Sample records for stratified precambrian rocks

  1. Geology of the Windsor quadrangle, Massachusetts

    USGS Publications Warehouse

    Norton, Stephen A.

    1967-01-01

    The Windsor quadrangle lies on the boundary between the eugeosynclinal and miogeosynclinal rocks of the Appalachian geosyncline on the western flank of the metamorphic high in western New England. Precambrian rocks crop out in a north-trending belt in the central part of the quadrangle. They have been classified into 2 formations. The Stamford Granite Gneiss crops out in the eastern half of the Precambrian terrane. It is a microcline-quartz-biotite augen gneiss. Stratified Precambrian rocks (the Hinsdale Gneiss) crop out entirely the west of the Stamford Granite Gneiss. They are predominantly highly metamorphosed felsic gneisses and .quartzites with minor calc-silicate rock, amphibolite, and graphitic gneiss. Eugeosynclinal rocks (the Hoosac Formation and the Rowe Schist), .ranging in age from Lower Cambrian to Lower Ordovician, crop out in a north-trending belt east of the Precambrian terrane. They are composed predominantly of albite schist and muscovite-chlorite schist with minor garnet schist, quartz-muscovite-calcite schist, felsic granulite and gneiss, quartzite, greenschist, and carbonaceous phyllite and schist. West of the Precambrian rocks, the Hoosac Formation is overlain by a miogeosynclinal sequence (the Dalton Formation, Cheshire Quartzite, Kitchen Brook Dolomite, Clarendon Springs Dolomite, Shelburne Marble, and the Bascom Formation) ranging in age from Lower Cambrian to Lower Ordovician. These rocks are unconformably overlain by the Berkshire Schist of Middle Ordovician age that is composed of carbonaceous schist, phyllite, and quartzite. The relationships in the zone of transition between the miogeosynclinal and eugeosynclinal rocks are unknown because the rocks of this zone are no longer present. The contact between the eugeosynclinal Hoosac Formation and the Dalton Format ion is conformable and deposition. The dominant structure is a large recumbent, northwest-facing anticline (the Hoosac nappe) with a Precambrian co re. The miogeosynclinal rocks are inverted in the northwestern part of the quadrangle and upright in the southwestern part of the quadrangle. A later generation of open, post-metamorphic folds has folded the recumbent folds in the miogeosynclinal rocks. The eugeosynclinal rocks show 3 phases of folding. The earliest folds are isoclinal, have steep plunges, were synmetamorphic, and have a strong axial plane schistosity. Two post-metamorphic generations of folds are more open and have axial plane cleavage. The development of the Hoosac nappe and the isoclinal folds was accompanied by regional metamorphism of the garnet zone. The pressure exceeded the pressure for the triple point of the Al2SiO 5 polymorphs. The composition of the paragonite coexisting with muscovite suggests a period of retrograde metamorphism for the Paleozoic rocks as well as the Cambrian rocks that were originally of higher grade (sillimanite? ). Later events include high-angle faulting (Triassic?), erosion, and Pleistocene glaciation.

  2. Geologic summary of the Appalachian Basin, with reference to the subsurface disposal of radioactive waste solutions

    USGS Publications Warehouse

    Colton, G.W.

    1962-01-01

    The Appalachian basin is an elongate depression in the crystalline basement complex< which contains a great volume of predominantly sedimentary stratified rocks. As defined in this paper it extends from the Adirondack Mountains in New York to central Alabama. From east to west it extends from the west flank of the Blue Ridge Mountains to the crest of the Findlay and Cincinnati arches and the Nashville dome. It encompasses an area of about 207,000 square miles, including all of West Virginia and parts of New York, New Jersey, Pennsylvania, Ohio, Maryland, Virginia, Kentucky, Tennessee, North Carolina, Georgia, and Alabama. The stratified rocks that occupy the basin constitute a wedge-shaped mass whose axis of greatest thickness lies close to and parallel to the east edge of the basin. The maximum thickness of stratified rocks preserved in any one part of the basin today is between 35,000 and 40,000 feet. The volume of the sedimentary rocks is approximately 510,000 cubic miles and of volcanic rocks is a few thousand cubic miles. The sedimentary rocks are predominantly Paleozoic in age, whereas the volcanic rocks are predominantly Late Precambrian. On the basis of gross lithology the stratified rocks overlying the crystalline basement complex can be divided into nine vertically sequential units, which are designated 'sequences' in this report. The boundaries between contiguous sequences do not necessarily coincide with the commonly recognized boundaries between systems or series. All sequences are grossly wedge shaped, being thickest along the eastern margin of the basin and thinnest along the western margin. The lowermost unit--the Late Precambrian stratified sequence--is present only along part of the eastern margin of the basin, where it lies unconformably on the basement complex. It consists largely of volcanic tuffs and flows but contains some interbedded sedimentary rocks. The Late Precambrian sequence is overlain by the Early Cambrian clastic sequence. Where the older sequence is absent, the Early Cambrian sequence rests on the basement complex. Interbedded fine- to coarse-grained noncarbonate detrital rocks comprise the bulk of the sequence, but some volcanic and carbonate rocks are included. Next above is the Cambrian-Ordovician carbonate sequence which consists largely of limestone and dolomite. Some quartzose sandstone is present in the lower part in the western half of the basin, and much shale is present in the upper part in the southeast part of the basin. The next higher sequence is the Late Ordovician clastic sequence, which consists largely of shale, siltstone, and sandstone. Coarse-grained light-gray to red rocks are common in the sequence along the eastern side of the basin, whereas fine-grained dark-gray to black calcareous rocks are common along the west side. The Late Ordovician clastic sequence is overlain--unconformably in many places--by the Early Silurian clastic sequence. The latter comprises a relatively thin wedge of coarse-grained clastic rocks. Some of the most prolific oil- and gas-producing sandstones in the Appalachian basin are included. Among these are the 'Clinton' sands of Ohio, the Medina Sandstones of New York and Pennsylvania, and the Keefer or 'Big Six' Sandstone of West Virginia and Kentucky. Conformably overlying the Early Silurian clastic sequence is the Silurian-Devonian carbonate sequence, which consists predominantly of limestone and dolomite. It also contains a salt-bearing unit in the north-central part of the basin and a thick wedge of coarse-grained red beds in the northeastern part. The sequence is absent in much of the southern part of the basin. Large volumes of gas and much oil are obtained from some of its rocks, especially from the Oriskany Sandstone and the Huntersville Chert. The Silurian-Devonian carbonate sequence is abruptly overlain by the Devonian clastic sequence--a thick succession of interbedded shale, mudrock, siltstone, and sandstone. Colors range f

  3. Geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary sequence, Easton quadrangle, PA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.M.; Malinconico, L.L. Jr.

    1993-03-01

    This project involves the geophysical modeling of the structural relationships between the Precambrian Reading Prong rocks and the Paleozoic sedimentary cover rocks near Easton, Pennsylvania. The Precambrian rocks have generally been assumed to have been emplaced on the Paleozoic sequence along a shallow thrust fault. However, at present time the attitude of the faults bordering the Precambrian terranes are all very steeply dipping. This was explained by the subsequent folding of the whole sequence during later orogenic activity. The objective of this work is to determine the attitude and depth of the fault contact between the Precambrian crystalline rocks andmore » the Paleozoic sedimentary rocks. A series of traverses (each separated by approximately one mile) were established perpendicular to the strike of the Precambrian rocks. Along each traverse both gravity and magnetic readings were taken at 0.2 kilometer intervals. The data were reduced and presented as profiles and contour maps. Both the magnetic and gravity data show positive anomalies that correlate spatially with the location of the Precambrian rocks. The gravity data have a long wavelength regional trend increasing to the north with a shorter wavelength anomaly of 2 milligals which coincides with the Precambrian rocks. The magnetic data have a single positive anomaly of almost 1,000 gammas which also coincides with the Precambrian terrane. These data will now be used to develop two dimensional density and susceptibility models of the area. From these models, the thickness of each formation and the structural relationships between them, as well as the attitude and depth of the fault contact will be determined.« less

  4. ENGINEERING-GEOLOGY SITE APPRAISAL OF THE FEDERAL CAPITAL TERRITORY, NIGERIA.

    USGS Publications Warehouse

    Ege, J.R.; Griffitts, W.R.; Overstreet, W.C.

    1985-01-01

    The 7,700-km**2-area Federal Capital Territory, Nigeria, is underlain by crystalline igneous and metamorphic rocks of Precambrian age. Laterite caps many hills of Cretaceous rock, some hills of Precambrian rock, and crops out near stream banks in the east and northeast. The most conspicuous structural features are a broad 'J'-shaped fold traversing the eastern and central part of the Territory and a north-trending shear zone along the eastern boundary. The soils of the Territory are lateritic and belong to the SW-SP-SM (Unified Soil Classification System) groups covering Precambrian migmatites, gneisses and granites and the SC group covering Cretaceous sediments and Precambrian mica-rich schists. The engineering characteristics of the rocks are medium- to high-strength massive and gneissic rock, low-to medium-strength bedded rock, and low-strength foliated and sheared rock. An area of at least 800 km**2 is free from apparent geological hazards and should be suitable for construction of a capital city, its environs and supporting facilities.

  5. Excess europium content in Precambrian sedimentary rocks and continental evolution

    NASA Technical Reports Server (NTRS)

    Jakes, P.; Taylor, S. R.

    1974-01-01

    It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.

  6. Reconnaissance geology of the Precambrian rocks in the Ayn Qunay quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.; Whitlow, Jesse William; Ankary, Abdullah O.

    1972-01-01

    The Aya Qunay quadrangle covers an area of 2833 sq km in central Saudi Arabia, Only the western edge of the quadrangle is underlain by Precambrian rocks, which were the subject of this investigation. Toward the east the Precambrian rocks are unconformably overlain by Permian and younger sedimentary rocks. The Permian rocks at the west edge of the Ayn Qunay quadrangle consist mainly of a granitic intrusive complex of batholithic dimensions. Parts of the eastern edge of the granitic complex are exposed just west of the overlying Khuff Formation of Permian age, where biotite-hornblende granite of the complex intrudes chlorite-sericite schist of the Precambrian Bi'r Khountina Group. The biotite-hornblende granite of the complex also intrudes plutons of diorite, gabbro, and pyroxenite and is itself intruded by granite porphyry, thereby indicating some difference in age between the granitic rocks in the complex. A sequence of metamorphosed volcanic rocks composed mainly of andesite, rhyolite, and kindred rocks, and called the Halaban Group, is older than the Bi'r Khountina Group. Relations between the Halaban and a gray hornblende-biotite granite gneiss are uncertain, but the gneiss may be older than the Halaban. The few observed contacts disclosed parallel foliation in the two units, but the foliation may have been imposed after the Halaban was deposited on the granite gneiss. Two major left-lateral faults extend west-northwest across the Precambrian rocks but are not in the Permian rocks. These faults parallel to the Najd fault zone found farther south. Seemingly they correlate in time with early movements on the Najd fault zone, but not with the latest. Saprolitic material-of variable thickness is present on the upper surface of the Precambrian rocks beneath the Khuff Formation at many places. Where the Khuff Formation has been removed by erosion, the saprolite is also stripped away. The weathering probably took place in pre-Khuff time. No ancient mines or prospects were seen in the Precambrian rocks; however, a notable positive anomaly for tungsten in concentrates is associated with a small prominence of granite porphyry 35 km southwest of Ayn Qunay. Further investigation of the porphyry should be undertaken to learn the amount of scheelite at this locality.

  7. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  8. Photogeologic maps of the Iris SE and Doyleville SW quadrangles, Saguache County, Colorado

    USGS Publications Warehouse

    McQueen, Kathleen

    1957-01-01

    The Iris SE and Doyleville SW quadrangles, Saguache County, Colorado include part ot the Cochetopa mining district. Photogeologic maps of these quadrangles show the distribution of sedimentary rocks of Jurassic and Cretaceous age; precambrian granite, schist, and gneiss; and igneous rocks of Tertiary age. Sedimentary rocks lie on an essentially flat erosion surface on Precambrian rocks. Folds appear to be absent but faults present an extremely complex structural terrane. Uraniferous deposits occur at fault intersections in Precambriam and Mesozoic rocks.

  9. Studies on geological background and source of fluorine in drinking water in the North China Plate fluorosis areas

    USGS Publications Warehouse

    Luo, K.; Feng, F.; Li, H.; Chou, C.-L.; Feng, Z.; Yunshe, D.

    2008-01-01

    Endemic fluorosis in northern China is usually produced by high fluorine (F) content in drinking water. Thirty-one samples of drinking waters, mainly well waters and nearly 200 samples of rocks, loess, and coal were analyzed for F content using the combustion hydrolysis-fluoride-ion selective electrode (ISE) method. The geologic cross sections of two well-known fluorosis basins were studied. The solubility of F in different rock types collected from fluorosis areas was determined. Results showed that areas of endemic fluorosis in northern China are located in coal-bearing basins which are comprised of three stratagraphic portions. The lowest portion is Precambrian granitic rocks or Cambrian-Ordovician carbonates. The middle portion consists of Permo-Carboniferous or Jurassic coal-bearing sequences. The upper portion is 0-400 m Pleistocene loess. Flourine content in the Precambrian granite-gneiss contained (a) 1090-1460 ppm, in the Cambrian-Ordovician limestone and dolomite, (b) 52-133 ppm, in black shales and coal gob of Permo-Carboniferous coal-bearing strata, (c) 200-700 ppm, and (d) Pleistocene loess 454-542 ppm. The solubility of F in black shales of coal-bearing sequences was higher than in Precambrian granitic rocks, and both were more soluble than loess. F solubility from Precambrian granitic rocks was moderate, but Precambrian granitic rocks have high F content and thus contribute an appreciable amount of ion to the shallow groundwater (well water). Varying F content in shallow groundwater is controlled by geological conditions. The sources of F in the shallow groundwater from fluorosis areas in northern China are mainly derived from black shales of coal-bearing sequences and Precambrian granitic basement in the basins of northern China. ?? 2008 Taylor & Francis.

  10. Role of Precambrian compositions and fabrics in the development of foreland structures, southern Front Range, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase, R.B.

    1985-01-01

    The Front Range terminates to the south as three basement-cored uplifts located north and west of the Canon City embayment. Precambrian units consist of foliated and non-foliated granitic rocks, augen gneiss, interlayered schist and gneiss, amphibolite, quartzite, and pegmatite. Precambrian deformations include at least three phases of folding, two phases of crenulation cleavage development, and local mylonitization. Metamorphic conditions reached those of cordierite-sillimanite grade. Paleozoic and Mesozoic sediments surround and overlap the exposed uplifts to form south-plunging arches. Excellent three-dimensional exposure of structural relationships between Precambrian rocks and overlying Phanerozoic sediments is present. Deformation styles in the sedimentary cover aremore » strongly influenced by underlying Precambrian lithologies and structural orientations. Where the crystalline units are granitic, with steeply-dipping foliation or no directional fabric, uplifts are bounded by high angle faults. Some such faults show evidence of repeated movements and reversals dating back to Precambrian time. The boundary between mechanical basement and suprastructure is clearly not defined as the base of the sedimentary section. Balanced cross-sections constructed through the southern Front Range must include contemporaneous flexural folds and thrusts in Precambrian schistose and gneissic rocks as well as in Phanerozoic sedimentary layers.« less

  11. Lead isotope systematics of some igneous rocks from the Egyptian Shield

    NASA Technical Reports Server (NTRS)

    Gillespie, J. G.; Dixon, T. H.

    1983-01-01

    Lead isotope data on whole-rock samples and two feldspar separates for a variety of Pan-African (late Precambrian) igneous rocks for the Egyptian Shield are presented. It is pointed out that the eastern desert of Egypt is a Late Precambrian shield characterized by the widespread occurrence of granitic plutons. The lead isotope ratios may be used to delineate boundaries between Late Precambrian oceanic and continental environments in northeastern Africa. The samples belong to three groups. These groups are related to a younger plutonic sequence of granites and adamellites, a plutonic group consisting of older tonalites to granodiorites, and the Dokhan volcanic suite.

  12. A palaeomagnetic perspective of Precambrian tectonic styles

    NASA Technical Reports Server (NTRS)

    Schmidt, P. W.; Embleton, B. J. J.

    1986-01-01

    The considerable success derived from palaeomagnetic studies of Phanerozoic rocks with respect to the tectonic styles of continental drift and plate tectonics, etc., have not been repeated by the many palaeomagnetic studies of Precambrian rocks. There are 30 years of research with results covering the major continents for Precambrian times that overlap considerably yet there is no concensus. There is good evidence that the usual assumptions employed by palaeomagnetism are valid for the Precambrian. The exisence of magnetic reversals during the Precambrian, for instance, is difficult to explain except in terms of a geomagnetic field that was predominantly dipolar in nature. It is a small concession to extend this notion of the Precambrian geomagnetic field to include its alignment with the Earth's spin axis and the other virtues of an axial geocentric dipole that characterize the recent geomagnetic field. In terms of greenstone terranes it is obvious that tectonic models postulated to explain these observations are paramount in understanding Precambrian geology. What relevance the current geographical relationships of continents have with their Precambrian relationships remains a paradox, but it would seem that the ensialic model for the development of greenstone terranes is favored by the Precambrian palaeomagnetic data.

  13. Age and source of terrigenous rocks of the turan group of the bureya terrane of the eastern part of the central Asian foldbelt: Results of geochemical (Sm-Nd) and geochronological (U-Pb LA-ICP-MS) studies

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Smirnov, Yu. V.; Kotov, A. B.; Kovach, V. P.

    2014-06-01

    According to Sm-Nd isotopic-geochemical studies, the t Nd(DM) of the terrigenous rocks of the Turan Group of the Bureya terrane is 1.4-1.5 Ga and their sources are Precambrian rocks and (or) younger effusive rocks, the formation of which is related to the reworking of the Late Precambrian continental crust. The U-Pb LA-ICP-MS geochronological studies indicate dominant Vendian-Cambrian (588-483 Ma) and Late Riphean (865-737 Ma) detrital zircons. Our data point to their accumulation at the beginning of the Paleozoic rather than in the Precambrian as is accepted in modern stratigraphic schemes.

  14. A Geophysical Study in Grand Teton National Park and Vicinity, Teton County, Wyoming: With Sections on Stratigraphy and Structure and Precambrian Rocks

    USGS Publications Warehouse

    Behrendt, John Charles; Tibbetts, Benton L.; Bonini, William E.; Lavin, Peter M.; Love, J.D.; Reed, John C.

    1968-01-01

    An integrated geophysical study - comprising gravity, seismic refraction, and aeromagnetic surveys - was made of a 4,600-km2 area in Grand Teton National Park and vicinity, Wyoming, for the purpose of obtaining a better understanding of the structural relationships in the region. The Teton range is largely comprised of Precambrian crystalline rocks and layered metasedimentary gneiss, but it also includes granitic gneiss, hornblende-plagioclase gneiss, granodiorite, and pegmatite and diabase dikes. Elsewhere, the sedimentary section is thick. The presence of each system except Silurian provides a chronological history of most structures. Uplift of the Teton-Gros Ventre area began in the Late Cretaceous; most of the uplift occurred after middle Eocene time. Additional uplift of the Teton Range and downfaulting of Jackson Hole began in the late Pliocene and continues to the present. Bouguer anomalies range from -185 mgal over Precambrian rocks of the Teton Range to -240 mgal over low-density Tertiary and Cretaceous sedimentary rocks of Jackson Hole. The Teton fault (at the west edge of Jackson Hole), as shown by steep gravity gradients and seismic-refraction data, trends north-northeast away from the front of the Teton Range in the area of Jackson Lake. The Teton fault either is shallowly inclined in the Jenny Lake area, or it consists of a series of fault steps in the fault zone; it is approximately vertical in the Arizona Creek area. Seismic-refraction data can be fitted well by a three-layer gravity model with velocities of 2.45 km per sec for the Tertiary and Cretaceous rocks above the Cloverly Formation, 3.9 km per sec for the lower Mesozoic rocks, and 6.1 km per sec for the Paleozoic (limestone and dolomite) and Precambrian rocks. Gravity models computed along two seismic profiles are in good agreement (sigma=+- 2 mgal) if density contrasts with the assumed 2.67 g per cm2 Paleozoic and Precambrian rocks are assumed to be -0.35 and -0.10 g per cm2 for the 2.45 and 3.9 km per sec velocity layers, respectively. The Teton Range has a maximum vertical uplift of about 7 km, as inferred from the maximum depth to basement of about 5 km. Aeromagnetic data show a 400gamma positive anomaly in the Gros Ventre Range, which trends out of the surveyed area at the east edge. Exposed Precambrian rocks contain concentrations of magnetite and hematite. A prominent anomaly of about 100gamma is associated with the Gros Ventre Range, and 100gamma anomalies are associated with the layered gneiss of the Teton Range. On this basis the unmapped Precambrian rocks of the Gross Ventre Range are interpreted as layered gneiss. The sources of the magnetic anomalies, as indicated by depth determination, are at the surface of the Precambrian rocks. A model fitted to a profile across the Gros Ventre Range gives a depth to the Precambrian surface and a susceptibility of 0.0004 emu (electromagnetic units) for the source, which is consistent with modal analyses of the layered gneisses. A residual magnetic map shows that the granitic rocks and layered gneiss probably continue beneath the floor of Jackson Hole east of the Teton fault. The location of aeromagnetic anomalies is consistent with the interpretation that the Teton fault diverges from the front of the Teton Range.

  15. Indigenous Precambrian petroleum revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, G.E.; Kaczor, M.J.; McArthur, R.E.

    1980-10-01

    Irrefutable evidence of fossil remains from Precambrian sediments and proved petroleum reserves in upper Proterozoic (Riphean-Vendian) strata of the Irkutsk basin, USSR, suggest that unmetamorphosed Precambrian sedimentary rocks should be a focus for hydrocarbon exploration. Since 1965, a dramatic increase in publications which document worldwide occurrences of Precambrian life forms discloses that, by the end of the Proterozoic, organic evolution had produced diversified assemblages of relatively highly developed macroorganisms and microorganisms. Some of these organisms have generated crude oil in the Nonesuch Shale of northern Michigan and kerogen in stromatolitic carbonate rocks in Africa Kerogen has been extracted from approx.more » 2300-m.y. old Transvaal (Africa) stromatolitic limestone containing coccoid and complex filamentous cyanophytes. Also, aromatic and aliphatic hydrocarbons have been obtained from the approx. 2800-m.y. old Bulawayan stromatolitic limestone of Rhodesia. Additional evidence indicates that commercial reserves of petroleum from Precambrian strata are possible. An oil discovery in Lower Cambrian rocks in 1962, at Markovo in the Irkutsk basin of the Siberian platform area, led to four noncommercial and eight commercial fields producing from Lower Cambrian and Upper Proterozoic strata.« less

  16. Precambrian evolution and the rock record

    NASA Technical Reports Server (NTRS)

    Awramik, S.

    1985-01-01

    The Precambrian time which refers to geological time prior to the first appearance of animals with mineralized hard parts was investigated. Best estimates for this event are around 570 million years ago. Because the rock record begins some 3,800 million years ago the Precambrian encompasses about 84% of geologic time. The fossil record for this immense span of time is dominated by prokaryotes and the sedimentary structures produced by them. The first fossil remains that are considered eukaryotic are found in 1,000 million year old rocks. The first animals may be as old as 700 million years. The fossil records of the first 84% of the Earth's history are collected and described.

  17. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre,more » and drill site geologic maps and cross-sections from most of the holes.« less

  18. K-Ar geochronology of the Survey Pass, Ambler River and Eastern Baird Mountains quadrangles, southwestern Brooks Range, Alaska

    USGS Publications Warehouse

    Turner, Donald L.; Forbes, R.B.; Mayfield, C.F.

    1978-01-01

    We report 76 previously unpublished K-Ar mineral ages from 47 metamorphic and igneous rocks in the southwestern Brooks Range. The pattern of radiometric ages is complex, reflecting the complex geologic history of this area. Local and regional radiometric evidence suggests that the southern Brooks Range schist belt has, at least in part, undergone a late Precambrian metamorphism and that the parent sedimentary and igneous rocks for the metamorphic rocks dated as late Precambrian are at least this old (Precambrian Z). This schist terrane experienced a major thermal event in mid-Cretaceous time, causing widespread resetting of nearly all K-Ar mica ages. A series of apparent ages intermediate between late Precambrian and mid-Cretaceous are interpreted as indicating varying amounts of partial argon loss from older rocks during the Cretaceous event. The schist belt is characterized by dominant metasediments and subordinate metabasites and metafelsites. Blueschists occur within the schist belt from the Chandalar quadrangle westward to the Baird Mountains quadrangle, but geologic evidence does not support the existence of a fossil subduction zone.

  19. The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.R.; Julian, F.E.

    1993-02-01

    The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used tomore » describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.« less

  20. Precambrian basement geology of North and South Dakota.

    USGS Publications Warehouse

    Klasner, J.S.; King, E.R.

    1986-01-01

    Combined analysis of drill-hole, gravity and magnetic data indicates that the Precambrian rocks in the basement of the Dakotas may be divided into a series of lithotectonic terrains. On the basis of an analysis of geological and geophysical data in the Dakotas and from the surrounding states and Canada, it is shown how the exposed Precambrian rocks of the adjacent shield areas project into the study area. Brief comments are made on the tectonic implications of this study. Geological and geophysical characteristics of 11 terrains are tabulated. -P.Br.

  1. New data concerning the age and specific features of magmatism of timanides in the southern part of the Lyapin structure (Northern Urals)

    NASA Astrophysics Data System (ADS)

    Petrov, G. A.; Ronkin, Yu. L.; Gerdes, A.; Maslov, A. V.

    2017-10-01

    New data on composition and age of Precambrian granites and volcanic rocks in the southern part of the Lyapin structure (Northern Urals) are considered. The geochemical features of the igneous rocks are similar to those of the rocks formed in both divergent and convergent environments. In the Late Precambrian (583-553 Ma), the investigated area is assumed to have been a part of the active margin above the mantle plume.

  2. Aeromagnetic maps with geologic interpretations for the Tularosa Valley, south-central New Mexico

    USGS Publications Warehouse

    Bath, G.D.

    1977-01-01

    An aeromagnetic survey of the Tularosa Valley in south-central New Mexico has provided information on the igneous rocks that are buried beneath alluvium and colluvium. The data, compiled as residual magnetic anomalies, are shown on twelve maps at a scale of 1:62,500. Measurements of magnetic properties of samples collected in the valley and adjacent highlands give a basis for identifying the anomaly-producing rocks. Precambrian rocks of the crystalline basement have weakly induced magnetizations and produce anomalies having low magnetic intensities and low magnetic gradients. Late Cretaceous and Cenozoic intrusive rocks have moderately to strongly induced magnetizations. Precambrian rocks produce prominent magnetic anomalies having higher amplitudes and higher gradients. The Quaternary basalt has a strong remanent magnetization of normal polarity and produces narrow anomalies having high-magnetic gradients. Interpretations include an increase in elevation to the top of buried Precambrian rock in the northern part of the valley, a large Late Cretaceous and Cenozoic intrusive near Alamogordo, and a southern extension of the intrusive rock exposed in the Jarilla Mountains. Evidence for the southern extension comes from a quantitative analysis of the magnetic anomalies..

  3. Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.

    1985-01-01

    Regional variations in initial 87Sr/86Sr ratios (ri) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The ri values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type, diorite-tonalite-trondhjemite units to a weakly peraluminous, calcic to calcalkalic tonalite-granodiorite-granite suite (the Idaho batholith). Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. Plutons near the edge of Precambrian sialic crust represent simple mixtures of the Precambrian wall-rocks with melts derived from the upper mantle or subducted oceanic lithosphere with ri of 0.7035. Rb/Sr varies linearly with ri, producing "pseudoisochrons" with apparent "ages" close to the age of the wall rocks. Measured ??18O values of the wall rocks are less than those required for the assimilated end-member by Sr-O covariation in the plutons, however, indicating that wall-rock ??18O was reduced significantly by exchange with circulating fluids. Metasedimentary rocks of the Belt Supergroup are similarly affected near the batholith, documenting a systematic depletion in 18O as much as 50 km from the margin of the batholith. Plutons of the Bitterroot lobe of the Idaho batholith are remote from the accreted terranes and represent mixtures of Precambrian wall-rocks with melts dominated by continental lower crust (ri>0.708) rather than mantle. "Pseudoisochrons" resulting from these data are actually mixing lines that yield apparent "ages" less than the true age of the wall rocks and meaningless "ri". Assimilation/ fractional-crystallization models permit only insignificant amounts of crystal fractionation during anatexis and mixing for the majority of plutons of the region. ?? 1985 Springer-Verlag.

  4. BRIDGER WILDERNESS AND GREEN-SWEETWATER ROADLESS AREA, WYOMING.

    USGS Publications Warehouse

    Worl, Ronald G.; Ryan, George S.

    1984-01-01

    A mineral-resource appraisal of the Bridger Wilderness and contiguous Green-Sweetwater Roadless Area in Wyoming was made. This rugged and remote region is mostly Precambrian crystalline granitic rocks that contain only small and discontinuous areas of mineralization. The area is considered to have little promise for metallic mineral deposits. Sedimentary rocks in the area have minor coal seams and beds of phosphate rock, but the coal beds are thin and of limited extent, and the phosphate rock is low-grade compared to similar rocks elsewhere in the region. A probable potential for oil and gas at depth, assigned to part of the area, is based on the assumption that oil- and gas-bearing rocks exist at depth below a low-angle thrust fault and a wedge of Precambrian crystalline rock.

  5. The contribution of the Precambrian continental lithosphere to global H2 production.

    PubMed

    Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J

    2014-12-18

    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.

  6. Gold in the Black Hills, South Dakota, and how new deposits might be found

    USGS Publications Warehouse

    Norton, James Jennings

    1974-01-01

    Of the recorded production of 34,694,552 troy ounces of gold mined in South Dakota through 1971, about 90 percent has come from Precambrian ore bodies in the Homestake mine at Lead in the northern Black Hills. Most of the rest has come from ore deposited in the Deadwood Formation (Cambrian) by hydrothermal replacement during early Tertiary igneous activity. About 99 percent of the total production has been within a radius of 5 miles (8 km) of Lead. Elsewhere, prospecting has been intense, both in the Precambrian rocks, which are exposed over an area 61 by 26 miles (98 by 42 km), and in nearby Paleozoic rocks. All the known ore bodies have been found either at the surface or in subsurface workings of operating mines. Efforts to find totally new deposits have been modest and sporadic; no comprehensive and systematic program has ever been attempted. Obviously, any exploration program should be aimed at finding a new deposit resembling the Homestake in the Precambrian, but discovery in the Deadwood of a new group of ore bodies containing several hundred thousand ounces of gold would certainly be worthwhile. Evidence has long been available that the Deadwood deposits and the Homestake deposit are somehow related. Current opinion is that (1) the Homestake ore is mainly Precambrian, (2) a trivial amount of Homestake ore is Tertiary, (3)gold in Deadwood basal conglomerate is largely of placer origin, and (4) the gold of replacement deposits in the Deadwood and in other rock units came originally from sources similar to the Homestake deposit or its parent materials. Homestake ore is virtually entirely contained in a unit of iron-formation locally known as the Homestake Formation, which seemingly had more gold in the original sediments than similar rocks exposed elsewhere in the Black Hills. Gold, sulfur, and other constituents were subsequently concentrated in ore shoots in zones of dilation caused by cross folds that deformed earlier major folds. These ore shoots are in metamorphic rocks of a grade just above the garnet isograd, in a zone where the principal iron-magnesium mineral of the iron-formation changes from a carbonate (sideroplesite) to a silicate (cummingtonite). This metamorphic reaction would release carbon dioxide to the fluid that presumably formed the ore bodies. In short, three controls over localization of the ore have been identified: (1) the cross folds; (2) the so-called Homestake Formation, which passes beneath Paleozoic rocks north of Lead and has not been proved to reappear anywhere else in the Black Hills (Other units of iron-formation less enriched in gold might locally become more like the Homestake Formation beneath the cover of Paleozoic rocks.}; (3} proximity to the garnet isograd--nearly all the exposed Precambrian rocks in the Black Hills are at a metamorphic grade higher than this isograd--and occurrence of this isograd zone mostly beneath Paleozoic rocks. In searching for new deposits, one can guess from existing data where Precambrian rocks of suitable nature may be concealed. The usefulness of such guesses can be increased if they are made with information about the distribution of gold in younger rocks. Gold in the Deadwood basal conglomerate would be the simplest indicator of a deposit once exposed on the pre-Deadwood surface. Tertiary replacement deposits in the Deadwood or other rocks, which obtained their gold from Precambrian sources that may be nearby or far away, can also be helpful; they, like anomalies found by geochemical sampling, at least outline the regions of mineralizing activity. A suitable approach to exploration is to make a thorough study of the stratigraphy, the structure, and the metals geochemistry of the Deadwood Formation and associated rocks, chiefly in the northern Black Hills but to a lesser extent elsewhere in localities where the Precambrian geology seems promising and where gold has been found nearby. Such a program, even if it does not yield

  7. Geology of the Lake Mary quadrangle, Iron County, Michigan

    USGS Publications Warehouse

    Bayley, Richard W.

    1959-01-01

    The Lake Mary quadrangle is in eastern Iron County, in the west part of the Upper Peninsula of Michigan. The quadrangle is underlain by Lower and Middle Precambrian rocks, formerly designated Archean and Algonkian rocks, and is extensively covered by Pleistocene glacial deposits. A few Upper Precambrian (Keweenawan) diabase dikes and two remnants of sandstone and dolomite of early Paleozoic age are also found in the area. The major structural feature is the Holmes Lake anticline, the axis of which strikes northwest through the northeast part of the quadrangle. Most of the quadrangle, therefore, is underlain by rock of the west limb of the anticline. To the northwest along the fold axis, the Holmes Lake anticline is separated from the Amasa oval by a saddle of transverse folds in the vicinity of Michigamme Mountain in the Kiernan quadrangle. The Lower Precambrian rocks are represented by the Dickinson group and by porphyritic red granite whose relation to the Dickinson group is uncertain, but which may be older. The rocks of the Dickinson group are chiefly green to black metavolcanic schist and red felsite, some of the latter metarhyolite. The dark schist is commonly magnetic. The Dickinson group underlies the core area of the Holmes Lake anticline, which is flanked by steeply dipping Middle Precambrian formations of the Animikie series. A major unconformity separates the Lower Precambrian rocks from the overlying Middle Precambrian rocks. In ascending order the formations of the Middle Precambrian are the Randville dolomite, the Hemlock formation, which includes the Mansfield iron-bearing slate member, and the Michigamme slate. An unconformity occurs between the Hemlock formation and Michigamme slate. The post-Hemlock unconformity is thought to be represented in the Lake Mary quadrangle by the absence of iron-formation of the Amasa formation, which is known to lie between the Hemlock and the Michigamme to the northwest of the Lake Mary quadrangle in the Crystal Falls quadrangle. Post-Hemlock erosion may account also for the absence of iron-formation of the Fence River formation on the east limb of the Holmes Lake anticline within the Lake Mary quadrangle. The Randville dolomite is not exposed and is known only from diamond drilling in the northeast part of the area where it occurs in the east and west limbs of the Holmes Lake anticline. The formation has a maximum thickness of about 2,100 feet; this includes a lower arkosic phase, some of which is quartz pebble conglomerate, a medial dolomitic phase, and an upper slate phase. The triad is gradational. Included within the formation are a few beds of chloritic schist thought to be of volcanic origin. An unconformity between the Randville and the succeeding Hemlock is not indicated in the quadrangle, but is probably present. The Hemlock formation is best exposed in the northwest and south-central parts of the area. The apparent thickness of the formation is 10,000- 17,000 feet. It is composed mainly of mafic metavolcanic rocks and intercalated slate and iron-formation. In the north part of the quadrangle the volcanic rocks are greenstone, which includes altered basaltic flow rocks, volcanic breccia, tuff, and slate. Pillow structures are common in the metabasalt. It is not certain if any Hemlock rocks are present in the east limb of the Holmes Lake anticline. In the south part of the quadrangle, the rocks of the Hemlock are chiefly chlorite and hornblende schist and hornfels. Pyroxene hornfels is sparingly present. At least two sedimentary slate belts are included in the Hemlock formation. One of these, the Mansfield iron-bearing slate member, includes in its upper part an altered chert-siderite iron-formation 30 to over 150 feet thick from which iron ore has been mined at the Mansfield location. The position of the iron-bearing rocks has been determined magnetically, and past explorations for iron ore are discussed. Though probably; unconformable, the contact between the Hemlock and the Michigamme formations appears conformable. The Michigamme slate consists of at least 4,000 feet of interbedded mica schist and granulite, the altered equivalents of the slate and graywacke characteristic of the Michigamme in adjacent areas. The Michigamme rocks are best exposed in the south part of the quadrangle in the vicinity of Peavy Pond. Two periods of regional metamorphism have resulted in the alteration of almost all of the rocks of the quadrangle. The Lower Precambrian rocks underwent at least one period of metamorphism, uplift, and erosion before the deposition of the Randville dolomite. After the deposition of the Michigamme slate, a post-Middle Precambrian period of regional metamorphism occurred with attending deformation and igneous intrusion. The grade of metamorphism rises toward the south in the area. The rocks in the northern two-thirds of the quadrangle are representative of greenschist facies of regional metamorphism, whereas the rocks in the southern onethird of the quadrangle are representative of the albite-epidote-amphibolite, the amphibolite, and the pyroxene hornfels facies, the metamorphic node centering about the intrusive Peavy Pond complex in the Peavy Pond area. The Precambrian sedimentary and volcanic rocks are cut by intrusive igneous rocks of different types and several different ages. Gabbroic sills and dikes invaded the Hemlock rocks at some time after the Hemlock was deposited and before the post-Middle Precambrian orogeny and metamorphism. Some contact metamorphism attended the intrusion of the major sills. One of the sills, the West Kiernan sill, is well differentiated. A syntectonic igneous body, composed of gabbro and minor ultramafic parts and fringed with intermediate and felsic differentiates and hybrids, the Peavy; Pond complex, was intruded into the Hemlock and Michigamme formations during the post-Middle Precambrian orogeny. The complex is situated in the Peavy Pond area at the crest of the regional metamorphic node. Contact-altered sedimentary and volcanic rocks margin the complex. The effects of regional metamorphism have been superposed on the contact metamorphic rocks peripheral to the complex and on the igneous rocks of the complex as well. The mafic augite-bearing rocks of the complex emplaced early in the orogeny were deformed by granulation at the peak of the deformation and subsequently metamorphosed to hornblende rocks. Some of the intermediate and felsic rocks of the complex were foliated by the deformation, while the more fluid, felsic parts of the complex were intruded under orogenic stress and crystallized after the peak of deformation. The deformation culminated in major faulting during which the formations were dislocated, and some of the granite of the complex was extremely brecciated. A few diabase dikes, probably of Keweenawan age, have intruded the deformed and altered Animikie rocks. The only known metallic resource is iron ore. The Mansfield mine produced 1¥2 million tons of high-grade iron ore between the years 1890 and 1913. Sporadic exploration since 1913 has failed to reveal other ore deposits of economic importance.

  8. Interpreting Precambrian δ15N: lessons from a new modern analogue, the volcanic crater lake Dziani Dzaha

    NASA Astrophysics Data System (ADS)

    Ader, M.; Cadeau, P.; Jezequel, D.; Chaduteau, C.; Fouilland, E.; Bernard, C.; Leboulanger, C.

    2017-12-01

    Precambrian nitrogen biogeochemistry models rely on δ15N signatures in sedimentary rocks, but some of the underlying assumptions still need to be more robustly established. Especially when measured δ15N values are above 3‰. Several processes have been proposed to explain these values: non-quantitative reduction of nitrate to N2O/N2 (denitrification), non-quantitative oxidation of ammonium to N2O/N2, or ammonia degassing to the atmosphere. The denitrification hypothesis implies oxygenation of part the water column, allowing nitrate to accumulate. The ammonium oxidation hypothesis implies a largely anoxic water column, where ammonium can accumulates, with limited oxygenation of surface waters. This hypothesis is currently lacking modern analogues to be supported. We propose here that the volcanic crater lake Dziani Dzaha (Mayotte, Indian Ocean) might be one of them, on the basis of several analogies including: permanently anoxic conditions at depth in spite of seasonal mixing; nitrate content below detection limit in the oxic surface waters; accumulation of ammonium at depth during the stratified season; primary productivity massively dominated by cyanobacteria. One aspect may restrict the analogy: the pH value of 9-9.5. In this lake, δ15N values of primary producers and ammonium range from 6 to 9‰ and are recorded with a positive offset in the sediments (9<δ15N<13‰). Because N-sources to the system present more negative δ15N values, such positive values can only be achieved if 14N-enriched N is lost from the lake. Although NH3 degassing might play a small role, the main pathway envisaged for this N-loss is NH4+ oxidation to N2O/N2. If confirmed, this would provide strong support for the hypothesis that positive δ15N values in Precambrian rocks may indicate dominantly anoxic oceans, devoid of nitrate, in which ammonium was partly oxidized to N2O/N2.

  9. Reconnaissance geology of the Precambrian rocks in the Bi'r Ghamrah quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.; Whitlow, Jesse William

    1972-01-01

    Three sequences of volcanic and sedimentary rocks are identified in the Precambrian rocks of the Bi'r Ghamrah quadrangle at the eastern edge of the Precambrian Shield in central Saudi Arabia. The oldest sequence is called the Bi'r Khountina Group. It consists of conglomerate marble, andesite, and graywacke. Unconformably overlying this group is a sequence of graywacke with minor lava called the Murdama Group. In a small area in the southern part of the quadrangle, these rocks are unconformably overlain by rhyolitic tuff and rhyolite tentatively correlated with the Shammar Rhyolite. The older of these sedimentary and volcanic rocks were intruded by diorite and gabbro and by a large pluton of alkalic granite. A contact metamorphic aureole was formed in the Bi'r Khountina and Murdama Groups adjacent to the granite, and feeder dikes of the Sbmmmar Rhyolite(?) intrude the granite. The Bi'r Khountina Group is folded into a south-plunging asymmetrical anticlinorium, the west limb of which is repeated across northwest-trending faults. The Murdama Group appears to have been folded along the same axes, but the contact aureole against the alkalic granite and the imprint of the west-northwest striking Najd fault zone cause the rocks of the Murdama Group to appear to trend westward. Results of spectrographic and chemical analyses of wadi sand, heavy-mineral concentrates, and detrital magnetite show small anomalies. The ultramafic rocks intruded prior to the deposition of the Murdama Group are the source of anomalous chromium and lanthanum and of threshold nickel, scandium, and vanadium. The intrusive rocks younger than the Murdama Group are sources for anomalous lead and threshold silver, boron, barium, beryllium, zirconium, lanthanum, and tin. One small ancient working, probably opened for gold, is present, and at least four places in the Precambrian part of the quadrangle ere potentially favorable for gold, silver, and lead. Chromite is a potential resource in the northeastern part of the quadrangle.

  10. Reconnaissance geology of the Manjamah Quadrangle, sheet 18/41 A, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hadley, D.G.

    1982-01-01

    The Manjamah quadrangle (sheet 18/41 A) lies between lat 18?30' and 19?00' N. and long 41?00' and 41?30' E. and encompasses an area of 2,932 km2, of which about half is land and the remainder covered by the Red Sea. The geologic formations exposed in the quadrangle comprise Precambrian layered and intrusive rocks,. Tertiary layered rocks and gabbro dikes, and. Quaternary basaltic lavas, pyroclastic rocks, and surficial deposits. The Precambrian rocks are layered metasedimentary and metavolcanic rocks that have been assigned to the Baish and Bahah groups. These rocks are cut by Precambrian biotite quartz monzonite and by Miocene gabbro dikes that were intruded during the initial stages of the opening of the Red Sea rift. Tuffaceous siltstone of the Baid formation was also deposited during the Miocene, followed in the Pliocene by the polymict conglomerate of the Bathan formation. The Quaternary rocks include basalt that was extruded during a continuation of the opening of the Red Sea rift, after uplift of the escarpment parallel with the Red Sea but before the Holocene erosional cycle. The greater part of the land area of the quadrangle is covered by Quaternary coastal, pediment, and alluvial deposits of various kinds associated with the deltaic mouths of Wadi Hall and Wadi Yiba and their tributaries and with the development of fringing reefs and islands. The area also contains extensive Quaternary eolian deposits. The economic potential of the quadrangle lies essentially in the agricultural value .of its flood-plain deposits, which are frequently refreshed during flooding with the products of weathering and erosion of the Precambrian rocks in the valleys of Wadi Hal i and Wadi Yiba; coral reefs could possibly provide raw material for use in a cement industry, if any such industry were ever required in this area.

  11. Isotope geochronology of the Precambrian

    NASA Astrophysics Data System (ADS)

    Levskii, L. K.; Levchenkov, O. A.

    This symposium discusses the use of isotope methods for establishing the geochronology of Precambrian formations, with special consideration given to geochronological studies of the early phases of the earth's core evolution in the Baltic and Vitim-Aldan shields and the Enderby Land (Antarctica). Attention is also given to the Early Archean Vodlozero gneiss complex and its structural-metamorphic evolution, the influence of geological events during the Proterozoic on the state of the U-Pb and Rb-Sr systems in the Archean postkinematic granites of Karelia, the Rb-Sr systems in the andesite basalts of the Suna-Semch' region (Karelia), and the geochronology of the Karelian granite-greenstone region. Also discussed are the petrogenesis and age of the rocks from the Kola ultradeep borehole, the isotope-geochronological evidence for the early Precambrian history of the Aldan-Olekma region, the Rb-Sr systems in metasedimentary rocks of the Khani graben, and the U-Pb ages of zircons from polymetamorphic rocks of the Archean granulite complex of Enderby Land.

  12. Geology of Seward Peninsula and Saint Lawrence Island

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.

    1994-01-01

    Seward Peninsula (Fig. 1) may be divided into two geologic terranes (Fig. 2) on the basis of stratigraphy, structure, and metamorphic history. The Seward terrane, an area 150 by 150 km in the central and eastern peninsula, is dominated by Precambrian(?) and early Paleozoic blueschist-, greenschist-, and amphibolite-facies schist and marble, and intruded by three suites of granitic rocks. The York terrane, roughly 100 by 75 km, occupies western Seward Peninsula and the Bering Straits region; it is composed of Ordovician, Silurian, Devonian, Mississippian, and possibly older limestone, argillaceous limestone, dolostone, and phyllite, which are cut by a suite of Late Cretaceous tin-bearing granites. The boundary between the Seward and York terranes is poorly exposed but is thought to be a major thrust fault because of its sinuous map trace, a discontinuity in metamorphic grade, and differences in stratigraphy across the boundary (Travis Hudson, oral communication, 1984). The boundary between the Seward terrane and the Yukon-Koyukuk province to the east is complicated by vertical faults (the Kugruk fault Zone of Sainsbury, 1974) and obscured by Cretaceous and Tertiary cover.The Seward Peninsula heretofore was thought to consist largely of rocks of Precambrian age (Sainsbury, 1972, 1974, 1975; Hudson, 1977), Microfossil data, however, indicate that many of the rocks considered to be Precambrian are early Paleozoic in age (Till and others, 1986; Dumoulin and Harris, 1984; Dumoulin and Till, 1985; Till and others, 1983; Wandervoort, 1985). It is likely that Precambrian rocks are a minor part of the stratigraphy of the Seward Peninsula.

  13. A geological and geochemical reconnaissance of the Tathlith one-degree quadrangle, sheet 19/43, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.

    1978-01-01

    The Tathlith one-degree quadrangle occupies an area of 11,620 sq km in the northeastern Asir region of the Kingdom of Saudi Arabia, in the southeastern part of the Precambrian shield. In the eastern part of the quadrangle the Precambrian rocks are covered by exposures of easterly-dipping sandstone of Cambrian or Ordovician age. A well-developed and highly integrated drainage system trending northward is worn into the Precambrian rocks, but for most of the year the wadis are dry. The Precambrian rocks of the quadrangle consist of an old, non-metamorphosed to variably metamorphosed sequence of volcanic and sedimentary rocks intruded by three main successions of plutonic and hypabyssal igneous rocks. The interlayered volcanic and sedimentary rocks occupy arcuate, north-trending fold belts in which old, rather tight north-trending folds have been refolded at least once by open folds with nearly east-trending axes. Old, north-trending left-lateral faults are associated with the fold belts and are themselves intersected by younger, northwest-trending faults. Motion on both sets of faults has been reactivated several times. The interlayered volcanic and sedimentary rocks are an eugeosynclinal sequence of graywacke and andesite with sparse marble, quartzite, and rhyolite. Andesite is the dominant component of the sequence. Plutonic or hypabyssal equivalents of the andesite intrude the volcanic-sedimentary sequence. In many places these rocks are essentially non-metamorphosed, but elsewhere they are faintly to strongly metamorphosed, or even polymetamorphosed. Dynamothermal metamorphism associated with the northerly folding, and contact metamorphism are the principal kinds of metamorphism. The metamorphic grade is mostly greenschist facies or albite-epidote amphibolite facies. The largest intrusive in the area is a batholith of regional dimension, the east side of which intrudes and divides the fold belts. Granite gneiss and granodiorite gneiss are the main components of the batholith. Biotite granite of calc-alkaline composition, and somewhat younger than the granite gneiss and granodiorite gneiss, forms northerly elongate to subcircular plutons in the gneisses and the rocks of the volcanic-sedimentary sequence.

  14. Summary of geology and ground-water resources of Passaic County, New Jersey

    USGS Publications Warehouse

    Carswell, L.D.; Rooney, J.G.

    1976-01-01

    Ground water in Passaic County occurs in intergranular openings of unconsolidated stratified deposits of Quaternary age and in joints and fractures in consolidated rocks of Precambrian, Paleozoic, and Triassic age.The Brunswick Formation of Triassic age is the most important aquifer in the southeastern one-third of Passaic County. Reported yields of public supply and industrial wells range from 50 to 510 gallons per minute (3 to 32 litres per second) and the median yield is 130 gallons per minute (8 litres per second). Most of these wells are 200 to 400 feet (61 to 122 metres) deep. The median yield of all public supply and industrial wells over 300 feet (91 metres) deep and 8 inches (203 millimetres) or larger in diameter is 230 gallons per minute (15 litres per second). Crystalline rocks of Precambrian age are the major source of ground water for domestic use in the northwestern two-thirds of Passaic County. Reported well yields range from 1 to 200 gallons per minute (.06 to 13 litres per second). The median reported yield of domestic wells is 5 gallons per minute (.31 litres per second) and that of public supply wells is 30 gallons per minute (2 litres per second).Other consolidated rocks--rocks of Paleozoic age and the Watchung Basalt of Traissic age--are utilized primarily for domestic water supplies in Passaic County. Reported yields of wells tapping the Paleozoic rocks range from less than 1 to 35 gallons per minute (.06 to 2 litres per second) and the median yield is 10 gallons per minute (.63 litres per second). Reported yields of domestic wells tapping the Watchung Basalt range from less than 1 to 40 gallons per minute (.06 to 3 litres per second) and the median yield is 12 gallons per minute (.76 litres per second). However, reported yields of nine industrial and commercial wells range from 50 to 180 gallons per minute (3 to 11 litres per second).Unconsolidated stratified deposits of Quaternary age are locally an important source of ground water for public supply and industrial use in parts of Passaic County. These deposits have not been extensively explored but are potentially an important source of ground water for future development. Reported yields of wells tapping the stratified deposits range from 4 to 920 gallons per minute (.25 to 58 litres per second). The median reported yield of domestic wells is 16 gallons per minute (1 litre per second) and that of public supply and industrial wells is 130 gallons per minute (8 litres per second. Depths of wells depend upon the thickness of the deposits. Reported depths range from 22 to 170 feet (7 to 52 metres).The quality of ground water in Passaic County varies from one aquifer to another. Water from the Precambrian rocks is soft to moderately hard (34 to 104 milligrams per litre) and is low in dissolved solids (66 to 159 milligrams per litre). Water from the Brunswick Formation is moderately hard to very hard (89 to 540 milligrams per litre). The dissolved solids content ranges from 129 to 563 milligrams per litre). The occurrence of more highly mineralized water at depth in the Brunswick Formation is indicated by an analysis, made in 1885, of 16,000 milligrams per litre of dissolved solids at a depth of 2,050 feet (625 metres) in a well in Paterson. Water from two wells tapping the Quaternary deposits is moderately hard (65 and 83 milligrams per litre) and has dissolved solids contents of 122 and 133 milligrams per litre).Water use from both surface and ground-water supplies in Passaic County averaged about 106 million gallons per day (4.6 cubic metres per second) in 1965. Ground water probably accounts for 5 to 10 percent of this total. Ground-water pumpage by the major public supply companies in the county has increased from 2.1 million gallons per day (.09 cubic metres per second) in 1951 to 4.39 million gallons per day (.19 cubic metres per second) in 1968. About 80 percent of the 4.39 million gallons per day (.19 cubic metres per second) was from wells tapping the Brunswick Formation in the southern part of the county.

  15. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    USGS Publications Warehouse

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  16. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    USGS Publications Warehouse

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite gneiss, granite gneiss and pegmatite, granodiorite, and quartz diorite and associated hornblendite are metamorphosed during this period. The second period of folding appears to have been the reflection at depth of faulting nearer the surface; it resulted in crushing as well as some folding of the already folded rocks into terrace and monoclinal folds that plunge gently east-northeast. The biotite-muscovite granite, which is the youngest major Precambrian rock unit, is both concordant (phacolithic) and crosscutting along the older fold system and has been fractured by the younger fold system.

  17. Anomalous carbonate precipitates: is the Precambrian the key to the Permian?

    NASA Technical Reports Server (NTRS)

    Grotzinger, J. P.; Knoll, A. H.

    1995-01-01

    Late Permian reefs of the Capitan complex, west Texas; the Magnesian Limestone, England; Chuenmuping reef, south China; and elsewhere contain anomalously large volumes of aragonite and calcite marine cements and sea-floor crusts, as well as abundant microbial precipitates. These components strongly influenced reef growth and may have been responsible for the construction of rigid, open reefal frames in which bryozoans and sponges became encrusted and structurally reinforced. In some cases, such as the upper biostrome of the Magnesian Limestone, precipitated microbialites and inorganic crusts were the primary constituents of the reef core. These microbial and inorganic reefs do not have modern marine counterparts; on the contrary, their textures and genesis are best understood through comparison with the older rock record, particularly that of the early Precambrian. Early Precambrian reefal facies are interpreted to have formed in a stratified ocean with anoxic deep waters enriched in carbonate alkalinity. Upwelling mixed deep and surface waters, resulting in massive seafloor precipitation of aragonite and calcite. During Mesoproterozoic and early Neoproterozoic time, the ocean became more fully oxidized, and seafloor carbonate precipitation was significantly reduced. However, during the late Neoproterozoic, sizeable volumes of deep ocean water once again became anoxic for protracted intervals; the distinctive "cap carbonates" found above Neoproterozoic tillites attest to renewed upwelling of anoxic bottom water enriched in carbonate alkalinity and 12C. Anomalous late Permian seafloor precipitates are interpreted as the product, at least in part, of similar processes. Massive carbonate precipitation was favored by: 1) reduced shelf space for carbonate precipitation, 2) increased flux of Ca to the oceans during increased continental erosion, 3) deep basinal anoxia that generated upwelling waters with elevated alkalinities, and 4) further evolution of ocean water in the restricted Delaware, Zechstein, and other basins. Temporal coincidence of these processes resulted in surface seawater that was greatly supersaturated by Phanerozoic standards and whose only precedents occurred in Precambrian oceans.

  18. Geologic setting of the Mountain Pass rare earth deposits, San Bernardino County, California

    USGS Publications Warehouse

    Olson, Jerry Chipman

    1952-01-01

    The Mountain Pass district is in a block of pre-Cambrian metamorphic rocks bounded on the east and south by the alluvium of Ivanpah Valley. This block is separated from Paleozoic and Mesozoic sedimentary and volcanic rocks on the west by the Clark Mountain normal fault, and the northern boundary of the district is a prominent transverse fault. The pre-Cambrian metamorphic complex comprises a great variety of lithologic types including garnetiferous mica gneisses and schists; biotite-garnet-sillimenite gneiss; hornblende gneiss, schist, and amphibolite; biotite gneiss and schist; granitic gneisses and migmatites; pegmatites; and minor amounts of foliated mafic rocks. The rare earth-bearing carbonate rocks are related to potash-rich igneous rocks, of uncertain age, that cut the metamorphic complex. The larger potash-rich intrusive masses, 300 or more feet wide, comprise one granite, two syenite, and four composite shonkinite-syenite bodies. One of the shonkinite-syenite stocks is more than a mile long. Several hundred relatively thin dikes of these potash-rich rocks range in composition, and generally decreasing age, from biotite shonkinite through syenite to granite. A few thin fine-grained shonkinite dikes cut the granite. These potash-rich rocks are cut by east-trending andesitic dikes and by faults. Veins of carbonate rock are most abundant in and near the southwest side of the largest shonkinite-syenite body. Although most veins are less than 6 feet thick, one mass of carbonate rock near the Sulphide Queen min4e is 600 feet in maximum width and 2,400 feet long. About 200 veins have been mapped in the district; their aggregate surface area is probably less than one-tenth that of the large carbonate mass. The carbonate materials, which make up about 60 percent of the veins and the large carbonite body, are chiefly calcite, dolomite, ankerite, and siderite. The other constituents are barite, bastnaesite and perisite, quartz, and variable small quantities of crocidolite, biotite, phlogopite, chlorite, muscovite, apatite, iron oxides, fluorite, monazite, galena, allanite, sphene, pyrite, chalcopyrite, tetrahedrite, malachite, azurite, corussite, wulfenite, aragonite, and thorite. The rare earth oxide content in most of the carbonate rock is less than 13 percent, but in some local concentrations of bastnaesite the content is as high as 40 percent. The origin of the carbonate rocks and related potash-rich igneous rocks is considered in the light of similar associations of carbonate and alkalinic rocks in Sweden, Norway, Russia, South Africa, and the United States. The carbonate rock may have originated (1) as a pre-Cambrian limestone or evaporate sequence in the gneisses; (2) by reaction between magma and the Paleozoic dolomite and limestone overlying the pre-Cambrian complex; (3) by alteration of pre-Cambrian gneisses by emanations from an unknown deep-seated source; or (4) by differentiation of an alkaline magma from shonkinite to syenite to granite, leading to a final carbonate-rich fraction, containing the rare elements, which was emplaced either as a concentrated or a dilute solution. The fourth hypothesis is considered the most plausible.

  19. Intensity of geomagnetic field in the Precambrian and evolution of the Earth's deep interior

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.

    2017-09-01

    Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively "young" Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth's internal structure, such as the age of the Earth's solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth's inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth's core. The data are consistent with very young or very "old" inner core ages and, correspondingly, with high or low values of core thermal conductivity.

  20. Structural analysis of Precambrian rocks at the Hot Dry Rock Site at Fenton Hill, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, K.L.; Potter, R.M.

    1995-01-01

    The subcrop of basement rock at Fenton HIll comprises Precambrian gneiss, schist, amphibolite, pegmatite, and granitoids with affinities in metamorphic and structural history to surface outcrops in the Tusas and Picuris Ranges. Televiewer measurements of structures were analyzed by taking advantage of the spatial continuity of foliations. Folds in the foliation are predominantly conical forms due to interference between structures formed in F2 and F3 tectonic events. Field observations of outcrops in the Picuris Range show that the fractures are predominantly an X-T network controlled by the lithological layering, and statistical evidence indicates that this layer-controlled network persists to depthmore » at Fenton Hill.« less

  1. Reinterpretation of the stratigraphy and structure of the Rancho Las Norias area, central Sonora, Mexico

    USGS Publications Warehouse

    Page, W.R.; Harris, A.G.; Poole, F.G.; Repetski, J.E.

    2003-01-01

    New geologic mapping and fossil data in the vicinity of Rancho Las Norias, 30 km east of Hermosillo, Sonora, Mexico, show that rocks previously mapped as Precambrian instead are Paleozoic. Previous geologic maps of the Rancho Las Norias area show northeast-directed, southwest-dipping reverse or thrust faults deforming both Precambrian and Paleozoic rocks. The revised stratigraphy requires reinterpretation of some of these faults as high-angle normal or oblique-slip faults and the elimination of other faults. We agree with earlier geologic map interpretations that compressional structures have affected the Paleozoic rocks in the area, but our mapping suggests that the direction of compression is from southeast to northwest. Published by Elsevier Ltd.

  2. Hydrology of some deep mines in Precambrian rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yardley, D.H.

    1975-10-01

    A number of underground mines were investigated during the summer of 1975. All of them are in Precambrian rocks of the Lake Superior region. They represent a variety of geologic settings. The purpose of the investigations was to make a preliminary study of the dryness, or lack of dryness of these rocks at depth. In other words, to see if water was entering the deeper workings through the unmined rock by some means such as fracture or fault zones, joints or permeable zones. Water entering through old mine workings extending to, or very near to the surface, or from themore » drilling equipment, was of interest only insofar as it might mask any water whose source was through the hanging or footwall rocks. No evidence of running, seeping or moving water was seen or reported at depths exceeding 3,000 feet. At depths of 3,000 feet or less, water seepages do occur in some of the mines, usually in minor quantities but increased amounts occur as depth becomes less. Others are dry at 2,000 feet of depth. Rock movements associated with extensive mining should increase the local secondary permeability of the rocks adjoining the mined out zones. Also most ore bodies are located where there has been a more than average amount of faulting, fracturing, and folding during the geologic past. They tend to cluster along crustal flows. In general, Precambrian rocks of similar geology, to those seen, well away from zones that have been disturbed by extensive deep mining, and well away from the zones of more intense geologic activity ought to be even less permeable than their equivalents in a mining district.« less

  3. Alkalic rocks and resources of thorium and associated elements in the Powderhorn District, Gunnison County, Colorado

    USGS Publications Warehouse

    Olson, J.C.; Hedlund, D.C.

    1981-01-01

    Alkalic igneous rocks and related concentrations of thorium, niobium, rare-earth elements, titanium, and other elements have long been known in the Powderhorn mining district and have been explored intermittently for several decades. The deposits formed chiefly about 570 m.y. (million years) ago in latest Precambrian or Early Cambrian time. They were emplaced in lower Proterozoic (Proterozoic X) metasedimentary, metavolcanic, and plutonic rocks. The complex of alkalic rocks of Iron Hill occupies 31 km 2 (square kilometers) and is composed of pyroxenite, uncompahgrite, ijolite, nepheline syenite, and carbonatite, in order of generally decreasing age. Fenite occurs in a zone, in places more than 0.6 km (kilometer) wide, around a large part of the margin of the complex and adjacent to alkalic dikes intruding Precambrian host rock. The alkalic rocks have a radioactivity, chiefly due to thorium, greater than that of the surrounding Powderhorn Granite (Proterozoic X) and metamorphic rocks. The pyroxenite, uncompahgrite, ijolite, and nepheline syenite, which form more than 80 percent of the complex, have fairly uniform radioactivity. Radioactivity in the carbonatite stock, carbonatite dikes, and the carbonatite-pyroxenite mixed rock zone, however, generally exceeds that in the other rocks of the complex. The thorium concentrations in the Powderhorn district occur in six types of deposits: thorite veins, a large massive carbonatite body, carbonatite dikes, trachyte dikes, magnetite-ilmeniteperovskite dikes or segregations, and disseminations in small, anomalously radioactive plutons chiefly of granite or quartz syenite that are older than rocks of the alkalic complex. The highest grade thorium concentrations in the district are in veins that commonly occur in steeply dipping, crosscutting shear or breccia zones in the Precambrian rocks. They range in thickness from a centimeter or less to 5 m (meters) and are as much as 1 km long. The thorite veins are composed chiefly of potassic feldspar, white to smoky quartz, calcite, barite, goethite, and hematite, and also contain thorite, jasper, magnetite, pyrite, galena, chalcopyrite, sphalerite, synchysite, apatite, fluorite, biotite, sodic amphibole, rutile, monazite, bastnaesite, and vanadinite. The Th0 2 content of the thorite veins ranges from less than 0.01 percent to as much as 4.9 percent in high-grade samples. The Th0 2 content is generally less than 1 percent, however, and is only 0.05 to 0.1 percent in many of the veins examined in the district. Samples of the dolomitic carbonatite of Iron Hill mostly range from 3 to 145 ppm (parts per million) thorium. Thirty samples of the carbonatite dikes, the most radioactive rocks within the complex of Iron Hill, contain about 30 to 3,200 ppm thorium and a trace to about 1.5 percent rare-earth oxides. The magnetite-ilmenite-perovskite rocks have a radioactivity of 2 to 12 times the background of Precambrian granite that is attributable chiefly to thorium substitution for calcium in the perovskite. In two analyses the perovskite contains 0.12 and 0.15 percent Th0 2 . Trachyte dikes as much as 25 m thick cut the Precambrian rocks; their radioactivity is generally about two to four times the background of typical Precambrian granite, is locally higher, but is low relative to other types of thorium concentrations. A finegrained granite that is anomalously radioactive occurs in thick, dikelike plutons as much as 1.2 km wide, or more. The thorium content varies widely within the granite bodies. Eight samples of the granite contain 32 to 281 ppm thorium (averaging 115 ppm). The economic potential of thorium in the Powderhorn district is related in part to other elements such as niobium, titanium, iron, and rare earths. The proportions of niobium and rare earths to thorium vary in different parts of the district. Within the carbonatite body of Iron Hill, the Nb 2 0 5 content greatly exceeds Th0 2 , but the Th0 2 -Nb 2 0 5

  4. Data from geologic investigations in the Yemen Arab Republic during 1976

    USGS Publications Warehouse

    Grolier, Maurice J.; Domenico, J.A.; Donato, Mary; Tibbitts, G.C.; Overstreet, W.C.; Ibrahim, Mohammad Mukred

    1977-01-01

    The results of semiquantitative spectrographic analyses for 31 elements in 126 specimens of rocks from the Yemen Arab Republic, collected mainly during February 1976 from the Precambrian area in the southeastern part of the country, provide background data for use in geochemical evaluation of areas potentially favorable for mineral deposits. Gold and thorium were undetected; the lower limits of determination are 10 parts per million (ppm) and 20 ppm, respectively. For the other elements, the abundances follow geochemical norms for crustal distribution: (1) Fe, Nb, and Zr in Holocene weathering products; (2) Ca and Sr in Pliocene limestone; (3) Mo in Pliocene(?) or Miocene(?) dikes; (4) Be, La, and Sn in Miocene(?) alkalic granite; (5) As, Be, and La in Tertiary and/or Cretaceous felsic tuff; (6) V in Tertiary and/or Cretaceous carbonaceous sedimentary rocks interbedded with volcanic rocks; (7) Be, La, Sn, and Zr in Tertiary and/or Cretaceous undivided volcanics; (8) Sn and W in Precambrian felsite and pegmatite; (9) Co, Cr, Ni, and Ti in Precambrian mafic rocks; (10) Mg and Sr in Precambrian marble and calcsilicate rocks; (11) Y in Precambrilan schist; (12) B and Sc dispersed in rocks of many ages; and (13) Ag, Ba, Bi, Cd, Cu, Mn, Pb, Sb, Sn, and Zn in a hydrothermal replacement deposit in Precambrian sediment. None of the rocks contained as much as 205 ppm equivalent uranium. The highest values for Ag, Cu, Pb, Zn, and Cd were obtained on a sample of hydrothermally altered siltstone not personally collected by the writers. It was said to have come from the Ma'rib area in the eastern part of the Yemen Arab Republic. The source must be studied, because this single sample is high-grade base-metal ore. Among the samples collected by the writers, the economically most significant are altered tuffs, ignimbrites, and felsites exposed between Jibal Hufash and Manakhah on the road from Hudaydah to San'a'. They are strongly anomalous for As and weakly anomalous, variously, for Hg, Mo, and Pb, which elements may constitute an epigenetic dispersion pattern from hidden sulfide deposits. Inasmuch as chalcopyrite and native copper have been reported in the vicinity of Jabal Haraz in the Manakhah area, the rocks of the Yemen Volcanics in this region should be explored for base-metal sulfide deposits. The first results of paleontologic examinations of fossils collected during 1975 and 1976 are presented, as are a list of Landsat images covering the Yemen Arab Republic, and a selected bibliography of reports on geology and the allied sciences relating to the Yemen Arab Republic.

  5. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks.

    PubMed

    Li, L; Wing, B A; Bui, T H; McDermott, J M; Slater, G F; Wei, S; Lacrampe-Couloume, G; Lollar, B Sherwood

    2016-10-27

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water-rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO · and H 2 O 2 ) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H 2 ) and a complementary acceptor (sulfate) for the deep biosphere.

  6. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks

    PubMed Central

    Li, L.; Wing, B. A.; Bui, T. H.; McDermott, J. M.; Slater, G. F.; Wei, S.; Lacrampe-Couloume, G.; Lollar, B. Sherwood

    2016-01-01

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO· and H2O2) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H2) and a complementary acceptor (sulfate) for the deep biosphere. PMID:27807346

  7. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    USGS Publications Warehouse

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  8. Paleoproterozoic mojaveprovince in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora

    USGS Publications Warehouse

    Lang, Farmer G.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; Wooden, J.

    2005-01-01

    Whole-rock Nd isotopic data and U-Pb zircon geochronology from Precambrian crystalline rocks in the Caborca area, northern Sonora, reveal that these rocks are most likely a segment of the Paleoproterozoic Mojave province. Supporting this conclusion are the observations that paragneiss from the ??? 1.75 Ga Bamori Complex has a 2.4 Ga Nd model age and contains detrital zircons ranging in age from Paleo- proterozoic (1.75 Ga) to Archean (3.2 Ga). Paragneisses with similar age and isotopic characteristics occur in the Mojave province in southern California. In addition, "A-type" granite exposed at the southern end of Cerro Rajon has ca 2.0 Ga Nd model age and a U-Pb zircon age of 1.71 Ga, which are similar to those of Paleoproterozoic granites in the Mojave province. Unlike the U.S. Mojave province, the Caborcan crust contains ca. 1.1 Ga granite (Aibo Granite), which our new Nd isotopic data suggest is largely the product of anatexis of the local Precambrian basement. Detrital zircons from Neoproterozoic to early Cambrian miogeoclinal arenites at Caborca show dominant populations ca. 1.7 Ga, ca. 1.4 Ga, and ca. 1.1 Ga, with subordinate Early Cambrian and Archean zircons. These zircons were likely derived predominately from North American crust to the east and northeast, and not from the underlying Caborcan basement. The general age and isotopic similarities between Mojave province basement and overlying miogeoclinal sedimentary rocks in Sonora and southern California is necessary, but not sufficient, proof of the hypothesis that Sonoran crust is allochthonous and was transported to its current position during the Mesozoic along the proposed Mojave-Sonora megashear. One viable alternative model is that the Caborcan Precambrian crust is an isolated, autochthonous segment of Mojave province crust that shares a similar, but not identical, Proterozoic geological history with Mojave province crust found in the southwest United States ?? 2005 Geological Society of America.

  9. Eocene melting of Precambrian lithospheric mantle: Analcime-bearing volcanic rocks from the Challis-Kamloops belt of south central British Columbia

    NASA Astrophysics Data System (ADS)

    Dostal, J.; Breitsprecher, K.; Church, B. N.; Thorkelson, D.; Hamilton, T. S.

    2003-08-01

    Potassic silica-undersaturated mafic volcanic rocks form a minor portion of the predominantly calc-alkaline Eocene Challis-Kamloops volcanic belt, which extends from the northwestern United States into central British Columbia (Canada). Their major occurrence is in the Penticton Group in south central British Columbia, where they reach a thickness of up to 500 m and form the northwestern edge of the Montana alkaline province. These analcime-bearing rocks (˜53-52 Ma old) are typically rhomb porphyries of ternary feldspar (An 28Ab 52Or 20). Additional phenocryst phases include clinopyroxene, analcime, phlogopite and rare olivine. The rocks are characterized by high total alkalis, particularly K 2O (>4.5 wt%) as well as by a distinct enrichment of large-ion lithophile elements versus heavy rare-earth elements and high-field-strength elements. They have unusual isotopic compositions compared to most other rocks of the Challis-Kamloops belt, particularly high negative ɛNd values and elevated but relatively uniform initial 87Sr/ 86Sr ratios (˜0.7065). The potassic silica-undersaturated rocks overlie Precambrian crust and lithosphere and were at least in part derived from ancient metasomatized subcontinental mantle lithosphere, which was modified in a Precambrian subduction setting. The alkaline rocks of the Challis-Kamloops belt are related to a slab-window environment. In particular, they were formed above the southern edge of the Kula plate adjacent to the Kula-Farallon slab window, whereas the Montana alkaline province situated well to the southeast was formed directly above the Kula-Farallon slab window. Upwelling of the hotter asthenospheric mantle may have been the thermal trigger necessary to induce melting of fertile and metasomatized lithospheric mantle.

  10. Geologic Map of the Denver West 30' x 60' Quadrangle, North-Central Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Shroba, Ralph R.; Bryant, Bruce; Premo, Wayne R.

    2008-01-01

    The Denver West quadrangle extends east-west across the entire axis of the Front Range, one of numerous uplifts in the Rocky Mountain region in which Precambrian rocks are exposed. The history of the basement rocks in the Denver West quadrangle is as old as 1,790 Ma. Along the east side of the range, a sequence of sedimentary rocks as old as Pennsylvanian, but dominated by Cretaceous-age rocks, overlies these ancient basement rocks and was upturned and locally faulted during Laramide (Late Cretaceous to early Tertiary) uplift of the range. The increasingly coarser grained sediments up section in rocks of latest Cretaceous to early Tertiary age record in remarkable detail this Laramide period of mountain building. On the west side of the range, a major Laramide fault (Williams Range thrust) places Precambrian rocks over Cretaceous sedimentary rocks. The geologic history of the quadrangle, therefore, can be divided into four major periods: (1) Proterozoic history, (2) Pennsylvanian to pre-Laramide, Late Cretaceous history, (3) Late Cretaceous to early Tertiary Laramide mountain building, and (4) post-Laramide history. In particular, the Quaternary history of the Denver West quadrangle is described in detail, based largely on extensive new mapping.

  11. Geology [Chapter 4

    Treesearch

    E. A. Rochette

    1994-01-01

    The Medicine Bow Mountains have a core of Precambrian rocks. They contain the boundary, the Cheyenne Belt, between the Wyoming Province to the NW and the accreted Proterozoic continental crust to the SE (Karlstrom and Houston 1984). The Wyoming Province consists of Archean rocks that are locally intruded and (or) overlain by rocks of Proterozoic age, including the...

  12. The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks, Ado-Ekiti, SW Nigeria

    NASA Astrophysics Data System (ADS)

    Afolagboye, Lekan Olatayo; Talabi, Abel Ojo; Oyelami, Charles Adebayo

    2017-05-01

    This study assessed the possibility of using index tests to determine the mechanical properties of crushed aggregates. The aggregates used in this study were derived from major Precambrian basement rocks in Ado-Ekiti, Nigeria. Regression analyses were performed to determine the empirical relations that mechanical properties of the aggregates may have with the point load strength (IS(50)), Schmidt rebound hammer value (SHR) and unconfined compressive strength (UCS) of the rocks. For all the data, strong correlation coefficients were found between IS(50), SHR, UCS, and mechanical properties of the aggregates. The regression analysis conducted on the different rocks separately showed that correlations coefficients obtained between the IS(50), SHR, UCS and mechanical properties of the aggregates were stronger than those of the grouped rocks. The T-test and F-test showed that the derived models were valid. This study has shown that the mechanical properties of the aggregates can be estimated from IS(50), SHR and USC but the influence of rock type on the relationships should be taken into consideration.

  13. Geology of quadrangles H-12, H-13, and parts of I-12 and I-13, (zone III) in northeastern Santander Department, Colombia

    USGS Publications Warehouse

    Ward, Dwight Edward; Goldsmith, Richard; Cruz, Jaime B.; Restrepo, Hernan A.

    1974-01-01

    A program of geologic mapping and mineral investigation in Colombia was undertaken cooperatively by the Colombian Instituto Nacional de Investigaciones Geologico-Mineras (formerly known as the Inventario Minero Nacional), and the U. S. Geological Survey; by the Government of Colombia and the Agency for International Development, U. S. Department of State. The purpose was to study, and evaluate mineral resources (excluding of petroleum, coal, emeralds, and alluvial gold) of four selected areas, designated Zones I to IV, that total about 70,000 km2. The work in Zone III, in the Cordillera Oriental, was done from 1965 to 1968. The northeast trend of the Cordillera Oriental of Colombia swings abruptly to north-northwest in the area of this report, and divides around the southern end of the Maracaibo Basin. This section of the Cordillera Oriental is referred to as the Santander Massif. Radiometric age determinations indicate that the oldest rocks of the Santander massif are Precambrian and include high-grade gneiss, schist, and migmatite of the Bucaramanga Formation. These rocks were probably part of the Precambrian Guayana Shield. Low- to medium-grade metamorphic rocks of late Precambrian to Ordovician age .include phyllite, schist, metasiltstone, metasandstone, and marble of the Silgara Formation, a geosynclinal series of considerable extent in the Cordillera Oriental and possibly the Cordillera de Merida of Venezuela. Orthogneiss ranging from granite to tonalite is widely distributed in the high- and medium-grade metamorphic rocks of the central core of the massif and probably represents rocks of two ages, Precambrian and Ordovician to Early Devonian. Younger orthogneiss and the Silgara are overlain by Middle Devonian beds of the Floresta Formation which show a generally low but varying degree of metamorphism. Phyllite and argillite are common, and infrequent marble and other calcareous beds are fossiliferous. Except for recrystallization in limestones of !the Permian-Carboniferous Diamante Formation, sedimentary rocks younger than Devonian are unmetamorphosed. The effects of Precambrian regional dynamothermal metamorphism and plutonism on Precambrian geosynclinal deposits reached the upper amphibolite facies in the Bucaramanga Gneiss. The geosynclinal Silgara Formation was subjected to similar conditions in Late Ordovician and Early Silurian time but reached only the greenschist or lower amphibolite facies. Orthogneisses generally show a concordance of foliation and lineation with the neighboring Silgara Formation and the Bucaramanga Gneiss as well as similarities in grade of metamorphism. Regional dynamothermal metamorphism in Late Permian and Triassic time reached, low grade in the Floresta Formation and caused recrystallization of limestone of the Diamante Formation. The Bucaramanga and Silgara metamorphic rocks show evidence of metrogressive metamorphism accompanied by high activity or potassium and water, but whether this occurred at the time the Floresta was metamorphosed or later is not clear. Batholiths, plutons, and stocks of igneous rocks in the Santander massif range from diorite to granite. Radioactive age data indicate that most belong to a single plutonic interval. These are referred to as the Santander Plutoniq Group and are Jurassic and Jurassic-Triassic- Two suites of this group are pink granite and quartz monzonite, and gray quartz monzonite and granodiorite. Contact relations indicate that the pink and more granitic rocks are younger than the gray and more mafic rocks, but radioactive age data are in conflict with this. Undated plutonic rocks that are not clearly related to the group are assigned to relatively older or younger age positions. West of the Bucanamanga fault rhyolite makes up a small body at one locality and forms an intrusive sheet with granophyre and intrusive breccias in Triassic sedimentary rocks at another locality. Its age is unknown, but it probably is younger than the

  14. Alternative marine and fluvial models for the non-fossiliferous quartzitic sandstones of the Early Proterozoic Daspoort Formation, Transvaal Sequence of southern Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.; Schreiber, U. M.; van der Neut, M.; Labuschagne, H.; Van Der Schyff, W.; Potgieter, G.

    1993-04-01

    This paper discusses some of the problems related to the palaeoenvironmental interpretation of non-fossiliferous, early Precambrian, recrystallised quartzitic sandstones, using the Early Proterozoic Daspoort Formation, Transvaal Sequence of southern Africa as a case study. These cross-bedded and planar stratified rocks have been interpreted previously as shallow marine deposits, based on limited studies of areas with well-exposed, relatively undeformed outcrops. This postulate rests largely on the apparently mature nature of the recrystallised sandstones and their thin bedding. Examination of outcrops throughout the preserved basin, including those which have been deformed and metamorphosed, reveals the presence of subordinate immature sandstones. Lateral facies relationships permit an alternative distal fan-fluvial braidplain model to be proposed. This is compatible with collected palaeocurrent data, thicknes trends and results of thin section petrography.

  15. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo

    2016-04-01

    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian volcano-sedimentary basins. Our approach permits to better identify different processes operating on volcanic edifices and to constrain the depositional environment and thus geodynamic setting of Precambrian continental volcanic belts. Acknowledgments: We acknowledge CAPES/CNPq project n° 402564/2012-0 (Programa Ciências sem Fronteiras), CNPq/CT-Mineral (Proc. 550.342/2011-7) and INCT-Geociam (573733/2008-2) - CNPq/MCT/FAPESPA/PETROBRAS.

  16. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    USGS Publications Warehouse

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three-dimensional models, an extensive statistical summary of density and apparent magnetic susceptibility measurements is presented that includes data on several hundred samples taken from the deposits, altered wall rocks, and unaltered country rocks.

  17. Petrography and geochemistry of precambrian rocks from GT-2 and EE-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, A.W.; Eddy, A.

