) that induces DNA double-strand breaks. Studies in human tissue culture and Xenopus egg extracts identified Claspin as a mediator that increased the activity of ATR toward Chk1. Because the in vivo functions of Claspin are not known, we generated Drosophila lines that each contained a mutated Claspin gene. Similar to the Drosophila mei-41/ATR and grp/Chk1 mutants, embryos of the Claspin mutant showed defects in checkpoint activation, which normally occurs in early embryogenesis in response to incomplete DNA replication. Additionally, Claspin mutant larvae were defective in G2 arrest after HU treatment; however, the defects were less severe than those of the mei-41/ATR and grp/Chk1 mutants. In contrast, IR-induced G2 arrest, which was severely defective in mei-41/ATR and grp/Chk1 mutants, occurred normally in the Claspin mutant. We also found that Claspin was phosphorylated in response to HU and IR treatment and a hyperphosphorylated form of Claspin was generated only after HU treatment in mei-41/ATR-dependent and tefu/ATM-independent way. In summary, our data suggest that Drosophila Claspin is required for the G2 arrest that is induced by DNA replication stress but not by DNA double-strand breaks, and this difference is probably due to distinct phosphorylation statuses.

  5. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  6. Overexpression of the scaffold WD40 protein WRAP53β enhances the repair of and cell survival from DNA double-strand breaks

    PubMed Central

    Rassoolzadeh, H; Böhm, S; Hedström, E; Gad, H; Helleday, T; Henriksson, S; Farnebo, M

    2016-01-01

    Altered expression of the multifunctional protein WRAP53β (WD40 encoding RNA Antisense to p53), which targets repair factors to DNA double-strand breaks and factors involved in telomere elongation to Cajal bodies, is linked to carcinogenesis. While loss of WRAP53β function has been shown to disrupt processes regulated by this protein, the consequences of its overexpression remain unclear. Here we demonstrate that overexpression of WRAP53β disrupts the formation of and impairs the localization of coilin to Cajal bodies. At the same time, the function of this protein in the repair of DNA double-strand breaks is enhanced. Following irradiation, cells overexpressing WRAP53β exhibit more rapid clearance of phospho-histone H2AX (γH2AX), and more efficient homologous recombination and non-homologous end-joining, in association with fewer DNA breaks. Moreover, in these cells the ubiquitylation of damaged chromatin, which is known to facilitate the recruitment of repair factors and subsequent repair, is elevated. Knockdown of the ubiquitin ligase involved, ring-finger protein 8 (RNF8), which is recruited to DNA breaks by WRAP53β, attenuated this effect, suggesting that overexpression of WRAP53β leads to more rapid repair, as well as improved cell survival, by enhancing RNF8-mediated ubiquitylation at DNA breaks. Our present findings indicate that WRAP53β and RNF8 are rate-limiting factors in the repair of DNA double-strand breaks and raise the possibility that upregulation of WRAP53β may contribute to genomic stability in and survival of cancer cells. PMID:27310875

  7. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography.

    PubMed

    Thompson, Larry H

    2012-01-01

    The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.

  8. NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes.

    PubMed

    Volcic, Meta; Karl, Sabine; Baumann, Bernd; Salles, Daniela; Daniel, Peter; Fulda, Simone; Wiesmüller, Lisa

    2012-01-01

    NF-κB is involved in immune responses, inflammation, oncogenesis, cell proliferation and apoptosis. Even though NF-κB can be activated by DNA damage via Ataxia telangiectasia-mutated (ATM) signalling, little was known about an involvement in DNA repair. In this work, we dissected distinct DNA double-strand break (DSB) repair mechanisms revealing a stimulatory role of NF-κB in homologous recombination (HR). This effect was independent of chromatin context, cell cycle distribution or cross-talk with p53. It was not mediated by the transcriptional NF-κB targets Bcl2, BAX or Ku70, known for their dual roles in apoptosis and DSB repair. A contribution by Bcl-xL was abrogated when caspases were inhibited. Notably, HR induction by NF-κB required the targets ATM and BRCA2. Additionally, we provide evidence that NF-κB interacts with CtIP-BRCA1 complexes and promotes BRCA1 stabilization, and thereby contributes to HR induction. Immunofluorescence analysis revealed accelerated formation of replication protein A (RPA) and Rad51 foci upon NF-κB activation indicating HR stimulation through DSB resection by the interacting CtIP-BRCA1 complex and Rad51 filament formation. Taken together, these results define multiple NF-κB-dependent mechanisms regulating HR induction, and thereby providing a novel intriguing explanation for both NF-κB-mediated resistance to chemo- and radiotherapies as well as for the sensitization by pharmaceutical intervention of NF-κB activation.

  9. MeHg Developing Exposure Causes DNA Double-Strand Breaks and Elicits Cell Cycle Arrest in Spinal Cord Cells

    PubMed Central

    Ferreira, Fabiana F.; Ammar, Dib; Bourckhardt, Gilian F.; Kobus-Bianchini, Karoline; Müller, Yara M. R.; Nazari, Evelise M.