    1977-08-01

    During the drilling of GT-2 and EE-1, 27 cores totaling about 35 m were collected from the Precambrian section. Samples of each different lithology in each core were taken for petrographic and whole-rock major- and trace-element analyses. Whole-rock analyses are now completed on 37 samples. From these data four major Precambrian units were identified at the Fenton Hill site. Geophysical logs and cuttings were used to extrapolate between cores. The most abundant rock type is an extremely variable gneissic unit comprising about 75% of the rock penetrated. This rock is strongly foliated and may range compositionally from syenogranitic to tonaliticmore » over a few centimeters. The bulk of the unit falls within the monzogranite field. Interlayered with the gneiss is a ferrohastingsite-biotite schist which compositionally resembles a basaltic andesite. A fault contact between the schist and gneiss was observed in one core. Intrusive into this metamorphic complex are two igneous rocks. A leucocratic monzogranite occurs as at least two 15-m-thick dikes, and a biotite-granodiorite body was intercepted by 338 m of drill hole. Both rocks are unfoliated and equigranular. The biotite granodiorite is very homogeneous and is characterized by high modal contents of biotite and sphene and by high K/sub 2/O, TiO/sub 2/, and P/sub 2/O/sub 5/ contents. Although all of the cores examined show fractures, most of these are tightly sealed or healed. Calcite is the most abundant fracture filling mineral, but epidote, quartz, chlorite, clays or sulfides have also been observed. The degree of alteration of the essential minerals normally increases as these fractures are approached. The homogeneity of the biotite granodiorite at the bottom of GT-2 and the high degree of fracture filling ensure an ideal setting for the Hot Dry Rock Experiment.« less

  18. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  19. Iron sulfide deposits at Wadi Wassat, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Roberts, R.J.; Rossman, D.L.; Bagdady, A.Y.; Conway, C.M.; Helaby, A.M.

    1981-01-01

    Massive and disseminated iron sulfide deposits in Wadi Wassat form lenticular, stratabound deposits in cherty Precambrian sedimentary rocks interlayered with Precambrian calcareous sedimentary rocks, pyroclastic rocks, and andesitic flow rocks. These rocks have been cut by a wide variety of plutonic and dike rocks including gabbro, diorite, granodiorite, diabase, rhyolite, and granite. The zone containing the sulfide lenses is nearly 16 km long and is cut off by granitic rocks at both the northern and southern ends. The lenses are as much as 200 m thick; one can be traced along strike for more than 4 km. The lenses consist mostly of iron sulfides. Pyrite is the principal sulfide mineral; near intrusive bodies the pyrite has been partially converted to pyrrhotite and locally mobilized into fractures. The sulfides have been oxidized to a depth of about 25 m. Preliminary calculations indicate that about 107,500,000 tons of sulfides, averaging 40 percent iron and 35 percent sulfur, are available to a depth of i00 m. Small amounts of nickel, cobalt, zinc, and copper are also present, but at metal prices prevailing in early 1981, these do not constitute significant resources.

  20. Preliminary report on radioactive conglomerates of Middle Precambrian age in the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming

    USGS Publications Warehouse

    Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest

    1977-01-01

    Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.

  1. Precambrian Basement Structure Map of the Continental United States - An Interpretation of Geologic and Aeromagnetic Data

    USGS Publications Warehouse

    Sims, Paul K.; Saltus, Richard W.; Anderson, Eric D.

    2008-01-01

    The Precambrian basement rocks of the continental United States are largely covered by younger sedimentary and volcanic rocks, and the availability of updated aeromagnetic data (NAMAG, 2002) provides a means to infer major regional basement structures and tie together the scattered, but locally abundant, geologic information. Precambrian basement structures in the continental United States have strongly influenced later Proterozoic and Phanerozoic tectonism within the continent, and there is a growing awareness of the utility of these structures in deciphering major younger tectonic and related episodes. Interest in the role of basement structures in the evolution of continents has been recently stimulated, particularly by publications of the Geological Society of London (Holdsworth and others, 1998; Holdsworth and others, 2001). These publications, as well as others, stress the importance of reactivation of basement structures in guiding the subsequent evolution of continents. Knowledge of basement structures is an important key to understanding the geology of continental interiors.

  2. A model for diurnal patterns of carbon fixation in a Precambrian microbial mat based on a modern analog

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1991-01-01

    Microbial mat communities are one of the first and most prevalent biological communities known from the Precambrian fossil record. These fossil mat communities are found as laminated sedimentary rock structures called stromatolites. Using a modern microbial mat as an analog for Precambrian stromatolites, a study of carbon fixation during a diurnal cycle under ambient conditions was undertaken. The rate of carbon fixation depends primarily on the availability of light (consistent with photosynthetic carbon fixation) and inorganic carbon, and not nitrogen or phosphorus. Atmospheric PCO2 is thought to have decreased from 10 bars at 4 Ga (10(9) years before present) to approximately 10(-4) bars today, implying a change in the availability of inorganic carbon for carbon fixation. Experimental manipulation of levels of inorganic carbon to levels that may have been available to Precambrian mat communities resulted in increased levels of carbon fixation during daylight hours. Combining these data with models of daylength during the Precambrian, models are derived for diurnal patterns of photosynthetic carbon fixation in a Precambrian microbial mat community. The models suggest that, even in the face of shorter daylengths during the Precambrian, total daily carbon fixation has been declining over geological time, with most of the decrease having occurred during the Precambrian.

  3. Distinguishing major lithologic types in rocks of precambrian age in central Wyoming using multilevel sensing, with a chapter on possible economic significance of iron formation discovered by use of aircraft images in the Granite Mountains of Wyoming

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Information obtained by remote sensing from three altitude levels: ERTS-1 (565 miles), U-2 (60,000 feet), and C-130 aircraft (15,000 feet) illustrates the possible application of multilevel sensing in mineral exploration. Distinction can be made between rocks of greenstone belts and rocks of granite-granite gneiss areas by using ERTS-1 imagery in portions of the Precambrian of central Wyoming. Study of low altitude color and color infrared photographs of the mafic terrain revealed the presence of metasedimentary rocks with distinct layers that were interpreted as amphibolite by photogeologic techniques. Some of the amphibolite layers were found to be iron formation when examined in the field. To our knowledge this occurrence of iron formation has not been previously reported in the literature.

  4. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    USGS Publications Warehouse

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    The Precambrian of the western part of the Granite Mountains, Wyoming, contains a metamorphic complex of gneisses, schists, and amphibolites that were derived through amphibolite-grade metamorphism from a sedimentary-volcanic sequence perhaps similar to that exposed in the southeastern Wind River Mountains. Whole-rock Rb-Sr dating places the time of metamorphism at 2,860?80 million years. A high initial 87Sr/ 86 S r ratio of 0.7048 suggests that either the protoliths or the source terrane of the sedimentary component is several hundred million years older than the time of metamorphism. Following an interval of 300:t100 million years for which the geologic record is lacking or still undeciphered, the metamorphic complex was intruded by a batholith and satellite bodies of medium- to coarse-grained, generally massive biotite granite and related pegmatite and aplite. The main body of granite is dated at 2,550?60 million years by the Rb-Sr method. Limited data suggest that diabase dikes were emplaced and nephrite veins were formed only shortly after intrusion of the granite. Emplacement of the granite at about 2,550 million years ago appears to be related to a major period of regional granitic plutonism in the Precambrian of southern and western Wyoming. Granites, in the strict sense, that are dated between 2,450 and 2,600 million years occur in the Teton Range, the Sierra Madre, the Medicine Bow Mountains and the Laramie Range. This episode of granitic plutonism occured some 50 to 100 million years later than the major tonalitic to granitic plutonism in the Superior province of northern Minnesota and adjacent Ontario-the nearest exposed Precambrian W terrane that is analogous to the Wyoming province. Initial 87Sr / 86Sr ratios of some of the Wyoming granites are higher than expected if the rocks had been derived from juvenile magmas and it is likely that older crustal rocks were involved to some degree in the generation of these granites. Slightly to highly disturbed Rb-Sr and K-Ar mineral ages are obtained on rocks of the metamorphic complex and on the granite. These ages range from about 2,400 to 1,420 million years and are part of a regional pattern of lowered mineral ages of Precambrian W rocks of southern Wyoming. A major discontinuity in these mineral ages occurs along a line extending from the northern Laramie Range, through the northern part of the Granite Mountains, to the southeastern Wind River Mountains. North of this line, Rb-Sr and K-Ar biotite ages are 2,300 million years or greater, whereas to the south, the biotite ages decrease drastically over a short distance, to a common range of 1,600-1,400 million years. We suggest that these lowered ages represent regional cooling below the 300 0 C isotherm as a consequence of uplift and erosion of the large crustal block occurring south of the age discontinuity. In this interpretation, the westerly-trending age discontinuity would be a zone of major crustal dislocation that resulted from vertical tectonics in late Precambrian X or early Precambrian Y time.

  5. Midcontinent microcosm: Geology of the Atkins lake - Marengo falls area (Field trip 2)

    USGS Publications Warehouse

    Bjørnerud, Marcia; Cannon, William F.

    2011-01-01

    Archean and Proterozoic rocks exposed over about 16km2 between Atkins Lake and Coffee Lake in southeastern Bayfield County (Fig. 1) chronicle almost all of the major Precambrian geologic events in the history of the southern Superior Craton. The oldest rocks are part of a locally gneissic quartz monzonite complex, the Puritan Batholith, with an igneous Rb-Sr age of 2710+140 Ma (Sims et al., 1977). At the regional scale, this complex is part of one of the youngest Archean granite-greenstone belts in the Superior Province, and it intrudes greenstones of the Neoarchean Ramsay Formation. In the Atkins Lake – Marengo River area, the Puritan Batholith is nonconformably overlain by the Paleoproterozoic (ca. 2200 Ma) Bad River Dolomite. The Bad River Dolomite is in turn separated by an unconformity from rocks of the ca. 1875 Ma Menominee Group (Palms Formation and Ironwood Iron-formation), which locally contain mafic volcanic rocks and diabase sills (Cannon et al., 2008). These Paleoproterozoic rocks provide insight into climate and biogeochemical cycles during the transition to an oxidizing atmosphere (Bekker et al., 2006) and have deformational fabrics (folds, strong cleavage, local mylonite zones) that record the ca. 1850 Ma Penokean Orogeny. The youngest rocks in the area are Mesoproterozoic basaltic lava flows (Siemens Creek Volcanics, ca. 1110 Ma) and a layered mafic complex (the Mineral Lake Intrusion, also ca. 1100 Ma), both related to the Mid-continent Rift. All of the stratified units show static contact metamorphic textures near their contacts with the Mineral Lake Intrusion. Thus the area constitutes a microcosm of the regional bedrock geology, and the cross-cutting relationships among the units provide clear constraints on the relative timing of different phases of deformation and magmatism (Cannon etal., 2008, Bjørnerud, 2010a).

  6. Reconnaissance for radioactive rocks in the Paulo Afonso Region, Bahia, Brazil

    USGS Publications Warehouse

    Haynes, Donald D.; Mau, Henry

    1958-01-01

    Ground and air traverses were made to the northwest, north and northeast of Paulo Afonso, Bahia, Brazil, covering Precambrian crystalline rocks and sedimentary rocks of the Jatoba series of Jurassic or Cretaceous age. No important radioactivity anomalies were found; samples from the two strongest anomalies had an equivalent uranium-oxide content of 0.002 percent and 0.006 percent.

  7. Geology of the Ralston Buttes district, Jefferson County, Colorado: a preliminary report

    USGS Publications Warehouse

    Sheridan, Douglas M.; Maxwell, Charles H.; Albee, Arden L.; Van Horn, Richard

    1956-01-01

    The Ralston Buttes district in Jefferson County is one of the most significant new uranium districts located east of the Continental Divide in Colorado. The district is east of the Colorado Front Range mineral belt, along the east front of the range. From November 1953 through October 1956, about 10,000 tons of uranium ore, much of which was high-grade pitchblende-bearing vein material, was shipped from the district. The ore occurs in deposits that range in size from bodies containing less than 50 tons to ore shoots containing over 1,000 tons. The only other mining activity in the area has been a sporadic production of beryl, feldspar, and scrap mica from Precambrian pegmatites, and quarrying of dimension stone, limestone, and clay from sedimentary rocks. Most of the Ralston Buttes district consists of complexly folded Precambrian metamorphic and igneous rocks - gneiss, schist, quartzite, amphibolite, and granodiorite. Paleozoic and Mesozoic sedimentary rocks crop out in the northeastern part of the district. These rocks are cut by northwesterly-trending fault systems of Laramide age and by small bodies of intrusive rocks that are Tertiary in age. The typical uranium deposits in the district are hydrothermal veins occupying openings in Laramide fault breccias or related fractures that cut the Precambrian rocks. Pitchblende and lesser amounts of secondary uranium minerals are associated with sparse base-mental sulfides in a gangue of carbonate minerals, potash feldspar, and, more rarely, quartz. Less common types of deposits consist of pitchblende and secondary uranium minerals that occupy fractures cutting pegmatites and quartz veins. The uranium deposits are concentrated in two areas, the Ralston Creek area and the Golden Gate Canyon area. The deposits in the Ralston Creek area are located along the Rogers fault system, and the deposits in the Golden Gate Canyon area are along the Hurricane Hill fault system. Two geologic factors were important to the localization of the uranium deposits: (1) favorable structural environment and (2) favorable host rocks. The deposits in each of the two major areas are located where a northwesterly-trending Laramide fault system splits into a complex network of faults. Also, most of the deposits appear to be localized where the faults cut Precambrian rocks rich in hornblende, biotite, or garnet and biotite. The ore controls recognized in this relatively new uranium district may have wider application in areas of similar geology elsewhere in the Front Range.

  8. Survey of existing underground openings for in-situ experimental facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.; Graf, A.; Strisower, B.

    1981-07-01

    In an earlier project, a literature search identified 60 underground openings in crystalline rock capable of providing access for an in-situ experimental facility to develop geochemical and hydrological techniques for evaluating sites for radioactive waste isolation. As part of the current project, discussions with state geologists, owners, and operators narrowed the original group to 14. Three additional sites in volcanic rock and one site in granite were also identified. Site visits and application of technical criteria, including the geologic and hydrologic settings and depth, extent of the rock unit, condition, and accessibility of underground workings, determined four primary candidate sites:more » the Helms Pumped Storage Project in grandiodorite of the Sierra Nevada, California; the Tungsten Queen Mine in Precambrian granodiorite of the North Carolina Piedmont; the Mount Hope Mine in Precambrian granite and gneiss of northern New Jersey; and the Minnamax Project in the Duluth gabbro complex of northern Minnesota.« less

  9. Chemical, petrographic, and K-Ar age data to accompany reconnaissance geologic strip map from Kingman to south of Bill Williams Mountain, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arney, B.; Goff, F.; Eddy, A.C.

    1985-04-01

    As part of a reconnaissance mapping project, 40 chemical analyses and 13 potassium-argon age dates were obtained for Tertiary volcanic and Precambrian granitic rocks between Kingman and Bill Williams Mountain, Arizona. The dated volcanic rocks range in age from 5.5 +- 0.2 Myr for basalt in the East Juniper Mountains to about 25 Myr for a biotite-pyroxene andesite. The date for Picacho Butte, a rhyodacite in the Mt. Floyd volcanic field, was 9.8 +- 0.07 Myr, making it the oldest rhyodacite dome in that volcanic field. Dated rocks in the Fort Rock area range from 20.7 to 24.3 Myr. Nomore » ages were obtained on the Precambrian rocks. Compositionally, the volcanic rocks analyzed range from alkali basalt to rhyolite, but many rocks on the western side of the map area are unusually potassic. The granites chosen for analysis include syenogranite from the Hualapai Mountains, a muscovite granite from the Picacho Butte area, and two other granites. The chemical and K-Ar age data and petrographic descriptions included in this report accompany the reconnaissance geologic strip map published as LA-9202-MAP by Goff, Eddy, and Arney. 9 refs., 4 figs., 2 tabs.« less

  10. Geology of the Deep Creek area, Washington, and its regional significance

    USGS Publications Warehouse

    Yates, Robert Giertz

    1976-01-01

    This report, although primarily concerned with the stratigraphy and structure of a lead-zinc mining district in northern Stevens County, Washington, discusses and integrates the geology of the region about the Deep Creek area. Although the study centers in an area of about 200 square miles immediately south of the International Boundary, the regional background comes from: (1)the previously undescribed Northport quadrangle to the west, (2) published reports and reconnaissance of the Metaline quadrangle to the east, and (3) from published reports and maps of a 16 mile wide area that lies to the north adjacent to these three quadrangles in British Columbia. The report is divided into three parts: (1) descriptions of rocks and structures of the Deep Creek area, (2) descriptions of the regional setting of the Deep Creek area, and (3) an analysis and interpretation of the depositional and tectonic events that produced the geologic features exposed today. In the Deep Creek area surficial deposits of sand and gravel of glacial origin cover much of the consolidated rocks, which range in age from greenschist of the late Precambrlan to albite granite of the Eocene. Three broad divisions of depositional history are represented: (1) Precambrian, (2) lower Paleozoic and (3) upper Paleozoic; the record of the Mesozoic and Eocene is fragmentary. The lower Paleozoic division is the only fossil-controlled sequence; the age of the other two divisions were established by less direct methods. Both Precambrian and upper Paleozoic sequences are dominated by fine-grained detrital sediments, the Precambrian tending towards the alumina-rich and the upper Paleozoic tending towards the black shale facies with high silica. Neither sequence has more than trivial amounts of coarse clastics. Both include limestones, but in minor abundance. The lower Paleozoic sequence, on the other hand, represents a progressive change in deposition. The sequence began during the very late Precambrian with the deposition of clean quartz sand. This was followed by the accumulation of a comparatively thin limestone unit succeeded by a thick shale. The shale grades into a thick carbonate unit which in turn is overlain by black graptolitic slates (Ordovician). This general order of deposition holds for the Cambro-Ordovician throughout the area. Precambrian rocks indigenous to the Deep Creek area, have undergone at least six tectonic events of greatly different intensities. The first three of these events are epeirogentic, the fourth involves intense folding, the fifth, crossfolding, and the sixth, block faulting without folding. These events are dated with varying degrees of precision. The two epeirogentic events of the Precambrian, one gentle folding at the beginning of Windermere time and the other high angle faulting and volcanism in mid-Windermere time, did little to deform or metamorphose the rocks. The third event consists of uplift of northern Idaho and adjacent Montana and westward decollement thrusting of essentially unfolded lower Paleozoic rocks. The decollement faulting is inferred to explain anomalous rock distribution and cannot be accurately dated. It occurred sometime after the Devonian and before the Jurassic. A late Paleozoic age is favored.

  11. Intrusive rocks northeast of Steamboat Springs, Park Range, Colorado, with a section on geochronology

    USGS Publications Warehouse

    Snyder, George L.; Hedge, Carl E.

    1978-01-01

    Major Precambrian and minor Tertiary intrusive rocks northeast of Steamboat Springs in the Park Range between 40?30' and 40?45' N. lat. are described and compared with related rocks elsewhere in Colorado and Wyoming. The Precambrian intrusives were emplaced in a sequence of high-grade interlayered felsic gneisses, amphibolites, and pelitic schists of sedimentary and volcanic origin. These rocks are cut by a major northeast-trending Precambrian shear zone where mainly left lateral movement of 1/ 2 to 1 mile is certain. Cumulative movement of many miles is possible. The Precambrian intrusives consist of a batholith, the Mount Ethel pluton, a smaller Buffalo Pass pluton, and small dikes or lenses of fine-grained porphyry, pegmatites, and ultramafics. The Mount Ethel pluton is an oval shaped body 7 miles wide by about 40 miles long (shown by geophysical data to extend beneath younger sediments in North Park). Outer batholithic contacts are sharp and dip steeply outward at about 85?. Five mappable internal variants consist, in order of decreasing age, of granodiorite, quartz monzonite porphyry of Rocky Peak, quartz monzonite of Roxy Ann Lake, granite and quartz monzonite, and. leucogranite. Internal contacts between these plutonic variants are sharp, and evidence of liquid-solid relationships abounds; despite this, all rocks except the granodiorite contribute to an Rb-Sr whole-rock isochron indicating emplacement about 1.4 b.y. (billion years) ago. The most important variants volumetrically are: the quartz monzonite porphyry of Rocky Peak, which forms an irregular 2-mile-thick carapace or mapped band around the west edge of the pluton and is lithologically similar to nearby Sherman Granite, and the quartz monzonite of Roxy Ann Lake, which forms most of the rest of the pluton and is lithologically similar to Silver Plume Granite. An apparent Sherman -Silver Plume dichotomy with similar rock types and similar relative ages is noted throughout Colorado plutons of that age. The Buffalo Pass pluton consists of the quartz monzonite and gra- nodiorite augen gneiss of Buffalo Mountain and equigranular quartz monzonite gneiss. Internal contacts are not exposed. These rocks contribute to an Rb-Sr whole-rock isochron indicating syntectonic emplacement 1.7-1.8 b.y. ago, essentially the same as the metamorphism of the felsic gneiss wallrocks in the area of this report, and of rocks of Boulder Creek age elsewhere in Colorado. The fine-grained porphyry dikes cut the Buffalo Pass pluton, the ultramafics, and some pegmatites. The dikes are within the age range of the Mount Ethel pluton and are older than the mylonite and shear zones. They occur in both an older northwest-trending and a somewhat younger northeast-trending set but do not appear to change compositionally from one set to the other. Regional considerations indicate that they were emplaced between about 1.1 and 1.5 b.y. ago, a time when intermediate to mafic dikes were commonly emplaced throughout Colorado, Wyoming, and southwestern Montana. The pegmatite and ultramafic bodies are not dated directly, but clustering of many pegmatites outside the contacts of the Mount Ethel pluton may indicate a genetic relation of the pegmatites to the Mount Ethel rocks. Fluorite is a common accessory mineral in the rocks of the Mount Ethel pluton; it has not been observed in this area in the petrographically similar rocks of the Buffalo Pass pluton. Fluorite was precipitated most abundantly from the Precambrian magma that formed the quartz monzonite of Roxy Ann Lake. In 70 percent of these rocks fluorite is observed in amounts as great as 2 percent and is successively less abundant in both older and younger plutonic phases. Textural evidence indicates that, although most fluorite is intergrown with and contemporaneous with other magmatic minerals, some fluorite is associated with alteration minerals in a manner demonstrating its mobility since its initial deposition. Five areas of ec

  12. Geology and mineral deposits of the Wadi an Nuqumi quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hummel, C.L.

    1972-01-01

    The rocks, structures, and mineral deposits of the Wadi an Nuqumi quadrangle were formed during three periods of deformation, two of Precambrian age and one of Tertiary and Recent age. The older Precambrian Halaban cycle produced the thick eugeosynclinal suite of interlayered metasedimentary and metavolcanic rocks comprising the Halaban Formation, the numerous synorogenic granitic masses which intrude the layered rocks, and the northward-trending tectonic, plutonic, and metamorphic features of all these rocks which constitute the basic grain of the area. The older Halaban features are everywhere strongly transected, but only slightly deformed and offset, by many eastward-northeastward-, and northwestward-striking fractures and strike-slip faults. Silicic dikes are emplaced in these fractures, and several kinds of barren and metalliferous veins are closely associated with them. All these features are here thought to have formed during a period of deformation of late Precambrian age which produced the Najd Wrench Fault Zone; therefore, these features are named for it. Sporadic remnants of once far more extensive basaltic lava fields and the north-northwestward-striking vertical fractures which occur in them and contain volcanic vents from which they were extruded are the youngest rocks and structures in the Wadi an Nuqumi area. They are thought to have formed during the period of tectonic and volcanic activity which also produced the Red Sea graben. The principal mineral deposits of the Wadi an Nuqumi area are silicified-carbonate breccia veins which occur in structures of the Najd Wrench Fault deformation and metalliferous quartz veins which are closely associated with them. Only the latter possesses any economic potential, the most promising being the gold and silver-bearing quartz-base metal veins of the Al Numrahniyah and Muthaheel ancient mines.

  13. Ore Deposits of the Jerome and Bradshaw Mountains Quadrangles, Arizona

    USGS Publications Warehouse

    Lindgren, Waldemar; Heikes, V.C.

    1926-01-01

    In the summer of 1922, at the request of the Director of the United States Geological Survey, I undertook an examination of the ore deposits in the Jerome and Bradshaw Mountains quadrangles, Ariz. (See fig. 1.) The object of this work was not a detailed investigation of each deposit but rather a coordination and classification of the occurrences and an attempt to ascertain their origin and economic importance. Almost all the deposits occur in pre-Cambrian rocks or in rocks that are not readily differentiated from the pre-Cambrian. In the northern part of the Jerome quadrangle there are large areas of almost horizontal Paleozoic beds, and in both quadrangles there are also large areas of lava flows of Tertiary age. Finally there are wide spaces occupied by Tertiary tuff and limestone, or by Tertiary and Quaternary wash filling the valleys between the mountain ranges. But all these rocks except the pre-Cambrian are practically barren of ore deposits, and the problem therefore narrowed itself to an examination of the pre-Cambrian areas. This task was greatly facilitated by the careful work of Jaggar and Palache, set forth in the Bradshaw Mountains folio,l in which the southern quadrangle of the two under present consideration is mapped geologically and described, and which also includes a comprehensive though brief discussion of the mineral deposits. There is no published geologic map of the Jerome quadrangle, but I had the opportunity through the courtesy of Dr. G. M. Butler, Director of the Arizona Bureau of Mines, to use a manuscript map of this area prepared for the State by Mr. L. E. Reber, jr., and Mr. Olaf Jenkins.

  14. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.

    1972-01-01

    The author has identified the following significant results. The major effort has been toward interpretation of the intermediate and high altitude aircraft data which was available. Project investigators were able to delineate various structures and lithologic units in well-exposed sedimentary sequences and in regions of Precambrian igneous and metamorphic rocks. In one area, the Precambrian lithologies, which were previously unmapped, include a taconite formation which might be economically important.

  15. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism

    NASA Astrophysics Data System (ADS)

    Fedonkin, Mikhail A.; Waggoner, Benjamin M.

    1997-08-01

    The fossil Kimberella quadrata was originally described from late Precambrian rocks of southern Australia. Reconstructed as a jellyfish, it was later assigned to the cubozoans (`box jellies'), and has been cited as a clear instance of an extant animal lineage present before the Cambrian. Until recently, Kimberella was known only from Australia, with the exception of some questionable north Indian specimens. We now have over thirty-five specimens of this fossil from the Winter Coast of the White Sea in northern Russia. Our study of the new material does not support a cnidarian affinity. We reconstruct Kimberella as a bilaterally symmetrical, benthic animal with a non-mineralized, univalved shell, resembling a mollusc in many respects. This is important evidence for the existence of large triploblastic metazoans in the Precambrian and indicates that the origin of the higher groups of protostomes lies well back in the Precambrian.

  16. Precambrian Sulphide Deposits

    NASA Astrophysics Data System (ADS)

    Doe, Bruce R.

    1984-04-01

    This book is dedicated to Howard S. Robinson, who was born and educated in the United States, but who spent his professional career in Canada with McIntyre Porcupine Mines, concentrating on Precambrian mineral deposits. Although his career in mineral exploration was distinguished, his major contribution to earth science was probably as one of the founders of the Geological Association of Canada, an institution to which he made a bequest in his will. With this background, the strong emphasis on Canadian Precambrian mineral deposits should come as no surprise; of the 23 papers in this book, 21 are solely or primarily devoted to Canadian deposits. The two exceptions—those describing the Balmat, N.Y., zinc mines (at times the largest zinc producer in the United States) and the Crandon, Wisconsin, volcanogenic zinc-copper massive-sulfide deposit (the largest deposit of its kind found in the 1970s)—are each within a couple of hundred kilometers of the Canadian border. Although the title of the book is more expansive than the actual topics discussed, Canada is rich in Precambrian rocks and ore bodies, and Canadian scientists have been especially alert to tectonic influences in the formation of mineral deposits. These features, plus the fact that the country contains a very well exposed expanse of Archean rocks which is the largest in the world, facilitate the study of early crustal evolution and make the book of particular interest to geophysicists.

  17. Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province

    USGS Publications Warehouse

    Finch, Warren I.

    1991-01-01

    The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986).  The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.  

  18. Photogeologic mapping in central southwest Bahia, using LANDSAT-1 multispectral images. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Ohara, T.

    1981-01-01

    The interpretation of LANDSAT multispectral imagery for geologic mapping of central southwest Bahia, Brazil is described. Surface features such as drainage, topography, vegetation and land use are identified. The area is composed of low grade Precambrian rocks covered by Mezozoic and Cenozoic sediments. The principal mineral prospects of economic value are fluorite and calcareous rocks. Gold, calcite, rock crystal, copper, potassium nitrate and alumina were also identified.

  19. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrianmore » age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.« less

  20. Tertiary volcanic rocks of the Mineral Mountain and Teapot Mountain quadrangles, Pinal County, Arizona

    USGS Publications Warehouse

    Keith, William J.; Theodore, Ted G.

    1979-01-01

    The widespread distribution of Tertiary volcanic rocks in south-central Arizona is controlled in part by prevolcanic structures along which volcanic vents were localized. Volcanic rocks in the Mineral Mountain and Teapot Mountain quadrangles mark the site of a major northwest-trending structural hingeline. This hingeline divides an older Precambrian X terrane on the west from intensely deformed sequences of rock as young as Pennsylvanian on the east, suggesting increased westerly uplift. The volcanic rocks consist of a pile of complexly interlayered rhyolite, andesite, dacite, flows and intrusive rocks, water-laid tuffs, and very minor olivine basalt. Although the rocks erupted from several different vents, time relations, space relations, and chemistry each give strong evidence of a single source for all the rocks. Available data (by the K-Ar dating method) on hornblende and biotite separates from the volcanic rocks range from 14 to 19 m.y. and establish the pre-middle Miocene age of major dislocations along the structural hingeline. Most of the volcanic rocks contain glass, either at the base of the flows or as an envelope around the intrusive phases. One of the intrusive rhyolites, however, seems to represent one of the final eruptions. Intense vesiculation of the intrusive rhyolite suggests a large content of volatiles at the time of its eruption. Mineralization is associated with the more silicic of these middle Miocene volcanic rocks; specifically, extensive fissure quartz veins contain locally significant amounts of silver, lead, and zinc and minor amounts of gold. Many of the most productive deposits are hosted by the volcanic rocks, although others occur in the Precambrian rocks. Magnetic data correspond roughly to the geology in outlining the overall extent of the volcanic rocks as a magnetic low.

  1. Reconnaissance geology of the Wadi Wassat quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.; Rossman, D.L.

    1970-01-01

    The Wadi Wassat quadrangle covers an area of 2926 sq km in the southwestern part of the Kingdom of Saudi Arabia. The west half of the quadrangle is underlain by crystalline rocks of the Arabian Shield, but in the eastern half of the quadrangle the Precambrian rocks are covered by Permian or older sandstone which is succeeded farther east by aeolian sands of Ar Rub' al Khali. The Shield consists of a sequence of unmetamorphosed to metamorphosed interlayered volcanic and sedimentary rocks intruded by igneous rocks ranging in composition from gabbro to syenite and in age from Precambrian to Cambrian(?). The volcanic rocks range in composition from andesite to rhyolite and in texture from agglomerate to thick, massive flows and lithic tuff. They are interlayered with conglomerate, fine-grained graywacke sandstone, calcareous graywacke, siltstone, tuffaceous laminated shale, pyritiferous sediment, carbonaceous shale, limestone, and dolomite. Most clastic debris is derived from andesite. In places the rocks are polymetamorphosed; elsewhere they are unmetamorphosed. The rocks on which this volcano-sedimentary eugeosynclinal sequence was deposited are not exposed in the area of the quadrangle. Reglonal dynamothermal metamorphism was .the dominant process affecting the volcanic-sedimentary rocks in the western part of the quadrangle. In the eastern part of the Precambrian area the chief metamorphic effect results from contact action along the walls of intrusive plutons. The oldest igneous rock to intrude the volcanic-sedimentary sequence, after the dikes and sills of the sequence itself, is granite gneiss and gneissic granodiorite. The gneiss is sparsely present in the quadrangle, but northwest of the quadrangle it forms an immense batholith which is one of the major geologic features of southwestern Arabia. However, the most common intrusive rocks of the quadrangle are a magnetic differentiation sequence that ranges in composition from gabbro and diorite to granite, rhyolite, and syenite. The siliceous members of the differentiation sequence commonly contain aluminous pyroxene or amphibole, and to the sequence the name peralkalic magma series has been given. Plutonic rocks of the series are widely intruded by hypabyssal rocks of the series. In most places, the older hypabyssal rocks tend to form interior dikes in the plutonic rocks, and the younger hypabyssal rocks commonly form the exterior dike swarms outside the plutonic rocks of the magma series. Many exterior dike swarms are concentrated in roof pendants of volcano-sedimentary rocks over the plutonic members of the magma series. Isotopic ages of rocks in the peralkalic magma series range from 598 +/-24 m.y. to 509 +/-15 m.y. by K/Ar and Rb/Sr methods. A profound angular unconformity exists between the Precambrian and Cambrian(?) crystalline rocks and the Permian or older sandstone which laps onto the Shield from the east and south. This sandstone, is reddish-brown, yellow, tan, and white called Wajid Sandstone, crossbedded sandstone with ferruginous cement and concretions in some layers. Locally, the rocks underlying the Wajid Sandstone are deeply weathered. Poorly sorted alluvial sand and gravel mantle the wadi floors. In the northeastern and southwestern parts of the quadrangle well-sorted aeolian sand is common. The volcanic and sedimentary rocks of the quadrangle are part of the east limb of an immense synclinorium(?) that closes south-westward around a batholitic core of gneissic granite and granodiorite. These layered rocks were isoclinally folded along northerly and north-northeasterly trending axes prior to the intrusion of the peralkalic magma series. During intrusion, the layered rocks were again folded as they were pushed aside, and major old regional northerly faults were reactivated with persistent left-lateral displacement. Reconnaissance geochemical sampling disclosed several notable groupings of threshold and anomalous elements with spe

  2. Development of the Earth's early crust: Implications from the Beartooth Mountains

    NASA Technical Reports Server (NTRS)

    Mueller, P. A.; Wooden, J. L.; Henry, D. J.; Mogk, D. W.

    1983-01-01

    The Beartooth Mountains of Montana and Wyoming are one of several major uplifts of Precambrian rocks in the northwestern of the Wyoming Province. The range is composed of a wide variety of rock types which record a complex geologic history that extends from early ( 3400 Ma) to late (approx 700 Ma) Precambrian time. The Archean geology of the range is complex and many areas remain unstudied in detail. In this discussion two areas are discussed for which there is considerable structural, geochemical and petrologic information. The easternmost portion of the range (EBT) and the northwesternmost portion, the North Snowy Block (NSB), contain rather extensive records of both early and late Archean geologic activity. These data are used to constrain a petrologic tectonic model for the development of continental crust in this area.

  3. Synthesis of geophysical data (phase V, deliverable 55): Chapter B in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Finn, Carol A.; Anderson, Eric D.

    2015-01-01

    Aeromagnetic and radiometric data were used to map shallow Precambrian basement lithology and structure and determine the depth to magnetic basement, which in most cases, corresponds to the depth to crystalline basement of interest for mineral exploration. These depths, along with those determined from gravity data, help identify basins with hydrologic potential. In addition, the magnetic data were used to identify buried Precambrian rocks of unknown affinity.

  4. Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China

    NASA Technical Reports Server (NTRS)

    Chen, J. Y.; Oliveri, P.; Li, C. W.; Zhou, G. Q.; Gao, F.; Hagadorn, J. W.; Peterson, K. J.; Davidson, E. H.

    2000-01-01

    Putative fossil embryos and larvae from the Precambrian phosphorite rocks of the Doushantuo Formation in Southwest China have been examined in thin section by bright field and polarized light microscopy. Although we cannot completely exclude a nonbiological or nonmetazoan origin, we identified what appear to be modern cnidarian developmental stages, including both anthozoan planula larvae and hydrozoan embryos. Most importantly, the sections contain a variety of small (

  5. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    NASA Technical Reports Server (NTRS)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  6. Gravity-induced stresses in stratified rock masses

    USGS Publications Warehouse

    Amadei, B.; Swolfs, H.S.; Savage, W.Z.

    1988-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.

  7. Water resources of the Pomme de Terre River Watershed, West-central Minnesota

    USGS Publications Warehouse

    Cotter, R.D.; Bidwell, L.E.

    1966-01-01

    The watershed is underlain by water-bearing glacial drift, cretaceous rocks, and Precambrian crystalline rocks.  It is an elongate basin 92 miles long and has a drainage area of 977 square miles.  The Pomme de Terre River flows within an outwash valley discharging into the Minnesota River at Marsh Lake.

  8. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0)

    DTIC Science & Technology

    2012-04-01

    are the Blue Ridge Province and the Piedmont Plateau, composed mainly of highly eroded Precambrian metamorphic rocks . The Piedmont Plateau extends...older igneous and metamorphic rocks (Atwood 1940; Hunt 1974; USGS 2004). Caverns and karst features are found in marble formations in the Piedmont...colluvium derived from sandstone, shale, limestone, and metamorphic and igneous rocks . Other parent materials include deposits of wind-blown loess

  9. Stratigraphy of Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado

    USGS Publications Warehouse

    Shawe, Daniel R.; Simmons, George C.; Archbold, Norbert L.

    1968-01-01

    The Slick Rock district covers about 570 square miles in western San Miguel and Dolores Counties, in southwestern Colorado. It is at the south edge of the salt-anticline region of southwestern Colorado and southeastern Utah and of the Uravan mineral belt.Deposition of Paleozoic sedimentary rocks in the district and vicinity was principally controlled by development of the Paradox Basin, and of Mesozoic rocks by development of a depositional basin farther west. The Paleozoic rocks generally are thickest at the northeast side of the Paradox Basin in a northwest- trending trough which seems to be a wide graben in Precambrian igneous and metamorphic basement rocks; Mesozoic rocks generally thicken westward and southwestward from the district.Sedimentary rocks rest on a Precambrian basement consisting of a variety of rocks, including granite and amphibolite. The surface of the Precambrian rocks is irregular and generally more than 2,000 feet below sea level and 7,000-11,000 feet below the ground surface. In the northern part of the district the Precambrian surface plunges abruptly northeastward into the trough occupying the northeast side of the Paradox Basin, and in the southern part it sags in a narrow northeasterly oriented trough. Deepening of both troughs, or crustal deformation in their vicinity, influenced sedimentation during much of late Paleozoic and Mesozoic time.The maximum total thickness of sedimentary rocks underlying the district is 13,000 feet, and prior to extensive erosion in the late Tertiary and the Quaternary it may have been as much as about 18,000 feet. The lower 5,000 feet or more of the sequence of sedimentary rocks consists of arenaceous strata of early Paleozoic age overlain by dominantly marine carbonate rocks and evaporite beds interbedded with lesser amounts of clastic sediments of late Paleozoic age. Overlying these rocks is about 4,500 feet of terrestrial clastic sediments, dominantly sandstone with lesser amounts of shale, mudstone, siltstone, and conglomerate, of late Paleozoic and Mesozoic age. Above these rocks is as much as 2,300 feet of marine shale of late Mesozoic age. Perhaps about 5,000 feet of clastic sedimentary rocks, dominantly sandstone and in part shale, of late Mesozoic and early Cenozoic age, overlay the older rocks of the district prior to late Cenozoic erosion...Outside the Slick Rock district the Mancos Shale is overlain by dominantly terrestrial sandstone, mudstone, and coaly beds of the Mesaverde Group of Late Cretaceous age, and younger units such as the Wasatch and Green River Formations of Tertiary age, which once may have extended across the district. These units, totaling possibly 5,000 feet in thickness, were removed by erosion following middle Tertiary uplift of the Colorado Plateau.Igneous rocks of Tertiary age crop out in only one small area in the district, but they are intruded extensively in the Mancos Shale east of the district, and, as shown by deep oil test wells, appear to be intruded widely in the Paradox Member of the Hermosa Formation in the southern part of the district and southeast of the district. Andesite porphyry occurs in a dike on Glade Mountain, microgranogabbro and microgranodiorite occur in thin sills east of the district, and rocks of similar composition form thick sills in the subsurface. All are similar chemically to igneous rocks in the San Juan Mountains southeast of the district and probably were the result of a specific igneous episode. They were intruded most likely during the Miocene.Surficial deposits of Quaternary age include glacial till, terrace gravels, alluvial fans, landslide debris, loess, other soil, alluvium, colluvium, and talus. On Glade Mountain, glacial till of probable early Pleistocene age merges westward with terrace gravels that are correlative with terrace gravels which lie on an old weathered surface of Mancos Shale farther west on the rim of the Dolores River Canyon.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handford, C.R.

    Rather spotty but excellent exposures of the Cretaceous-age Turkana Grits occur near the western shore of Lake Turkana, northern Kenya. These very coarse to pebbly arkosic sandstones and sandy conglomerates were derived from and rest unconformably upon Precambrian metamorphic basement; they are overlain by late Tertiary basaltic flows that comprise much of the volcanics in the East African Rift Zone. The formation ranges up to 2000 ft thick in the Laburr Range. Several outcrops contain sauropod, crocodile, and tortoise remains as well as abundant trunks of petrified wood (Dryoxylon). Five major facies make up the Turkana Grits and record amore » major episode of continental fluvial deposition in basins flanked by Precambrian basement. Facies 1 is crudely stratified, cobble and boulder conglomerate (clast-supported); Facies 2 is crudely stratified pebble-cobble conglomerate and pebbly sandstone; Facies 3 is trough cross-bedded, very coarse sandstones containing fossils wood and vertebrate remains; Facies 4 is crudely stratified to massive sandstones with ironstone nodules; and Facies 5 is red, purple, and gray mudstone and mud shale with carbonate nodules. Facies 1 through 3 record deposition in proximal to medial braided-stream channel, longitudinal bar and dune complexes. Facies 4 is a lowland, hydromorphic paleosol, and Facies 5 represents overbank and abandoned channel-fill sedimentation in an alluvial plain.« less

  11. Geology of the Spruce Pine District, Avery, Mitchell, and Yancy Counties, North Carolina

    USGS Publications Warehouse

    Brobst, Donald Albert

    1962-01-01

    The Spruce Pine pegmatite district, a northeastward-trending belt 25 miles long and 10 miles wide, lies in parts of Avery, Mitchell, and Yancey Counties in the Blue Ridge Province of western North Carolina. The most abundant rocks in the district are interlayered mica and amphibole gneisses and schists, all of which are believed to be of Precambrian age. These rocks are cut by small bodies of dunite and associated rocks of Precambrian (?) age, large bodies of alaskite and associated pegmatite of early Paleozoic age, and basaltic and diabasic dikes and sills of Triassic (?) age. The rocks of the district have been weathered to saprolite that is locally 50 feet thick. The major structure in the area is a southwestward-plunging asymmetrical synclinorium that has its steeper limb on the northwest side. Feldspar, muscovite as sheet and scrap (ground) mica, and kaolin from the alaskite and associated pegmatite account for over 90 percent of the total mineral production of the district. Amounts of other pegmatite minerals, including quartz, beryl, columbite-tantalite, rare-earth and uranium minerals are an extremely small part of the mineral resources. Actual or potential products from other rocks are olivine, vermiculite, asbestos, talc, chromium and nickel, soapstone, mica schist, garnet, kyanite, dolomite marble, and construction materials.

  12. Aperçu de precambrien de côte d'Ivoire: geologie-metallogenie

    NASA Astrophysics Data System (ADS)

    Angoran, Y.; Kadio, E.

    The Ivory Coast is situated at the southern limits of the West African Craton and constitute a part of the 'Dorsale de Man'. The precambrian rocks occupy 97% of the superficial area of the country and include rocks of two orogenic episodes: the Liberian (3000-2580 Ma) and the Eburnian of lower Proterozoic (2400-1550 Ma). Liberian Orogeny, which is the most ancient, consists of gneisses, amphibo-pyroxinites, fine-grained itabirites and coarse-grained ferruginous quartzites. The aluminous gneisses, amphibo-pyroxinites and ferruginous quartzites are supracrustals that have been transformed by a high grade Catasonal metamorphism resulting in highly folded rocks. The Liberian plutons are infracrustals consisting of complex basic and ultrabasic rocks, migmatites, charnockites and granites associated with magmatites. This Liberian complex is intruded by some dolerites (2200 Ma), and kimberlites with diamond (2210-2500 Ma) which have been eroded to produce Birrimian placer deposits of Tortiya and Birrim in Ghana. The eburnian geosyncline consists of alternating subparallel intrageosynclines and intrageanticlines. The volcano-sedimentary complexes were intruded by eburnian plutons of 2100-1550 Ma. About 20 different types of mineralisations are common within the Pre-Cambrian rocks of the Ivory Coast and they are of Archaen to lower Proterozoic age. Examples of these mineral concentrations are cited in this paper.

  13. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leadsmore » to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.« less

  14. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks--energy for deep subsurface life on earth and mars.

    PubMed

    Sherwood Lollar, B; Voglesonger, K; Lin, L-H; Lacrampe-Couloume, G; Telling, J; Abrajano, T A; Onstott, T C; Pratt, L M

    2007-12-01

    Dissolved H(2) concentrations up to the mM range and H(2) levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H(2) concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H(2) ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The delta (2)H isotope signatures of H(2) gas from Canada, Finland, and South Africa are consistent with a range of H(2)-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H(2) levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered delta (18)O and delta (2)H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H(2) and support a microbial community of H(2)-utilizing sulfate reducers and methanogens.

  15. The mineral resource potential of the Harrat Nawasif, sheet 21/42 C, Ranyah, sheet 21/42 D, and Jabal Dalfa, sheet 21/43 C quadrangles, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Fenton, Michael D.

    1983-01-01

    Areas with mineral resource potential in the Harrat Nawasif, Ranyah, and Jabal Dalfa quadrangles in the central Precambrian Shield of Saudi Arabia have been identified by reconnaissance rock geochemistry and inspection of ancient prospects. Locally anomalous areas in perthitic, alkalic granite terrane in the Ranyah quadrangle possibly contain niobium, zirconium, thorium, fluorite, rare-earth, tin, molybdenum, or copper mineralization. The reconnaissance rock geochemical survey in layered volcanic and volcaniclastic terrane in the Jabal Dalfa quadrangle identified a zinc anomaly in quartzite and a nickel-copper zone that is an extension of the Jabal Judayr prospect, where a low-grade, nickel-copper sulfide deposit is known. The Precambrian terrane in the Harrat Nawasif quadrangle has no known mineral resource potential.

  16. Ancient granite gneiss in the Black Hills, South Dakota

    USGS Publications Warehouse

    Zartman, R.E.; Norton, J.J.; Stern, T.W.

    1964-01-01

    Granite gneiss, with an age of approximately 2.5 billion years, in the Black Hills, South Dakota , provides a link betweeen ancient rocks in western Wyoming and Montana and in eastern North and South Dakota and Minnesota. The discovery suggests that early Precambrian rocks covered an extensive area in northcentral United States and were not restricted to several small nuclei.

  17. Water resources of the Minnesota River-Hawk Creek watershed, southwestern Minnesota

    USGS Publications Warehouse

    Van Voast, Wayne A.; Broussard, W.L.; Wheat, D.E.

    1972-01-01

    The Minnesota River – Hawk Creek watershed is located in southwestern Minnesota. The watershed has an area of 1,479 square miles and is drained along its southwestern edge by the Minnesota River (Minnesota Division of Waters, 1959). The major watercourse within the watershed is Hawk Creek, having a drainage area of 510 square miles. Other, shorter streams drain into the Minnesota River but are mostly ephemeral. The watershed has a gently undulating land surface formed on glacial deposits. Directly underlying the glacial deposits in most of the area are Cretaceous sedimentary rocks. Paleozoic and Precambrian rocks are also locally in contact with overlying glacial deposits. Beds of sand and gravel buried at various depths within the glacial deposits are generally thin and discomtinuous but are the most accessible and widely used aquifers in the watershed. Beds of poorly consolidated sandstone in the Cretaceous rocks are locally good aquifers, generally yielding softer water, but in lesser quantities, than aquifers in the overlying glacial deposits. In the eastern part of the watershed, aquifers in Paleozoic and Precambrian sedimentary rocks are capable of high yields to wells and contain water of similar quality to water in the overlying Cretaceous and glacial deposits.

  18. Precambrian Time - The Story of the Early Earth

    USGS Publications Warehouse

    Lindsey, D.A.

    2007-01-01

    The Precambrian is the least-understood part of Earth history, yet it is arguably the most important. Precambrian time spans almost nine-tenths of Earth history, from the formation of the Earth to the dawn of the Cambrian Period. It represents time so vast and long ago that it challenges all comprehension. The Precambrian is the time of big questions. How old is the Earth? How old are the oldest rocks and continents? What was the early Earth like? What was the early atmosphere like? When did life appear, and what did it look like? And, how do we know this? In recent years, remarkable progress has been made in understanding the early evolution of the Earth and life itself. Yet, the scientific story of the early Earth is still a work in progress, humankind's latest attempt to understand the planet. Like previous attempts, it too will change as we learn more about the Earth. Read on to discover what we know now, in the early 21st century.

  19. Characterization of the Sukinda and Nausahi ultramafic complexes, Orissa, India by platinum-group element geochemistry

    USGS Publications Warehouse

    Page, N.J.; Banerji, P.K.; Haffty, J.

    1985-01-01

    Samples of 20 chromitite, 14 ultramafic and mafic rock, and 9 laterite and soil samples from the Precambrian Sukinda and Nausahi ultramafic complexes, Orissa, India were analyzed for platinum-group elements (PGE). The maximum concentrations are: palladium, 13 parts per billion (ppb); platinum, 120 ppb; rhodium, 21 ppb; iridium, 210 ppb; and ruthenium, 630 ppb. Comparison of chondrite-normalized ratios of PGE for the chromitite samples of lower Proterozoic to Archean age with similar data from Paleozoic and Mesozoic ophiolite complexes strongly implies that these complexes represent Precambrian analogs of ophiolite complexes. This finding is consistent with the geology and petrology of the Indian complexes and suggests that plate-tectonic and ocean basin developement models probably apply to some parts of Precambrian shield areas. ?? 1985.

  20. A new geological framework for south-central Madagascar, and its relevance to the "out-of-Africa" hypothesis

    USGS Publications Warehouse

    Tucker, R.D.; Roig, J.Y.; Macey, P.H.; Delor, C.; Amelin, Y.; Armstrong, R.A.; Rabarimanana, M.H.; Ralison, A.V.

    2011-01-01

    The Precambrian shield of south-central Madagascar, excluding the Vohibory region, consists of three geologic domains, from north to south: Antananarivo, Ikalamavony-Itremo, and Anosyen-Androyen. The northern Antananarivo domain represents the Neoarchean sector of the Greater Dharwar Craton amalgamated at 2.52-2.48. Ga. The Greater Dharwar Craton is overlain by several groups of Meso- to Neoproterozoic supracrustal rocks (Ambatolampy, Manampotsy, Ampasary, Sahantaha, and Maha Groups) each with a common and diagnostic signature of Paleoproterozoic detrital zircons (2.2-1.8. Ga). The central domain (Ikalamavony-Itremo) consists of two distinct parts. The Itremo Sub-domain, in the east, is a structurally intercalated sequence of Neoarchean gneiss and shallow marine metasedimentary rocks of Paleo-Mesoproterozoic age (Itremo Group), the latter with Paleoproterozoic detrital zircons ranging in age between 2.2 and 1.8. Ga. The Ikalamavony Sub-domain, to the west, contains abundant volcano-clastic metasediments and lesser quartzite (Ikalamavony Group), formed between 1.03. Ga and 0.98. Ga, and intruded by igneous rocks (Dabolava Suite) of Stenian-Tonian age. Structurally intercalated with these are sheets of Neoarchean gneiss (~2.5. Ga) and Neoproterozoic metaclastic rocks (Molo Group). Like the Itremo Group, quartzite of the Ikalamavony Group has detrital zircons of Paleoproterozoic age (2.1-1.8. Ga). The southern domain of Anosyen-Androyen consists of a newly recognized suite of Paleoproterozoic igneous rocks (2.0-1.8. Ga), and stratified supracrustal rocks also having Paleoproterozoic detrital zircons (2.3-1.8. Ga). The contact between the Anosyen-Androyen and Ikalamavony-Itremo domains, formerly known as the Ranotsara-Bongolava shear zone, is a tightly folded and highly flattened boundary that was ductilely deformed in Ediacaran time. It is roughly equivalent to the Palghat-Cauvery shear zone in south India, and it defines approximately the boundary between the Archean Greater Dharwar Craton (to the north) and the Paleoproterozoic terrane of Anosyen-Androyen (to the south).

  1. Keivy Paraschists (Archean-Early Proterozoic): Nanobacteria and Life

    NASA Astrophysics Data System (ADS)

    Astafieva, M. M.; Balaganskii, V. V.

    2018-05-01

    Nanobacteria, buried in situ, were discovered in the Early Precambrian paraschists (Keivy, Kola Peninsula). It is suggested that occurrence of nanobacteria indicates that a biological factor played a role in the formation of enclosing rocks.

  2. Precambrian Skeletonized Microbial Eukaryotes

    NASA Astrophysics Data System (ADS)

    Lipps, Jere H.

    2017-04-01

    Skeletal heterotrophic eukaryotes are mostly absent from the Precambrian, although algal eukaryotes appear about 2.2 billion years ago. Tintinnids, radiolaria and foraminifera have molecular origins well back into the Precambrian yet no representatives of these groups are known with certainty in that time. These data infer times of the last common ancestors, not the appearance of true representatives of these groups which may well have diversified or not been preserved since those splits. Previous reports of these groups in the Precambrian are misinterpretations of other objects in the fossil record. Reported tintinnids at 1600 mya from China are metamorphic shards or mineral artifacts, the many specimens from 635-715 mya in Mongolia may be eukaryotes but they are not tintinnids, and the putative tintinnids at 580 mya in the Doushantou formation of China are diagenetic alterations of well-known acritarchs. The oldest supposed foraminiferan is Titanotheca from 550 to 565 mya rocks in South America and Africa is based on the occurrence of rutile in the tests and in a few modern agglutinated foraminifera, as well as the agglutinated tests. Neither of these nor the morphology are characteristic of foraminifera; hence these fossils remain as indeterminate microfossils. Platysolenites, an agglutinated tube identical to the modern foraminiferan Bathysiphon, occurs in the latest Neoproterozoic in Russia, Canada, and the USA (California). Some of the larger fossils occurring in typical Ediacaran (late Neoproterozoic) assemblages may be xenophyophorids (very large foraminifera), but the comparison is disputed and flawed. Radiolaria, on occasion, have been reported in the Precambrian, but the earliest known clearly identifiable ones are in the Cambrian. The only certain Precambrian heterotrophic skeletal eukaryotes (thecamoebians) occur in fresh-water rocks at about 750 mya. Skeletonized radiolaria and foraminifera appear sparsely in the Cambrian and radiate in the Ordovician. Tintinnids first appear in the mid-Mesozoic, like other modern planktic groups, including planktic foraminifera, new types of radiolarians, and a host of skeletal micro-algae. Microbial eukaryotes track algal eukaryote and metazoan evolution—none or very few in the Precambrian, some in the early Paleozoic with radiations in the later Paleozoic, Mesozoic and Cenozoic, with extinctions ( 30) reducing their biodiversity at particular times in the fossil record—thus indicating strong environmental selection on all marine groups.

  3. Fission-track ages of apatites from the Precambrian of Rwanda and Burundi - Relationship to East African rift tectonics

    NASA Astrophysics Data System (ADS)

    van den Haute, P.

    1984-11-01

    Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.

  4. Reconnaissance geology of the Jabal Hashahish Quadrangle, sheet 17/41 B, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hadley, D.G.

    1982-01-01

    The Jabal Hashahish quadrangle (sheet 17/41 B) lies between lat 17?30' and 18?00' N. and long 41?30' and 42?00' E. and encompasses an area of 2,950 km2, of which only about 600 km2 is land; the remainder is covered by the Red Sea. The geologic formations exposed in the quadrangle include Precambrian layered and intrusive rocks, Tertiary gabbro dikes, Quaternary basaltic lavas and pyroclastic rocks, and Quaternary surficial deposits. The Precambrian rocks include layered sedimentary and volcanic rocks that have been assigned to the Baish, Bahah, and Ablah groups. These rocks have been folded, metamorphosed, and invaded by intrusions. They are cut by Miocene gabbro dikes that were intruded during the initial stages of the opening of the Red Sea rift. The Quaternary rocks also include basalt that was extruded during a continuation of that opening, after the uplift that formed the escarpment that parallels the eastern shore of the Red Sea, but before the Holocene erosional cycle. Coastal, pediment, and alluvial, and eolian deposits of various kinds are also of Quaternary age. The economic potential of the quadrangle lies essentially in the agricultural value of its flood-plain deposits, though these are not so widely used as those in Wadi Hali and Wadi Yiba, which are located in the Manjamah quadrangle. The coral reefs possibly could provide raw materials for use in a cement industry, if any such industry were ever required in this area.

  5. Early Precambrian crustal evolution of south India

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The Early Precambrian sequence in Karnataka, South India provides evidences for a distinct trend of evolution which differs from trends exhibited in many other Early Precambrian regions of the world. The supracrustal rock associations preserved in greenstone belts and as inclusions in gneisses and granulites suggest the evolution of the terrain from a stable to a mobile regime. The stable regime is represented by (1) layered ultramafic-mafic complexes, (2) orthoquartzite-basalt-rhyodacite-iron formation, and (30 ortho-quartzite-carbonate-Mn-Fe formation. The mobile regime, which can be shown on sedimentological grounds to have succeeded the stable regime, witnessed the accumulation of a greywacke-pillow basalt-dacite-rhyolite-iron formation association. Detrital sediments of the stable zone accumulated dominantly in fluvial environment and the associated volcanics are ubaerial. The volcanics of the stable regime are tholeiites derived from a zirconium and LREE-enriched sources. The greywackes of the mobile regime are turbidities, and the volcanic rocks possess continental margin (island-arc or back-arc) affinity; they show a LREE depleted to slightly LREE-enriched pattern. The evolution from a stable to a mobile regime is in contrast to the trend seen in most other regions of the world, where an early dominantly volcanic association of a mobile regime gives way upward in the sequence to sediments characteristic of a stable regime.

  6. Workshop on Early Crustal Genesis: The World's Oldest Rocks

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor)

    1986-01-01

    Topics addressed include: a general review of Precambrain crustal evolution; geology and geochemistry of the Archean Craton in Greenland and Labrador; Precambrian crustal evolution in North and South America; and the field excursion to the Ameralik Fjord.

  7. Recognition of late Precambrian glaciogenic sediments in Liberia

    NASA Astrophysics Data System (ADS)

    Magee, A. W.; Culver, S. J.

    1986-11-01

    Late Precambrian glaciation in West Africa is now suggested to have extended as far south as Gibi Mountain in west-central Liberia, 200 km farther south than previously recognized glacial deposits in central Sierra Leone. The Gibi Mountain Formation includes a basal diamictite, interpreted as a probable tillite, and overlying shallow-marine laminites containing isolated, ice-rafted dropstones and dropgrains. These rocks rest on Late Archean age gneisses and are overlain by Late Archean? age quartzite klippen emplaced during the pan-African orogeny (ca. 550 Ma). *Present address: School of Geography, University of Oxford, Mansfield Road, Oxford OKI 3TB, England

  8. Geology of the Humboldt region and the Iron King mine, Bigbug mining district, Yavapai County, Arizona

    USGS Publications Warehouse

    Creasey, Saville Cyrus

    1951-01-01

    The Humboldt region is in central Yavapai County, Arizona. The intersection of the 112? 15' meridian and the 34? 30' N parallel is in the approximate geographical center of the region, and the Iron King mine is about 2000 feet west-northwest of the intersection. Pre-Cambrian rocks form the bedrock in the Humboldt region. Late Cenozoic unconsolidated river wash and valley fill, including some interbedded basalt, locally mantle the pre-Cambrian rocks, especially in the north-central part of the region (Lonesome Valley). The pre-Cambrian rocks consist of five newly defined metavolcanic formations derived from flows and tuff s, and of six intrusive units ranging in composition from granite to gabbro or perhaps more mafic types. Relic bedding-and pillow structures are locally prominent in the metavolcanics; geopetal structures are uncommon, but where present, generally indicate that the top is toward the west, though the evidence is too meager to be conclusive. Low-grade dynamothermal metamorphism altered the metavolcanics and to a lesser extent the intrusive rocks, forming textures, structures, and mineral assemblages characteristic of low temperature and moderate stress. The Texas Gulch formation, which is the easternmost metavolcanic formation, consists of five lithologic units. Arranged in the general order of their appearance from east to west they are meta-andesite breccia, purple slate, metarhyolite tuff, meta-andesite, and green slate. The boundary between the Texas Gulch formation and the Iron King meta-andesite is apparently gradational. The Iron King meta-andesite consists of three meta-andesite tuff units, two meta-andesite flow units and one metarhyolite tuff and conglomerate unit. The assemblage chlorite-albite-epitode with or without quartz is dominant in the meta-andesites. Mafic intrusive rocks, which may be approximately contemporaneous with metamorphism, may explain the presence of actinolitic hornblende in the central part of the formation. Toward the west the Iron King meta-andesite appears to grade into the Spud Mountain metabreccia through a zone containing beds characteristic of either one formation or the other. The Spud Mountain metabreccia consists of interbedded metabreccia and metatuff beds. The metatuffs are largely andesitic in composition, but a few thin beds of metarhyolite tuff occur. The fragments in the metabreccia beds consist chiefly or porphyritic meta-andesites and the matrix is meta-andesite tuff. Pre-Cambrian faults now marked by dikes separate the Chaparral Gulch metavolcanics, which lie west of the Spud Mountain metabreccia, from underlying and overlying formations. The Chaparral Gulch metavolcanics contain metarhyolite tuff, metarhyolite flow, and meta-andesite tuff that locally was contaminated by rhyolitic detritus. The Indian Hills metavolcanics, which are northeast of the Chaparral Gulch metavolcanics, consist of two broad units, one composed of metarhyolites and the other of meta-andesites. Metamorphosed tuffs and flows are believed to be represented in both units and flow breccia in the meta-andesites. Granite and alaskite; granodiorite and quartz diorite; diorite, mafic quartz diorite, gabbro and diabase; metarhyolite (?); and quartz porphyry comprise the pre-Cambrian intrusive units mapped. They include both deep-seated and hypabyssal types. Dynamothermal metamorphism has foliated the smaller bodies and the margins of the larger masses and partly converted them into mineral assemblages stable under low-grade metamorphic conditions. Planar structures (chiefly foliation) are omnipresent and linear structures are common in the pre-Cambrian meta-volcanic rocks. North-trending planar structures dominate in the Indian Hills metavolcanics, and in the Spud Mountain metabreccia, whereas northeast-trending planar structures are dominant in the Texas Gulch formation, Iron King meta-andesite, and Chaparral Gulch metavolcanics. To a lesser extent northeast-trending st

  9. Southwest U. S. -East Antarctic (SWEAT) connection: A hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moores, E.M.

    A hypothesis for a late Precambrian fit of western North America with the Australia-Antarctic shield region permits the extension of many features through Antarctica and into other parts of Gondwana. Specifically, the Grenville orogen may extend around the coast of East Antarctica into India and Australia. The Wopmay orogen of northwest Canada may extend through eastern Australia into Antarctica and thence beneath the ice to connect with the Yavapai-Mazatzal orogens of the southwestern US. The ophiolitic belt of the latter may extend into East Antarctica. Counterparts of the Precambrian-Paleozoic sedimentary rocks along the US Cordilleran miogeocline may be present inmore » the Transantarctic Mountains. Orogenic belt boundaries provide useful piercing points for Precambrian continental reconstructions. The model implies that Gondwana and Laurentia rifted away from each other on one margin and collided some 300 m.y. later on their opposite margins to from the Appalachians.« less

  10. Environmental Assessment for the Upgrade and Construction of the Eielson Air Force Base Rail Line, Eielson Air Force Base, Alaska

    DTIC Science & Technology

    2012-03-01

    Soils Affected Environment The geology of the area is classified as Precambrian and Paleozoic-age metamorphic rocks of the Yukon-Tanana crystalline...Eielson plutons. The igneous and metamorphic rocks have been overlain by younger sedimentary Pleistocene and Holocene loess deposits. These deposits...Alternative. Environmental resources evaluated in detail for potential environmental consequences were land use and visual resources, noise, cultural

  11. Gold in placer deposits

    USGS Publications Warehouse

    Yeend, Warren; Shawe, Daniel R.; Wier, Kenneth L.

    1989-01-01

    Man most likely first obtained gold from placer deposits, more than 6,000 years ago. Placers account for more than two-thirds of the total world gold supply, and roughly half of that mined in the States of California, Alaska, Montana, and Idaho.Placer deposits result from weathering and release of gold from lode deposits, transportation of the gold, and concentration of the gold dominantly in stream gravels. Unless preserved by burial, a placer subsequently may be eroded, and either dispersed or reconcentrated.California has produced more than 40 million troy ounces of gold from placers, both modern and fossil (Tertiary). The source of the great bulk of the gold is numerous quartz veins and mineralized zones of the Mother Lode and related systems in the western Sierra Nevada region. The gold-bearing lodes were emplaced in Carboniferous and Jurassic metamorphic rocks intruded by small bodies of Jurassic and Cretaceous igneous rocks. Mineralization occurred probably in Late Cretaceous time. Significant amounts of placer gold also were mined along the Salmon and Trinity Rivers in northern California. Source of the gold is lode deposits in Paleozoic and Mesozoic metamorphic rocks that were intruded by Mesozoic igneous rocks.Alaska has produced roughly 21 million ounces of gold from placer deposits. Most (about 13 million ounces) has come from the interior region, including 7,600,000 ounces from the Fairbanks district and 1,300,000 ounces from the Iditarod district. Lode sources are believed to be mostly quartz veins in Precambrian or Paleozoic metamorphic rocks intruded by small igneous bodies near Fairbanks, and shear zones in Tertiary(?) quartz monzonite stocks at Iditarod. The Seward Peninsula has produced more than 6 million ounces of placer gold, including about 4,000,000 ounces from the Nome district. Most of the gold was derived from raised beach deposits. Source of the gold probably is Tertiary-mineralized faults and joints in metamorphic rocks of late Precambrian age.The Helena-Last Chance district, Montana, produced nearly 1 million ounces of gold from placers that were derived from lode deposits in the contact zones of the Cretaceous Boulder batholith granitic rocks intruded into upper Precambrian, Paleozoic, and Mesozoic sedimentary rocks. The Virginia City-Alder Gulch district, Montana, produced more than 2,600,000 ounces of gold, nearly all from placer deposits derived from quartz veins of uncertain age in Archean gneisses and schists. The Boise basin district, Idaho, produced about 2,300,000 ounces of gold, mostly derived from quartz veins in quartz monzonite of the Cretaceous Idaho batholith.

  12. Geologic map of the Wenatchee 1:100,000 Quadrangle, central Washington

    USGS Publications Warehouse

    Tabor, R.W.; Waitt, R.B.; Frizzell, V.A.; Swanson, D.A.; Byerly, G.R.; Bentley, R.D.

    1982-01-01

    The rocks and deposits within the Wenatchee quadrangle can be grouped into six generalized units: (1) Precambrian(?) Swakane Biotite Gneiss in the northeastern part of the quadrangle and the probable Jurassic low-grade metamorphic suite, mostly composed of the Easton Schist, in the southwestern part; (2) the Mesozoic Ingalls Tectonic Complex; (3) the Mesozoic Mount Stuart batholith; (4) lower and middle Tertiary nonmarine sedimentary and volcanic rocks; (5) Miocene basalt flows and interbedded epiclastic rocks constituting part of the Columbia River Basalt Group and interbedded silicic volcaniclastic rocks of the Ellensburg Formation; and (6) Pliocene to Holocene alluvium, glacial, flood, and mass-wastage deposits.

  13. Water resources of the New Jersey part of the Ramapo River basin

    USGS Publications Warehouse

    Vecchioli, John; Miller, E.G.

    1973-01-01

    The Ramapo River, a major stream in the Passaic River basin, drains an area of 161 square miles, 70 percent of which is in Orange and Rockland Counties, N.Y., and 30 percent is in Bergen and Passaic Counties, N.J. This report describes the hydrology of the New Jersey part of the basin and evaluates the feasibility of developing large ground-water supplies from the stratified drift in the Ramapo River valley by inducing recharge to the aquifer from the river. The ground water and surface water of the basin are considered as a single resource because the development of either ground water or surface water affects the availability of the other. Precambrian gneiss, sparsely mantled with Pleistocene glacial drift, underlies the basin west of the Ramapo River in New Jersey. To the east, bedrock consists of the Watchung Basalt and of shale, sandstone, and conglomerate of the Brunswick Formation of Triassic age. Glacial drift occurs nearly everywhere in the eastern part of the basin, and deposits of stratified drift more than 100 feet thick occur in the Ramapo valley. Average annual runoff at Pompton Lakes accounts for 25 inches of the 45 inches of annual precipitation in the New Jersey part of the basin, and the remaining 20 inches is accounted for by evapotranspiration. Streamflow is highly variable--particularly in the area underlain by gneissic rocks-because of the low storage capacity of the rocks and the rough topography. Many of the small tributaries go dry during extended periods of no precipitation. Small domestic supplies of ground water can be obtained nearly everywhere, but the Brunswick Formation is the only consolidated-rock aquifer in the basin that can be depended upon to yield 100-200 gallons per minute to wells. Supplies of more than 1,000 gallons per minute are available from wells tapping the stratified drift in the Ramapo valley. The drift supplies 75 percent of the ground water pumped for public supply in the basin. Sustained ground-water yield in upland areas, based on stream base-flow recession, is estimated to be 200,000-300,000 gallons per day per square mile for the drift-covered Brunswick Formation and about 100,000-200,000 gallons per day per square mile for the gneiss and basalt. Potential sustained yield of the stratified drift in the valley depends on the availability of the streamflow and on the induced rate of infiltration. Pumping from the stratified drift results in a reduction in streamflow, which may be undesirable, mainly because of prior downstream water rights. On the basis of the storage available in the stratified drift and an analysis of daily flow during the drought period of October 1964 to September 1967 at Pompton Lakes, 20-25 million gallons per day of Ramapo River water are available for development after existing downstream water requirements are supplied. However, some low-flow augmentation will be. necessary to insure downstream rights. Rates of infiltration computed from seepage losses observed near Mahwah indicate that at least 11 million gallons per day, on an average basis, can be infiltrated from the river by the pumping of wells tapping the stratified drift. The use of recharge pits and spreading areas would increase the rate of infiltration. Losses from the Ramapo River could be minimized by returning treated sewage effluent directly to the river or, preferably, by recharging the stratified-drift aquifer with the treated effluent. Ground-water quality and surface-water quality at times of low-flow vary according to the type of rock from which the water is obtained. Water from the gneiss is low in dissolved solids--less than 127 mg/l (milligrams per liter)--and soft to moderately hard--less than 94 rag/l. Water from the Brunswick Formation is more mineralized--total dissolved-solids content is as much as 278 mg/1 and hardness as much as 188 mg/1. Water from the stratified drift is generally intermediate in quality--that is, total dissolved-solids content is as

  14. Carbonate Platform Development and Stromatolite Morphogenesis: Constraints on Environmental and Biological Evolution

    NASA Technical Reports Server (NTRS)

    Grotzinger, John P.

    2002-01-01

    Work this past year has focused on the globally significant events of faunal turnover, tectonic reorganization, and biogeochemical change that closely coincided with the Precambrian-Cambrian boundary in the Sultanate oilman. Higher temporal and chronostratigraphic resolution are required in order to answer this question. Stratigraphic sections must contain fossils, volcanic rocks, and abundant carbonates with little or no diagenetic overprint. The Ara Group of the South Oman Salt Basin presents such a succession - with carbonate rocks tightly enclosed in a protective envelope of impermeable halite, these rocks have likely never exchanged with younger fluids. Our work has had two thrusts. The first pertains to the geochemistry of the Athel Formation, a deep water deposit formed at the Precambrian-Cambrian boundary which contains unique records of ocean anoxia for that time interval. This unit is important because it will enable tighter focus on the links which existed between global biogeochemical events and episodes of faunal extinction and radiation. The second direction involves a comparison of terminal Proterozoic thrombolites between Oman (subsurface) and Namibia (outcrop). These thrombolites are important not only as significant deposits of ancient microbial communities, but because they formed the key substrate for growth of the oldest calcified metazoans - Cloudina and Namacalathus.

  15. Map showing the potential for mineral deposits associated with Precambrian mafic and ultramafic rocks in the Blacktail and Henrys Lake mountains and the Greenhorn and Ruby ranges of southwestern Montana

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Van Gosen, Bradley S.; Carlson, Robert R.; Kulik, Dolores M.

    1998-01-01

    In response to requests from the Bureau of Land Management (BLM) and the U.S. Forest Service (USFS), the U.S. Geological Survey (USGS) conducted a mineral resource assessment in the Dillon BLM Resource Area in Beaverhead and Madison Counties, southwestern Montana. These agencies use mineral resource data in creating and updating land-use management plans for federal lands for the reasonably foreseeable future. Mineral resources that have not been developed in the past may be developed in the future, based on changing commodity demands and market conditions. Therefore, federal land managers need geologic information on known mineral occurrences as well as on areas that are permissive for the occurrence of undiscovered mineral resources. This map was prepared to provide this type of geologic information for mineral deposits that can be associated with ultramafic rocks. Areas of exposed Precambrian ultramafic rocks are labeled with uppercase letters (A-F). Sources of geologic maps used to compile this map are shown on the smaller index map ("Index to Geologic Mapping"); lowercase letters (a-m) on the index map are keyed to the reference list.

  16. Fluvial channel-belts, floodbasins, and aeolian ergs in the Precambrian Meall Dearg Formation (Torridonian of Scotland): Inferring climate regimes from pre-vegetation clastic rock records

    NASA Astrophysics Data System (ADS)

    Lebeau, Lorraine E.; Ielpi, Alessandro

    2017-07-01

    The interpretation of climate regimes from facies analysis of Precambrian clastic rocks has been challenging thus far, hindering full reconstructions of landscape dynamics in pre-vegetation environments. Yet, comparisons between different and co-active sedimentary realms, including fluvial-channelised, floodplain, and aeolian hold the potential to shed further light on this thematic. This research discusses a fluvial-aeolian record from the 1.2 Ga Meall Dearg Formation, part of the classic Torridonian succession of Scotland. Tentatively considered to date as a braided-fluvial deposit, this unit is here reappraised as the record of fluvial channel-belts, floodbasins, and aeolian ergs. Fluvial deposits with abundant transitional- to upper-flow regime structures (mostly cross-beds with tangential sets and plane/antidunal beds) and simple, low-relief sediment bars indicate a low-sinuosity, ephemeral style. Floodbasin deposits consist of plane and cross-beds ubiquitously bounded by symmetrical ripples, and rare sediment bars related to the progradation of splay complexes in temporary flooded depressions. Aeolian deposits occur nearby basement topography, and are dominated by large-scale, pin-stripe laminated cross-beds, indicative of intermountain ergs. Neither ephemeral-fluvial nor intermountain aeolian systems can be considered as reliable indicators of local climate, since their sedimentary style is respectively controlled by catchment size and shape, and basin topography relative to groundwater tables. Contrarily, the occurrence of purely clastic - rather than carbonate or evaporitic - floodplain strata can be more confidently related to humid regimes. In brief, this study provides new insight into an overlooked portion of the Torridonian succession of Scotland, and discusses climate inferences for Precambrian clastic terrestrial rocks.

  17. Index to selected machine-readable geohydrologic data for Precambrian through Cretaceous rocks in Kansas

    USGS Publications Warehouse

    Spinazola, J.M.; Hansen, C.V.; Underwood, E.J.; Kenny, J.F.; Wolf, R.J.

    1987-01-01

    Machine-readable geohydrologic data for Precambrian through Cretaceous rocks in Kansas were compiled as part of the USGS Central Midwest Regional Aquifer System Analysis. The geohydrologic data include log, water quality, water level, hydraulics, and water use information. The log data consist of depths to the top of selected geologic formations determined from about 275 sites with geophysical logs and formation lithologies from about 190 sites with lithologic logs. The water quality data consist of about 10,800 analyses, of which about 1 ,200 are proprietary. The water level data consist of about 4 ,480 measured water levels and about 4,175 equivalent freshwater hydraulic heads, of which about 3,745 are proprietary. The hydraulics data consist of results from about 30 specific capacity tests and about 20 aquifer tests, and interpretations of about 285 drill stem tests (of which about 60 are proprietary) and about 75 core-sample analyses. The water use data consist of estimates of freshwater withdrawals from Precambrian through Cretaceous geohydrologic units for each of the 105 counties in Kansas. Average yearly withdrawals were estimated for each decade from 1940 to 1980. All the log and water use data and the nonproprietary parts of the water quality , water level, and hydraulics data are available on magnetic tape from the USGS office in Lawrence, Kansas. (Author 's abstract)

  18. A model of precambrian geology of Kansas derived from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Xia, Jianghai; Sprowl, Donald R.; Steeples, Don W.

    1996-10-01

    The fabric of the Precambrian geology of Kansas is revealed through inversion of gravity and magnetic data to pseudo-lithology. There are five main steps in the inversion process: (1) reduction of potential-field data to a horizontal plane in the wavenumber domain; (2) separation of the residual anomaly of interest from the regional background, where an assumption is made that the regional anomaly could be represented by some order of polynomial; (3) subtraction of the signal due to the known topography on the Phanerozoic/Precambrian boundary from the residual anomaly (we assume what is left at this stage are the signals due to lateral variation in the Precambrian lithology); (4) inversion of the residual anomaly in the wavenumber domain to density and magnetization distribution in the top part of the Precambrian constrained by the known geologic information; (5) derivation of pseudo-lithology by characterization of density and magnetization. The boundary between the older Central Plains Province to the north and the Southern Granite-Rhyolite Province to the south is clearly delineated. The Midcontinent Rift System appears to widen in central Kansas and involve a considerable portion of southern Kansas. Lithologies in southwestern Kansas appear to change over fairly small areas and include mafic rocks which have not been encountered in drill holes. The texture of the potential field data from southwestern Kansas suggests a history of continental growth by broad extension.

  19. SHINING ROCK WILDERNESS, NORTH CAROLINA.

    USGS Publications Warehouse

    Lesure, Frank G.; Dunn, Maynard L.

    1984-01-01

    The Shining Rock Wilderness, in the Blue Ridge Mountains of Haywood County, North Carolina, is underlain by complexly folded mica gneiss and schist of Precambrian age. A mineral-resource survey determined that two commodities, quartz as a source of silica (SiO//2) and gneiss and schist suitable for common building stone and crushed rock, are present in large quantities. Demonstrated resources of silica occur at Shining Rock Mountain and small amounts of sheet muscovite (mica) and scrap mica are present at about 10 localities. Until deep drilling is done to test the results of the seismic studies, no estimate of the potential for gas can be made, but the presence of gas cannot be totally discounted.

  20. Reprocessing and Interpretation of Vintage Seismic Reflection Data: Evidence for the Tectonic History of the Rocky Mountain Trench, Northwest Montana.

    NASA Astrophysics Data System (ADS)

    Porter, M.; Speece, M. A.; Rutherford, B. S.; Constenius, K. N.

    2014-12-01

    In 1983 Techno, Inc. collected five seismic reflection profiles in the region between Whitefish, Montana and the United States-Canada border. The poulter method was used to gather four of these profiles and one profile was collected using a vibroseis source. We are currently reprocessing these data in order to construct a regional geological interpretation. The profiles cover a key position in the hinterland of the Cordillera in the lee of the Lewis thrust salient where the east-northeast verging Lewis thrust fault system translated (horizontal displacement >100 km) and inverted a thick, strong slab of primarily Belt-Purcell rocks out of a deep Precambrian depositional basin onto a cratonic platform. In this event, Belt-Purcell rocks were thrust over complexly imbricated Phanerozoic strata in the foreland. Late Mesozoic compressional deformation was followed by Cenozoic extensional collapse of the over-thickened Cordillera and subsequent basin and range style deformation that produced an array of northwest trending grabens. Three of the seismic profiles cross the Rocky Mountain Trench; the Trench is a linear structure of regional dimension that is an expression of the extensional fragmentation of the Cordillera. Strong reflections, interpreted as sills encased within Lower Belt rocks (encountered in the Arco-Marathon 1 Paul Gibbs borehole), outline the complexly folded and faulted structure of the eastern limb of the Purcell anticlinorium. East of the Rocky Mountain Trench stratified reflections within Belt rocks clearly outline the Wigwam Thrust. Beneath the Whitefish Range, an apparent inflection in the strongly reflective basal Cambrian veneer marks the westerly increase in dip of the Rocky Mountain Basal Detachment. The dip contrast between the foreland and hinterland might be a manifestation of the tectonic loading of the Belt basin margin and the loading might have localized extension across the Rocky Mountain Trench.

  1. Thermal Conductivity Anisotropy of Metasedimentary and Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Davis, M. G.; Chapman, D. S.; van Wagoner, T. M.; Armstrong, P. A.

    2005-12-01

    Thermal conductivity anisotropy was determined for two sets of rocks: a series of sandstones, mudstones, and limey shales of Cretaceous age from Price Canyon, Utah, and metasedimentary argillites and quartzites of Precambrian age from the Big Cottonwood Formation in north central Utah. Additional anisotropy measurements were made on granitic rocks from two Tertiary plutons in Little Cottonwood Canyon, north central Utah. Most conductivity measurements were made in transient mode with a half-space, line-source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kmax) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kmax and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady-state mode. Anisotropy is defined as kmax/kperp. The Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for the Price Canyon samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming (1994) that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  2. Geology and mineral deposits of an area in the Departments of Antioquia and Caldas (Subzone IIB), Colombia

    USGS Publications Warehouse

    Feininger, Tomas; Barrero L., Dario; Castro, Nestor; Hall, R.B.

    1973-01-01

    The Inventario Minero National (IMN), a four-year cooperative geologic mapping and mineral resources appraisal project, was accomplished under an agreement between the Republic of Colombia and the U. S. Agency for International Development from 1964 through 1969. Subzone IIB, consisting essentially of the east half of Zone comprises nearly 20,000 km2 principally in the Department of Antioquia but including also small parts of the Departments of Caldas and Tolima. The rocks in IIB range from Precambrian to Holocene. Precambrian feldspar-quartz gneiss occupies a mosaic of fault-bounded blocks intruded by igneous rocks between the Oto fault and the Rio Magdalena. Paleozoic rocks are extensive, and include lightly metamorphosed graptolite-bearing Ordovician shale at Cristalina, and a major suite of graphitic quartz-mica schist, feldspathic and aluminous gneiss, quartzite, marble, amphibolite, and other rocks. Syntectonic intrusive gneiss included many of the older rocks during a late Paleozoic(?) orogeny, which was accompanied by Abukuma-type metamorphosing from lowermost greenschist to upper amphibolite facies. A Jurassic diorite pluton bounded by faults cuts volcanic rocks of unknown age east of the Otu fault. Cretaceous rocks are major units. Middle Cretaceous carbonaceous shale, sandstone, graywacke, conglomerate, and volcanic rocks are locally prominent. The Antioquian batholith (quartz diorite) of Late Cretaceous age cuts the middle Cretaceous and older rocks. A belt of Tertiary nonmarine clastic sedimentary rocks crops out along the Magdalena Valley. Patches of Tertiary alluvium are locally preserved in the mountains. Quaternary alluvium, much of it auriferous, is widespread in modern stream valleys. Structurally IIB constitutes part of a vast complex synclinorium intruded concordantly by syntectonic catazonal or mesozonal felsic plutons, and by the later epizonal post-tectonic Antioquian batholith. Previously unrecognized major wrench faults are outstanding structural features of IIB. Some are traceable for several hundred kilometers and probably have displacements measurable in kilometers, although only the Palestina fault, with right-lateral displacement of 27.7 km, is accurately documented. Correlations of rocks mapped in IIB with those of outlying areas including neighboring IIA are discussed.

  3. Precambrian evolution of the climate system.

    PubMed

    Walker, J C

    1990-01-01

    Climate is an important environmental parameter of the early Earth, likely to have affected the origin and evolution of life, the composition and mineralogy of sedimentary rocks, and stable isotope ratios in sedimentary minerals. There is little observational evidence constraining Precambrian climates. Most of our knowledge is at present theoretical. Factors that must have affected the climate include reduced solar luminosity, enhanced rotation rate of the Earth, an area of land that probably increased with time, and biological evolution, particularly as it affected the composition of the atmosphere and the greenhouse effect. Cloud cover is a major uncertainty about the early Earth. Carbon dioxide and its greenhouse effect are the factors that have been most extensively studied. This paper presents a new examination of the biogeochemical cycles of carbon as they may have changed between an Archean Earth deficient in land, sedimentary rocks, and biological activity, and a Proterozoic Earth much like the modern Earth, but lacking terrestrial life and carbonate-secreting plankton. Results of a numerical simulation of this transition show how increasing biological activity could have drawn down atmospheric carbon dioxide by extracting sedimentary organic carbon from the system. Increasing area of continents could further have drawn down carbon dioxide by encouraging the accumulation of carbonate sediments. An attempt to develop a numerical simulation of the carbon cycles of the Precambrian raises questions about sources and sinks of marine carbon and alkalinity on a world without continents. More information is needed about sea-floor weathering processes.

  4. A model of Precambrian geology of Kansas derived from gravity and magnetic data

    USGS Publications Warehouse

    Xia, J.; Sprowl, D.R.; Steeples, D.W.

    1996-01-01

    The fabric of the Precambrian geology of Kansas is revealed through inversion of gravity and magnetic data to pseudo-lithology. There are five main steps in the inversion process: (1) reduction of potential-field data to a horizontal plane in the wavenumber domain; (2) separation of the residual anomaly of interest from the regional background, where an assumption is made that the regional anomaly could be represented by some order of polynomial; (3) subtraction of the signal due to the known topography on the Phanerozoic/Precambrian boundary from the residual anomaly (we assume what is left at this stage are the signals due to lateral variation in the Precambrian lithology); (4) inversion of the residual anomaly in the wavenumber domain to density and magnetization distribution in the top part of the Precambrian constrained by the known geologic information; (5) derivation of pseudo-lithology by characterization of density and magnetization. The boundary between the older Central Plains Province to the north and the Southern Granite-Rhyolite Province to the south is clearly delineated. The Midcontinent Rift System appears to widen in central Kansas and involve a considerable portion of southern Kansas. Lithologies in southwestern Kansas appear to change over fairly small areas and include mafic rocks which have not been encountered in drill holes. The texture of the potential field data from southwestern Kansas suggests a history of continental growth by broad extension. Copyright ?? 1996 Elsevier Science Ltd.

  5. Anorthosites and alkaline rocks from the deep crust of peninsular India

    NASA Technical Reports Server (NTRS)

    Leelanandam, C.; Ratnakar, J.; Reddy, M. Narsimha

    1988-01-01

    The anorthosite and alkaline rock localities in the Precambrian Shield of Peninsular India were reviewed. There are approximately 50 localities of such rocks, generally restricted to the Eastern Ghats mobile belt. The alkaline plutons are typically confined to the margin of the Eastern Ghats. The anorthosites are all greater than 500 sq km, but many exhibit similarities to one another. It was suggested that the anorthosites are associated with cryptic sutures, and are thought to have originated as a result of ponding of basaltic magmas. An analogy was drawn between the Eastern Ghats belt and the Grenville Province of the Canadian Shield.

  6. Origins and evolution of rhyolitic magmas in the central Snake River Plain: insights from coupled high-precision geochronology, oxygen isotope, and hafnium isotope analyses of zircon

    NASA Astrophysics Data System (ADS)

    Colón, Dylan P.; Bindeman, Ilya N.; Wotzlaw, Jörn-Frederik; Christiansen, Eric H.; Stern, Richard A.

    2018-02-01

    We present new high-precision CA-ID-TIMS and in situ U-Pb ages together with Hf and O isotopic analyses (analyses performed all on the same grains) from four tuffs from the 15-10 Ma Bruneau-Jarbidge center of the Snake River Plain and from three rhyolitic units from the Kimberly borehole in the neighboring 10-6 Ma Twin Falls volcanic center. We find significant intrasample diversity in zircon ages (ranges of up to 3 Myr) and in δ18O (ranges of up to 6‰) and ɛHf (ranges of up to 24 ɛ units) values. Zircon rims are also more homogeneous than the associated cores, and we show that zircon rim growth occurs faster than the resolution of in situ dating techniques. CA-ID-TIMS dating of a subset of zircon grains from the Twin Falls samples reveals complex crystallization histories spanning 104-106 years prior to some eruptions, suggesting that magma genesis was characterized by the cyclic remelting of buried volcanic rocks and intrusions associated with previous magmatic episodes. Age-dependent trends in zircon isotopic compositions show that rhyolite production in the Yellowstone hotspot track is driven by the mixing of mantle-derived melts (normal δ18O and ɛHf) and a combination of Precambrian basement rock (normal δ18O and ɛHf down to - 60) and shallow Mesozoic and Cenozoic age rocks, some of which are hydrothermally altered (to low δ18O values) by earlier stages of Snake River Plain magmatism. These crustal melts hybridize with juvenile basalts and rhyolites to produce the erupted rhyolites. We also observe that the Precambrian basement rock is only an important component in the erupted magmas in the first eruption at each caldera center, suggesting that the accumulation of new intrusions quickly builds an upper crustal intrusive body which is isolated from the Precambrian basement and evolves towards more isotopically juvenile and lower-δ18O compositions over time.

  7. Precambrian crystalline basement map of Idaho-an interpretation of aeromagnetic anomalies

    USGS Publications Warehouse

    Sims, P.K.; Lund, Karen; Anderson, E.

    2005-01-01

    Idaho lies within the northern sector of the U.S. Cordillera astride the boundary between the Proterozoic continent (Laurentia) to the east and the Permian to Jurassic accreted terranes to the west. The continental basement is mostly covered by relatively undeformed Mesoproterozoic metasedimentary rocks and intruded or covered by Phanerozoic igneous rocks; accordingly, knowledge of the basement geology is poorly constrained. Incremental knowledge gained since the pioneering studies by W. Lindgren, C.P. Ross, A.L. Anderson, A. Hietanen, and others during the early- and mid-1900's has greatly advanced our understanding of the general geology of Idaho. However, knowledge of the basement geology remains relatively poor, partly because of the remoteness of much of the region plus the lack of a stimulus to decipher the complex assemblage of high-grade gneisses and migmatite of central Idaho. The availability of an updated aeromagnetic anomaly map of Idaho (North American Magnetic Anomaly Group, 2002) provides a means to determine the regional Precambrian geologic framework of the State. The combined geologic and aeromagnetic data permit identification of previously unrecognized crystalline basement terranes, assigned to Archean and Paleoproterozoic ages, and the delineation of major shear zones, which are expressed in the aeromagnetic data as linear negative anomalies (Finn and Sims, 2004). Limited geochronologic data on exposed crystalline basement aided by isotopic studies of zircon inheritance, particularly Bickford and others (1981) and Mueller and others (1995), provide much of the geologic background for our interpretation of the basement geology. In northwestern United States, inhomogeneities in the basement inherited from Precambrian tectogenesis controlled many large-scale tectonic features that developed during the Phanerozoic. Two basement structures, in particular, provided zones of weakness that were repeatedly rejuvenated: (1) northeast-trending ductile shear zones developed on the northwest margin of the Archean Wyoming province during the Paleoproterozoic Trans-Montana orogeny (Sims and others, 2004), and (2) northwest-trending intra-continental faults of the Mesoproterozoic Trans-Rocky Mountain strike-slip fault system (Sims, unpub. data, 2003). In this report, geologic ages are reported in millions of years (Ma) and generalized ages are given in billions of years (Ga). The subdivision of Precambrian rocks used herein is the time classification recommended by the International Union of Geological Sciences (Plumb, 1991).

  8. The geology and ore deposits of Upper Mayflower Gulch, Summit County, Colorado

    USGS Publications Warehouse

    Randall, John Alexander

    1958-01-01

    Upper Mayflower Gulch is on the highly glaciated western side of the Tenmile Range near Kokomo in central Colorado. Somewhat less than $500,000 in silver and gold has been produced from the area since the first mining in the 1880' s. In the mapped area high grade regional metamorphism has produced two varieties of gneiss and a granulite. Total thickness of the rocks is about 5,000 feet. Relict bedding is preserved in compositional banding which strikes north to N. 20 ? E. and dips 70 ? to 80 ? southeast. No significant folding was observed. Normal faulting has occurred since the Precambrian; two major sets of faults are recognizable: (1) a set striking N. 70 ? to 85 ? E. and dipping 75?-85 ? NW; and (2) a set striking N. 70?-50 ? W. and dipping 50?-60 ? SW. Tabular bodies of pegmatite and retrogressively metamorphosed schist along many faults indicate Precambrian movement. The Mayflower fault, a 90 to 300 foot wide zone of siltification and shattered rock, strikes about N. 40 ? W. It extends the entire length of the gulch and appears to form the northern terminus for the northeast trending Mosquito Fault. The Mayflower fault shows repeated movement since the Precambrian, totaling about 3,000 feet of apparent dip slip and 640 feet of apparent strike slip. Faulting during the Tertiary includes both additional movement along Precambrian faults and development of shears trending N. to N. 20 ? E. The shears served as channels for the intrusion of two varieties of quartz latite porphyry dikes. Specular hematite and base-metal sulfide mineralization followed intrusion of the porphyry dikes; the minerals were deposited in open fault zones by high temperature solutions in a low pressure environment. The principal metallic minerals in order of deposition are: hematite, pyrite, chalcopyrite, sphalerite, galena, and rarer argentite. The major mines are the Gold Crest, Payrock, Nova Scotia Boy, and Bird's Nest.

  9. Reconnaissance geology of the Ghazzalah Quadrangle, sheet 26/41 A, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Quick, James E.

    1983-01-01

    The Ghazzalah quadrangle is located in the northern Precambrian shield of Saudi Arabia between lat 26?30' and 27?00' N. and long 41?00' and 41?30' E. The area is underlain by two lithologically distinct, Precambrian volcanosedimentary units and a wide range of dioritoid and granitoid plutonic intrusive rocks. The only Phanerozoic rocks consist of one outcrop of Tertiary(?) basalt and widespread but thin deposits of Quaternary detritus. The Banana greenstone, the oldest rock in the quadrangle, consists of intermediate volcanic and subvolcanic rocks and minor interbedded marble, which have been metamorphosed to greenschist-facies assemblages. Volcanic rocks mainly range in composition from basalt to andesite, and subvolcanic rocks consist of diorite and diabase. The Banana greenstone is unconformably overlain by silicic volcanic rocks and minor arkosic sandstone and breccia of the Hadn formation. Preservation of delicate volcanic textures suggests that the rocks have been only incipiently metamorphosed. Unpublished rubidium/strontium isotopic data for the Hadn formation suggest an age of 620 to 610 Ma. Intrusive rocks are separable according to their ages relative to the Hadn formation. Those that are unconformably overlain by the Hadn formation consist of hornblende quartz diorite and gabbro, which may be consanguineous with the Banana greenstone, and younger tonalite, biotite-hornblende granodiorite, syenogranite, and monzogranite. Plutons of monzogranite, alkali-feldspar g,ranite, syenbgranite, peralkaline granite, and hypabyssal intrusions of granophyre were probably emplaced during a period coincident with and (or) following Hadn volcanism. Uranium-lead and rubidium/strontium isotopic data for two plutons in the adjacent Al Qasr quadrangle suggest that plutonic activity persisted in the region until about 580 to 570 Ma. Faulting appears to postdate all of the plutonic rocks. The dominant faults belong to a northeast-trending system of right-lateral shears; a subordinant system consists of mainly north- to northwest-trending faults. The peralkaline-granite plutons underlying Jibal Ba'gham and Jibal ar Rumman have the most economic potential. Wadi samples from these areas show an anomalous concentrations of tin, lead, niobium, and yttrium. Localized, intense radiometric anomalies in the Ba'gham intrusive complex are associated with high concentrations )f thorium, uranium, andrare-earth elements.

  10. Geoscience Awareness in Nigeria--A Preliminary Study

    ERIC Educational Resources Information Center

    Okunlola, Olugbenga A.

    2012-01-01

    Nigeria (total land area of 923,768 km2 ) is underlain by a crystalline Precambrian basement, Jurassic granites, and Cretaceous to Recent sedimentary rocks, and is prone in places to environmental degradation and geohazards. The country hosts approximately 34 different mineral types in about 855 locations with considerable oil and gas reserves.…

  11. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.

    1981-06-01

    The Durango Quadrangle (2/sup 0/), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions ofmore » the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access.« less

  12. Geology of the Jabal Riah area, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Wells, J.D.

    1982-01-01

    The Jabal Riah area is in the southern part of the Jibal al Hamdah quadrangle (lat 19?00'00'' to 19?07'S0'' N., long 45?37'30'' to 43?45'00' E.) in the southeastern Precambrian Shield, Asir Province, Kingdom of Saudi Arabia. The Jabal Mahanid group of ancient gold mines, which is part of the Jabal Ishmas-Wadi Tathlith gold belt, is in the west-central part of the area. Rocks in the Jabal Riah area consist of Precambrian layered metasedimentary and metavolcanic rocks intruded by Precambrian igneous rocks. The metamorphic rocks are, from oldest to youngest, interlayered hornblende and biotite schist, quartz-biotite schist, hornblende schist, serpentinite, and chlorite schist. The igneous rocks are, from oldest to youngest, diorite-gabbro including dikes, granodiorite, monzogranite-granodiorite, leucocratic quartz porphyry, rhyolite, and aplite and pegmatite dikes. A large area of jasper replaces serpentinite. On the valley floors, recent alluvium and pediment deposits overlie the bedrock. The structure of the area is dominated by a dome centered over the eastern border of the area; leucocratic quartz porphyry forms the core of the dome. Minor folds and faults are present. The Jabal Mahanid group of ancient gold mines is on a northwest-trending vein system, and major ancient mine areas are found where the system splits or changes direction. The veins consist of zones of brecciated and crushed rock, which are generally less than 0.5 m wide but may be as wide as 1 m. These zones contain quartz and calcite stringers and commonly are along hornblende schist-serpentinite contacts; however, they also cut both units. Most aplite, pegmatite, and quartz dikes in the area are thin and discontinuous and are intruded along the vein trend. Similar veins, at the same stratigraphic interval, have been found beyond the northeastern part of the map area. The veins contain detectable gold and silver (median gold, approximately 0.14 ppm; median silver, approximately 1 ppm). Gold and silver are most abundant in calcium-rich rocks and veins; silver was not detected in igneous rocks. Altered wall-rock zones are mineralized as much as 10 m away from the veins. Away from the Jabal Mahanid vein-system, silver was detected in the jasper. Gold and silver were detected in minor brecciated and sheared structures and in metasedimentary rocks. Gold was detected in sericitized margins of the leucocratic quartz porphyry, in unaltered rhyolite, and in aplite dikes. The presence of unusual amounts of gold and silver over a wide area is indicated by the ancient gold mines along veins at or near the hornblende schist-serpentinite contact in the map area and to the south in the Hajrah-Hamdah area and by the widespread evidence of precious metals in igneous rocks and other vein structures. A domed-shaped area, approximately 30 km in diameter, is outlined by the hornblende schist-serpentinite contact and has leucocratic quartz prophyry in the middle. Additional study of this area might reveal economic concentrations of gold and silver.

  13. Late Precambrian (740 Ma) charnockite, enderbite, and granite from Jebel Moya, Sudan: A link between the Mozambique Belt and the Arabian-Nubian Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, R.J.; Dawoud, A.S.

    1991-09-01

    New Rb-Sr and whole rock and U-Pb zircon data are reported for deep-seated igneous rocks from Jebel Moya in east-central Sudan. This exposure is important because it may link the high-grade metamorphic and deep-seated igneous rocks of the Mozambique Belt with the greenschist-facies and ophiolitic assemblages of the Arabian-Nubian Shield, both of Pan-African (ca. 900-550 Ma) age. The rocks of Jebel Moya consist of pink granite, green charnockite, and dark enderbite. A twelve-point Rb-Sr whole rock isochron for all three lithologies yields an age of 730 {plus minus} 31 Ma and an initial {sup 87}Sr/{sup 86}Sr of 0.7031 {plus minus}more » 1. Nearly concordant zircon ages for granite, charnockite, and enderbite are 744 {plus minus} 2,742 {plus minus} 2, and 739 {plus minus} 2 Ma, respectively. Initial {epsilon}-Nd for these rocks are indistinguishable at 3.0 {plus minus} 0.4. The data suggest that the charnockite, enderbite, and granite are all part of a deep-seated igneous complex. The initial isotopic compositions of Sr and Nd indicate that Jebel Moya melts were derived from a mantle source that experienced significantly less time-integrated depletion of LRE and LIL elements than the source of Arabian-Nubian Shield melts. The ages for Jebel Moya deep-seated igneous rocks are in accord with data from elsewhere in the Mozambique Belt indicating that peak metamorphism occurred about 700-750 Ma. The northward extension of the Mozambique Belt to the Arabian-Nubian Shield defines a single east Pan-African orogen. The principal difference between the northern and southern sectors of this orogen may be the greater degree of thickening and subsequent erosion experienced in the south during the late Precambrian, perhaps a result of continental collision between East (Australia-India) and West Gondwanaland (S. America-Africa) about 750 Ma.« less

  14. Estimating the Subsurface Basement Topography of Dodge County, Wisconsin Using Three Dimensional Modeling of Gravity and Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    MacAlister, E.; Skalbeck, J.; Stewart, E.

    2016-12-01

    Since the late 1800's, geologic studies have been completed in Wisconsin in pursuit of understanding the basement topography and locating economically viable mineral resources. The doubly plunging Baraboo Syncline located in Columbia and Sauk Counties provides a classic record of Precambrian deformation. A similar buried structure is thought to exist in adjacent Dodge County based on a prominent aeromagnetic anomaly. For this study, 3-D modeling of gravity and aeromagnetic survey data was used to approximate the structure of the Precambrian basement topography beneath Dodge County, Wisconsin. The aim of the research was to determine a suitable basement topography grid using potential field data and then use this grid as the base for groundwater flow models. Geosoft Oasis Montaj GM-SYS 3D modeling software was used to build grids of subsurface layers and the model was constrained by well records of basement rock elevations located throughout the county. The study demonstrated that there is a complex network of crystalline basement structures that have been folded through tectonic activity during the Precambrian. A thick layer of iron rich sedimentary material was deposited on top of the basement rocks, causing a distinct magnetic signature that outlined the basement structure in the magnetic survey. Preliminary results reveal an iron layer with a density of 3.7 g/cm3 and magnetic susceptibility of 8000 x 10-6 cgs that is approximately 500 feet thick and ranges between elevations of -300 meters below and 400 meters above sea level. The 3-D model depths are consistent with depths from recent core drilling operations performed by the Wisconsin Geological and Natural History Survey. Knowing the depth to and structure of basement rock throughout Dodge County and Wisconsin plays an important role in understanding the geologic history of the region. Also, better resolution of the basement topography can enhance the accuracy of future groundwater flow models.

  15. The roles of organic matter in the formation of uranium deposits in sedimentary rocks

    USGS Publications Warehouse

    Spirakis, C.S.

    1996-01-01

    Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related alterations. In the case of Precambrian unconformity-related deposits, free thermal convection in the thick sandstones overlying the basement rocks carried uranium to concentrations of organic matter in the basement rocks.

  16. Ottawa, Quebec Province, Canada and Glaciated Landscape

    NASA Image and Video Library

    1973-06-22

    SL2-05-380 (22 June 1973) --- Ottawa, in the province of Ontario, (46.5N, 75.5W) is the capital of Canada and can be seen near the bottom of this scene on the Ottawa River. The region shown lies within the Canadian Shield. The glaciated surface of the land is underlain by lower Precambrian granite and sedimentary rock. Long fractures within these crystalline rocks have, in places, been carved out by glacial action. The resultant depressions are often water filled bogs and lakes. Photo credit: NASA

  17. Physical properties of sidewall cores from Decatur, Illinois

    USGS Publications Warehouse

    Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.

    2017-10-18

    To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (

  18. Maps of upper Mississippi embayment Paleozoic and Precambrian rocks

    USGS Publications Warehouse

    Dart, Richard L.

    1995-01-01

    The Mississippi Embayment regional seismic hazard (Fuller, 1912; Nuttli, 1973, 1982, 1983), associated with the New Madrid seismic zone (NMSZ) is attributed to displacement on seismogenic structures primarily within the failed Reelfoot rift (Burke and Dewey, 1973; Ervin and McGinnis, 1975; Hildenbrand, 1977; Johnston and Shedlock, 1992). Hildenbrand and others (1977) and Hildenbrand (1985) used potential field data to show the northeast trend of the buried rift and the existence of related intrusive bodies. The Mississippi Valley graben (Hildenbrand and others, 1977; Kane and others, 1981; Hildenbrand, 1985; Wheeler and others, 1993), also referred to as the Reelfoot graben (Hildenbrand and Hendricks, 1995), is here considered to be the structural expression of the Reelfoot rift at the Precambrian basement surface.

  19. Criteria for the recognition and correlation of sandstone units in the Precambrian and Paleozoic-Mesozoic clastic sequence in the near east

    NASA Astrophysics Data System (ADS)

    Weissbrod, T.; Perath, I.

    A systematic study of the Precambrian and Paleozoic-Mesozoic clastic sequences (Nubian Sandstone) in Israel and Sinai, and a comparative analysis of its stratigraphy in neighbouring countries, has shown that besides the conventional criteria of subdivision (lithology, field appearance, photogeological features, fossil content), additional criteria can be applied, which singly or in mutual conjuction enable the recognition of widespread units and boundaries. These criteria show lateral constancy, and recurrence of a similar vertical sequence over great distances, and are therefore acceptable for the identification of synchronous, region-wide sedimentary units (and consequently, major unconformities). They also enable, once the units are established, to identify detached (not in situ) samples, samples from isolated or discontinous outcrops, borehole material or archive material. The following rock properties were tested and found to be usefuls in stratigraphic interpretation, throughout large distribution areas of the clastic sequence: Landscape, which is basically the response of a particular textural-chemic al aggregate to atmospheric weathering. Characteristic outcrop feature — styles of roundness or massivity, fissuring or fliatin, slope profile, bedding — express a basic uniformity of these platform-type clastics. Colors are often stratigraphically constant over hundreds of kilometers, through various climates and topographies, and express some intrinsic unity of the rock bodies. Grain size and sorting, when cross-plotted, enable to differentiate existing unit. The method requires the analysis of representative numbers of samples. Vertical trends of median grain size and sorting show reversals, typically across unconformities. Feldstar content diminishes from 15-50% in Precambrian-Paleozoic rocks to a mere 5% or less in Mesozoic sandstones — a distinctive regionwide time trend. Dominance of certain feldstar types characterizes Precambrian and Paleozoic units. Clay minerals, though subordinate, characterize certain units. Illite is usually the dominant clay mineral in the Precambrain-Paleozoic sediments, showing different degress of crystallization in different units. Kaolinite is the main, often the only clay mineral in Mesozoic units. Heavy minerals, whose species spectra reflect on parent rock and provenance terrain and whose differential response to degradation points to the sedimentary history of the deposit, show certain vertical regularities, such as the abrupt disappearance of species or whole assemblages at certain levels, indicating unconformities. Trace metals, which in places reach ore concentrations (e.g. copper), are often extensive, though of well-defined vertical distribution. They express adsorptive capacity of specific widespread lithologies, enabling the discrimination of units. Even though each of these criteria is not always by itself diagnostic, they may in conjuction with one or more other criteria amount to a petrographic fingerprint that enables fairly accurate identification of the age interval of the unit, and its relation both to the regional and the local stratigraphic sequence.

  20. Geology of the Midnite uranium mine area, Washington: maps, description, and interpretation

    USGS Publications Warehouse

    Nash, J. Thomas

    1977-01-01

    Bedrock geology of about 12 km2 near the Midnite mine has been mapped at the surface, in mine exposures, and from drilling, at scales from 1:600 to 1:12,000 and is presented here at 1:12,000 to provide description of the setting of uranium deposits. Oldest rocks in the area are metapelitic and metacarbonate rocks of the Precambrian (Y) Togo Formation. The chief host for uranium deposits is graphitic and pyritic mica phyllite and muscovite schist. Ore also occurs in calc-silicate hornfels and marble at the western edge of a calcareous section about 1,150 m thick. Calcareous rocks of the Togo are probably older than the pelitic as they are interpreted to be near the axis of a broad anticline. The composition and structural position of the calcareous unit suggests correlation with less metamorphosed carbonate-bearing rocks of the Lower Wallace Formation, Belt Supergroup, about 200 km to the east. Basic sills intrusive into the Togo have been metamorphosed to amphibolite. Unmetamorphosed rocks in the mine area are Cretaceous(?) and Eocene igneous rocks. Porphyritic quartz monzonite of Cretaceous age, part of the Loon Lake batholith, is exposed over one third of the mine area. It underlies the roof pendant of Precambrian rocks in which the Midnite mine occurs at depths of generally less than 300 m. The pluton is a two-mica granite and exhibits pegmatitic and aplitic textural features indicative of water saturation and pressure quenching. Eocene intrusive and extrusive rocks in the area provide evidence that the Eocene surface was only a short distance above the present uranium deposits. Speculative hypotheses are presented for penesyngenetic, hydrothermal, and supergene modes of uranium emplacement. The Precambrian Stratigraphy, similar in age and pre-metamorphic lithology to that of rocks hosting large uranium deposits in Saskatchewan and Northern Territory, Australia, suggests the possibility of uranium accumulation along with diagenetic pyrite in carbonaceous muds in a marine shelf environment. This hypothesis is not favored by the author because there is no evidence for stratabound uranium such as high regional radioactivity in the Togo. A hydrothermal mode of uranium emplacement is supported by the close apparent ages of mineralization and plutonism, and by petrology of the pluton. I speculate that uranium may have become enriched in postmagmatic fluids at the top of the pluton, possibly by hydrothermal leaching of soluble uranium associated with magnetite, and diffused outward into metasedimentary wall rocks to create an aureole about 100 m thick containing about 100 ppm uranium. Chemistry of the hydrothermal process is not understood, but uranium does not appear to have been transported by an oxidizing fluid, and the fluid did not produce veining and alteration comparable to that of base-metal sulfide deposits. Uranium in the low-grade protore is believed to have been redistributed into permeable zones in the Tertiary to create ore grades. Geologic and isotopic ages of uranium mineralization, and the small volume of porphyritic quartz monzonite available for leaching, are not supportive of supergene emplacement of uranium.

  1. On the original igneous source of Martian fines

    NASA Technical Reports Server (NTRS)

    Baird, A. K.; Clark, B. C.

    1981-01-01

    The composition of the silicate portion of Martian regolith fines indicates derivation of the fines from mafic to ultramafic rocks, probably rich in pyroxene. Rock types similar in chemical and mineralogical composition include terrestrial Archean basalts and certain achondrite meteorites. If these igneous rocks weathered nearly isochemically, the nontronitic clays proposed earlier as an analog to Martian fines could be formed. Flood basalts of pyroxenitic lavas may be widespread and characteristic of early volcanism on Mars, analogous to maria flood basalts on the moon and early Precambrian basaltic komatiites on earth. Compositional differences between lunar, terrestrial, and Martian flood basalts may be related to differences in planetary sizes and mantle compositions of the respective planetary objects.

  2. Precambrian ophiolites of Arabia; a summary of geologic settings, U-Pb geochronology, lead isotope characteristics, and implications for microplate accretion, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Pallister, John S.; Stacey, J.S.; Fischer, L.B.; Premo, W.R.

    1988-01-01

    Feldspar lead-isotope data are of three types: 1) lead from the ophiolitic rocks and arc tonalites of the northwestern Arabian Shield and ophiolitic rocks of the Nabitah suture zone is similar to lead in present midocean ridge basalt, 2) anomalous radiogenic data from the Thurwah ophiolite are from rocks that contain zircons from pre-late Proterozoic continental crust, and 3) feldspar from the Urd ophiolite shows retarded uranogenic lead growth and is related either to an anomalous oceanic mantle source, or in an unknown manner to ancient continental mantle or lower crust of the eastern Arabian Shield.

  3. Generation, migration, and entrapment of Precambrian oils in the Eastern Flank Heavy Oil province, south Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konert, G.; Van Den Brink, H.A.; Visser, W.

    1991-08-01

    The prolific Eastern Flank Heavy Oil province east of the South Oman Salt basin is unique because of the widespread occurrence of Precambrian source rocks from which the hydrocarbons originated. Fission-track analysis and burial studies suggest that most of these source rocks became mature and generated hydrocarbons in the Ordovician; subsequently, the source beds were uplifted and did not re-enter the oil window. Its uniqueness is also based on the all-important role played by Precambrian salt. The traps in Palaeozoic clastics were initially structured by halokinesis, and subsequently by salt dissolution. The latter process gradually removed the salt from themore » area is largely responsible for the present-day structure with palaeo-withdrawal basins inverted in present-day turtles. Present-day traps are mainly post-Late Jurassic in age, significantly post-dating the time of oil generation. Detailed field studies indicate that charge phases appear to correlate with periods of increased salt dissolution in the Late Jurassic-Early Cretaceous, Late Cretaceous, and Tertiary. Oil was probably stored in intermediate traps below and within the salt. It was gradually released upon progressive tilting of the basin flank; it migrated updip toward the basinward retreating salt edge, and subsequently (back) spilled into the stratigraphically younger traps. Also, removal of the top seal of intra-salt and sub-salt traps by salt dissolution allowed upward remigration. It follows that charge concepts in the Eastern Flank Heavy Oil province depend on defining salt-edge-related hydrocarbon release areas, rather than on kitchen modeling.« less

  4. Planetary biology and microbial ecology. Biochemistry of carbon and early life

    NASA Technical Reports Server (NTRS)

    Margulis, L. (Editor); Nealson, K. H. (Editor); Taylor, I. (Editor)

    1983-01-01

    Experiments made with cyanobacteria, phototrophic bacteria, and methanogenic bacteria are detailed. Significant carbon isotope fractionation data is included. Taken from well documented extant microbial communities, this data provides a basis of comparison for isotope fractionation values measured in Archean and Proterozoic (preCambrian) rocks. Media, methods, and techniques used to acquire data are also described.

  5. Molybdenite in the Montezuma District of central Colorado

    USGS Publications Warehouse

    Neuerburg, George J.; Botinelly, Theodore; Watterson, John R.

    1974-01-01

    The Montezuma mining district, in the Colorado mineral belt, is defined by an assemblage of porphyry, ore, and altered rocks that originated in the venting of a Tertiary batholith through weak structures in Precambrian rocks. The ore consists of silver-lead-zinc veins clustered on the propylitic fringe of a geometrically complex system of altered rocks, which is centered on the intersection of the Oligocene Montezuma stock with the Montezuma shear zone of Precambrian ancestry. Alteration chemistry conforms to the standard porphyry-metal model but is developed around several small intrusives strung out along the shear zone and is expressed as a mottled pattern, rather than as the usual thick concentric zones centered on one large plug. The distribution of trace amounts of molybdenite is consistent with the postulate of molybdenite deposits in the district, but the mottled alteration pattern may signify small and scattered, possibly very deep, deposits. Disseminated molybdenite is essentially coextensive with altered rock and increases slightly in quantity toward the inner alteration zones. Two groups of molybdenite veins, associated with phyllic and potassic alteration, represent possible diffuse halos of molybdenite deposits. One group of veins resembles the Climax and Henderson deposits but was seen only in a small and isolated area of outcrops. The second group of molybdenite veins is in a bismuth-rich part of the Montezuma stock and underlies an area of bismuth veins; this group records the passage of contact metasomatic ore fluids. Another bismuth-rich area is in the southeast corner of the stock in a region of bismuth veins and may indicate a third group of molybdenite veins.

  6. Geologic map of the Chelan 30-minute by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Whetten, J.T.; Waitt, R.B.; Swanson, D.A.; Byerly, G.R.; Booth, D.B.; Hetherington, M.J.; Zartman, R.E.

    1987-01-01

    Summary -- The Chelan quadrangle hosts a wide variety of rocks and deposits and display a long geologic history ranging from possible Precambrian to Recent. Two major structures, the Leavenworth and Entiat faults divide cross the quadrangle from southeast to northwest and bound the Chiwaukum 'graben', a structural low preserving Tertiary sedimentary rocks between blocks of older, metamorphic and igneous rocks. Pre-Tertiary metamorphic rocks in the quadrangle are subdivided into five major tectonostratigraphic terranes: (1) the Ingalls terrane, equivalent to the Jurassic Ingalls Tectonic Complex of probable mantle and deep oceanic rocks origin, (2) the Nason terrane, composed of the Chiwaukum Schist and related gneiss, (3) the Swakane terrane, made up entirely of the Swakane Biotite Gneiss, a metamorphosed, possibly Precambrian, sedimentary and/or volcanic rock, (4) the Mad River terrane composed mostly of the rocks of the Napeequa River area (Napeequa Schist), a unit of oceanic protolith now considered part of the Chelan Mountains terrane (the Mad River terrane has been abandoned, 2001), and (5) the Chelan Mountains terrane, dominated by the Chelan Complex of Hopson and Mattinson (1971) which is composed of migmatite and gneissic to tonalite of deep-seated igneous and metamorphic origin.During an episode of Late Cretaceous regional metamorphism, all the terranes were intruded by deepseated tonalite to granodiorite plutons, including the Mount Stuart batholith, Ten Peak and Dirty Face plutons, and the Entiat pluton and massive granitoid rocks of the Chelan Complex. The Duncan Hill pluton intruded rocks of the Chelan Mountains terrane in the Middle Eocene. At about the same time fluvial arkosic sediment of the Chumstick Formation was deposited in a depression. The outpouring of basalt lavas to the southeast of the quadrangle during the Miocene built up the Columbia River Basalt Group. These now slightly warped lavas lapped onto the uplifted older rocks. Deformation, uplift, and erosion recorded in the rocks and deposits of the quadrangle continued into post-Miocene time. Quaternary deposits reflect advances of glaciers down the major valleys, a complicated history of catastrophic glacial floods down the Columbia River, the formation of lakes in the Columbia and Wenatchee river valleys by landslides and flood backwaters, and hillslope erosion by large and small landslides and debris flows.

  7. Database compilation for the geologic map of the San Francisco volcanic field, north-central Arizona

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; Wolfe, Edward W.; Ulrich, George E.; Newhall, Christopher G.; Moore, Richard B.; Bailey, Norman G.; Holm, Richard F.

    2016-01-08

    The orignial geologic maps were prepared under the Geothermal Research Program of the U.S. Geological Survey as a basis for interpreting the history of magmatic activity in the volcanic field. The San Francisco field, which is largely Pleistocene in age, is in northern Arizona, just north of the broad transition zone between the Colorado Plateau and the Basin and Range province. It is one of several dominantly basaltic volcanic fields of the late Cenozoic age situated near the margin of the Colorado Plateau. The volcanic field contains rocks ranging in composition from basalt to rhyolite—the products of eruption through Precambrian basement rocks and approximately a kilometer of overlying, nearly horizontal, Paleozoic and Mesozoic sedimentary rocks. About 500 km3 of erupted rocks cover about 5,000 km2 of predominantly Permian and locally preserved Triassic sedimentary rocks that form the erosionally stripped surface of the Colorado Plateau in Northern Arizona.

  8. Early Precambrian mantle derived rocks in the southern Prince Charles Mountains, East Antarctica: age and isotopic constraints

    USGS Publications Warehouse

    Mikhalsky, E.V.; Henjes-Kunst, F.; Roland, N.W.

    2007-01-01

    Mafic and ultramafic rocks occurring as lenses, boudins, and tectonic slabs within metamorphic units in the southern Mawson Escarpment display mantle characteristics of either a highly enriched, or highly depleted nature. Fractionation of these mantle rocks from their sources may be as old as Eoarchaean (ca 3850 Ma) while their tectonic emplacement probably occurred prior to 2550 Ma (U-Pb SHRIMP data). These results provide for the first time evidence for Archaean suturing within East Antarctica. Similar upper mantle sources are likely present in the northern Mawson Escarpment. A younger age limit of these rocks is 2200 Ma, as indicated by presumably metamorphic zircon ages while their magmatic age may be constrained by single zircon dates at 2450-2250 Ma. The area of the northern Mawson Escarpment is most likely of ensimatic origin and includes mafic rocks which were derived from distinct mantle source(s) during Palaeoproterozoic time.

  9. Joint-bounded crescentic scars formed by subglacial clast-bed contact forces: Implications for bedrock failure beneath glaciers

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.; Everest, J. D.; Eyles, N.

    2017-08-01

    Glaciers and ice sheets are important agents of bedrock erosion, yet the precise processes of bedrock failure beneath glacier ice are incompletely known. Subglacially formed erosional crescentic markings (crescentic gouges, lunate fractures) on bedrock surfaces occur locally in glaciated areas and comprise a conchoidal fracture dipping down-ice and a steep fracture that faces up-ice. Here we report morphologically distinct crescentic scars that are closely associated with preexisting joints, termed here joint-bounded crescentic scars. These hitherto unreported features are ca. 50-200 mm deep and involve considerably more rock removal than previously described crescentic markings. The joint-bounded crescentic scars were found on abraded rhyolite surfaces recently exposed (< 20 years) beneath a retreating glacier in Iceland, as well as on glacially sculpted Precambrian gneisses in NW Scotland and various Precambrian rocks in Ontario, glaciated during the Late Pleistocene. We suggest a common formation mechanism for these contemporary and relict features, whereby a boulder embedded in basal ice produces a continuously migrating clast-bed contact force as it is dragged over the hard (bedrock) bed. As the ice-embedded boulder approaches a preexisting joint in the bedrock, stress concentrations build up in the bed that exceed the intact rock strength, resulting in conchoidal fracturing and detachment of a crescentic wedge-shaped rock fragment. Subsequent removal of the rock fragment probably involves further fracturing or crushing (comminution) under high contact forces. Formation of joint-bounded crescentic scars is favoured by large boulders at the base of the ice, high basal melting rates, and the presence of preexisting subvertical joints in the bedrock bed. We infer that the relative scarcity of crescentic markings in general on deglaciated surfaces shows that fracturing of intact bedrock below ice is difficult, but that preexisting weaknesses such as joints greatly facilitate rock failure. This implies that models of glacial erosion need to take fracture patterns of bedrock into account.

  10. Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: Implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Wang, He; Wang, Min

    2017-10-01

    The Late Neoproterozoic Dahongliutan BIF is associated with siliciclastic rocks in the Tianshuihai terrane of the Western Kunlun orogenic belt (WKO), NW China. The sedimentary rocks have various weathering indices (e.g., CIA = 57-87, PIA = 61-96 and Th/U = 4.85-12.45), indicative of varying degrees of weathering in the source area. The rocks have trace element ratios, such as Th/Sc = 0.60-1.21 and Co/Th = 0.29-1.67, and light rare earth element (LREE) enriched chondrite-normalized REE patterns, suggesting that they were mainly sourced from intermediate and felsic rocks. Available U-Pb ages of detrital zircon from these rocks reveal that the detrital sources may have been igneous and metamorphic rocks from the WKO and the Tarim Block. Our study suggests that the Dahongliutan BIF and hosting siliciclastic rocks may have deposited in a setting transitional from a passive to active continental margin, probably related to the Late Neoproterozoic-Early Cambrian seafloor spreading and subduction of the Proto-Tethys Ocean. U-Pb dating of 163 detrital zircons defines five major age populations at 2561-2329 Ma, 2076-1644 Ma, 1164-899 Ma, 869-722 Ma and 696-593 Ma. These age groups broadly correspond to the major stages of supercontinent assembly and breakup events widely accepted for Columbia, Rodinia and Gondwana. Some zircons have TDM2 model ages of 3.9-1.8 Ga and negative εHf(t) values, suggesting that the Archean to Paleoproterozoic (as old as Eoarchean) crustal materials were episodically reworked and incorporated into the late magmatic process in the WKO. Some Neoproterozoic zircons have TDM2 model ages of 1.47-1.07 Ga and 1.81-1.53 Ga and positive εHf(t) values, indicating juvenile crustal growth during the Mesoproterozoic. Our new results, combined with published data, imply that both the Tianshuihai terrane in the WKO and the Tarim Block share the same Precambrian tectonic evolution history.

  11. Tectonics and distribution of gold deposits in China - An overview

    USGS Publications Warehouse

    Zhou, T.; Goldfarb, R.J.; Phillips, G.N.

    2002-01-01

    Gold exploration in China has expanded rapidly during the last two decades since a modern approach to economic development has become a national priority. China currently produces 180 tonnes (t) of gold annually, which is still significantly less than South Africa, USA, and Australia. However, China is now recognized as possessing significant gold resources in a wide range of mineral deposit types. Present estimates of gold resources in China exceed 4,500 t, which comprise 60% in gold-only deposits, more than 25% in base metal-rich skarn, porphyry, and vein deposits, and more than 10% in placer accumulations. The major gold provinces in China formed during the main episodes of Phanerozoic tectonism. Such tectonism involved interaction of China's three major Precambrian cratons, North China, Tarim, and Yangtze (or South China when combined with Cathysia block), with the Angara (or Siberian), Kazakhstan-Kyrgyzstan, and Indian cratons. Resulting collisions included deformation of accreted oceanic sequences between the cratonic blocks. The most important ore-forming orogenies were (1) the late Paleozoic Variscan (405-270 Ma), which led to amalgamation of the Angara, North China and Yangtze cratons, (2) the Indosinian (270-208 Ma), which led to the collision of North China and South China cratons, (3) the Yanshanian (208-90 Ma), which was largely influenced by the subduction of the Izanagi-Pacific plates beneath eastern China, and (4) the Himalayan (<90 Ma) indentation of the Indian continent into Eurasia. No important Precambrian gold systems are recognized in China, mainly because of reworking of exposed Precambrian rocks by these younger orogenies, but there are a few Caledonian (600-405 Ma) gold-bearing system in northern Xinjiang. Most of China's orogenic, epithermal, and Carlinlike gold deposits are in the reworkerd margins of major cratonic blocks and in metasedimentary rock-dominated fold belts adjacent to these margins. Accordingly, the major gold provinces are present along the northern, southeastern and southern margins of the North China craton, along the southwestern and northwestern margins of the Yangtze craton, in the Tianshan and Altayshan orogenic belts in northern Xinjiang, and throughout the southeastern China fold belt. Gold-placer deposits derived from these primary deposits are concentrated in the northernmost part of northeastern China and along the northerwestern margin of the Yangtze craton. The major provinces with significant gold in porphyry-related copper systems and base metal skarns are present in the Yangtze River area along the northeastern and southeastern margin of the Yangtze craton, in the fold belt in southwestern China, and scattered through northern China. Three-quarters of the Chinese gold-only deposits occur within the North China craton margins. Half are located in the uplifted Precambrian metamorphie rocks and most of the remainder are hosted in the Phanerozoic granitoids that intruded the reworked Precambrian terranes. The abundance of granite-hosted gold contrasts the North China craton with other Precambrian cratons, such as those in Western Australia, central Canada, and Zimbabwe, where gold is mainly hosted in the Archean greenstone belts. This difference may be explained by the multiple episodes of Phanerozoic tectonism along the North China craton margins resulting from the collision of the Angara, North China, and South China cratons, and from subduction of the Izanagi-Pacific oceanic plates underneath the eastern China continent.

  12. The Role of Noble Gases in Defining the Mean Residence Times of Fluids within Precambrian Crustal Systems

    NASA Astrophysics Data System (ADS)

    Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.

    2015-12-01

    Brines rich in N2, H2, CH4 and He hosted within Precambrian crustal rocks are known to sustain microbial life [1]. The geological systems containing these brines have the potential to isolate organisms over planetary timescales and so can provide unique insight into the diversity and evolution of terrestrial life [1-3]. Long considered geological outliers, the prevalence of systems containing these ancient, deep fracture waters is only now being revealed. Recent studies demonstrate the Precambrian crust which accounts for ~70% of total crustal surface area has a global hydrogen production comparable to marine systems [2]. In addition to H2-producing reactions (e.g. radiolysis and serpentinization), a diversity of CH4-producing reactions also occur in these systems through both microbial and water-rock interactions [1, 2]. However, the role these Precambrian systems have in global hydrogen and carbon cycles is poorly understood. For this we need good constraints on the origins, residence times and degree of microbial activity of the fluids within these systems as well as the degree of interaction with external systems. Fortunately, noble gases are ideal for this role [1,3]. Previous noble gas analysis of N2, H2, CH4 and He-rich fluid samples collected at 2.4 km depth from a Cu-Zn mine in Timmins, Ontario, identified isolated fracture fluids with the oldest residence times ever observed (>1.1 Ga) [3]. This study has been significantly expanded now to fluids from an even greater depth (3 km) at Timmins, and from two new mines in the Sudbury Basin. Preliminary data from the deeper Timmins level indicate a new closed system with 136Xe/130Xe ratios 93% above modern air values (20% at 2.4 km) and an early atmosphere 124Xe/130Xe signal approaching the age of the host rock (~2.7 Ga) [4]. In comparison, the Sudbury system indicates exchange with an external source, being highly enriched in helium (30% gas volume) but with a low fissiogenic 136Xe/130Xe excess (10-38% above air). Through xenon and other noble gas data we present comparisons of mean fluid residence ages and fluid evolution for these closed and open systems. [1] Lippmann-Pipke et al. (2011) Chem. Geol. 283 287-296. [2] Sherwood Lollar et al. (2014) Nature 516 379-382. [3] Holland et al. (2013) Nature 497 357-360. [4] Pujol et al. (2011) Earth. Planet. Sc. Lett. 308 298-306.

  13. Conversion and Extraction of Insoluble Organic Materials in Meteorites

    NASA Technical Reports Server (NTRS)

    Locke, Darren R.; Burton, Aaron S.; Niles, Paul B.

    2016-01-01

    We endeavor to develop and implement methods in our laboratory to convert and extract insoluble organic materials (IOM) from low car-bon bearing meteorites (such as ordinary chondrites) and Precambrian terrestrial rocks for the purpose of determining IOM structure and prebiotic chemistries preserved in these types of samples. The general scheme of converting and extracting IOM in samples is summarized in Figure 1. First, powdered samples are solvent extracted in a micro-Soxhlet apparatus multiple times using solvents ranging from non-polar to polar (hexane - non-polar, dichloromethane - non-polar to polar, methanol - polar protic, and acetonitrile - polar aprotic). Second, solid residue from solvent extractions is processed using strong acids, hydrochloric and hydrofluoric, to dissolve minerals and isolate IOM. Third, the isolated IOM is subjected to both thermal (pyrolysis) and chemical (oxidation) degradation to release compounds from the macromolecular material. Finally, products from oxidation and pyrolysis are analyzed by gas chromatography - mass spectrometry (GCMS). We are working toward an integrated method and analysis scheme that will allow us to determine prebiotic chemistries in ordinary chondrites and Precambrian terrestrial rocks. Powerful techniques that we are including are stepwise, flash, and gradual pyrolysis and ruthenium tetroxide oxidation. More details of the integrated scheme will be presented.

  14. Possible detachment zone in Precambrian rocks of Kanjamalai Hills, Cauvery Suture Zone, Southern India: Implications to accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Mohanty, D. P.; Chetty, T. R. K.

    2014-07-01

    Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction-accretion-collision tectonic history of the Neoproterozoic Gondwana suture.

  15. A preliminary synthesis of structural, stratigraphic, and magnetic data from part of the northwest Adirondacks, New York

    USGS Publications Warehouse

    Foose, M.P.; Brown, C. Ervin

    1976-01-01

    Synthesis of recent work in the NW Adirondacks, New York allows the development of a coherent geologic picture. Mapping of the Precambrian rock units enables the recognition of four major units which are, from bottom to top, 1) Granitic Gneiss (alaskite), 2) Lower Marble, 3) Major Gneiss, and 4) Upper Marble. Additionally, lenses of amphibolite and granite occur as intrusives within this succession. These rock units have been complexly deformed by three major folding episodes, and by two distinctly different styles of faulting. The result has been to produce large northeast-southwest trending dome and basin structures. Patterns of magnetic intensity closely parallel distribution of rock units and provide additional information for a structural and stratigraphic synthesis-.

  16. Precambrian Secular Evolution of Oceanic Nickel Concentrations: An Update

    NASA Astrophysics Data System (ADS)

    Konhauser, K.; Pecoits, E.; Peacock, C.; Robbins, L. J.; Kappler, A.; Lalonde, S.

    2014-12-01

    Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to address nutrient limitations on early biological productivity. In 2009 we reported that secular trends in IF Ni/Fe ratios record a reduced flux of Ni to the oceans ca. 2.7 billion years ago, which we attribute to decreased eruption of Ni-rich ultramafic rocks1. We determined that dissolved Ni concentrations may have reached ~400 nM throughout much of the Archean, but dropped below ~200 nM by 2.5 Ga and to modern day values (~9 nM) by ~550 Ma. As Ni is a key metal cofactor in several enzymes of methanogens, its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. Here we provide an updated compilation of Ni concentrations and Ni/Fe ratios in Precambrian iron formations based on a greatly expanded (>3 fold) dataset. We frame our rock record compilation in the context of new experiments examining the partitioning and mobility of Ni during simulated diagenesis of Ni-doped iron formation mineral precursors, as well as a fresh look at Ni-Fe scaling relationships in IF vs. modern Fe-rich chemical sediments. While its potential effects on atmospheric oxygenation remains to be fully resolved2, our new results reaffirm the Paleoproterozoic Ni famine, whereby the enzymatic reliance of methanogens on a diminishing supply of volcanic Ni links mantle cooling to the trajectory of Earth surface biogeochemical evolution. Konhauser KO, et al. (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458: 750-753. Kasting JE (2013) What caused the rise of atmospheric O2? Chemical Geology 362: 13-25.

  17. Aerial gamma ray and magnetic survey: Powder River II Project, Gillette Quadrangle, Wyoming. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly definemore » the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features.« less

  18. A preliminary evaluation of the nonfuel mineral potential of Somalia

    USGS Publications Warehouse

    Greenwood, W.R.

    1982-01-01

    Additional exploration in Somalia is warranted for a wide variety of metallic and nonmetallic deposits. In Precambrian rocks, deposit types favorable for exploration include: a banded iron formation; platinum-bearing mafic-ultramafic complexes; tin-bearing quartz veins; phosphorite; stratabound base-metal deposits; uranium associated with Precambrian(?) syenite; apatite, molybdenum, and alumina in alkalic rocks; Jurassic and Cretaceous black shales; possible bedded-barite and massive base- and precious-metal sulfide deposits; vein barite in Tertiary rocks in fault zones; sepiolite and bentonite for drilling muds and other industrial uses; celestite; possible Tertiary zeolite; and uranium deposits. Several of these deposit types could be Jointly developed and integrated into domestic industries; for example, phosphate and gypsum, or bentonite for pelletized iron from the banded iron deposits. Other deposits such as barite and sepiolite are of value because of their proximity to major drilling operations in the Arabian Gulf. Still other deposits, such as alumina and banded iron, might be marketable because of proximity to aluminum and iron-refining industries now being constructed in Saudi Arabia. Some deposits, such as celestite, can be developed with little capital investment; others, such as the iron deposits, would require large capital commitments. Exploration and evaluation for many of these deposits can be accomplished by Somali geologists with a few advisors. Most of the deposits require feasibility studies conducted by teams of economic geologists, extractive metallurgists, and economists. Some marginal deposits could be exploited if cooperative development schemes could be negotiated with governments in nearby countries.

  19. Tectonics of Antarctica

    USGS Publications Warehouse

    Hamilton, W.

    1967-01-01

    Antarctica consists of large and wholly continental east Antarctica and smaller west Antarctica which would form large and small islands, even after isostatic rebound, if its ice cap were melted. Most of east Antarctica is a Precambrian Shield, in much of which charnockites are characteristic. The high Transantarctic Mountains, along the Ross and Weddell Seas, largely follow a geosyncline of Upper Precambrian sedimentary rocks that were deformed, metamorphosed and intruded by granitic rocks during Late Cambrian or Early Ordovician time. The rocks of the orogen were peneplained, then covered by thin and mostly continental Devonian-Jurassic sediments, which were intruded by Jurassic diabase sheets and overlain by plateau-forming tholeiites. Late Cenozoic doming and block-faulting have raised the present high mountains. Northeastern Victoria Land, the end of the Transantarctic Mountains south of New Zealand, preserves part of a Middle Paleozoic orogen. Clastic strata laid unconformably upon the Lower Paleozoic plutonic complex were metamorphosed at low grade, highly deformed and intruded by Late Devonian or Early Carboniferous granodiorites. The overlying Triassic continental sedimentary rocks have been broadly folded and normal-faulted. Interior west Antarctica is composed of miogeosynclinal clastic and subordinate carbonate rocks which span the Paleozoic Era and which were deformed, metamorphosed at generally low grade, and intruded by granitic rocks during Early Mesozoic time and possibly during other times also. Patterns of orogenic belts, if systematic, cannot yet be defined; but fragmentation and rotation of crustal blocks by oroclinal folding and strike-slip faulting can be suggested. The Ellsworth Mountains, for example, consist of Cambrian-Permian metasedimentary rocks that strike northward toward the noncorrelative and latitudinally striking Mesozoic terrane of the Antarctic Peninsula in one direction and southward toward that of the Lower Paleozoic: terrane of the Transantarctic Mountains in the other; the three regions may be separated by great strike-slip faults. The Antarctic Peninsula in west Antarctica, south of South America, consists of metavolcanic and metasedimentary rocks intruded by Late Cretaceous quartz diorite. The pre-granitic rocks are of Jurassic and Early Cretaceous ages wherever they have been dated by fossils, although some crystalline complexes may be older. The S-shape of the peninsula may represent oroclinal bending within Cenozoic time as part of a motion system in which a narrow continental bridge between South America and Antarctica was deformed and ruptured. Perhaps this bridge lagged behind as the larger continental plates drifted into the Pacific Ocean Basin. ?? 1967.

  20. What lies beneath: geophysical mapping of a concealed Precambrian intrusive complex along the Iowa–Minnesota border

    USGS Publications Warehouse

    Drenth, Benjamin J.; Anderson, Raymond R.; Schulz, Klaus J.; Feinberg, Joshua M.; Chandler, Val W.; Cannon, William F.

    2015-01-01

    Large-amplitude gravity and magnetic highs over northeast Iowa are interpreted to reflect a buried intrusive complex composed of mafic–ultramafic rocks, the northeast Iowa intrusive complex (NEIIC), intruding Yavapai province (1.8–1.72 Ga) rocks. The age of the complex is unproven, although it has been considered to be Keweenawan (∼1.1 Ga). Because only four boreholes reach the complex, which is covered by 200–700 m of Paleozoic sedimentary rocks, geophysical methods are critical to developing a better understanding of the nature and mineral resource potential of the NEIIC. Lithologic and cross-cutting relations interpreted from high-resolution aeromagnetic and airborne gravity gradient data are presented in the form of a preliminary geologic map of the basement Precambrian rocks. Numerous magnetic anomalies are coincident with airborne gravity gradient (AGG) highs, indicating widespread strongly magnetized and dense rocks of likely mafic–ultramafic composition. A Yavapai-age metagabbro unit is interpreted to be part of a layered intrusion with subvertical dip. Another presumed Yavapai unit has low density and weak magnetization, observations consistent with felsic plutons. Northeast-trending, linear magnetic lows are interpreted to reflect reversely magnetized diabase dikes and have properties consistent with Keweenawan rocks. The interpreted dikes are cut in places by normally magnetized mafic–ultramafic rocks, suggesting that the latter represent younger Keweenawan rocks. Distinctive horseshoe-shaped magnetic and AGG highs correspond with a known gabbro, and surround rocks with weaker magnetization and lower density. Here, informally called the Decorah complex, the source body has notable geophysical similarities to Keweenawan alkaline ring complexes, such as the Coldwell and Killala Lake complexes, and Mesoproterozoic anorogenic complexes, such as the Kiglapait, Hettasch, and Voisey’s Bay intrusions in Labrador. Results presented here suggest that much of the NEIIC is composed of such complexes, and broadly speaking, may be a discontinuous group of several intrusive bodies. Most units are cut by suspected northwest-trending faults imaged as magnetic lineaments, and one produces apparent sinistral fault separation of a dike in the eastern part of the survey area. The location, trend, and apparent sinistral sense of motion are consistent with the suspected faults being part of the Belle Plaine fault zone, a complex transform fault zone within the Midcontinent rift system that is here proposed to correspond with a major structural discontinuity.

  1. ERTS-1 imagery of eastern Africa: A first look at the geological structure of selected areas

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Imagery of the African rift system resolves the major Cainozoic faults, zones of warping, and associated volcanism. It also clearly depicts the crystal grain of the Precambrian rocks where these are exposed. New structural features, or new properties of known features such as greater extent, continuity, and linearity are revealed by ERTS-1 imagery. This applies, for example, to the NE-SW fracture zones in Yemen, the Aswa mylonite zone at the northern end of the Western Rift, the Nandi fault of western Kenya, the linear faults of the Elgeyo escarpment in the Gregory Rift, and the hemibasins of warped Tertiary lavas on the Red Sea margin of Yemen, matching those of Ethiopian plateau-Afar margin. A tentative scheme is proposed, relating the effect on the pattern of Cainozoic faulting of the degree of obliquity to Precambrian structural trend. It is particularly noteworthy that, even where the Precambrian grain determines the rift faulting to be markedly oblique to the overall trend of the rift trough, for example, in central Lake Tanganyika, the width of the trough is not significantly increased. Some ground mapped lithological boundaries are obscure on ERTS-1 imagery.

  2. An REU Project on the Precambrian Rocks of Yellowstone National Park: Some lessons learned

    NASA Astrophysics Data System (ADS)

    Henry, D.; Mogk, D. W.; Mueller, P. A.; Foster, D. A.

    2014-12-01

    An NSF-funded REU project (2011-2013), based in Yellowstone National Park (YNP), was designed to characterize the geology, geochemistry and geochronology of Precambrian rocks in northern YNP. Over two field seasons two cadres of 12 students (12 women and 12 men) were chosen from small-to-large state universities and private colleges. REU students participated in three major activities constituting a complete research experience: Field studies involved geologic mapping and sampling of Precambrian basement; formulation of testable research questions by smaller working groups; and mapping and sampling projects to address research questions; Analytical studies, sample preparation immediately followed field work with petrographic analysis at students' home institutions and a week-long visit to analytical laboratories to conduct follow-up studies by small research groups during the academic year (Univ. Florida - geochemistry and geochronology; Univ. Minnesota - EMPA analysis); Communicating results, each working group submitted an abstract and collectively presented 13 posters at the 2011 and 2012 GSA Rocky Mountain sectional meetings. We used directed discovery to engage students in a community of practice in the field and found that a long apprenticeship (2-3 weeks) is optimal for novice-master interactions in exploring natural setting. Initial group hikes were used to normalize methods and language of the discipline. Students developed a sense of ownership of the overall project and assumed personal responsibility for directed research projects. Training was provided to: guide students in selection and appropriate use of tools; develop sampling strategies; discuss communal ethics, values, and expectations; develop efficient work habits; stimulate independent thinking; and engage decision-making. It was important to scaffold the field experience to students' level of development to lead to mastery. Analytical activities were designed from rock to analysis so that each group mastered all preparation steps and instrumental techniques under supervision of graduate mentors and lab managers leading to a clearer understanding of data interpretation. Students were communally engaged in abstract and poster preparation to ensure proper focus, scientific breadth, and style of presentation.

  3. Precambrian accretionary history and phanerozoic structures-A unified explanation for the tectonic architecture of the nebraska region, USA

    USGS Publications Warehouse

    Carlson, M.P.

    2007-01-01

    The Phanerozoic history in Nebraska and adjacent regions contains many patterns of structure and stratigraphy that can be directly related to the history of the Precambrian basement rocks of the area. A process is proposed that explains the southward growth of North America during the period 1.8-1.6 Ga. A series of families of accretionary events during the Proterozoic emplaced sutures that remained as fundamental basement weak zones. These zones were rejuvenated in response to a variety of continental stress events that occurred during the Phanerozoic. By combining the knowledge of basement history with the history of rejuvenation during the Phanerozoic, both the details of Proterozoic accretionary growth and an explanation for the patterns of Phanerozoic structure and stratigraphy is provided. ?? 2007 The Geological Society of America. All rights reserved.

  4. K-Ar geochronology of basement rocks on the northern flank of the Huancabama deflection, Ecuador

    USGS Publications Warehouse

    Feininger, Tomas; Silberman, M.L.

    1982-01-01

    The Huancabamba deflection, a major Andean orocline located at the Ecuador-Peru border, constitutes an important geologic boundary on the Pacific coast of South America. Crust to the north of the deflection is oceanic and the basement is composed of basic igneous rocks of Cretaceous age, whereas crust to the south is continental and felsic rocks of Precambrian to Cretaceous age make up the basement. The northern flank of the Huancabamba Deflection in El Oro Province, Ecuador, is underlain by Precambrian polymetamorphic basic rocks of the Piedras Group; shale, siltstone, sandstone, and their metamorphosed equivalents in the Tahuin Group (in part of Devonian age); concordant syntectonic granitic rocks; quartz diorite and alaskite of the Maroabeli pluton; a protrusion of serpentinized harzburgite that contains a large inclusion of blueschist-facies metamorphic rocks, the Raspas Formation, and metamorphic rocks north of the La Palma fault. Biotite from gneiss of the Tahuin Group yields a Late Triassic K-Ar age (210 ? 8 m.y.). This is interpreted as an uplift age and is consistent with a regional metamorphism of Paleozoic age. A nearby sample from the Piedras Group that yielded a hornblende K-Ar age of 196 ? 8 m.y. was affected by the same metamorphic event. Biotite from quartz diorite of the mesozonal Maroabeli pluton yields a Late Triassic age (214 ? 6 m.y.) which is interpreted as an uplift age which may be only slightly younger than the age of magmatic crystallization. Emplacement of the pluton may postdate regional metamorphism of the Tahuin Group. Phengite from politic schist of the Raspas Formation yields an Early Cretaceous K-Ar age (132 ? 5 m.y.). This age is believed to date the isostatic rise of the encasing serpentinized harzburgite as movement along a subjacent subduction zone ceased, and it is synchronous with the age of the youngest lavas of a coeval volcanic arc in eastern Ecuador. A Late Cretaceous K-Ar age (74.4 ? 1.1 m.y.) from hornblende in amphibolite north of the La Palma fault shows that rocks there are distinct from the superficially similar rocks of the Tahuin Group to the south. Biotite from schist in the Eastern Andean Cordillera yields an Early Eocene age (56.6 ? 1.6 m.y.). Metamorphic rocks in the northern part of the Eastern Andean Cordillera are Cretaceous in age and were metamorphosed in part in early Tertiary time. They are unrelated to and were metamorphosed later than any of the diverse rocks exposed on the northern flank of the Huancabamba Deflection.

  5. A summary of the geology and mineral resources of the Paris Plateau-House Rock Valley area, Coconino County, Arizona

    USGS Publications Warehouse

    Green, Morris W.; Pierson, C.T.; Bauer, D.P.; Umshler, D.B.

    1977-01-01

    The Paria Plateau-House Rock Valley area of north-central Arizona is located on the southwestern edge Of the Colorado Plateau physiographic province in an area underlain by about 5,000 meters of fossiliferous marine and continental sedimentary rock ranging in age from Precambrian through Quaternary. The area, which lies north of the Grand and Marble Canyons, is bounded on the west by the East Kaibab monocline and on the east by the Echo monocline. The Paria Plateau, bounded on the South by the scenic Vermilion Cliffs, is composed of continental red-beds of Triassic and Jurassic age, which dip gently northward at 2? to ? away from the north end of the Marble Platform upon which the Paria Plateau sits.

  6. Morphotype disparity in the Precambrian

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Reitner, Joachim; Braiser, Martin; Donoghue, Phil; Schirrmeister, Bettina

    2015-04-01

    Prokaryotes have dominated life on Earth for over 2 billion years. Throughout the Precambrian, prokaryotes acted as the major biological impetus for both large and small scale environmental changes. Yet, very little is known about the composition, diversity and evolution of ancient microbial communities due to poor preservation during the Precambrian period. Previous studies of fossils that date to this period relied mainly on light microscopy to identify microfossil morphology and abundance, with limited success. Here we present novel analyses of the microbial remains found in Precambrian stromatolites using Synchrotron Radiation x-Ray Tomographic Microscopy (SRXTM). Microfossils found in samples of three Precambrian deposits, 3.45 Ga Strelley Pool, Australia, 2.1 Ga Gunflint Chert, Canada, and 650 Ma Rasthof Cap Carbonate, Namibia, have been reconstructed in 3D. Based on four scans from each sample, we estimated size and abundance of spheroidal microfossils within those deposits. Our findings show that while cell abundance decreased towards the end of the Precambrian, the biovolume of microfossils within the host rock remained relatively constant. Additionally, both size and disparity increase through time. Constant biovolumes and yet different sizes for these three deposits, point towards a negative correlation of large cell size and cell abundance. This negative correlation indicates that the systems in which these prokaryotes lived may have been biolimited. Both, gas exchange and nutrient uptake in prokaryotes function via diffusion. Therefore, one would expect bacteria to evolve towards an increasing surface to volume ratio. Increased cell sizes, and hence decreased overall surface to volume ratio observed in our data, suggest the influence of other selective factors. Decreased abundance and increased cell size could potentially be associated to changes in nutrient availability and the occurrence of predation. As cells increased in size, more nutrients would be required, which could have a limiting effect on abundance. Additionally, eukaryotes start appearing in the fossil record around 1.6 Ga, with the origin of grazing predators within the Mesoproterozoic. Predation has been suggested to be an important driver for morphological change in bacteria, before. Preservational bias towards larger microfossils, in combination with smaller prokaryotes having been predated on by grazers, this could explain lower appearance of small microfossils in the late Precambrian. Analyses of more localities would be helpful to strengthen conclusions on causes and consequences of microbial size evolution during the Precambrian. Furthermore, analyses of more recently fossilized microbial communities, such as those found in modern stromatolites, could provide valuable information to examine the influence environmental factors have on cell size and abundance. Yet, our results, support earlier hypotheses that suggest a decline in prokaryotic preservation due to the appearance and success of eukaryotes and eukaryotic grazers at the end of the Precambrian.

  7. Analysis of ERTS-1 imagery and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. Significant results of the Wyoming ERTS-1 investigation during the first six months (July-December 1972) included: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks, (2) discovery of iron formation within the metasedimentary sequence, (3) mapping of previously unreported tectonic elements of major significance, (4) successful mapping of large scale fracture systems of the Wind River Mountains, (5) successful distinction of some metamorphic, igneous, and sedimentary lithologies by color additive viewing, (6) mapping of large scale glacial features, and (7) development of techniques for mapping small urban areas.

  8. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. Significant results of the Wyoming investigation during the first six months include: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks; (2) discovery of iron formation within the metasedimentary sequence; (3) mapping of previously unreported tectonic elements of major significance; (4) successful mapping of large scale fractures of the Wind River Mountains; (5) sucessful distinction of some metamorphic, igneous, and sedimentary lithologies by color-additive viewing of ERTS images; (6) mapping and interpretation of glacial features in western Wyoming; and (7) development of techniques for mapping small urban areas.

  9. Geophysical Characterization and Structural Model of the Santa ROSALÍA Aquifer, Sonora, MÉXICO

    NASA Astrophysics Data System (ADS)

    Martínez-Retama, S.; Montaño-Del Cid, M. A.

    2017-12-01

    The main objective of this work was to determine the morphology and depth of the basement, as well as the elaboration of a structural model for the Santa Rosalía aquifer, from the processing and interpretation of gravimetric and aeromagnetic data and its correlation with the Geology of the area. The study area is located in the central portion of the State of Sonora, Mexico. In general, the geology of the site is characterized by sedimentary, igneous and metamorphic rocks whose ages vary from the Precambrian to Recent. Chronologically, the geology of the study area consists of igneous and metamorphic rocks of Precambrian age, considered as a metamorphic complex. The Paleozoic is represented by a sequence of prebatolytic rocks. This sequence is intruded by rocks of the Upper Cretaceous. The Triassic-Jurassic periods consist of arenaceous units of the Barranca Group. The Cretaceous is constituted by the Tarahumara Formation, as well as granite bodies. The Quaternary is composed of alluvial deposits, which are overlain by sediments of Recent. In this work a gravimetric survey was performed, registering a total of 7 profiles. In addition, measured data from the National Institute of Statistics and Geography (INEGI) were used. The aeromagnetic study was carried out with data from the Mexican Geological Service (SGM). In order to reduce the ambiguity in the modeling process, a rock sampling was taken from the study area and its density and magnetic susceptibility were measured. Finally, two-dimensional models of gravimetric and magnetic profiles were made to obtain the structural model of the study area. The geological-structural models obtained show gravimetric anomalies (low)associated with sedimentary basins with depths of 800 m to 1,500 m., indicating the most susceptible áreas to water storage. The basement is represented by volcanic and granite rocks that are in contact with Paleozoic sedimentary rocks (Limestone) and in some areas with volcanic rocks of the Tarahumara Formation. In these models two types of sliding tectonic events were interpreted. In the first one a system of low-angle normal faulting related to the distensive event Basin and Range was interpreted. In the second, a series of high- angle normal faults, which form Horst and Grabens structures related to the opening of the Gulf of California were modeled.

  10. Micropaleontological studies of lunar and terrestrial precambrian materials

    NASA Technical Reports Server (NTRS)

    Schope, J. W.

    1974-01-01

    Optical microscopic and scanning electron microscopic studies of rock chips and dust returned by Apollo 14, 15, 16, and 17 are analyzed along with optical microscopic studies of petrographic thin sections of breccias and basalts returned by Apollo 14, 15, and 16. Results show no evidence of modern or fossil lunar organisms. The lunar surface is now, and apparently has been throughout the geologic past, inimical to known biologic systems.

  11. Verification Study - Wah Wah Valley, Utah. Volume I. Synthesis.

    DTIC Science & Technology

    1981-03-24

    Paleozoic limestone and dolomite , with lesser amounts of Precambrian and Cambrian quartzites and phyllites. Tertiary volcanic rocks, consisting of...of fracture along which there has been gdisplacement. FAULT BLOCK MOUNTAINS - Mountains that are formed by normal faulting in which the surface crust...sample (ASTM D 2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an

  12. Geology and ground-water resources of Nobles County, and part of Jackson County, Minnesota

    USGS Publications Warehouse

    Norvitch, Ralph F.

    1964-01-01

    The quality of water in the Precambrian crystalline rocks, the Cretaceous strata, and the buried Pleistocene aquifers is poor. Chemical analyses of 22 water samples showed that dissolved solids ranged from 1,100 ppm (parts per million) to 3,050 ppm. Water from the surficial outwash deposits is good by comparison; dissolved solids in water from these aquifers ranged from 425 to 870 ppm.

  13. Hydrogeological impacts of a railway tunnel in fractured Precambrian gneiss rocks (south-eastern Norway)

    NASA Astrophysics Data System (ADS)

    Kværner, Jens; Snilsberg, Petter

    2013-11-01

    Groundwater monitoring along the Romeriksporten tunnel, south-eastern Norway, provided an opportunity for studying the impacts of tunnelling on groundwater in fractured Precambrian gneiss rocks, and examining relations between bedrock hydrology, tectonic weakness zones and catchments. Tunnel leakage resulted in groundwater drawdown up to 35 m in weakness zones, converted groundwater discharge zones into recharge zones, and affected groundwater chemistry. The magnitude of drawdown and fluctuations in groundwater level differed between weakness zones, and varied with distance from the tunnel route, tunnel leakage, and recharge from catchments. Clear differences in groundwater level and fluctuation patterns indicated restricted groundwater flow between weakness zones. The groundwater drawdowns demonstrated coherent water-bearing networks to 180-m depth in faults and fracture zones. Similar groundwater levels with highly correlated fluctuations demonstrated hydraulic connectivity within fracture zones. Different groundwater drawdown and leakage in weakness zones with different appearance and influence of tectonic events demonstrated the importance of the geological history for bedrock hydrogeology. Water injection into the bedrock counteracted groundwater drawdowns. Even moderate leakage to underground constructions may lead to large groundwater drawdown in areas with small groundwater recharge. Hydrogeological interpretation of tectonic weakness zones should occur in the context of geological history and local catchment hydrology.

  14. Heat flow from the Liberian Precambrian Shield

    NASA Astrophysics Data System (ADS)

    Sass, J. H.; Behrendt, J. C.

    1980-06-01

    Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m-2. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m-2. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42±8 mW m-2) and Nigeria (38±2 mW m-2) but are somewhat higher than values from Niger (20 mW m-2) and neighboring Sierra Leone (26 mW m-2). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58±8 m W m-2), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 /μW m-3. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a `characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m-2 is consistent with that from other Precambrian shields.

  15. Installation restoration research program: Assessment of geophysical methods for subsurface geologic mapping, cluster 13, Edgewood Area, Aberdeen Proving Ground, Maryland. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.

    1996-10-01

    Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less

  16. Paleomagnetism and alteration of lower Paleozoic rocks and Precambrian basement in the SHADS No. 4 drill core, Oklahoma

    NASA Astrophysics Data System (ADS)

    Evans, S. C.; Hamilton, M.; Hardwick, J.; Terrell, C.; Elmore, R. D.

    2017-12-01

    The chacterization of the lower Paleozoic sedimentary rock and the underlying Precambrian basement in northern Oklahoma is currently the subject of research to better understand induced seismicity in Oklahoma. We are investigating approximately 140 meters of igneous basement and over 300 meters of Ordovician Arbuckle Group carbonates and underlying sandstone in the Amoco SHADS No. 4 drill core from Rogers Co., Oklahoma, to better understand the nature, origin, and timing of fluid alteration and the relationship between fluid flow in the Arbuckle Group and the basement. Preliminary attempts to orient the core using the viscous remanent magnetization (VRM) method were unsuccessful, probably due to a steep drilling-induced component. The dolomitized Arbuckle Group contains a characteristic remanent magnetization (ChRM) with shallow inclinations (-5°) and variable declinations that, based on unblocking temperatures, is interpreted to reside in magnetite. This ChRM is interpreted as a chemical remanent magnetization (CRM) acquired in the Permian based on the shallow inclinations. The CRM could be related to hydrothermal fluids which migrated into the rocks in the late Paleozoic, as other studies in northern Oklahoma have reported. The Arbuckle Group dolomites are porous and extensively altered and consist of several generations of dolomite, including baroque dolomite. The basement rock is andesitic to trachytic ignimbrite that exhibits extensive alteration. There are many near-vertical fractures mineralized with epidote that are cross cut by calcite-filled fractures. Anisotropy of magnetic susceptibility (AMS) measurements indicate an oblate fabric in the top of the basement and the overlying sandstones. At greater depths, the AMS is variable and may include both alteration and primary fabrics. Demagnetization of the basement rocks is in the initial stages. We are currently investigating if and how far the alteration in the Arbuckle Group extended into the basement. The results suggest basement and sedimentary rock in the core were altered by multiple fluids, and the pervasive fracturing in the igneous section could provide conduits for fluids to get from the porous Arbuckle Group into the basement.

  17. Geochemical and isotopic study of impact melts and spherules from the Lonar impact crater, India, indicate melting of the Precambrian basement beneath the 'target' Deccan basalts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Goderis, S.; Banerjee, A.; Gupta, R. D.; Claeys, P.; Vanhaecke, F. F.

    2016-12-01

    The 1.88 km diameter Lonar impact Crater, with age estimates ranging from 52 -570 ka, is located in the Buldana district of Maharashtra, India. It is an almost circular depression hosted entirely in the 65Ma old basalt flows of the Deccan Traps and is the best-known terrestrial analogue for impact craters in the Inner Solar System. Isotopic studies indicate that the basalts around Lonar correlate with the Poladpur suite, one of the mid-section volcano-stratigraphic units of the Deccan traps. Recently collected samples of the host basalt and impact melts, were analyzed for major and trace element concentrations using ICPMS, as well as for Nd and Sr isotope ratios using TIMS. Relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the melt rocks compared to earlier measurements of similar rocks from Lonar are consistent with melting of the Precambrian basement beneath the Deccan basalt. Spherules ranging in size from 100 mm to 1 mm, were hand-picked under a binocular microscope from unconsolidated soil samples, collected from the south-eastern rim of the crater. Thirty-five spherule samples, screened for surface alteration using SEM were analyzed for major and trace element concentrations including PGEs using LA-ICPMS. The spherules were further classified into two groups using the Chemical Index of Alteration(CIA). Iridium and Cr concentrations of the spherules are consistent with mixing of a chondritic impactor (with 2-8% contribution) with the target rock(s). On a Nb (fluid immobile) -normalized binary plot of Th versus Cr, the composition of the spherules can be explained by mixing between the host basalt and a chondritic impactor with a definite, but minor contribution of the basement beneath Lonar, the composition of which is approximated using the average composition of the upper continental crust (UCC). Variability in the light-REE fractionation of the spherules (La/Sm(N)) can also be explained by a similar three component mixing. Overall, our geochemical data for both the melt rocks and spherules suggest mixing between the chondritic impactor, the Deccan host basalt and the basement rocks at Lonar.

  18. EBSD characterization of pre-Cambrian deformations in conglomerate pebbles (Sierra de la Demanda, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio

    2010-05-01

    Pre-Cambrian and unconformable earliest Cambrian rocks from the Sierra de la Demanda (N Spain) exhibit field and microstructural relationships that attest to orogenic events recorded by concealed basement rocks. Neoproterozoic foliated slates ("Anguiano Schists") crop out under up to 300 m thick, unfoliated quartz-rich conglomerates ("Anguiano Conglomerates") and quartzites which are stratigraphically ca. 600 m below the oldest, paleontologically dated, pre-trilobitic Cambrian layers (likely older than 520 Ma). The Anguiano Conglomerates contain mm to cm grainsized well-rounded pebbles of various types including monocrystalline quartz, detrital zircon and tourmaline-bearing sandstones, black cherts and metamorphic poly-crystalline quartz aggregates. The undeformed matrix is made of much smaller (diagenetically overgrown) monocrystaline quartz grains and minor amounts of accesory zircon, tourmaline and mica. Black chert pebbles exhibit microstructural evidence of brittle deformation (microfaults and thin veins of syntaxial fibrous quartz). These and the fine-grained sandstone pebbles can also exhibit ductile deformations (microfolds with thickened hinges and axial planar continuous foliations), too. Polycrystalline quartz pebbles exhibit a variety of microstructures that resulted from syn-metamorphic ductile deformations. These are recognisable under the petrographic microscope and include continuous foliations, quartz shape fabrics, various types of subgrain or recrystallized new grain microtextures, and lattice preferred orientations (LPOs). Conventional characterization of quartz fabrics (after oriented structural sections) is challenged in conglomerate pebble thin sections by the difficulty of unraveling in them the complete structural reference framework provided by foliation (whose trace can be unraveled) and lineation orientation (which cannot be directly identified). Quartz in various metamorphic polycrystalline pebbles was studied with the Electron Back-Scatter Diffraction (EBSD) technique. The identification of quartz c-axis point maxima or girdles and their geometrical relationships with respect to -axis arrangements and pebble foliation traces enabled us to identify the operation of basal and prism- and occasionally prism-[c] intracrystalline slip systems. This points to upper-greenschists and amphibolite facies syn-metamorphic deformations. By contrast, black chert and sandstone pebbles and matrix quartz aggregates lack any LPO. The source area of the conglomerates was likely a pre-Cambrian basement that contained penetratively deformed low- to medium-grade metamorphic rocks. Radiometric dating of this metamorphism has not been accomplished so far though it is known that inherited Precambrian sources in the Iberian Peninsula relate notably to Neoproterozoic (Pan-African and Cadomian) orogens, and to a lesser extent to Paleoproterozoic (1.8-2.1 Ga) or Neoarchean (2.4-2.8 Ga) ones. Neoproterozoic (Cadomian) metamorphism of this grade has only been recognized in SW Iberia. If the fabrics here studied were Cadomian, they might be related to the arc-related igneous suites that have been detected or inferred in other realms of the northern Iberian Massif.