    2015-01-01

    The neurotoxicity caused by methylmercury (MeHg) is well documented; however, the developmental neurotoxicity in spinal cord is still not fully understood. Here we investigated whether MeHg affects the spinal cord layers development. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Thus, we performed immunostaining using anti-γ-H2A.X to recognize DNA double-strand breaks and antiphosphohistone H3, anti-p21, and anti-cyclin E to identify cells in proliferation and cell cycle proteins. Also, to identify neuronal cells, we used anti-NeuN and anti-βIII-tubulin antibodies. After the MeHg treatment, we observed the increase on γ-H2A.X in response to DNA damage. MeHg caused a decrease in the proliferating cells and in the thickness of spinal cord layers. Moreover, we verified that MeHg induced an increase in the number of p21-positive cells but did not change the cyclin E-positive cells. A significantly high number of TUNEL-positive cells indicating DNA fragmentation were observed in MeHg-treated embryos. Regarding the neuronal differentiation, MeHg induced a decrease in NeuN expression and did not change the expression of βIII-tubulin. These results showed that in ovo MeHg exposure alters spinal cord development by disturbing the cell proliferation and death, also interfering in early neuronal differentiation. PMID:26793240

  10. Stable Valence Anions of Nucleic Acid Bases and DNA Strand Breaks Induced by Low Energy Electrons

    SciTech Connect

    Rak, Janusz; Mazurkiewicz, Kamil; Kobylecka, Monika; Storoniak, Piotr; Haranczyk, Maciej; Dabkowska, Iwona; Bachorz, Rafal A.; Gutowski, Maciej S.; Radisic, Dunja; Stokes, Sarah T.; Eustis, Soren; Wang, Di; Li, Xiang; Ko, Yeon J.; Bowen, Kit H.

    2008-05-08

    The investigation of structures and properties of nucleic acids has fascinated and challenged researchers ever since the discovery of their relation to genes. Extensive studies have been carried out on these species to unravel the mystery behind the selection of these molecules as genetic material by nature and to explain various physico-chemical properties. However, a vast pool of information is yet to be discovered. DNA constituents, mainly aromatic purine and pyrimidine bases, absorb ultraviolet irradiation efficiently, but the absorbed energy is quickly released in the form of ultrafast nonradiative decays. Recently impressive progress has been made towards the understanding of photophysical and photochemical properties of DNA fragments.

  11. Investigation of the repair of single-strand breaks in human DNA using alkaline gel electrophoresis

    SciTech Connect

    Kovacs, E.; Langemann, H. )

    1990-11-01

    Unstimulated lymphocytes from eight healthy persons were exposed to 10-, 30-, and 100-Gy doses of 60Co gamma radiation. The repair of damaged DNA was measured by (1) alkaline gel electrophoresis (extracted DNA loaded on 0.25% agarose gel, run at 1 V/cm for 39-44 h) at 0, 1, and 2 h after exposure and (2) incorporation of (3H)thymidine into unstimulated lymphocytes in the presence of 2 mM hydroxyurea 1 and 2 h after exposure. Both methods--alkaline gel electrophoresis and thymidine incorporation--showed that repair was completed within 2 h.

  12. The alkaline elution technique for measuring DNA single strand breaks: increased reliability and sensitivity.

    PubMed

    Koch, C J; Giandomenico, A R

    1994-07-01

    The alkaline elution procedure is noted, on the one hand, for its sensitivity in the detection of DNA damage, but on the other hand, for its extreme variability and inconsistency. These deficiencies in the technique have been traced to incomplete exchanges of the various solutions used in the cell rinse and lysis and DNA rinse and elution portions of the procedure. Solutions to the above indicated problems involve several changes to the standard procedure, including, at the cellular stage, the complete removal of rinsing solutions followed by the addition of lysis solution at 0 degrees C. After standard cell lysis and alkaline rinse of the DNA, the alkaline rinse solution is replaced by elution solution at high flow rate to allow a uniform starting time for the elution, which then proceeds as a nearly first-order function of time (not elution volume). Using gamma-rays as the damaging agent, reproducibility within and between experiments is easily comparable to radiation survival itself, and typically, duplicate elution channels within an experiment provide nearly identical information without the need for internal standards and complex ratiometric analysis techniques. The procedures described allow the reproducible assessment of radiation damage to cellular DNA at doses much below 1 Gy and allow the study of repair processes down to similar levels of residual damage. This unexpected increase in technique sensitivity may be caused by maintenance of near-freezing temperatures during cell manipulation and addition of lysis solutions or to more complete and uniform lysis.

  13. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain.

    PubMed

    Enokido, Yasushi; Yoshitake, Ayaka; Ito, Hikaru; Okazawa, Hitoshi

    2008-11-07

    HMGB1 is an evolutionarily conserved non-histone chromatin-associated protein with key roles in maintenance of nuclear homeostasis; however, the function of HMGB1 in the brain remains largely unknown. Recently, we found that the reduction of nuclear HMGB1 protein level in the nucleus associates with DNA double-strand break (DDSB)-mediated neuronal damage in Huntington's disease [M.L. Qi, K. Tagawa, Y. Enokido, N. Yoshimura, Y. Wada, K. Watase, S. Ishiura, I. Kanazawa, J. Botas, M. Saitoe, E.E. Wanker, H. Okazawa, Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases, Nat. Cell Biol. 9 (2007) 402-414]. In this study, we analyze the region- and cell type-specific changes of HMGB1 and DDSB accumulation during the aging of mouse brain. HMGB1 is localized in the nuclei of neurons and astrocytes, and the protein level changes in various brain regions age-dependently. HMGB1 reduces in neurons, whereas it increases in astrocytes during aging. In contrast, DDSB remarkably accumulates in neurons, but it does not change significantly in astrocytes during aging. These results indicate that HMGB1 expression during aging is differentially regulated between neurons and astrocytes, and suggest that the reduction of nuclear HMGB1 might be causative for DDSB in neurons of the aged brain.