  19. Geology and evaluation of tungsten anomalies, Buhairan-Abu Khurg area, southeastern part of the Uyaijah ring structure, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Dodge, F.C.W.

    1973-01-01

    Previous geochemical exploration has indicated areas in the Precambrian Al Uyaijah ring structure for further investigation. This report encompasses the results of geologic and geochemical investigations made in a 40 square kilometer area located on the southeast perimeter of the ring structure, an area where previous geochemical exploration revealed anomalous tungsten and molybdenum values. Igneous rocks exposed in the area include batholithic plutonic rocks, intrusive rocks of the ring dike, hypabyssal dike rocks, and late epithermal quartz veins; remnants of metamorphosed, prebatholithic rocks are also exposed. About two-thirds of the area is covered with a veneer of surficial debris. Structural patterns of the area are dominated by the ring structure. The principal mineralization consists of powellite and scheelite in high-temperature, quartz-rich veinlets and pods and in contact metamorphic rocks. Although the areas of metallization account for the previously discovered sediment geochemical anomalies, mineralization is sparse, and no currently valuable mineral deposits are known or thought to be present in the area.

  20. Progress of the LASL dry hot rock geothermal energy project

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  1. Summary of the geology and resources of uranium in the San Juan Basin and adjacent region, New Mexico, Arizona, Utah, and Colorado

    USGS Publications Warehouse

    Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.

    1978-01-01

    The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic

  2. Geologic map of the Venezuela part of the Puerto Ayacucho 2 degrees x 3 degrees Quadrangle, Amazonas Federal Territory, Venezuela

    USGS Publications Warehouse

    Wynn, Jeffrey C.; Olmore, Steven D.; Mendoza, Vicente; García, Andrés; Rendon, Ines; Estanga, Yasmin; Rincon, Haydee; Martinez, Felix; Lugo, Elis; Rivero, Nelson; Schruben, Paul G.

    1994-01-01

    This map is one of a series of 1:500,000-scale maps that, along with several other products, stems from a cooperative agreement between the U.S. Geological Survey (USGS) and the Corporacion Venezolana de Guayana, Tecnica Minera, C.A. (TECMIN), a Venezuelan Government-owned mining and mineral exploration company. The agreement covered cooperative work carried out in the Precambrian Shield of southern Venezuela during 1987-1991 and included a geologic and mineral resource inventory, technology transfer, and scientific training (Wynn and others, in press). The Precambrian Guayana Shield (Escudo de Guyana, not to be confused with the neighboring country of Guyana) includes some of the oldest known rocks in the world (Mendoza, 1977) and also covers parts of neighboring Guyana, Surinam, French Guiana, Columbia, and Brazil. In Venezuela, it underlies most of Bolivar state and all of the Amazonas Federal Territory (see index map).

  3. Source area and seasonal variation of dissolved Sr isotope composition in rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Santos, Roberto V.; Sondag, Francis; Cochonneau, Gerard; Lagane, Christelle; Brunet, Pierre; Hattingh, Karina; Chaves, Jeane G. S.

    2014-05-01

    We present dissolved Sr isotope data collected over 8 years from three main river systems from the Amazon Basin: Beni-Madeira, Solimões, Amazon, and Negro. The data show large 87Sr/86Sr ratio variations that were correlated with the water discharge and geology of the source areas of the suspended sediments. The Beni-Madeira system displays a high average 87Sr/86Sr ratio and large 87Sr/86Sr fluctuations during the hydrological cycle. This large average value and fluctuations were related to the presence of Precambrian rocks and Ordovician sediments in the source area of the suspended sediment of the river. In contrast, the Solimões system displays a narrow range of Sr isotope ratio variations and an average value close to 0.709. This river drains mostly Phanerozoic rocks of northern Peru and Ecuador that are characterized by low Sr isotope ratios. Despite draining areas underlain by Precambrian rocks and having high 87Sr/86Sr ratios, such rivers as the Negro and Tapajós play a minor role in the total Sr budget of the Amazon Basin. The isotopic fluctuations in the Beni-Madeira River were observed to propagate downstream at least as far as Óbidos, in the Amazon River. This signal is characterized by an inverse relationship between the concentration of elemental Sr and its isotopic ratios. During the raining season there is an increase in Sr isotopic ratio accompanied by a decrease in elemental Sr concentration. During the dry season, the Sr isotopic ration decreases and the elemental Sr concentration increases.

  4. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less

  5. Geology and ground-water resources of the Bristol-Plainville-Southington area, Connecticut

    USGS Publications Warehouse

    La Sala, A. M.

    1964-01-01

    The Bristol-Plainville-Southington area straddles the boundary between the New England Upland and the Connecticut Valley Lowland sections of the New England physiographic province. The western parts of Bristol are Southington lie in the New England Upland section, an area of rugged topography underlain by metamorphic rocks of Palezoic age. The eastern part of the area, to the east of a prominent scarp marking the limit of the metamorphic rocks, is in the Connecticut Valley Lowland and is underlain by sedimentary rocks and interbedded basaltic lava flows of Triassic age. The lowland is characterized for the most part by broad valleys and low intervening linear hills, but in the eastern parts of Plainville and Southington, basaltic rocks form a rugged highland. The bedrock is largely mantled by glacial deposits of Wisconsin age. On hills the glacial deposits are mainly ground moraine, and in valleys mainly stratified. The metamorphic rocks comprise the Hartland Formation, Bristol Granite Gneiss of Gregory (1906), and Prospect Gneiss. These formations contain water in fractures, principally joints occurring in regular sets. The rocks generally yield supplies of 5 to 15 gpm (gallons per minute) to drilled wells averaging about 140 feet in depth. The rocks of Triassic age in the area are the New Haven Arkose, Talcott Basalt, Shuttle Meadow Formation, Holyoke Basalt, and East Berlin Formation. The formations contain water principally in joints and other fractures and, to a lesser extent, in bedding-plane openings and pore spaces. Drilled wells penetrating these rocks generally range from 100 to 200 feet in depth and yield an average of nearly 20 gpm. The maximum yield obtained from a well in these rocks is 180 gpm. The ground moraine of Pleistocene age is composed principally of till. The deposit averages about 24 feet in thickness, and wells penetrating it average about 16 feet in depth. The ground moraine yields small supplier of water suitable for household use when tapped by shallow large-diameter wells. The stratified glacial deposits, which are as much as 300 feet thick, comprise ice-contact and proglacial deposits and deposits of generally obscure origin termed 'undifferentiated stratified deposits.' The ice-contact and undifferentiated stratified deposits, some of which underlie proglacial deposits, are coarse grained and contain gravel beds from which supplies of as much as 1,400 gpm can be obtained. The proglacial deposits are, on the whole, finer grained than the other stratified deposits, but in places they allow development of wells producing as much as 500 gpm. However, the stratified glacial deposits throughout much of the Bristol-Plainville-Southington area are fine grained and provide only small supplies.

  6. Stable Isotopic Constraints on Abiogenic Hydrocarbon gas Contributions to Thermogenic Natural gas Resources in the Northern Appalachian Basin, USA

    NASA Astrophysics Data System (ADS)

    Burruss, R. C.; Laughrey, C. D.

    2006-05-01

    The generation of abiogenic methane by serpentinization or by graphite-water reactions in high-grade metamorphic rocks is well documented by isotopic, fluid inclusion, and petrographic studies. However, geochemical evidence is equivocal for abiogenic generation of higher hydrocarbon gases (ethane through pentane) in economic resources. Thermogenic hydrocarbon gases, generated by thermal cracking of sedimentary organic matter of biological origin, are progressively enriched in 13C as a function of increasing number of carbon atoms in the molecule. The isotopic composition is controlled by the kinetic isotope effect (KIE) during carbon-carbon bond breaking with the largest KIE for methane. Published work on gases in Precambrian rocks in Canada and South Africa suggest that some were generated by abiogenic Fischer-Tropsch type reactions that produced gases with carbon isotopic compositions that are reversed from the thermogenic trend. We have documented reversed isotopic compositions in natural gas accumulations in lower Paleozoic reservoirs of the Appalachian basin regionally from West Virginia and eastern Ohio through Pennsylvania to central New York. The regional accumulation in lower Silurian age strata shows progressive enhancement of the isotopic reversal with increasing depth in the basin. Multivariate analysis of the molecular and isotopic data define an end-member in the deep basin with an approximate composition of 98 mol % CH4, 1-2 mol % C2H6, << 1 mol % C3H8, and δ13C (CH4) = -27 ‰, δ13C (C2H6) = -40 ‰, δ13C (C3H8) = - 41‰. The nominal similarity of isotopic reversals in the gases from Precambrian rocks to those in the lower Paleozoic rocks of the Appalachian basin suggests that abiogenic F-T reactions may have generated some fraction of the gases in the deep basin. Comparison of molecular and hydrogen isotopic compositions show that the gases of putative abiogenic F-T origin are significantly different from Appalachian basin gases. All the Precambrian gases have extremely light hydrogen isotopic compositions of CH4 (δ2H < -300‰) and are depleted in CH4 (Canada gases C1/C2+ < 10, S. Africa gases C1/C2+ < 60) compared to gases in lower Paleozoic reservoirs of the Appalachian basin (δ2H (CH4) > -150‰, C1/C2+ up to 220). New isotopic studies of gas accumulations, gases in fluid inclusions, and of sedimentary organic matter in the Appalachian basin are in progress to constrain the possible contribution of abiogenic hydrocarbon generation to gas accumulations in this basin.

  7. Full 40 km crustal reflection seismic datasets in several Indonesian basins

    NASA Astrophysics Data System (ADS)

    Dinkelman, M. G.; Granath, J. W.; Christ, J. M.; Emmet, P. A.; Bird, D. E.

    2010-12-01

    Long offset, deep penetration regional 2D seismic data sets have been acquired since 2002 by GX Technology in a number of regions worldwide (www.iongeo.com/Data_Libraries/Spans/). Typical surveys consist of 10+ lines located to image specific critical aspects of basin structure. Early surveys were processed to 20 km, but more recent ones have extended to 40-45 km from 16 sec records. Pre-stack time migration is followed by pre-stack depth migration using gravity and in some cases magnetic modeling to constrain the velocity structure. We illustrate several cases in the SE Asian and Australasian area. In NatunaSPAN™ two generations of inversion can be distinguished, one involving Paleogene faults with Neogene inversion and one involving strike slip-related uplift in the West Natuna Basin. Crustal structure in the very deep Neogene East Natuna Basin has also been imaged. The JavaSPAN™ program traced Paleogene sediments onto oceanic crust of the Flores Sea, thus equating back arc spreading there to the widespread Eocene extension. It also imaged basement in the Makassar Strait beneath as much as 6 km of Cenozoic sedimentary rocks that accumulated Eocene rift basins (the North and South Makassar basins) on the edge of Sundaland, the core of SE Asia. The basement is seismically layered: a noisy upper crust overlies a prominent 10 km thick transparent zone, the base of which marks another change to slightly noisier reflectivity. Eocene normal faults responsible for the opening of extensional basins root in the top of the transparent layer which may be Moho or a brittle-ductile transition within the extended continental crust. Of particular significance is the first image of thick Precambrian basins comprising the bulk of continental crust under the Arafura Sea in the ArafuraSPAN™ program. Four lines some 1200 km long located between Australia and New Guinea on the Arafura platform image a thin Phanerozoic section overlying a striking Precambrian basement composed of sedimentary and burial metamorphosed sedimentary rock that we divide into two packages on the basis of seismic character. The upper is 8-15 km of undeformed late Precambrian sediments the top of which ties Eocambrian rocks in wells in offshore New Guinea. This package appears to correlate to the Wessel Group in northern Australia. The lower package is composed of 10-15 km of strongly bedded, presumably burial metamorphosed rocks that make up the bulk of the lower crust. These may equate to any of a number of northern Australian Mesoproterozoic basins. This lower package offlaps ‘pods’ of seismically transparent basement (?Paleoproterozoic or Archean) that make up at most the lowermost 15 km of the 40 km PSDM line. Both Precambrian packages appear to be craton-margin sedimentary wedges, the younger overlapping the older. The SE extent of the lowermost package is deformed in a thrust system which may mark the event that detached it from its original underlying oceanic or transitional crust during cratonization. The SPAN programs are important new data sets to clarify and in some cases solve outstanding problems in basin architecture and tectonic evolution.

  8. Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin

    USGS Publications Warehouse

    Leetaru, H.E.; McBride, J.H.

    2009-01-01

    Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  9. The Gardnos Impact Structure, Norway

    NASA Astrophysics Data System (ADS)

    Dons, J. A.; Naterstad, J.

    1992-07-01

    The Gardnos area is situated 9 km north of the village Nesbyen in the county of Buskerud, south-central Norway. The peculiar "Gardnos breccia" was first described in 1945 and ascribed to explosive volcanic activity in Permian time. This conclusion has lately been questioned, and preliminary field and microscopic investigations by the authors in 1990-91 substantiated a theory of impact origin for the breccia and the structure. The Gardnos Impact Structure is the first of its kind to be described from Norway. Its geographical position is lat. 60 degrees 39'N, long. 9 degrees 00'E. The topography surrounding the structure ranges from 200 m.a.s.l. in the main Hallingdalen valley to more than 1000 m.a.s.l. in the high mountains nearby. At heights of 900-1000 m erosion has cut through the important, more or less horizontal boundary between a complex Precambrian crystalline basement and a deformed Caledonian cover sequence of Cambro-Ordovician sediments and overthrust nappes. Rocks of the latter sequence are however, still preserved in outliers no more than 3 km from the Gardnos structure. Erosional remnants of the Gardnos structure rocks are found within a semicircular area of 4-5 km diameter. Topographically the eroded structure now appears as a bowl-shaped, hanging side valley to Hallingdal. Wooded, late-Quaternary moraines and fluvioglacial deposits cover to a great extent the solid rocks, but the beds of many branching creeks provide good exposures. Thus a great variety of rocks formed within the Gardnos structure can be studied from approximately 350 m.a.s.l. up to more than 800 m.a.s.l. A variety of rocks from the Precambrian basement complex have been affected by the impact. This gives a unique opportunity to study shock-metamorphic effects on varying lithologies. Among the impact-produced structures and rock types that can easily be identified is an outer zone of breccia veining in the varied Precambrian lithologies, a lowermost lens of autochthonous breccia, the "Gardnos breccia" proper, above it a lens of suevite and suevite-like breccias, and at the transition to a series of crater-fill sediments there occur deposits that we interpret as back-fill and slump deposits. Type variation, trace fossils, and numerous sedimentary structures in the crater-fill sediments also testifies to the existence of a local, steep-sided sedimentary basin formed in the Precambrian rocks below the Cambro-Ordovician sea that probably existed in the region at this time. The autochthonous breccia shows great variation in clast size and extensive internal fracturing in the clasts. The fine-grained, black, carbonaceous matrix has entered even the most minute cracks. It is interesting to note that driving a tunnel through this breccia resulted in 30% greater wear on drilling equipment than that experienced when driving in unbrecciated gneiss. Microscopic study of thin sections made from the impactites shows many typical shock-metamorphic textures. Many types of planar features are seen in quartz and feldspar. In quartz methane- carrying fluid inclusions are very common along these directions. Biotites are strongly kinked. Partly vesicular fragments in different stages of devitrification are common in the suevite breccias, and so are crystals of quartz and feldspar showing different stages of isotropisation and melting--all in a heterogeneous mixture together with apparently undeformed rock and crystal fragments. Slight deformation and metamorphism seen in the crater-fill sediments are ascribed to the Caledonian orogeny, which influenced the area in Devonian time. Our studies so far indicate the following sequence of events: At a point in time corresponding approximately to the Cambro- Ordovician transition a bolide of a few hundred m diameter fell into the Lower Palaeozoic sea blasting a crater through its deposits of carbonaceous shale and deep into the underlying crystalline gneisses. Continued sedimentation filled the crater and development of the Caledonides then followed. Deep erosion has left structures and materials enough to unravel the story. Detailed mapping of the structure will continue in 1992, and a drilling project is planned for 1993.

  10. Deposition and deformation of stratified rocks in the northern Nia Mensa region of Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2016-12-01

    Large-scale structural and geologic mapping based on HiRISE (High Resolution Imaging Science Experiment) digital elevation models reveals new details of the depositional environment for the stratified rocks in the northern Nia Mensa region of eastern Candor Chasma, Valles Marineris, Mars. The map area encompasses the contact between massive sedimentary rocks that comprise most of Nia Mensa and the stratified sedimentary and mass-wasting deposits exposed between Nia Mensa and the north wall of eastern Candor Chasma. The area contains a stratified fan-like deposit on the lower slopes of Nia Mensa. The strata within this deposit dip outward at < 10°, away from its morphologic apex, consistent with an origin as a depositional fan (rather than being carved into a fan shape by erosion). Whether this fan has a subaerial or submarine origin has not yet been determined. Additionally, the fan and surrounding stratified rocks exhibit evidence of soft-sediment deformation in the form of clastic dikes and contorted bedding, indicating that these deposits were water-saturated at the time of deformation. Finally, the northern section of the map area encompasses part of a fractured rise, and deposits interpreted as mud flows mantle the top of this rise. Inferred flow directions suggest that the mud erupted out of these fractures. These findings place constraints on the depositional environment of the local stratified bedrock. The presence of the fan deposit indicates that lateral transport was a component in the depositional history of these sediments. Therefore the sediments did not form entirely as a mantling deposit, such as air fall ash or sediments settled out of a water column. The soft-sediment deformation and subsurface mobilized sediments indicate that groundwater was present in the area after emplacement of the stratified deposits, but before its lithification. These findings point to a wet-playa to lacustrine depositional environment.

  11. Bedrock geology of the Mount Carmel and Southington quadrangles, Connecticut

    USGS Publications Warehouse

    Fritts, Crawford Ellswroth

    1962-01-01

    New data concerning the geologic structure, stratigraphy, petrography, origin, and ages of bedrock formations in an area of approximately 111 square miles in south-central Connecticut were obtained in the course of detailed geologic mapping from 1957 to 1960. Mapping was done at a scale of 1:24,000 on topographic base maps having a 10-foot contour interval. Bedrock formations are classified in two principal categories. The first includes metasedimentary, meta-igneous, and igneous rocks of Precambrian to Devonian age, which crop out in the western parts of both quadrangles. The second includes sedimentary and igneous rocks of the Newark Group of Late Triassic age, which crop out in the eastern parts of the quadrangles. Diabase dikes, which are Late Triassic or younger in age, intruded rocks in both the western and eastern parts of the map area. Rocks in the western part of the area underwent progressive regional metamorphism in Middle to Late Devonian time. The arrangement of the chlorite, garnet, biotite, staurolite, and kyanite zones here is approximately the mirror-image of metamorphic zones in Dutchess County, New York. However, garnet appeared before biotite in politic rocks in the map area, because the ration MgO/FeO is low. Waterbury Gneiss and the intrusive Woodtick Gneiss are parts of a basement complex of Precambrian age, which forms the core of the Waterbury dome. This structure is near the southern end of a line of similar domes that lie along the crest of a geanticline east of the Green Mountain anticlinorium. The Waterbury Gneiss is believed to have been metamorphosed in Precambrian time as well as in Paleozoic time. The Woodtick Gneiss also may have been metamorphosed more than once. In Paleozoic time, sediments were deposited in geosynclines during two main cycles of sedimentation. The Straits, Southington Mountain, and Derby Hill Schists, which range in age from Cambrian to Ordovician, reflect a transition from relatively clean politic sediments to thinly layered sediments that contained rather high percentages of fine-grained volcanic debris. Metadiabase and metabasalt extrusives above Derby Hill Schist south of the map area represent more intense volcanic activity before or during the early stages of the Taconic disturbance in Late Ordovician time. Impure argillaceous, siliceous, and minor calcareous sediments of the Wepawaug Schist, which is Silurian and Devonian in age, were deposited unconformably on older rocks during renewed subsidence of a geosyncline. The Wepawaug now occupies the trough of a tight syncline, which formed before and during progressive regional metamorphism at the time of the Acadian orogeny in middle to Late Devonian time. Felsic igneous rocks were intruded into the metasedimentary formations of Paleozoic age before the climax of the latest progressive regional metamorphism. Intrusives that gave rise to the Prospect and Ansonia Gneisses were emplaced mainly in the Southington Mountain Schist, and the igneous rocks as well as the host rocks were metamorphosed in the staurolite zone. Although it is possible that these two intrusives were emplaced during the Taconic disturbance, the writer believes it more likely that the igneous rocks from which the Prospect and Ansonia Gneisses formed were emplaced during the Acadian orogeny. Woodbridge Granite, which intruded the Wepawaug Schist, is Devonian in age and undoubtedly was emplaced during the Acadian orogeny. In this area the granite is essentially unmetamorphosed, because it is in the chlorite, garnet, and biotite zones. Southwest of the map area, however, metamorphic equivalents of the Woodbridge are found in Wepawaug Schist in the staurolite zone. The Ansonia Gneiss, therefore, may be a metamorphic equivalent of the Woodbridge Granite. Rocks of Late Triassic age formerly covered the entire map area, but were eroded from the western part after tilting and faulting in Late Triassic time. The New Haven Arkose of the Newark

  12. New Zircon U-Pb Age Constrain of the Origin of Devil's River Uplift (SW Texas) and Insights into the Late Proterozoic and Paleozoic Evolution of the Southern Margin of Laurentia

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Dickerson, P. W.; Stockli, D. F.

    2017-12-01

    The Devils River Uplift (DRU) in SW Texas records the evolution of the southern Laurentian margin from Grenvillian orogenesis and assembly of Rodinia, to its fragmentation by rifting, and to the amalgamation of Pangaea. It was cored by a well (Shell No. 1 Stewart), penetrating Precambrian gneisses and Cambrian metasediments and sandstones. New zircon LA-ICP-MS data from a total of 10 samples elucidate the crystallization and depositional ages, as well as the detrital provenance, of Precambrian and Cambrian rocks from the DRU. Zircons from five Precambrian crystalline basement samples (6000-9693') yield uniform U-Pb crystallization ages of 1230 Ma that are similar to ages for young gneisses of the Valley Spring Domain (Llano uplift) in central Texas, where they mark the cessation of arc magmatism within the Grenville orogenic belt. The 1230 Ma igneous basement is overlain by L.-M. Cambrian metasedimentary rocks ( 4000-6000') with maximum depositional ages of 533-545 Ma. Detrital zircons from Cambrian strata are dominated by a 1070-1080 Ma population, likely derived from basement units exposed in Texas (Llano uplift, Franklin Mts.), with minor contributions from local 1230 Ma Precambrian basement and the 1380-1500 Ma Granite Rhyolite Province. The L.-M. Cambrian interval is dominated (>80%) by Neoproterozoic detrital magmatic zircons with two major distinct age clusters at 570-700 Ma and 780-820 Ma, supporting a two-stage Rodinia rift model and providing strong evidence for major Cryogenian-Eocambrian intraplate magmatism along the southern margin of Rodinia. Moreover, detrital zircon signatures for L.-M. and U. Cambrian strata strongly correlate with those from the Cuyania terrane of W. Argentina - notably the W. Sierras Pampeanas (Sa. Pie de Palo, Sa. de Maz): 1230 Ma from metasandstones (PdP); 1081-1038 Ma from metasiliciclastics (PdP, SdM); Cryogenian-Eocambrian [774 & 570 Ma] plutons (SdM, PdP). In summary, these new zircon U-Pb data from DRU in SW Texas show that it is part of the Grenville orogenic belt, characterized by 1230 Ma magmatism, and that it experienced Cryogenian-Eocambrian intraplate magmatism as well. Significant correlations between DRU and the Cuyania terrane imply that both participated in Rodinia rifting and creation of the southern Laurentian margin.

  13. Ted Irving and the Precambrian continental drift of (within?) the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Hoffman, P. F.

    2014-12-01

    Ted Irving was no stranger to the Precambrian when he began paleomagnetic studies in the Canadian Shield (CS) that would dominate his research in the early and mid-1970's. Twenty years before, his graduate work on billion-year-old strata in Scotland established paleomagnetic methodologies applicable to sedimentary rocks generally. In 1958, he and Ronald Green presented an 'Upper Proterozoic' APW path from Australia as evidence for pre-Carboniferous drift relative to Europe and North America (the poles actually range in age from 1.2 to 2.7 Ga). His first published CS poles were obtained from the Franklin LIP of the Arctic platform and demonstrate igneous emplacement across the paleoequator. Characteristically, his 1971 poles are statistically indistinguishable from the most recent grand mean paleopole of 2009. His main focus, however, was on the question of Precambrian continental drift. He compared APW paths with respect to Laurentia with those obtained from other Precambrian shields, and he compared APW paths from different tectonic provinces within the CS. He was consistently antagonistic to the concept of a single long-lived Proterozoic supercontinent, but he was on less certain ground regarding motions within the CS due to inadequate geochronology. With Ron Emslie, he boldly proposed rapid convergence between parts of the Grenville Province and Interior Laurentia (IL) ~1.0 Ga. This was controversial given the uncertain ages of multiple magnetic components in high-grade metamorphic rocks. With John McGlynn and John Park, he developed a Paleoproterozoic APW path for the Slave Province from mafic dikes and red clastics, encompassing the time of consolidation of IL during 2.0-1.8 Ga orogenesis. Before 1980, he constructed Paleoproterozoic APW paths for IL as a whole, finding little evidence for significant internal displacement. He recognized that the Laurentian APW path describes a series of straight tracks linked by hairpins, the latter corresponding in age to major orogenic events. He did not ascribe any hairpin to collisional orogenesis within IL, outward facing margins excluded, nor any track to true polar wander. After 1980, however, he argued that existing poles were too poorly dated to rule out interior plate motions. Irving was a strict empiricist who fearlessly went where his data led him, and no farther.

  14. Jebels Awenat and Arkenu, Libya

    NASA Image and Video Library

    2018-02-22

    In the far southeast corner of Libya, in the Libyan Desert, lie the uplifted massifs of Jebel Awenat and Jebel Arkenu. Both expose ancient Precambrian rocks, intruded by granites, and then overlain with sandstones. Folding and doming have produced these interesting shapes, rising above the surrounding sand sea. Presently, the area receives less than one inch of rain per year. Thousands of years ago, rainfall was more plentiful, and the Jebels were occupied by people, as attested by the numerous rock drawings. The images were acquired July 19, 2012, and July 31, 2013, cover an area of 66 by 67 kilometers, and are located at 22.1 degrees north, 24.8 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22283

  15. Pattern, age, and origin of structural features within the Ozark plateau and the relationship to ore deposits

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.

    1981-01-01

    Topography and gravity anomaly images for the continental United States were constructed. Evidence was found based on gravity, remote sensing data, the presence, trend, and character of fractures, and on rock type data, for a Precambrian rift through Missouri. The feature is probably the failed arm of a triple junction that existed prior to formation of the granite-rhyolite terrain of southern Missouri.

  16. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium Si isotope fractionation for Fe-Si gel systems is significantly larger in magnitude than estimates of a near-zero solid-aqueous fractionation factor between pure Si gel and aqueous Si, indicating a major influence of Fe atoms on Si-O bonds, and hence the isotopic properties, of Fe-Si gel. Larger Si isotope fractionation in the Fe(II)-bearing systems may be caused by incorporation of Fe(II) into the solid structure, which may further weaken Fe-Si bonds and thus change the Si isotope fractionation factor. The relatively large Si isotope fractionation for Fe-Si gel, relative to pure Si gel, provides a new explanation for the observed contrast in δ30Si values in the Precambrian BIFs and cherts, as well as an explanation for the relatively negative δ30Si values in BIFs, in contrast to previous proposals that the more negative δ30Si values in BIFs reflect hydrothermal sources of Si or sorption to Fe oxides/hydroxides.

  17. Major magmatic events in Mt Meredith, Prince Charles Mountains: First evidence for early Palaeozoic syntectonic granites

    USGS Publications Warehouse

    Gongurov, N.A.; Laiba, A.A.; Beliatsky, B.V.

    2007-01-01

    Precambrian rocks at Mt Meredith underwent granulite-facies metamorphism M1. Zircon isotope dating for two orthogneisses revealed the following age signatures: 1294±3 and 957±4Ma; 1105±5 and 887±2Ma. The oldest ages could reflect the time of orthogneiss protolith crystallization and the latest age determinations date Grenvillian metamorphism. The metamorphic rocks were intruded by two-mica and garnet-biotite granites. The granites and host rocks underwent amphibolite-facies metamorphism M2. Zircon isotope analysis of the two-mica granites showed age estimation within 550-510Ma and zircon dating of the garnet-biotite granites revealed the ages of 1107±5, 953±8, and 551±4Ma. As Pan-African age signatures were obtained from only the granite samples, it is possible to suggest that the granites were formed at the time of 510-550Ma and the zircons with greater age values were captured by granites from the host rocks.

  18. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins aremore » unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.« less

  19. Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB)

    NASA Astrophysics Data System (ADS)

    Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.

    2016-04-01

    The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is likely ubiquitous, indicating continental crust growth by both lateral accumulation and vertical basaltic injection.

  20. Exploring the deep, ancient hydrogeosphere within Precambrian crystalline rocks using noble gases

    NASA Astrophysics Data System (ADS)

    Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.

    2016-12-01

    Serpentinization is a key long-term water-rock interaction occurring within isolated fractures in Precambrian crystalline rocks and is a significant source of global H2 production. Highly saline fracture fluids, containing in-situ produced dissolved gases (e.g. percent level He, abiogenic CH4 and mM H2), have revealed microbial ecosystems isolated from the surface photosphere for millions of years. Noble gases can provide crucial physical and temporal constraints on these serpentinizing and life-supporting environments via radiogenic-derived fluid residence times, while also providing evidence of isolation. New noble gas data is presented here from four locations on the Canadian Shield. Kidd Creek Mine in Ontario, where fluids with a mean residence time ≥ 1.1 Ga were identified in 2013, was revisited with resampling of the waters from 2.4 km bls (below land surface), and new samples collected from 2.9 km bls. The study was also expanded to include two mines from Sudbury, Ontario at 1.7 (Mine 1) and 1.4 (Mine 2) km bls. The radiogenic excesses within the fluids were greatest for the 2.9 km Kidd Creek samples and provided an average residence time of 1.6 Ga. Consistent with our hypothesis, the resampling of the 2.4 km fluids (80 months after the original study) reveal significantly reduced residence times (1.1 Ga to 390 Ma) due to stress-induced opening of younger, though nonetheless old, fractures. This is supported by recent sulphur isotope, and 2H & 18O data. Additional hydrogeological constraints are provided by the 129Xe & 136Xe data, which suggest distinct fracture networks feed the 2.4 km, and the 2.9 km systems. Fracture fluids in the Sudbury Basin were targeted to investigate the influence of a later 1.8 Ga bolide impact which formed major fractures in the underlying basement. As hypothesised the fluids in the Sudbury Archean basement are younger than those at Kidd Creek, with mean residence times of 313 and 544 Ma for Mine 1 and 2 respectively. Our results demonstrate that ancient fracture fluids in the Precambrian crust represent a previously under-investigated groundwater domain and H2 source. With mean residence times of 0.3-1.6 Ga, they provide an opportunity to explore an unprecedented ancient component of the Earth's hydrogeosphere.

  1. At the Cratonic Crossroads: A geochronologic and geochemical perspective on the Little Rocky Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Gifford, J. N.; Mueller, P. A.; Foster, D. A.; Mogk, D. W.

    2012-12-01

    The Medicine Hat Block (MHB) is a poorly constrained structural element in the Paleoproterozoic amalgamation of Laurentia. It lies between the Wyoming and Hearne cratons along the northern margin of the Great Falls Tectonic Zone. The block was caught between the Hearne and Wyoming cratons during the Paleoproterozoic closure of an ocean and subsequent continental collision. The majority of the MHB is concealed by younger material, and it is recognized primarily by its seismic signature and its influence on the geochemistry of younger igneous rocks. The MHB appears to be composed of Archean (2.6-3.1 Ga) and Proterozoic (1.75 Ga) continental crust based on limited data from drill holes and xenoliths. The Little Rocky Mountains (LRM) are the only potential exposure of Precambrian basement rocks in the northeastern GFTZ, and represent unique surface exposure of the MHB. The LRM is cored by a dome-shaped Tertiary syenite intrusion, with Precambrian metamorphic units exposed along the margins of the dome. Limited previous geochronology from the LRM includes K/Ar ages of 1.7-1.75 Ga and a Rb/Sr age of c. 2.55 Ga from a quartzofeldspathic paragneisses. These data leave the affinity of the LRM uncertain, either representing reworked Archean crust and/or Paleoproterozoic material generated during the subduction of oceanic lithosphere and formation of the GFTZ. New U/Pb ages of zircons from the Precambrian meta-igneous rocks in the LRM range from 2.2 - 3.3 Ga, with prominent peaks between 2.6 - 2.8 Ga. Outliers clustering around 1.7 - 1.8 Ga are rare and likely reflect Paleoproterozoic reworking of older material. These ages are consistent with a MHB affinity for the LRM. Pb-isotope data define a 3.1 Ga model age, which suggests some influence of older Wyoming Craton or MHB crust. The dominance of 2.6-2.8 Ga U/Pb ages suggests that the Paleoproterozoic igneous arc was constructed on pre-existing MHB crust. Models for reconciling the high angle junction between the GFTZ and Trans-Hudson orogen require the age and geochemical control provided by LRM samples. The data also provide insight into later geologic events potentially influenced by MHB crust reworked in the GFTZ, such as development of the Cenozoic Montana Alkali Province.

  2. Occurrence and Mineralogical Characteristics of Tremolite Asbestos Occurred in Boryeong area, Chungnam, South Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hwang, J.; Oh, J.; Lee, H.

    2009-12-01

    Abandoned tremolite mines, which had been exploited for several decades since 1930, are distributed in Boryeong, Chungnam. It is known that tremolite asbestos is approximately 100 times more harmful than chrysotile asbestos. Recently, it become a regional social problem because lung disease (mesothelioma and lung cancer) suspect patients are largely found among the residents of the mining area. Therefore, Korean government making every endeavor to remove asbestos risk in the area. However, there is insufficiency geological and mineralogical studies for tremolite asbestos. In the present study, the occurrence and mineralogical characteristics of tremolite asbestos were studied using polarization microscope, XRD, XRF, EPMA, SEM and TEM. Mica-schist of precambrian metasedimentary rock, which is widely distributed in the area, is the host rock of tremolite deposits. The rocks are largely disturbed by faults and folds, and shows sudden changes in strike and slope of strata. Tremolite ore bodies, which show relatively light colored, mainly occur as stratiform or veinlet and some occurs in brecciated rock fragments. Tremolite is a major asbestos mineral, and chrysotile, talc, mica, chlorite and quartz occurs as associated minerals. Considerable amount of ore containing pure tremolite is found, and ores having mineral assemblages of tremolite+talc, tremolite+quartz and chrysotile+talc also occurs. From optical microscope observations, most tremolites are asbestos from that meets to the criterion (length > 5 μm, diameter < 3 μm, aspect ratio > 3:1) defined by the international organization (WHO, ILO), but non-asbestos form tremolites are also included. Most asbestos form tremolites have the size range of 1.0-2.0 μm width and 5-10 μm length. The length can be shorten with crushing experiments, but the width remains unchanged. Non-asbestos form hardly change to asbestos form by mechanical crushing. From comprehensive studies for geological occurrence and mineral assemblage, it is considered that tremolite is formed within Mg-rich strata, which is intercalated in precambrian mica-schist, by hydrothermal alteration associated with faults movements.

  3. Geology and ground-water resources of the northern part of the Ranegras Plain area, Yuma County, Arizona

    USGS Publications Warehouse

    Metzger, Donald George

    1951-01-01

    The Ranegras Plain area is part of the Basin and Range province in west-central Arizona. The report discusses rocks of pre-Cambrian, pre-Cambrian (?), Paleozoic (?), Mesozoic (?), Cretaceous (?), Cretaceous and Tertiary, Tertiary (?), Quaternary (?), and Quaternary age. All the Paleozoic (?) and Cretaceous (?) rocks and parts of the Mesozoic (?),Cretaceous and Tertiary, and Tertiary (?) rocks have been mapped as a unit because they are so intensely faulted that detailed mapping was not practical. Rocks older than Quaternary form the mountain ranges bordering the Ranegras Plain. Quaternary alluvium underlies the broad, gently sloping valley floor to depths of generally a few hundred feet, locally more. Well logs indicate that the underlying Tertiary (?) alluvium exceeds 1,100 feet in thickness. The structure of the area is controlled by faulting typical of the Basin and Range province, but the major faults are covered by alluvium and are inferred from topographic features. Ground water occurs in Quaternary and Tertiary (?) alluvium and the best aquifers are in sand and gravel of the Quaternary alluvium. Ground-water movement is, in general, to the northwest. Recharge to the aquifers is predominantly from stream flow resulting from heavy rains. There is also minor or unevaluated recharge from underflow from Butler Valley to the east, andsince 1948seepage from irrigation. Discharge is by pumping and by natural processes of underflow and evapotranspiration. In addition to small domestic and stock wells, only two irrigation wells, in the vicinity of Utting, are in use. No accurate data on pumpage are available. The safe yield from the ground-water reservoir may be less than 5,000 acre-feet and probably does not exceed 10,000 to 15,000 acre-feet per year. The quality of ground water ranges from permissible to unsuitable for irrigation purposes. The fluoride content is generally too high for the water to be considered satisfactory for use by young children.

  4. Geology of the Wood and East Calhoun mines, Central City District, Gilpin County, Colorado

    USGS Publications Warehouse

    Drake, Avery Ala

    1955-01-01

    The Wood-East Calhoun mine area is underlain by complexly folded Precambrian gneiss and pegmatite. The major fold in the area is an anticline that trends about N. 60° E. The Precambrian rocks are intruded by bostonite porphyry dikes of Tertiary age. All the rocks are cut by east- to northeast - trending faults that have been filled by precious metal-sulfide veins which have been worked chiefly for gold. The Wood vein occurs in an east-trending fault; the Calhoun vein occurs in a northeast-trending fault. Much of the uranium production of the Central City district has come from the Wood vein on Quartz Hill. The veins consist chiefly of quartz; pyrite is the chief metallic mineral and chalcopyrite is next in abundance. Sphalerite, galena, tetrahedrite-tennantite, and pitchblende are locally present. Deposition began with alteration-stage quartz and pyrite followed in order by pitchblend, light-yellow pyrite, massive quartz, yellow pyrite, shalerite, comb quartz, chalcopyrite, tetrahedrite-tennantite, galena, chalcopyrite, pyrite, and gray to light-brown fine-grained quartz. The veins of the Central City district are zoned, with quartz-pyrite veins near the center and galena-sphalerite veins on the periphery. The known pitchblende bodies are in the transition between these, but paragenetically, the pitchblende is earlier than all other metallic minerals. A trace element study of the ore indicates an association of zirconium and molybdenum with uranium, of bismuth, antimony, and arsenic with copper, and of cadmium with zinc. The pitchblende and other ore minerals are concentrated in ore shoots. The shoots are in open spaces controlled by the competency of the wall rocks, the presence of a prevailing direction of weakness in the rocks, and changes in strike and dip of the vein. The pitchblende is thought to be a local constituent of the quartz-pyrite ores and to owe its origin to residual solutions from the quartz bostonite magma.

  5. Preliminary Geologic Map of the San Fernando 7.5' Quadrangle, Southern California: A Digital Database

    USGS Publications Warehouse

    Yerkes, R.F.

    1997-01-01

    The city of San Fernando sits atop a structurally complex, sedimentologically diverse, and tectonically evolving late Tertiary-Quaternary basin situated within the Transverse Ranges of southern California. The surrounding San Fernando Valley (SFV) contains the headwaters of the Los Angeles River and its tributaries. Prior to the advent of flood control, the valley floor was composed of active alluvial fans and floodplains. Seasonal streams emanating from Pacoima and Big Tujunga Canyons drain the complex western San Gabriel Mountains and deposit coarse, highly permeable alluvium that contains generally high-quality ground water. The more shallow western part derives mainly from Tertiary and pre-Tertiary sedimentary rocks, and is underlain by less permeable, fine-grained deposits containing persistent shallow ground water and poorer water quality. Home of the 1971 San Fernando and the 1994 Northridge earthquakes, the SFV experienced near-record levels of strong ground motion in 1994 that caused widespread damage from strong shaking and ground failure. A new map of late Quaternary deposits of the San Fernando area shows that the SFV is a structural trough that has been filled from the sides, with the major source of sediment being large drainages in the San Gabriel Mountains. Deposition on the major alluvial fan of Tujunga Wash and Pacoima Wash, which issues from the San Gabriel Mountains, and on smaller fans, has been influenced by ongoing compressional tectonics in the valley. Late Pleistocene deposits have been cut by active faults and warped over growing folds. Holocene alluvial fans are locally ponded behind active uplifts. The resulting complex pattern of deposits has a major effect on liquefaction hazards. Young sandy sediments generally are highly susceptible to liquefaction where they are saturated, but the distribution of young deposits, their grain size characteristics, and the level of ground water all are complexly dependent on the tectonics of the valley. The San Fernando area lies on the southern slopes of the San Gabriel Mountains. The basement rocks here include high-grade metamorphic rocks of Precambrian age. The mountains are largely composed of crystalline basement that includes the Pelona Scist of probable Mesozoic age that has been overthrust by Precambrian gneisses; the gneisses were subsequently intruded by Mesozoic plutons prior to overthrusting along the latest Cretaceous Vincent thrust. Gneisses of somewhat variable composition and possibly varying ages are found in four terranes, but not all are in contact with Pelona Schist. Large tracts of Precambrian (1.2 billion years old) andesine anorthosite are intrusive into 1.7 billion year-old Mendenhall gneiss, and are found in the western part of the San Gabriels. Mixed with these are younger marble, limestone, and schist of possible Paleozoic age found in association with plutons along the southern margin of the range. The older rocks are intruded by diorite, quartz diorite, and granodiorite of Jurassic age. Also present are siliceous sedimentary rocks of Jurassic age. A thick section of Tertiary sedimentary and volcanic rocks overlie these units. The sediments located south of the San Gabriel Fault are totally different in character from those on the northern range flank, and mostly resemble the western Transverse Ranges due to their deposition in the southeastern Ventura basin; approximately 3,000 m of these sediments are exposed north and west of the city of San Fernando in the Tujunga syncline. Some of the Tertiary rocks are Paleocene and Eocene in age, but the bulk of these rocks are Oligocene and Miocene in age. The Vasquez and Sespe Formations of basal basaltic volcanic and sandstone are Oligocene and lower Miocene in age. These are overlain by clastic rocks of Tick Canyon and Mint Canyon Formations of middle to late Miocene age. Above these rocks are the Castaic, Modelo, and Santa Margarita Formations of fossiliferous marine shale, sand

  6. Analysis of photo linear elements, Laramie Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Photo linear features in the Precambrian rocks of the Laramie Mountains are delineated, and the azimuths plotted on rose diagrams. Three strike directions are dominant, two of which are in the northeast quadrant. Laramide folds in the Laramie basin to the west of the mountains appear to have the same trend, and apparently have been controlled by response of the basement along fractures such as have been measured from the imagery.

  7. Geology and geochemistry of samples from Los Alamos National Laboratory HDR Well EE-2, Fenton Hill, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, R.; Laughlin, A.W.; Aldrich, M.J. Jr.

    1981-07-01

    Petrologic, geochemical, and structural analyses of cores and cuttings obtained from 3000 to 4389-m true vertical depth in drill hole EE-2 indicate that this deeper part of the Precambrian section at Fenton Hill, New Mexico is composed primarily of a very heterogeneous and structurally anisotropic metamorphic complex, locally intruded by dikes and sills of granodioritic and monzogranitic composition. In this borehole none of these igneous bodies approach in size the 335-m-thick biotite-granodiorite body encountered at 2591-m depth beneath Fenton Hill in the other two drill holes. Contacts between the igneous and metamorphic rocks range from sharp and discordant to gradational.more » Analysis of cuttings indicates that clay-rich alteration zones are relatively common in the openhole portion of EE-2. These zones average about 20 m in thickness. Fracture sets in the Precambrian basement rock intersected by the EE-2 well bore mostly trend northeast and are steeply dipping to vertical; however, one of the sets dips gently to the northwest. Slickensided fault planes are present in a core (No.5) taken from a true vertical depth of 4195 m. Available core orientation data and geologic inference suggest that the faults dip steeply and trend between N.42/sup 0/ and 59/sup 0/E.« less

  8. Heat flow from the Liberian precambrian shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sass, J.H.; Behrendt, J.C.

    1980-06-10

    Uncorrected heat flow in iron formation rocks from three areas within the Liberian part of the West African Shield ranges from 50 to more than 80 mW m/sup -2/. When corrections are applied for topography and refraction, the range of heat flow is narrowed to between 38 and 42 mW m/sup -2/. In comparison with heat flows from other parts of the West African Craton, these values are consistent with preliminary results from Ghana (42 +- 8 mW m/sup -2/) and Nigeria (38 +- 2 mW /sup -2/) but are somewhat higher than values from Niger (20 mW m/sup -2/)more » and neighboring Sierra Leone (26 mW m/sup -2/). The Liberian values are significantly lower than the heat flow offshore in the equatorial Atlantic Ocean (58 +- 8 mW m/sup -2/), suggesting large lateral temperature gradients within the lithosphere near the coast. Values of heat production from outcrops of crystalline basement rocks near the holes are between 2 and 2.3 ..mu..W m/sup -3/. A heat-flow/heat-production relation cannot be established because of the small range of values; however, assuming a 'characteristic depth' of 8 km (similar to the North American Craton) the reduced heat flow of from 20 to 25 mW m/sup -2/ is consistent with that from other Precambrian shields.« less

  9. Microbial mat records in siliciclastic rocks: Examples from Four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay

    NASA Astrophysics Data System (ADS)

    Sarkar, Subir; Banerjee, Santanu; Samanta, Pradip; Chakraborty, Nivedita; Chakraborty, Partha Pratim; Mukhopadhyay, Soumik; Singh, Arvind K.

    2014-09-01

    Microbial mat-related structures (MRS) in siliciclastics have been investigated from four Proterozic formations in India, namely the Marwar Supergroup, the Vindhyan Supergroup, the Chhatisgarh Supergroup and the Khariar Group for their spectral variations, genetic aspects, palaeo-environmental significance and influence on sequence stratigraphic architecture. The maximum diversification of MRS has been experienced in shallow marine coastal Precambrian successions. Observations made from modern environment as well as Precambrian rock records clearly indicates that the features like petee ridges, sand-cracks, gas domes, multi-directed ripples, reticulate surfaces, sieve-like surfaces and setulf are most likely to form in the shallowest part of the marine basins, in upper intertidal to supratidal conditions while wrinkle structures, roll-up structures and patchy ripples had a broader range of palaeogeographic settings from the supratidal to subtidal conditions. Discoidal microbial colony (DMC) represents a special variety of the mat-layer feature in modern environment that may have diverse internal architecture, sometimes falsely resembles Ediacaran medusoids. The uniqueness in sequence stratigraphic architecture of the microbial mat-covered sediment is reflected by the presence of more amalgamated HSTs compare to that of TSTs. The preservation of forced and normal regressive deposits on low-gradient epeiric shelf under low continental freeboard indicates microbial mat-infested sea-floor impedes erosion and concomitant sediment supply may facilitate formation and preservation of regressive packages.

  10. Conceptual models of the formation of acid-rock drainage at road cuts in Tennessee

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott; Byl, Tom

    2015-01-01

    Pyrite and other minerals containing sulfur and trace metals occur in several rock formations throughout Middle and East Tennessee. Pyrite (FeS2) weathers in the presence of oxygen and water to form iron hydroxides and sulfuric acid. The weathering and interaction of the acid on the rocks and other minerals at road cuts can result in drainage with low pH (< 4) and high concentrations of trace metals. Acid-rock drainage can cause environmental problems and damage transportation infrastructure. The formation and remediation of acid-drainage from roads cuts has not been researched as thoroughly as acid-mine drainage. The U.S Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to better understand the geologic, hydrologic, and biogeochemical factors that control acid formation at road cuts. Road cuts with the potential for acid-rock drainage were identifed and evaluated in Middle and East Tennessee. The pyrite-bearing formations evaluated were the Chattanooga Shale (Devonian black shale), the Fentress Formation (coal-bearing), and the Precambrian Anakeesta Formation and similar Precambrian rocks. Conceptual models of the formation and transport of acid-rock drainage (ARD) from road cuts were developed based on the results of a literature review, site reconnaissance, and the initial rock and water sampling. The formation of ARD requires a combination of hydrologic, geochemical, and microbial interactions which affect drainage from the site, acidity of the water, and trace metal concentrations. The basic modes of ARD formation from road cuts are; 1 - seeps and springs from pyrite-bearing formations and 2 - runoff over the face of a road cut in a pyrite-bearing formation. Depending on site conditions at road cuts, the basic modes of ARD formation can be altered and the additional modes of ARD formation are; 3 - runoff over and through piles of pyrite-bearing material, either from construction or breakdown material weathered from shale, and 4 - the deposition of secondary-sulfate minerals can store trace metals and, during rainfall, result in increased acidity and higher concentrations of trace metals in storm runoff. Understanding the factors that control ARD formation and transport are key to addressing the problems associated with the movement of ARD from the road cuts to the environment. The investigation will provide the Tennessee Department of Transportation with a regional characterization of ARD and provide insights into the geochemical and biochemical attributes for the control and remediation of ARD from road cuts.

  11. Metamorphism, P-T-t Conditions of Formation, and Prospects for the Practical Use of Al2SiO5 Polymorphs, Chloritoid, and Staurolite (Yenisei Ridge)

    NASA Astrophysics Data System (ADS)

    Kozlov, P. S.

    2017-12-01

    The Yenisei Ridge is an accretion-collisional orogen located in the southwestern frame of the Siberian Craton in the interfluve between Podkamennaya Tunguska, Angara, Kan, and Yenisei rivers. The Precambrian mono- and polymetamorphic complexes composed predominantly of the Mesoarchean-Neoproterozoic metapelitic rocks have been studied. Based on the typification of metamorphic complexes by pressure, temperature, metamorphic gradient, as well as age of metamorphism, the location scheme of the fields of the Precambrian sedimentary-metamorphic rock which are prospective for searching deposits of high-alumina metamorphic minerals (andalusite, kyanite, and sillimanite, chloritoid, and staurolite) in the Trans-Angara segment of the Yenisei Region, was compiled. The Teya sillimanite and Panimbinsk andalusite deposits, which are confined to the fields of regional metamorphic complexes of iron-alumina metapelites of the And-Sill facies series, are recommended as a priority for the organization of prospecting works and the subsequent involvement to the metallurgical industry. These metapelites are classified as monomineral. Owing to widespread occurrence and abundance of andalusite and sillimanite, the above deposits have significant inferred resources. Stratiform deposits of garnet-staurolite and chloritoid high-alumina rocks are still insufficiently studied and should be investigated further. The prospects for the possible use of high-alumina andalusite and sillimanite together with Middle Tatarka and Kiya nepheline syenite massifs and the bauxites of the Chadobets uplift, already being explored in the region, for production of aluminum oxide, silumin, and aluminum, as well as, the prospects for the expansion of the raw material base of the Boguchansk Electrometallurgical Complex, brought into operation in 2016 in the Lower Angara region, are considered.

  12. Tectonics of Precambrian basement along the Pacific margin of Antarctica and relation to western North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodge, J.W.; Hansen, V.L.; Walker, N.W.

    1993-02-01

    High-grade metamorphic rocks of the Precambrian Nimrod Group (NG) constitute one of few cratonal basement exposures in the Transantarctic Mountains. These rocks represent an outlier of the East Antarctic craton, evolved as part of Gondwana and pre-Gondwana (Rodinia) supercontinents. Despite pervasive, high-strain ductile deformation at T [>=] 650 C, they preserve petrologic and geochronologic evidence of an earlier history. Sm-Nd model ages from several NG lithologies, including that of a [approximately]1.7 Ga orthogneiss, range from about 2.7--2.9 Ga; these ages reflect both sedimentary and magmatic derivation from Archean crust. Individual detrital zircon U-Pb ages (about 1.7--2.6 Ga) from NG quartzitesmore » indicate clastic input from Archean to Paleoproterozoic source terrains. The Sm-Nd and U-Pb ages are reminiscent of both the Yavapai-Mazatzal (1.6--1.8 Ga) and Wyoming (> 2.5 Ga) provinces in western North America. U-Pb ages from syn-tectonic metaigneous and pelitic NG tectonites indicate that this basement complex was re-worked by the major ductile deformation in latest neoproterozoic to Early Cambrian time. Supracrustal assemblages that lie outboard of the Nimrod craton include Neoproterozoic graywacke, impure carbonate, and minor mafic volcanics (Beardmore Group), and Cambrian to Lower Ordovician carbonate and siliciclastic rocks (Byrd Group). Neoproterozoic ([approximately]750 Ma) rifting along the proto-Pacific margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism. Latest Neoproterozoic to early Paleozoic orogenesis occurred along a left-oblique convergent plate margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism.« less

  13. Diamonds from the Espinhaço Range (Minas Gerais, Brazil) and their redistribution through the geologic record

    NASA Astrophysics Data System (ADS)

    Chaves, M. L. S. C.; Karfunkel, J.; Hoppe, A.; Hoover, D. B.

    2001-07-01

    Diamond-bearing deposits from the Espinhaço Range are associated with three distinct periods in the geologic record. During a Precambrian magmatic period (≥1.75 Ga), diamondiferous rocks were introduced into the crust; the location of these rocks remains an enigma. During a second period, diamonds were eroded from the primary rocks and deposited in the Mesoproterozoic Espinhaço basin (≅1.75-1.70 Ga), where several generations of reworking and diagenisis are suggested. The third period is the Phanerozoic, during which several more episodes of reworking occurred. The first was during the Eocretaceous uplift of the range, when Precambrian conglomerates were partially eroded and diamonds redeposited in fluvial systems. These deposits have little economic significance because of overlying Tertiary laterites. Renewed upheaval at the Neogene formed diamondiferous fanglomeratic deposits as a result of the pronounced relief. Quaternary climate cycling developed colluvial deposits on earlier formed occurrences. Fanglomeratic and colluvial deposits are worked where the adjacent Proterozoic or Cretaceous sources produced widespread diamond-bearing gravels. Finally, recent river systems have reworked all the earlier sources to produce economic gravels in some places. Although these recent gravels are low grade, they are a major diamond source because of the large reserves. The mineralogical characteristics of these diamonds reflect the long history and repeated reworking of the source deposits, and the geologic history of the region points towards an extra-basinal source area, probably to the west within the São Francisco Craton. This repeated reworking has resulted in a natural selection of the diamonds that eliminated low-quality stones in the journey to their final resting place.

  14. K/T age for the popigai impact event

    NASA Technical Reports Server (NTRS)

    Deino, A. L.; Garvin, J. B.; Montanari, S.

    1991-01-01

    The multi-ringed POPIGAI structure, with an outer ring diameter of over 100 km, is the largest impact feature currently recognized on Earth with an Phanerozoic age. The target rocks in this relatively unglaciated region consist of upper Proterozoic through Mesozoic platform sediments and igneous rocks overlying Precambrian crystalline basement. The reported absolute age of the Popigai impact event ranges from 30.5 to 39 Ma. With the intent of refining this age estimate, a melt-breccia (suevite) sample from the inner regions of the Popigai structure was prepared for total fusion and step-wise heating Ar-40/Ar-39 analysis. Although the total fusion and step-heating experiments suggest some degree of age heterogeneity, the recurring theme is an age of around 64 to 66 Ma.

  15. Extent and character of early tertiary penetrative deformation, Sonora, Northwest Mexico

    NASA Technical Reports Server (NTRS)

    Anderson, T. H.

    1985-01-01

    Reconnaissance field work has led to the recognition of extensive Early Tertiary gneiss and schist which are distinguished by weakly developed to highly conspicous northeast to east-trending stretching lineation commonly accompanied by low-dipping foliation. This structural fabric has been imposed on Precambrian to Paleogene rocks. Regionally, minimum ages of deformation are based upon interpreted U-Pb isotopic ages from suites of cogenetic zircon from the Paleogene orthogneiss. Locally, the interpreted ages indicate that ductile deformation continued as late as Oligocene (Anderson and others, 1980; Silver and Anderson, 1984). The consistency of the deformational style is such that, although considerable variation in intensity exists, the fabric can be recognized and correlated in rocks away from the Paleogene orthogneiss.

  16. A brief description of geological and geophysical exploration of the Marysville geothermal area

    NASA Technical Reports Server (NTRS)

    Blackwell, D. D.; Brott, C. A.; Goforth, T. T.; Holdaway, M. J.; Morgan, P.; Petefish, D.; Rape, T.; Steele, J. L.; Spafford, R. E.; Waibel, A. F.

    1974-01-01

    Extensive geological and geophysical surveys were carried out at the Marysville geothermal area during 1973 and 1974. The area has high heat flow (up to microcalories per square centimeter-second, a negative gravity anomaly, high electrical resistivity, low seismic ground noise, and nearby microseismic activity. Significant magnetic and infrared anomalies are not associated with the geothermal area. The geothermal anomaly occupies the axial portion of a dome in Precambrian sedimentary rocks intruded by Cretaceous and Cenozoic granitic rocks. The results from a 2.4-km-deep test well indicate that the cause of the geothermal anomaly is hydrothermal convection in a Cenozoic intrusive. A maximum temperature of 95 C was measured at a depth of 500 m in the test well.

  17. National Dam Safety Program. Lindys Lake Dam (NJ00201), Passaic River Basin, Branch of West Brook, Passaic County, New Jersey. Phase 1 Inspection Report.

    DTIC Science & Technology

    1980-02-01

    shallow ground moraine over rock. The downstream channel is described as swamp. The rock is described on Geologic Overlay Sheet 22, as hornblende granite ...DAM 410-04’ hqa Scale: I" =I Mite LEGEND: PRECAMBRIAN gh Mostly Hornblende Granite and Gneiss. hqa Hyperstene-Quartz- And esine.-Gneiss. GEOLOGIC MAP L...A.J. 0o2o/) S CZ6 -§&S5 /,r/ C,4 7-1 ,4V-etaoe Dep4e&/LaL L* rt~~~c~~t4’A aeS’ OP~ ~ A AI 3CD PS?7V7,/ & zAer ’, ! v’.’:7- z - 6 c ,, ,, ,,g

  18. Tectonics of the North American Cordillera near the Fortieth Parallel

    USGS Publications Warehouse

    King, P.B.

    1978-01-01

    The North American Cordillera near the Fortieth Parallel consists of the following tectonic units: 1. (A) To the east is a reactivated cratonic area, in the Southern Rocky Mountains and Colorado Plateau, in which the supracrustal rocks (Cambrian to Cretaceous) were broadly deformed during the late Cretaceous-Paleocene Laramide orogeny, and the Precambrian basement was raised in folds of wide amplitude. 2. (B) West of it is a miogeosynclinal belt, in the eastern Great Basin, in which a thick sequence of Paleozoic carbonates and related deposits was thrust eastward along low-angle faults during the middle to late Cretaceous Sevier orogeny. The miogeosyncline is the downwarped western margin of the original North American continent, and its rocks accumulated on Precambrian basement. 3. (C) Beyond is a eugeosynclinal belt, in the western Great Basin, in which Paleozoic graywackes, cherts, and volcanics were thrust easteastward along low-angle faults during several Paleozoic orogenies - the mid-Paleozoic Antler orogeny which produced the Roberts thrust on the east, and the end-Paleozoic Sonoma orogeny which produced the Golconda thrust farther west. The Paleozoic eugeosynclinal rocks accumulated on oceanic basement. They are overlapped from the west by Triassic and Jurassic shelf deposits, which pass westward into eugeosynclinal deposits. 4. (D) A volcanic island-arc belt existed on the sites of the Sierra Nevada in Paleozoic and early Mesozoic time, which produced thick bodies of sediments and volcanics. During the mid-Mesozoic Nevadan orogeny these were steeply deformed and thrust westward over subduction zones, and were intruded by granitic rocks that rose from the upper mantle to form great batholiths. 5. (E) West of the Sierra Nevada, in the Great Valley, is a great sedimentary embankment of later Mesozoic flysch or turbidite, largely younger than the supracrustal rocks of the Sierra Nevada and the Nevadan orogeny. It was formed of the erosional products of the supracrustal and granitic rocks of the Sierra Nevada. 6. (F) This sequence is, in turn, thrust westward over the Mesozoic Franciscan terrane of the Coast Ranges, which forms the westernmost belt of the Cordillera, and which is being treated in other papers in this symposium. The net effect of the prolonged events that produced the Cordillera in this segment has been the addition of successive tectonic belts to the North American continent at the expense of the Pacific Ocean basin during Phanerozoic time. ?? 1978.

  19. The significance of pre-existing, deeply weathered crystalline rock in interpreting the effects of glaciation in the Minnesota River valley, U.S.A.

    USGS Publications Warehouse

    Patterson, C.J.; Boerboom, Terrence

    1999-01-01

    Minnesota is largely underlain by Precambrian crystalline bedrock that was weathered to an average depth of 30 m prior to Late Cretaceous time. The fresh-rock-weathered-rock interface is irregular, with as much as 45 m of relief. Weathering exploited joints, locally isolating meter-sized volumes of rock known as corestones. Variable amounts of residuum were removed through glaciation to leave (1) saprolite overlain by an in-situ Late Cretaceous soil profile; (2) partially eroded saprolite; and (3) undulating fresh rock surfaces (commonly mantled by rounded boulders) that display striae and glacial or fluvial polish. Significant subglacial erosion of fresh bedrock is not required to form smoothly undulating bedrock surfaces with closed depressions; they may also form through removal of weathered bedrock and exposure of the weathering front. Large rounded boulders are not always shaped during transport; they may represent chemically rounded corestones resting at or near the bedrock source. Unambiguous evidence for glacial erosion includes striae and streamlining of bedrock parallel to striae. Polish on rock can be created fluvially, and smoothed grooves and ridges in the rock may be chemically produced. Many rounded boulders found in glacial till and strewn on bedrock surfaces probably originated as corestones.

  20. The lunar nodal tide and the distance to tne Moon during the Precambrian era

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Zahnle, K. J.

    1986-01-01

    The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.

  1. Search for biochemical fossils on earth and non-biological organic molecules on Jupiter, Saturn and Titan

    NASA Astrophysics Data System (ADS)

    Nagy, Bartholomew

    1982-07-01

    Recognizable remnants of ancient biochemicals may survive under mild/moderate geological environments. Acyclic isoprenoid hydrocarbons, cyclic hydrocarbons with terpenoid carbon skeletons (e.g. hopanes) and vanadyl and nickel porphyrins have been isolated from organic matter, including petroleum, in Phanerozoic sedimentary rocks. Remnants of lignin have also been found. Usually, carbohydrates do not survive long; they degrade and/or react with other organic substances to form macromolecular matter. Proteins, e.g. apparently those in dinosaur bone collagen, break down relatively rapidly. Life arose during the Precambrian and potential biochemical fossils, e.g. n-alkanes, 2,5-dimethylfuran have been isolated from Precambrian kerogens. Traces of hydrocarbons, NH3, PH3 occur on Jupiter and Saturn. Hydrocarbons, N2 and HCN, the latter a key intermediary in the laboratory abiological syntheses of amino acids and nucleic acid bases, are present on Titan where life could not have evolved. Precursor abiological organic molecules of some complexity may have been synthesized on Titan and the Jovian planets.

  2. Regional magnetic and gravity features of the Gibson Dome area and surrounding region, Paradox Basin, Utah : a preliminary report

    USGS Publications Warehouse

    Hildenbrand, T.G.; Kucks, R.P.

    1983-01-01

    Analyses of regional gravity and magnetic anomaly maps have been carried out to assist in the evaluation of the Gibson Dome area as a possible repository site for high-level radioactive waste. Derivative, wavelength-filtered, and trend maps were compiled to aid in properly locating major geophysical trends corresponding to faults, folds, and lithologic boundaries. The anomaly maps indicate that Paradox Basin is characterized by a heterogeneous Precambrian basement, essentially a metamorphic complex of gneisses and schist intruded by granitic rocks and mafic to ultramafic bodies. Interpreted Precambrian structures trend predominantly northwest and northeast although east-west trending features are evident. Prominent gravity lows define the salt anticlines. Structural and lithologic trends in the Gibson Dome area are closely examined. Of greatest interest is a series of circular magnetic highs trending west-northwest into the Gibson Dome area. Further study of the exact definition and geologic significance of this series of anomalies is warranted.

  3. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  4. Alkyl substituted cyclic ethers in 2,300 M yr old Transvaal algal stromatolite

    NASA Technical Reports Server (NTRS)

    Zumberge, J. E.; Nagy, B.

    1975-01-01

    Two cyclic ethers have been identified for the first time from insoluble polymer-like kerogen in a Precambrian rock by ozonolysis, gas chromatography, and mass spectrometry. The ethers are 2-n-propyl-3-methyltetrahydrofuran and 2-n-propyltetrahydropyran. These compounds could prove to be the oldest indigenous biochemical fossils. The sample was obtained 750 m stratigraphically above the base of the Transvaal Sequence from an outcrop approximately 315 km north-east of Johannesburg, South Africa.

  5. Debate continues on northwest's merits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stremel, K.

    1984-07-01

    Estimates of northwest Montana's petroleum reserves range from barren Precambrian rock to reserves exceeding those of Alaska's Prudhoe Bay. Geological debates concerning the merits of the vast areas continues. Seismic data and geological studies indicate that the area holds considerable promise. Several large structures have been identified, and oil and gas seeps have been reported. The area's true potential, however, will be revealed only by drilling, which is both risky and expensive. Several wildcat drilling operations are underway but the area's hydrocarbon potential may not be released for several years.

  6. Reconnaissance geology of the Jabal Dalfa Quadrangle, sheet 21/43 C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1983-01-01

    The Jabal Dalfa quadrangle (sheet 21/43 C) is part of the Najd province in west-central Saudi Arabia. The quadrangle is mostly a plain, tilted gently northeastward, but local inselbergs and two areas of dissected uplands rise as much as 200 m above the plain. Wadi Bishah and Wadi Ranyah terminate in the quadrangle. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, and plutonic rocks. The gneiss outcrops in the northeast and east-central parts of the quadrangle are apparently the oldest rocks. After they were emplaced, a wide variety of metavolcanic and metasedimentary rocks were deposited at Jabal Dalfa and Umm Shat, and in the northeast part of the quadrangle as the Arfan formation. Subsequently, granite gneiss was emplaced in the west part of the quadrangle and intruded by gabbro. Metabasalt and meta-andesite were extruded in a wide north-trending belt through the middle of the quadrangle and at Jabal Silli. Intrusion of small bodies of granitic rocks and Najd faulting conclude the Precambrian history of the area. Surficial deposits include sand and gravel covering the plains, alluvial fans, and voluminous dune sands. In the southeast part of the quadrangle, the layered rocks strike north and dip steeply. They are oriented parallel to the Nabitah fault zone. In the northeast and east-central parts of the quadrangle, layered rocks and gneiss are sheared into slices by the southernmost faults of the major Najd fault zone. Bedding and foliation in these slices strike northwest, parallel to the faults. Gneiss in the west part of the quadrangle also strikes northwest, and dips steeply to vertically; layered rocks underlying Jabal Silli strike northeast. Layered metamorphic rocks in the Jabal Dalfa quadrangle are mostly in the greenschist facies. Projection of data from other quadrangles suggests that the oldest gneiss is about 780 Ma old and the Arfan formation, Umm Shat, and Jabal Dalfa layered rocks are about 775 to 745 Ma old. The gneiss of Shaib Hadhaq is probably about 720 Ma old, the gabbro is 640 to 625 Ma old, and the granite is about 600 Ma old. The airborne magnetometer survey suggests that considerable additional gabbro underlies the west part of the quadrangle. Concealed serpentinite bodies, particularly in the Nabitah fault zone, are also suggested. Elongate anomalies and linear gradients indicate that the northeast part of the quadrangle is probably part of the Najd fault zone. A number of gold-bearing quartz veins in the quadrangle were mined in ancient times, and on, at Jabal Umm Matirah has been drilled and found to be uneconomic. A nickel-copper prospect has proved uneconomic. geochemical survey for additional deposits of metals was completed in 1982.

  7. Preliminary report of investigations of springs in the Mogollon Rim region Arizona

    USGS Publications Warehouse

    Feth, J.H.

    1954-01-01

    The Geological Survey has made a reconnaissance of springs in the Mogollon Rim region in central Arizona. This region is the source of much of the water in the Gila, Salt, and Verde Rivers. The region has not previously been systematically studied with respect to the occurrence of ground water. The Mogollon Rim is an escarpment that extends about 200 miles in a northwest direction from near Clifton and Morenci in southeastern Arizona and gradually disappears north of Prescott. Lumbering, ranching, and in local areas copper mining are the principal industries. Main lines of drainage extend north on the plateau, north of the rim, and south or southwest below the rim. For convenience in discussion and because of structural differences, the region has been separated into western, central, and eastern divisions. Pre-Cambrian to Recent rocks crop out. Pre-Cambrian formations and those of Paleozoic age constitute the thickest sections. Recent basalt flows cap the plateau portion, except in the central part of the region. Large areas in valleys below the rim are occupied by lake-bed deposits. The valleys are aligned northwest, suggesting the possibility that a structural trough extends almost the full length of the rim southwest of the scarp. In some areas, erosion has caused recession of the escarpment for distances of a few miles to 10 or 15 miles from the major rim faults. The origin of late deposits of sodium Sulfate in the Verde basin has not been adequately, explained. As the salts are concentrated near mineralized districts on the southwest side of the basin, a possible genetic relationship between the two should be considered. Pre-Cambrian granite and basalt of probable Tertiary and Quaternary age are the igneous rocks most widely exposed in the region. Diabase dikes and sills are prominent in some areas; they were intruded probably during Late Cambrian time. A thickness of 2,000 feet of volcanic rocks of probable Cretaceous and Tertiary age is exposed in one area along the rim, but these rocks as yet have not been studied in detail. A hypothetical relationship is advanced to explain the coincidence in estimated volumes of rock erupted in the San Franciscan volcanic field and the volumes displaced by subsidence of the Verde basin. Fold structures are relatively uncommon in the region and are of small extent except the Holbrook dome northwest of Snowflake. High-angle faults, for the most part normal, are the most prominent structures identified. Faults parallel to the rim have been mapped in several areas. The inferred relations are shown on three diagrammatic sections. These faults are thought to account for the presence of two rims in the eastern division, and perhaps as many as three near Payson. Major orogeny in the region is believed to have occurred four times, as follows: (1) In the pre-Cambrian; (2) in Miocene(?) time southwest of the Mogollon escarpment; (3) in Pliocene (?) time at least in the Flagstaff area, and; (4) at or near the beginning of Quaternary time. The Laramide structures, prominent elsewhere on the plateau, are reflected only weakly in the rim region, so far as is known. Studies of perennial base flow of major streams draining southward from the rim indicate a sustained yield of about 175 cfs (cubic feet per second) measured at existing gaging stations. Runoff records and partial seepage runs show a loss of water between the upper reaches of the streams and the storage reservoirs. There is a general tendency for the water to become progressively more highly mineralized with increasing distance from headwater springs. Natural lakes, ponds, swamps, and cienagas are common in the eastern and western divisions of the rim. They lose considerable water, and some are fully desiccated each summer. They are of little use in their present condition, but might be developed as natural water catches from which recharge co

  8. Over 400 m.y. metamorphic history of the Fennoscandian lithospheric segment in the Proterozoic (the East European Craton)

    NASA Astrophysics Data System (ADS)

    Skridlaite, G.; Bogdanova, S.; Taran, L.; Baginski, B.; Krzeminska, E.; Wiszniewska, J.; Whitehouse, M.

    2009-04-01

    Several Palaeoproterozoic terranes in the Fennoscandian lithospheric segment of the East European Craton (EEC) evolved differently prior to their final amalgamation at c. 1.8 Ga. South-westward younging of the major tectono-thermal events characterizes the Baltic -Belarus region between the Baltic and Ukrainian Shields of the EEC. While at c.1.89-1.87 Ga and 1.85-1.84 Ga rocks of some northern and eastern terranes (Estonia, Belarus and eastern Lithuania) experienced syncollisional, moderate P metamorphism, subduction-related volcanic island arc magmatism still dominated southwestern terranes in Lithuania and Poland. The available age determinations of metamorphic zircon (SIMS/NORDSIM and TIMS methods, Stockholm, SHRIMP method, RSES, ANU, Canberra) and metamorphic monazite (TIMS, Stockholm and EPMA method, Warsaw University) allow to distinguish several metamorphic events related to major orogenic processes: - 1.90-1.87 Ga amphibolite-facies H/MP metamorphism occurred along with emplacements of juvenile TTG-type granitoids in the North Estonian and Lithuanian-Belarus terranes. They are coeval with the main accretionary growth of the crust in the Svecofennian Domain in the Baltic Shield (e.g. Lahtinen et al., 2005). - 1.84-1.79 Ga high-grade metamorphism affected sedimentary and igneous rocks in almost all the terranes and is assumed to have been related to the major aggregation of the EEC (Bogdanova et al, 2006, 2008). In the metasedimentary granulites of western Lithuania, a prograde metamorphism commenced with monazite growth prior garnet at 1.84-1.83 Ga. The sediments and mafic igneous rocks in Lithuania, felsic igneous rocks in NE Poland underwent peak metamorphism and deformation at 1.81-1.79 Ga (zircon and monazite ages). The 1.83-1.79 Ga metamorphism has the same age as a metamorphic imprint and strong shearing of the crust in central Sweden (Andersson et al., 2004). The postcollisional granulite metamorphism of mafic intrusions at 1.80-1.79 Ga in Belarus indicates that the NW-SE collision can have triggered the crustal/mantle disturbance along the Fennoscandia-Sarmatia suture zone. - c. 1.7-1.6 Ga moderate PT metamorphic overprint and deformation of 1.83-1.82 Ga magmatic charnockites and c. 1.8 Ga metamorphic granulites in western Lithuania was recorded by the growth of a new garnet, zircon and monazite. The dated charnockites and metasediments contain metamorphic monazite of both 1.60-1.59 Ga and 1.7-1.65 Ga ages. These metamorphic events can reflect a distal influence of the 1.7-1.6 Ga Gothian orogeny in SW Fennoscandia (e.g. Ahall and Connelly, 2008). - 1.55-1.50 and 1.50-1.45 Ga events. In southern Lithuania, the 1.53-1.50 Ga AMCG magmatism was accompanied by high-grade metamorphism. Deformation and amphibolite facies metamorphism are marked by the 1.55-1.45 Ga 40Ar/39Ar ages of hornblende along EW-trending lineaments in central and southeastern Lithuania and Belarus. There are also indications of shearing and low grade, c. 1.50 Ga, metamorphism of metasedimentary rocks and charnockites in NW Lithuania and NE Poland. Altogether, the coeval AMCG magmatism, local high-grade and widespread low-grade metamorphism, and deformation can be manifestations of the Danopolonian orogeny, particularly prominent around the South Baltic Sea. This is a contribution to the project "The Precambrian structure of Baltica as a control of its recent environment and evolution" of the Visby Programme (the Swedish Institute) and SYNTHESYS project SE-TAF-1535. References Ahall, K.I. and Connelly, J.N., 2008. Precambrian Research, 161(3-4): 452-474. Andersson, U.B. et al., 2004, GFF 126, 16-17. Bogdanova, S. et al., 2006, Geological Society, London Memoirs, 32, pp. 599-628 Bogdanova, S. et al., 2008, Precambrian Research 160, 23-45. Lahtinen, R., et al., 2005. In: Precambrian Geology of Finland - Key to the Evolution of the Fennoscandian Shield. Elsevier, Amsterdam, 481-532

  9. A Coast Mountains provenance for the Valdez and Orca groups, southern Alaska, based on Nd, Sr, and Pb isotopic evidence

    USGS Publications Warehouse

    Farmer, G.L.; Ayuso, R.; Plafker, G.

    1993-01-01

    Nd, Sr, and Pb isotopic data were obtained for fourteen fine- to coarse-grained samples of accreted flysch of the Late Cretaceous and early Tertiary Valdez and Orca Groups in southern Alaska to determine the flysch provenance. Argillites and greywackes from the Orca Group, as well as compositionally similar but higher metamorphic grade rocks from the Valdez Group, show a restricted range of correlated ??{lunate}Nd ( -0.6 to -3.8) and 87Sr 86Sr (0.7060-0.7080) at the time of sediment deposition ( ??? 50 Ma). Pb isotopic compositions also vary over a narrow range ( 206Pb 204Pb = 19.138-19.395, 207Pb 204Pb = 15.593-15.703, 208Pb 204Pb = 38.677-39.209), and in the Orca Group the samples generally become more radiogenic with decreasing ??{lunate}Nd and increasing 87Sr 86Sr. All samples have similar trace element compositions characterized by moderate light rare earth element enrichments, and low ratios of high field strength elements to large ion lithophile elements. Based on petrographic, geochemical, and isotopic data the sedimentary rocks are interpreted to have been derived largely from a Phanerozoic continental margin arc complex characterized by igneous rocks with ??{lunate}Nd values between 0 and -5. The latter conclusion is supported by the ??{lunate}Nd values of a tonalite clast and a rhyodacite clast in the Orca Group (??{lunate}Nd = -4.9 and -0.9, respectively). However, trondjemitic clasts in the Orca Group have significantly lower ??{lunate}Nd ( ??? -10) and require a derivation of a portion of the flysch from Precambrian crustal sources. The Nd, Sr, and Pb isotopic compositions of both the Valdez and Orca Groups overlap the values determined for intrusive igneous rocks exposed within the northern portion of the Late Cretaceous to early Tertiary Coast Mountains Plutonic Complex in western British Columbia and equivalent rocks in southeastern Alaska. The isotopic data support previous conclusions based on geologic studies which suggest that the flysch was shed from this portion of the batholith, and from overlying continental margin arc-related volcanic rocks, following its rapid uplift in the Late Cretaceous and early Tertiary. The Precambrian crustal material present in the flysch may have been derived from Late Proterozoic or older metasedimentary and metaigneous rocks now exposed along the western margin of the Coast Mountains Plutonic Complex. ?? 1993.

  10. Age and tectonic setting of Mesozoic metavolcanic and metasedimentary rocks, northern White Mountains, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. Brooks; Saleeby, Jason B.; Fates, D. Gilbert

    1987-11-01

    Mesozoic metavolcanic and metasedimentary rocks in the northern White Mountains, eastern California and western Nevada, are separated from lower Paleozoic and Precambrian rocks by Jurassic and Cretaceous plutons. The large stratigraphic hiatus across the plutons is called the Barcroft structural break. Recent mapping and new U/Pb zircon ages of 154 +3/-1 Ma and 137 ±1 Ma. from an ash-flow tuff and a hypabyssal intrusion, respectively, indicate that part of the Mesozoic section and the Barcroft structural break are younger than the 160 165 Ma Barcroft Granodiorite, in contrast to previous interpretations. The Barcroft Granodiorite has been thrust westward over most of the Mesozoic section. It is everywhere in fault contact with overturned metasedimentary rocks on the west side of the range, rocks which were previously thought to be upright and the oldest part of the Mesozoic section. The McAfee Creek Granite, which has a 100 ±1 Ma U/Pb zircon age, postdates thrusting; therefore, the Barcroft structural break is primarily Early Cretaceous in age. *Present addresses: Hanson—Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560; Fates—Dames & Moore, 455 S. Figueroa Street, Suite 3504, Los Angeles, California 90074

  11. Reconnaissance for radioactive materials in the southern part of Brazil

    USGS Publications Warehouse

    Pierson, Charles T.; Haynes, Donald D.; Filho, Evaristo Ribeiro

    1957-01-01

    During 1954-1956 a reconnaissance for radioactive minerals was made with carborne, airborne and handborne scintillation equipment in the southern Brazilian states of Rio de Janeiro, Sao Paulo, Parana, Santa Catarina and Rio Grande do Sul. During the traverse covering more than 5,000 kilometers the authors checked the radioactivity of Precambrian igneous and metamorphic rocks, Paleozoic, Mesozoic and Cenozoic sedimentary rocks, and Mesozoic alkalic intrusive and basaltic extrusive rocks. The 22 samples collected contained from 0.003 to 0.029 percent equivalent uranium oxide and from 0.10 to 0.91 percent equivalent thorimn; two samples were taken from radioactive pegmati tes for mineralogic studies. None of the localities is at present a commercial source of uranium or thorium; however, additional work should be done near the alkalic stock at Lages in the State of Santa Catarina and at the Passo das Tropas fossil plant locality near Santa Maria in the state of Rio Grande do Sul. Near Lages highly altered alkalic rock from a dike contained 0.026 percent uranium oxide. At Passo das Tropas highly altered, limonite-impregnated sandstone from the Rio do Rasto group of sedimentary rocks contained 0.029 percent uranium oxide.

  12. Geology of the Anderson Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Withington, C.F.

    1953-01-01

    The Anderson Mesa quadrangle is one of the eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteenth quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quarternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-tending folds. Conspicuous among the folds are large anticlines having cores of intrusive slat and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing many thousands of tons. The ore consists of largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  13. Landslides triggered by the 8 October 2005 Kashmir earthquake

    USGS Publications Warehouse

    Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A.