  14. Do Exogenous DNA Double-Strand Breaks Change Incomplete Synapsis and Chiasma Localization in the Grasshopper Stethophyma grossum?

    PubMed Central

    2016-01-01

    Meiotic recombination occurs as a programmed event that initiates by the formation of DNA double-strand breaks (DSBs) that give rise to the formation of crossovers that are observed as chiasmata. Chiasmata are essential for the accurate chromosome segregation and the generation of new combinations of parental alleles. Some treatments that provoke exogenous DSBs also lead to alterations in the recombination pattern of some species in which full homologous synapsis is achieved at pachytene. We have carried out a similar approach in males of the grasshopper Stethophyma grossum, whose homologues show incomplete synapsis and proximal chiasma localization. After irradiating males with γ rays we have studied the distribution of both the histone variant γ-H2AX and the recombinase RAD51. These proteins are cytological markers of DSBs at early prophase I. We have inferred synaptonemal complex (SC) formation via identification of SMC3 and RAD 21 cohesin subunits. Whereas thick and thin SMC3 filaments would correspond to synapsed and unsynapsed regions, the presence of RAD21 is only restricted to synapsed regions. Results show that irradiated spermatocytes maintain restricted synapsis between homologues. However, the frequency and distribution of chiasmata in metaphase I bivalents is slightly changed and quadrivalents were also observed. These results could be related to the singular nuclear polarization displayed by the spermatocytes of this species. PMID:28005992

  15. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

    PubMed

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W

    2016-02-23

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.

  16. DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena

    PubMed Central

    Mochizuki, Kazufumi; Novatchkova, Maria; Loidl, Josef

    2011-01-01

    Summary During meiosis, the micronuclei of the ciliated protist Tetrahymena thermophila elongate dramatically. Within these elongated nuclei, chromosomes are arranged in a bouquet-like fashion and homologous pairing and recombination takes place. We studied meiotic chromosome behavior in Tetrahymena in the absence of two genes, SPO11 and a homolog of HOP2 (HOP2A), which have conserved roles in the formation of meiotic DNA double-strand breaks (DSBs) and their repair, respectively. Single-knockout mutants for each gene display only a moderate reduction in chromosome pairing, but show a complete failure to form chiasmata and exhibit chromosome missegregation. The lack of SPO11 prevents the elongation of meiotic nuclei, but it is restored by the artificial induction of DSBs. In the hop2AΔ mutant, the transient appearance of γ-H2A.X and Rad51p signals indicates the formation and efficient repair of DSBs; but this repair does not occur by interhomolog crossing over. In the absence of HOP2A, the nuclei are elongated, meaning that DSBs but not their conversion to crossovers are required for the development of this meiosis-specific morphology. In addition, by in silico homology searches, we compiled a list of likely Tetrahymena meiotic proteins as the basis for further studies of the unusual synaptonemal complex-less meiosis in this phylogenetically remote model organism. PMID:18522989

  17. MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse.

    PubMed

    Kumar, Rajeev; Ghyselinck, Norbert; Ishiguro, Kei-ichiro; Watanabe, Yoshinori; Kouznetsova, Anna; Höög, Christer; Strong, Edward; Schimenti, John; Daniel, Katrin; Toth, Attila; de Massy, Bernard

    2015-05-01

    The formation of programmed DNA double-strand breaks (DSBs) at the beginning of meiotic prophase marks the initiation of meiotic recombination. Meiotic DSB formation is catalyzed by SPO11 and their repair takes place on meiotic chromosome axes. The evolutionarily conserved MEI4 protein is required for meiotic DSB formation and is localized on chromosome axes. Here, we show that HORMAD1, one of the meiotic chromosome axis components, is required for MEI4 localization. Importantly, the quantitative correlation between the level of axis-associated MEI4 and DSB formation suggests that axis-associated MEI4 could be a limiting factor for DSB formation. We also show that MEI1, REC8 and RAD21L are important for proper MEI4 localization. These findings on MEI4 dynamics during meiotic prophase suggest that the association of MEI4 to chromosome axes is required for DSB formation, and that the loss of this association upon DSB repair could contribute to turning off meiotic DSB formation.

  18. Induction and disappearance of DNA strand breaks in human peripheral blood lymphocytes and fibroblasts treated with methyl methanesulfonate

    SciTech Connect

    Boerrigter, M.E.T.I.; Mullaart, E.; Vijg, J. )

    1991-01-01

    The induction and disappearance of DNA single-strand breaks (SSB) in human peripheral blood lymphocytes (PBL) and fibroblasts exposed to methyl methanesulfonate (MMS) were investigated by using the alkaline filter elution assay. In the two cell types, identical amounts of SSB were induced during a 45-minute treatment with a given dose of MMS. In quiescent PBL only 9{plus minus}4% (mean {plus minus} SD) of the induced SSB had disappeared at 1 hour after exposure, whereas in phytohemagglutinin-stimulated PBL, 23 {plus minus} 12% disappeared within the same repair period. The accumulation of SSB in PBL, but not in fibroblasts, during MMS exposure in the presence of the excision-repair inhibitor 1-{beta}-D-arabinofuranosylcytosine indicated the utilization of different repair pathways in these two cell types. The generally lower rate of disappearance of MMS-induced SSB in PBL as compared to fibroblasts correlated with an increased loss of cell viability, measured by determining the incorporation of ({sup 3}H)thymidine.

  19. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain

    SciTech Connect

    Enokido, Yasushi; Yoshitake, Ayaka; Ito, Hikaru; Okazawa, Hitoshi

    2008-11-07

    HMGB1 is an evolutionarily conserved non-histone chromatin-associated protein with key roles in maintenance of nuclear homeostasis; however, the function of HMGB1 in the brain remains largely unknown. Recently, we found that the reduction of nuclear HMGB1 protein level in the nucleus associates with DNA double-strand break (DDSB)-mediated neuronal damage in Huntington's disease [M.L. Qi, K. Tagawa, Y. Enokido, N. Yoshimura, Y. Wada, K. Watase, S. Ishiura, I. Kanazawa, J. Botas, M. Saitoe, E.E. Wanker, H. Okazawa, Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases, Nat. Cell Biol. 9 (2007) 402-414]. In this study, we analyze the region- and cell type-specific changes of HMGB1 and DDSB accumulation during the aging of mouse brain. HMGB1 is localized in the nuclei of neurons and astrocytes, and the protein level changes in various brain regions age-dependently. HMGB1 reduces in neurons, whereas it increases in astrocytes during aging. In contrast, DDSB remarkably accumulates in neurons, but it does not change significantly in astrocytes during aging. These results indicate that HMGB1 expression during aging is differentially regulated between neurons and astrocytes, and suggest that the reduction of nuclear HMGB1 might be causative for DDSB in neurons of the aged brain.

  20. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice[OPEN

    PubMed Central

    Wang, Chong; Yu, Junping; Zong, Jie; Lu, Pingli

    2016-01-01

    F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711

  1. Hepatic iron accumulation is not directly associated with induction of DNA strand breaks in the liver cells of Long-Evans Cinnamon (LEC) rats.

    PubMed

    Hayashi, Masanobu; Kuge, Tomoko; Endoh, Daiji; Nakayama, Kenji; Arikawa, Jiro; Takazawa, Akira; Okui, Toyo

    2002-01-01

    Effects of accumulation of copper and iron on induction of DNA strand breaks were investigated in Long-Evans Cinnamon (LEC) rats that spontaneously develop fulminant hepatitis. Copper and iron accumulated in the liver of LEC rats in an age-dependent manner from 4 to 15 weeks. Low-iron diet prevented the accumulation of iron in the liver, but did not prevent accumulation of copper. The amounts of DNA strand breaks that were estimated by comet assay in the liver cells of rats fed standard diet increased with age from 4 to 15 weeks. No significant differences were observed in the proportions of LEC rat liver cells without tail and the average lengths of tail momentum in the comet images between LEC rats that had been fed standard MF diet and low-iron diet. These results support the idea that accumulation of iron is not directly associated with the induction of DNA damage in the liver cells of LEC rats.

  2. Protective effect of ascorbic acid against double-strand breaks in giant DNA: Marked differences among the damage induced by photo-irradiation, gamma-rays and ultrasound

    NASA Astrophysics Data System (ADS)

    Ma, Yue; Ogawa, Naoki; Yoshikawa, Yuko; Mori, Toshiaki; Imanaka, Tadayuki; Watanabe, Yoshiaki; Yoshikawa, Kenichi

    2015-10-01

    The protective effect of ascorbic acid against double-strand breaks in DNA was evaluated by single-molecule observation of giant DNA (T4 DNA; 166 kbp) through fluorescence microscopy. Samples were exposed to three different forms of radiation: visible light, γ-ray and ultrasound. With regard to irradiation with visible light, 1 mM AA reduced the damage down to ca. 30%. Same concentration of AA decreased the damage done by γ-ray to ca. 70%. However, AA had almost no protective effect against the damage caused by ultrasound. This significant difference is discussed in relation to the physico-chemical mechanism of double-strand breaks depending on the radiation source.

  3. The power of DNA double-strand break (DSB) repair testing to predict breast cancer susceptibility.

    PubMed

    Keimling, Marlen; Deniz, Miriam; Varga, Dominic; Stahl, Andreea; Schrezenmeier, Hubert; Kreienberg, Rolf; Hoffmann, Isabell; König, Jochem; Wiesmüller, Lisa

    2012-05-01

    Most presently known breast cancer susceptibility genes have been linked to DSB repair. To identify novel markers that may serve as indicators for breast cancer risk, we performed DSB repair analyses using a case-control design. Thus, we examined 35 women with defined familial history of breast and/or ovarian cancer (first case group), 175 patients with breast cancer (second case group), and 245 healthy women without previous cancer or family history of breast cancer (control group). We analyzed DSB repair in peripheral blood lymphocytes (PBLs) by a GFP-based test system using 3 pathway-specific substrates. We found increases of microhomology-mediated nonhomologous end joining (mmNHEJ) and nonconservative single-strand annealing (SSA) in women with familial risk vs. controls (P=0.0001-0.0022) and patients with breast cancer vs. controls (P=0.0004-0.0042). Young age (<50) at initial diagnosis of breast cancer, which could be indicative of genetic predisposition, was associated with elevated SSA using two different substrates, amounting to similar odds ratios (ORs=2.54-4.46, P=0.0059-0.0095) as for familial risk (ORs=2.61-4.05, P=0.0007-0.0045). These findings and supporting validation data underscore the great potential of detecting distinct DSB repair activities in PBLs as method to estimate breast cancer susceptibility beyond limitations of genotyping and to predict responsiveness to therapeutics targeting DSB repair-dysfunctional tumors.