    2008-01-01

    The 8 October 2005 Kashmir earthquake triggered several thousand landslides. These were mainly rock falls and debris falls, although translational rock and debris slides also occurred. In addition, a sturzstrom (debris avalanche) comprising ??? 80??million m3 buried four villages and blocked streams to create two lakes. Although landsliding occurred throughout the region, covering an area of > 7500??km2, the failures were highly concentrated, associated with six geomorphic-geologic-anthropogenic settings, including natural failures in (1) highly fractured carbonate rocks comprising the lowest beds in the hanging wall of the likely earthquake fault; (2) Tertiary siliciclastic rocks along antecedent drainages that traverse the Hazara-Kashmir Syntaxis; (3) steep (> 50??) slopes comprising Precambrian and Lower Paleozoic rocks; (4) very steep (?? 50??) lower slopes of fluvially undercut Quaternary valley fills; and (5) ridges and spur crests. The sixth setting was associated with road construction. Extensive fissuring in many of the valley slopes together with the freshly mobilized landslide debris constitutes a potential hazard in the coming snowmelt and monsoon seasons. This study supports the view that earthquake-triggered landslides are highly concentrated in specific zones associated with the lithology, structure, geomorphology, topography, and human presence. ?? 2007 Elsevier B.V. All rights reserved.

  14. Jakob Johannes Sederholm

    NASA Astrophysics Data System (ADS)

    Eklund, O.; Korsman, K.; Scheinin, B.

    2010-05-01

    Jakob Johannes Sederholm (1863-1934) was one of the more influential pioneers in Precambrian geology having introduced some fundamental insights and concepts which are still relevant today. Towards the end of the 19th century, he demonstrated how the principle of actualism can be applied to Precambrian terranes, while during the early part of the 20th century he undertook detailed studies on deformed magmatic rocks, both defining and interpreting the enigmatic mixed rocks now known as migmatites. He acted as the head of the Geological Survey of Finland for 40 years, which developed under his leadership into a modern progressive and versatile research organization. In addition, Sederholm also served as a diplomat with a number of international assignments, including appointments with the League of Nations in missions in Albania and a supervisory role relating to sovereignty and autonomy issues in the Åland Island. Several mountains in Greenland have been named after him and his family, and he was also appointed as honorary chief of two Indian tribes in Canada. To understand the driving forces behind a man of his kind, we focus here on Sederholm the person and some of the social and cultural background that influenced his career. This text is based on the book, published in Swedish, entitled "Jakob Johannes Sederholm, Geolog, humanist och sanningssökare" (Scheinin and Korsman, 2007), and an interview with J.J. Sederholm's granddaughter Barbro Scheinin by Eklund (2008). Other references are marked in the text. The first author is responsible for all translations from Swedish, Norwegian, German and Finnish.

  15. Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton: Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America

    NASA Astrophysics Data System (ADS)

    D'Agrella-Filho, Manoel S.; Tohver, Eric; Santos, João O. S.; Elming, Sten-Åke; Trindade, Ricardo I. F.; Pacca, Igor I. G.; Geraldes, Mauro C.

    2008-03-01

    We apply a new diagenetic dating technique to determine the age of magnetization for Precambrian sedimentary rocks in the SW Amazon craton. Two new paleomagnetic poles are reported from the rocks of the Aguapeí Gp.: red beds of the Fortuna Fm. (Plat = 59.8°N, Plon = 155.9°E, A95 = 9.5, K = 14, 18 sites, N/n 128/115, Q = 5) and the reverse-polarity mudstones of the overlying Vale da Promissão Formation (Plat = 49.5°N, Plon = 89.3°E, A95 = 12.5, K = 30, 6 sites, N/n = 94/80, Q = 4). The Fortuna Fm. magnetization is hosted by massive, interstitial hematite cement and constitutes a post-depositional remanence. The age of diagenesis of the red beds is well-constrained by the 1149 ± 7 Ma U-Pb age of authigenic xenotime rims on detrital zircons determined by SHRIMP analysis. The magnetite-hosted remanence of the Vale da Promissão Fm. may be detrital in origin, but the age of deposition is poorly constrained. The reliable and precisely-dated Fortuna Fm. paleomagnetic pole fixes the paleogeographic position of the Amazon craton near the SE Appalachians portion of North America at 1.15 Ga. These data demonstrate a mobile Grenvillian link between these two cratons, and support the recent identification of Amazon crust in the Blue Ridge province region of North America.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Durango NTMS quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, H.E.; Weaver, T.A.

    1979-01-01

    During the spring and summer of 1976, 1518 water and 1604 waterborne sediment samples were collected from 1804 locations in the Durango NTMS quadrangle, Colorado. The samples obtained from this 19 940-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppB to 25.7 ppB, with a mean value of 0.84 ppB. The concentrations in sediments ranged from 1.0 ppM to 71.6 ppM, with a mean value of 4.2 ppM. Study of total water and total sediment populations indicated that both aremore » actually mixtures of several populations. Consequently, samples were chosen for discussion on the basis of their having conspicuously high uranium concentrations relative to surrounding background values. Thirty-four water samples (approximately 2.2% of the total water population) had uranium concentrations above 5.00 ppB, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3% of the total sediment population) had uranium concentrations above 12.0 ppM. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and Mesozoic strate and Tertiary volcanics. The uranium concentrations in sediment samples from areas of Precambrian rock were especially high and these areas may warrant further, more detailed investigations.« less

  17. Deducing the ancestry of terranes: SHRIMP evidence for South America derived Gondwana fragments in central Europe

    NASA Astrophysics Data System (ADS)

    Friedl, Gertrude; Finger, Fritz; McNaughton, Neal J.; Fletcher, Ian R.

    2000-11-01

    We present here an example of how the sensitive high-resolution ion microprobe (SHRIMP) zircon dating method can provide a terrane-specific geochronological fingerprint for a rock and thus help to reveal major tectonic boundaries within orogens. This method, applied to inherited zircons in a ca. 580 Ma metagranitoid rock from the eastern Bohemian Massif, has provided, for the first time in the central European Variscan basement, unequivocal evidence for Mesoproterozoic and late Paleoproterozoic geologic events ca. 1.2 Ga, 1.5 Ga, and 1.65 1.8 Ga. The recognition of such zircon ages has important consequences because it implies that parts of the Precambrian section of Variscan central Europe were originally derived from a Grenvillian cratonic province, as opposed to the common assumption of an African connection. A comparison with previously published SHRIMP data suggests, however, that these Mesoproterozoic and late Paleoproterozoic zircon ages may be restricted to the Moravo-Silesian unit in the eastern Variscides, whereas the Saxothuringian and Moldanubian zones appear to contain a typical north African (i.e., Neoproterozoic plus Eburnian) inherited-zircon age spectrum. This finding supports new tectonic concepts, according to which Variscan Europe is composed of a number of completely unrelated terranes with extremely different paleogeographic origins. The Moravo-Silesian unit can be best interpreted as a peri-Gondwana terrane, which was situated in the realm of the Amazonian cratonic province by the late Precambrian, comparable to the Avalonian terranes of North America and the United Kingdom.

  18. Aeromagnetic map of the Arnold Mesa Roadless Area, Yavapai County, Arizona

    USGS Publications Warehouse

    Davis, Willard E.; Wolfe, Edward W.

    1983-01-01

    The Arnold Mesa Roadless Area is within the transition zone between the Colorado Plateaus to the northeast and the Basin and Range province to the southwest. The transition zone is a belt about 701 miles (120 km) wide that extends diagonally from northwest to south east across central Arizona and parallels the topographic margin of the plateaus. The study area is underlain by Precambrian rocks and gently dipping Paleozoic strata that are largely covered by basaltic lavas and pyroclastic deposits of Miocene age ( McKee and Anderson, 1971). Dacite breccia and tuff are locally interbedded with the basaltic rocks. Sedimentary deposits of late Cenozoic age are dominant in the Verde Valley from about Chasm Creek north; they accumulated in a depositional basin bounded on the west by the Verde fault.

  19. The rock components and structures of Archean greenstone belts: An overview

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1986-01-01

    Knowledge of the character and evolution of the Earth's early crust is derived from the studies of the rocks and structures in Archean greenstone belts. Ability to resolve the petrologic, sedimentological and structural histories of greenstone belts, however, hinges first on an ability to apply the concepts and procedures of classical stratigraphy. Unfortunately, early Precambrian greenstone terrains present particular problems to stratigraphic analysis. Many current controversies of greenstone belt petrogenesis, sedimentology, tectonics and evolution arise more from an inability to develop a clear stratigraphic picture of the belts than from ambiguities in interpretation. Four particular stratigraphic problems that afflict studies of Archean greenstone belts are considered: determination of facing directions, correlation of lithologic units, identification of primary lithologies and discrimination of stratigraphic versus structural contacts.

  20. IDAHO WILDERNESS, IDAHO.

    USGS Publications Warehouse

    Cater, Fred W.; Weldin, R.D.

    1984-01-01

    Mineral surveys conducted in the Idaho Wilderness identified 28 areas with probable or substantiated mineral-resource potential, and 5 mines with demonstrated or inferred resources. Metals including gold, silver, copper, lead, zinc, and tungsten, have been extracted from deposits inside the wilderness. Current studies indicate additional areas of probable mineral-resource potential for gold, tungsten, mercury, rare-earth elements, and base metals related to intrusive rocks that follow structures formed by cauldron subsidence. These on-going studies also indicate that there is probable and substantiated resource potential for cobalt with copper, silver, and gold in the Precambrian rocks in the northeastern part of the wilderness in a geologic environment similar to that of the Blackbird mine that lies outside the area. The nature of the geologic terrane precludes the potential for organic fuels.

  1. Study of the gas contents of rocks: An approach to the evolution of atmospheres on the earth and planets

    NASA Technical Reports Server (NTRS)

    Barker, C.

    1972-01-01

    A high vacuum system was built for extracting volatiles from rocks either by heating or crushing, and preliminary analyses of the volatiles were made for selected terrestrial basalts and granites. The apparatus and experimental procedures are described, and the major problems associated with water measurement and choice of argon to replace neon as the internal standard are discussed. Preliminary analyses of granites and basalts indicate the following: All analyses lie in the H2O-CO2-CO triangle on a C-H-O ternary diagram. The compositions of the volatiles plot in distinct, but overlapping, areas of the C-H-O diagram. Pre-Cambrian granites have a higher volatile content than younger granites. Continental basalts have a higher volatile content than oceanic basalts.

  2. Geology of the north end of the Ruby Range, southwestern Montana

    USGS Publications Warehouse

    Tysdal, Russell G.

    1970-01-01

    This study consists of two parts: stratigraphy and sedimentation, and structure of rocks in the northern one-third of the Ruby Range of southwestern Montana. Detailed studies of Cambrian marine dolomite rocks in the Red Lion Formation and in the upper part of the Pilgrim Limestone resulted in their division into distinct rock units, termed lithofacies. These lithofacies contain features suggestive of subtidal, intertidal, and supratidal environments similar to those presently forming in the Persian Gulf. Stromatolltic structures occurring in the uppermost part of the Red Lion Formation are similar to those presently forming in Shark Bay, Australia. The Ruby Range within the map area is broken into a series of northwest-plunging basement (Precambrian metamorphic rock) blocks, differentially uplifted during the Cretaceous-Tertiary orogenic period. These blocks are bordered by upthrust faults, which are nearly vertical in their lower segments and are .low-angle in their uppermost parts. Asymmetrical folds in Paleozoic sedimentary rocks formed in response to the differential uplift of the blocks; thus they too plunge to the northwest. Displaced masses of rock border the range on the three sides within the map area and are interpreted as gravity-slide features resulting from uplift of the range. Normal faulting began blocking out the present range margins by Oligocene time.

  3. Mineral investigations in the Jabal Radwa quadrangle, northwest Hijaz, Saudi Arabia

    USGS Publications Warehouse

    Johnson, Robert Francis; Trent, Virgil A.

    1968-01-01

    Wadi sediments in the Jabal Radwa quadrangle in the Northwest Hijaz were sampled for trace element analysis as part of a mineral reconnaissance of Western Saudi Arabia that is being made by the Ministry of Petroleum and Mineral Resources and the U.S. Geological Survey. The Jabal Radwa quadrangle lies between 24?30? and 25?N. latitude and between 38? and 39? longitude. A photomosaic base at a scale of 1:100,000 was used for map compilation. Except for basalt flows of Tertiary or Quaternary age all the rocks of the area are believed to be of Precambrian age. An older group of slightly metamorphosed mafic and felsic volcanic rocks with interbedded metasedimentary rocks is unconformably overlain by argillite and slightly metamorphosed sandstone and conglomerate. The bedded rocks are cut by many intrusions that range in composition from olivine gabbro to syenite but are predominantly granite, granodiorite, and diorite. Little is known of the structure of the rocks. The layered rocks are strongly folded and commonly dip at high angles. Faults are common and many appear to be large; some contacts have been offset several hundred meters. Most of the larger faults trend northeasterly or northwesterly but some trend east and others nearly north.

  4. Adjusting stream-sediment geochemical maps in the Austrian Bohemian Massif by analysis of variance

    USGS Publications Warehouse

    Davis, J.C.; Hausberger, G.; Schermann, O.; Bohling, G.

    1995-01-01

    The Austrian portion of the Bohemian Massif is a Precambrian terrane composed mostly of highly metamorphosed rocks intruded by a series of granitoids that are petrographically similar. Rocks are exposed poorly and the subtle variations in rock type are difficult to map in the field. A detailed geochemical survey of stream sediments in this region has been conducted and included as part of the Geochemischer Atlas der Republik O??sterreich, and the variations in stream sediment composition may help refine the geological interpretation. In an earlier study, multivariate analysis of variance (MANOVA) was applied to the stream-sediment data in order to minimize unwanted sampling variation and emphasize relationships between stream sediments and rock types in sample catchment areas. The estimated coefficients were used successfully to correct for the sampling effects throughout most of the region, but also introduced an overcorrection in some areas that seems to result from consistent but subtle differences in composition of specific rock types. By expanding the model to include an additional factor reflecting the presence of a major tectonic unit, the Rohrbach block, the overcorrection is removed. This iterative process simultaneously refines both the geochemical map by removing extraneous variation and the geological map by suggesting a more detailed classification of rock types. ?? 1995 International Association for Mathematical Geology.

  5. The geology of a part of Acadia and the nature of the Acadian orogeny across Central and Eastern Maine

    USGS Publications Warehouse

    Tucker, R.D.; Osberg, P.H.; Berry, H.N.

    2001-01-01

    The zone of Acadian collision between the Medial New England and Composite Avalon terranes is well preserved in Maine. A transect from northwest (Rome) to southeast (Camden) crosses the eastern part of Medial New England comprising the Central Maine basin, Liberty-Orrington thrust sheet, and Fredericton trough, and the western part of Composite Avalon, including the Graham Lake, Clarry Hill, and Clam Cove thrust sheets. U-Pb geochronology of events before, during, and after the Acadian orogeny helps elucidate the nature and distribution of tectonostrati& graphic belts in this zone and the timing of some Acadian events in the Northern Appalachians. The Central Maine basin consists of sedimentary and volcanic rocks of Middle Ordovician (???470 to ???460 Ma) age overlain with probable conformity by latest Ordovician(?) through earliest Devonian marine rift and flysch sedimentary rocks; these are intruded by weakly to undeformed plutonic rocks of Early and Middle Devonian age (???399??378 Ma). The Fredericton trough consists of Early Silurian gray pelite and sandstone to earliest Late Silurian calcareous turbidite, deformed and variably metamorphosed prior to the emplacement of Late Silurian (???422 Ma) and Early to Late Devonian (???418 to ???368 Ma) plutons. The Liberty-Orrington thrust sheet consists of Cambrian(?)-Ordovician (>???474 to ???469 Ma and younger) clastic sedimentary and volcanic rocks intruded by highly deformed Late Silurian (???424 to ???422 Ma) and Devonian (???418 to ???389 Ma) plutons, possibly metamorphosed in Late Silurian time (prior to ???417 Ma), and metamorphosed to amphibolite facies in Early to Middle Devonian time (???400 to ???381 Ma). The Graham Lake thrust sheet contains possible Precambrian rocks, Cambrian sedimentary rocks with a volcanic unit dated at ???503 Ma, and Ordovician rocks with possible Caradocian Old World fossils, metamor& phosed and deformed in Silurian time and intruded by mildly to undeformed Late Silurian (???421 Ma) and Late Devonian (???371 to ???368 Ma) plutons. The Clarry Hill thrust sheet consists of poorly studied, highly metamorphosed Cambrian(?) rocks. The Clam Cove thrust sheet contains highly deformed Precambrian limestone, shale, sandstone, and conglomerate, metamorphosed to epidote amphibolite facies and intruded by a mildly deformed pluton dated at ???421 Ma. Metamorphism, deformation, and voluminous intrusive igneous activity of Silu& rian age are common to both the most southeastern parts of Medial New England and the thrust sheets of Composite Avalon. In contrast to Medial New England, the thrust sheets of Composite Avalon show only modest effects of Devonian deformation and metamorphism. Regional stratigraphic relations, paleontologic findings, and U-Pb geochronology suggest that the Graham Lake, Clarry Hill, and Clam Cove thrust sheets are far-traveled allochthons that were widely separated from Medial New England in the Silurian.

  6. Preliminary report on uranium and thorium content of intrusive rocks in northeastern Washington and northern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castor, S.B.; Berry, M.R.; Robins, J.W.

    1977-11-01

    This study delineates favorable areas for uranium resources in northeastern Washington and northern Idaho by identifying granitic rocks with relatively large amounts of uranium and (or) thorium. Results are based on analysis of 344 rock samples. Uranium analyses obtained by gamma-ray spectrometric data correlate closely with fluorometric determinations. On the basis of cumulative frequency distribution curves, more than 8 ppM equivalent uranium and more than 20 ppM equivalent thorium are considered anomalous for granitic rocks in northeastern Washington and northern Idaho. Granitic rocks anomalously high in uranium and (or) thorium are concentrated in two northeast-trending belts. The most prominent, themore » Midnite-Hall Mountain belt, includes the Midnite and Sherwood uranium mines, and two lesser but productive areas farther north. This belt follows the contact between Precambrian and Paleozoic rocks, which is also the locus of the Kootenai arc fold belt. The second belt of anomalously radioactive granitic rocks is along the Republic graben, a prominent linear structure in an area with no recorded uranium production. Anomalously radioactive granitic rocks are generally massive quartz monzonite, alaskite, or pegmatite, which contain abundant quartz and potash feldspar. They are also characterized by pink potash feldspar, commonly as large phenocrysts, and by the presence of muscovite. Several uranium and thorium minerals have been identified in these rocks. The two belts of anomalously radioactive plutons are considered favorable for uranium resources. Deposits could occur in the intrusive rocks themselves or in favorable environments in adjacent rocks. 13 figs., 2 tables.« less

  7. Map showing structure of the Mississippi Valley Graben in the vicinity of New Madrid, Missouri

    USGS Publications Warehouse

    Wheeler, Russell L.; Rhea, Susan; Dart, Richard L.

    1994-01-01

    This is one of a series of five seismotectonic maps of the seismically active New Madrid area in southeast Missouri and adjacent parts of Arkansas, Kentucky, and Tennessee (table 1). We cannot legibly show all the seismotectonic data on a single map, therefore each of the five maps in this series groups a different type of related information. Rhea and others (1994) summarized the background and purpose of the seismotectonic map folio. The different types of data shown on this map are described in table 2. Except for a few exposed faults, all structures shown on the map are in Paleozoic sedimentary rocks of the midcontinent or underlying metamorphic and igneous basement rocks of presumed Precambrian age (Dart, 1992; Muehlberger, 1992). Edge of Mississippi Embayment, as shown on the map, marks the contact between gently dipping, exposed Paleozoic rocks to the northwest (Anderson and others, 1979) and unconformably overlying, flat or gently dipping Mesozoic and Cenozoic strata of the embayment to the southeast.

  8. Tectonic implications of Archean anorthosite occurrences

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.; Maczuga, D. E.

    1988-01-01

    The occurrences of megacrystic anorthosite and basalt in a variety of geologic settings were reviewed and it was found that these rock types occur in a variety of tectonic settings. Anorthosites and megacrystic basalts are petrogenetically related and are found in oceanic volcanic crust, cratons, and shelf environments. Although megacrystic basalts are most common in Archean terranes, similar occurrences are observed in rocks of early Proterozoic age, and even in young terranes such as the Galapagos hotspot. Based on inferences from experimental petrology, all of the occurrences are apparently associated with similar parental melts that are relatively Fe-rich tholeiites. The megacrystic rocks exhibit a two- (or more)-stage development of plagioclase, with the megacrysts having relatively uniform composition produced under nearly isothermal and isochemical conditions over substantial periods of time. The anorthosites appear to have intruded various crustal levels from very deep to very shallow. The petrogenetic indicators, however, suggest that conditions of formation of the Precambrian examples were different from Phanerozoic occurrences.

  9. Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.

    1974-01-01

    Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.

  10. Unique Approach to Hydraulic Characterization at an Underground Lab

    NASA Astrophysics Data System (ADS)

    Jones, T. L.; Wang, J. S.

    2009-12-01

    The Sanford Underground Laboratory is the interim lab for the future federally funded DUSEL (Deep Underground Science and Engineering Lab). The Sanford Lab took over the abandoned Homestake mine in Lead, SD. Over three hundred miles of drift, extending 8,000 feet below the surface, are now being used to house experiments in disciplines including physics, geology, and biology. The lab is situated in Precambrian metamorphic rocks intersected by Tertiary dike swarms. Three relevant geologic units are defined within the Precambrian rock system; all of which are interpreted to be metamorphosed igneous and sedimentary deposits. The Sanford Lab provides a unique environment to study several aspects of hydrogeology and hydrology; including geochemistry, hydraulic systems in fractured aquifers, and fluvial activity within mine workings. Aquifer characteristics housing the mine workings’ is important to define for future and present research at the underground lab. Outlined here is a unique approach to defining the matrix porosity within the fractured aquifer system. The Homestake mine was abandoned and the pump system keeping the mine dry was turned off in 2003. Over the course of the next five years the water level rose 3470 feet. Oxidation of iron from the water left a red staining on the submerged rocks. Hydrological observations are conducted on different levels throughout the Homestake facility as the water levels are lowered. Isolated air pockets and long stretches of unstained areas along the roof of drifts have been observed, together with less frequent occurrences of seepages. These observations are documented to supplement hydrological monitoring and testing with sensors. The sizes and widths of the trapped air pockets are indications of low permeability values and can be used to estimate the degree of heterogeneity along drifts. It is noted that sections of long stretches of trapped air have more delayed drainages, consistent with low effective permeability values for the metamorphic rocks. The air pockets reveal a distinctive difference in size between the geologic units; the average size of the air pockets associated with different geologic units differs by an order of magnitude. The infrequent seepage observations are also consistent with the hydrological setting of this facility with low inflow rates.

  11. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    USGS Publications Warehouse

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity occurred within this area. A sinuous band of gravel deposits trending into the Livermore embayment and lying well above the present drainage is believed to represent a late Tertiary course of the Cache La Poudre river.

  12. A lead isotope study of mineralization in the Saudi Arabian Shield

    USGS Publications Warehouse

    Stacey, J.S.; Doe, B.R.; Roberts, R.J.; Delevaux, M.H.; Gramlich, J.W.

    1980-01-01

    New lead isotope data are presented for some late Precambrian and early Paleozoic vein and massive sulfide deposits in the Arabian Shield. Using the Stacey Kramers (1975) model for lead isotope evolution, isochron model ages range between 720 m.y. and 420 m.y. Most of the massive sulfide deposits in the region formed before 680 m.y. ago, during evolution of the shield. Vein type mineralization of higher lead content occurred during the Pan African event about 550 m.y. ago and continued through the Najd period of extensive faulting in the shield that ended about 530 m.y. ago. Late post-tectonic metamorphism may have been responsible for vein deposits that have model ages less than 500 m.y. Alternatively some of these younger model ages may be too low due to the mineralizing fluids acquiring radiogenic lead from appreciably older local crustal rocks at the time of ore formation. The low207Pb/204Pb ratios found for the deposits in the main part of the shield and for those in north-eastern Egypt, indicate that the Arabian craton was formed in an oceanic crustal environment during the late Precambrian. Involvement of older, upper-crustal material in the formation of the ore deposits in this part of the shield is precluded by their low207Pb/204Pb and208Pb/204Pb characteristics. In the eastern part of the shield, east of longitude 44??20???E towards the Al Amar-Idsas fault region, lead data are quite different. They exhibit a linear207Pb/204Pb-206Pb/204Pb relationship together with distinctly higher208Pb/204Pb characteristics. These data imply the existence of lower crustal rocks of early Proterozoic age that apparently have underthrust the shield rocks from the east. If most of the samples we have analyzed from this easterly region were mineralized 530 m.y. ago, then the age of the older continental rocks is 2,100??300 m.y. (2??). The presence of upper crustal rocks, possibly also of early Proterozoic age, is indicated by galena data from Hailan in South Yemen and also from near Muscat in Oman. These data are the first to indicate such old continental material in these regions. ?? 1980 Springer-Verlag.

  13. Heat flow and near-surface radioactivity in the Australian continental crust

    USGS Publications Warehouse

    Sass, J.H.; Jaeger, J.C.; Munroe, Robert J.

    1976-01-01

    Heat-flow data have been obtained at 44 sites in various parts of Australia. These include seven sites from the old (~ 2500 m.y.) Precambrian shield of Western Australia, seventeen from the younger (~ 600- 2000 m.y.) Precambrian rocks of South Australia, the Northern Territory, and Queensland, and twenty within the eastern Paleozoic and younger rocks. Thirty of the sites are located where no previous heat-flow data existed, and the remainder provide significant extensions or refinements of areas previously studied. Where the holes studied penetrated the crystalline basement rocks, or where the latter rocks were exposed within a few kilometers of the holes, the upper crustal radiogenic heat production has been estimated based on gamma-ray spectrometric determinations of U, Th, and K abundances. Three heat-flow provinces are recognized in Australia based on the linear relation (q = q* + DA0 ) between heat flow q and surface radioactivity A0. New data from the Western Australian shield support earlier studies showing that heat flow is low to normal with values ranging from 0.7 to 1.2 hfu and with the majority of values less than 1.0 hfu, and the parameters q* = 0.63 hfu and 0 = 4.5 km determined previously were confirmed. Heat flow in the Proterozoic shield of central Australia is quite variable, with values ranging between about l and 3 hfu. This variability is attributed mainly to variations in near-surface crustal radioactivity. The parameters of the heat-flow line are q* = 0.64 hfu and 0 = 11.1 km and moderately high temperatures are predicted for the lower crust and upper mantle. Previous suggestions of a band of l ow- to - normal heat flow near the coast in eastern Australia were confirmed in some areas, but the zone is interrupted in at least one region (the Sydney Basin), where heat flow is about 2.0 hfu over a large area. The reduced heat flow, q*, in the Paleozoic intrusive rocks of eastern Australia varies from about 0.8 to 2.0 hfu . This variability might be related to thermal transients associated with Late Tertiary and younger volcanic and tectonic activity, even though the relation between heat-flow values and the age of volcanism is not a simple one. Parts of the high heat-flow area in the southeast might be exploitable for geothermal energy.

  14. Investigation of Isotopic and Geochemical Evidence for an Active Planktonic Biota in the Precambrian

    NASA Technical Reports Server (NTRS)

    Kump, Lee R.

    1997-01-01

    The funded research was motivated by the earlier study of Burdett et al. (1990), who collected carbon and oxygen isotopic data from Paleoproterozoic rocks of the Northwest Territories from deep-and shallow-water facies of the Rocknest Platform. Their results displayed a possible decrease in (delta)C-13 with depth when arranged by increasing distance from the paleoshore. The most C-13-depleted samples were seafloor cements and fans from the underlying siliciclastic Odjick Formation, and slope carbonates of the Rocknest platform.

  15. The late Precambrian greening of the Earth.

    PubMed

    Knauth, L Paul; Kennedy, Martin J

    2009-08-06

    Many aspects of the carbon cycle can be assessed from temporal changes in the (13)C/(12)C ratio of oceanic bicarbonate. (13)C/(12)C can temporarily rise when large amounts of (13)C-depleted photosynthetic organic matter are buried at enhanced rates, and can decrease if phytomass is rapidly oxidized or if low (13)C is rapidly released from methane clathrates. Assuming that variations of the marine (13)C/(12)C ratio are directly recorded in carbonate rocks, thousands of carbon isotope analyses of late Precambrian examples have been published to correlate these otherwise undatable strata and to document perturbations to the carbon cycle just before the great expansion of metazoan life. Low (13)C/(12)C in some Neoproterozoic carbonates is considered evidence of carbon cycle perturbations unique to the Precambrian. These include complete oxidation of all organic matter in the ocean and complete productivity collapse such that low-(13)C/(12)C hydrothermal CO(2) becomes the main input of carbon. Here we compile all published oxygen and carbon isotope data for Neoproterozoic marine carbonates, and consider them in terms of processes known to alter the isotopic composition during transformation of the initial precipitate into limestone/dolostone. We show that the combined oxygen and carbon isotope systematics are identical to those of well-understood Phanerozoic examples that lithified in coastal pore fluids, receiving a large groundwater influx of photosynthetic carbon from terrestrial phytomass. Rather than being perturbations to the carbon cycle, widely reported decreases in (13)C/(12)C in Neoproterozoic carbonates are more easily interpreted in the same way as is done for Phanerozoic examples. This influx of terrestrial carbon is not apparent in carbonates older than approximately 850 Myr, so we infer an explosion of photosynthesizing communities on late Precambrian land surfaces. As a result, biotically enhanced weathering generated carbon-bearing soils on a large scale and their detrital sedimentation sequestered carbon. This facilitated a rise in O(2) necessary for the expansion of multicellular life.

  16. Paleomagnetic Results From the Mid-Tertiary Cripple Creek Diatreme Complex

    NASA Astrophysics Data System (ADS)

    Rampe, J. S.; Geissman, J. W.; Melker, M.

    2001-12-01

    The Cripple Creek diatreme complex, located about 30 km southwest of Pikes Peak, Colorado, is host to gold and high grade telluride deposits associated with mid-Tertiary alkaline magmatism. Formation of the diatreme took place between about 32.5 and 28.7 Ma, based on previously reported ArAr age determinations. The complex consists of breccia (the primary rock type), that was subsequently intruded by aphanitic phonolite, porphyritic phonolite, phonotephrite, and finally lamprophyre. Rocks presently at the surface were emplaced within a few kilometers of the paleosurface, followed by hydrothermal activity resulting in pervasive K metasomatism and gold mineralization. Mineralized deposits within the diatreme are currently being mined in an open pit fashion allowing for fresh three dimensional exposures of all representative rock types in the district. The Front Fange of Colorado, since cessation of northeast-directed Laramide compression, is characterized by east-west Rio Grande rift extension. Determining Laramide and younger deformation in the Front Range of Colorado is diffucult due to the dominance of Laramide structures and exposed Precambrian rocks with complex structural histories. Structures that affect the Cripple Creek diatreme complex and host Precambrian crystalline rocks clearly were active after intrusive activity and therefore reflect tectonism in the Front Range since early diatreme formation. Over 100 sites have been collected from all representative rock types in the district, with eight to ten oriented samples per site. Results indicate that the materials are capable of carrying geologically stable magnetizations and generally reveal excellent magnetization behavior using both AF and thermal methods. Many sites are associated with contact and breccia tests. Site mean directions are of both normal (D = 5.0° , I = 67.5° , α 95 = 6.4, κ = 89.2), N = 7 and reverse polarity (D = 162.2° , I = -67.3° , α 95 = 4.2, κ = 61.1) N =13; with site mean directions steeper than the expected mid-Tertiary polarity direction. Also, some sites exhibit multiple component behavior with both normal and reverse polarity magnetizations that are well defined (D = 29.7° , I = 72.5° , α 95 = 9.2, κ = 28.4) N = 10 and (D = 173.6° , I = -64.1° , α 95 = 3.1, κ = 594.8) N = 5, in aphanitic phonolite site CC89. We interpret these results to indicate that diatreme formation took place over at least one magnetic reversal and that the diatreme was modestly deformed resulting in north-side down tilting.

  17. Source rock potential in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raza, H.A.

    1991-03-01

    Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceousmore » rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.« less

  18. Petrophysics Features of the Hydrocarbon Reservoirs in the Precambrian Crystalline Basement

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina

    2014-05-01

    A prerequisite for determining the distribution patterns of reservoir zones on the section of crystalline basement (CB) is the solution of a number of problems connected with the study of the nature and structure of empty spaces of reservoirs with crystalline basement (CB) and the impact of petrological, and tectonic factors and the intensity of the secondary transformation of rocks. We decided to choose the Novoelhovskaya well # 20009 as an object of our research because of the following factors. Firstly, the depth of the drilling of the Precambrian crystalline rocks was 4077 m ( advance heading - 5881 m) and it is a maximum for the Volga-Urals region. Secondly, petrographic cut of the well is made on core and waste water, and the latter was sampled regularly and studied macroscopically. Thirdly, a wide range of geophysical studies were performed for this well, which allowed to identify promising areas of collector with high probability. Fourth, along with geological and technical studies that were carried out continuously (including washing and bore hole redressing periods), the studies of the gaseous component of deep samples of clay wash were also carried out, which indirectly helped us estimate reservoir properties and fluid saturation permeable zones. As a result of comprehensive analysis of the stone material and the results of the geophysical studies we could confidently distinguish 5 with strata different composition and structure in the cut of the well. The dominating role in each of them is performed by rocks belonging to one of the structural-material complexes of Archean, and local variations in composition and properties are caused by later processes of granitization on different stages and high temperature diaphthoresis imposed on them. Total capacity of reservoir zones identified according to geophysical studies reached 1034.2 m, which corresponds to 25.8% of the total capacity of 5 rock masses. However, the distribution of reservoirs within the cut is uneven. The manifestation of reservoir properties of crystalline rocks and their gas content is to a high degree connected with those parts of the cut of the well that are represented by Bolshecheremshanskaya series of rocks. The analysis of the distribution of reservoir intervals that were identified in the well section # 20009 according to the geophysical studies showed that they tend to coincide with the intervals of intensive secondary changes and rock breaking, or with contacts of series of rocks or thick layers of rocks that differ greatly in physical and mechanical properties. About half of the potential reservoir zones are characterized by explicit, well-defined fractures, which was determined according to core and wastewater samples, as well as with the help of caliper gauge. The rocks of a Bolshecheremshanskaya series were more exposed to the repeated impact of the parallel processes (mylonitization, diaphtoresis, migmatization, etc.), or they were simply more affected by these processes, and that led to the characteristic distribution of collector areas, temperature and gas anomalies along the borehole cut. The presence of Bolshecheremshanskaya quartz series in the material composition of the rocks caused, firstly, increased amount of fractures, and secondly, the preservation of the porous-cavernous space frame within the superimposed secondary processes.

  19. Rheology of K-feldspar aggregates and its implications for dynamics of continental lower crust

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jin, Z.; Shi, F.; Zhang, J.

    2015-12-01

    Rheology of feldspar-dominated rocks controls many important processes fundamental to understanding the dynamics of continental lower crust. K-feldspar mineral is an important constituent mineral for continental lower crust and the Precambrian terranes. However, the rheological properties of K-feldspar have not been well quantified. We have performed triaxial compression experiments on natural K-feldspar (88 ppm wt. H2O) aggregates at 1.5 GPa and 1273 - 1373 K using a modified 5GPa Griggs apparatus. The hot-pressed specimens are wrapped in a thin layer of Nickel foil and sealed in 9mm long Platinum jackets along with overlying alumina pistons. Fitting of our preliminary data indicates that the deformation occurred in the dislocation creep regime with a stress exponent of ~3.3 and an activation energy of ~512 kJ/mol. Comparison of our results to previous studies indicates that K-feldspar is stronger than granulite but weaker than eclogite and dry olivine aggregates. These results suggest that K-feldspar likely serves as a strong phase in continental lower crust and the Precambrian terrane.

  20. Stratigraphic and Paleomagnetic Comparisons of Mesoproterozoic Strata and Sills from the Belt Basin, NW Montana, USA, and NW Anabar Shield, Russia: Testing a Precambrian Plate Reconstruction

    NASA Astrophysics Data System (ADS)

    Sears, J. W.; Pavlov, V.; Veselovskiy, R.; Khudoley, A.

    2008-12-01

    Mesoproterozoic sedimentary strata and mafic sills overlie Archean and Paleoproterozoic basement rocks with profound unconformity in NW Montana and along the NW margin of the Anabar Shield in northern Siberia. The two localities plot adjacent to one another on a Precambrian plate reconstruction proposed by Sears and Price (2003) that places the NE margin of the Siberian craton against the SW margin of the North American craton. The plate reconstruction predicts that these strata occupied contiguous parts of an intracratonic basin prior to late Neoproterozoic breakup of Rodinia. Here we show that the Mesoproterozoic stratigraphic sequences, sedimentary structures, and lithologies of the NW Anabar margin closely match the Neihart, Chamberlain, and Newland formations of the Little Belt Mountains of Montana. They may predate opening of the Belt Supergroup rift basin at ca. 1500 Ma, when a major mafic magmatic episode occurred in both regions. Preliminary paleomagnetic data from the Siberian section will be compared with the Laurentian APWP to evaluate the reconstruction.

  1. Gamma spectrometry application of the Kola Peninsula (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovin, I.V.; Kolesnik, N.N.; Antipov, V.S.

    1973-03-01

    The methods and results are reported of a spectrometric study, carried out with the SP-3 instrument in Pre-Cambrian fornnations in the northwest ranges of Kola Peninsula for clarification of the radiochemical characteristics of the rocks of the region and of the distribution characteristics of radioactive elements in Cu-Ni mineralizations. It was established that the content of radioactive elements in the rocks varies within a wide interval and corresponds basically to the Vinogradov content. The radioactive element content in typical metamorphic and magmatic complexes and sulfide ores was determined. The spectrometric method can be used for the solution of various geologicalmore » problems. It is particularly useful for studying the separation of strata, the genesis of magmatic and metamorphic complexes, and the metamorphic and geochemical zonality and granitization processes. (tr-auth)« less

  2. Late Laramide thrust-related and evaporite-domed anticlines in the southern Piceance Basin, northeastern Colorado Plateau

    USGS Publications Warehouse

    Grout, M.A.; Abrams, G.A.; Tang, R.L.; Hainsworth, T.J.; Verbeek, E.R.

    1991-01-01

    New seismic and gravity data across the hydrocarbon-producing Divide Creek and Wolf Creek anticlines in the southern Piceance basin reveal contrasting styles of deformation within two widely separated time frames. Seismic data indicate that prebasin Paleozoic deformation resulted in block faulting of the Precambrian crystalline basement rocks and overlying Cambrian through Middle Pennsylvanian strata. Movement along these block faults throughout much of Pennsylvanian time, during northeast-southwest crustal extension, likely influenced distribution of the Middle Pennsylvanian (Desmoinesian) evaporite-rich facies. Younger rocks, including the thick succession of Cenozoic basin strata, then buried the Paleozoic structures. Gravity data confirm that excess material of relatively low density exists beneath the Wolf Creek structure, whereas material of relatively higher density (overthickened shale) is found beneath the Divide Creek Anticline. -from Authors

  3. Application of graphite as a geothermometer in hydrothermally altered metamorphic rocks of the Merelani-Lelatema area, Mozambique Belt, northeastern Tanzania

    NASA Astrophysics Data System (ADS)

    Malisa, Elias Pausen

    1998-02-01

    Upper Precambrian pelitic and psammitic gneisses in the Mozambique Belt are usually graphite rich. The determination of crystallisation temperatures around and in the hydrothermally altered rocks of the Merelani-Lelatema mining areas, northeastern Tanzania, were made by studying the lattice parameter C of graphite. In this way, the migration of the chromophore elements giving colour to the gemstones, e.g. tanzanite, green garnet and green tourmaline in the area, can be studied. Within the hydrothermally altered zone graphite gives temperatures that range from 523°C to 880°C. These temperatures are much higher than the 390-440°C obtained through fluid inclusion studies of tanzanite, which indicates that the graphite was not hydrothermally introduced. Furthermore the hydrothermal solutions are post-metamorphic.

  4. Isotopic and chemical studies of early crustal metasedimentary rocks

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.

    1988-01-01

    The aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and chemical study of selected early crustal meta-sedimentary rocks. Western Australia was chosen as the first field area to examine, as the Yilgarn and Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and the Pilbara Block are both non-greenstone in character; these types of terrane were relatively neglected, but are of great significance in the understanding of early crustal meta-sediments. The meta-sediments of aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to the more common pelitic meta-sediments, and at many locations, deficient in one or more of the elements Ca, N, and K, were initially chosen.

  5. New Frontiers for Deep Fluids and Geobiology Research in the World's Oldest Rocks

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Li, L.; Wing, B. A.; Warr, O.; Sica, C. S.; Lollar, G. S.; Sutcliffe, N. C.; Telling, J.; Ballentine, C. J.; Giunta, T.; McDermott, J. M.

    2016-12-01

    Discovery of new environmental systems that facilitate investigation of biodiversity, microbial metabolism, life's adaptation to extreme conditions, and limits to life, have expanded our conception of Earth's habitability and informed search strategies for life elsewhere in the solar system. While chemolithotrophic microbial ecosystems in the marine biosphere have been investigated for decades, the geobiology of terrestrial systems is undergoing a recent expansion, in particular to include the > 70% of the continental lithosphere comprised of Precambrian rocks - the oldest rocks on Earth. Underground research laboratories and mines worldwide provide access to the deep subsurface in Precambrian settings, and targets for investigation of extant microbial ecosystems. Kidd Creek Mine located in Tmmins Ontario on the Canadian Shield is an iconic site. Investigation of fracture fluids here to 3 km revealed H2 production via radiolysis and serpentinization [1]; production of methane and higher hydrocarbons via abiotic organic synthesis [2]; and fracture fluids with mean residence times on the order of a billion years [3]. Recently, investigation of the sulfur cycle in these fluids has revealed a mass independent sulfur isotope signature in the dissolved sulfate, whereby oxidants from radiolysis oxidize Archean sulfide minerals, providing a mechanism to supply both electron donors (H2) and electron acceptors (sulfate) that could fuel a deep microbial biosphere [4]. Recent MPNs results demonstrate the presence of sulfate-reducing bacteria in these waters in the present day. Beginning in 2016 the deep levels at this site are providing access to international teams of researchers to collaborate with the University of Toronto in a multi-year program to characterize the deep CHONS cycles, as terrestrial geobiology continues to expand our understanding of the habitability of the Earth. [1] Sherwood Lollar et al. (2014) Nature 516,379-382. [2] Sherwood Lollar et al. (2002) Nature 416,522-524. [3] Holland et al. (2013) Nature 497,357-360. [4] Li et al. (2016) Nature Communications in press.

  6. Geochemical effects of deep-well injection of the Paradox Valley brine into Paleozoic carbonate rocks, Colorado, U.S.A.

    USGS Publications Warehouse

    Rosenbauer, R.J.; Bischoff, J.L.; Kharaka, Y.K.

    1992-01-01

    Brine seepage into the Dolores River from ground water in Paradox Valley, Colorado constitutes a major source of salt to the Colorado River. Plants are enderway to remove this source of salt by drawing down the Paradox Valley brine (PVB) and forcibly injecting it into a deep disposal well (4.8 km). Experiments were conducted to determine the effects of deep-well injection of PVB. The results show that PVB is near saturation with anhydrite at 25??C, and that heating results in anhydrite precipitation. The amount and the rate at which anhydrite forms is temperature, pressure, and substrate dependent. Paradox Valley brine heated in the presence of Precambrian rocks from the drill core produces the same amount of anhydrite as PVB heated alone, but at a greatly accelerated rate. A 30% dilution of PVB with Dolores River water completely eliminates anhydrite precipitation when the fluid is heated with the Precambrian rocks. Interaction of PVB and Leadville Limestone is characterized by dolomitization of calcite by brine Mg which releases Ca to solution. This added Ca reacts with SO4 to form increased amounts of anhydrite. A 20% dilution of PVB by Dolores River water has no effect on dolomitization and reduces the amount of anhydrite only slightly. A 65% dilution of PVB by Dolores River water still does not prevent dolomitization but does suppress anhydrite formation. Computer modeling of PVB by programs utilizing the Pitzer ion-interaction parameters is in general agreement with the experimental results. Ion-activity products calculated by both SOLMINEQ and PHRQPITZ are close to equilibrium with both anhydrite and dolomite whenever these phases are present experimentally, although the calculations over-estimate by a factor of 2 the degree of saturation. Some discrepancies in the calculated results between the two programs are due largely to differences in mineral solubility data. ?? 1992.

  7. How 'cyclic' is the Supercontinental Cycle

    NASA Astrophysics Data System (ADS)

    Pisarevsky, Sergei

    2017-04-01

    Precambrian paleogeography currently attracts a lot of attention from Earth scientists in various disciplines. This interest is particularly linked to the supercontinental cycle hypothesis and its relationship with global geodynamic processes. Most of the geoscience community accepts this hypothesis as plausible, but its details are still debated for several reasons. First of all, there is no consensus about the definition of a supercontinent. For example - is Gondwana a supercontinent? Depending on the answer, various estimations of the longevity of supercontinent cycle(s) arise. Another concern regards the methodological approach to paleogeographic reconstructions. For instance, some consider that the Precambrian supercontinent Nuna (aka Columbia) was assembled as a result of the widespread 2.0-1.8 Ga orogenies. However, careful consideration of geological, geochronological and paleomagnetic evidence instead suggests that supercontinent building blocks were assembled during this 2.0-1.8 Ga time interval, but that assembly of these building blocks into a supercontinent only occurred about 200 Myr later. There are only two quantitative tools for Precambrian paleogeographic reconstructions - paleomagnetic data and regional mafic dyke swarms geometries. Unfortunately, there are not yet enough high quality Precambrian paleomagnetic data to produce Apparent Polar Wander Paths (APWPs) for most Precambrian continents and to reconstruct their relative position with respect to each other, as was done for Phanerozoic paleogeography. Consequently all published reconstructions of Precambrian supercontinents are suggestive but not definitive. The only way to build a plausible Precambrian paleogeographic reconstruction is to combine paleomagnetic data with geological, geochemical and geochronological evidence. For example, the combination of paleomagnetic data with matching coeval Large Igneous Provinces (LIPs) and their regional dyke swarms, is helpful, but has limitations. Paleomagnetic and LIP databases are growing fast, causing revisions of published supercontinental reconstructions. In this presentation I summarise newly published paleomagnetic, geological and geochronological data and propose a new kinematic model of ca. 1800-900 Ma global paleogeography. In summary, the following published data have been used for a modification of previous models: (i) new paleomagnetic and geochronological data from Mesoproterozoic and Early Neoproterozoic rocks in Baltica, North China, Sao Francisco, Amazonia, Australia; (ii) new discoveries of LIPs with ages between 1800 and 900 Ma in Siberia, North China, Sao Francisco and Congo; (iii) new geological and geochronological data from Europe and South America, which do not support the popular SAMBA model of a long-lived connection between Baltica and Amazonia in late Paleoproterozoic and Mesoproterozoic times. These and other multi-disciplinary data are sometimes contradictive to each other; so some parts of the new model need further testing. New data support the hypothesis of ca. 300 m.y. connection between the Siberia, Sao Francisco, Congo, North China, Amazonia and West Africa at 1800-1500 Ma. New paleomagnetic data from the Sao Francisco craton do not support the hypothesis that the Congo/ Sao Francisco craton was part of Rodinia. This new paleogeographic model causes some re-estimation of the timing and longevity of the process of supercontinental assembly and breakup.

  8. Tunnel Cost-Estimating Methods.

    DTIC Science & Technology

    1981-10-01

    wears down the bit very quickly; stratified rock or mixed face results in uneven thrust and excessive bearing wear and can cause large rocks to jam ...of Reclamation (USBIJREC) Strawberry Aqueduct System, is approximately 3-1/4 miles long and 13 ft in diameter. It was moled through hard sandstone and

  9. Erosion-tectonics feedbacks in shaping the landscape: An example from the Mekele Outlier (Tigray, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Dramis, Francesco; Faccenna, Claudio; Abebe, Bekele

    2017-05-01

    An outlier consists of an area of younger rocks surrounded by older ones. Its formation is mainly related to the erosion of surrounding rocks which causes the interruption of the original continuity of the rocks. Because of its origin, an outlier is an important witness of the paleogeography of a region and, therefore, essential to understand its topographic and geological evolution. The Mekele Outlier (N Ethiopia) is characterized by poorly incised Mesozoic marine sediments and dolerites (∼2000 m in elevation), surrounded by strongly eroded Precambrian and Paleozoic rocks and Tertiary volcanic deposits in a context of a mantle supported topography. In the past, studies about the Mekele outlier focused mainly in the mere description of the stratigraphic and tectonic settings without taking into account the feedback between surface and deep processes in shaping such peculiar feature. In this study we present the geological and geomorphometric analyses of the Mekele Outlier taking into account the general topographic features (slope map, swath profiles, local relief), the river network and the principal tectonic lineaments of the outlier. The results trace the evolution of the study area as related not only to the mere erosion of the surrounding rocks but to a complex interaction between surface and deep processes where the lithology played a crucial role.

  10. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnicalmore » characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia.« less

  11. Regional hydrogeology of the Navajo and Hopi Indian reservations, Arizona, New Mexico, and Utah, with a section on vegetation

    USGS Publications Warehouse

    Cooley, M.E.; Harshbarger, J.W.; Akers, J.P.; Hardt, W.F.; Hicks, O.N.

    1969-01-01

    The Navajo and Hopi Indian Reservations have an area of about 25,000 square miles and are in the south-central part of the Colorado Plateaus physiographic province. The reservations are underlain by sedimentary rocks that range in age from Cambrian to Tertiary, but Permian and younger rocks are exposed in about 95 percent of the area. Igneous and metamorphic basement rocks of Precambrian age underlie the sedimentary rocks at depths ranging from 1,000 to 10,000 feet. Much of the area is mantled by thin alluvial, eolian, and terrace deposits, which mainly are 10 to 50 feet thick.The Navajo country was a part of the eastern shelf area of the Cordilleran geosyncline during Paleozoic and Early Triassic time and part of the southwestern shelf area of the Rocky Mountain geosyncline in Cretaceous time. The shelf areas were inundated frequently by seas that extended from the central parts of the geosynclines. As a result, complex intertonguing and rapid facies changes are prevalent in the sedimentary rocks and form some of the principal controls on the ground-water hydrology. Regional uplift beginning in Late Cretaceous time , destroyed. the Rocky Mountain geosyncline and formed the structural basius that influenced sedimentation and erosion throughout Cenozoic time.

  12. Geology of the Gateway quadrangle, Mesa county Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Gateway quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  13. Geology of the Egnar quadrangle, Dolores and San Miguel counties, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Bush, A.L.; Bell, Henry

    1954-01-01

    The Egnar quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  14. Geology of the Hamm Canyon quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Hamm Canyon quadrangle is on eof eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  15. Geology of the Davis Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Bryner, Leonid

    1953-01-01

    The Davis Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  16. Geology of the Joe Davis Hill quadrangle, Dolores and San Miguel counties, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Bell, Henry

    1953-01-01

    The Joe Davis Hill quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  17. Geology of the Gypsum Gap quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Gypsum Gap quadrangle is one eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comparative study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through a arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The core consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  18. Geology of the Pine Mountain quadrangle, Mesa county, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Pine Mountain quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from Paleozoic to Quaternary. Over mush of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in sizer from irregular masses containing only a few ton of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  19. Geology of the Naturita NW quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Vogel, J.D.

    1953-01-01

    The Naturita NW quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles were mapped by the U.S. Geological Survey on behalf of the U.S. Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear ro be related to certain sedimentary structures in sandstones of favorable composition.

  20. Geology of the Calamity Mesa quadrangle, Mesa county, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Stager, Harold K.

    1953-01-01

    The Calamity Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks the range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  1. Geology of the Horse Range Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Bush, A.L.; Bell, Henry; Withington, C.F.

    1953-01-01

    The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.

  2. Geology of Bull Canyon quadrangle, Montrose and San Miguel counties, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Bull Canyon quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite depots. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tones. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  3. Geology of the Uravan quadrangle, Montrose county, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Butler, A.P.; McKay, E.J.; Boardman, Robert L.

    1954-01-01

    The Uravan quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to the related to certain sedimentary structures in sandstones of favorable composition.

  4. Iron isotope behavior during fluid/rock interaction in K-feldspar alteration zone - A model for pyrite in gold deposits from the Jiaodong Peninsula, East China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Yong; Jiang, Shao-Yong; Mathur, Ryan; Cook, Nigel J.; Yang, Tao; Wang, Meng; Ma, Liang; Ciobanu, Cristiana L.

    2018-02-01

    Mechanisms for Fe isotope fractionation in hydrothermal mineral deposits and in zones of associated K-feldspar alteration remain poorly constrained. We have analyzed a suite of bulk samples consisting of granite displaying K-feldspar alteration, Precambrian metamorphic rocks, and pyrite from gold deposits of the Jiaodong Peninsula, East China, by multi-collector inductively-coupled plasma mass spectrometry. Pyrites from disseminated (J-type) ores show a δ56Fe variation from +0.01 to +0.64‰, overlapping with the signature of the host granites (+0.08 to +0.39‰). In contrast, pyrites from quartz veins (L-type ores) show a wide range of Fe-isotopic composition from -0.78 to +0.79‰. Negative values are never seen in the J-type pyrites. The Fe isotope signature of the host granite with K-feldspar alteration is significantly heavier than that of the bulk silicate Earth. The Fe isotopic compositions of Precambrian metamorphic rocks across the district display a narrow range between -0.16‰ and +0.19‰, which is similar to most terrestrial rocks. Concentrations of major and trace elements in bulk samples were also determined, so as to evaluate any correlation between Fe isotope composition and degree of alteration. We note that during progressive K-feldspar alteration to rocks containing >70 wt% SiO2, >75 ppm Rb, and <1.2 wt% total Fe2O3, the Fe isotope composition of the granite changes systematically. The Fe isotope signature becomes heavier as the degree of alteration increases. The extremely light Fe isotopic compositions in L-type gold deposits may be explained by Rayleigh fractionation during pyrite precipitation in an open fracture system. We note that the sulfur isotopic compositions of pyrite in the two types of ores are also different. Pyrite from J-type ores has a systematically 3.5‰-higher δ34S value (11.2‰) than those of pyrite from the L-type ores (7.7‰). There is, however, no correlation between Fe and S isotope signatures. The isotopic fractionation of sulfur is used to constrain a change in the fO2 of the hydrothermal fluids from which pyrite precipitated. This work demonstrates that the Fe isotope composition of pyrite displays a significant response to the process of pyrite precipitation in hydrothermal systems, and that systematic fractionation of iron isotopes occurs during fluid/rock reaction in the K-feldspar alteration zone of the Linglong granite. The implications of the results are that processes of mineralization and associated fluid-rock interaction, which are ubiquitously observed in porphyry-style Cu-Au-Mo and other hydrothermal deposits, may be readily traceable using Fe isotopes.

  5. Preliminary analysis of thermal-infrared multispectral scanner data of the Iron Hill, Colorado carbonatite-alkalic rock complex

    NASA Technical Reports Server (NTRS)

    Rowan, Lawrence C.; Watson, Kenneth; Miller, Susanne H.

    1992-01-01

    The Iron Hill carbonatite-alkalic igneous rock complex is in the Powderhorn mining district, approximately 40 km south-southwest of Gunnison, Colorado. The complex, which occupies about 30 sq km, was emplaced in metasedimentay and metavolcanic rocks during the later Precambrian or early Cambrian. The main rock types in the complex, from oldest to youngest, are fenite, pyroxenite, uncompahgrite, ijolite, nepheline syenite, and dolomitic carbonatite. The carbonatite is limonitic and forms an elliptially shaped 4 sq km stock. Calcitic and dolomitic carbonatite dikes are also numerous throughout the complex and in the pre-existing rocks. Pyroxenite is the most widespread rock type within the complex, but pyroxene is extensively altered to biotite, phlogopite, and vermiculite. Fenite, which formed through Na, K-metasomatism of the country rocks, typically contains more feldspar and less quartz than the equivalent unaltered country rocks. The other alkalic rock types are less widespread and less well exposed. Parts of the complex are covered by Oligocene ash-flow tuff and alluvial, colluvial, and glacial deposits. Sagebrush and grass cover is moderately dense to very dense at low to intermediate elevations; coniferous tree cover is dense at high elevations and on some north-facing slopes at lower elevations. A new algorithm was used to compute spectral emissivity ratios, independent of any emissivity assumptions. This algorithm has the advantage that any of the possible emissivity ratios can be computed and, thus, a large variety of composite ratio images can be constructed, which permits examination of various geologic hypotheses based on the spectral properties of the surface materials.

  6. Trace elements at the intersection of marine biological and geochemical evolution

    USGS Publications Warehouse

    Robbins, Leslie J.; Lalonde, Stefan V.; Planavsky, Noah J.; Partin, Camille A.; Reinhard, Christopher T.; Kendall, Brian; Scott, Clinton T.; Hardisty, Dalton S.; Gill, Benjamin C.; Alessi, Daniel S.; Dupont, Christopher L.; Saito, Mak A.; Crowe, Sean A.; Poulton, Simon W.; Bekker, Andrey; Lyons, Timothy W.; Konhauser, Kurt O.

    2016-01-01

    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.

  7. Geophysical constraints on Rio Grande rift structure and stratigraphy from magnetotelluric models and borehole resistivity logs, northern New Mexico

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sawyer, David A.; Hudson, Mark R.; Grauch, V.J.S.

    2013-01-01

    Two- and three-dimensional electrical resistivity models derived from the magnetotelluric method were interpreted to provide more accurate hydrogeologic parameters for the Albuquerque and Española Basins. Analysis and interpretation of the resistivity models are aided by regional borehole resistivity data. Examination of the magnetotelluric response of hypothetical stratigraphic cases using resistivity characterizations from the borehole data elucidates two scenarios where the magnetotelluric method provides the strongest constraints. In the first scenario, the magnetotelluric method constrains the thickness of extensive volcanic cover, the underlying thickness of coarser-grained facies of buried Santa Fe Group sediments, and the depth to Precambrian basement or overlying Pennsylvanian limestones. In the second scenario, in the absence of volcanic cover, the magnetotelluric method constrains the thickness of coarser-grained facies of buried Santa Fe Group sediments and the depth to Precambrian basement or overlying Pennsylvanian limestones. Magnetotelluric surveys provide additional constraints on the relative positions of basement rocks and the thicknesses of Paleozoic, Mesozoic, and Tertiary sedimentary rocks in the region of the Albuquerque and Española Basins. The northern extent of a basement high beneath the Cerros del Rio volcanic field is delineated. Our results also reveal that the largest offset of the Hubbell Spring fault zone is located 5 km west of the exposed scarp. By correlating our resistivity models with surface geology and the deeper stratigraphic horizons using deep well log data, we are able to identify which of the resistivity variations in the upper 2 km belong to the upper Santa Fe Group sediment

  8. Lithology and structure within the basement terrain adjacent to Clark Mountains, California, mapped with calibrated data from the airborne visible/infrared imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Vane, Gregg

    1989-01-01

    The Clark Mountains in eastern California form a rugged, highly dissected area nearly 5000 ft above sea level, with Clark Mountain rising to 8000 ft. The rocks of the Clark Mountains and the Mescal Range just to the south are Paleozoic carbonate and clastic rocks, and Mesozoic clastic and volcanic rocks standing in pronounced relief above the fractured Precambrian gneisses to the east. The Permian Kaibab Limestone and the Triassic Moenkopi and Chinle Formations are exposed in the Mescal Range, which is the only place in California where these rocks, which are typical of the Colorado Plateau, are found. To the west, the mountains are bordered by the broad alluvial plains of Shadow Valley. Cima Dome, which is an erosional remnant carved on a batholithic intrusion of quartz monzonite, is found at the south end of the valley. To the east of the Clark and Mescal Mountains is found the Ivanpah Valley, in the center of which is located the Ivanpah Play. Studies of the Clark Mountains with the airborne visible/infrared imaging spectrometer are briefly described.

  9. Summary of the geology and physical properties of the Climax Stock, Nevada Test Site

    USGS Publications Warehouse

    Maldonado, Florian

    1977-01-01

    The Climax stock is a composite stock of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes sedimentary rocks of Paleozoic and Precambrian age. Tertiary rocks consisting of tuff, welded tuff, and breccia overlie the stock and sedimentary rocks. Hydrothermal alteration of the granodiorite and quartz monzonite is found mainly along the joints and is extensive, but the intensity of alteration varies from place to place. The surrounding sedimentary rocks (carbonates) have been metasomatically altered to tactite and marble as much as 1,500 feet (457 m) from contact with stock; the degree of metamorphism decreasing away from the intrusive. The major faults found in the vicinity of the Climax stock are the Tippinip fault, the Boundary fault, and the Yucca fault. In the stock three prominent joint sets and their average attitudes are N. 32? W., 22? NE.; N 64? W., vertical; and N 35? E., vertical. Two major tunnel complexes have been driven into the Climax stock?the Tiny Tot tunnel complex and Pile Driver-Hard Hat tunnel complex. In the Pile Driver-Hard Hat complex two underground nuclear tests have been conducted.

  10. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth.

    PubMed

    Mergelov, Nikita; Mueller, Carsten W; Prater, Isabel; Shorkunov, Ilya; Dolgikh, Andrey; Zazovskaya, Elya; Shishkov, Vasily; Krupskaya, Victoria; Abrosimov, Konstantin; Cherkinsky, Alexander; Goryachkin, Sergey

    2018-02-20

    Subaerial endolithic systems of the current extreme environments on Earth provide exclusive insight into emergence and development of soils in the Precambrian when due to various stresses on the surfaces of hard rocks the cryptic niches inside them were much more plausible habitats for organisms than epilithic ones. Using an actualistic approach we demonstrate that transformation of silicate rocks by endolithic organisms is one of the possible pathways for the beginning of soils on Earth. This process led to the formation of soil-like bodies on rocks in situ and contributed to the raise of complexity in subaerial geosystems. Endolithic systems of East Antarctica lack the noise from vascular plants and are among the best available natural models to explore organo-mineral interactions of a very old "phylogenetic age" (cyanobacteria-to-mineral, fungi-to-mineral, lichen-to-mineral). On the basis of our case study from East Antarctica we demonstrate that relatively simple endolithic systems of microbial and/or cryptogamic origin that exist and replicate on Earth over geological time scales employ the principles of organic matter stabilization strikingly similar to those known for modern full-scale soils of various climates.

  11. Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.

    2006-01-01

    Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.

  12. Fluid-absent metamorphism in the Adirondacks

    NASA Technical Reports Server (NTRS)

    Valley, J. W.

    1986-01-01

    Results on late Proterozoic metamorphism of granulite in the Adirondacks are presented. There more than 20,000 sq km of rock are at granulite facies. Low water fugacites are implied by orthopyroxene bearing assemblages and by stability of k'spar-plag-quartz assemblages. After mentioning the popular concept of infiltration of carbon dioxide into Precambrian rocks and attendent generation of granulite facies assemblages, several features of Adirondack rocks pertinent to carbon dioxide and water during their metamorphism are summarized: wollastonite occurs in the western lowlands; contact metamorphism by anorthosite preceeding granulite metamorphism is indicated by oxygen isotopes. Oxygen fugacity lies below that of the QFM buffer; total P sub water + P sub carbon dioxide determined from monticellite bearing assemblages are much less than P sub total (7 to 7.6 kb). These and other features indicate close spatial association of high- and low-P sub carbon dioxide assemblages and that a vapor phase was not present during metamorphism. Thus Adirondack rocks were not infiltrated by carbon dioxide vapor. Their metamorphism, at 625 to 775 C, occurred either when the protoliths were relatively dry or after dessication occurred by removal of a partial melt phase.

  13. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    USGS Publications Warehouse

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range(?) Formation was erupted 30-31 m.y. ago from an unknown source. Mineralization probably did not occur during the rhyolitic stage of volcanism. The last stage of volcanism was contemporaneous with basin-and-range faulting and was characterized by explosive eruption of ash and pumice, forming stratified tuff, and by quiet eruption of alkali rhyolite as viscous flows and domes. The first episode of alkali rhyolite volcanism deposited the beryllium tuff and porphyritic rhyolite members of the Spor Mountain Formation 21 m.y. ago. After a period of block faulting, the stratified tuff and alkali rhyolite of the Topaz Mountain Rhyolite were erupted 6-7 m.y. ago along faults and fault intersections. Erosion of Spor Mountain, as well as explosive eruptions through dolomite, provided abundant dolomite detritus to the beryllium tuff member. The alkali rhyolite of both formations is fluorine rich, as is evident from abundant topaz, and contains anomalous amounts of lithophile metals. Alkali rhyolite volcanism was accompanied by lithophile metal mineralization which deposited fluorite, beryllium, and uranium. The structure of the area is dominated by the Thomas caldera and the younger Dugway Valley cauldron, which is nested within the Thomas caldera; the Thomas caldera is surrounded by a rim of Paleozoic rocks at Spor Mountain and Paleozoic to Precambrian rocks in the Drum Mountains. The Joy fault and Dell fault system mark the ring-fracture zone of the Thomas caldera. These structural features began to form about 39 m.y. ago during eruption of the Mt. Laird Tuff and caldera subsidence. The Dugway Valley cauldron sank along a series of steplike normal faults southeast of Topaz Mountain in response to collapse of the magma chamber of the Joy Tuff. Caldera structure was modified by block faulting between 21 and 7 m.y. ago, the time of widespread extensional faulting in the Basin and Range Province. Vents erupted alkali rhyolite 6-7 m.y. ago along basin-and-range faults.

  14. PTt path in metamorphic rocks of the Khoy region (northwest Iran) and their tectonic significance for Cretaceous Tertiary continental collision

    NASA Astrophysics Data System (ADS)

    Azizi, H.; Moinevaziri, H.; Mohajjel, M.; Yagobpoor, A.

    2006-06-01

    Metamorphic rocks in the Khoy region are exposed between obducted ophiolites to the southwest and sedimentary rocks of Precambrian-Paleozoic age to the northeast. The Qom formation (Oligocene-Miocene) with a basal conglomerate transgressively overlies all of these rocks. The metamorphic rocks consist of both metasediments and metabasites. The metasediments are micaschist, garnet-staurolite schist and garnet-staurolite sillimanite schist with some meta-arkose, marble and quartzite. The metabasites are metamorphosed to greenschist and amphibolite facies from a basaltic and gabbroic protolith of tholeiitic and calc-alkaline rocks. Geothermobarometry based on the equivalence of minerals stability and their paragenesis in these rocks and microprobe analyses by several different methods indicate that metamorphism occurred in a temperature range between 450 and 680 °C at 5.5 and 7.5 kb pressure. Rims of minerals reveal a considerable decrease of pressure (<2 kb) and insignificant decrease of temperature. The PTt path of this metamorphism is normal. The MFG line passes above the triple junction of Al 2SiO 5 polymorphs, and the average geothermal gradient during metamorphism was from 27 to 37 °C/km, which is more concordant with the temperature regime of collision zones. We infer that crustal thickening during post-Cretaceous (possibly Eocene) collision of the Arabian plate and the Azerbaijan-Albourz block was the main factor that caused the metamorphism in the studied area.

  15. Palaeointensity, core thermal conductivity and the unknown age of the inner core

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksey V.; Tarduno, John A.; Kulakov, Evgeniy V.; McEnroe, Suzanne A.; Bono, Richard K.

    2016-05-01

    Data on the evolution of Earth's magnetic field intensity are important for understanding the geodynamo and planetary evolution. However, the paleomagnetic record in rocks may be adversely affected by many physical processes, which must be taken into account when analysing the palaeointensity database. This is especially important in the light of an ongoing debate regarding core thermal conductivity values, and how these relate to the Precambrian geodynamo. Here, we demonstrate that several data sets in the Precambrian palaeointensity database overestimate the true paleofield strength due to the presence of non-ideal carriers of palaeointensity signals and/or viscous re-magnetizations. When the palaeointensity overestimates are removed, the Precambrian database does not indicate a robust change in geomagnetic field intensity during the Mesoproterozoic. These findings call into question the recent claim that the solid inner core formed in the Mesoproterozoic, hence constraining the thermal conductivity in the core to `moderate' values. Instead, our analyses indicate that the presently available palaeointensity data are insufficient in number and quality to constrain the timing of solid inner core formation, or the outstanding problem of core thermal conductivity. Very young or very old inner core ages (and attendant high or low core thermal conductivity values) are consistent with the presently known history of Earth's field strength. More promising available data sets that reflect long-term core structure are geomagnetic reversal rate and field morphology. The latter suggests changes that may reflect differences in Archean to Proterozoic core stratification, whereas the former suggest an interval of geodynamo hyperactivity at ca. 550 Ma.

  16. Testing the GAD throughout the Precambrian

    NASA Astrophysics Data System (ADS)

    Veikkolainen, T.; Pesonen, L. J.; Korhonen, K.

    2013-05-01

    A long tradition has emerged in using the inclination frequency analysis to study the functionality of the Geocentric Axial Dipole (GAD) hypothesis in paleomagnetism. Here a test is presented, based on 3016 records of the Earth's Precambrian geomagnetic field as acquired from a novel catalogue maintained by University of Helsinki, and Yale University. The technique is based on fitting zonal (axial) dipolar (GAD), quadrupolar (G2) and octupolar (G3) harmonics to find the best-fitting inclination distribution. The influence of various factors, such as the geologic age, rock type, magnetic polarity, quality of data and its spatial distribution has been tested. Finally, the most plausible estimates for the zonal non-dipolar contributions of the field have been determined as 0 % for G2 and 6 % for G3. Another way to analyze the zonal harmonics of the geomagnetic field and the validity of GAD is based on the asymmetry between the normal and reversed polarities. To get an insight to the morphology of the field in the late Paleoproterozoic, we have also run a reversal simulation using data mainly from the 1.88 Ga Stark Formation, Canada, revealing the both stable polarity directions (N, R) and also transitional directions between them. In the global Precambrian perspective, an overall moderate dependence of the inclination asymmetry on paleolatitude is visible with a distinct mid-latitude peak. However, the required values to account for the observed deviation from GAD are less than 5 % for G2 and less than 10 % for G3. Alternatively, paleosecular variation (PSV) can be used to shed light to processes in the geodynamo and to model the growth of the inner core. We have applied the CALS3K model of the field as a basis of a time simulation of declination-inclination pairs around a grid on the Earth and by this way in estimating PSV. Our approach is based on calculating S vs latitude curves at different time instances in the validity period of the model, and comparing them with the catalogue data. Nearly zonal field behaviour with the axial quadrupole (G2) =3.2 % and the axial octupole (G3) =5.8 % was observed at A.D. 0, and also the S curve resulting from this distribution is close to that evaluated from the high-quality Precambrian data at shallow and intermediate latitudes. This similarity is not observed when the Precambrian is compared with the more recent field, e.g. that of IGRF 2015, primarily due to the strong equatorial dipoles prevailing in the present-day field. Using three testing methods, we have proved that the geomagnetic field of the Precambrian has been in the long run close to GAD, although small temporal intervals (such as the Keweenawan age) may be characterized by different, mainly zonal field geometries.

  17. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone is 0-2,500 feet thick and is composed almost entirely of Upper Devonian to Upper Mississippian limestone, dolomite, and chert. The overlying (Darwin-Humbug) zone is 0-800 feet thick and consists of Upper Mississippian limestone, dolomite, sandstone, shale, gypsum, and solution breccia. The Madison aquifer is overlain conformably by Upper Mississippian and Pennsylvanian rocks. The Madison aquifer in most areas is overlain by Upper Mississippian to Middle Pennsylvanian rocks of the Four Comers confining unit. The lower part of this confining unit, the Belden-Molas subunit, consists of as much as 4,300 feet of shale with subordinate carbonate rocks, sandstone, and minor gypsum. The upper part of the confining unit, the Paradox-Eagle Valley subunit, in most places consists of as much as 9,700 feet of interbedded limestone, dolomite, shale, sandstone, gypsum, anhydrite, and halite. Locally, the evaporitic rocks are deformed into diapirs as much as 15,000 feet thick. The Four Corners confining unit is overlain gradationally to disconformably by Pennsylvanian rocks. The uppermost Paleozoic rocks comprise the Canyonlands aquifer, which is composed of three zones with distinctly different lithologies. The basal (Cutler-Maroon) zone consists of as much as 16,500 feet of Lower Pennsylvanian to Lower Permian sandstone, conglomerate, shale, limestone, dolomite, and gypsum. The middle (Weber-De Chelly) zone consists of as much as 4,000 feet of Middle Pennsylvanian to Lower Permian quartz sandstone with minor carbonate rocks and shale. The upper (Park City-State Bridge) zone consists of as much as 800 feet of Lower to Upper Permian limestone, dolomite, shale, sandstone, phosphorite, chert, and gypsum. The Canyonlands aquifer is overlain disconformably to unconformably by formations of Triassic and Jurassic age.

  18. The mineral resource potential of the Thaniyah and Al Ufayriyah quadrangles, sheets 20/42 C and 20/42 A, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Fenton, Michael D.

    1983-01-01

    Areas with mineral resource potential in the Thaniyah and Al Ufayriyah quadrangles in the central Precambrian Shield of Saudi Arabia have been identified by reconnaissance rock geochemistry and inspection of ancient prospects. Locally anomalous areas in plutonic terrane have been defined as possible sources of tin, molybdenum, or base metal mineralization. The survey over layered volcanic terrane identified several areas of anomalous copper and zinc. One ancient copper prospect with gossan in the west-central part of the Thaniyah quadrangle merits additional study.

  19. Tectonic geomorphology of the Andes with SIR-A and SIR-B

    NASA Technical Reports Server (NTRS)

    Bloom, Arthur L.; Fielding, Eric J.

    1986-01-01

    Data takes from SIR-A and SIR-B (Shuttle Imaging Radar) crossed all of the principal geomorphic provinces of the central Andes between 17 and 34 S latitude. In conjunction with Thematic Mapping images and photographs from hand-held cameras as well as from the Large Format Camera that was flown with SIR-B, the radar images give an excellent sampling of Andean geomorphology. In particular, the radar images show new details of volcanic rocks and landforms of late Cenozoic age in the Puna, and the exhumed surfaces of tilted blocks of Precambrian crystalline basement in the Sierras Pampeanas.

  20. Interpretation of aircraft multispectral scanner images for mapping of alteration with uranium mineralization, Copper Mountain, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1983-01-01

    NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.

  1. Environmental Assessment for the Continued Exclusive Use of Department of the Army Land Located at U.S. Army Dugway Proving Ground by Members of the U.S. Air Force

    DTIC Science & Technology

    2012-07-01

    exception of Granite Peak and the Simpson Mountains, which are composed mainly of Precambrian metamorphic and igneous rocks , low-lying basin areas are...the Continued Exclusive Use of Department of the Army Land Located at U.S. Army Dugway Proving Ground by Members of the U.S. Air Force 5a. CONTRACT...prepared environmental documentation for the proposed continued exclusive use of Department of the Army land located at U.S. Army Dugway Proving Ground by

  2. Stratigraphy, structure and regional correlation of eastern Blue Ridge sequences in southern Virginia and northwestern North Carolina: an interim report from new USGS mapping

    USGS Publications Warehouse

    Carter, Mark W.; Merschat, Arthur J.

    2014-01-01

    The contact between eastern Blue Ridge stratified rocks above Mesoproterozoic basement rocks is mostly faulted (Gossan Lead and Red Valley). The Callaway fault juxtaposes Ashe and Lynchburg rocks above Wills Ridge Formation. Alligator Back Formation rocks overlie Ashe and Lynchburg rocks along the Rock Castle Creek fault, which juxtaposes rocks of different metamorphism. The fault separates major structural domains: rocks with one penetrative foliation in the footwall, and pin-striped recrystallized compositional layering, superposed penetrative foliations, and cleavage characterize the hanging wall. These relationships are ambiguous along strike to the southwest, where the Ashe and Alligator Back formations are recrystallized at higher metamorphic grades.

  3. Methodology of the interpretation of remote sensing data and applications in geology

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.

    1981-01-01

    Methods used for interpreting orbital (LANDSAT) data for regional geological mapping in Brazil are examined. Particular attention is given to the levels of analysis used for studying geomorphology, structural geology, lithology, stratigraphy, surface geology, and dynamic processes. Examples of regional mapping described include: (1) rock intrusions in SE Sao Paulo, the southern parts of Minas Gerais, and the states of Rio de Janeiro, and Espiritu Santo; (2) a preliminary survey of Pre-Cambrian geology in the State of Piaui; and (3) the Gondwana Project - surveying Jaguaribe plants. Mineral exploration in Rio Grande do Sul, and the geology of the Alcalino complex of Itatiaia are discussed as well as the use of automatic classifications of rock intrusions and of ilmenite deposits in the Floresta Region. Aerial photography, side looking radar, and thermal infrared scanning are other types of remote sensors also used in prospecting for geothermal anomalies in the city of Caldas Novas-Goias.

  4. Gold Veins near Great Falls, Maryland

    USGS Publications Warehouse

    Reed, John Calvin; Reed, John C.

    1969-01-01

    Small deposits of native gold are present along an anastomosing system of quartz veins and shear zones just east of Great Falls, Montgomery County, Md. The deposits were discovered in 1861 and were worked sporadically until 1951, yielding more than 5,000 ounces of gold. The vein system and the principal veins within it strike a few degrees west of north, at an appreciable angle to foliation and fold axial planes in enclosing rocks of the Wissahickon Formation of late Precambrian (?) age. The veins cut granitic rocks of Devonian or pre-Devonian age and may be as young as Triassic. Further development of the deposits is unlikely under present economic conditions because of their generally low gold content and because much of the vein system lies on park property, but study of the Great Falls vein system may be useful in the search for similar deposits elsewhere in the Appalachian Piedmont.

  5. Skylab-4 visual observations project: Geological features of southwestern North America

    NASA Technical Reports Server (NTRS)

    Silver, L. T.

    1975-01-01

    Visual observations conducted by Skylab-4 crewmen on seven designated geological target areas and other targets of opportunity in parts of southwestern United States and northwestern Mexico were described. The experiments were designed to learn how effectively geologic features could be observed from orbit and what research information could be obtained from the observations when supported by ground studies. For the limited preparation they received, the crewmen demonstrated exceptional observational ability and produced outstanding photographic studies. They also formulated cogent opinions on how to improve future observational and photo-documentation techniques. From the photographs and other observations, it was possible to obtain significant research contributions to on-going field investigations. These contributions were integrated into other aspects of the ground investigations to the following topics: major faults, regional stratigraphy, occurrence of Precambrian crystalline rocks, mapping of Mesozoic volcanic rocks, regional geology.

  6. Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Narbonne, Guy M.; Dalrymple, Robert W.; Kurtis Kyser, T.

    2005-01-01

    Stellate crystals of ferroan dolomite in neritic siliciclastic and carbonate sedimentary rocks between Sturtian and Marinoan glaciations in the Mackenzie Mountains are interpreted as replaced glendonites. These pseudomorphs after ikaite indicate that shallow seawater at that time was near freezing. Stromatolites verify that paleoenvironments were in the photic zone and physical sedimentary structures such as hummocky cross-bedding confirm that the seafloor was repeatedly disturbed by storms. Glendonites within these low-latitude, continental shelf to coastal sedimentary deposits imply that global ocean water during much of Cryogenian time was likely very cold. Such an ocean would easily have cooled to yield widespread sea ice and, through positive feedback, growth of low-latitude continental glaciers. In this situation gas hydrates could have formed in shallow-water, cold shelf sediment, but would have been particularly sensitive to destabilization as a result of sea-level change. Co-occurrence of pisolites and glendonites in these rocks additionally implies that some ooids and pisoids might have been, unlike Phanerozoic equivalents, characteristic of cold-water sediments.

  7. Petrologic implications of plate tectonics.

    PubMed

    Yoder, H S

    1971-07-30

    Petrologists can make significant contributions to the plate tectonic concept. Fixing the stability fields of the principal rock types involved will provide the limits of pressure and temperature of the various environments. Experimental determination of the partition coefficients of the trace elements will be helpful. Studies of the partial melting behavior of possible parental materials in the absence and presence of water, especially the undersaturated region, will contribute to the understanding of magma production. Experimental observations on the rheological properties of the peridotites below and just above the solidus will lead to a better evaluation of the convective mechanism. Measurement of the fundamental properties of rocks, such as the density of solids and liquids at high pressures and temperatures, would contribute to understanding the concepts of diapiric rise, magma segregation, and the low-velocity zone. Broader rock sampling of the oceanic areas of all environments will do much to define the petrologic provinces. The field petrologist specializing in the Paleozoic regions and Precambrian shields can contribute by examining those regions for old plate boundaries and devising new criteria for their recognition.

  8. Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of northern Pakistan and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Ahmad, Irshad; Khan, Shuhab; Lapen, Thomas; Burke, Kevin; Jehan, Noor

    2013-01-01

    New isotopic ages on zircons from rocks of the Peshawar Plain Alkaline Igneous Province (PPAIP) reveal for the first time the occurrence of ignimbritic Cenozoic (Oligocene) volcanism in the Himalaya at 26.7 ± 0.8 Ma. Other new ages confirm that PPAIP rift-related igneous activity was Permian and lasted from ˜290 Ma to ˜250 Ma. Although PPAIP rocks are petrologically and geochemically typical of rifts and have been suggested to be linked to rifting on the Pangea continental margin at the initiation of the Neotethys Ocean, there are no documented rift-related structures mapped in Permian rocks of the Peshawar Plain. We suggest that Permian rift-related structures have been dismembered and/or reactivated during shortening associated with India-Asia collision. Shortening in the area between the Main Mantle Thrust (MMT) and the Main Boundary Thrust (MBT) may be indicative of the subsurface northern extension of the Salt Range evaporites. Late Cenozoic sedimentary rocks of the Peshawar Plain deposited during and after Himalayan thrusting occupy a piggy-back basin on top of the thrust belt. Those sedimentary rocks have buried surviving evidence of Permian rift-related structures. Igneous rocks of the PPAIP have been both metamorphosed and deformed during the Himalayan collision and Cenozoic igneous activity, apart from the newly recognized Gohati volcanism, has involved only the intrusion of small cross-cutting granitic bodies concentrated in areas such as Malakand that are close to the MMT. Measurements on Chingalai Gneiss zircons have confirmed the occurrence of 816 ± 70 Ma aged rocks in the Precambrian basement of the Peshawar Plain that are comparable in age to rocks in the Malani igneous province of the Rajasthan platform ˜1000 km to the south.