  4. Induction of double-strand breaks by S1 nuclease, mung bean nuclease and nuclease P1 in DNA containing abasic sites and nicks.

    PubMed Central

    Chaudhry, M A; Weinfeld, M

    1995-01-01

    Defined DNA substrates containing discrete abasic sites or paired abasic sites set 1, 3, 5 and 7 bases apart on opposite strands were constructed to examine the reactivity of S1, mung bean and P1 nucleases towards abasic sites. None of the enzymes acted on the substrate containing discrete abasic sites. Under conditions where little or no non-specific DNA degradation was observed, all three nucleases were able to generate double-strand breaks when the bistranded abasic sites were 1 and 3 base pairs apart. However, when the abasic sites were further apart, the enzymes again failed to cleave the DNA. These results indicate that single abasic sites do not cause sufficient denaturation of the DNA to allow incision by these single-strand specific endonucleases. The reactivity of these enzymes was also investigated on DNA substrates that were nicked by DNasel or more site-specifically by endonuclease III incision at the discrete abasic sites. The three nucleases readily induced a strand break opposite such nicks. Images PMID:7479020

  5. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR).

    PubMed

    Gray, Stephen; Allison, Rachal M; Garcia, Valerie; Goldman, Alastair S H; Neale, Matthew J

    2013-07-31

    During meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear. Here, we use Saccharomyces cerevisiae to reveal that meiotic DSB formation is modulated by the Mec1(ATR) branch of the DNA damage signalling cascade, promoting DSB formation when Spo11-mediated catalysis is compromised. Activation of the positive feedback pathway correlates with the formation of single-stranded DNA (ssDNA) recombination intermediates and activation of the downstream kinase, Mek1. We show that the requirement for checkpoint activation can be rescued by prolonging meiotic prophase by deleting the NDT80 transcription factor, and that even transient prophase arrest caused by Ndt80 depletion is sufficient to restore meiotic spore viability in checkpoint mutants. Our observations are unexpected given recent reports that the complementary kinase pathway Tel1(ATM) acts to inhibit DSB formation. We propose that such antagonistic regulation of DSB formation by Mec1 and Tel1 creates a regulatory mechanism, where the absolute frequency of DSBs is maintained at a level optimal for genetic exchange and efficient chromosome segregation.

  6. Repair of DNA double-strand breaks is not modulated by low-dose gamma radiation in C57BL/6J mice.

    PubMed

    Blimkie, Melinda S J; Fung, Luke C W; Petoukhov, Eugenia S; Girard, Cyrielle; Klokov, Dmitry

    2014-05-01

    In this study, we sought to determine whether low-dose ionizing radiation, previously shown to induce a systemic adaptive response in C57BL/6J mice, is capable of enhancing the rate of DNA double-strand break repair. Repair capacity was determined by measuring γ-H2AX levels in splenic and thymic lymphocytes, using flow cytometry, at different times after a challenge irradiation (2 Gy, (60)Co). Irradiation with low doses (20 and 100 mGy) was conducted in vivo, whereas the challenge dose was applied to primary cultures of splenocytes and thymocytes in vitro 24 h later. Obtained kinetics curves of formation and loss of γ-H2AX indicated that cells from low-dose irradiated mice did not express more efficient DNA double-strand break repair compared to controls. Immunoblot analysis of γ-H2AX and Phospho-Ser-1981 ATM confirmed that DNA damage signaling was not modulated by preliminary low-dose radiation. Mouse embryonic fibroblasts of C57BL genetic background failed to show clonogenic survival radioadaptive response or enhanced repair of DNA double-strand breaks as evaluated by immunofluorescence microscopy of γ-H2AX foci. Our results indicate that radiation adaptive responses at systemic levels, such as increases in the tumor latency times in aging mice, may not be mediated by modulated DNA repair, and that the genetic background may affect expression of a radioadaptive response.

  7. Non-homologous end-joining protein expression screen from radiosensitive cancer patients yields a novel DNA double strand break repair phenotype

    PubMed Central

    Goh, Su Kak; McKay, Jeremy N.; Chao, Michael; McKay, Timothy M.

    2017-01-01

    Background Clinical radiosensitivity is a significant impediment to tumour control and cure, in that it restricts the total doses which can safely be delivered to the whole radiotherapy population, within the tissue tolerance of potentially radiosensitive (RS) individuals. Understanding its causes could lead to personalization of radiotherapy. Methods We screened tissues from a unique bank of RS cancer patients for expression defects in major DNA double-strand break repair proteins, using Western blot analysis and subsequently reverse-transcriptase polymerase chain reaction and pulsed-field gel electrophoresis. Results We hypothesized that abnormalities in expression of these proteins may explain the radiosensitivity of some of our cancer patients. The cells from one patient showed a reproducibly consistent expression reduction in two complex-forming DNA double-strand break repair protein components (DNA Ligase IV and XRCC4). We also showed a corresponding reduction in both gene products at the mRNA level. Additionally, the mRNA inducibility by ionizing radiation was increased for one of the proteins in the patient’s cells. We confirmed the likely functional significance of the non-homologous end-joining (NHEJ) expression abnormalities with a DNA double strand break (DNA DSB) repair assay. Conclusions We have identified a novel biological phenotype linked to clinical radiosensitivity. This is important in that very few molecular defects are known in human radiotherapy subjects. Such knowledge may contribute to the understanding of radiation response mechanisms in cancer patients and to personalization of radiotherapy. PMID:28361061

  8. Genes Involved in DNA Double-Strand Break Repair: Implications for Breast Cancer.

    DTIC Science & Technology

    1996-10-01

    locus . The disruption of one of 3 the two Ku alleles might lead to a phenotype, since Chinese hamster ovary cells are functionally...significant in-frame deletions. This is the substantial part of the genome in Chinese hamster cell lines is first direct evidence that mutant cells in group 5...Department of the Army, by grant A135763 from DNA repair gene in Chinese hamster ovary cells . Mol. Cell . Biol. 6:2944- the National

  9. Induction of DNA-double-strand breaks by auger electrons from 99mTc complexes with DNA-binding ligands.

    PubMed

    Häfliger, Pascal; Agorastos, Nikos; Spingler, Bernhard; Georgiev, Oleg; Viola, Giampietro; Alberto, Roger

    2005-02-01

    The potential of certain Auger electron emitting nuclides for systemic radiotherapeutic applications has recently gained much attention. In particular, the ability of several nuclides, including 111In, 125I, and 123I, to induce DNA double-strand breaks (dsb), a good indicator of cytotoxicity, has been extensively studied. However, this ability has never previously been shown experimentally for 99mTc, which, besides the well-known gamma radiation that is used for diagnostic applications, also emits an average of 1.1 conversion electrons and 4 Auger or Coster-Kronig electrons per decay. Owing to the short range of Auger electrons, the radionuclide needs to be located very close to the DNA for dsb to occur. We synthesized two cationic 99mTcI-tricarbonyl complexes with pendant DNA binders, pyrene and anthraquinone. The X-ray crystal structures of the two complexes could be elucidated. Linear dichroism and UV/Vis spectroscopy revealed that the complex with pyrene intercalates DNA with a stability constant, K, of 1.1 x 10(6) M(-1), while the analogous complex with anthraquinone interacts with DNA in a groove-binding mode and has an affinity value of K=8.9 x 10(4) M(-1). We showed with phiX174 double-stranded DNA that the corresponding 99mTc complexes induce a significant amount of dsb, whereas non-DNA-binding [TcO4]- and nonradioactive Re compounds did not. These results indicate that the Auger electron emitter 99mTc can induce dsb in DNA when decaying in its direct vicinity and this implies potential for systemic radiotherapy with 99mTc complexes.

  10. Comparison between pulsed-field and constant-field gel electrophoresis for measurement of DNA double-strand breaks in irradiated Chinese hamster ovary cells.

    PubMed

    Wlodek, D; Banáth, J; Olive, P L

    1991-11-01

    Pulsed-field gel electrophoresis (PFGE) is one of the most sensitive methods for detecting DNA double-strand breaks in mammalian cells. However, it has been observed that constant-field gel electrophoresis (CFGE), when optimized, can detect breaks with equal efficiency. The migration of DNA from the well and the separation of DNA molecules according to size appear to be different processes; only the latter requires the application of PFGE. CFGE is very sensitive and can detect DNA damage produced by less than 5 Gy of radiation. Low voltage (ca. 0.6 V/cm) during electrophoresis appears to be essential for the migration of the largest fraction of DNA from the agarose plug containing the cells; the electrophoresis run time, cell density in the plug, agarose concentration, nature of detergent and extent of radiolabelling are less important. It is concluded that CFGE is equally sensitive but more rapid and economical than PFGE for the measurement of DNA damage.

  11. Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair.

    PubMed

    Polo, Sophie E; Blackford, Andrew N; Chapman, J Ross; Baskcomb, Linda; Gravel, Serge; Rusch, Andre; Thomas, Anoushka; Blundred, Rachel; Smith, Philippa; Kzhyshkowska, Julia; Dobner, Thomas; Taylor, A Malcolm R; Turnell, Andrew S; Stewart, Grant S; Grand, Roger J; Jackson, Stephen P

    2012-02-24

    DNA double-strand break (DSB) signaling and repair are critical for cell viability, and rely on highly coordinated pathways whose molecular organization is still incompletely understood. Here, we show that heterogeneous nuclear ribonucleoprotein U-like (hnRNPUL) proteins 1 and 2 play key roles in cellular responses to DSBs. We identify human hnRNPUL1 and -2 as binding partners for the DSB sensor complex MRE11-RAD50-NBS1 (MRN) and demonstrate that hnRNPUL1 and -2 are recruited to DNA damage in an interdependent manner that requires MRN. Moreover, we show that hnRNPUL1 and -2 stimulate DNA-end resection and promote ATR-dependent signaling and DSB repair by homologous recombination, thereby contributing to cell survival upon exposure to DSB-inducing agents. Finally, we establish that hnRNPUL1 and -2 function downstream of MRN and CtBP-interacting protein (CtIP) to promote recruitment of the BLM helicase to DNA breaks. Collectively, these results provide insights into how mammalian cells respond to DSBs.