  9. Geochemical and K Ar age constraints on the Late Neoproterozoic (?) gneisses at Um Tenassib area, north Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Eliwa, Hassan A.

    2007-05-01

    Wadi Um Tenassib metamorphic rocks consist mainly of biotite gneiss and biotite-hornblende gneiss with subordinate intercalations of amphibolite, migmatitic gneiss, and aplitic granite. Biotite-hornblende gneiss, biotite gneiss, and aplitic granite are geochemically characterized and their cooling ages are determined by using the K-Ar method on biotite. The Um Tenassib gneisses (UTG) range in composition from quartz diorite/monzodiorite to granodiorite. They were derived from igneous rocks that pertain to calc alkaline and metaluminous to weakly peraluminous affinities and were generated in continental volcanic arc setting. REE patterns of the UTG are moderately fractionated (La N/Lu N = 5.9-7.5) relative to those of the aplitic granite (La N/Lu N = 33). The similarity in the geochemical characteristics and REE patterns of both gneiss types indicate their magmatic consanguinity. Amphiboles of the UTG biotite-hornblende gneisses are mainly hornblende, together with few paragasitic hornblende and edenite. Plagioclase composition is oligoclase to andesine (An 21-46) in the biotite-hornblende gneiss, and oligoclase (An 11-26) in the biotite gneiss. Mineral chemistry of amphibole and plagioclase indicate that the gneisses were metamorphosed under low- to medium-pressure of 2.6-6.4 kbar and at medium to high temperatures of 660-755 °C. The K-Ar biotite cooling ages (seven samples) range from 585 ± 12 Ma to 598 ± 12 Ma for the UTG, except one biotite-hornblende gneiss sample gives age of 577 ± 11 Ma. These ages suggest a latest metamorphic cooling event at ca. 585-600 Ma time span, which is consistent with the proposed cooling ages of ˜600 Ma for the Elat metamorphic rocks [Cosca, M.A., Shimron, A., Caby, R., 1999. Late Precambrian metamorphism and cooling in the Arabian-Nubian Shield: petrology and 40Ar/ 39Ar geochronology of metamorphic rocks of the Elat area (southern Israel). Precamb. Res. 98, 107-127]. It may indicate that the metamorphism of the UTG might have been contemporaneous with the suggested regional metamorphism at 620 ± 10 Ma for Sinai metamorphic rocks (Cosca et al., 1999) and/or the emplacement age at 614 Ma for the granodiorite in the study area [Stern, R.J., Hedge, C.E., 1985. Geochronological and isotopic constraints on the Late Precambrian crustal evolution in the Eastern Desert of Egypt. Am. J. Sci. 285, 97-127]. These ages also lie within the range of magmatic activity of the Younger Granites in the North Eastern Desert (575-600 Ma).

  10. Geochemical Characteristics and Petrogenesis of Adakites in Sikhote-Alin, Russian Far East

    NASA Astrophysics Data System (ADS)

    Wu, Jeremy Tsung Jui; Jahn, Bor-ming; Nechaev, Victor; Chashchin, Alexander; Yokoyama, Kazumi; Tsutsumi, Yukiyasu

    2016-04-01

    The Sikhote-Alin orogenic belt and late Precambrian Khanka block are two major tectonic units in the southernmost Russian Far East. The Sikhote-Alin belt comprises several tectonostratigraphic terranes, including late Precambrian nappes, and Mesozoic accretionary prisms and turbidite basins. These terranes are overlain by Cretaceous to Paleocene felsic to intermediate volcanic rocks and intruded by granitoids. The magmatic rocks are collectively known as "the East Sikhote-Alin volcano-plutonic belt" (ESAVPB), and mainly characterized by acid-to-intermediate compositions. In this work we study the petrogenesis of adakitic rocks and discuss the possible tectonic implications. Adakitic rocks of the Sikhote-Alin orogen were emplaced in two main periods: Early Cretaceous (132-98 Ma) and Eocene (46-45 Ma). They mainly occur in the Khanka block, with a subordinate amount in the ESAVPB. The adakites show a large range of chemical composition: SiO2 = 57-74%, Al2O3 = 15-18%, Na2O = 3.5-6.1%, K2O = 0.7-3.2%, Na2O/K2O = 1.1-3.9, Sr/Y = 33-145, and (La/Yb)N = 11-53. HREE and HFSE are remarkably depleted. The Early Cretaceous adakites show eNd(T) = -1.0 to +3.2; ISr = 0.7040 - 0.7090, and the Eocene adakites have eNd(T) = -2.0 to +2.2; ISr = 0.7042 - 0.7058. Thus, the Cretaceous and Eocene adakites show rather similar Sr-Nd isotopic compositions, but their Nd isotopic signatures (slightly negative to positive eNd(T) values) may distinguish them from the granitoids of the ESAVPB (only negative eNd(T) values). Adakites may have different modes of generation, but partial melting of meta-basic rocks in a subduction zone is considered the most likely mode for the present case. The two periods of adakites have probably formed in the following scenario. The early Cretaceous emplacement ages for the adakites and the oldest granitoids of the ESAVPB, is considered as the time of initiation of the Paleo-Pacific subduction in NE Asia. The Eocene adakites were also generated in subduction zone, but accompanied by small amount of andesite and rhyolite. Contemporaneous granitoids were emplaced 200-400 km to the east of the study area in Sakhalin as well as in Hokkaido (Japan). With this scenario, we may speculate a roll-back of subducting Pacific plate during the Eocene, and a shifting of arc magmatism from the ESAVPB to Sakhalin Island and Hokkaido. Note that abundant adakitic rocks of early Cretaceous and Eocene ages occur in the Kitakami and Abukuma Mountains of NE Japan. Consequently, geological correlation between Sikhote-Alin and Kitakami-Abukuma and between Sakhalin and Hokaido is highly probable, particularly before the opening of the Japan Sea.

  11. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Ruiz, Joaquin

    1992-04-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the Taylor Creek Rhyolite is higher than that of their host whole rocks. Covariation of this isotope ratio with sanidine abundance and size indicates positive correlations for all three features with decreasing distance to the roof of the magma reservoir. The sanidine probably is more radiogenic than host whole rock because growing phenocrysts partly incorporated Sr from the first partial melt of roof rocks, which contained the highly radiogenic Sr of Precambrian biotite ± hornblende, whereas diffusion was too slow for sanidine to incorporate much of the Sr from subsequently produced less radiogenic partial melt of roof rocks, before eruption quenched the magma system. Disequilibrium between feldspar phenocrysts and host groundmass is fairly common for ignimbrites, and a process of contamination similar to that for the Taylor Creek Rhyolite may help explain some of these situations.

  12. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the Taylor Creek Rhyolite is higher than that of their host whole rocks. Covariation of this isotope ratio with sanidine abundance and size indicates positive correlations for all three features with decreasing distance to the roof of the magma reservoir. The sanidine probably is more radiogenic than host whole rock because growing phenocrysts partly incorporated Sr from the first partial melt of roof rocks, which contained the highly radiogenic Sr of Precambrian biotite ?? hornblende, whereas diffusion was too slow for sanidine to incorporate much of the Sr from subsequently produced less radiogenic partial melt of roof rocks, before eruption quenched the magma system. Disequilibrium between feldspar phenocrysts and host groundmass is fairly common for ignimbrites, and a process of contamination similar to that for the Taylor Creek Rhyolite may help explain some of these situations. ?? 1992 Springer-Verlag.

  13. The dilemma of the Jiaodong gold deposits: Are they unique?

    USGS Publications Warehouse

    Goldfarb, Richard J.; Santosh, M.

    2013-01-01

    The ca. 126–120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as >3000 t Au. The vein and disseminated ores are hosted by NE- to NNE-trending brittle normal faults that parallel the margins of ca. 165–150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Precambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous “Yanshanian” intracontinental extensional deformation and associated gold formation.Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong deposits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolatilization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130–123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineralization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models.

  14. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events occurred locally where extension-related Precambrian basement uplifting took place along the craton margin. Fluids for the orogenic gold deposits in the Xiaoqinling, Xiaoshan, and Xiong'ershan areas may have been released from evolving magmas or resulted from prograde metamorphic reactions within the uplift zones. Alternatively, for the epithermal gold deposits at shallower levels in the Xiong'ershan area, gold-transporting fluids were mainly exsolved from coeval magmas, although meteoric water was also involved in these hydrothermal systems.

  15. Geochemical signature variation of pre-, syn-, and post-shearing intrusives within the Najd Fault System of western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Abu-Alam, T. S.; Hauzenberger, C.; Stüwe, K.

    2016-10-01

    Late Precambrian intrusive rocks in the Arabian-Nubian Shield emplaced within and around the Najd Fault System of Saudi Arabia feature a great compositional diversity and a variety of degrees of deformation (i.e. pre-shearing deformed, sheared mylonitized, and post-shearing undeformed) that allows placing them into a relative time order. It is shown here that the degree of deformation is related to compositional variations where early, usually pre-shearing deformed rocks are of dioritic, tonalitic to granodioritic, and later, mainly post-shearing undeformed rocks are mostly of granitic composition. Correlation of the geochemical signature and time of emplacement is interpreted in terms of changes in the source region of the produced melts due to the change of the stress regime during the tectonic evolution of the Arabian-Nubian Shield. The magma of the pre-shearing rocks has tholeiitic and calc-alkaline affinity indicating island arc or continental arc affinity. In contrast, the syn- and post-shearing rocks are mainly potassium rich peraluminous granites which are typically associated with post-orogenic uplift and collapse. This variation in geochemical signature is interpreted to reflect the change of the tectonic regime from a compressional volcanic arc nature to extensional within-plate setting of the Arabian-Nubian Shield. Within the context of published geochronological data, this change is likely to have occurred around 605-580 Ma.

  16. Mapping rock forming minerals at Boundary Canyon, Death Valey National Park, California, using aerial SEBASS thermal infrared hyperspectral image data

    NASA Astrophysics Data System (ADS)

    Aslett, Zan; Taranik, James V.; Riley, Dean N.

    2018-02-01

    Aerial spatially enhanced broadband array spectrograph system (SEBASS) long-wave infrared (LWIR) hyperspectral image data were used to map the distribution of rock-forming minerals indicative of sedimentary and meta-sedimentary lithologies around Boundary Canyon, Death Valley, California, USA. Collection of data over the Boundary Canyon detachment fault (BCDF) facilitated measurement of numerous lithologies representing a contact between the relatively unmetamorphosed Grapevine Mountains allochthon and the metamorphosed core complex of the Funeral Mountains autochthon. These included quartz-rich sandstone, quartzite, conglomerate, and alluvium; muscovite-rich schist, siltstone, and slate; and carbonate-rich dolomite, limestone, and marble, ranging in age from late Precambrian to Quaternary. Hyperspectral data were reduced in dimensionality and processed to statistically identify and map unique emissivity spectra endmembers. Some minerals (e.g., quartz and muscovite) dominate multiple lithologies, resulting in a limited ability to differentiate them. Abrupt variations in image data emissivity amongst pelitic schists corresponded to amphibolite; these rocks represent gradation from greenschist- to amphibolite-metamorphic facies lithologies. Although the full potential of LWIR hyperspectral image data may not be fully utilized within this study area due to lack of measurable spectral distinction between rocks of similar bulk mineralogy, the high spectral resolution of the image data was useful in characterizing silicate- and carbonate-based sedimentary and meta-sedimentary rocks in proximity to fault contacts, as well as for interpreting some mineral mixtures.

  17. Accessory mineral records of tectonic environments? (Invited)

    NASA Astrophysics Data System (ADS)

    Storey, C.; Marschall, H. R.; Enea, F.; Taylor, J.; Jennings, E. S.

    2010-12-01

    Accessory mineral research continues to gather momentum as we seek to unleash their full potential. It is now widely recognised that robust accessory minerals, such as zircon, rutile, titanite, allanite and monazite, are archives of important trace elements that can help deduce metamorphic reaction history in metapelites, metabasites and other rock types. Moreover, they are important carriers of certain trace elements and govern or influence the products of partial melting and of fluid-rock interaction (e.g. magmas and mineralisation) in settings like subduction zones and hydrothermal systems. Perhaps most importantly, they can often be dated using the U-Th-Pb system. More recently, radiogenic (Lu-Hf, Sm-Nd, Rb-Sr) and stable (O) isotope systems have been applied and have further pushed the utility of accessory mineral research. In this talk I will discuss some of these advances towards one particular aim: the use of detrital accessory minerals for fingerprinting tectonic environments. This is a particularly laudable aim in Precambrian rocks, for which the preservation potential of orogenic belts and fossil subduction zones and their diagnostic metamorphic rocks is low. The implication is that our understanding of plate tectonics, particularly in the Archaean, is biased by the preserved in-tact rock record. An analogy is that Jack Hills zircons record evidence of Earth’s crust some 400 Ma before the preserved rock record begins. I will focus on some recent advances and new data from rutile and also the mineral inclusion record within zircon, which shows great promise for petrologic interpretation.

  18. Preliminary hydrogeologic evaluation of the Cincinnati Arch region for underground high-level radioactive waste disposal, Indiana, Kentucky , and Ohio

    USGS Publications Warehouse

    Lloyd, O.B.; Davis, R.W.

    1989-01-01

    Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. (USGS)

  19. Evidence for Microfossils in Ancient Rocks and Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, A. Y.; Zhmur, S. I.; Gorlenko, V. M.

    1998-01-01

    The McKay et all. detection of chemical biomarkers and possible microfossils in an ancient meteorite from Mars (ALH84001) stimulated research in several areas of importance to the newly emerging field of Astrobiology. Their report resulted in a search for additional evidence of microfossils in ancient terrestrial rocks and meteorites. These studies of ancient rocks and meteorites were conducted independently (and later collaboratively) in the United States and Russia using the SEM, Environmental Scanning Electron Microscope (ESEM), and Field Emission Scanning Electron Microscope (FESEM). We have encountered in-situ in freshly broken carbonaceous chondrites a large number of complex microstructures that appear to be lithified microbial forms. The meteoritic microstructures have characteristics similar to the lithified remains of filamentous cyanobacteria and bacterial microfossils we have found in ancient phosphorites, ancient graphites and oil shales. Energy Dispersive Spectroscopy (EDS) and Link microprobe analysis shows the possible microfossils have a distribution of chemical elements characteristic of the meteorite rock matrix, although many exhibit a superimposed carbon enhancement. We have concluded that the mineralized bodies encountered embedded in the rock matrix of freshly fractured meteoritic surfaces can not be dismissed as recent surface contaminants. Many of the forms found in-situ in the Murchison, Efremovka, and Orgueil carbonaceous meteorites are strikingly similar to microfossils of coccoid bacteria, cyanobacteria and fungi such as we have found in the Cambrian phosphorites of Khubsugul, Mongolia and high carbon Phanerozoic and Precambrian rocks of the Siberian and Russian Platforms.

  20. Provenance analysis on detrital zircons from the back-arc Arivechi basin: Implications for the Upper Cretaceous tectonic evolution of northern Sonora and southern Arizona

    NASA Astrophysics Data System (ADS)

    Rodríguez-Castañeda, José Luis; Ortega-Rivera, Amabel; Roldán-Quintana, Jaime; Espinoza-Maldonado, Inocente Guadalupe

    2018-07-01

    In the Arivechi region of eastern Sonora, northwestern Mexico, mountainous exposures of Upper Cretaceous rocks that contain monoliths within coarse sedimentary debris are enigmatic, in a province of largely Late Cretaceous continental-margin arc rocks. The rocks sequence in the study area are grouped in two Upper Cretaceous units: the lower Cañada de Tarachi and the younger El Potrero Grande. Detrital zircons collected from three samples of the Cañada de Tarachi and El Potrero Grande units have been analyzed for U-Pb ages to constrain their provenance. These ages constrain the age of the exposed rocks and provide new insights into the geological evolution of eastern Sonora Cretaceous rocks. The detrital zircon age populations determined for the Cañada de Tarachi and El Potrero Grande units contain distinctive Precambrian, Paleozoic, and Mesozoic zircon ages that provide probable source areas which are discussed in detail constraining the tectonic evolution of the region. Comparison of these knew ages with published data suggests that the source terranes, that supplied zircons to the Arivechi basin, correlate with Proterozoic, Paleozoic and Mesozoic domains in southern California and Baja California, northern Sonora, southern Arizona and eastern Chihuahua. The provenance variation is vital to constrain the source of the Cretaceous rocks in eastern Sonora and support a better understanding of the Permo-Triassic Cordilleran Magmatic Arc in the southwestern North America.

  1. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Pecoits, Ernesto; Lalonde, Stefan V; Papineau, Dominic; Nisbet, Euan G; Barley, Mark E; Arndt, Nicholas T; Zahnle, Kevin; Kamber, Balz S

    2009-04-09

    It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere.

  2. Geological Structure and History of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Pospelov, Igor; Tolmacheva, Tatiana; Petrov, Eugeny

    2016-04-01

    New data on geological structure of the deep-water part of the Arctic Basin have been integrated in the joint project of Arctic states - the Atlas of maps of the Circumpolar Arctic. Geological (CGS, 2009) and potential field (NGS, 2009) maps were published as part of the Atlas; tectonic (Russia) and mineral resources (Norway) maps are being completed. The Arctic basement map is one of supplements to the tectonic map. It shows the Eurasian basin with oceanic crust and submerged margins of adjacent continents: the Barents-Kara, Amerasian ("Amerasian basin") and the Canada-Greenland. These margins are characterized by strained and thinned crust with the upper crust layer, almost extinct in places (South Barents and Makarov basins). In the Central Arctic elevations, seismic studies and investigation of seabed rock samples resulted in the identification of a craton with the Early Precambrian crust (near-polar part of the Lomonosov Ridge - Alpha-Mendeleev Rise). Its basement presumably consists of gneiss granite (2.6-2.2 Ga), and the cover is composed of Proterozoic quartzite sandstone and dolomite overlain with unconformity and break in sedimentation by Devonian-Triassic limestone with fauna and terrigenous rocks. The old crust is surrounded by accretion belts of Timanides and Grenvillides. Folded belts with the Late Precambrian crust are reworked by Caledonian-Ellesmerian and the Late Mesozoic movements. Structures of the South Anuy - Angayucham ophiolite suture reworked in the Early Cretaceous are separated from Mesozoides proper of the Pacific - Verkhoyansk-Kolyma and Koryak-Kamchatka belts. The complicated modern ensemble of structures of the basement and the continental frame of the Arctic Ocean was formed as a result of the conjugate evolution and interaction of the three major oceans of the Earth: Paleoasian, Paleoatlantic and Paleopacific.

  3. The uranium-bearing nickel-cobalt-native silver deposits in the Black Hawk district, Grant County, New Mexico

    USGS Publications Warehouse

    Gillerman, Elliot; Whitebread, Donald H.

    1953-01-01

    The Black Hawk (Bullard Peak) district, Grant County, N. Mex., is 21 miles by road west of Silver City. From 1881 to 1893 more than $1,000,000.00 of high-grade silver ore is reported to have been shipped from the district. Since 1893 there has been no mining in the district except during a short period in 1917 when the Black Hawk mine was rehabilitated. Pre-Cambrian quartz diorite gneiss, which contains inclusions of quartzite, schist, monzonite, and quartz monzonite, is the most widespread rock in the district. The quartz diorite gneiss is intruded by many pre-Cambrian and younger rocks, including diorite granite, diabase, monzonite porphyry and andesite and is overlain by the Upper Cretaceous Beartooth quartzite. The monzonite porphyry, probably of late Cretaceous or early Tertiary age, forms a small stock along the northwestern edge of the district and numerous dikes and irregular masses throughout the district. The ore deposits are in fissure veins that contain silver, cobalt, and uranium. The ore minerals, which include native silver, niccolite, millerite, skutterudite, nickel skutterudite, bismuthinite, pitchblende, and sphalerite, are in a carbonate gangue in narrow, persistent veins, most of which trend northeasterly. Pitchblende has been identified in the Black Hawk and the Alhabra deposits and unidentified radioactive minerals were found at five other localities. The deposits that contain the radioactive minerals constitude a belt 600 to 1,500 feet wide that trends about N. 45° E., and is approximately parallel to the southeastern boundary of the monzonite porphyry stock. All the major ore deposits are in the quartz diorite gneiss in close proximity to the monzonite porphyry. The ore deposits are similar to the deposits at Great Bear Lake, Canada, and Joachimstahl, Czechoslovakia.

  4. A Late Silurian U-Pb zircon age for Linville metadiabase, Grandfather Mountain window, North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetter, A.H.; Goldberg, S.A.

    1993-03-01

    Linville metadiabase intrudes both Precambrian basement within the Grandfather Mountain window and nonconformably overlying Grandfather Mountain Formation. It occurs as sill-like and dike-like bodies, and is apparently not recognized outside of the window. Major element data classify the composition of the rock as tholeiitic basalt. Zircon was separated from a metadiabase body intruding metasiltstone of the Grandfather Mountain Formation west of Cranberry Knob. Zircon are clear, euhedral, with a l/w ratio of 3:1. Two abraded fractions (75-150 and < 75 [mu]m, both NM-2[degree]) yield concordant ages, which the authors report as 415 [plus minus] 3 Ma (2[sigma]), a weighted meanmore » of the two [sup 207]Pb/[sup 206]Pb ages. This Late Silurian (Ludlow) age is interpreted as the time of crystallization. Previously, similarities in mode of occurrence and major element composition have been used to correlate Linville metadiabase with late Precambrian mafic rocks within and outside of the window, as field relations do not constrain its age. Linville metadiabase thus is an unlikely candidate for feeders to the Montezuma metabasalt, which occurs as a flow immediately above metarhyolite dated as 742 [plus minus] 2 Ma (2[sigma]). Linville metadiabase may be one component of a magmatic pulse spanning 10-20 m.y. associated with the Acadian orogeny. The new zircon age places constraints on the timing of metamorphism and deformation, as Linville metadiabase is foliated, containing metamorphic assemblages from the biotite zone of the greenschist facies. The age and fabric relations are permissive evidence of post-Taconic, Acadian or Alleghanian orogeny.« less

  5. Assessment of Environmental Radiation Impacts Related to Granites, Dikes and Stream Sediments of Sharm El-Sheikh Area, South Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Heikal, M.; Ghoneim, M.; El Galy, M.; El Dousky, B.; Sherif, M.

    2012-04-01

    Sharm El Sheikh area represents one of the most touristic resort allover the world. This area is surrounded by such exposures of Precambrian granites and dike swarms as well as Miocene-Pliocene sedimentary rocks that imply more or less radionuclides U, Th, Ra and K. The radioactivity imposed within the Precambrian rocks has carefully focalized on both field and lab using up-to-date equipments and instruments. In order to evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity (Raeq), gamma activity concentration index (Iγ), external hazard index (Hex) internal hazard index (Hin) and annual effective dose rate (AEDR) have been calculated and compared with the internationally approved values. The permissible values for each index revealed that all exposures of granite and mafic dikes have values below safety limits of radiation. The stream sediments within the major wadis are also safe and available for the population and agricultural purposes and/or as construction materials. On the other hand, the felsic dikes that occur far from Sharm El Sheikh town exceed the permissible radiation limits indicating their environmental hazards impacts. It was recommended to restrict land use in a buffer zone adjacent to the felsic dikes of very limited distributions. A planned major town extension of Sharm El Sheikh area has to be stopped around and within these dikes sites, but alternative future residential areas could be delineated to the northwest of the town. An intensive coordination with the Ministry of Environmental Affairs of Egypt, the town planners and other affected authorities guarantees must take into considerations the outstanding integration of the recommendations of our study into future town and regional land use planning.

  6. Mass Independent Fractionation of Sulphur Isotopes in Precambrian Sedimentary Rocks: Indicator for Changes in Atmospheric Composition and the Operation of the Global Sulphur Cycle

    NASA Astrophysics Data System (ADS)

    Peters, M.; Farquhar, J.; Strauss, H.

    2005-12-01

    Large mass independent fractionation (MIF) of sulphur isotopes in sedimentary rocks older than 2.3 Ga and the absence of this isotopic anomaly in younger rocks seem to be the consequence of a change in Earth's atmospheric composition from essentially oxygen-free or to oxygen-rich conditions. MIF is produced by photochemical reactions of volcanogenic sulphur dioxide with UV radiation in the absence of an ozone shield. The products of such processes are elemental sulphur with positive and sulphate with negative Δ33S values. Here we present isotope data (32S, 33S, 34S) for sedimentary pyrites from Archaean and Palaeoproterozoic rocks of the Kaapvaal Craton (South Africa), the Pilbara Craton (Australia) and the Greenland Shield (Isua Supercrustal Belt). Their ages range from 3.85 to 2.47 Ga. Large positive Δ33S values up to +9.13 ‰ in several Archaean units from the Kapvaal and Pilbara Cratons are attributed to low atmospheric oxygen at that time. Interestingly, very low Δ33S values between -0.28 and +0.57 ‰ appear to characterize the Witwatersrand succession of South Africa (3.0 Ga). This rather small MIF signature was previously detected in rocks of the same age in Western Australia (OHMOTO et al., 2005). The signature is interpreted as a global signal, which could be the consequence of a shielding effect induced by one or more atmospheric components. The most probable chemical compounds for this process are methane and carbon dioxide. Rocks of the Kameeldoorns Fm. (2.71 Ga), Kaapvaal Craton, display also low values between -0.46 and +0.33 ‰, which are consistent with the small (absent) MIF signal in rocks of the Hardey Fm. (2.76 Ga) of Western Australia (OHMOTO et al., 2005). Very low carbon isotope values between -51 and -40 ‰ in late Archaean kerogens (2.6 - 2.8 Ga) indicate a high concentration of methane in the atmosphere (PAVLOV et al., 2001). This high methane level could produce an organic haze, which absorbed most of the UV radiation and prevented mass independent fractionation of sulphur isotopes. In Palaeoproterozoic sediments of the Brockman Iron Fm., just prior to the proposed Great Oxidation Event, we determined predominantly negative Δ33S values between -1.07 and +0.08 ‰, which is atypical for sulphides. We interpret this negative MIF signal as a product of microbial reduction of atmospheric sulphate with an original negative MIF signature. This observation may indicate a higher concentration of sulphate in the ocean. Mass independent sulphur isotope data presented here provide a deeper insight into the major steps in atmospheric evolution and the Precambrian sulfur cycle. Ohmoto, H., Watanabe, Y., Ikemi, H. (2005) Geochim. Cosmochim. Acta 69, A 450 (abstr.). Pavlov, A.A., Kasting, J.F., Brown, L.L. (2001) JGR 106, 23267-23287.

  7. Two flysch belts having distinctly different provenance suggest no stratigraphic link between the Wrangellia composite terrane and the paleo-Alaskan margin

    USGS Publications Warehouse

    Hults, Chad P.; Wilson, Frederic H.; Donelick, Raymond A.; O'Sullivan, Paul B.

    2013-01-01

    The provenance of Jurassic to Cretaceous flysch along the northern boundary of the allochthonous Wrangellia composite terrane, exposed from the Lake Clark region of southwest Alaska to the Nutzotin Mountains in eastern Alaska, suggests that the flysch can be divided into two belts having different sources. On the north, the Kahiltna flysch and Kuskokwim Group overlie and were derived from the Farwell and Yukon-Tanana terranes, as well as smaller related terranes that were part of the paleo-Alaskan margin. Paleocurrent indicators for these two units suggest that they derived sediment from the north and west. Sandstones are predominantly lithic wacke that contain abundant quartz grains, lithic rock fragments, and detrital mica, which suggest that these rocks were derived from recycled orogen and arc sources. Conglomerates contain limestone clasts that have fossils matching terranes that made up the paleo-Alaskan margin. In contrast, flysch units on the south overlie and were derived from the Wrangellia composite terrane. Paleocurrent indicators for these units suggest that they derived sediment from the south. Sandstones are predominantly feldspathic wackes that contain abundant plagioclase grains and volcanic rock fragments, which suggest these rocks were derived from an arc. Clast compositions in conglomerate south of the boundary match rock types of the Wrangellia composite terrane. The distributions of detrital zircon ages also differentiate the flysch units. Flysch units on the north average 54% Mesozoic, 14% Paleozoic, and 32% Precambrian detrital zircons, reflecting derivation from the older Yukon-Tanana, Farewell, and other terranes that made up the paleo-Alaskan margin. In comparison, flysch units on the south average 94% Mesozoic, 1% Paleozoic, and 5% Precambrian zircons, which are consistent with derivation from the Mesozoic oceanic magmatic arc rocks in the Wrangellia composite terrane. In particular, the flysch units on the south contain a large proportion of zircons ranging from 135 to 175 Ma, corresponding to the age of the Chitina magmatic arc in the Wrangellia terrane and the plutons of the Peninsular terrane, which are part of the Wrangellia composite terrane. Flysch units on the north do not contain significant numbers of zircons in this age range. The flysch overlying the Wrangellia composite terrane apparently does not contain detritus derived from rocks of the paleo-Alaska margin, and the flysch overlying the paleo-Alaskan margin apparently does not contain detritus derived from the Wrangellia composite terrane. The provenance difference between the two belts helps to constrain the location of the northern boundary of the Wrangellia composite terrane. Geophysical models place a deep, through-going, crustal-scale suture zone in the area between the two flysch belts. The difference in the provenance of the two belts supports this interpretation. The youngest flysch is Late Cretaceous in age, and structural disruption of the flysch units is constrained to the Late Cretaceous, so it appears that the Wrangellia composite terrane was not near the paleo-Alaskan margin until the Late Cretaceous.

  8. Manganese deposits in the Drum Mountains, Juab and Millard Counties, Utah

    USGS Publications Warehouse

    Crittenden, Max D.; Straczek, John A.; Roberts, Ralph Jackson

    1961-01-01

    The Drum Mountains are in west-central Utah 30 miles northwest of Delta, between the Sevier Desert on the east and Whirlwind Valley on the west. It is a typically barren desert range comprising a westward-tilted structural unit in which is exposed as much as 9,000 feet of quartzite (Cambrian and Precambrian?) and 3,000 feet of carbonate rocks of Cambrian age. These beds, which strike northward and dip west, are cut by myriad east- to northeast-trending faults with displacements of a few feet to a few thousand feet. Quartz monzonite dikes, pebble dikes, and vein deposits are present locally along the faults. The Cambrian rocks are overlain unconformably by volcanic rocks of probable Tertiary age. Bodies of manganese carbonate ore were formed by replacement of two 20-foot beds of impure dolomite at the base of the sequence of carbonate rocks, along their intersection with certain preore faults. The feeding fissures locally contain veins in which rhodochrosite is associated with base metal sulfides. Downward- moving meteoric water has oxidized the ore bodies to a depth of 100 to 200 feet except where they are sealed off by structural or stratigraphic traps.From 1925 to 1953, 72,462 long tons of manganese ore with an average grade of about 25 percent Mn were shipped.

  9. Hydrocarbon potential of Morocco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achnin, H.; Nairn, A.E.M.

    1988-08-01

    Morocco lies at the junction of the African and Eurasian plates and carries a record of their movements since the end of the Precambrian. Four structural regions with basins and troughs can be identified: Saharan (Tarfaya-Ayoun and Tindouf basins); Anti-Atlas (Souss and Ouarzazate troughs and Boudnib basin); the Essaouria, Doukkala, Tadla, Missour, High Plateau, and Guercif basins; and Meseta and Rif (Rharb and Pre-Rif basins). The targets in the Tindouf basin are Paleozoic, Cambrian, Ordovician (clastics), Devonian (limestones), and Carboniferous reservoirs sourced primarily by Silurian shales. In the remaining basins, excluding the Rharb, the reservoirs are Triassic detritals, limestones atmore » the base of the Lias and Dogger, Malm detritals, and sandy horizons in the Cretaceous. In addition to the Silurian, potential source rocks include the Carboniferous and Permo-Carboniferous shales and clays; Jurassic shales, marls, and carbonates; and Cretaceous clays. In the Rharb basin, the objectives are sand lenses within the Miocene marls. The maturation level of the organic matter generally corresponds to oil and gas. The traps are stratigraphic (lenses and reefs) and structural (horsts and folds). The seals in the pre-Jurassic rocks are shales and evaporites; in the younger rocks, shales and marl. Hydrocarbon accumulations have been found in Paleozoic, Triassic, Liassic, Malm, and Miocene rocks.« less

  10. Sedimentary rocks of the coast of Liberia

    USGS Publications Warehouse

    White, Richard William

    1969-01-01

    Two basins containing sedimentary rocks o# probable Cretaceous age have been recognized near the coast of Liberia in the area between Monrovia and Buchanan; geophysical evidence suggests that similar though larger basins exist on the adjacent continental shelf. The oldest sedimentary unit recognized, the Paynesville Sandstone of possible early to middle Paleozoic age, is intruded by dikes and sills of diabase of early Jurassic age and lies unconformably on crystalline rocks of late Precambrian age. Dips in the Paynesville Sandstone define a structural basin centered south of Roberts International Airport (formerly called Roberts Field) about 25 miles east of Monrovla. Wackes and conglomerates of Cretaceous age, herein named the Farmington River Formation, unconformably overlie the Paynesville Sandstone and constitute the sedimentary fill in the Roberts basin. The Bassa basin lies to the southeast of the Roberts basin and is separated from it by an upwarp of crystalline rocks. The basin is occupied by wackes and conglomerates of the Farmington River Formation, which apparently lie directly on the crystalline basement. Both basins are bounded on the northeast by northwest-trending dip-slip faults. The best potential for petroleum deposits that exists in Liberia is beneath the adjacent continental shelf and slope. Geophysical exploration and drilling will be required to evaluate this potential.

  11. The First Evidence of the Precambrian Basement in the Fore Range Zone of the Great Caucasus.

    NASA Astrophysics Data System (ADS)

    Latyshev, A.; Kamzolkin, V.; Vidjapin, Y.; Somin, M.; Ivanov, S.

    2017-12-01

    Within the Great Caucasus fold-thrust belt, the Fore Range zone has the most complicated structure, and the highest degree of metamorphism was found there. This zone consists of several salients with the different composition and the structural and metamorphic evolution. The largest Blyb salient includes the metamorphic basement covered by the pack of thrusts. According to the recent isotopic data the upper levels of the Blyb metamorphic complex (BMC) are supposed to be Middle-Paleozoic (Somin, 2011). We studied zircons from the granitic intrusions located in the metamorphic rocks of the BMC. The U-Pb dating (SHRIMP II, VSEGEI, Russia) of zircons from the large Balkan metadiorite massif yielded the ages of 549±7,4, 574,1±6,7, and 567,9±6,9 Ma. All studied zircons show the high Th/U ratios and likely have the magmatic origin. This data is the first confirmation of the presence of the Precambrian basement and Vendian magmatic activity in the Fore Range zone. Zircons from the Unnamed granodiorite massif from the south of the Blyb salient yielded the age of 319±3.8 Ma (the Early Carboniferous). This fact taken together with the low grade of metamorphism in this intrusion reveals the Late Paleozoic magmatic event in the Fore Range zone. We also suggest that the Precambrian basement of the BMC, including the Balkan intrusion, is covered by so-called Armovsky nappe. This is confirmed by the field data, Middle-Paleozoic U-Pb ages and the higher degree of metamorphism of the Armovsky gneisses and schists. Thus, the BMC is not uniform but includes the blocks of the different age and metamorphic grades. Finally, we measured the anisotropy of magnetic susceptibility (AMS) of the Balkan metadiorites. The axes of AMS ellipsoid fix the conditions of the north-east compression, as well as the strain field reconstructed from the macrostructures orientation, which corresponds to the thrusts propagation. Therefore, the emplacement of the Balkan massif happened before the thrust sheets formation. Thus, the first reliable evidence of the Precambrian basement in the Fore Range zone was obtained. Besides, our U-Pb data suggest that in the end of Precambrian the Fore Range zone could be related to Gondwana, where the Vendian granitic magmatism is widely known. This work was funded by RFBR (projects № 16-35-00571, 16-05-01012, 17-05-01121).

  12. Upper crust beneath the central Illinois basin, United States

    USGS Publications Warehouse

    McBride, J.H.; Kolata, Dennis R.

    1999-01-01

    Newly available industry seismic reflection data provide critical information for understanding the structure and origin of the upper crust (0-12 km depth) beneath the central Illinois basin and the seismic-tectonic framework north of the New Madrid seismic zone in the central Mississippi Valley. Mapping of reflector sequences furnishes the first broad three-dimensional perspective of the structure of Precambrian basement beneath the central United States Midcontinent. The highly coherent basement reflectivity is expressed as a synformal wedge of dipping and subhorizontal reflections situated beneath the center of the Illinois basin that thickens and deepens to the northeast (e.g., 0 to ???5.3 km thickness along a 123 km south to north line). The thickening trend of the wedge qualitatively mimics the northward thickening of the Late Cambrian Mt. Simon Sandstone; however, other Paleozoic units in the Illinois basin generally thicken southward into the basin center. The seismic data also reveal an anomalous subsequence defined by a spoon-shaped distribution of disrupted reflections located along the southern margin of the wedge. The boundaries of this subsequence are marked by distinct steeply dipping reflections (possible thrust faults?) that continue or project up to antiformal disruptions of lower Paleozoic marker reflectors, suggesting Paleozoic or possibly later tectonic reactivation of Precambrian structure. The areal extent of the subsequence appears to roughly correspond to an anomalous concentration of larger magnitude upper to middle crustal earthquakes. There are multiple hypotheses for the origin of the Precambrian reflectivity, including basaltic flows or sills interlayered with clastic sediments and/or emplaced within felsic igneous rocks. Such explanations are analogous to nearby Keweenawan rift-related volcanism and sedimentation, which initiated during Proterozoic rifting, and were followed eventually by reverse faulting along the rift margins caused by Grenville compression.

  13. Deformation history of Archean metasedimentary rocks of the Beartooth mountains in the vicinity of the Mineral Hill mine, Jardine, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablinski, J.D.; Holst, T.B.

    1992-09-01

    Archean metasedimentary rocks of the South Snowy Block of the Beartooth Mountains, in the vicinity of Jardine, Montana, consist predominantly of schistose rocks with rare iron formation. These rocks are intruded by Precambrian granitic stocks and minor mafic dikes and sills. Evidence for three phases of folding and late-stage kinking is found within the metasedimentary rocks, whereas rocks of the Crevice Mountain stock (2,700 Ma) are unaffected by any of these events. The first folding event involved the development of isoclinal, recumbent folds of varying scale. F[sub 1] fold hinges are rare, most commonly observed underground in Mineral Hill. Anmore » S[sub 1] schistosity has developed axial planar to these folds. This schistosity, which is subparallel to bedding, is very well developed and ubiquitous in the metasedimentary rocks of the Jardine region. Two later phases of folding are also recognized. F[sub 2] folds are nearly upright with gently to moderately plunging fold hinges. Temperature and pressure conditions during deformation, as revealed by calculations from microprobe analyses, suggest that the peak of metamorphism occurred at a temperature of about 560 C and a pressure of 2.9 kb. Thin section observations indicate that the metamorphic peak accompanied the formation of S[sub 1] schistosity. Structural, metamorphic, and geochemical data are consistent with the hypothesis that the metasedimentary rock of the Jardine region are allochthonous and constitute one of a number of tectonostratigrphic terranes in the western Beartooth Mountains that were juxtaposed tectonically against the western margin of an Archean continent during a Late Archean collisional event.« less

  14. Geologic and geophysical investigations of Climax Stock intrusive, Nevada

    USGS Publications Warehouse

    ,

    1983-01-01

    The Climax stock is a composite granitic intrusive of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes rocks of Paleozoic and Precambrian age. Tertiary volcanic rocks, consisting of ashflow and ash-fall tuffs, and tuffaceous sedimentary rocks overlie the sedimentary rocks and the stock. Erosion has removed much of the Tertiary volcanic rocks. Hydrothermal alteration of quartz monzonite and granodiorite is found mainly along joints and faults and varies from location to location. The Paleozoic carbonate rocks have been thermally and metasomatically altered to marble and tactite as much as 457 m (1,500 ft) from the contact with the stock, although minor discontinuous metasomatic effects are noted in all rocks out to 914 m (3,000 ft). Three major faults which define the Climax area structurally are the Tippinip, Boundary and Yucca faults. North of the junction of the Boundary and Yucca faults, the faults are collectively referred to as the Butte fault. The dominant joint sets and their average attitudes are N. 32? W., 22? NE; N. 60? W., vertical and N. 35? E., vertical. Joints in outcrop are weathered and generally open, but in subsurface, the joints are commonly filled and healed with secondary mineral s. The location of the water table and the degree of saturation of the granitic rocks are presently unknown. Measurement from drill holes indicated that depth to perched water levels ranges from 30 to 244 m (100-800 ft). Recent field investigations have shown the contact between the Pogonip marble and the granodiorite is a contact rather than a fault as previously mapped. The thickness of the weathered granodiorite is estimated to be 8 to 46 m (25 to 150 ft).

  15. Crustal structure of southwestern Saudi Arabia

    USGS Publications Warehouse

    Gettings, M.E.; Blank, H.R.; Mooney, W.D.; Healy, J.H.

    1983-01-01

    The southwestern Arabian Shield is composed of uplifted Proterozoic metamorphic and plutonic rocks. The Shield is bordered on the southwest by Cenozoic sedimentary and igneous rocks of the Red Sea paar and on the east by the Arabian Platform, an area of basin sedimentation throughout Phanerozoic time. The Shield appears to have been formed by successive episodes of island arc volcanism and sea-floor spreading, followed by several cycles of compressive tectonism and metamorphism. An interpretation and synthesis of a deep-refraction seismic profile from the Riyadh area to the Farasan Islands, and regional gravity, aeromagnetic, heat flow, and surface geologic data have yielded a self-consistent regional-scale model of the crust and upper mantle for this area. The model consists of two 20 km-thick layers of crust with an average compressional wave velocity in the upper crust of about 6.3 km/s and an average velocity in the lower. crust of about 7.0 km/s. This crust thins abruptly to less than 20 km near the southwestern end of the profile where Precambrian outcrops abut the Cenozoic rocks and to 8 km beneath the Farasan Islands. The data over the coastal plain and Red Sea shelf areas are fit satisfactorily by an oceanic crustal model. A major lateral velocity inhomogeneity in the crust is inferred about 25 km northeast of Sabhah and is supported by surface geologic evidence. The major velocity discontinuities occur at about the same depth across the entire Shield and are interpreted to indicate horizontal metamorphic stratification of the Precambrian crust. Several lateral inhomogenities in both the upper and lower .crust of the . Shield are interpreted, to indicate bulk compositional variations. The subcrustal portion of the model is composed of a hot, low-density lithosphere beneath the Red Sea which is systematically cooler and denser to the northeast. This model provides a mechanism which explains the observed topographic uplift, regional gravity pattern, heat flow, and mantle compressional wave velocities. Such a lithosphere could be produced by upwelling of hot asthenosphere beneath the Red Sea which then flows laterally beneath the lithosphere of the Arabian Plate.

  16. Chapter G: Tentative Correlation Between CIPW Normin pl (Total Plagioclase) and Los Angeles Wear in Precambrian Midcontinental Granites-Examples from Missouri and Oklahoma, with Applications and Limitations for Use

    USGS Publications Warehouse

    Davis, George H.

    2004-01-01

    The normative chemical classification of Cross, Iddings, Pirsson, and Washington (CIPW) is commonly used in igneous petrology to distinguish igneous rocks by comparing their magmatic chemistries for similar and dissimilar components. A potential use for this classification other than in petrologic studies is in the rapid assessment of aggregate sources, possibly leading to an economic advantage for an aggregate producer or user, by providing the opportunity to determine whether further physical testing of an aggregate is warranted before its use in asphalt or concrete pavement. However, the CIPW classification currently should not be substituted for the physical testing required in specifications by State departments of transportation. Demands for physical testing of aggregates have increased nationally as users seek to maximize the quality of the aggregate they purchase for their pavements. Concrete pavements are being laid with increased thicknesses to withstand increasing highway loads. New pavement mixes, most notably Superior Performance Asphalt Pavement ('Superpave'), are designed for additional service life. For both concrete and asphalt, the intent is to generate a durable pavement with a longer service life that should decrease overall life-cycle costs. Numerous aggregate producers possess chemical-composition data available for examination to answer questions from the potential user. State geological surveys also possess chemical-composition data for stone sources. Paired with the results of physical testing, chemical- composition data provide indicative information about stone durability and aggregate strength. The Missouri Department of Transportation has noted a possible relation among coarse-grained Precambrian granites of the midcontinental region, correlating the results of abrasion testing with the contents of normative minerals, also known as normins, calculated from chemical composition data. Thus, normin pl ( total plagioclase) can predict, by way of simple regression, the Los Angeles wear for granite samples collected in Missouri. The results of this abrasion testing were extended to another granite in Oklahoma where normin pl predicted Los Angeles wear to within 0.6 percent. This relation may also exist for granitic rocks outside the Oklahoma-Missouri region, as well as for other igneous-rock types.

  17. Insights into Rift Initiation, Evolution, and Failure from North America's Midcontinent Rift

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S.; Elling, R. P.; Keller, G. R.; Kley, J.; Wysession, M. E.

    2017-12-01

    Recent studies of the Midcontinent Rift (MCR) near Lake Superior give insights into how some rifts start, evolve, and fail because the rift-filling volcanic and sedimentary rocks are exposed at the surface and well imaged by deep seismic reflection and gravity data. The MCR was traditionally considered to have formed by midplate extension and volcanism 1.1 Ga that ended due to compression from the Grenville orogeny, the 1.3 - 0.98 Ga assembly of Amazonia (Precambrian northeast South America), Laurentia (Precambrian North America), and other continents into the supercontinent of Rodinia. We find that a more plausible scenario is that the MCR formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. A cusp in Laurentia's apparent polar wander path just before the onset of MCR volcanism likely reflects the rifting. Such cusps have been observed elsewhere when continents separate and a new ocean forms between the two fragments. New analyses also find that the MCR's failure did not result from Grenville compression. This view is consistent with the observation that many intracontinental rifts form and fail as part of plate boundary reorganizations. Present-day continental extension in the East African Rift and seafloor spreading in the Red Sea and Gulf of Aden form a classic three-arm rift geometry as Africa splits into Nubia, Somalia, and Arabia. The West Central African Rift system formed during the Mesozoic breakup of Africa and South America and became inactive once full seafloor spreading was established on the Mid-Atlantic Ridge. An important feature of the MCR is that it is has aspects both of a continental rift - a segmented linear depression filled with sedimentary and igneous rocks - and a large igneous province (LIP). We view it as a LIP deposited in crust weakened by rifting, and thus first a rift and then a LIP. The MCR exhibits many key features of volcanic passive margins: seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and a high-velocity lower crustal body. Hence the MCR can be treated as a rift that failed just short of forming a passive margin.

  18. New Tracers of Gas Migration in the Continental Crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, Mark D.

    2015-11-01

    Noble gases are exceptional tracers in continental settings due to the remarkable isotopic variability between the mantle, crust, and atmosphere, and because they are inert. Due to systematic variability in physical properties, such as diffusion, solubility, and production rates, the combination of helium, neon, and argon provides unique but under-utilized indices of gas migration. Existing noble gas data sets are dominated by measurements of gas and fluid phases from gas wells, ground waters and hot springs. There are very few noble gas measurements from the solid continental crust itself, which means that this important reservoir is poorly characterized. The centralmore » goal of this project was to enhance understanding of gas distribution and migration in the continental crust using new measurements of noble gases in whole rocks and minerals from existing continental drill cores, with an emphasis on helium, neon, argon. We carried out whole-rock and mineral-separate noble gas measurements on Precambrian basement samples from the Texas Panhandle. The Texas Panhandle gas field is the southern limb of the giant Hugoton-Panhandle oil and gas field; it has high helium contents (up to ~ 2 %) and 3He/4He of 0.21 (± 0.03) Ra. Because the total amount of helium in the Panhandle gas field is relatively well known, crustal isotopic data and mass balance calculations can be used to constrain the ultimate source rocks, and hence the helium migration paths. The new 3He/4He data range from 0.03 to 0.11 Ra (total), all of which are lower than the gas field values. There is internal isotopic heterogeneity in helium, neon, and argon, within all the samples; crushing extractions yield less radiogenic values than melting, demonstrating that fluid inclusions preserve less radiogenic gases. The new data suggest that the Precambrian basement has lost significant amounts of helium, and shows the importance of measuring helium with neon and argon. The 4He/40Ar values are particularly useful in demonstrating helium loss because all the data falls well below the production ratio.« less

  19. A-type granite and the Red Sea opening

    USGS Publications Warehouse

    Coleman, R.G.; DeBari, S.; Peterman, Z.

    1992-01-01

    Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and metaluminous granitic magmas involved both fractio??nation and partial melting as they ascended through the late Precambrian crust of the Arabian plate. ?? 1992.

  20. Geochemical survey of the Devil's Den Roadless Area, Rutland and Windsor counties, Vermont

    USGS Publications Warehouse

    Slack, J.F.; Atelsek, P.J.; Grosz, A.E.

    1985-01-01

    The Devils Den area is named for a large undercut cliff (Dale, 1915, p. 21) developed in Precambrian basement rocks. This undercut cliff forms a broad natural cave immediately west of and below Forest Service Road 10, at the head of Mt. Tabor Brook. Another much smaller cave is present in dolomite of probable Paleozoic (Early Cambrian) age on the east side of the same road. This smaller cave apparently is of artificial origin, having been made during early mining of the dolomite (Dale, 1915, p. 21). This man-made cave is the only evidence of previous mining activity within the study area.

  1. Anomalous Xenon in the Precambrian Nuclear Reactor in Okelobondo (Gabon): A Possible Connection to the Fission Component in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Meshik, A. P.; Kehm, K.; Hohenberg, C. M.

    1999-01-01

    Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.

  2. LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Verma, Surendra P.; Oliveira, Elson P.; Singh, Vinod K.; Moreno, Juan A.

    2016-03-01

    The central Bundelkhand greenstone complex in Bundelkhand craton, northern India is one of the well exposed Archaean supracrustal amphibolite, banded iron formation (BIF) and felsic volcanic rocks (FV) and associated with grey and pink porphyritic granite, tonalite-trondhjemite-granodiorite (TTG). Here we present high precision zircon U-Pb geochronological data for the pinkish porphyritic granites and TTG. The zircons from the grey-pinkish porphyritic granite show three different concordia ages of 2531 ± 21 Ma, 2516 ± 38 Ma, and 2514 ± 13 Ma, which are interpreted as the best estimate of the magmatic crystallization age for the studied granites. We also report the concordia age of 2669 ± 7.4 Ma for a trondhjemite gneiss sample, which is so far the youngest U-Pb geochronological data for a TTG rock suite in the Bundelkhand craton. This TTG formation at 2669 Ma is also more similar to Precambrian basement TTG gneisses of the Aravalli Craton of north western India and suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Aravalli craton of the North-western India.

  3. Magnetically inferred basement structure in central Saudi Arabia

    USGS Publications Warehouse

    Johnson, P.R.; Stewart, I.C.F.

    1995-01-01

    A compilation of magnetic data acquired during the past three decades for a region in central Saudi Arabia where Precambrian basement is partly exposed on the Arabian shield and partly concealed by overlying Phanerozoic strata, shows a central sector of conspicuous N-S-trending anomalies, a heterogeneous western sector of short-wavelength, high-intensity anomalies, and an eastern sector of low- to moderate-intensity broad-wavelength anomalies. Anomalies in the western and central sectors correlate with Neoproterozoic metavolcanic, metasedimentary, and intrusive rocks of the Arabian shield and are interpreted as delineating extensions of shield-type rocks down-dip beneath Phanerozoic cover. These rocks constitute terranes making up part of a Neoproterozoic orogenic belt that underlies Northeast Africa and western Arabia and it is proposed that their magnetically indicated easternmost extent marks the concealed eastern edge of the orogenic belt in central Arabia. The flat magnetic signature of the eastern sector, not entirely accounted for as an effect of deep burial, may reflect the presence of a crustal block different in character to the terranes of the orogenic belt and, speculatively, may outline a continental block that, according to some tectonic models of the region, collided with the Neoproterozoic terranes and thereby caused their deformation and tectonic accretion.

  4. The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Venkatasivappa, V.; Koizumi, T.; Chetty, T. R. K.; Santosh, M.; Tsunogae, T.

    2014-12-01

    Several Precambrian mafic-ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic-Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.

  5. Perogenesis of granites, Sharm El-Sheikh area, South Sinai, Egypt: petrological constrains and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Sherif, Mahmoud I.; Ghoneim, Mohamed F.; Heikal, Mohamed Th. S.; El Dosuky, Bothina T.

    2013-10-01

    Precambrian granites of the Sharm El-Sheikh area in south Sinai, Egypt belong to collisional and post-collisional Magmatism (610-580 Ma). The granites are widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield. South Sinai includes important components of successive multiple stages of upper crust granitic rocks. The earliest stages include monzogranite and syenogranites while the later stages produced alkali feldspar granites and riebeckite-bearing granites. Numerous felsic, mafic dikes and quartz veins traverse the study granites. Petrographically, the granitic rocks consist mainly of perthite, plagioclase, quartz, biotite and riebeckite. Analysis results portray monzogranites displaying calc-alkaline characteristics and emplaced in island-arc tectonic settings, whereas the syenogranites, alkali-feldspar granites and the riebeckite bearing-granites exhibit an alkaline nature and are enriched in HFSEs similar to granites within an extensional regime. Multi-element variation diagrams and geochemical characteristics reinforce a post-collision tectonic setting. REEs geochemical modeling reveals that the rocks were generated as a result of partial melting and fractionation of lower crust basaltic magma giving rise to A1 and A2 subtype granites. They were subsequently emplaced within an intraplate environment at the end of the Pan-African Orogeny.

  6. Wall-rock control of cortain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado

    USGS Publications Warehouse

    Adams, John W.; Stugard, Frederick

    1954-01-01

    Carbonate veins cutting pre-Cambrian metamorphic rocks in Golden Gate Canyon contain pitchblende and base-metal sulfides. The veins occupy extensive faults of Laramide age but normally contain pitchblende only where the cut hornblende gneiss. At the Union Pacific prospect, which was studied in detail, pitchblende, hermatite, and some ankerite formed in advance of sulfides, except possibly for minor pyrite. Base-metal sulfides and the bulk of ankerite-calcite vein-filling were deposited after the pitchblende. Chemical analyses show a high ferrous iron content in the hornblende gneiss in contrast to low ferrous iron in the adjacent biotite gneiss. It is hypothesized that ferrous iron released by alteration of hornblende was partly oxidized to hematite by the ore-bearing solutions and, contemporaneously, uranium was reduced and deposited as pitchblende. In other veins, biotite or iron sulfides may have been similarly effective in precipitating pitchblende. Apparently both the ferrous ion and the sulfide ion can serve as reducing agents and control pitchblende deposition. It is suggested that conditions particularly favorable for uranium deposition are present where uranium-bearing solutions had access to rocks rich in ferrous iron or pre-existing sulfides.

  7. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Duke, Edward F.

    1994-07-01

    Near infrared (NIR) spectra of Precambrian metagraywacke in the Black Hills, South Dakota, demonstrate that reflectance spectroscopy can be used to monitor progressive changes in mineral chemistry as a function of metamorphic grade. The wavelength of a combination Al-O-H absorption band in muscovite, measured using both laboratory and field-portable NIR spectrometers, shifts from 2217 nm in the biotite zone to 2199 nm in the sillimanite + K-feldspar zone. The band shift corresponds to an increase in the Alvi content of muscovite, determined by electron microprobe, and is thus a monitor of Al2Si-1(Fe,Mg)-1 (Tschermak) exchange. Spectroscopic measurements such as these are useful in the case of aluminum-deficient rocks, which lack metamorphic index minerals or appropriate assemblages for thermobarometric studies, and in low-grade rocks (subgarnet zone), which lack quantitative indicators of metamorphic grade and are too fine grained for petrographic or microprobe studies. More important, spectroscopic detection of mineral-chemical variations in metamorphic rocks provides petrologists with a tool to recover information on metamorphic reaction histories from high-spectral-resolution aircraft or satellite remote sensing data.

  8. Modern stromatolites in a saline maar in the Western District of Victoria, Australia: a possible analogue for Precambrian marine carbonates

    NASA Astrophysics Data System (ADS)

    Lynch, J. E.; Wallace, M. W.

    2011-12-01

    Stromatolites and thrombolites are microbially-mediated, sedimentary structures of various size and morphology, found throughout the rock record. Although they do not always contain fossils of microbial cells, ancient stromatolitic structures are considered biogenic in origin and, therefore, evidence of early life. Modern, living stromatolites are found in lacustrine and marine environments and can provide a window in which to observe some of Earth's earliest biological processes. However, secular variation in marine chemistry over geological time means that modern marine settings are not always the best analogues for ancient carbonates. This study describes the occurrence of modern stromatolites in a saline, alkaline maar in Victoria, Australia. Dolomite is a principle carbonate mineral precipitating from this lake, an unusual and poorly understood occurrence in modern environments, but one that was common in the Precambrian. The peculiar lacustrine chemistry in this volcanic region may, therefore, provide a better analogue for Precambrian marine carbonates than modern marine environments. Several types of stromatolites/thrombolites are observed occurring around this maar. Living thrombolites grow just below the shoreline to ~60 cm below the surface of the water. They are nucleating on the cemented surfaces of older lake carbonates, as well as cattle skulls and fence wires that have become submerged. Distinct microbial mats are observed, the uppermost being cyanobacteria, followed by purple sulfur bacteria, and underlain by sulfate reducing bacteria. Older exposed stromatolites are more consolidated and have a more clearly defined laminated and columnar morphology. The thickness ranges from a few to 15 cm and each column is up to a centimeter in diameter. Together these give the surface of the rock a "bubbly" appearance. Along the shore, a sandy-gravel composed of stromatolite remnants has formed, indicating that wind-generated surface waves of substantial strength to break apart stomatolites can form in the lake. The next bench contains mudstone layers with clasts of basalt and olivine from the surrounding volcanic tuff, but lacks stromatolitic features. Visible ostrocod shells are abundant in these layers, perhaps suggesting that microorganisms could not compete with grazers at this time to form mats of sufficient size to form stromatolites. Finally, a bench lying about 1.8 m above the current water level is a carbonate rock containing small cavities (mm to a few cm in size) in which cements have formed. Also present are ooids of ~1-2 cm diameter. The mineralogy of these cements, ooids, and stromatolites will be determined by XRD and SEM. These data will be combined with an assessment of microbial 16S rRNA gene phylogeny in order to interpret the stromatolite morphogenesis of this unique lake. By studying stromatolite morphogenesis and microbial ecology in a modern dolomite-precipitating saline maar, we hope to gain a better understanding of the factors that controlled ancient stromatolite morphogenesis; and to examine the extent to which microorganisms versus the environment drive these processes.

  9. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II sediment s.

  10. Quantitative bedrock geology of east and Southeast Asia (Brunei, Cambodia, eastern and southeastern China, East Timor, Indonesia, Japan, Laos, Malaysia, Myanmar, North Korea, Papua New Guinea, Philippines, far-eastern Russia, Singapore, South Korea, Taiwan, Thailand, Vietnam)

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, Bernhard; Miller, Mark W.

    2004-01-01

    We quantitatively analyze the area-age distribution of sedimentary, igneous and metamorphic bedrock based on data from the most recent digital geologic maps of East and Southeast Asia (Coordinating Committee for Coastal and Offshore Geosciences Programmes in East and Southeast Asia (CCOP) and the Geologic Survey of Japan, 1997; 1:2,000,000), published as Digital Geoscience Map G-2 by the Geological Survey of Japan. Sedimentary rocks, volcanic rocks, plutonic rocks, ultramafic rocks and metamorphic rocks cover 73.3%, 8.5%, 8.8%, 0.9%, and 8.6% of the surface area, respectively. The average ages of major lithologic units, weighted according to bedrock area, are as follows: sedimentary rocks (average stratigraphic age of 123 Myr/median age of 26 Myr), volcanic rocks (84 Myr/20 Myr), intrusive rocks (278 Myr/195 Myr), ultramafic rocks (unknown) and metamorphic rocks (1465 Myr/1118 Myr). The variability in lithologic composition and age structure of individual countries reflects the complex tectonic makeup of this region that ranges from Precambrian cratons (e.g., northeast China and North Korea) to Mesozoic-Cenozoic active margins (e.g., Japan, the Philippines, Indonesia and New Guinea). The spatial resolution of the data varies from 44 km2 per polygon (Japan) to 1659 km2 per polygon (Taiwan) and is, on average (490 km2/polygon), similar to our previous analyses of the United States of America and Canada. The temporal and spatial resolution is sufficiently high to perform age-area analyses of individual river basins larger than ˜10,000 km2 and to quantitatively evaluate the relationship between bedrock geology and river chemistry. As many rivers draining tropical, mountainous islands of East and Southeast Asia have a disproportionate effect on the dissolved and particulate load delivered to the world oceans, bedrock geology in such river drainage basins disproportionately affect ocean chemistry.

  11. Submarine basaltic fountain eruptions in a back-arc basin during the opening of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Hosoi, Jun; Amano, Kazuo

    2017-11-01

    Basaltic rock generated during the middle Miocene opening of the Japan Sea, is widely distributed on the back-arc side of the Japanese archipelago. Few studies have investigated on submarine volcanism related to opening of the Japan Sea. The present study aimed to reconstruct details of the subaqueous volcanism that formed the back-arc basin basalts (BABB) during this event, and to discuss the relationship between volcanism and the tectonics of back-arc opening, using facies analyses based on field investigation. The study area of the southern Dewa Hills contains well-exposed basalt related to the opening of the Japan Sea. Five types of basaltic rock facies are recognized: (1) coherent basalt, (2) massive platy basalt, (3) jigsaw-fit monomictic basaltic breccia, (4) massive or stratified coarse monomictic basaltic breccia with fluidal clasts, and (5) massive or stratified fine monomictic basaltic breccia. The basaltic rocks are mainly hyaloclastite. Based on facies distributions, we infer that volcanism occurred along fissures developed mainly at the center of the study area. Given that the rocks contain many fluidal clasts, submarine lava fountaining is inferred to have been the dominant eruption style. The basaltic rocks are interpreted as the products of back-arc volcanism that occurred by tensional stress related to opening of the Japan Sea, which drove strong tectonic subsidence and active lava fountain volcanism.

  12. Preliminary investigation of cement materials in the Taif area, Saudi Arabia

    USGS Publications Warehouse

    Martin, Conrad

    1970-01-01

    A preliminary investigation of possible sources of cement rock in the Taft area was made during the latter part of August 1968. Adequate deposits of limestone, clay, quartz conglomerate and sandstone, and pisolitic iron ore, yet no gypsum, were located to support a Cement plant should it prove feasible to establish one in this area. These materials, made up mostly of Tertiary and later sediments, crop out in isolated, inconspicuous low hills in a north- trending belt, 10 to 15 kilometers wide, lying about 90 kilometers to-the east of At Taft. The belt extends for more than 90 kilometers from the vicinity of Jabal 'An in the south to the crushed rock pits at Radwan and beyond in the north. The area is readily accessible either from the Talf-Riyadh highway or from the Taif-Bishah road presently under construction. The limestone, which is quite pure and dense in some localities but dolomitic, argillaceous, and cherty in others, occurs in a variety of colors and would make suitable decorative building stone. The volcanic rocks of the Harrat Hadan, lying directly to the east of the limestone belt, include volcanic ash beds some of which may have been altered to bentonitlc clays. Others may have been lithified and might be suitable for light-weight aggregate. These possibilities remain to be investigated. Precambrian metamorphic rocks lying directly to the south and southeast of Taif were also investigated as possible cement rock sources, but no suitable material was found here.

  13. Large-scale removal of lithosphere underneath the North China Craton in the Early Cretaceous: Geochemical constraints from volcanic lavas in the Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Zheng; Zhang, Shuai; Li, Xiaoguang; Qi, Jiafu

    2017-11-01

    Cratons are generally considered as the most stable tectonic units on the Earth. Rare magmatism, seismic activity, and intracrustal ductile deformation occur in them. However, several cratons experienced entirely different fates, including the North China Craton (NCC), and were subsequently destroyed. Geodynamic mechanisms and timing of the cratonic destruction are strongly debated. In this paper, we investigate a suite of Mesozoic intermediate to felsic volcanic rocks which are collected from boreholes in the Liaohe Depression of the Bohai Bay Basin the eastern NCC. These volcanic rocks have Precambrian basement-like Sr-Nd isotopic characteristics, consistent with derivation from the lower continental crust underneath the NCC. The Late Jurassic ( 165 Ma) intermediate volcanic rocks don't exhibit markedly negative Eu anomalies, which require a source beyond the plagioclase stability field. And the low heavy rare earth elements (HREEs) contents of these samples indicate that their source has garnet as residue. The Early Cretaceous ( 122 Ma) felsic volcanic rocks are depleted in HREEs but with remarkable Eu anomalies, suggesting that their source have both garnet and plagioclase. The crust thicknesses, estimated from the geochemistry of the intermediate and felsic rocks, are ≥ 50 km at 165 Ma and 30-50 km at 122 Ma, respectively. The crustal thinning is attributed to lithospheric delamination beneath the NCC. Our results combined with previous studies imply that the large-scale lithospheric removal occurred in the Early Cretaceous, between 140 and 120 Ma.

  14. Polychronous (Early Cretaceous to Palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39Ar geochronology, petrochemistry and geodynamics

    NASA Astrophysics Data System (ADS)

    Pande, Kanchan; Cucciniello, Ciro; Sheth, Hetu; Vijayan, Anjali; Sharma, Kamal Kant; Purohit, Ritesh; Jagadeesan, K. C.; Shinde, Sapna

    2017-07-01

    The Mundwara alkaline plutonic complex (Rajasthan, north-western India) is considered a part of the Late Cretaceous-Palaeogene Deccan Traps flood basalt province, based on geochronological data (mainly 40Ar/39Ar, on whole rocks, biotite and hornblende). We have studied the petrology and mineral chemistry of some Mundwara mafic rocks containing mica and amphibole. Geothermobarometry indicates emplacement of the complex at middle to upper crustal levels. We have obtained new 40Ar/39Ar ages of 80-84 Ma on biotite separates from mafic rocks and 102-110 Ma on whole-rock nepheline syenites. There is no evidence for excess 40Ar. The combined results show that some of the constituent intrusions of the Mundwara complex are of Deccan age, but others are older and unrelated to the Deccan Traps. The Mundwara alkaline complex is thus polychronous and similar to many alkaline complexes around the world that show recurrent magmatism, sometimes over hundreds of millions of years. The primary biotite and amphibole in Mundwara mafic rocks indicate hydrous parental magmas, derived from hydrated mantle peridotite at relatively low temperatures, thus ruling out a mantle plume. This hydration and metasomatism of the Rajasthan lithospheric mantle may have occurred during Jurassic subduction under Gondwanaland, or Precambrian subduction events. Low-degree decompression melting of this old, enriched lithospheric mantle, due to periodic diffuse lithospheric extension, gradually built the Mundwara complex from the Early Cretaceous to Palaeogene time.

  15. Geohydrology of the Furnace Creek basin and vicinity, Berks, Lancaster, and Lebanon counties, Pennsylvania

    USGS Publications Warehouse

    Cecil, L.D.

    1988-01-01

    The Furnace Creek basin is an area of 8.95 square miles, about three- fourths of which is underlain by metamorphic rocks of low permeability. Reported yields for 14 wells in these rocks range from 1 to 60 gal/min (gallons per minute), with a median of 7.5 gal/min. The northern part of the study area consists of highly permeable carbonate rocks. Nondomestic wells in these rocks typically yield from 200 to 300 gal/min and one well yields 1,200 gal/min. Ground-water discharge from a 4.18-square-mile drainage area underlain by Precambrian granitic and hornblende gneiss averaged 868,000 gallons per day per square mile from October 1983 through September 1985. Thus, as much as 3,630,000 gallons per day could be pumped from wells in this area on a sustained basis. However, pumping this amount would have major adverse effects on streamflow. A water-budget analysis for March 1984 to February 1985 showed that precipitation was 52.16 inches, streamflow was 26.38 inches, evapotranspiration was 29.29 inches, ground-water storage decreased by 5.94 inches and diversions made by Womelsdorf-Robesonia Joint Authority for water supply totaled 2.43 inches. Precipitation during this period was above normal. Four of 18 wells sampled for water quality had iron, manganese, or nitrate concentrations above the U.S. Environmental Protection Agency's recommended limits. The crystalline rocks in the study area yield soft to moderately hard water that is generally acidic.

  16. Origin and migration of hydrocarbon gases and carbon dioxide, Bekes Basin, southeastern Hungary

    USGS Publications Warehouse

    Clayton, J.L.; Spencer, C.W.; Koncz, I.; Szalay, A.

    1990-01-01

    The Bekes Basin is a sub-basin within the Pannonian Basin, containing about 7000 m of post-Cretaceous sedimentary rocks. Natural gases are produced from reservoirs (Precambrian to Tertiary in age) located on structural highs around the margins of the basin. Gas composition and stable carbon isotopic data indicate that most of the flammable gases were derived from humic kerogen contained in source rocks located in the deep basin. The depth of gas generation and vertical migration distances were estimated using quantitative source rock maturity-carbon isotope relationships for methane compared to known Neogene source rock maturity-depth relationships in the basin. These calculations indicate that as much as 3500 m of vertical migration has occured in some cases. Isotopically heavy (> - 7 > 0) CO2 is the predominant species present in some shallow reservoirs located on basin-margin structural highs and has probably been derived via long-distance vertical and lateral migration from thermal decompositon of carbonate minerals in Mesozoic and older rocks in the deepest parts of the basin. A few shallow reservoirs (< 2000m) contain isotopically light (-50 to -60%0) methane with only minor amounts of C2+ homologs (< 3% v/v). This methane is probably mostly microbial in origin. Above-normal pressures, occuring at depths greater than 1800 m, are believed to be the principal driving force for lateral and vertical gas migration. These pressures are caused in part by active hydrocarbon generation, undercompaction, and thermal decomposition of carbonates. 

  17. Thermal conductivity anisotropy of metasedimentary and igneous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Michael G.; Chapman, David S.; van Wagoner, Thomas M.; Armstrong, Phillip A.

    2007-05-01

    Thermal conductivity anisotropy was determined for three sets of metasedimentary and igneous rocks from central Utah, USA. Most conductivity measurements were made in transient mode with a half-space, line source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kpar) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kpar and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady state mode. Anisotropy is defined as kpar/kperp. Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for Price Canyon sedimentary samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming [1994] that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  18. South Atlantic sag basins: new petroleum system components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, S.G.; Mello, M.R.

    Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved inmore » the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.« less

  19. Juxtaposition of contrasting structural regimes across a portion of the Norumbega fault system in the northern Casco Bay region of Maine

    NASA Astrophysics Data System (ADS)

    West, D. P., Jr.; Hussey, A. M., II

    2015-12-01

    It has long been recognized that Paleozoic stratified rocks in some regions of central New England are dominated by relatively flat structural features (e.g., recumbent folds, shallow dipping foliation) while other areas are dominated by near vertical upright structures. The northern Casco Bay region of coastal Maine (Brunswick 7.5' quadrangle and adjacent areas) provides an excellent venue for studying the relationships between these two structural regimes as they are in close proximity due to juxtaposition by high angle faulting associated with the Norumbega fault system. Stratified rocks exposed west of the Flying Point fault in northern Casco Bay are dominated by moderately east dipping foliation (ave. = 025o, 37o), moderate northeast plunging mineral lineations, and recumbent to gently inclined minor folds. In stark contrast, immediately east of the Flying Point fault, stratified rocks are dominated by steep east dipping foliation (ave. = 014o, 73o), subhorizontal mineral lineations, and upright to steeply inclined minor folds. The structural differences correspond directly to differences in the thermal histories preserved in these rocks as revealed by earlier thermochronological studies. Rocks in the zone of upright structures east of the Flying Point fault were last subjected to high grade metamorphic conditions and granitic plutonism in the Late Devonian and were relatively cold (<300oC) by Late Carboniferous time. In contrast, flat lying rocks west of the Flying Point fault were over 500oC in the Early Permian and Permian pegmatites are common. Geochronological studies north of the study area have revealed that the two distinctly different structural styles are not the product of strain partitioning during the same deformational episode, but rather they represent two temporally and kinematically distinct deformational events. Swanson (1999), originally suggested flat structures west of the Flying Point fault are consistent with an episode of northwest directed thrusting and our findings are consistent with this interpretation. However, this flat phase of deformation significantly post-dates the older upright structures preserved to the east and thus models for the structural evolution of the region must integrate both the kinematic and temporal differences in this deformation.

  20. Diagram of Lake Stratification on Mars

    NASA Image and Video Library

    2017-06-01

    This diagram presents some of the processes and clues related to a long-ago lake on Mars that became stratified, with the shallow water richer in oxidants than deeper water was. The sedimentary rocks deposited within a lake in Mars' Gale Crater more than three billion years ago differ from each other in a pattern that matches what is seen in lakes on Earth. As sediment-bearing water flows into a lake, bedding thickness and particle size progressively decrease as sediment is deposited in deeper and deeper water as seen in examples of thick beds (PIA19074) from shallowest water, thin beds (PIA19075) from deeper water and even thinner beds (PIA19828) from deepest water. At sites on lower Mount Sharp, inside the crater, measurements of chemical and mineral composition by NASA's Curiosity Mars rover reveal a clear correspondence between the physical characteristics of sedimentary rock from different parts of the lake and how strongly oxidized the sediments were. Rocks with textures indicating that the sediments were deposited near the edge of a lake have more strongly oxidized composition than rocks with textures indicating sedimentation in deep water. For example, the iron mineral hematite is more oxidized than the iron mineral magnetite. An explanation for why such chemical stratification occurs in a lake is that the water closer to the surface is more exposed to oxidizing effects of oxygen in the atmosphere and ultraviolet light. On Earth, a stratified lake with a distinct boundary between oxidant-rich shallows and oxidant-poor depths provides a diversity of environments suited to different types of microbes. If Mars has ever hosted microbial live, the stratified lake at Gale Crater may have similarly provided a range of different habitats for life. https://photojournal.jpl.nasa.gov/catalog/PIA21500

  1. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin (2011). They have similar trace element abundances as skarn magnetites, e.g. are in general Ti-poor. The Mag-1 is more than twice richer in Mg than the porphyry and Kiruna type iron ores. A slight enrichment in Al, Ti and V because of spinel and ilmenite inclusions may have caused the earliest Mag-1 to resemble the porphyry type ores, while the secondary Mag-2 has Al, Ca and Mn contents as low as the Kiruna type ores. Thus, we can consider that fluid-rock interactions have strongly affected chemical compositions of the studied magnetites. Even though there are no precise age constructions for the metamorphic, metasomatic and hydrothermal iron ore formation process, they likely started later than 1.80 Ga (metamorphism of the host rocks; Bogdanova et al., 2015) and lasted until c. 1.50 Ga, when the rocks were intruded by the within-plate AMCG magmatic bodies. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., 2015. Precambrian Research, 259, 5-33. Dupuis, C., Beaudoin, G., 2011. Mineral Deposita 46, 319-335. Marfinas, S., 1996. Report on the results of the evaluation of the Varena Iron Ore deposit, 2nd book, Vilnius.

  2. The geometry of folds in granitoid rocks of northeastern Alberta

    NASA Astrophysics Data System (ADS)

    Willem Langenberg, C.; Ramsden, John

    1980-06-01

    Granitoid rocks which predominate in the Precambrian shield of northeastern Alberta show large-scale fold structures. A numerical procedure has been used to obtain modal foliation orientations. This procedure results in the smoothing of folded surfaces that show roughness on a detailed scale. Statistical tests are used to divide the study areas into cylindrical domains. Structural sections can be obtained for each domain, and horizontal and vertical sections are used to construct block diagrams. The projections are performed numerically and plotted by computer. This method permits blocks to be viewed from every possible angle. Both perspective and orthographic projections can be produced. The geometries of a dome in the Tulip Lake area and a synform in the Hooker Lake area have been obtained. The domal structure is compared with polyphase deformational interference patterns and with experimental diapiric structures obtained in a centrifuge system. The synform in the Hooker Lake area may be genetically related to the doming in the Tulip Lake area.

  3. A Rubidium-Strontium study of the Twilight Gneiss, West Needle Mountains, Colorado

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.; Hildreth, R.A.

    1969-01-01

    The Precambrian trondhjemitic Twilight Gneiss (Twilight Granite of Cross and Howe, 1905b) of the West Needle Mountains, southwestern Colorado, and its interlayered amphibolite and metarhyodacite yield a Rb-Sr isochron of 1,805??35 m.y. A low initial Sr87/Sr86 ratio of 0.7015 implies that metamorphism of these rocks to amphibolite facies took place soon after their emplacement. The mild metamorphism of Uncompahgran age, prior to 1,460 m.y. ago, and Laramide volcanism did not affect the Rb-Sr system in the Twilight. Rb contents of 26.5 to 108 ppm, Sr contents of 114 to 251 ppm, and K2O percentages of 1.23 to 3.64 in the Twilight Gneiss, in conjunction with high K/Rb ratios and the low initial ratio of Sr87/Sr86, lend support to geologic data that suggest the Twilight originated as volcanic or hypabyssal igneous rocks in a basaltic volcanic pile. ?? 1969 Springer-Verlag.

  4. Tok-Algoma magmatic complex of the Selenga-Stanovoi Superterrain in the Central Asian fold belt: Age and tectonic setting

    NASA Astrophysics Data System (ADS)

    Kotov, A. B.; Larin, A. M.; Salnikova, E. B.; Velikoslavinskii, S. D.; Sorokin, A. A.; Sorokin, A. P.; Yakovleva, S. Z.; Anisimova, I. V.; Tolmacheva, E. V.

    2012-05-01

    According to the results of U-Pb geochronological investigations, the hornblende subalkali diorite rocks making up the Tok-Algoma Complex in the eastern part of the Selenga-Stanovoi Superterrain of the Central Asian fold belt were formed in the Middle Jurassic rather than in the Middle Archean as was suggested previously. Thus, the age of the regional amphibolite facies metamorphism manifested itself in the Ust'-Gilyui rock sequence of the Stanovoi Complex and that superimposed on granitoids of the Tok-Algoma Complex is Mesozoic rather than Early Precambrian. The geochemical features of the Tok-Algoma granitoids are indicative of the fact that they were formed in the geodynamic setting of the active continental margin or a mature island arc. Hence, it is possible to suggest that the subduction processes along the southern boundary between the Selenga-Stanovoi Superterrain and the Mongolian-Okhotsk ocean basin in the Middle Jurassic resulted in the formation of a magmatic belt of over 500 km in length.

  5. Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK

    NASA Astrophysics Data System (ADS)

    Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David

    2017-04-01

    Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures

  6. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  7. Surficial deposits in the Bear Lake Basin

    USGS Publications Warehouse

    Reheis, Marith C.; Laabs, Benjamin J.C.; Forester, Richard M.; McGeehin, John P.; Kaufman, Darrell S.; Bright, Jordon

    2005-01-01

    Mapping and dating of surficial deposits in the Bear Lake drainage basin were undertaken to provide a geologic context for interpretation of cores taken from deposits beneath Bear Lake, which sometimes receives water and sediment from the glaciated Bear River and sometimes only from the small drainage basin of Bear Lake itself. Analyses of core sediments by others are directed at (1) constructing a high-resolution climate record for the Bear Lake area during the late Pleistocene and Holocene, and (2) investigating the sources and weathering history of sediments in the drainage basin. Surficial deposits in the upper Bear River and Bear Lake drainage basins are different in their overall compositions, although they do overlap. In the upper Bear River drainage, Quaternary deposits derived from glaciation of the Uinta Range contain abundant detritus weathered from Precambrian quartzite, whereas unglaciated tributaries downstream mainly contribute finer sediment weathered from much younger, more friable sedimentary rocks. In contrast, carbonate rocks capped by a carapace of Tertiary sediments dominate the Bear Lake drainage basin.

  8. A ground-water reconnaissance of the Republic of Ghana, with a description of geohydrologic provinces

    USGS Publications Warehouse

    Gill, H.E.