  12. Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks.

    PubMed

    Sallmyr, Annahita; Tomkinson, Alan E; Rassool, Feyruz V

    2008-08-15

    Expression of oncogenic BCR-ABL in chronic myeloid leukemia (CML) results in increased reactive oxygen species (ROS) that in turn cause increased DNA damage, including DNA double-strand breaks (DSBs). We have previously shown increased error-prone repair of DSBs by nonhomologous end-joining (NHEJ) in CML cells. Recent reports have identified alternative NHEJ pathways that are highly error prone, prompting us to examine the role of the alternative NHEJ pathways in BCR-ABL-positive CML. Importantly, we show that key proteins in the major NHEJ pathway, Artemis and DNA ligase IV, are down-regulated, whereas DNA ligase IIIalpha, and the protein deleted in Werner syndrome, WRN, are up-regulated. DNA ligase IIIalpha and WRN form a complex that is recruited to DSBs in CML cells. Furthermore, "knockdown" of either DNA ligase IIIalpha or WRN leads to increased accumulation of unrepaired DSBs, demonstrating that they contribute to the repair of DSBs. These results indicate that altered DSB repair in CML cells is caused by the increased activity of an alternative NHEJ repair pathway, involving DNA ligase IIIalpha and WRN. We suggest that, although the repair of ROS-induced DSBs by this pathway contributes to the survival of CML cells, the resultant genomic instability drives disease progression.

  13. Novel properties of melanins include promotion of DNA strand breaks, impairment of repair, and reduced ability to damage DNA after quenching of singlet oxygen.

    PubMed

    Suzukawa, Andréia Akemi; Vieira, Alessandra; Winnischofer, Sheila Maria Brochado; Scalfo, Alexsandra Cristina; Di Mascio, Paolo; Ferreira, Ana Maria da Costa; Ravanat, Jean-Luc; Martins, Daniela de Luna; Rocha, Maria Eliane Merlin; Martinez, Glaucia Regina

    2012-05-01

    Melanins have been associated with the development of melanoma and its resistance to photodynamic therapy (PDT). Singlet molecular oxygen ((1)O(2)), which is produced by ultraviolet A solar radiation and the PDT system, is also involved. Here, we investigated the effects that these factors have on DNA damage and repair. Our results show that both types of melanin (eumelanin and pheomelanin) lead to DNA breakage in the absence of light irradiation and that eumelanin is more harmful than pheomelanin. Interestingly, melanins were found to bind to the minor grooves of DNA, guaranteeing close proximity to DNA and potentially causing the observed high levels of strand breaks. We also show that the interaction of melanins with DNA can impair the access of repair enzymes to lesions, contributing to the perpetuation of DNA damage. Moreover, we found that after melanins interact with (1)O(2), they exhibit a lower ability to induce DNA breakage; we propose that these effects are due to modifications of their structure. Together, our data highlight the different modes of action of the two types of melanin. Our results may have profound implications for cellular redox homeostasis, under conditions of induced melanin synthesis and irradiation with solar light. These results may also be applied to the development of protocols to sensitize melanoma cells to PDT.

  14. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  15. Quantification of DNA strand breaks and abasic sites by oxime derivatization and accelerator mass spectrometry: application to gamma-radiation and peroxynitrite.

    PubMed

    Zhou, Xinfeng; Liberman, Rosa G; Skipper, Paul L; Margolin, Yelena; Tannenbaum, Steven R; Dedon, Peter C

    2005-08-01

    We report a highly sensitive method to quantify abasic sites and deoxyribose oxidation products arising in damaged DNA. The method exploits the reaction of aldehyde- and ketone-containing deoxyribose oxidation products and abasic sites with [(14)C]methoxyamine to form stable oxime derivatives, as originally described by Talpaert-Borle and Liuzzi [Reaction of apurinic/apyrimidinic sites with [(14)C]methoxyamine. A method for the quantitative assay of AP sites in DNA, Biochim. Biophys. Acta 740 (1983) 410-416]. The sensitivity of the method was dramatically improved by the application of accelerator mass spectrometry to quantify the (14)C, with a limit of detection of 1 lesion in 10(6) nucleotides in 1 microg of DNA. The method was validated using DNA containing a defined quantity of abasic sites, with a >0.95 correlation between the quantities of abasic sites and those of methoxyamine labels. The original applications of this and similar oxyamine derivatization methods have assumed that abasic sites are the only aldehyde-containing DNA damage products. However, deoxyribose oxidation produces strand breaks and abasic sites containing a variety of degradation products with aldehyde and ketone moieties. To assess the utility of methoxyamine labeling for quantifying strand breaks and abasic sites, the method was applied to plasmid DNA treated with gamma-radiation and peroxynitrite. For gamma-radiation, there was a 0.99 correlation between the quantity of methoxyamine labels and the quantity of strand breaks and abasic sites determined by a plasmid nicking assay; the abasic sites comprised less than 10% of the radiation-induced DNA damage. Studies with peroxynitrite demonstrate that the method, in conjunction with DNA repair enzymes that remove damaged bases to produce aldehydic sugar residues or abasic sites, is also applicable to quantifying nucleobase lesions in addition to strand break products. Compared to other abasic site quantification techniques, the modified

  16. Crystal Structure of E. coli RecE Protein Reveals a Toroidal Tetramer for Processing Double-Stranded DNA Breaks

    SciTech Connect

    Zhang, Jinjin; Xing, Xu; Herr, Andrew B.; Bell, Charles E.

    2009-07-21

    Escherichia coli RecE protein is part of the classical RecET recombination system that has recently been used in powerful new methods for genetic engineering. RecE binds to free double-stranded DNA (dsDNA) ends and processively digests the 5{prime}-ended strand to form 5{prime}-mononucleotides and a 3{prime}-overhang that is a substrate for single strand annealing promoted by RecT. Here, we report the crystal structure of the C-terminal nuclease domain of RecE at 2.8 {angstrom} resolution. RecE forms a toroidal tetramer with a central tapered channel that is wide enough to bind dsDNA at one end, but is partially plugged at the other end by the C-terminal segment of the protein. Four narrow tunnels, one within each subunit of the tetramer, lead from the central channel to the four active sites, which lie about 15 {angstrom} from the channel. The structure, combined with mutational studies, suggests a mechanism in which dsDNA enters through the open end of the central channel, the 5{prime}-ended strand passes through a tunnel to access one of the four active sites, and the 3{prime}-ended strand passes through the plugged end of the channel at the back of the tetramer.

  17. Induction of DNA-strand breaks after X-irradiation in murine bone cells of various differentiation capacities

    NASA Astrophysics Data System (ADS)

    Lau, Patrick; Hellweg, Christine E.; Kirchner, Simone; Baumstark-Khan, Christa

    survival curve of MLO-Y4 shows a broad shoulder, suggesting a high repair capacity or a high DNA damage or misrepair tolerance. The quantitative acquisition of DNA-strand breaks was performed by fluorescent analysis of DNA unwinding and revealed a high level of DNA damage immediately after X-irradiation, which increases dose dependently. In conclusion, the cell line with the highest differentiation level (MLO-Y4) displays lower radiation sensitivity, regarding the shoulder width of the dose-effect curve, compared to the less differentiated osteoblast cell lines.

  18. DNA ligase IV and artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair.

    PubMed

    Kurosawa, Aya; Saito, Shinta; So, Sairei; Hashimoto, Mitsumasa; Iwabuchi, Kuniyoshi; Watabe, Haruka; Adachi, Noritaka

    2013-01-01

    Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR.

  19. G9a inhibition potentiates the anti-tumour activity of DNA double-strand break inducing agents by impairing DNA repair independent of p53 status.

    PubMed

    Agarwal, Pallavi; Jackson, Stephen P

    2016-10-01

    Cancer cells often exhibit altered epigenetic signatures that can misregulate genes involved in processes such as transcription, proliferation, apoptosis and DNA repair. As regulation of chromatin structure is crucial for DNA repair processes, and both DNA repair and epigenetic controls are deregulated in many cancers, we speculated that simultaneously targeting both might provide new opportunities for cancer therapy. Here, we describe a focused screen that profiled small-molecule inhibitors targeting epigenetic regulators in combination with DNA double-strand break (DSB) inducing agents. We identify UNC0638, a catalytic inhibitor of histone lysine N-methyl-transferase G9a, as hypersensitising tumour cells to low doses of DSB-inducing agents without affecting the growth of the non-tumorigenic cells tested. Similar effects are also observed with another, structurally distinct, G9a inhibitor A-366. We also show that small-molecule inhibition of G9a or siRNA-mediated G9a depletion induces tumour cell death under low DNA damage conditions by impairing DSB repair in a p53 independent manner. Furthermore, we establish that G9a promotes DNA non-homologous end-joining in response to DSB-inducing genotoxic stress. This study thus highlights the potential for using G9a inhibitors as anti-cancer therapeutic agents in combination with DSB-inducing chemotherapeutic drugs such as etoposide.

  20. Maintenance of genomic integrity after DNA double strand breaks in the human prostate and seminal vesicle epithelium: the best and the worst

    PubMed Central

    Jäämaa, Sari; Laiho, Marikki

    2012-01-01

    Prostate cancer is one of the most frequent cancer types in men, and its incidence is steadily increasing. On the other hand, primary seminal vesicle carcinomas are extremely rare with less than 60 cases reported worldwide. Therefore the difference in cancer incidence has been estimated to be more than a 100,000-fold. This is astonishing, as both tissues share similar epithelial structure and hormonal cues. Clearly, the two epithelia differ substantially in the maintenance of genomic integrity, possibly due to inherent differences in their DNA damage burden and DNA damage signaling. The DNA damage response evoked by DNA double strand breaks may be relevant, as their faulty repair has been implicated in the formation of common genomic rearrangements such as TMPRSS2-ERG fusions during prostate carcinogenesis. Here, we review DNA damaging processes of both tissues with an emphasis on inflammation and androgen signaling. We discuss how benign prostate and seminal vesicle epithelia respond to acute DNA damage, focusing on the canonical DNA double strand break-induced ATM-pathway, p53 and DNA damage induced checkpoints. We propose that the prostate might be more prone to the accumulation of genetic aberrations during epithelial regeneration than seminal vesicles due to a weaker ability to enforce DNA damage checkpoints. PMID:22762987