    1969-01-01

    This report gives a general summary of the availability and use of ground water and describes the occurrence of ground water in five major geohydrologic provinces lying in the eight administrative regions of Ghana. The identification and delineation of the geohydrologic provinces are based on their distinctive characteristics with respect to the occurrence and availability of ground water. The Precambrian province occupies the southern, western, and northern parts of Ghana and is underlain largely by intrusive crystalline and metasedimentary rocks. The Voltaian province includes that part of the Voltaian sedimentary basin in central Ghana and is underlain chiefly by consolidated sandstone, mudstone, and shale. Narrow discontinuous bands of consolidated Devonian and Jurassic sedimentary rocks near the coast constitute the Coastal Block Fault province. The Coastal Plain province includes semiconsolidated to unconsolidated sediments of Cretaceous to Holocene age that underlie coastal plain areas in southwestern and southeastern Ghana. The Alluvial province includes the Quaternary alluvial deposits in the principal river valleys and on the delta of the Volta River. Because of the widespread distribution of crystalline and consolidated sedimentary rocks of low permeability in the Precambrian, Voltaian, and Coastal Block Fault provinces, it is difficult to develop large or event adequate groundwater supplies in much of Ghana. On the other hand, small (1 to 50 gallons per minute) supplies of water of usable quality are available from carefully sited boreholes in most parts of the country. Also, moderate (50 to 200 gpm) supplies of water are currently (1964) obtained from small-diameter screened boreholes tapping sand and limestone aquifers in the Coastal Plain province in southwestern and southeastern Ghana, but larger supplies could be obtained through properly constructed boreholes. In the Alluvial province, unconsolidated deposits in the larger stream valleys that are now largely undeveloped offer desirable locations for shallow vertical or horizontal wells, which can induce infiltration from streams and yield moderate to large water supplies. The principal factors that limit development of ground-water supplies in Ghana are (1) prevailing low permeability and water-yielding potential of the crystalline and consolidated sedimentary rocks that underlie most of the country, (2) highly mineralized ground water which appears to be widely distributed in the northern part of the Voltaian province, and (3) potential problems of salt-water encroachment in the Coastal Plain province in the Western Region and in the Keta area. On the other hand, weathering has increased porosity and has thus substantially increased the water-yielding potential of the crystalline and consolidated sedimentary rocks in much of central and northern Ghana. Also, with proper construction and development, much larger yields than those now (1964) prevalent could be obtained from boreholes tapping sand and limestone aquifers in the Coastal Plain province.

  9. Faulted shoreline and tidal deposits in the Moenkopi Formation of the Grassy Trail Creek field, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, M.L.; Lutz, S.J.

    1991-06-01

    The Grassy Trail Creek field produces 40{degrees} API oil and minor gas from shallow marine sandstones of the Triassic Moenkopi Formation on the north-plunging nose of the San Rafael swell in central Utah. Production is controlled by a combination of stratigraphic variations and minor north-south-trending faults. Although fracture permeability enhances production of the reservoir, some faults act as barriers to fluid migration, segmenting the area into productive and dry fault blocks. Horizontal drilling techniques developed in this field in the early 1980s resulted in significantly better production. Log analyses indicate the main reservoir is a complex stack of this thinmore » tidal channel sandstones. Isochore maps of the A and B zones indicate thickened meanders that form localized reservoir pods that are vertically offset. The distribution of isochore thicks appears to represent deposition along a northwest-southeast-trending shoreline fed by sediments from the northeast. There is potential for field extensions in similar deposits along this paleoshoreline. The Moenkopi Formation, long thought to be self-sourcing, may contain oil generated in Precambrian sediments equivalent to the Late Proterozoic Chuar Group. Presence of this older oil would have required migration from Precambrian sedimentary rocks surrounding the San Rafael swell.« less

  10. Structural analysis of the Hasan-Robat marbles as traces of folded basement in the Sanandaj-Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Nadimi, Alireza

    2015-11-01

    Cherty marbles of Hasan-Robat area, northwest of Isfahan, in the Sanandaj-Sirjan Zone of Iran preserves evidences of multiple deformational events. The Sanandaj-Sirjan Zone is the inner crystalline zone of the Zagros Orogen, which has been highly deformed and exhumed during continental collision between the Arabian Plate and Central Iran. The Hasan-Robat area is an example of the exposed Precambrian-Paleozoic basement rocks that stretched along two NW-SE-trending faults and located in the inner part of the HasanRobat positive flower strcuture. The Hasan-Robat marbles record a complex shortening and shearing history. This lead to the development of disharmonic ptygmatic folds with vertical to sub-vertical axes and some interference patterns of folding that may have been created from deformations during the Pan-African Orogeny and later phases. Based on this research, tectonic evolution of the Hasan-Robat area is interpreted as the product of three major geotectonic events that have been started after Precambrian to Quaternary: (1) old deformation phases (2) contractional movements and (3) strike-slip movements. Different sets and distributions of joints, faults and folds are confirmed with effect of several deformational stages of the area and formation of the flower structure.

  11. Controlled source electrical methods for deep exploration

    NASA Astrophysics Data System (ADS)

    Ward, Stanley H.

    1983-07-01

    Application of controlled source electrical methods (CSEM) is impeded by natural field, electrification, geological, cultural, and topographic noise. Lateral resolution of parameters of adjacent steeply dipping bodies and vertical resolution of parameters of adjacent beds in a flatly dipping sequence are concerns with any CSEM method. Current channeling into a localized good conductor from a surrounding, overlying, or underlying conductor poses problems for the interpreter. A summary of the results of several recent experiments with CSEM techniques illustrates that with care and difficulty they can be used to depths on the order of 20 km. If measurements are made on a relatively uniform resistive surface, as can be found in glaciated Precambrian terranes, then either a grounded bipole or a loop source is acceptable. Most of the recent CSEM experiments were made over resistive Precambrian rocks and all were directed toward detecting a conductive layer near 20 km depth. For exploration beyond this depth, however, the MT/AMT method would seem to be preferred. The rationale behind this conclusion is largely contained in consideration of the ratio of signal to natural field noise. Where thick irregular surficial overburden of low resistivity occurs, two- and three-dimensional modeling is necessary to stripp off the effects of the shallow layers. This may not be possible for CSEM and then MT/AMT becomes the only alternative.

  12. Geology of the Sierra de Fiambala, northwestern Argentina: implications for Early Palaeozoic Andean tectonics

    USGS Publications Warehouse

    Grissom, G.C.; DeBari, S.M.; Snee, L.W.

    1998-01-01

    This paper is included in the Special Publication entitled 'The proto- Andean margin of Gondwana', edited by R.J. Pankhurst and C.W. Rapela. Field mapping in conjunction with structural, metamorphic, and geochronological data document the tectono-thermal history of exhumed deep crustal rocks in the Sierra de Fiambala, NW Argentina. The range consists of two structural blocks distinguished by different metasedimentary sequences and different grades of metamorphism. Orthogneiss and paragneiss in the northern structural block may have a Precambrian history. Greenschist- to amphibolite-facies metamorphism, intrusion, and injection magmatization affected all rocks at 540-550 Ma. A subsequent event in the Late Cambrian to Ordovician (c.515 to 470 Ma) involved amphibolite- to granulite-facies metamorphism, mafic intrusion, and deformation, followed by cooling through mid-Palaeozoic time. The emplacement of Carboniferous (325-350 Ma) post-tectonic granites caused reheating and retrogression that was strongest toward the northeast part of the range. The Cambrian, Ordovician, and Carboniferous events in the Sierra de Fiambala were of regional extent as indicated by temporal correlations with events reported for other deep crustal rocks of the northern Sierras Pampeanas. Correlations between periods of intrusion and high-grade metamorphism in the northern Sierras Pampeanas and volcanic-sedimentary events in the adjacent supracrustal exposures confirm that rocks in the northern Sierras Pampeanas formed at deep (10-25 km) structural levels in the early Palaeozoic continental margin of Gondwana.

  13. Two-stage formation model of the Junggar basin basement: Constraints to the growth style of Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    He, Dengfa

    2016-04-01

    Junggar Basin is located in the central part of the Central Asian Orogenic Belt (CAOB). Its basement nature is a highly controversial scientific topic, involving the basic style and processes of crustal growth. Some researchers considered the basement of the Junggar Basin as a Precambrian continental crust, which is not consistent with the petrological compositions of the adjacent orogenic belts and the crust isotopic compositions revealed by the volcanic rocks in the basin. Others, on the contrary, proposed an oceanic crust basement model that does not match with the crustal thickness and geophysical characteristics of the Junggar area. Additionally, there are several viewponits, such as the duplex basement with the underlying Precambrian crystalline rocks and the overlying pre-Carboniferous folded basement, and the collaged basement by the Precambrian micro-continent block in the central part and the Hercynian accretionary folded belts circling it. Anyway, it is necessary to explain the property of basement rock, its strong inhomogeneous compositions as well as the geophysical features. In this paper, based on the borehole data from more than 300 industry wells drilled into the Carboniferous System, together with the high-resolution gravity and magnetic data (in a scale of 1:50,000), we made a detailed analysis of the basement structure, formation timing and processes and its later evolution on a basis of core geochemical and isotopic analysis. Firstly, we defined the Mahu Pre-Cambrian micro-continental block in the juvenile crust of Junggar Basin according to the Hf isotopic analysis of the Carboniferous volcanic rocks. Secondly, the results of the tectonic setting and basin analysis suggest that the Junggar area incorporates three approximately E-W trending island arc belts (from north to south: Yemaquan- Wulungu-Chingiz, Jiangjunmiao-Luliang-Darbut and Zhongguai-Mosuowan- Baijiahai-Qitai island arcs respectively) and intervened three approximately E-W trending retro-arc or inter-arc basin belts from north to south, such as Santanghu-Suosuoquan-Emin, Wucaiwan-Dongdaohaizi-Mahu (Mahu block sunk as a bathyal basin during this phase) and Fukang-western well Pen1 sag accordingly. Thirdly, the closure of these retro-arc or inter-arc basins migrating gradually toward the south led to the collision and amalgamation between the above-mentioned island arcs during the Carboniferous, constituting the basic framework of the Junggar 'block'. Fourthly, the emplacement of large-scale mantle-derived magmas occurred in the latest Carboniferous to Early Permian. For instance, the well Mahu 5 penetrate the latest Carboniferous basalts with a thickness of over 20 m, and these mantle-derived magmas consolidated the above-mentioned island arc-collaged blocks. Therefore, the Junggar basin basement mainly comprises pre-Carboniferous collaged basement, and its formation is characterized by two-stage growth model, involving the Carboniferous lateral growth of island arcs and the latest Carboniferous to Early Permian vertical crustal growth related to emplacement and underplating of the mantle-derived magmas. In the Middle Permian, the Junggar Basin is dominated by a series of stable intra-continental sag basins from west to east, such as Mahu, Shawan, western Well Pen1, Dongdaohaizi-Wucaiwan-Dajing, Fukang-Jimusaer sag lake-basins and so on. The Middle Permian (e.g., Lower Wu'erhe, Lucaogou, and Pingdiquan Formations) thick source rocks developed in these basins, suggesting that the Junggar Basin had been entered 'intra-cratonic sag' basin evolution stage. Since then, no strong thermal tectonic event could result in crust growth. The present crustal thickness of Junggar Basin is 45-52 km, which was mainly formed before the latest Early Permian. Subsequently, the Junggar Basin experienced a rapid cooling process during the Late Permian to Triassic. These events constrain the formation timing of the Junggar basin basement to be before the latest Early Permian. It is inferred that the crustal thickness of Carboniferous island arc belts and associated back-arc basins is of 30-35 km or less. The latest Carboniferous to Early Permian vertical crust growth should have a thickness of 15-20 km or more. Viewed from the deep seismic refection profile across the basin, the Junggar crust does not contain the large-scale imbricate thrust systems, but shows well-layered property. Thus, the vertical growth rate reached 0.75~1 km/Ma in the latest Carboniferous to Early Permian time, a period approximately of 20Ma. It indicates a very rapid crustal growth style which could be named as the Junggar-type vertical growth of continental crust. Its formation mechanism and geodynamic implications need to be further explored later.

  14. Origin and chemical composition of evaporite deposits

    USGS Publications Warehouse

    Moore, George William

    1960-01-01

    A comparative study of marine evaporite deposits forming at the present time along the pacific coast of central Mexico and evaporite formations of Permian age in West Texas Basin was made in order to determine if the modern sediments provide a basis for understanding environmental conditions that existed during deposition of the older deposits. The field work was supplemented by investigations of artificial evaporite minerals precipitated in the laboratory and by study of the chemical composition of halite rock of different geologic ages. The environment of deposition of contemporaneous marine salt deposits in Mexico is acidic, is strongly reducing a few centimeters below the surface, and teems with microscopic life. Deposition of salt, unlike that of many other sediments, is not wholly a constructional phenomenon. Permanent deposits result only if a favorable balance exists between deposition in the dry season and dissolution in the wet season. Evaporite formations chosen for special study in the West Texas Basin are, in ascending order, the Castile, Salado, and Rustler formations, which have a combined thickness of 1200 meters. The Castile formation is largely composed of gypsum rock, the Salado, halite rock, and the Rustler, quartz and carbonate sandstone. The lower part of the Castile formation is bituminous and contains limestone laminae. The Castile and Rustler formations thicken to the south at the expense of salt of the intervening Salado formation. The clastic rocks of the Rustler formation are interpreted as the deposits of a series of barrier islands north of which halite rock of the Salado was deposited. The salt is believed to have formed in shallow water of uniform density that was mixed by the wind. Where water depth exceeded the depth of the wind mixing, density stratification developed, and gypsum was deposited. Dense water of high salinity below the density discontinuity was overlain by less dense, more normally saline water which was derived from the sea to the south. Mixing of the two water layers at their interface diluted the lower layer so as to prevent halite formation, but at the same time the depressed solubility of calcium sulfate in the mixture at the interface caused precipitation of gypsum. The upper water layer is believed to have supported a flourishing microscopic biota whose remains descended into semisterile brine below where reducing conditions prevailed. This environment generated the bituminous gypsum rock. At times, microcrystalline calcium carbonate of probable biochemical origin formed in the upper layer and settled below to form limestone laminae such as those of the lower part of the Castile formation. Chemical analyses of Permian and present-day salt were compared with analyses of marine salt as old as Cambrian age to determine if evaporite deposits can contribute information on the geologic history of sea water. The results contain uncertainties that cannot be fully resolved, but they suggest that the ratio between ions in sea water has been approximately constant since Precambrian time. In addition, the abrupt initial appearance of rock salt deposits in Cambrian time suggests that the Precambrian ocean may have been rather dilute, but this apparent relationship also could have been caused by other factors.

  15. P-T evolution of the Precambrian mafic rocks hosting the Varena iron ore deposit in SE Lithuania

    NASA Astrophysics Data System (ADS)

    Šiliauskas, Laurynas; Skridlaitė, Gražina; Prusinskiene, Sabina

    2017-04-01

    The Precambrian Varena iron ore deposit in the western East European Craton, near the Latvian-East Lithuanian and Middle Lithuanian domain boundary, is buried beneath 210-500 m thick sediments. It consists of variable metasomatic rocks, mostly Mg-Fe skarns, associated with dolomitic marbles, magnetite and other ores. Metasomatites are hosted by metamorphosed igneous (mostly mafic) and sedimentary rocks and crosscut by later granites and diabase dikes. Three samples of altered mafic rocks (D8-3, D8-4 and D8-6) were chosen for PT estimations. D8-3 sample (582.5 m) is a coarse-grained metagabbro near a metasomatic K-Mg hastingsite rock. It consists of diopsidic pyroxene, edenitic and actinolitic hornblende, plagioclase (An22-15) and scapolite with minor titanite, chlorite, apatite and talc. Diopside compositions range from iron richer (Mg# 0.64, jadeite component of 0.027) to magnesium richer (Mg# 0.89, jadeite less than 0.01). Amphiboles vary from primary Mg-hastingsitic (AlVI 0.38 apfu, Mg# 0.70) to secondary edenitic (AlVI 0.25, Mg# 0.72) hornblende. Plagioclase is slightly zoned, cores more calcium-rich (An22-20) than rims (An18-15). Sample D8-4 (588 m) has similar mineral and chemical compositions, but is somewhat more altered than the D8-3 sample. Plagioclase in diopside is more anorthitic (An32-30), while matrix plagioclase is more albitic (An27-20). Sample D8-6 (710 m) is composed of diopside, plagioclase, scapolite, Mg-hornblende and actinolite. Diopside has Mg# of 0.77-0.84 and jadeite component of 0.01-0.02. Amphibole compositions range from Mg-hornblende (Mg# 0.64-0.7, Al VI 0.2-0.17 apfu) to actinolite (Mg# 0.76-0.83, Al VI 0.12-0.10 apfu). Plagioclases are An18 in cores and An10 at rims. Diopsides with the lowest Mg# and highest jadeite components, together with plagioclase cores were used for PT calculations by the winTWQ software (Berman, 1991). Temperatures of 530° C and 550° C and pressures of 6.3 and 6.1 kbar were estimated for the D8-3 and D8-4 samples, respectively. Edenitic (D8-3 and D8-4) and Mg-hornblende (D8-6) and plagioclase rims were used for thermobarometric calculations (Holland and Blundy, 1994 etc). The sample D8-3 yielded 690° to 600° C and 5.6 to 4.6 kbar (4.3 kbar pressures at maximum temperature). Similar results (675-716° C and 4.1-5.5 kbar, 4.9 kbar pressures at maximum temperature) were obtained from the D8-4 sample. The sample D8-6 produced somewhat lower values of 669-532° C and 3.7-1.0 kbar. The D8-3 gabbro may belong to the surrounding c. 1.84 Ga (Bogdanova et al., 2015) Randamonys complex. The gabbros were later metamorphosed at 550oC and 6.3 kbar (peak by clinopyroxene-plagioclase assemblages). A slight decompression to 5.0-4.3 kbar and reheating to c. 700o C (hornblende-plagioclase assemblages) were likely caused by the fluid influx and metasomatism. Such hornblende yielded c. 1.62 Ga age in the neighbouring 982 drilling (40Ar/39Ar age; Bogdanova et al., 2001). The later retrogression to 530o C at c. 3 kbar coincided with the hornblende closure temperature presumably at 1.47 Ga as was recorded in the same 982 drilling. Berman, 1991. CAN MINERAL, 29, 833-856. Bogdanova, S. et al., 2001. Tectonophysics, 339, 39-66. Bogdanova, S. et al., 2015. Precambrian Research, 259, 5-33. Holland, T., Blundy, J., 1994. CONTRIB MINERAL PETROL 116, 433-47.

  16. The evolution and distribution of life in the Precambrian eon-global perspective and the Indian record.

    PubMed

    Sharma, M; Shukla, Y

    2009-11-01

    The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the field of evolution of life. Although the Precambrian encompasses 87% of the earth's history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains.

  17. Lithologic mapping of mafic intrusions in East Greenland using Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Naslund, H. Richard; Birnie, R. W.; Parr, J. T.

    1989-01-01

    The East Greenland Tertiary Igneous Province contains a variety of intrusive and extrusive rock types. The Skaergaard complex is the most well known of the intrusive centers. Landsat thematic mapping (TM) was used in conjunction with field spectrometer data to map these mafic intrusions. These intrusions are of interest as possible precious metal ore deposits. They are spectrally distinct from the surrounding Precambrian gneisses. However, subpixel contamination by snow, oxide surface coatings, lichen cover and severe topography limit the discrimination of lithologic units within the gabbro. Imagery of the Skaergaard and surrounding vicinity, and image processing and enhancement techniques are presented. Student theses and other publications resulting from this work are also listed.

  18. A magnetic anomaly of possible economic significance in southeastern Minnesota

    USGS Publications Warehouse

    Zietz, Isidore

    1964-01-01

    An aeromagnetic survey in southeastern Minnesota by the U. S. Geological Survey in cooperation with the State of Minnesota has revealed a high-amplitude, linear, and narrow magnetic feature that suggests a possible source of Precambrian iron-formation of economic value. For the past few years the U. S. Geological Survey has been conducting detailed geophysical studies of the midcontinent gravity anomaly--a broad, high-amplitude feature that extends from Lake Superior through the States of Minnesota, Iowa, Nebraska, and part of Kansas. As part of this study an aeromagnetic survey of the southern part of the State was made in cooperation with the State of Minnesota during the summer of 1963, in which a linear high-amplitude anomaly of the order of 4,000 gammas was discovered. Because of the high amplitude, the linearity, and the narrowness of the magnetic feature, it is believed the source may be Precambrian iron-formation of possible economic value. The anomalous area is in Fillmore County, approximately between the towns of Lanesboro and Peterson in the extreme southeastern part of the State. (See figures 1 and 2.) At the site of the anomaly, Cambrian sedimentary rocks occur in the valley of the Root River, and Ordovician rocks (nearly flat lying) mantle the upland areas. The uplands are largely covered by glacial deposits, which are relatively thin (Paul K. Sims, written communication, 1964). Depths to the Precambrian are estimated to range from 500 feet to 1,000 feet below the surface. The aeromagnetic map shown in figure 2 was compiled from continuous magnetic profiles made along east-west flight lines 1,000 feet above ground, and spaced approximately 1 mile apart. Contour intervals of 20, 100, and 500 gammas were used depending on the intensity. The instrument for the survey was a flux-gate type magnetometer (AN/ASQ-3A) which measures total-field variations. The contour map displays variations in magnetic pattern which are typical of shallow Precambrian rocks. Anomalies of the order of 1,000 gammas are shown along the east and west edges of the map. The outstanding feature is the previously mentioned linear positive anomaly that trends northeast and reaches a peak of 3,960 gammas. The positive anomaly is contoured from data on four consecutive profiles, but only two show high amplitudes. The high-amplitude anomalies along traverses 1 and 2 are shown in figure 3. Depth calculations suggest that the source of the anomaly lies about 1,000 feet below the surface. Assuming a dikelike source and magnetization resulting entirely from induction in the earth's field, several calculations were made in an attempt to fit the magnetic profile taken along the line AA' (see figs. 2 and 4), considered to be a typical cross-section of the magnetic anomaly. Comparisons are shown between observed and computed profiles. The fixed parameters used were (a) distance from detector to source of 2,000 ft; width of dike of 5,000 ft; dip of dike of 75?, 90?, 105? , and 120? , as shown. The best fit occurs when the dike is vertical or dips 75? to the southwest. For these cases, the susceptibility, k, is computed to be 0.016 c.g.s, units, and is comparable to k = 0.02+ calculated by Bath (1962) for the relatively unmetamorphosed iron-formation of the Main Megabi district in Minnesota where the induced magnetization was most likely the dominant magnetization. If the dominant magnetization for the anomaly in Fillmore County were remanent rather than induced, the economic importance of the anomaly would be greatly reduced. This anomaly seems sufficiently promising to warrant further geologic and geophysical investigation. Detailed ground magnetic and electrical studies would be useful to delineate the feature. In the final analysis, however, the presence of iron-formation can be determined only by the drill.

  19. Ecosystem of silicon utilizing organisms in the lost world

    NASA Astrophysics Data System (ADS)

    Das, S.

    2010-12-01

    It was Charles Darwin who first conceived the idea of “the Lost World” which spanned more than 80% of Earth History. This is about the rocks of the Precambrian period, in which Charles Darwin did not find any fossils during his study in 1859. Although Logan’s Foraminosphere and The Cyanosphere were the proposed concepts of the possible Precambrian life, however, these studies were flawed with non-biological artifacts, post-depositional contamination etc. Although now scientists believe the ‘hydrothermal cradle for life’ following the important studies in deep-sea vents, this is still a hypothetic view. All important experiments on the origin of life which were done with a reducing atmosphere, were also not correct. Scientists recently opined that probably life originated as silicon utilizing coacervates spontaneously in cosmos, and are transferred on the Earth in the Precambrian. These silicon utilizing coacervates could originate spontaneously in the Interstellar Medium (ISM) dust particles containing silicates with carbon, many organic molecules, and with mantles of ices. Thus ultraviolet ray from molecular hydrogen after collision excitation by electrons produced by cosmic-ray ionization may initiate seeds of life with formation of silicon utilizing coacervates; which are then scattered throughout the Universe. Similarly they can also originate in the GMCs, which have the clouds of dust and gases. These were also probably the last common ancestor (LCA) of all living creatures on the Earth. They are also still entering the surface of the Earth in small numbers during volcanic eruptions, blue lightning etc., but are quickly lost in the thickly inhabited Earth surface with ~ 1,00,000 diversified earthly species. These coacervates showed a direct correlation with non-cultivable spherical clusters found in the stratosphere, and the unknown spheroid bodies in microfossils ( ~ 3,200 Ma to >3,700 Ma) recovered in Australia, Africa and in Greenland. Both coecervates and these spherical clusters were found free from ribosomes, nucleic acids including transfer RNA and any modern genetic apparatus. All these facts precisely indicate possibility of these silicon utilizing coacervates as the principal living creatures on Earth surface in the Precambrian (6/7th part of the geological time frame of the Earth) and in the Hadean (first 600 million years), when there was no trophopause and thus the ecosystem of silicon utilizing organisms during these periods was mainly based on these silicon utilizing coecervates only.

  20. Absolute Geomagnetic Paleointensity as Recorded by Mafic Dykes of the ~1.98 Ga Bundelkhand Swarm and ~0.75 Ga Malani Igneous Suite from Northern India

    NASA Astrophysics Data System (ADS)

    Piispa, E. J.; Smirnov, A. V.; Pandit, M. K.

    2012-12-01

    Determining the long-term behavior and configuration of the Precambrian geomagnetic field is crucial for understanding the origin and nature of Earth's early geodynamo. However, our knowledge about strength and morphology of the Precambrian geomagnetic field is extremely limited due to paucity of reliable data on the ancient field strength (paleointensity). Information correlating the strength and characteristics of Earth's ancient geomagnetic field can be gained by measuring the paleodirectional and paleointensity properties of Precambrian rocks. We investigated two Proterozoic mafic dyke swarms from the Indian subcontinent: the extensive NW-SE trending 1979±8 Ma (U-Pb) dyke swarm in the Bundelkhand craton and the N-S trending Malani mafic dyke swarm, the latter representing the third and final phase of magmatism in the Malani Igneous Suite. Malani rhyolites have been precisely dated at 771±2 to 751±3 Ma (U - Pb zircon ages). The Malani mafic dykes have been correlated with the ~750 Ma dolerite dykes of Seychelles based on geological and geochemical criteria. The mafic dykes of both studied swarms are vertical to sub-vertical and show little or no evidence of alteration. Detailed paleomagnetic studies, using both thermal and alternating field demagnetization, revealed the presence of stable dual-polarity magnetic component for both dyke swarms. The primary nature of the magnetization is supported by positive baked contact tests. Typically, the characteristic magnetization is single component with narrow unblocking temperature spectra between ~500°C and 550-570°C, with remanence carried by small PSD magnetite or low-Ti titanomagnetite. Absolute paleointensities of these dyke swarms were obtained by two different heating based methods: multiple specimen domain-state corrected (MSP-DSC) and Thellier double heating method with alternating infield-zerofield (IZ) and zerofield-infield (ZI) steps. The multiple sample protocol incorporated checks for alteration, additivity and reciprocity during heating. The magnetic stability of samples was checked using thermomagnetic curves and by monitoring the magnetic susceptibility changes through the paleointensity experiments. Magnetization measurements before and after low temperature demagnetization (LTD) in liquid nitrogen allowed comparison of the effectiveness of the LTD treatment with other experimental domain state corrections. We will discuss implications of our results for the Precambrian geomagnetic field evolution.

  1. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in north China

    NASA Astrophysics Data System (ADS)

    Xu, Bei; Zhao, Pan; Wang, Yanyang; Liao, Wen; Luo, Zhiwen; Bao, Qingzhong; Zhou, Yongheng

    2015-01-01

    A new tectonic division of the Xing'an-Mongolia orogenic belt (XMOB) in north China has been presented according to our research and a lot of new data of tectonics, geochronology and geochemistry. Four blocks and four sutures have been recognized in the XMOB, including the Erguna (EB), Xing'an-Airgin Sum (XAB), Songliao-Hunshandake (SHB), and Jiamusi (JB), and Xinlin-Xiguitu (XXS), Xilinhot-Heihe (XHS), Mudanjiang (MS) and Ondor Sum-Yongji sutures (OYS). The framework of the XMOB is characterized by a tectonic collage of the blocks and orogenic belts between them. Different Precambrian basements have been found in the blocks, including the Neoproterozoic metamorphic rocks and plutons in the EB, the Neoproterozoic metamorphic rocks in western and eastern of segments of the XAB, Mesoproterozoic and Neoproterozoic metamorphic rocks in middle segments of the XAB, respectively, the Neoproterozoic metamorphic rocks and Mesoproterozoic volcanic rocks and plutons in the SHB, and Neoproterozoic metamorphic rocks in the JB. The XXS resulted from a northwestward subduction of the XAB beneath the EB during the Cambrian, which was followed by the forming of the XHS and OYS in the northwest and south margins of the SHB in the Silurian, respectively. The MS was caused by a westward subduction of the JB beneath the east margin of the SHB during the middle Devonian. The three Cambrian, Silurian and middle Devonian events indicate that the XMOB belongs to a pre-middle Devonian multiple orogenic belt in the Central Asian Orogenic Belt (CAOB). Forming of the XMOB suggests that the southeast part of the Paleo Asian Ocean closed before the middle Devonian.

  2. Petrology and isotopic geochemistry of the Archaean basement lithologies near Gardiner, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, R.E.; Sinha, A.K.

    1985-01-01

    In an attempt to recognize potential source rocks for some of the rhyolites of the Yellowstone Rhyolite Plateau, four major exposures of Precambrian rocks have been analyzed for major and trace elements and isotopic composition. The terrain is characterized by granitic gneisses with subordinant mica schist, quartzite, amphibolite, and two-mica granite. The gneiss units from the northern (Yankee Jim Canyon) and eastern (Lamar Canyon) outcrops are characterized by k-feldspar augen in a gneissic groundmass of two-feldspar--quartz--mica--epidote. The feldspar compositions are Or/sub 95/ and An/sub 5-15/ indicating metamorphic re-equilibration. Mafic phases are iron-rich with Fe:Mg of 1.0 in epidote, 0.7 inmore » pyroxene, and 0.5 in biotite. Sr isotopic analyses yield present day values of 0.7201-0.7519 for Lamar Canyon, 0.7157-0.7385 for Yankee Jam Canyon, and 0.7200-0.7679 for mica schist from the western and northern outcrops. Rb-Sr whole-rock data indicate a complicated isotopic history with ages ranging from 2800 to 3600 my. The 2800 my ages are consistent with ages for the Tobacco Root and Ruby Mountains to the NW (James and Hedge, 1980) and the Beartooth Range to the NE (Nunes and Tilton, 1971) while the 3600 my age may be related to the formation of the protolith. The rhyolites of the northern Yellowstone Rhyolite Plateau (Sr/sub I/=0.7100) cannot be derived from the exposed Archaean rocks based on Sr isotopic and whole-rock chemistry, and must be derived from lithologies not exposed in the area. This study shows that care must be taken when using surface lithologies to model potential sources materials for volcanic rocks in an associated terrain.« less

  3. Multifractal model of magnetic susceptibility distributions in some igneous rocks

    USGS Publications Warehouse

    Gettings, Mark E.

    2012-01-01

    Measurements of in-situ magnetic susceptibility were compiled from mainly Precambrian crystalline basement rocks beneath the Colorado Plateau and ranges in Arizona, Colorado, and New Mexico. The susceptibility meter used measures about 30 cm3 of rock and measures variations in the modal distribution of magnetic minerals that form a minor component volumetrically in these coarsely crystalline granitic to granodioritic rocks. Recent measurements include 50–150 measurements on each outcrop, and show that the distribution of magnetic susceptibilities is highly variable, multimodal and strongly non-Gaussian. Although the distribution of magnetic susceptibility is well known to be multifractal, the small number of data points at an outcrop precludes calculation of the multifractal spectrum by conventional methods. Instead, a brute force approach was adopted using multiplicative cascade models to fit the outcrop scale variability of magnetic minerals. Model segment proportion and length parameters resulted in 26 676 models to span parameter space. Distributions at each outcrop were normalized to unity magnetic susceptibility and added to compare all data for a rock body accounting for variations in petrology and alteration. Once the best-fitting model was found, the equation relating the segment proportion and length parameters was solved numerically to yield the multifractal spectrum estimate. For the best fits, the relative density (the proportion divided by the segment length) of one segment tends to be dominant and the other two densities are smaller and nearly equal. No other consistent relationships between the best fit parameters were identified. The multifractal spectrum estimates appear to distinguish between metamorphic gneiss sites and sites on plutons, even if the plutons have been metamorphosed. In particular, rocks that have undergone multiple tectonic events tend to have a larger range of scaling exponents.

  4. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was discovered at the edge of the tonalite gneiss belt east of Wadi Ranyah. Granite and gabbro have economic potential as building stone.

  5. The Birth of a Cratonic Core: Petrologic Evolution of the Hadean-Eoarchean Acasta Gneiss Complex

    NASA Astrophysics Data System (ADS)

    Reimink, J. R.; Chacko, T.; Davies, J.; Pearson, D. G.; Stern, R. A.; Heaman, L. M.; Carlson, R.; Shirey, S. B.

    2016-12-01

    Granitoid magmatism within the 4.02-3.6 Ga Acasta Gneiss Complex records distinct whole-rock compositional changes during the building the Slave Craton. Previously1,2 we suggested that these signatures implied petrologic changes from initiation of evolved crust formation in an Iceland-like setting to partial melting of hydrated mafic crust at increasing depth through time, culminating in relatively voluminous magmatism at 3.6 Ga. Increasing La/Yb in these rocks suggest increasing depth of melting (and increasing residual garnet content) with time, ending in emplacement of rocks comparable to other Archean TTG suites3, with both high pressure (high La/Yb) and low pressure (low La/Yb) rocks represented at 3.6 Ga. Data from rocks with variable La/Yb that crystallized 3.6 Ga allow us to evaluate potential mechanisms for formation of rocks of this age such as subduction/accretion or intracrustal melting/delamination. Despite major and trace element compositional and age variability, zircon oxygen isotope compositions from a wide variety of rocks are extremely consistent (+6.0-6.5 ‰ from 3.9-2.9 Ga), implying a similar source, one that had been altered by surface waters1. Potential source rocks include the upper portion of oceanic crust, which contains a large portion of mafic crust that had been altered at low temperatures (e.g., 4). Paired whole rock and zircon radiogenic isotopic data are especially sensitive to the extent of pre-existing felsic material in the region, as well as the longevity of primary, basaltic rocks prior to their reworking into more evolved crust. New paired zircon Hf and whole rock Nd isotope data collected from these samples show variably unradiogenic signatures and allow an exploration of similarities and disparities between crust formation in the Acasta Gneiss Complex and other Paleoarchean-Mesoarchean crustal blocks. [1] Reimink et al., 2016. Precambrian Research 281, 453-472. [2] Reimink et al., 2014 Nature Geoscience 7, 529-533. [3] Moyen and Martin, 2012 Lithos 148, 312-348. [4] Eiler, J.M., 2001 Reviews in Mineralogy and Geochemistry 43, 319-364.

  6. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China

    USGS Publications Warehouse

    Peters, S.G.; Jiazhan, H.; Zhiping, L.; Chenggui, J.

    2007-01-01

    Sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle-ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite-usually with ??m-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base-metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb-Sb-As-sulphosalts also are present. The rocks locally are silicified and altered to sericite-clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian-Qian-Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by tectonic domes or shear zones and also suggest syndeformational ore deposition, possibly related to the Youjiang fault system. Several sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area also are of the red earth-type and Au grades have been concentrated and enhanced during episodes of deep weathering. ?? 2006 Elsevier B.V. All rights reserved.

  7. Evolution of silicic magma in the upper crust: the mid-Tertiary Latir volcanic field and its cogenetic granitic batholith, northern New Mexico, USA

    USGS Publications Warehouse

    Lipman, P.W.

    1988-01-01

    Structural and topographic relief along the eastern margin of the Rio Grande rift, northern New Mexico, provides a remarkable cross-section through the 26-Ma Questa caldera and cogenetic volcanic and plutonic rocks of the Latir field. Exposed levels increase in depth from mid-Tertiary depositional surfaces in northern parts of the igneous complex to plutonic rocks originally at 3-5 km depths in the S. Erosional remnants of an ash-flow sheet of weakly peralkaline rhyolite (Amalia Tuff) and andesitic to dactitic precursor lavas, disrupted by rift-related faults, are preserved as far as 45 km beyond their sources at the Questa caldera. Broadly comagmatic 26 Ma batholithic granitic rocks, exposed over an area of 20 by 35 km, range from mesozonal granodiorite to epizonal porphyritic granite and aplite; shallower and more silicic phases are mostly within the caldera. Compositionally and texturally distinct granites defined resurgent intrusions within the caldera and discontinuous ring dikes along its margins: a batholithic mass of granodiorite extends 20 km S of the caldera and locally grades vertically to granite below its flat-lying roof. A negative Bouguer gravity anomaly (15-20 mgal), which encloses exposed granitic rocks and coincides with boundaries of the Questa caldera, defined boundaries of the shallow batholith, emplaced low in the volcanic sequence and in underlying Precambrian rocks. Paleomagnetic pole positions indicate that successively crystallised granitic plutons cooled through Curie temperatures during the time of caldera formation, initial regional extension, and rotational tilting of the volcanic rocks. Isotopic ages for most intrusions are indistinguishable from the volcanic rocks. These relations indicate that the batholithic complex broadly represents the source magma for the volcanic rocks, into which the Questa caldera collapsed, and that the magma was largely liquid during regional tectonic disruption. -from Author

  8. Geologic map of the Boulder-Fort Collins-Greeley Area, Colorado

    USGS Publications Warehouse

    Colton, Roger B.

    1978-01-01

    This digital map shows the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 under the Front Range Urban Corridor Geology Program. Colton used his own geologic mapping and previously published geologic maps to compile one map having a single classification of geologic units. The resulting published color paper map (USGS Map I-855-G, Colton, 1978) was intended for land-use planning and to depict the regional geology. In 1997-1999, another USGS project designed to address urban growth issues was undertaken. This project, the USGS Front Range Infrastructure Resources Project, undertook to digitize Colton's map at 1:100,000 scale, making it useable in Geographical Information Systems (GIS). That product is described here. In general, the digitized map depicts in its western part Precambrian igneous and metamorphic rocks, Pennsylvanian and younger sedimentary rock units, major faults, and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The central and eastern parts of the map (Colorado Piedmont) show a mantle of Quaternary unconsolidated deposits and interspersed outcrops of sedimentary rock of Cretaceous or Tertiary age. A surficial mantle of unconsolidated deposits of Quaternary age is differentiated and depicted as eolium (wind-blown sand and silt), alluvium (river gravel, sand, and silt of variable composition), colluvium, and a few landslide deposits. At the mountain front, north-trending, Paleozoic and Mesozoic formations of sandstone, shale, and minor limestone dip mostly eastward and form folds, fault blocks, hogbacks and intervening valleys. Local dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.

  9. The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico

    USGS Publications Warehouse

    Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.

    1999-01-01

    Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.

  10. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    USGS Publications Warehouse

    Waddell, R.K.

    1982-01-01

    A two-dimensional, steady-state model of ground-water flow beneath the Nevada Test Site and vicinity has been developed using inverse techniques. The area is underlain by clastic and carbonate rocks of Precambrian and Paleozoic age and by volcanic rocks and alluvium of Tertiary and Quaternary age that have been juxtaposed by normal and strike-slip faulting. Aquifers are composed of carbonate and volcanic rocks and alluvium. Characteristics of the flow system are determined by distribution of low-conductivity rocks (barriers); by recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by underflow beneath Pahute Mesa from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Sensitivities of simulated hydraulic heads and fluxes to variations in model parameters were calculated to guide field studies and to help estimate errors in predictions from transport modeling. Hydraulic heads and fluxes are very sensitive to variations in the greater magnitude recharge/discharge terms. Transmissivity at a location may not be the most important transmissivity for determining flux there. Transmissivities and geometries of large barriers that impede flow from Pahute Mesa have major effects on fluxes elsewhere; as their transmissivities are decreased, flux beneath western Jackass Flats and Yucca Mountains is increased as water is diverted around the barriers. Fortymile Canyon is underlain by highly transmissive rocks that cause potentiometric contours to vee upgradient; increasing their transmissivity increases flow through them, and decreases it beneath Yucca Mountain. (USGS)

  11. Precambrian paleobiology.

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1972-01-01

    Outline in broad terms of major events in Precambrian biological history. Limitations of the Precambrian fossil record, chemical fossils, and findings of the early, middle, and late Precambrian records are examined. Biological systems originated during the earliest third of geologic time, about four billion years ago. It is generally assumed that the primitive atmosphere was a highly reduced mixture, primarily composed of methane and ammonia, and that the earliest living systems were heterotrophic, using organic matter of abiotic origin as a carbon source. The development of the metazoan grade of organization apparently occurred near the close of the Precambrian. The picture of gradually accelerating early evolutionary development, beginning rather slowly but markedly quickening with the emergence of eucaryotic organization, seems consistent with the fragmentary evidence currently available.

  12. North America's Midcontinent Rift: when Rift MET Lip

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers, talks, and educational material are available at http://www.earth.northwestern.edu/people/seth/research/mcr.html

  13. Detrital zircon age distribution from Devonian and Carboniferous sandstone in the Southern Variscan Fold-and-Thrust belt (Montagne Noire, French Massif Central), and their bearings on the Variscan belt evolution

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Faure, Michel; Li, Xian-hua; Chu, Yang; Ji, Wenbin; Xue, Zhenhua

    2016-05-01

    In the Southern French Massif Central, the Late Paleozoic sedimentary sequences of the Montagne Noire area provide clues to decipher the successive tectonic events that occurred during the evolution of the Variscan belt. Previous sedimentological studies already demonstrated that the siliciclastic deposits were supplied from the northern part of the Massif Central. In this study, detrital zircon provenance analysis has been investigated in Early Devonian (Lochkovian) conglomerate and sandstone, and in Carboniferous (Visean to Early Serpukhovian) sandstone from the recumbent folds and the foreland basin of the Variscan Southern Massif Central in Montagne Noire. The zircon grains from all of the samples yielded U-Pb age spectra ranging from Neoarchean to Late Paleozoic with several age population peaks at 2700 Ma, 2000 Ma, 980 Ma, 750 Ma, 620 Ma, 590 Ma, 560 Ma, 480 Ma, 450 Ma, and 350 Ma. The dominant age populations concentrate on the Neoproterozoic and Paleozoic. The dominant concordant detrital zircon age populations in the Lochkovian samples, the 480-445 Ma with a statistical peak around 450 Ma, are interpreted as reflecting the rifting event that separated several continental stripes, such as Armorica, Mid-German Crystalline Rise, and Avalonia from the northern part of Gondwana. However, Ediacaran and Cambrian secondary peaks are also observed. The detrital zircons with ages at 352 - 340 Ma, with a statistical peak around 350 Ma, came from the Early Carboniferous volcanic and plutonic rocks similar to those exposed in the NE part of the French Massif Central. Moreover, some Precambrian grains recorded a more complex itinerary and may have experienced a multi-recycling history: the Archean and Proterozoic grains have been firstly deposited in Cambrian or Ordovician terrigenous rocks, and secondly re-sedimented in Devonian and/or Carboniferous formations. Another possibility is that ancient grains would be inherited grains, scavenged from an underlying but not exposed Precambrian basement.

  14. Abiogenic and Microbial Controls on Volatile Fatty Acids in Precambrian Crustal Fracture Waters

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Heuer, V.; Tille, S.; Moran, J.; Slater, G.; Sutcliffe, C. N.; Glein, C. R.; Hinrichs, K. U.; Sherwood Lollar, B.

    2015-12-01

    Saline fracture waters within the Precambrian Shield rocks of Canada and South Africa have been sequestered underground over geologic timescales up to 1.1-1.8 Ga [1, 2]. These fluids are rich in H2 derived from radiolysis and hydration of mafic and ultramafic rocks [1, 2, 3] and host a low-biomass, low-diversity microbial ecosystem at some sites [2]. The abiogenic or biogenic nature of geochemical processes has important implications for bioavailable carbon sources and the role played by abiotic organic synthesis in sustaining a chemosynthetic deep biosphere. Volatile fatty acids (VFAs) are simple carboxylic acids that may support microbial communities in such environments, such as those found in terrestrial [4] and deep-sea [5] hot springs. We present abundance and δ13C analysis for VFAs in a spectrum of Canadian Shield fluids characterized by varying dissolved H2, CH4, and C2+ n-alkane compositions. Isotope mass balance indicates that microbially mediated fermentation of carbon-rich graphitic sulfides may produce the elevated levels of acetate (39-273 μM) found in Birchtree and Thompson mine. In contrast, thermodynamic considerations and isotopic signatures of the notably higher acetate (1.2-1.9 mM), as well as formate and propionate abundances (371-816 μM and 20-38 μM, respectively) found at Kidd Creek mine suggest a role for abiogenic production via reduction of dissolved inorganic carbon with H2 for formate, and oxidation of C2+ n-alkanes for acetate and propionate, along with possible microbial cycling. VFAs comprise the bulk of dissolved and total organic carbon in the mines surveyed, and as such represent a potential key substrate for life. [1] Holland et al. (2013) Nature 497: 367-360. [2] Lin et al. (2006) Science 314: 479-482. [3] Sherwood Lollar et al. (2014) Nature 516: 379-382. [4] Windman et al. (2007) Astrobiology 7(6): 873-890. [5] Lang et al. (2010) Geochim. Cosmochim. Acta 92: 82-99.

  15. The provenance and chemical variation of sandstones associated with the Mid-continent Rift System, U.S.A.

    USGS Publications Warehouse

    Cullers, R.L.; Berendsen, P.

    1998-01-01

    Sandstones along the northern portion of the Precambrian Mid-continent Rift System (MRS) have been petrographically and chemically analyzed for major elements and a variety of trace elements, including the REE. After the initial extrusion of the abundant basalts along the MRS, dominantly volcaniclastic sandstones of the Oronto Group were deposited. These volcaniclastic sandstones are covered by quartzose and subarkosic sandstones of the Bayfield Group. Thus the sandstones of the Oronto Group were derived from previously extruded basalts, whereas, the sandstones of the Bayfield Group were derived from Precambrian granitic gneisses located on the rift flanks. The chemical variation of these sandstones closely reflects the changing detrital modes with time. The elemental composition of the sandstones confirms the source lithologies suggested by the mineralogy and clasts. The Oronto Group sandstones contain lower ratios of elements concentrated in silicic source rocks (La or Th) relative to elements concentrated in basic source rocks (Co, Cr, or Sc) than the Bayfield Group. Also, the average size of the negative Eu anomaly of the sandstones of the Oronto Group is significantly less (Eu/Eu* mean ?? standard deviation = 0.79 ?? 0.13) than that of the Bayfield Group (mean + standard deviation = 0.57 ?? 0.09), also suggesting a more basic source for the former than the latter. Mixing models of elemental ratios give added insight as to the evolution of the rift. These models suggest that the volcanistic sandstones of the lower portion of the Oronto Group are derived from about 80 to 90 percent basalt and 10 to 20 percent granitoids. The rest of the Oronto Group and the lower to middle portion of the Bayfield Group could have formed by mixing of about 30 to 60 percent basalt and 40 to 70 percent granitoids. The upper portion of the Bayfield Group is likely derived from 80 to 100 percent granitoids and zero to 20 percent basalt.

  16. Distribution and features of landslides induced by the 2008 Wengchuan Earthquake, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Chigira, M.; Xiyong, W.; Inokuchi, T.; Gonghui, W.

    2009-04-01

    2008 Sichuan earthquake with a magnitude of Mw 7.9 induced numerous mass movements around the fault surface ruptures of which maximum separations we observed were 3.6 m vertical and 1.5 m horizontal (right lateral). The affected area was mountainous areas with elevations from 1000 m to 4500 m on the west of the Sichuan Basin. The NE-trending Longmenshan fault zone runs along the boundary between the mountains on the west and the Sichuan basin (He and Tsukuda, 2003), of which Yinghsiuwan-Beichuan fault was the main fault that generated the 2008 earthquake (Xu, 2008). The basement rocks of the mountainous areas range from Precambrian to Cretaceous in age. They are basaltic rocks, granite, phyllite, dolostone, limestone, alternating beds of sandstone and shale, etc. There were several types of landslides ranging from small, shallow rockslide, rockfall, debris slide, deep rockslide, and debris flows. Shallow rockslide, rock fall, and debris slide were most common and occurred on convex slopes or ridge tops. When we approached the epicentral area, first appearing landslides were of this type and the most conspicuous was a failure of isolated ridge-tops, where earthquake shaking would be amplified. As for rock types, slopes of granitic rocks, hornfels, and carbonate rocks failed in wide areas to the most. They are generally hard and their fragments apparently collided and repelled to each other and detached from the slopes. Alternating beds of sandstone and mudstone failed on many slopes near the fault ruptures, including Yinghsiuwan near the epicenter. Many rockfalls occurred on cliffs, which had taluses on their feet. The fallen rocks tumbled down and mostly stopped within the talus surfaces, which is quite reasonable because taluses generally develop by this kind of processes. Many rockslides occurred on slopes of carbonate rocks, in which dolostone or dolomitic limestone prevails. Deep-seated rockslide occurred on outfacing slopes and shallow rockslide and rockfall occurred on infacing slopes. Infacing slopes generally are steeper than outfacing slopes and hence surface rocks on infacing slopes tend to be loosened by gravity. Detachment surfaces of carbonate rocks are generally not smooth surfaces but are rough surfaces with dimple-like depressions, which are made by dissolution of these rocks. This feature is one of the most important causes to induce landslide in carbonate rocks. Many gravitational deformations were observed on phyllite slopes. Landslides on the west of Beichuan city is probably of weathered phyllite, which had been preceded by gravitational deformation beforehand. Taochishan landslide in Beichuan occurred on probable outfacing slope of phyllite. The Formosat II images on Google earth indicated that this landslide was also preceded by gravitational deformation, which appeared as spur-crossing depressions with upslope-convex traces on plan. Satellite images indicated that some landslides had long lobate forms, suggesting that they were flow. One of them was Shechadientsu landslide 34 km northeast of Dujiangyan, occurring across the probable earthquake fault rupture. It was 1.5 km long with a maximum width of 250 m and an apparent friction angle of 22°. The top of this landslide area was a steep cliff of Precambrian granite, which failed to go down a small valley. The volume of the slope failure was estimated much less than the volume of the deposit. The small valley had sporadic patches of bedrock consisting of alternating beds of sandstone and mudstone of Triassic in age. The bedrock was covered by bluish grey, clayey, water-saturated debris, which was not disturbed and in turn covered by water-saturated brownish debris with rubbles. The landslide deposits had wrinkles on the surface and streaks of same color rock fragments. In addition, cross section near the distal part had clearly defined reverse grading, in which larger rubbles with a maximum diameter of 5 m concentrated at the surface part. These characteristics strongly suggest that valley-fill sediments mobilized by the earthquake and flowed down the valley, getting higher at the outer side of the valley bent. The largest landslide with an estimated volume of 1 billion m3 occurred on an outfacing carbonate rock slope, which had been preceded by gravitational deformation appearing as a ridge-top depression. The second largest one occurred on a smooth outfacing slope that had been undercut.

  17. Tracing source terranes using U-Pb-Hf isotopic analysis of detrital zircons: provenance of the Orhanlar Unit of the Palaeotethyan Karakaya subduction-accretion complex, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel

    2016-04-01

    Sandstones of the Late Palaeozoic-Early Mesozoic Karakaya Complex are interpreted to have accumulated along an active continental margin related to northward subduction of Palaeotethys. The age of deposition and provenance of the sandstones are currently being determined using radiometric dating of detrital zircons, coupled with dating of potential source terranes. Our previous work shows that the U-Pb-Hf isotopic characteristics of the sandstones of all but one of the main tectonostratigraphic units of the Karakaya Complex are compatible with a provenance that was dominated by Triassic and Permo-Carboniferous magmatic arc-type rocks, together with a minor contribution from Lower to Mid-Devonian igneous rocks (Ustaömer et al. 2015). However, one of the tectono-stratigraphic units, the Orhanlar Unit, which occurs in a structurally high position, differs in sedimentary facies and composition from the other units of the Karakaya Complex. Here, we report new isotopic age data for the sandstones of the Orhanlar Unit and also from an extensive, associated tectonic slice of continental metamorphic rocks (part of the regional Sakarya Terrane). Our main aim is to assess the provenance of the Orhanlar Unit sandstones in relation to the tectonic development of the Karakaya Complex as a whole. The Orhanlar Unit is composed of shales, sandstone turbidites and debris-flow deposits, which include blocks of Devonian radiolarian chert and Carboniferous and Permian neritic limestones. The sandstones are dominated by rock fragments, principally volcanic and plutonic rocks of basic-to-intermediate composition, metamorphic rocks and chert, together with common quartz, feldspar and mica. This modal composition contrasts significantly with the dominantly arkosic composition of the other Karakaya Complex sandstones. The detrital zircons were dated by the U-Pb method, coupled with determination of Lu-Hf isotopic compositions using a laser ablation microprobe attached to a multicollector-inductively coupled plasma-mass spectrometer (LA-MC-ICP-MS) at Goethe University, Frankfurt. A total of 399 U-Pb spot analyses were carried out on zircons from the sandstones of the Orhanlar Unit. 84% of the data yielded Precambrian ages, which is in marked contrast with the typical arkosic sandstones of the Karakaya Complex in which Precambrian zircons form only 10% of the population. Three zircon grains of Ladinian age suggest a maximum depositional age for the Orhanlar Unit. The most prominent zircon population is of Ediacaran-Cryogenian age (31%). The second largest population is Tonian-Stenian (22%), the third largest Cryogenian-Tonian (9%) and the fourth Devonian-Carboniferous (7%). There are also minor zircon populations of Palaeoproterozoic and Neo-Archean ages. The Precambrian zircon populations in the Orhanlar Unit sandstones are identical to those in the schists of the Sakarya continental crust (P.A. Ustaömer et al. 2012; this study). Their Hf isotope compositions also overlap, suggesting that the Sakarya continental crust could be a source for the sandstones of the Orhanlar Unit. On the other hand, the Hf(t) values of most of the Devonian and Carboniferous detrital zircons differ from those of the Devonian and Carboniferous granites that intrude the Sakarya continental crust. The Karakaya Complex as a whole appears to have been derived from two different source terranes, of which the Orhanlar Unit sandstones represent a minor, but significant component. Possible explanations are that two different source terranes already existed in the same region but that these were not exposed to erosion at the same time or, if exposed simultaneously, experienced different depositional pathways (without mixing); alternatively, the Orhanar Unit represents part of a different tectono-stratigraphic terrane from the other Karakaya Complex units, with which it was tectonically amalgamated prior to Early Jurassic deposition of a common sedimentary cover. Ustaömer PA, Ustaömer T, Robertson AHF (2012), Turkish Journal of Earth Sciences, doi:10.3906/yer-1103-1 Ustaömer T, Ustaömer PA, Robertson AHF, Gerdes A (2015), International Journal of Earth Sciences, DOI 10.1007/s00531-015-1225-8. This work was supported by TUBITAK, Project no 111R015

  18. The Hardwood Gneiss: Evidence for high P-T Archean metamorphism in the southern province of the Lake Superior region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.W.; Geiger, C.A.

    1990-03-01

    The Hardwood Gneiss is an areally small unit of Precambrian granulite-grade rocks exposed in the Archean gneiss terrane of the southern Lake Superior region. The rocks are located in the southwestern portion of the Upper Peninsula of Michigan and consist of a structurally conformable package of quartzitic, metapelitic, amphibolitic, and metabasic units. Three texturally distinct garnet types are present in the metabasites and are interpreted to represent two metamorphic events. Geothermobarometry indicates conditions of {approximately}8.2-11.6 kbar and {approximately}770C for M1, and conditions of {approximately}6.0-10.1 kbar and {approximately}610-740C for M2. It is proposed that M1 was Archean and contemporaneous with amore » high-grade metamorphic event recorded in the Minnesota River Valley. The M2 event was probably Early Proterozoic and pre-Penokean, with metamorphic conditions more intense than those generally ascribed to the Penokean Orogeny in Michigan, but similar to the conditions reported for the Kapuskasing zone of Ontario. The high paleopressures and temperatures of the M1 event make the Hardwood Gneiss distinct from any rocks previously described in the southern Lake Superior region, and suggest intense tectonic activity during the Archean.« less

  19. Chapter 27: Geology and petroleum potential of the north and east margins of the Siberian Craton, north of the Arctic Circle

    USGS Publications Warehouse

    Klett, T.R.; Wandrey, C.J.; Pitman, Janet K.

    2011-01-01

    The Siberian Craton consists of crystalline rocks and superimposed Precambrian sedimentary rocks deposited in rift basins. Palaeozoic rocks, mainly carbonates, were deposited along the margins of the craton to form an outwardly younger concentric pattern that underlies an outward-thickening Mesozoic sedimentary section. The north and east margins of the Siberian Craton subsequently became foreland basins created by compressional deformation during collision with other tectonic plates. The Tunguska Basin developed as a Palaeozoic rift/sag basin over Proterozoic rifts. The geological provinces along the north and east margins of the Siberian Craton are immature with respect to exploration, so exploration-history analysis alone cannot be used for assessing undiscovered petroleum resources. Therefore, other areas from around the world having greater petroleum exploration maturity and similar geological characteristics, and which have been previously assessed, were used as analogues to aid in this assessment. The analogues included those of foreland basins and rift/sag basins that were later subjected to compression. The US Geological Survey estimated the mean undiscovered, technically recoverable conventional petroleum resources to be approximately 28 billion barrels of oil equivalent, including approximately 8 billion barrels of crude oil, 103 trillion cubic feet of natural gas and 3 billion barrels of natural gas liquids. ?? 2011 The Geological Society of London.

  20. The Case for Scientific Drilling of Precambrian Sedimentary Sequences: A Mission to Early Earth

    NASA Astrophysics Data System (ADS)

    Buick, R.; Anbar, A. D.; Mojzsis, S. J.; Kaufman, A. J.; Kieft, T. L.; Lyons, T. W.; Humayun, M.

    2001-12-01

    Research into the emergence and early evolution of life, particularly in relation to environmental conditions, has intensified in the past decade. The field is energized by controversy (e.g., over the history of atmospheric composition, ocean redox, climate and biochemical pathways) and by the application of new biogeochemical tools (e.g., ion probe in situ stable isotope studies; improved geochronological techniques; non-mass-dependent stable isotope effects; stable metal isotope systematics; advances in organic geochemistry/biomarkers). The past decade has also seen improved understanding of old tools (notably, S isotopes), and new perspectives on evolution and on microbial interaction with the environment borne of the genomics revolution. Recent papers demonstrate the potential for innovative research when such developments are integrated, as well as the limitations of present knowledge. The chief limiting factor is not lack of scientists or advanced techniques, but availability of fresh samples from suitable successions. Where classic Precambrian stratigraphy exists, suitable rocks are rarely exposed due to interaction with the oxidizing atmosphere, occurrence of flat-lying strata or sedimentary cover. Available drill-cores are concentrated around ore bodies, and hence are inherently altered or not environmentally representative. Stratigraphic drilling using clean diamond drilling techniques, targeted in accord with scientific priorities, could provide samples of unmatched quality across the most interesting stratigraphic intervals. Diamond drilling is a proven, inexpensive technology for accessing subsurface material. The time is ripe to use this technology to secure the materials needed for further advances. The Mission to Early Earth (MtEE) Focus Group of the NASA Astrobiology Institute is developing a case for the acquisition, curation and distribution of suitable samples, with a special focus on diamond drilling. A communal activity is envisioned, modeled after the Ocean Drilling Program but focussing on the Precambrian record. This poster will present information on MtEE, and plans for a pilot project developed as part of the Summer '01 MtEE excursion to W. Australia.

  1. The tectonic evolution of western Central Iran seen through detrital white mica

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann

    2015-05-01

    A first order survey of 40Ar/39Ar dating of detrital white mica from Jurassic to Pliocene sandstones has been carried out in order to reveal the tectonic evolution of blocks in Central Iran. The Central Iran block was believed to represent a stable Precambrian block. Our results indicate that: (1) Only a very small proportion of Precambrian but abundant Paleozoic and Mesozoic detrital white mica indicate the Phanerozoic, mostly Mesozoic age of metamorphic crust exposed in Central Iran. The oldest but scarce detrital white mica grains have ages ranging from 524 to 826 Ma heralding a Late Precambrian and Cambrian crystalline basement or cannibalism from older clastic successions. (2) Jurassic and Cretaceous sandstones from the west and east of the Chapedony fault yield different age spectra, with a dominance of Variscan ages (ca. 308-385 Ma) in the Biabanak unit west of the Chapedony fault compared to coeval sandstones from the block east of the Chapedony fault, where Variscan ages are subordinate and Cimmerian ages predominate. The micas from the Biabanak unit are most likely derived from the Variscan accretionary complex exposed in the Anarak-Jandaq areas further northwest. This result underlines the importance of a major block boundary identified as the Chapedony fault, which is in extension of a fault previously proposed. (3) Two stages of Cimmerian events are visible in our data set from Cretaceous and Paleogene sandstones, a cluster around 170 Ma and at ca. 205 Ma. These clusters suggest a two-stage Cimmerian evolution of the largely amphibolite-grade metamorphic Posht-e-Badam and Boneh Shurow complexes. (4) The youngest micas in Paleogene conglomerates have an age of ca. 100 Ma and are most likely derived from the base of the Posht-e-Badam complex. No record of the uplifted Eocene Chapedony metamorphic core complex has been found in Eocene and Pliocene clastic rocks.

  2. Prehospital severity scoring at major rock concert events.

    PubMed

    Erickson, T B; Koenigsberg, M; Bunney, E B; Schurgin, B; Levy, P; Willens, J; Tanner, L

    1997-01-01

    Rock and contemporary music concerts are popular, recurrent events requiring on-site medical staffing. To describe a novel severity score used to stratify the level of acuity of patients presenting to first-aid stations at these events. Retrospective review of charts generated at the first-aid stations of five major rock concerts within a 60,000 spectator capacity, outdoor, professional sports stadium. Participants included all concert patrons presenting to the stadium's first-aid stations as patients. Data were collected on patient demographics, history of drug or ethanol usage while at the concert event, first-aid station time, treatment rendered, diagnosis, and disposition. All patients evaluated were retrospectively assigned a "DRUG-ROCK" Injury Severity Score (DRISS) to stratify their level of acuity. Individual concert events and patient dispositions were compared statistically using chi-square, Fisher's exact, and the ANOVA Mean tests. Approximately 250,000 spectators attended the five concert events. First-aid stations evaluated 308 patients (utilization rate of 1.2 per 1,000 patrons). The most common diagnosis was minor trauma (130; 42%), followed in frequency by ethanol/illicit drug intoxication (98; 32%). The average time in the first-aid station was 23.5 +/- 22.5 minutes (+/- standard deviation; range: 5-150 minutes). Disposition of patients included 100 (32.5%) who were treated and released; 98 (32%) were transported by paramedics to emergency departments (EDs); and 110 (35.5%) signed-out against medical advise (AMA), refusing transport. The mean DRISS was 4.1 (+/- 2.65). Two-thirds (67%) of the study population were ranked as mild by DRISS criteria (score = 1-4), with 27% rated as moderate (score = 5-9), and 6% severe (score > 10). The average of severity scores was highest (6.5) for patients transported to hospitals, and statistically different from the scores of the average of the treated and released and AMA groups (p < 0.005). The DRISS was useful in stratifying the acuity level of this patient population. This severity score may serve as a potential triage mechanism for future mass gatherings such as rock concerts.

  3. Timing and rates of long-term landscape evolution in Southern Argentina

    NASA Astrophysics Data System (ADS)

    Kollenz, S.; Glasmacher, P. A.

    2013-12-01

    The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. North of the Sierras Septentrionales the Salado basin is located. The Sierras Septentrionales and the Sierras Australes are also divided by a smaller intracratonic basin. Further in the South the Colorado basin is located. The Sierras Australes is a variscian fold belt originated by strong phases of metamorphosis, but till now it is unclear by how many tectonic phases the area was influenced (Tomezzoli & Vilas, 1999). It consists of Proterozoic to Paleozoic rocks. The Sierras Septentrionales consists mainly of Precambrian crystalline rocks. The Precambrian sequences are overlain by younger Sediments (Cingolani, 2010). The aim is to understand the long-term landscape evolution of the area by quantifiying erosion- and exhumation-rates and by dating ancient rock-uplift-events. Another goal is to find out how the opening of the south atlantic took effect on this region. To fulfill this goal, thermochronological techniques, such as fission-track dating and (U-Th-Sm)/He dating has been applied to samples from the region. Because there was no low- temperature thermochronology done in this area, both techniques were applied on apatites and zircons. Furthermore, numerical modeling of the cooling history has provided the data base for the quantification of the exhumation rates. The data-set shows clusters of different ages which can be linked to tectonic activities during late Paleozoic times. Also the thermokinematic modeling is leading to new insights of the evolution of both mountain ranges and shows patterns of ongoing tectonic processes in this region. Caltculated exhumation rates show also varying cooling historys and the influence of tectonics throughout the research area. References: Renata Nela Tomezzoli and Juan Francisco Vilas (1999): Palaeomagnetic constraints on the age of deformation of the Sierras Australes thrust and fold belt, Argentina. Geophys. J. Int. (1999) 138, 857-870 Carlos A. Cingolani (2010): The Tandilia System of Argentina as a southern extension of the Rio de la Plata craton: an overview, Int. J. Earth. Sci. (Geol. Rundsch.) (2011) 100, 221-242

  4. Reconnaissance geologic study of the Vazante zinc district, Minas Gerais, Brazil

    USGS Publications Warehouse

    Thorman, Charles H.; Nahass, Samir

    1977-01-01

    The Vazante district, Minas Gerais, 130 km south of Paracatu, produces nearly all of Brazil's zinc metal. The district is situated on the western side of the Late Precambrian Bambul basin and along the eastern and leading edge of the north-trending Brazilian orogenic belt (ca. 600-500 m.y. old) that borders the western margin of the basin. Reconnaissance study indicates that bedding and low-angle thrust faulting, folding, and low-grade metamorphism dominated the structural development of the district. The structural trend within the district is northeasterly, and dips 20?-45 ? NW. Three sets of folds developed during the main period of eastward thrusting of older Precambrian rocks over the western margin of the Bambui basin. A fourth fold set is transverse to the regional trend. The rocks in the district are tentatively assigned to the Paraopeba Formation of the Bambui Group and are designated A through C in ascending order. Unit A is phyllite to phyllitic siltstone. Unit B consists of interbedded dolomitic limestone and marl-limestone. Irregularly distributed limestone ledges 20 to 100 m thick have the appearance of boudins. Their origin is attributed to a combination of rapid lateral facies changes and differential movement at different structural levels along bedding and low-angle thrust faults, with the formation of tear faults vertically limited by the thrust faults. Unit C consists of interbedded siltstone, dolomitic limestone, and sandstone. Phyllitic rocks along member interfaces in units B and C and at the base of unit C indicate differential penetrative deformation and bedding faulting. The contacts between units A, B, and C are interpreted to be low-angle or bedding faults, and their original stratigraphic positions with respect to each other is unknown. Zinc silicate minerals (hemimorphite and willemite) occur in a folded breccia zone in the lower part of unit B. The breccia zone is interpreted to be tectonic in origin, having formed along the step of a step-bedding-plane fault during the Brazilian orogeny. The zinc is probably syngenetic, and ore deposition in the breccia may have occurred during Brazilian time. Broad uplift and deep weathering of the region took place during late Mesozoic and Cenozoic time. Reserves may be as high as 3 million tons of zinc metal.

  5. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    NASA Astrophysics Data System (ADS)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this mineralization is hypogene. The association of oxidation with epithermal conditions constrains the oxidation and subsequent mineralization to have taken place during the Precambrian, the only time when these rocks would have experienced the necessary temperatures. The mineralization at Fayal Reserve shows little supergene overprint: pyrite is largely unoxidized. Hydrothermal oxidation in both mines was likely produced by basinal fluids that were expelled during the 1.83-1.87 Ga Penokean Orogeny, and mixing with meteoric fluids along faults, although a 1.1 Ga rift-related fluid flow event is also possible. Later supergene overprinting of the iron formation was minor.

  6. Influence of rock strength variations on interpretation of thermochronologic data

    NASA Astrophysics Data System (ADS)

    Flowers, Rebecca; Ehlers, Todd

    2017-04-01

    Low temperature thermochronologic datasets are the primary means for estimating the timing, magnitude, and rates of erosion over extended (10s to 100s of Ma) timescales. Typically, abrupt shifts in cooling rates recorded by thermochronologic data are interpreted as changes in erosion rates caused by shifts in uplift rates, drainage patterns, or climate. However, recent work shows that different rock types vary in strength and erodibility by as much as several orders of magnitude, therefore implying that lithology should be an important control on how landscapes change through time and the thermochronometer record of erosion histories. Attention in the surface processes community has begun to focus on rock strength as a critical control on short-term (Ka to Ma) landscape evolution, but there has been less consideration of the influence of this factor on landscapes over longer intervals. If intrinsic lithologic variability can strongly modify erosion rates without changes in external factors, this result would have important implications for how thermochronologic datasets are interpreted. Here we evaluate the importance of rock strength for interpreting thermochronologic datasets by examining erosion rates and total denudation magnitudes across sedimentary rock-crystalline basement rock interfaces. We particularly focus on the 'Great Unconformity', a global stratigraphic surface between Phanerozoic sedimentary rocks and Precambrian crystalline basement, which based on rock strength studies marks a dramatic rock erodibility contrast across which erosion rates should decelerate. In the Rocky Mountain basement uplifts of the western U.S., thermochronologic data and geologic observations indicate that erosion rates were high during latest Cretaceous-early Tertiary denudation of the sedimentary cover (3-4 km over 10 m.y., 300-400 m/m.y.) but dramatically decelerated when less erodible basement rocks were encountered (0.1-0.5 km over 55 m.y., 2-9 m/m.y.). Similarly, the western Canadian shield underwent multiple Phanerozoic episodes of substantial (1-4 km) sedimentary rock burial and erosion, but total Phanerozoic erosion of the crystalline basement below the Great Unconformity was no more than a few hundred meters. We use published low temperature thermochronologic dates, the LandLab landscape evolution model, and 1D thermokinematic and erosion (Pecube) models to assess whether the observed deceleration of erosion can be explained by measured variations in rock strength alone. We use these results to consider the extent to which rock strength can change the cooling history recorded by thermochronologic datasets.

  7. Structural terranes and their relationships in Sierra Leone

    NASA Astrophysics Data System (ADS)

    Williams, Howard R.; Culver, Stephen J.

    Sierra Leone, composed mainly of Archaean granite-greenstone terrane, is bounded in the west by a westward dipping zone of intense, ductile, simple shear deformation which produced very fine-grained, high grade rocks. This zone has been interpreted as a possible Archaean suture developed following the collision of the Guyana Shield and the West African Craton. Granulite facies metamorphic supracrustals of the Kasila Group occur to the west of the sheared zone. Marampa Group lower grade metamorphics were thrust eastwards during the collision event. Late Precambrian rifting, well to the east of the mylonite zone and subsequent compression, preserved very low grade to unmetamorphosed Rokel River Group sediments and volcanics. Limited Pan-African tectonic transport of Archaean and late Precambrian material was again toward the east. All structural and stratigraphic units can be traced northward into Guinea where they disappear beneath the Paleozoic sediments of the Bové Basin. To the south, the Kasila Group, the granite-greenstone terrane and the mylonitized zone can be traced into Liberia. The Gibi Mountain Formation of Liberia is probably laterally equivalent to the lower portions of the Rokel River Group. This interpretation of the geology of Sierra Leone differs greatly from that of Guinea where the mylonitized zone, associated with a positive gravity anomaly, has been interpreted as a suture zone resulting from Pan-African continent-continent collision.

  8. Two-mica granites of northeastern Nevada.

    USGS Publications Warehouse

    Lee, D.E.; Kistler, R.W.; Friedman, I.; Van Loenen, R. E.

    1981-01-01

    The field settings are described and analytical data are presented for six two-mica granites from NE Nevada. High delta 18O and 87Sr/86Sr values indicate that all are S-type granite, derived from continental crust. The major element chemistry and accessory mineral contents of these rocks also are characteristic of S-type granites. Chemical, X ray, and other data are presented for the micas recovered from these granites. The muscovites are notably high in Fe2O3, FeO, and MgO. Except for one hydrobiotite, each of the biotites has an MgO content near 6.0 wt%. Two different types of two-mica granites are recognized in the area of this study. One type is distinguished by the presence of many biotite euhedra within muscovite phenocrysts and by an unusual suite of accessory minerals completely devoid of opaque oxides. This type probably resulted from anatexis of late Precambrian argillites under conditions of relatively low oxygen fugacity, along a line that roughly coincides with the westward disappearance of continental basement. In the other textural type of two-mica granite the micas are equigranular and there is a greater variety of accessory minerals. The magmatic evolution of this type also appears to reflect the influence of late Precambrian argillites; there may be age differences between the two types of two-mica granites.-Author

  9. Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids

    NASA Astrophysics Data System (ADS)

    Purkamo, Lotta; Bomberg, Malin; Kietäväinen, Riikka; Salavirta, Heikki; Nyyssönen, Mari; Nuppunen-Puputti, Maija; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja

    2016-05-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.

  10. The keystone species of Precambrian deep bedrock biosphere belong to Burkholderiales and Clostridiales

    NASA Astrophysics Data System (ADS)

    Purkamo, L.; Bomberg, M.; Kietäväinen, R.; Salavirta, H.; Nyyssönen, M.; Nuppunen-Puputti, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M.

    2015-11-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180-2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related OTUs form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteraceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed the keystone genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found from oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found from other deep Precambrian terrestrial bedrock environments.

  11. Microbial Fossilization in Mineralizing Environments: Relevance for Mars "EXOPALEONTOLOGY"

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.; DesMarais, David J.; Morrison, David (Technical Monitor)

    1994-01-01

    The goals of post-Viking exobiology include the search for a Martian fossil record. How can we optimize future exploration efforts to search for fossils on Mars? The Precambrian fossil record indicates that key factors for the long-term preservation of microbial fossils include: 1) the rapid entombment and/or replacement of organisms and organic matter by fine-grained, stable mineral phases (e.g. silica, phosphate, and to a lesser extent, carbonate), 2) low-permeability host sediments (maintaining a closed chemical system during early diagenesis), and 3) shallow burial (maintaining post-depositional temperatures and pressures within the stability range for complex organic molecules). Modem terrestrial environments where early mineralization commonly occurs in association with microbial organisms include: subaerial thermal springs and shallow hydrothermal systems, sub-lacustrine springs and evaporites of alkaline lakes, and subsoil environments where hardpans (e.g. calcretes, silcretes) and duricrusts form. Studies of microbial fossilization in such environments provide important insights preservation patterns in Precambrian rocks, while also playing a role in the development of strategies for Mars exopaleontology. The refinement of site priorities for Mars exopaleontology is expected to benefit greatly from high resolution imaging and altimetry acquired during upcoming orbital missions, and especially infrared and gamma ray spectral data needed for determining surface composition. In anticipation of future orbital missions, constraints for identifying high priority mineral deposits on Mars are being developed through analog remote sensing studies of key mineralizing environments on Earth.

  12. Quantitative investigations of the Missouri gravity low: A possible expression of a large, Late Precambrian batholith intersecting the New Madrid seismic zone

    USGS Publications Warehouse

    Hildenbrand, T.G.; Griscom, A.; Van Schmus, W. R.; Stuart, W.D.

    1996-01-01

    Analysis of gravity and magnetic anomaly data helps characterize the geometry and physical properties of the source of the Missouri gravity low, an important cratonic feature of substantial width (about 125 km) and length (> 600 km). Filtered anomaly maps show that this prominent feature extends NW from the Reelfoot rift to the Midcontinent Rift System. Geologic reasoning and the simultaneous inversion of the gravity and magnetic data lead to an interpretation that the gravity anomaly reflects an upper crustal, 11-km-thick batholith with either near vertical or outward dipping boundaries. Considering the modeled characteristics of the batholith, structural fabric of Missouri, and relations of the batholith with plutons and regions of alteration, a tectonic model for the formation of the batholith is proposed. The model includes a mantle plume that heated the crust during Late Precambrian and melted portions of lower and middle crust, from which the low-density granitic rocks forming the batholith were partly derived. The batholith, called the Missouri batholith, may be currently related to the release of seismic energy in the New Madrid seismic zone (earthquake concentrations occur at the intersection of the Missouri batholith and the New Madrid seismic zone). Three qualitative mechanical models are suggested to explain this relationship with seismicity. Copyright 1996 by the American Geophysical Union.

  13. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  14. Geology and total petroleum systems of the Paradox Basin, Utah, Colorado, New Mexico, and Arizona

    USGS Publications Warehouse

    Whidden, Katherine J.; Lillis, Paul G.; Anna, Lawrence O.; Pearson, Krystal M.; Dubiel, Russell F.

    2014-01-01

    The most studied source intervals are the Pennsylvanian black shales that were deposited during relative high stands in an otherwise evaporitic basin. These black shales are the source for most of the discovered hydrocarbons in the Paradox Basin. A second oil type can be traced to either a Mississippian or Permian source rock to the west, and therefore requires long-distance migration to explain its presence in the basin. Upper Cretaceous continental to nearshore-marine sandstones are interbedded with coal beds that have recognized coalbed methane potential. Precambrian and Devonian TPSs are considered hypothetical, as both are known to have organic-rich intervals, but no discovered hydrocarbons have been definitively typed back to either of these units.

  15. Bedrock geology of the northern Columbia Plateau and adjacent areas

    NASA Technical Reports Server (NTRS)

    Swanson, D. A.; Wright, T. L.

    1978-01-01

    The Columbia Plateau is surrounded by a complex assemblage of highly deformed Precambrian to lower Tertiary continental and oceanic rocks that reflects numerous episodes of continental accretion. The plateau itself is comprised of the Columbia River basalt group formed between about 16.5 x 1 million years B.P. and 6 x 1 million years B.P. Eruptions were infrequent between about 14 and 6 x 1 million years B.P., allowing time for erosion and deformation between successive outpourings. The present-day courses of much of the Snake River, and parts of the Columbia River, across the plateau date from this time. Basalt produced during this waning activity is more heterogeneous chemically and isotopically than older flows, reflecting its prolonged period of volcanism.

  16. The mineral resource potential of the Wadi Habawnah and Najran quadrangles, sheets 17/44A and 17/44C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Fenton, Michael D.

    1983-01-01

    The metallic resource potential of the Wadi Habawnah and Najran quadrangles in the southern Precambrian Arabian Shield has been determined primarily by reconnaissance rock geochemistry, limited wadi-sediment and colluvium geochemistry, and gossanous and ferruginous outcrop geochemistry. These surveys were guided by geological information acquired during previous reconnaissance mapping. Locally anomalous areas in alkalic and calc-alkalic granitic terrane are possible sources of niobium-zirconiumthorium-fluorite, tin-tungsten, and copper-molybdenum, although the potential of these areas does not appear to be outstanding. The reconnaissance geochemistry of the layered volcanic terrane and the geochemistry of gossanous and ferruginous outcrops indicate that the potential for stratiform base metal sulfide deposits is low.

  17. Terrain classification and land hazard mapping in Kalsi-Chakrata area (Garhwal Himalaya), India

    NASA Astrophysics Data System (ADS)

    Choubey, Vishnu D.; Litoria, Pradeep K.

    Terrain classification and land system mapping of a part of the Garhwal Himalaya (India) have been used to provide a base map for land hazard evaluation, with special reference to landslides and other mass movements. The study was based on MSS images, aerial photographs and 1:50,000 scale maps, followed by detailed field-work. The area is composed of two groups of rocks: well exposed sedimentary Precambrian formations in the Himalayan Main Boundary Thrust Belt and the Tertiary molasse deposits of the Siwaliks. Major tectonic boundaries were taken as the natural boundaries of land systems. A physiographic terrain classification included slope category, forest cover, occurrence of landslides, seismicity and tectonic activity in the area.

  18. Madagascar: Heads It's a Continent, Tails It's an Island

    NASA Astrophysics Data System (ADS)

    de Wit, Maarten J.

    Neither geologists nor biologists have a definition that is capable of classifying Madagascar unambiguously as an island or a continent; nor can they incorporate Malagasy natural history into a single model rooted in Africa or Asia. Madagascar is a microcosm of the larger continents, with a rock record that spans more than 3000 million years (Ma), during which it has been united episodically with, and divorced from, Asian and African connections. This is reflected in its Precambrian history of deep crustal tectonics and a Phanerozoic history of biodiversity that fluctuated between cosmopolitanism and parochialism. Both vicariance and dispersal events over the past 90 Ma have blended a unique endemism on Madagascar, now in decline following rapid extinctions that started about 2000 years ago.

  19. A seismic survey of the Manson disturbed area

    NASA Technical Reports Server (NTRS)

    Sendlein, L. V. A.; Smith, T. A.

    1971-01-01

    The region in north-central Iowa referred to as the Manson disturbed area was investigated with the seismic refraction method and the bedrock configuration mapped. The area is approximately 30 km in diameter and is not detectable from the surface topography; however, water wells that penetrate the bedrock indicate that the bedrock is composed of disturbed Cretaceous sediments with a central region approximately 6 km in diameter composed of Precambrian crystalline rock. Seismic velocity differences between the overlying glacial till and the Cretaceous sediments were so small that a statistical program was developed to analyze the data. The program developed utilizes existing 2 segment regression analyses and extends the method to fit 3 or more regression lines to seismic data.

  20. Apollo 16 exploration of Descartes - A geologic summary.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Cayley Plains at the Apollo 16 landing site consist of crudely stratified breccias to a depth of at least 200 meters, overlain by a regolith 10 to 15 meters thick. Samples, photographs, and observations by the astronauts indicate that most of the rocks are impact breccias derived from an anorthosite-gabbro complex. The least brecciated members of the suite include coarse-grained anorthosite and finer-grained, more mafic rocks, some with igneous and some with metamorphic textures. Much of the transverse area is covered by ejecta from North Ray and South Ray craters, but the abundance of rock fragments increases to the south toward the younger South Ray crater.

  1. Possibility of heliotropical response from inclination of columnar stromatolites, Socheong island, Korea

    NASA Astrophysics Data System (ADS)

    KONG, Dal Yong; LEE, Seong Joo; Golubic, Stjepko

    2014-05-01

    Socheong island is a unique island containing Precambrian stromatolites in South Korea. Most of Socheong stromatolites are domes and columns, occurring as 10 cm to 1 meter thick stromatolite beds. Lower parts of stromatolite beds are predominantly composed of domal stromatolites, while columns increase toward the upper level of stromatolite beds. In many of stromatolite beds, inclined columns are easily identifiable, which is generally considered as a result of heliotropism. From general lithology, sedimentary structures, inclined angles and distributional pattern, and structural deformation of sedimentary rocks of Socheong island, the inclination of Socheong stromatolites could be better interpreted as a secondary structural deformation probably after formation of stromatolite columns, rather than as a result of heliotropism. However, at this moment, we do not clearly reject heliotropism interpretation for inclined columns of Socheong stromatolites. This is because the original position of stromatolite columns were also lost if structural deformation would have affected throughout the whole sedimentary rocks of Socheong island. [Acknowledgments] This research was financially supported by the National Research Institute of Cultural Heritage.

  2. National uranium resource evaluation: Newark Quadrangle, Pennsylvania and New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popper, G.H.P.; Martin, T.S.

    1982-04-01

    The Newark Quadrangle, Pennsylvania and New Jersey, was evaluated to a depth of 1500 m to identify geologic environments and delineate areas favorable for uranium deposits. Criteria used were those developed for the National Uranium Resource Evaluation program. Results of the investigation indicate that the Precambrian Reading Prong contains environments favorable for anatectic and allogenic uranium deposits. Two suites of rocks are favorable for anatectic-type concentrations: An alaskite-magnetite-gneiss association, and red granite and quartz monzonite. Allogenic uranium concentrations occur in rocks of the marble-skarn-serpentinite association. Environments favorable for peneconcordant sandstone-type uranium deposits occur in the upper one-third of the Catskillmore » Formation, the Mississippian-Pennsylvanian Mauch Chunk-Pottsville transition beds, and the upper half of the Triassic Stockton Formation. The Triassic Lockatong Formation contains environments favorable for carbonaceous shale-type uranium concentrations. The Ordovician Epler Formation and the Cretaceous-Tertiary strata of the Coastal Plain were not evaluated due to time restrictions and lack of outcroup. All other geologic environments are considered unfavorable for uranium deposits.« less

  3. Index of surface-water records, part 12, Pacific slope basins in Washington and upper Columbia River basin, to September 30, 1948

    USGS Publications Warehouse

    ,

    1949-01-01

    The groundwater resources of Wood County, Wisconsin, are described. Groundwater is pumped only from wells drilled in Precambrian rock in the northern two-thirds of the county. The generally low permeability of this rock limits the availability of groundwater in this area. Saturated deposits of sand and gravel yield more than 500 gal/min to wells in the southern part of the county. Background groundwater quality and indicators of groundwater-quality problems, such as elevated concentrations of nitrate, chloride, hardness, and iron, are compared by aquifer for the entire county. An elevated concentration of iron is the major water quality problem in the county. Results of water quality analysis from observation wells drilled next to abandoned landfills throughout the county indicate that groundwater in the immediate vicinity of these landfills has been affected by leachate. The report includes maps of the thickness and saturated thickness of unconsolidated deposits, a water-table map, and tables of aquifer-production and well-production data from about 1,500 drillers ' well-construction reports. (USGS)

  4. Some thorium prospects, Lemhi Pass area, Beaverhead County, Montana

    USGS Publications Warehouse

    Armstrong, Frank C.

    1955-01-01

    The Last Chance group> Brown Bear and Shady Tree claims in Beaverhead County, Mont., were explored for thorium under a Defense Minerals Exploration Administration Contract in 1951 and 1952. The project was undertaken to explore northwest-trending moderately to steep dipping, thorite-bearing quartz-barite-hematite veins. The veins are wall-rock replacements and fissure fillings in faults and shears that cut rocks of the Precambrian Belt series. Recurrent movement along the faults has intense fractured the veins. Quartz iron-oxide minerals, and thorite have been deposited in these fractures. The iron oxides and thorite are intimately associated and were among the last minerals deposited. Because no rare earth or uranium minerals have been found in the veins, it is thought that the small amounts of these elements reported in the analyses must substitute for thorium in the thorite. Under the D. M. E. A. contract the Last Chance vein was traced on surface for a distance of about 1,300 feet; the thickness ranges from about 35 feet to a few inches. Two diamond drill holes cut the vein 240 and 290 feet below the outcrop.

  5. Geology of the fushun coalfield, Liaoning Province, People's Republic of China

    USGS Publications Warehouse

    Johnson, E.A.

    1990-01-01

    The Fushun coalfield is located in Liaoning Province 45 km east of Shenyang in a relatively small east-west-trending exposure of Mesozoic and Cenozoic rocks surrounded by Precambrian terrane. The coal is included in a sequence of early Tertiary rocks consisting of Paleocene basalt and tuff, and Eocene coal, oil shale and mudstone. These units have been folded into a syncline that plunges gently to the east. The overturned north limb of this fold has been partly removed by a thrust fault. The principal coal beds are low-sulfur subbituminous and bituminous in rank, are of limnic origin, and are contained in the 55-m-thick Eocene Guchengzi Formation. The field, which has been active since the turn of the century, has both open pit and underground mines. The largest operation is the West Open Pit mine, which measures 2.0 km wide, 6.6 km long, and 300 m deep. Coal is mined by means of power shovels, trucks, and an electric rail system. Oil shale from the Eocene Jijuntun Formation is also mined. ?? 1990.

  6. Precambrian organic geochemistry - Preservation of the record

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Wedeking, K. W.; Kaplan, I. R.

    1983-01-01

    A review of earlier studies is presented, and new results in Precambrian organic geochemistry are discussed. It is pointed out that two lines of evidence can be developed. One is based on structural organic chemistry, while the other is based on isotopic analyses. In the present investigation, the results of both structural and isotopic investigations of Precambrian organic matter are discussed. Processes and products related to organic geochemistry are examined, taking into account the carbon cycle, an approximate view of the principal pathways of carbon cycling associated with organic matter in the present global ecosystem, processes affecting sedimentary organic matter, and distribution and types of organic matter. Attention is given to chemical fossils in Precambrian sediments, kerogen analyses, the determination of the structural characteristics of kerogen, and data concerning the preservation of the Precambrian organic geochemical record.

  7. An analysis of gravity data in Area 12, Nevada Test Site

    USGS Publications Warehouse

    Wahl, R.R.

    1969-01-01

    The gravity data available from Healey and Miller (1963a) were augmented by new observations along three profiles through two new drill holes in Area 12; UEI2t #1 and UEI2p #1. The data were interpreted to allow evaluation of the geologic structure prior to the planning and excavation of two proposed tunnel complexes, Ul2t and Ul2p. Density values for each of six rock units were determined to allow a two-dimensional analysis of the gravity data along the above-mentioned profiles. The surficial rocks of Quaternary and Tertiary age and the Tertiary volcanic rocks have a weighted average density of 1.86 gm/cc. The density of the caprock at Rainier and Aqueduct Mesas ranges from 2.17 gm/cc at UEI2p #1 to 2.27 gm/cc at UEI2t #1. The Gold Meadows stock and the associated Precambrian quartzite have an arithmetic average density of 2.60 gm/cc for all samples measured. The middle Paleozoic dolomite in Area 12 has an arithmetic average density of 2.75 gm/cc. The clastic rocks of Paleozoic age have an arithmetic average density of 2.60 gm/cc. Interpretation of the residual gravity data indicates a maximum thickness of about 2,800 feet for all Tertiary volcanic rocks. A normal fault striking N. 30 ? E. disrupts the pre-Cenozoic surface at UEI2p #1 and 0.4 mile east of UEI2t #1. The throw within rock of Paleozoic age is about 400-500 feet. Another normal fault that strikes about N. 20 ? E. is located about 1.5 miles east of UEI2p #1. The throw of this fault is at least 1,100 feet in rocks of pre-Cenozoic age. Elevation contours representing the pre-Cenozoic surface in Area 12 show a maximum relief of about 2,000 feet.

  8. Enigmatic organosiliceous rocks in the 2000 Ma petrified oil field in Russian Fennoscandia

    NASA Astrophysics Data System (ADS)

    Deines, Yu.; Melezhik, V.; Lepland, A.; Filippov, M.; Romashkin, A.; Rychanchik, D.

    2009-04-01

    The c. 2000 Ma, 900 m-thick, Zaonezhskaja Formation in the Onega basin, Russian Fennoscandia, contains one of the greatest accumulations of organic matter (OM) in the Early Precambrian. It also represents a unique preservation of a supergiant petrified oil field. Zaonezhskaja Formation rocks are greenschist-facies volcaniclastic greywackes (distal turbidites), dolostone and limestones, mafic tuffs and lavas intruded by numerous mafic sills. Several sedimentary beds are enriched in OM with the overall content of total organic carbon (TOC) ranging from 0.1 to 16 wt.% whereas d13C varies between -44 and -17 per mil(V-PDB). The formation contains plentiful evidence of generation and migration of oil (now petrified) as well as oil traps. Results of geophysical surveys combined with drillcore data, including results recently obtained within the framework of the Fennoscandian Arctic Russia - Drilling Early Earth Project (FAR-DEEP), revealed numerous bodies of organosiliceous rocks (OSR) containing mainly silica (c. 57 wt.% SiO2), organic carbon (up to 40 wt.%), Al2O3 (c. 5 wt.%), S (c. 2 wt.%), and minor K, Mg, Fe, Ca and Ti. d13C of the OSR ranges between -40 and -20 per mil. The OSR form crudely stratified beds, cupola-like bodies or veins. The cupola-like bodies show cross-cutting (intrusive) contacts with the host turbiditic greywackes, reach thicknesses of 120 m with a lateral extent of several hundreds of metres. Veins are a few tens of centimetres thick. The OSR show close spatial association with gabbro sills. Although different fabrics have been recognised in the OSR, syngenetic macro- and microbreccias per se are the most common rock types. Fragments of different sedimentary rocks, as well as those with alternating C-rich and C-poor concentric lamina are present. The latter suggests precipitation from hydrothermal fluids. The nature of the OSR remains enigmatic. Several models have been advanced for explanation of origin of the OSR. However, neither of them could explain the source, and joint transport of two major components, namely silica and OM. We propose a model involving a hydrothermal system initiated by heat produced during the emplacement of numerous mafic intrusive bodies. Such heat may have created the necessary temperature gradient for earlier oil generation, thermal oil to gas cracking, and initiation of shallow-seated, sub-surface, hydrothermal circulation. The proposed result would have been the mingling of silica leached from mafic rocks with hydrocarbon, and gas (primarily CO2, CH4) extracted from the host sedimentary rocks. Such a gas-rich C-Si-H2O substance would have migrated into permeable beds. A high sedimentation rate, as expected in many turbiditic depositional environments, would have produced a high lithostatic pressure on to unlithified beds during the course of the basin subsidence. This would have forced gas-rich C-Si-H2O fluids that moved either laterally along permeable beds or vertically along zones of weakness. In the first case, sediments 'impregnated' with gas-rich C-Si-H2O fluids would have formed stratigraphic beds of OSR, whereas in the second case the result would been crosscutting veins. Beds may retain some primary layering, whereas veins do not. If veins reached the seafloor, the sediment - C-Si-H2O mush would have extruded in the form of a mud volcano / hydrothermal mound, and thus formed a cupola-like morphology. During the course of compression, the sediment - C-Si-H2O mush might have experienced several stages of partial lithification, as well as fluidisation processes leading to the formation of several generations of micro- and macro-brecciated rocks. The large d13C range of reduced carbon in the OSR suggests a complex maturation process of the biogenic OM. Further detailed microstructural, geochemical, isotopic and biomarker studies are planned for distinguishing between biological and abiological processes involved in the formation of the enigmatic OSR.

  9. Reconstruction of multiple P-T-t stages from retrogressed mafic rocks: Subduction versus collision in the Southern Brasília orogen (SE Brazil)

    NASA Astrophysics Data System (ADS)

    Tedeschi, Mahyra; Lanari, Pierre; Rubatto, Daniela; Pedrosa-Soares, Antônio; Hermann, Jörg; Dussin, Ivo; Pinheiro, Marco Aurélio P.; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2017-12-01

    The identification of markers of subduction zones in orogenic belts requires the estimation of paleo-geothermal gradients through pressure-temperature-time (P-T-t) estimates in mafic rocks that potentially derive from former oceanic units once. However, such markers are rare in supracrustal sequences specially in deeply eroded and weathered Precambrian orogens, and reconstructing their metamorphic history is challenging because they are commonly retrogressed and only preserve a few mineral relicts of high-pressure metamorphism. Metamorphosed mafic rocks from Pouso Alegre region of the Neoproterozoic Southern Brasília Orogen outcrop as rare lenses within continental gneisses. They have previously been classified as retrograde eclogites, based on the presence of garnet and the characteristic symplectitic texture replacing omphacite. These rocks were interpreted to mark the suture zone between the Paranapanema and São Francisco cratons. To test the possible record of eclogitic conditions in the Pouso Alegre mafic rocks, samples including the surrounding felsic rocks have been investigated using quantitative compositional mapping, forward thermodynamic modeling and in-situ dating of accessory minerals to refine their P-T-t history. In the metamorphosed mafic rocks, the peak pressure assemblage of garnet and omphacite (Jd20, reconstructed composition) formed at 690 ± 35 °C and 13.5 ± 3.0 kbar, whereas local retrogression into symplectite or corona occurred at 595 ± 25 °C and 4.8 ± 1.5 kbar. The two reactions were coupled and thus took place at the same time. A zircon U-Pb age of 603 ± 7 Ma was obtained for metamorphic rims and linked to the retrogression stage. Monazite and metamorphic zircon U-Th-Pb ages for the surrounding rocks are at ca. 630 Ma and linked to peak pressure conditions similar to the one recorded by the mafic rocks. The low maximal pressure of 14 kbar and the high geothermal gradient do not necessarily support subduction process-related metamorphism but, more likely, metamorphism related to continental collision.

  10. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    NASA Astrophysics Data System (ADS)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane, are late Cretaceous metamorphic supracrustal rocks.

  11. 40Ar/ 39Ar and paleomagnetic results from Liberia and the Precambrian APW data base for the West African Shield

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Dorbor, J.

    Lower amphibolite to granulite facies metamorphic rocks in Nimba County, Liberia have yielded 2.2-2.9 Ga RbSr whole rock ages, indicating that they are part of the Archean Liberian age province. We report a 2040 Ma 4040Ar/ 39Ar plateau date on hornblende from an amphibolite in this region, and suggest that these rocks were also severelyreworked during the Eburnean (˜2.0 Ga) metamorphic episode. 40Ar/ 39Ar analyses of biotite and feldspars from neighboring schists also indicate the presence of two mild thermal events, at 1.5 Ga and 0.6 Ga. Paleomagnetic analyses of samples from these same metamorphic rocks reveal three components of magnetization. The predominant and most stable component (273°E, 21°N) is considered to have been acquired as a result of pos Eburnean uplift and cooling at ˜ 2.0 Ga, whereas the two less stable components with poles at 235°E, 43°N and 16°E, 36°N, probably correlate with the 1.5 Ga and 0.6 Ga thermal pulses, respectively. Rock units from southern Liberia also yield two secondary magnetizations, one at 247°E, 37°N and the other at 104°E, 5°N, and a 1.5 Ga 40Ar/ 39Ar date on plagioclase. Comparison of the paleomagnetic poles corresponding to the ˜2.0 Ga Eburnean component with published paleomagnetic data for West Africa is not consistent with prior interpretations of the polar wander path for West Africa. Our paleomagnetic data, when compared to poles of comparable age from the Kalahari Shield, still suggest that some form of displacement has occurred between the Kalahari and West African Shields since 2.0 Ga.

  12. Geological and geochemical investigations of uranium occurrences in the Arrastre Lake area of the Medicine Bow Mountains, Wyoming

    USGS Publications Warehouse

    Miller, W. Roger; Houston, R.S.; Karlstrom, K.E.; Hopkins, D.M.; Ficklin, W.H.

    1977-01-01

    Metasedimentary rocks of Precambrian X age in and near the Snowy Range wilderness study area of southeastern Wyoming are lithologically and chronologically similar to those on the north shore of Lake Huron in Canada. The rocks in Canada contain major deposits of uranium in quartz-pebble conglomerates near the base of the metasedimentary sequence. Similar conglomerates in the Deep Lake Formation in the Medicine Bow Mountains of southeastern Wyoming are slightly radioactive and may contain deposits of uranium and other valuable heavy metals. During the summer of 1976, a geological and geochemical pilot study was conducted in the vicinity of Arrastre Lake in the Medicine Bow Mountains to determine the most effective exploration methods for evaluating the uranium potential of the Snowy Range wilderness study area. The area around Arrastre Lake was selected because of the presence of a radioactive lens within a quartz-pebble conglomerate of the Deep Lake Formation. The results of the survey indicate possible uranium mineralization in the subsurface rocks of this formation. The radon content of the dilute waters of the area is much higher than can be accounted for by the uranium content of the surface rocks. Two sources for the high content of the radon are possible. In either case, the high values of radon obtained in this study are a positive indication of uranium mineralization in the subsurface rocks. The determination of the radon content of water samples is the recommended geochemical technique for uranium exploration in the area. The determination of uranium in water and in organic-rich bog material is also recommended.

  13. Geology of the Copper King Mine area, Prairie Divide, Larimer County, Colorado (Part 1)

    USGS Publications Warehouse

    Sims, Paul Kibler; Phair, George

    1952-01-01

    The Copper King mine, in Larimer County, Colo., in the northern part of the Front Range of Colorado, was operated for a short time prior to World War II for copper and zino, but since 1949, when pitchblende was discovered on the mine dump, it has been worked for uranium. The bedrock in the mine area consists predominantly of pre-Cambrian (Silver Plums) granite with minor migmatite and metasediments--biotite-quartz-plagioclase gneiss, biotite schist, quartzite, amphibolite, amphibole skarn, and biotite skols. The metasediments occur as inclusions that trend northeast in the granite. This trend is essentially parallel to the prevailing foliation in the granite. At places the metasediments are crosscut sharply by the granite to form angular, partly discordant, steep-walled bodies in the granite. Faults, confined to a narrow zone that extends through the mine, cut both the pre-Cambrian rocks and the contained sulfide deposits. The Copper King fault, a breccia zone, contains a deposit of pitchblende; the other faults are believed to be later than the ore. The two types of mineral deposits--massive sulfide and pitchblende deposits--in the mine area, are of widely different mineralogy, age, and origin. The massive sulfide deposits are small and consist of pyrite, sphalerite, chalcopyrite, pyrrhotite, and in places magnetite in amphibole skarn, mice skols, and quartzite. The deposit at the Copper King mine has yielded small quantities of high-grade sphalerite ore. The massive sulfides are pyrometasomatic deposits of pre-Cambrian age. The pitchblende at the Copper King mine is principally in the Copper King vein, a tight, hard breccia zone that cuts through both granite and the massive sulfide deposit. A small part of the pitchblende is in small fractures near the vein and in boxwork pyrite adjacent to the vein; the post-ore faults, close to their intersection with the Copper King vein, contain some radioactive material, but elsewhere, so far as is known, they are barren. The pitchblende in the deposit forms a steeply plunging ore shoot that has a horizontal length of more than 50 feet and a vertical height of about 85 feet. The thickness of the ore shoot averages about 2 feet, but it ranges from a feather edge to about 4 feet. The hard pitch-blende is intimately intergrown with siderite; other gangue minerals include pyrite, quartz, and finely comminuted fragments of the wall rocks. The vein was repeatedly reopened during mineral deposition as shown by several stages of brecciation and recommended by the vein matter. The pitchblende deposit probably formed at intermediate temperatures and depths and, according to the Pb/U ratio, is about 60 million years old--an early Tertiary age.

  14. Tidal control on gas flux from the Precambrian continental bedrock revealed by gas monitoring at the Outokumpu Deep Drill Hole, Finland

    NASA Astrophysics Data System (ADS)

    Kietäväinen, Riikka; Ahonen, Lasse; Wiersberg, Thomas; Korhonen, Kimmo; Pullinen, Arto

    2017-04-01

    Deep groundwaters within Precambrian shields are characteristically enriched in non-atmospheric gases. High concentrations of methane are frequently observed especially in graphite bearing metasedimentary rocks and accumulation of hydrogen and noble gases due to water-rock interaction and radioactive decay within the U, Th and K containing bedrock takes place. These gases can migrate not only through fractures and faults, but also through tunnels and boreholes, thereby potentially mobilizing hazardous compounds for example from underground nuclear waste repositories. Better understanding on fluid migration may also provide tools to monitor changes in bedrock properties such as fracture density or deterioration and failure of engineered barriers. In order to study gas migration mechanisms and variations with time, we conducted a gas monitoring campaign in eastern Finland within the Precambrian Fennoscandian Shield. At the study site, the Outokumpu Deep Drill Hole (2516 m), spontaneous bubbling of gases at the well head has been on-going since the drilling was completed in 2005, i.e. over a decade. The drill hole is open below 39 m. In the experiment an inflatable packer was placed 15 cm above the water table inside the collar (Ø 32.4 cm), gas from below the packer was collected and the gas flow in the pipe line carefully assisted by pumping (130 ml/min). Composition of gas was monitored on-line for one month using a quadrupole mass spectrometer (QMS) with measurement interval of one minute. Changes in the hydraulic head and in situ temperature were simultaneously recorded with two pressure sensors which were placed 1 m apart from each other below the packer such that they remained above and below the water table. In addition, data was compared with atmospheric pressure data and theoretical effect of Earth tides at the study site. Methane was the dominant gas emanating from the bedrock, however, relative gas composition fluctuated with time. Subsurface derived gases i.e. methane, hydrogen and helium peaked at the same time and temperature within the drill hole remained constant indicating that solubility fractionation could be ruled out. The longest frequency phenomenon of ca. 14 days and daily variation in gas composition which occurred in periods of approximately 12 and 24 hours were clearly correlated with the Earth tides, i.e. dilatation and contraction of the Earth due to gravitational fields of the Moon and Sun such that the non-atmospheric gases peaked during tidal gravitation minima. Earth tides were also reflected in the hydraulic head which, unlike gas composition, closely followed changes in the atmospheric pressure. Thus, dilatation of bedrock porosity and fractures can be more clearly seen in the gas data than changes in the hydraulic head or water table.

  15. Geology and fluorspar deposits, Northgate district, Colorado

    USGS Publications Warehouse

    Steven, Thomas A.

    1960-01-01

    The fluorspar deposits in the Northgate district, Jackson County, Colo., are among the largest in Western United States. The mines were operated intermittently during the 1920's and again during World War II, but production during these early periods of operation was not large. Mining was begun on a larger scale in 1951, and the district has assumed a prominent position among the fluorspar producers in the United States. Within the Northgate district, Precambrian metamorphic and igneous rocks crop out largely in the Medicine Bow Mountains, and later sedimentary rocks underlie North Park and fill old stream valleys in the mountains. The metamorphic rocks constitute a gneiss complex that formed under progressively changing conditions of regional metamorphism. They consist principally of hornblende-plagioclase gneiss (hornblende gneiss), quartz monzonite gneiss, pegmatite, biotite-garnet-quartz-plagioclase gneiss (biotite-garnet gneiss), hornblende-biotite-quartz-plagioclase gneiss (hornblende-biotite gneiss) and mylonite gneiss. The igneous rocks comprise some local fine-grained dacite porphyry dikes near the west margin of the district, and a quartz monzonitic stock and associated dikes in the central and eastern parts of the district. The sedimentary rocks in the district range in age from Permian to Recent. Folded Permian and Mesozoic rocks underlie the basin of North Park, and consist in sequence from oldest to youngest, of Satanka(?) shale (0-50 feet of brick-red shale) and Forelle(?) limestone (8-15 feet of pink to light-gray laminated limestone) of Permian age, Chugwater formation of Permian and Triassic age (690 feet of red silty shale and sandstone), Sundance formation of Late Jurassic age (145 feet of sandstone containing some shale and limestone), Morrison formation of Late Jurassic age (445 feet of variegated shale and minor sandstone and limestone), Dakota group as used by Lee (1927), now considered to be of Early Cretaceous age in this area (200-320 feet of pebbly sandstone, sandstone, and shale), Ben ton shale of Early and Late Cretaceous age (665 feet of dark-gray thin-bedded shale), Niobrara formation of Late Cretaceous age (865 feet of yellow to gray limy siltstone and shale), and Pierre shale of Late Cretaceous age (more than 60 feet of dark-gray fissile shale). Unconformities separate the Chugwater and Sundance formations, and the Morrison formation and the Dakota group.Nonmarine strata of the White River formation of Oligocene age and the North Park formation of Miocene and Pliocene (?) age fill Tertiary valleys cut in the Precambrian rocks of the mountain areas, and Quaternary terrace gravel, alluvium, and dune sand mantle much of the floor of North Park. The main outlines of the modern Rocky Mountains formed during the Laramide orogeny in late Mesozoic and early Tertiary time. Most of the Laramide structures that can be recognized in the Northgate district involve the sedimentary rocks underlying North Park which are folded into northwest-trending anticlines and synclines. The folds are open and in most the beds dip 60° or less. Yet many anticlines are cut by reverse faults of widely different trends and directions of offset. Transverse faults offset some of the folds, and the character of folding commonly is markedly different on opposing sides of these faults. The North Park basin is cut off on the north by the east-trending Independence Mountain fault, a north-dipping reverse fault along which hard Precambrian rocks have been thrust up across the trend of the earlier Laramide structures. The North Park basin is still a major structure where it is interrupted by the Independence Mountain fault, and the original basin must have extended much farther north. Disrupted gradients at the base of pre-White River valleys suggest that the Northgate district and adjacent areas may have been deformed in middle Tertiary time, but the evidence is not conclusive. A more definite period of deformation took place in Pliocene time following deposition of the North Park formation. North Park strata in south-central North Park were folded into a northwest-trending syncline, and the central part of the Northgate district probably was warped up along a north- or northwestward-trending axis. Four north- to northwestward-trending faults cut the Precambrian rocks and White River formation on Pinkham Mountain and the area to the southeast. Similar faults 2½ and 15 miles west of the Northgate district cut rocks of the North Park formation, and all probably formed during the Pliocene period of deformation. The known commercial fluorspar deposits are localized along the two larger faults of the Northgate district, and they have been studied in detail. The White River formation in early Oligocene time covered a hilly terrain drained by southward-flowing streams. By late Miocene, the northward-flowing streams had cut to about the same levels reached by the pre-White River streams and had partly exhumed and modified the older terrain. During late Miocene and early Pliocene (?) time, the Northgate area was buried beneath the clays, sands, and gravels of the North Park formation. Subsequent erosion removed the higher part of the North Park formation, cut a surface of low relief across the exhumed Precambrian rocks, and removed all topographic evidence of the Pliocene period of deformation. The present courses of the major streams were superimposed across the buried terrains during this period of erosion. Rejuvenation during middle Pleistocene caused all major streams to become incised in sharp canyons. Copper minerals occur in small concentrations in some of the pegmatite masses in the gneiss complex. The copper-rich masses rarely exceed a few feet in diameter and constitute only a small part of the associated pegmatite body.Vermiculite is exposed in prospect pits and mine workings along the west margin of the Northgate district. All the venniculite that was seen is associated with small masses of horablendite, massive chlorite, or serpentinite where these masses are near or are cut by pegmatite bodies. Some of the deposits may be potential producers of commercial-grade vermiculite, but most are small and erratic in shape or grade.Fluorspar is the main mineral commodity that has been produced from the Northgate district. It was deposited during two distinct periods of mineralization, but only the younger deposits have been productive. Small bodies of silicified breccia containing minor coarsely crystalline fluorite occur along the Independence Mountain fault, and in a few places along other Laramide faults. The fluorspar is an integral part of the fault breccia and apparently was deposited while the enclosing fault was still active. The largest deposits of fluorspar in the Northgate district occur along the late Tertiary (?) faults on Pinkham Mountain. The fluorspar consists typically of botryoidal layers that formed as successive encrustations along open fractures, or as finely granular aggregates replacing and cementing fault gouge and White River formation. Many incompletely filled cavities, called water courses, still exist. Fluorite is the principal vein material; fragments of country rock constitute the chief impurity although finely granular quartz or chalcedony is common locally. Soft powdery manganese oxide coats many fractures and in places is associated with a fine white clay. Fluorspar was deposited in or adjacent to open spaces along the late Tertiary (?) faults. Fractures in hard granitic rocks tended to remain open after faulting and were the favored sites for fluorspar deposition; fractures in the less competent hornblende and hornblende-biotite gneiss and schist generally were tight and little fluorspar was deposited. The White River rocks, although soft, were permeable and were widely impregnated or replaced by fluorspar. Both of the main vein zones are along faults that have predominant rightlateral strike-slip displacement. As they theoretically should be, the vein zones are narrower and contain less fluorspar where the containing fault is deflected to the left than where the fault is deflected to the right and the fractures remained open. The crustified, vuggy structure of the fluorspar and the common association with chalcedony or finely granular quartz suggest deposition in a very shallow environment, but no direct evidence bearing on the depth at which the fluorspar formed was seen. Fluorspar was deposited throughout a vertical range of 600 feet or more on each of the main vein zones, and for a vertical range of 1,050 feet for the district as a whole. None of the deposits had been bottomed at the time this report was prepared. Exploration at depth beneath known ore bodies is favorable for developing large tonnages of fluorspar. The best possibilities for finding new ore bodies near the surface are along the northwestern and southeastern parts of the Fluorine-Camp Creek vein zone where large bodies of granitic rocks are intersected by the fault. These areas are generally mantled by a thick overburden, and have been inadequately tested so far.

  16. Geology of the Powder River Basin, Wyoming and Montana, with reference to subsurface disposal of radioactive wastes

    USGS Publications Warehouse

    Beikman, Helen M.

    1962-01-01

    The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier, Belle Fourche, Cody, Lewis, and Pierre Formations, occur in rocks of Cretaceous age in the Basin. Limited storage space for liquid waste might be developed in impermeable shale by fracturing the shale and space for calcined or fused waste could be developed by mining cavities.

  17. Ground gamma-ray spectrometric studies of El-Sahu area, southwestern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Abdrabboh, Ahmad M.

    2017-12-01

    Based on the previous airborne gamma-ray spectrometric study carried out in southwestern Sinai area, El Sahu area was selected for detail ground gamma-ray spectrometric survey. This area is considered as a good target for radioactive mineral exploration. The study area is exposed in a Paleozoic basin covered by different rocks (ranging from Precambrian to Quaternary). The ground gamma-ray spectrometric survey has been conducted along the study area through random survey. The resultant gamma-ray spectrometric maps show different levels of radioactivity over the studied area, which reflect contrasting radioelement contents for the exposed various rock types. The studied area possesses total count ranging from 2.6 to 326 Ur, 0.1 to 2.8% K, 1.7 to 316 ppm eU and 0.9 to 47.5 ppm eTh. The highest uranium concentrations are located in the northern and southern parts of El Sahu area. They are mainly associated with Um Bogma Formation occurrences. Uranium ratio maps (eU/K and eU/eTh) as well as ternary maps show sharp increase of eU content over both potassium and thorium contents associated with the ENE and NNW trends in Um Bogma Formation, indicating an increase in the U-potentiality than the surrounding rocks. This indicates that the mineralization in the study area may be structurally-controlled.

  18. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    PubMed

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values < 1, and many post-shut-in earthquakes, versus ( ii ) shallower earthquakes in Paleozoic rocks ∼400 m below HF, with smaller magnitudes (M < 1), b-values > 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  19. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values < 1, and many post–shut-in earthquakes, versus (ii) shallower earthquakes in Paleozoic rocks ˜400 m below HF, with smaller magnitudes (M < 1), b-values > 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  20. Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: Evidence from Sm-Nd isotopes and rare earth elements

    USGS Publications Warehouse

    Stille, P.; Tatsumoto, M.

    1985-01-01

    Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475??81 Ma for the hornblendefelses, 1,018??59 Ma for the plagioclase amphibolites and 1,071??43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial e{open}Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material. ?? 1985 Springer-Verlag.

  1. Results of paleomagnetic study of Early Proterozoic rocks in the Baikal Range of the Siberian craton

    NASA Astrophysics Data System (ADS)

    Vodovozov, V. Yu.; Didenko, A. N.; Gladkochub, D. P.; Mazukabzov, A. M.; Donskaya, T. V.

    2007-10-01

    This paper presents paleomagnetic results obtained from the study of Early Proterozoic rocks in the Baikal Range of the Siberian craton, namely, the 1850 1880-Ma volcanicalstic rocks of the Akitkanskian series of the North Baikal volcanic-plutonic belt) and 1674-Ma basic dikes of the Chaya complex within the massif. The data of this work are used to reconstruct the development of the Siberian craton structure in the Early Precambrian. The projections of the inferred paleomagnetic directions onto a sphere form S (southern) and W (western) groups of vectors of characteristic magnetization components. The S group consists of three clusters representing primary magnetization components belonging to different time levels of the end of the Early Proterozoic. The W group is represented by directions associated with a metachronous magnetization probably acquired during the Riphean. Four paleomagnetic poles are obtained. Two of them that can be regarded as key poles correspond to time levels of 1875 and 1670 Ma (the Early Proterozoic). The two other poles can be used for a detailed reconstruction of the Proterozoic segment of the Siberian apparent polar wander path. The data presented in the paper indicate that the formation of the southern Siberian craton structure was accomplished at the end of the Early Proterozoic, which resulted in a synchronous motion of different blocks composing the southern flank of the craton (in particular, the Sharyzhalgai and Baikal Ranges).

  2. Geology of five small Australian impact craters

    USGS Publications Warehouse

    Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.

    2005-01-01

    Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowlshaped, Barringer-type craters, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters. ?? Geological Society of Australia.

  3. Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: Evidence from Sm-Nd isotopes and rare earth elements

    NASA Astrophysics Data System (ADS)

    Stille, P.; Tatsumoto, M.

    1985-04-01

    Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475±81 Ma for the hornblendefelses, 1,018±59 Ma for the plagioclase amphibolites and 1,071±43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial ɛ Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material.

  4. Precambrian-Cambrian provenance of Matinde Formation, Karoo Supergroup, northwestern Mozambique, constrained from detrital zircon U-Pb age and Lu-Hf isotope data

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Jelinek, Andrea Ritter; Philipp, Ruy Paulo; de Carvalho Lana, Cristiano; Alkmim, Ana Ramalho

    2018-02-01

    The Permian-Triassic time interval was a period of high sedimentation rates in the intracontinental Karoo rift basin of northwestern Mozambique, reflecting high exhumation rates in the surrounding high ground Precambrian-Cambrian basement and juxtaposed nappes. U-Pb LA-MC-ICPMS dating and Lu-Hf isotopic analysis of detrital zircons from the Late Permian-Early Triassic Matinde Formation of the Karoo Supergroup is used as a reliable proxy to map denudation patterns of source regions. Data allow discrimination of U-Pb age populations of ca. 1250-900 Ma, a secondary population between ca. 900-700 and a major contribution of ages around ca. 700-490 Ma. Zircon grains of the Mesoproterozoic age population present Mesoproterozoic (1000-1500 Ma) to Paleoproterozoic (1800-2300 Ma) Hf TDM ages, with positive (0 to +11) and negative εHf values (-3 to -15), respectively. The younger U-Pb age population also presents two different groups of zircon grains according to Lu-Hf isotopes. The first group comprise Paleoproterozoic (1800-2300 Ma) ages, with highly negative εHf values, between -10 and -22, and the second group exhibits Mesoproterozoic ages (1200-1500 Ma), with increased juvenile εHf values (ca. 0 to -5). These Hf isotopes reinforce the presence of unexposed ancient crust in this region. The oldest U-Pb age population resembles the late stages of Grenville Orogeny and the Rodinia Supercontinent geotectonic activity mostly represented by magmatic rocks, which are widely present in the basement of northern Mozambique. The juvenile Hf-isotope signature with an older age component is associated to rocks generated from subduction processes with crust assimilation by continental arcs, which we correlate to rocks of the Nampula Complex, south and east of the Moatize-Minjova Basin. The U-Pb ages between 900 and 700 Ma were correlated to the calc-alkaline magmatism registered in the Guro Suite, related to the breakup phase of Rodinia, and mark the western limit of the Moatize-Minjova rift basin together with the Mungari Nappe and Chacocoma Granite, also probable sources. The εHf-isotopic signature (ca. -23 to 0) with Meso- and Paleoproterozoic Hf model ages of these zircons suggest assimilation of older crust by the Guro Suite continental arc. The Late Neoproterozoic - Cambrian U-Pb ages (ca. 700-490 Ma) comprise the wide interval of high-grade metamorphism, klippen and plutonism related to the Pan-African Orogeny. Hf-isotope pattern indicate high remelting of the older Mesoproterozoic and Paleoproterozoic crust. These ages correspond to magmatic and granulite metamorphic ages of the Monapo and Mugeba klippen, Nampula Complex and Guro Suite/Mungari Nappe/Chacocoma Granite rocks. The data suggests that these units were main source areas for the sediments of the Matinde Formation. The main Cambrian ages are related to the late stages of Pan-African Orogeny, marked by crustal delamination in NE Mozambique that was responsible for an extensive crustal partial melting associated to high-grade granulitic metamorphism and generation of large granitic plutons. The Nampula Complex was probably a large geotectonic entity in the Late Mesoproterozoic and reworked during the Pan-African Orogeny. This evidence, added to the N-NW paleoflow of the Proto-Zambezi river and provenance data, suggests that the Nampula Complex, Guro Suite and its juxtaposed nappes formed a high ground source area for fluvial sediments that fills the Moatize-Minjova Basin. Permian-Triassic rifting in northern Mozambique was induced by far-field stresses transferred from Gondwana margins. This stress disrupted the Nampula Complex reactivating Precambrian structures and fabrics, while the Jurassic-Cretaceous breakup of Gondwana and latter landscape evolution led to its actual morphology and configuration.

  5. Geology of the Aspen 15-minute quadrangle, Pitkin and Gunnison counties, Colorado

    USGS Publications Warehouse

    Bryant, Bruce

    1979-01-01

    The Aspen area, located 170 km southwest of Denver, Colo., lies at the intersection of the northeast-trending Colorado mineral belt and the west margin of the north-trending Sawatch uplift of Laramide age; it is within the southwest part of the northwest-trending late Paleozoic Eagle basin. Precambrian shales and graywackes, perhaps as old as 2 billion years (b.y.), were converted to sillimanite-bearing gneiss and muscovite-biotite schist 1.65-1.70 b.y. ago. They were deformed into northeast-plunging folds and were migmatized, and they were intruded by quartz diorite, porphyritic quartz monzonite, and granite. Muscovite-biotite quartz monzonite intruded this older Precambrian terrane about 1.45 b.y. ago and is the predominant Precambrian rock near Aspen. Uplift, some faulting, and much erosion occurred during the 900-million year (m.y.) interval between emplacement of the plutonic rocks and deposition of Upper Cambrian sediments. From Late Cambrian through Mississippian the region was part of a broad area alternately covered by shallow seas or occupied by low-lying land. Quartzite, dolomite, and limestone 200-320 m thick, comprising the Sawatch Quartzite and Peerless Formation (Cambrian), Manitou Dolomite (Ordovician), Chaffee Group (Mississippian(?) and Devonian), and Leadville Limestone (Mississippian) were deposited during this interval. After an hiatus during which soil formation and solution of the Leadville Limestone took place in the Late Mississippian, a thick sequence of marine and nonmarine clastic rocks was deposited in the newly developing Eagle basin during the late Paleozoic and early Mesozoic. Deposition of about 300 m of carbonaceous shale, limestone, dolomite, and minor siltstone and evaporite of the Belden Formation began in a shallow sea in Early and Middle Pennsylvanian time. Facies relations indicate that the northwest-trending Uncompahgre uplift southwest of Aspen, if present at that time, had very low relief. The overlying Middle Pennsylvanian Gothic Formation of Langenheim (1952) contains calcareous sandstone, siltstone, shale, limestone, and evaporite. Its clastic debris, significantly coarser than that in the Belden, signals the initial rise of the Uncompahgre uplift bordering the Eagle basin on the southwest; the Gothic here lacks the conglomerates and fossiliferous marine limestones found closer to the uplift. Red terrigenous clastic rocks and minor limestone and evaporite of the Maroon Formation as much as 3,200 m thick, deposited mainly in a fluvial flood-plain environment during the rest of the Pennsylvanian and the Early Permian, indicate withdrawal of the sea caused by further uplift of the Uncompahgre highland. Following an hiatus accompanied by local folding, the red conglomerate, sandstone, and siltstone of the State Bridge Formation (Late Permian and Early Triassic) was deposited in a fluvial-lacustrine environment adjacent to a much-expanded Uncompahgre uplift; a significant part of the State Bridge is material recycled from the Maroon Formation exposed to erosion on the flank of the uplift. The State Bridge, absent towards the south, becomes thicker and finer grained towards the north. The Chinle Formation (Late Triassic) rests with angular unconformity on the State Bridge Formation. The Chinle contains a basal discontinuous quartz-pebble conglomerate (Gartra Member) and is chiefly calcareous siltstone and limestone, with some beds of sandstone and conglomerate composed of fragments derived from the limestone beds. The Chinle was deposited on flood plains and in lakes by streams. Storms may have disrupted the sediments in the lakes producing the limestone pebble conglomerates. The lack of feldspar in the Chinle indicates that the nearby part of the Uncompahgre uplift was not a sediment source, or was covered by a deeply weathered feldspar-free mantle. The formation, absent towards the south, thickens toward the north. Thicknesses of the Maroon, State Bridge, and Ch

  6. Strain partitioning in the footwall of the Somiedo Nappe: structural evolution of the Narcea Tectonic Window, NW Spain

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Alonso, Gabriel

    1996-10-01

    The Somiedo Nappe is a major thrust unit in the Cantabrian Zone, the external foreland fold and thrust belt of the North Iberian Variscan orogen. Exposed at the Narcea Tectonic Window are Precambrian rocks below the basal decollement of the Somiedo Nappe, which exhibit a different deformation style than the overlying Paleozoic rocks above the basal decollement. During Variscan deformation, folding and widespread subhorizontal, bedding-parallel decollements were produced in the hanging wall within the Paleozoic rocks. Vertical folding, with related axial-planar cleavage at a high angle to the decollement planes, developed simultaneously in the upper Proterozoic Narcea Slates of the footwall, below the detachment. The relative magnitude of finite strain, measured in the footwall rocks, diminishes towards the foreland. These observations indicate that (1) significant deformation may occur in the footwall of foreland fold and thrust belts, (2) the shortening mechanism in the footwall may be different from that of the hanging wall, and (3) in this particular case, the partitioning of the deformation implies the existence of a deeper, blind decollement surface contemporaneous with the first stages of the foreland development, that does not crop out in the region. This implies a significant shortening in the footwall, which must be taken into account when restoration and balancing of cross-sections is attempted. A sequential diagram of the evolution of the Narcea Tectonic Window with a minimum shortening of 85 km is proposed, explaining the complete Variscan evolution of the foreland to hinterland transition in the North Iberian Variscan orogen.

  7. A spatial database of bedding attitudes to accompany Geologic Map of Boulder-Fort Collins-Greeley Area, Colorado

    USGS Publications Warehouse

    Colton, Roger B.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude data displayed over the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 (U.S.Geological Survey Map I-855-G) under the Front Range Urban Corridor Geology Program. Colton used his own mapping and published geologic maps having varied map unit schemes to compile one map with a uniform classification of geologic units. The resulting published color paper map was intended for planning for use of land in the Front Range Urban Corridor. In 1997-1999, under the USGS Front Range Infrastructure Resources Project, Colton's map was digitized to provide data at 1:100,000 scale to address urban growth issues(see cross-reference). In general, the west part of the map shows a variety of Precambrian igneous and metamorphic rocks, major faults and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The eastern and central part of the map (Colorado Piedmont) depicts a mantle of Quaternary unconsolidated deposits and interspersed Cretaceous or Tertiary-Cretaceous sedimentary rock outcrops. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone and shale formations (and sparse limestone) form hogbacks, intervening valleys, and in range-front folds, anticlines, and fault blocks. Localized dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.

  8. Geologic map of the Fittstown 7.5΄ quadrangle, Pontotoc and Johnston Counties, Oklahoma

    USGS Publications Warehouse

    Lidke, David J.; Blome, Charles D.

    2017-01-09

    This 1:24,000-scale geologic map includes new geologic mapping as well as compilation and revision of previous geologic maps in the area. Field investigations were carried out during 2009–2011 that included mapping and investigations of the geology and hydrology of the Chickasaw National Recreation Area, Oklahoma, west of the map area.The Fittstown quadrangle is in Pontotoc and Johnston Counties in south-central Oklahoma, which is in the northeastern part of the Arbuckle Mountains. The Arbuckle Mountains are composed of a thick sequence of Paleozoic sedimentary rocks that overlie Lower Cambrian and Precambrian igneous rocks; these latter rocks are not exposed in the quadrangle. From Middle to Late Pennsylvanian time, the Arbuckle Mountains region was folded, faulted, and uplifted. Periods of erosion followed these Pennsylvanian mountain-building events, beveling this region and ultimately developing the current subtle topography that includes hills and incised uplands. The southern and northwestern parts of the Fittstown quadrangle are directly underlain by Lower Ordovician dolomite of the Arbuckle Group that has eroded to form an extensive, stream-incised upland containing the broad, gently southeast-plunging, Pennsylvanian-age Hunton anticline. The northeastern part of the map area is underlain by Middle Ordovician to Pennsylvanian limestone, shale, and sandstone units that predominantly dip northeast and form the northeastern limb of the Hunton anticline; this limb is cut by steeply dipping, northwest-southeast striking faults of the Franks fault zone. This limb and the Franks fault zone define the southwestern margin of the Franks graben, which is underlain by Pennsylvanian rocks in the northeast part of the map area.

  9. Aeromagnetic Survey of the Amargosa Desert, Nevada and California: A Tool for Understanding Near-Surface Geology and Hydrology

    USGS Publications Warehouse

    Blakely, Richard J.; Langenheim, V.E.; Ponce, David A.; Dixon, Gary L.

    2000-01-01

    A high-resolution aeromagnetic survey of the Amargosa Desert and surrounding areas provides insights into the buried geology of this structurally complex region. The survey covers an area of approximately 7,700 km2 (2,970 mi2), extending from Beatty, Nevada, to south of Shoshone, California, and includes parts of the Nevada Test Site and Death Valley National Park. Aeromagnetic flight lines were oriented east-west, spaced 400 m (0.25 mi) apart, and flown at an altitude of 150 m (500 ft) above terrain, or as low as permitted by safety considerations. Characteristic magnetic anomalies occur over volcanic terranes, such as Yucca Mountain and the Greenwater Range, and over Proterozoic basement rocks, such as Bare Mountain and the Black Mountains. Linear magnetic anomalies caused by offsets of volcanic rocks permit detailed mapping of shallow faults in volcanic terranes. Of particular interest are subtle anomalies that overlie alluvial deposits at Devils Hole and Pahrump Valley. Alignments of springs along magnetic anomalies at these locales suggest that these anomalies are caused by faults that cut the alluvium, displace magnetic rocks at depth, and eventually influence ground-water flow. Linear magnetic anomalies over the Funeral Mountains appear to coincide with a prominent set of north-northeast-striking faults that cut the Precambrian Stirling Quartzite, rocks that are typically nonmagnetic. The position and orientation of these anomalies with respect to springs north of Furnace Creek suggest that the faults may act as conduits for the flow of water from the north into Death Valley, but the mineralogical cause of the anomalies is unknown.

  10. Limiting depth of magnetization in cratonic lithosphere

    NASA Technical Reports Server (NTRS)

    Toft, Paul B.; Haggerty, Stephen E.

    1988-01-01

    Values of magnetic susceptibility and natural remanent magnetization (NRM) of clino-pyroxene-garnet-plagioclase granulite facies lower crustal xenoliths from a kimberlite in west Africa are correlated to bulk geochemistry and specific gravity. Thermomagnetic and alternating-field demagnetization analyses identify magnetite (Mt) and native iron as the dominant magnetic phases (totaling not more than 0.1 vol pct of the rocks) along with subsidiary sulfides. Oxidation states of the granulites are not greater than MW, observed Mt occurs as rims on coarse (about 1 micron) Fe particles, and inferred single domain-pseudosingle domain Mt may be a result of oxidation of fine-grained Fe. The deepest limit of lithospheric ferromagnetism is 95 km, but a limit of 70 km is most reasonable for the West African Craton and for modeling Magsat anomalies over exposed Precambrian shields.

  11. Volcanology and mineral deposits

    USGS Publications Warehouse

    Lipman, P.W.

    1990-01-01

    In contrast, old volcanic regions, which host many of the world's major hydrothermal-vein, porphyry, and massive-sulfide ore deposits, have been studied mainly by economic geologists, regional stratigraphers, and structural geologists who have limited familiarity with the complexities of volcanic processes. Such "dead" volcanoes, ranging in age from a few million million years (tertiary) to a few billion years (Precambrian), are commonly incompletely and discontinuously preserved due to rapid erosion of originally high-standing volcanic edifices. They can be difficult to date reliably, especially in terms of the time scales of individual volcanic events, and are variably hydrothermally altered-impeding high-resolution petrologic and geochemical studies. Many volcanologists, geochemists, and geophysicists who work on active volcanoes accordingly have been reluctant to become involved in studies of such less tractable rocks. 

  12. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-05-25

    ISS013-E-26488 (25 May 2006) --- Yates Oilfield, west Texas is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. The Permian Basin of west Texas and southeastern New Mexico is one of the most productive petroleum provinces of North America. The Basin is a large depression in the Precambrian bedrock surface along the southern edge of the North American craton, or oldest bedrock core of the continent. The Yates Oil Field is marked in this image by numerous white well locations and petroleum infrastructure dotting the layered sedimentary rocks of the Permian Basin. The Pecos River bed borders the oil field to the east-northeast. The Yates Field started petroleum production in 1926, and by 1995 had produced over 2 billion barrels of oil.

  13. Geophysical ore guides along the Colorado mineral belt

    USGS Publications Warehouse

    Case, James E.

    1967-01-01

    A 40-50-mgal gravity low trends northeast along the Colorado mineral belt between Monarch Pass and Breckenridge, Colorado. The low is probably caused by a silicic Tertiary batholith of lower density than adjacent Precambrian crystalline rocks. Many major mining districts associated with silicic Tertiary intrusives are near the axis of the low. Positive and negative aeromagnetic anomalies are present over the larger silicic Tertiary intrusive bodies. A good correlation exists between the magnetic lows and zones of altered, mineralized porphyry. Apparently, original magnetite in the silicic porphyries has been altered to relatively nonmagnetic pyrite or iron oxides. The regional gravity low aids in defining the limits of the mineral belt, and the magnetic lows over the porphyries indicate specific alteration zones and the possibility of associated mineral deposits.

  14. Analysis of ERTS imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.

    1972-01-01

    The author has identified the following significant results. The Wyoming ERTS investigation has been hindered only slightly by incomplete ERTS data sets and lack of coverage. Efforts to map cultural development, vegetation distributions, and various geomorphologic features are underway. Tectonic analysis of the Rock Springs area has isolated two linear features that may be very significant with regard to the regional structure of central Wyoming. Studies of the fracture systems of the Wind River Mountains are being completed. The fracture map, constructed from ERTS-1 interpretations, contains a great deal of structural information which was previously unavailable. Mapping of the Precambrian metasedimentary and metavolcanic terrain of the Granite Mountains is nearing completion, and interpretation of ERTS supporting aircraft data has revealed deposits of iron formation.

  15. Secular trends in the geologic record and the supercontinent cycle

    USGS Publications Warehouse

    Bradley, Dwight C.

    2011-01-01

    Geologic secular trends are used to refine the timetable of supercontinent assembly, tenure, and breakup. The analysis rests on what is meant by the term supercontinent, which here is defined broadly as a grouping of formerly dispersed continents. To avoid the artificial pitfall of an all-or-nothing definition, quantitative measures of “supercontinentality” are presented: the number of continents, and the area of the largest continent, which both can be gleaned from global paleogeographic maps for the Phanerozoic. For the secular trends approach to be viable in the deep past when the very existence of supercontinents is debatable and reconstructions are fraught with problems, it must first be calibrated in the Phanerozoic against the well-constrained Pangea supercontinent cycle. The most informative geologic variables covering both the Phanerozoic and Precambrian are the abundances of passive margins and of detrital zircons. Both fluctuated with size of the largest continent during the Pangea supercontinent cycle and can be quantified back to the Neoarchean. The tenure of Pangea was a time represented in the rock record by few zircons and few passive margins. Thus, previously documented minima in the abundance of detrital zircons (and orogenic granites) during the Precambrian (Condie et al., 2009a, Gondwana Research 15, 228–242) now can be more confidently interpreted as marking the tenures of supercontinents. The occurrences of carbonatites, granulites, eclogites, and greenstone-belt deformation events also appear to bear the imprint of Precambrian supercontinent cyclicity. Together, these secular records are consistent with the following scenario. The Neoarchean continental assemblies of Superia and Sclavia broke up at ca. 2300 and ca. 2090 Ma, respectively. Some of their fragments collided to form Nuna by about 1750 Ma; Nuna then grew by lateral accretion of juvenile arcs during the Mesoproterozoic, and was involved in a series of collisions at ca. 1000 Ma to form Rodinia. Rodinia broke up in stages from ca. 1000 to ca. 520 Ma. Before Rodinia had completely come apart, some of its pieces had already been reassembled in a new configuration, Gondwana, which was completed by 530 Ma. Gondwana later collided with Laurentia, Baltica, and Siberia to form Pangea by about 300 Ma. Breakup of Pangea began at about 180 Ma (Early Jurassic) and continues today. In the suggested scenario, no supercontinent cycle in Earth history corresponded to the ideal, in which all the continents were gathered together, then broke apart, then reassembled in a new configuration. Nuna and Gondwana ended their tenures not by breakup but by collision and name change; Rodinia's assembly overlapped in time with its disassembly; and Pangea spalled Tethyan microcontinents throughout much of its tenure. Many other secular trends show a weak or uneven imprint of the supercontinent cycle, no imprint at all. Instead, these secular trends together reveal aspects of the shifting background against which the supercontinents came and went, making each cycle unique. Global heat production declined; plate tectonics sped up through the Proterozoic and slowed down through the Phanerozoic; the atmosphere and oceans became oxidized; life emerged as a major geochemical agent; some rock types went extinct or nearly so (BIF, massif-type anorthosite, komatiite); and other rock types came into existence or became common (blueschists, bioclastic limestone, coal).

  16. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and K-feldspars with reaction rims in weathered basement. The sub-Cambrian paleoweathering profiles formed on granite are remarkably similar to modern weathering profiles formed on granite, in spite of overprinting by potassium diagenesis. ?? 2007 by The University of Chicago. All rights reserved.

  17. Petrogenesis of granodiorite in the Balong region, eastern Kunlun Orogen, China: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Huang, X.; Li, H.; Wang, Y.; Liu, Y.

    2017-12-01

    Numerous granitoid intrusions that close to the Balong region have great scientific significance to reveal tectonic evolution and geodynamic background of eastern Kunlun Orogen (EKO). Balong granodiorite (BLG) is located at the northern of the EKO. It generally emplaced into the Proterozoic to Lower Palaeozoic rocks and contains abundant mafic microgranular enclaves. LA-ICP-MS zircon U-Pb dating of the BLG gives a 206Pb/238U age of 230.7±1.9 Ma, indicating that it was emplaced in the Late Triassic. The BLG is high-K calc-alkaline series and metaluminous, with SiO2 of 59.86 61.83%, K2O+Na2O of 5.98 6.40%, CaO of 4.95 5.77% and P2O5 of 0.14% 0.18%. The granodioritic rocks are enriched in LILE (Ba, Rb, Sr), but depleted in HFSE (Nb, Ta, P, Ti), with weak negative Eu anomalies (δEu=0.70 0.82). Mineralogy and geochemistry of the rocks show an affinity to I-type granite. The BLG, having (87Sr/86Sr)i ratios of 0.70819 to 0.70832, ɛNd(t) values of -5.27 to -5.75, and zircon ɛHf(t) values ranging from -3.86 to -1.34. The whole-rock Nd isotopic model ages (1432 1471 Ma) and zircon Hf isotopic model ages (1205 1357 Ma) indicate that the BLG is generated by partial melting of lower crust (Precambrian metabasaltic basement rocks) with different degree of involvement of mantle material. Combined with regional geological data, the granodiorite was derived from dehydration melting of mafic lower crustal rocks during the subduction of the Anyemaqen ocean lithosphere at Late Permian-Triassic in a subduction setting. Basaltic magma underplating and crust-mantle mixing are main mechanisms for the origin of large-scale I-type granitoid in Balong.

  18. Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modeling

    NASA Astrophysics Data System (ADS)

    Kern, H.; Mengel, K.; Strauss, K. W.; Ivankina, T. I.; Nikitin, A. N.; Kukkonen, I. T.

    2009-07-01

    The Outokumpu scientific deep drill hole intersects a 2500 m deep Precambrian crustal section comprising a 1300 m thick biotite-gneiss series (mica schists) at top, followed by a 200 m thick meta-ophiolite sequence, underlain again by biotite gneisses (mica schists) (500 m thick) with intercalations of amphibolite and meta-pegmatoids (pegmatitic granite). From 2000 m downward the dominating rock types are meta-pegmatoids (pegmatitic granite). Average isotropic intrinsic P- and S-wave velocities and densities of rocks were calculated on the basis of the volume fraction of the constituent minerals and their single crystal properties for 29 core samples covering the depth range 198-2491 m. The modal composition of the rocks is obtained from bulk rock (XRF) and mineral chemistry (microprobe), using least squares fitting. Laboratory seismic measurements on 13 selected samples representing the main lithologies revealed strong anisotropy of P- and S-wave velocities and shear wave splitting. Seismic anisotropy is strongly related to foliation and is, in particular, an important property of the biotite gneisses, which dominate the upper and lower gneiss series. At in situ conditions, velocity anisotropy is largely caused by oriented microcracks, which are not completely closed at the pressures corresponding to the relatively shallow depth drilled by the borehole, in addition to crystallographic preferred orientation (CPO) of the phyllosilicates. The contribution of CPO to bulk anisotropy is confirmed by 3D velocity calculations based on neutron diffraction texture measurements. For vertical incidence of the wave train, the in situ velocities derived from the lab measurements are significantly lower than the measured and calculated intrinsic velocities. The experimental results give evidence that the strong reflective nature of the ophiolite-derived rock assemblages is largely affected by oriented microcracks and preferred crystallographic orientation of major minerals, in addition to the lithologic control.

  19. Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostratigraphy

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.; Sovetov, Iu. K.

    1976-01-01

    Silicified specimens of the Vendian (late Precambrian) 'index fossil' Conophyton gaubitza from South Kazakstan contain a diverse assemblage of well-preserved cyanophytic and apparently eukaryotic algae, the first stromatolitic microbiota to be reported from the Soviet Union. Unlike the stromatolites in which they occur, the microorganisms that apparently built this form of Conophyton did not become extinct at the end of the Precambrian.

  20. Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Walker, R. J.

    2006-12-01

    The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly, however, the high-precision initial Os isotopic compositions of the majority of ultramafic systems show strikingly uniform initial ^{187}Os/^{188}Os ratios, consistent with their derivation from sources that had Os isotopic evolution trajectory very similar to that of carbonaceous chondrites. In addition, the Os isotopic evolution trajectories of the mantle sources for most komatiites show resolvably lower average Re/Os than that estimated for the Primitive Upper Mantle (PUM), yet significantly higher than that obtained in some estimates for the modern convecting upper mantle, as determined via analyses of abyssal peridotites. One possibility is that most of the komatiites sample mantle sources that are unique relative to the sources of abyssal peridotites and MORB. Previous arguments that komatiites originate via large extents of partial melting of relatively deep upper mantle, or even lower mantle materials could, therefore, implicate a source that is different from the convecting upper mantle. If so, this source is remarkably uniform in its long-term Re/Os, and it shows moderate depletion in Re relative to the PUM. Alternatively, if the komatiites are generated within the convective upper mantle through relatively large extents of partial melting, they may provide a better estimate of the Os isotopic composition of the convective upper mantle than that obtained via analyses of MORB, abyssal peridotites and ophiolites.

  1. Tectonic setting and metallogenesis of volcanogenic massive sulfide deposits in the Bonnifield Mining District, Northern Alaska Range: Chapter B in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Aleinikoff, John N.; Premo, Wayne R.; Paradis, Suzanne; Lohr-Schmidt, Ilana; Gough, Larry P.; Day, Warren C.

    2007-01-01

    This paper summarizes the results of field and laboratory investigations, including whole-rock geochemistry and radiogenic isotopes, of outcrop and drill core samples from volcanogenic massive sulfide (VMS) deposits and associated metaigneous rocks in the Wood River area of the Bonnifield mining district, northern Alaska Range (see fig. 1 of Editors’ Preface and Overview). U-Pb zircon igneous crystallization ages from felsic rocks indicate a prolonged period of Late Devonian to Early Mississippian (373±3 to 357±4 million years before present, or Ma) magmatism. This magmatism occurred in a basinal setting along the ancient Pacific margin of North America. The siliceous and carbonaceous compositions of metasedimentary rocks, Precambrian model ages based on U-Pb dating of zircon and neodymium ages, and for some units, radiogenic neodymium isotopic compositions and whole-rock trace-element ratios similar to those of continental crust are evidence for this setting. Red Mountain (also known as Dry Creek) and WTF, two of the largest VMS deposits, are hosted in peralkaline metarhyolite of the Mystic Creek Member of the Totatlanika Schist. The Mystic Creek Member is distinctive in having high concentrations of high-field-strength elements (HFSE) and rare-earth elements (REE), indicative of formation in a within-plate (extensional) setting. Mystic Creek metarhyolite is associated with alkalic, within-plate basalt of the Chute Creek Member; neodymium isotopic data indicate an enriched mantle component for both members of this bimodal (rhyolite-basalt) suite. Anderson Mountain, the other significant VMS deposit, is hosted by the Wood River assemblage. Metaigneous rocks in the Wood River assemblage span a wide compositional range, including andesitic rocks, which are characteristic of arc volcanism. Our data suggest that the Mystic Creek Member likely formed in an extensional, back-arc basin that was associated with an outboard continental-margin volcanic arc that included rocks of the Wood River assemblage. We suggest that elevated HFSE and REE trace-element contents of metavolcanic rocks, whose major-element composition may have been altered, are an important prospecting tool for rocks of VMS deposit potential in east-central Alaska.

  2. Application of shuttle imaging radar to geologic mapping

    NASA Technical Reports Server (NTRS)

    Labotka, T. C.

    1986-01-01

    Images from the Shuttle Imaging Radar - B (SIR-B) experiment covering the area of the Panamint Mountains, Death Valley, California, were examined in the field and in the laboratory to determine their usefulness as aids for geologic mapping. The covered area includes the region around Wildrose Canyon where rocks ranging in age from Precambrian to Cenozoic form a moderately rugged portion of the Panamint Mountains, including sharp ridges, broad alluviated upland valleys, and fault-bounded grabens. The results of the study indicate that the available SIR-B images of this area primarily illustrate variations in topography, except in the broadly alluviated areas of Panamint Valley and Death Valley where deposits of differing reflectivity can be recognized. Within the mountainous portion of the region, three textures can be discerned, each representing a different mode of topographic expression related to the erosion characteristics of the underlying bedrock. Regions of Precambrian bedrock have smooth slopes and sharp ridges with a low density of gullies. Tertiary monolithologic breccias have smooth, steep slopes with an intermediate density of gullies with rounded ridges. Tertiary fanglomerates have steep rugged slopes with numerous steep-sided gullies and knife-sharp ridges. The three topographic types reflect the consistancy and relative susceptibility to erosion of the bedrock; the three types can readily be recognized on topographic maps. At present, it has not been possible to distinguish on the SIR-B image of the mountainous terrain the type of bedrock, independent of the topographic expression.

  3. The morphology and nature of the East Arctic ocean acoustic basement

    NASA Astrophysics Data System (ADS)

    Rekant, Pavel

    2017-04-01

    As the result of the thorough interpretation and cross-correlation of the large seismic dataset (>150000 km and >600 seismic lines), the depth structure map of the acoustic basement was constrained. Tectonic framework, basement surface morphology and linkage of the deep basin structures with shelves ones, was significantly clarified based on the map. It becomes clear that most morphostructures presently located within deep-water basin are tectonically connected with shelf structures. Acoustic basement contains a number of pre-Cambrian, Caledonian and Mesozoic consolidated blocks. The basement heterogeneity is highlighted by faults framework and basement surface morphology differences, as well thickness and stratigraphy of the sediment cover. The deepest basins of the East Arctic - Hanna Trough, North Chukchi and Podvodnikov Basins form a united mega-depression, wedged between pre-Cambrian continental blocks (Chukchi Borderland - Mendeleev Rise - Toll Saddle) from the north and the Caledonian deformation front from the south. The basement age/origin speculations are consistent with paleontological and U-Pb zircon ages from dredged rock samples. Most of morphological boundaries in the modern Arctic differ considerably from the tectonic framework. Only part of the Arctic morphostructures is constrained by tectonic boundaries. They are: eastern slope of the Lomonosov Ridge, continental slope in the Laptev Sea, upper continental slope in the Podvodnikov Basin, southern slope of the North Chukchi Basin and borders of the Chukchi Borderland. The rest significant part of modern morphological boundaries are caused by sedimentation processes.

  4. Should the "Grenville Front" in the Central U.S. be Erased from Geologic Maps?

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S.; Elling, R. P.; Keller, G. R.; Kley, J.

    2017-12-01

    Two prominent Precambrian geologic features of central North America are the Midcontinent Rift (MCR) and Grenville Front. The MCR, an extensive band of buried igneous and sedimentary rocks that outcrop near Lake Superior, records a major rifting event at 1.1 Ga that failed to split North America. In Canada, the Grenville Front is the landward extent of deformation of the fold and thrust belt from the Grenville orogeny, the sequence of events from ca. 1.3-0.98 Ga culminating in the assembly of the supercontinent of Rodinia. In the central United States, lineated gravity anomalies extending southward along the trend of the front in Canada have been interpreted as a buried Grenville Front. However, we argue that these anomalies delineate the eastern arm of the MCR extending from Michigan to Alabama, for multiple reasons. First, gravity anomalies along this trend are similar to those along the remainder of the MCR, and quite different from those across the Grenville Front in Canada. Second, the Precambrian deformation observed on seismic reflection profiles cannot confidently be assigned to the Grenville orogeny and deformation is recorded at least 100 km west of the "front". Third, during the Grenville orogeny deformational events from Texas to Canada were not synchronous or caused by the same plate interactions. Hence the commonly-inferred position of the "Grenville Front" in the east-central United States is part of the Midcontinent Rift, and should not be mapped as a separate entity.

  5. A geological synthesis of the Precambrian shield in Madagascar

    USGS Publications Warehouse

    Tucker, Robert D.; Roig, J.Y.; Moine, B.; Delor, C.; Peters, S.G.

    2014-01-01

    Available U–Pb geochronology of the Precambrian shield of Madagascar is summarized and integrated into a synthesis of the region’s geological history. The shield is described in terms of six geodynamic domains, from northeast to southwest, the Bemarivo, Antongil–Masora, Antananarivo, Ikalamavony, Androyan–Anosyan, and Vohibory domains. Each domain is defined by distinctive suites of metaigneous rocks and metasedimentary groups, and a unique history of Archean (∼2.5 Ga) and Proterozoic (∼1.0 Ga, ∼0.80 Ga, and ∼0.55 Ga) reworking. Superimposed within and across these domains are scores of Neoproterozoic granitic stocks and batholiths as well as kilometer long zones of steeply dipping, highly strained rocks that record the effects of Gondwana’s amalgamation and shortening in latest Neoproterozoic time (0.560–0.520 Ga). The present-day shield of Madagascar is best viewed as part of the Greater Dharwar Craton, of Archean age, to which three exotic terranes were added in Proterozoic time. The domains in Madagascar representing the Greater Dharwar Craton include the Antongil–Masora domain, a fragment of the Western Dharwar of India, and the Neoarchean Antananarivo domain (with its Tsaratanana Complex) which is broadly analogous to the Eastern Dharwar of India. In its reconstructed position, the Greater Dharwar Craton consists of a central nucleus of Paleo-Mesoarchean age (>3.1 Ga), the combined Western Dharwar and Antongil–Masora domain, flanked by mostly juvenile “granite–greenstone belts” of Neoarchean age (2.70–2.56 Ga). The age of the accretionary event that formed this craton is approximately 2.5–2.45 Ga. The three domains in Madagascar exotic to the Greater Dharwar Craton are the Androyan–Anosyan, Vohibory, and Bemarivo. The basement to the Androyan–Anosyan domain is a continental terrane of Paleoproterozoic age (2.0–1.78 Ga) that was accreted to the southern margin (present-day direction) of the Greater Dharwar Craton in pre-Stratherian time (>1.6 Ga), and rejuvenated at 1.03–0.93 Ga with the creation of the Ikalamavony domain. The Vohibory domain, an oceanic terrane of Neoproterozoic age was accreted to the Androyan–Anosyan domain in Cryogenian time (∼0.63–0.60 Ga). The Bemarivo domain of north Madagascar is a terrane of Cryogenian igneous rocks, with a cryptic Paleoproterozoic basement, that was accreted to the Greater Dharwar Craton in latest Ediacaran to earliest Cambrian time (0.53–0.51 Ga).

  6. Rare earth element deposits in China

    USGS Publications Warehouse

    Xie, Yu-Ling; Hou, Zeng-qian; Goldfarb, Richard J.; Guo, Xiang; Wang, Lei

    2016-01-01

    China is the world’s leading rare earth element (REE) producer and hosts a variety of deposit types. Carbonatite- related REE deposits, the most significant deposit type, include two giant deposits presently being mined in China, Bayan Obo and Maoniuping, the first and third largest deposits of this type in the world, respectively. The carbonatite-related deposits host the majority of China’s REE resource and are the primary supplier of the world’s light REE. The REE-bearing clay deposits, or ion adsorption-type deposits, are second in importance and are the main source in China for heavy REE resources. Other REE resources include those within monazite or xenotime placers, beach placers, alkaline granites, pegmatites, and hydrothermal veins, as well as some additional deposit types in which REE are recovered as by-products. Carbonatite-related REE deposits in China occur along craton margins, both in rifts (e.g., Bayan Obo) and in reactivated transpressional margins (e.g., Maoniuping). They comprise those along the northern, eastern, and southern margins of the North China block, and along the western margin of the Yangtze block. Major structural features along the craton margins provide first-order controls for REE-related Proterozoic to Cenozoic carbonatite alkaline complexes; these are emplaced in continental margin rifts or strike-slip faults. The ion adsorption-type REE deposits, mainly situated in the South China block, are genetically linked to the weathering of granite and, less commonly, volcanic rocks and lamprophyres. Indosinian (early Mesozoic) and Yanshanian (late Mesozoic) granites are the most important parent rocks for these REE deposits, although Caledonian (early Paleozoic) granites are also of local importance. The primary REE enrichment is hosted in various mineral phases in the igneous rocks and, during the weathering process, the REE are released and adsorbed by clay minerals in the weathering profile. Currently, these REE-rich clays are primarily mined from open-pit operations in southern China. The complex geologic evolution of China’s Precambrian blocks, particularly the long-term subduction of ocean crust below the North and South China blocks, enabled recycling of REE-rich pelagic sediments into mantle lithosphere. This resulted in the REE-enriched nature of the mantle below the Precambrian cratons, which were reactivated and thus essentially decratonized during various tectonic episodes throughout the Proterozoic and Phanerozoic. Deep fault zones within and along the edges of the blocks, including continental rifts and strike-slip faults, provided pathways for upwelling of mantle material.

  7. Radiogenic Ingrowth of 40CA from Decay of 40K Provides a Powerful Tracer for Understanding the Origins of Felsic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, Ryan D.; Simon, Justin I.; Depaolo, Donald J.; Bachmann, Olivier

    2013-01-01

    Over time high K/Ca continental crust produces a unique Ca isotopic reservoir, with measurable 40Ca excesses compared to Earth's mantle (?Ca=0). Thus, values of ?Cai > 1 indicate a significant crustal contribution to a magma. Values of ?Cai (<1) indistinguishable from mantle Ca indicate that the Ca in those magmas is either directly from the mantle, or is from partial melting of newly formed crust. So, whereas 40Ca excesses clearly define crustal contributions, mantle-like 40Ca/44Ca ratios are not as definitive. Here we present Ca isotopic measurements of intermediate to felsic igneous rocks from the western United States, and two crustal xenoliths found within the Fish Canyon Tuff (FCT). The two crustal xenoliths found within the 28.2 Ma FCT of the southern Rocky Mountain volcanic field (SRMVF) yield ?Ca values of 4 and 7.5, respectively. The 40Ca excesses of these possible source rocks are due to long-term in situ 40K decay and suggest that they are Precambrian in age. However, the FCT (?Cai 0.3) is within uncertainty of the mantle 40Ca/44Ca. Together, these data indicate that little Precambrian crust was involved in the petrogenesis of the FCT. Nd isotopic analyses of the FCT imply that it was generated from 10- 75% of an enriched component, and the Ca isotopic data appear to restrict that component to newly formed lower crust, or enriched mantle. However, the Ca isotopic data do permit assimilation of some crust with low Ca/Nd; decreasing the 143Nd/144Nd without adding much excess 40Ca to the FCT. Several other large tuffs from the SRMVF and from Yellowstone have ?Cai indistinguishable from the mantle. However, a few large tuffs from the SRMVF show significant 40Ca excesses. These tuffs (Wall Mountain, Blue Mesa, and Grizzly Peak) are likely sourced from near, or within the Colorado Mineral Belt. New isotopic measurements of Mesozoic and Tertiary granites from across the northern Great Basin show a range of ?Cai from 0 to 3. In these samples ?Cai is generally correlated with ?Sri and is broadly negatively correlated with ?Ndi. However, for granites with similar ?Ndi at a given general location ?Cai can vary significantly (1 to 2 epsilon units). In rocks where low ?Ndi could also be due to melting from enriched reservoirs in the mantle lithosphere, the combination of high ?Cai with low ?Ndi clearly identifies crustal melts.

  8. Unraveling the redox evolution of the Yangtze Block across the Precambrian/Cambrian transition

    NASA Astrophysics Data System (ADS)

    Diamond, C. W.; Zhang, F.; Chen, Y.; Lyons, T. W.

    2016-12-01

    Rocks preserved on the South China Craton have played a critical role in refining our understanding of the co-evolution of life and Earth's surface environments in the Late Neoproterozoic and earliest Paleozoic. From the earliest metazoan embryos to the many examples of exceptional preservation throughout the Cambrian Explosion, South China has preserved an outstanding record of animal evolution across this critical transition. Similarly, rocks preserved in South China hold key insights into the changing ocean chemistry that accompanied this extraordinary time. Recent work form Sahoo and others (2016, Geobiology) used redox sensitive metal enrichments in the Ediacaran Doushantuo Formation to demonstrate that the redox state of the Latest Neoproterozoic oceans was highly dynamic, rather than stably oxygenated or anoxic as had both been suggested previously. In an attempt to follow on from this and other studies, we have examined samples from a drill core taken in eastern Guizhou capturing deep-water facies of the Liuchapo and Jiumenchong formations, which contain the Precambrian/Cambrian boundary. In addition to containing the boundary, the sampled interval contains an enigmatic, widespread horizon that is strongly enriched in Ni and Mo. We have taken a multi-proxy approach in our investigation of this layer, the possible implications it has for the strata above and below (i.e., how its presence affects their utility as archives of paleo-redox conditions), and what those strata can tell us about local and global redox conditions during this pivotal time in Earth's history. Our Fe speciation data indicate that conditions were sulfidic at this location throughout the majority of the sampled interval. While redox sensitive metal concentrations are dramatically enriched in the Ni/Mo interval, their concentrations return to modest enrichments above it and continue to decrease upward. This trend suggests that while the conditions that favored extreme enrichment during the deposition of the Ni/Mo layer may have continued to provide a source of metals above the layer itself, by the time this source was exhausted, the background reservoir of these metals was low, sufficient only to provide small enrichments - consistent with the notion that deep ocean anoxia was a regular, if not dominant, feature of the Cambrian world.

  9. Assessing Heavy and Trace Metal Contamination in Surface Materials near the Ambaji and Zawar mines in Gujurat and Rajasthan, India using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) Data

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.

    2017-12-01

    An investigation has begun into effects on water quality in waters coming from a pair of mines, and their surrounding drainage basins, in western India. The study areas are the Ambaji and Zawar mines in the Indian states of, respectively, Gujurat and Rajasthan. The Ambaji mine is situated in Precambrian-aged metasediments and metavolcanics of the Delhi Supergroup. Sulfide mineralization at Ambaji is hosted by hydrothermally altered felsic metavolcanics rocks with ferric oxide and oxyhydroxide as well as copper carbonate surface indicator minerals. The Zawar zinc mine is part of the Precambrian Aravalli Supergroup and lies amidst surface exposures of dolomites and quartzites. Hyperspectral visible through short-wave infrared (VSWIR) data from the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) was collected in February 2016 over these sites as part of a joint campaign between NASA and the Indian Space Research Organization (ISRO). The AVIRIS-NG data is being used to detect, map, and characterize surface mineralogy in the area. Data discovery is being carried out using a self-organizing map (SOM) methodology with mineral endmembers being mapped initially with a support vector machine (SVM) classifier and a planned more comprehensive mapping using the USGS Material Identification and Characterization Algorithm (MICA). Results of the mineral mapping will be field checked and rock, soil, and water samples will be collected and examined for heavy and trace metal contamination. Past studies have shown changes in the shape of the 2.2 mm Al-OH vibrational overtone feature as well as in blue-red spectral ratios that were directly correlated with the concentration of heavy and trace metals that had been adsorbed into the structure of the affected minerals. Early analysis of the Zawar area scenes indicates the presence of Al-OH clay minerals which might have been affected by the adsorption of trace metals. Scenes from the Ambaji area have more extensive surface exposures of carbonate minerals. Future work will focus more closely on detailed spectral feature mapping of absorption features that have been affected by heavy and trace metal adsorption.

  10. Ground-water flow and contributing areas to public-supply wells in Kingsford and Iron Mountain, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.; Westjohn, David B.

    2000-01-01

    The cities of Kingsford and Iron Mountain are in the southwestern part of Dickinson County in the Upper Peninsula of Michigan. Residents and businesses in these cites rely primarily on ground water from aquifers in glacial deposits. Glacial deposits generally consist of an upper terrace sand-and-gravel unit and a lower outwash sand-and-gravel unit, separated by lacustrine silt and clay and eolian silt layers. These units are not regionally continuous, and are absent in some areas. Glacial deposits overlie Precambrian bedrock units that are generally impermeable. Precambrian bedrock consists of metasedimentary (Michigamme Slate, Vulcan Iron Formation, and Randville Dolomite) and metavolcanic (Badwater Greenstone and Quinnesec Formation) rocks. Where glacial deposits are too thin to compose an aquifer usable for public or residential water supply, Precambrian bedrock is relied upon for water supply. Typically a few hundred feet of bedrock must be open to a wellbore to provide adequate water for domestic users. Ground-water flow in the glacial deposits is primarily toward the Menominee River and follows the direction of the regional topographic slope and the bedrock surface. To protect the quality of ground water, Kingsford and Iron Mountain are developing Wellhead Protection Plans to delineate areas that contribute water to public-supply wells. Because of the complexity of hydrogeology in this area and historical land-use practices, a steady-state ground-water-flow model was prepared to represent the ground-water-flow system and to delineate contributing areas to public-supply wells. Results of steady-state simulations indicate close agreement between simulated and observed water levels and between water flowing into and out of the model area. The 10-year contributing areas for Kingsford's public-supply wells encompass about 0.11 square miles and consist of elongated areas to the east of the well fields. The 10-year contributing areas for Iron Mountain's public-supply wells encompass about 0.09 square miles and consist of elongate areas to the east of the well field.

  11. Thorium/U systematics of Precambrian deep-sea pelagic balck shales: implications for redox state of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Jia, Y.; McCulloch, M.; Charlotte, A.

    2003-12-01

    To address the question of the redox state of the Precambrian atmosphere-hydrosphere system via sediments requires measurement of redox sensitive trace elements, and inter-element ratios, in deep water black shales with a chemical sedimentary "hydrogenic" component. This approach is endorsed by recent progress in research of redox-sensitive trace metals records in late Proterozoic and Phanerozoic sedimentary rocks, which has provided important clues to how the redox state of depositional environments has changed over time. Many conventional studies, in contrast, have been on first cycle volcanogenic turbidites with a minimal hydrogenic input (Taylor and McLennan, 1995). Accordingly, we have analyzed the redox-sensitive, trace element compositions of the 2.1 Ga black shales in Birimian Blet, West Africa, and the 2.7 Ga Archean counterparts in Timmins, Canada, Tati Belt, Botswana, and Kanowna District, Western Australia. These pyrite-bearing black shales, which were originally argillaceous sediments containing organic matter and low in thermal maturity, were primarily deposited in the deep-sea pelagic environments. Th/U ratios are lower in the Proterozoic shales (0.38-0.82, average 0.67), and Archean shales (0.47-3.65, average 2.43) relative to "conventional" Archean upper crust (3.8), PAAS (4.7), or average upper continental crust (3.8). Calculated U concentrations from hydrogenic component are between 0.90 and 2.45 in the Proterozoic shales, and range from 0.06 to 0.96 for the Archean black shales. Given the conservative behavior of Th in the sedimentary cycle, variably low Th/U ratios in these Precambrian black shales signify that U6+, soluble in oxidized surface waters, was reduced to insoluble U4+ in reducing bottom waters, as in the contemporary Black Sea. The results are consistent with a locally to globally oxidized atmosphere-shallow hydrosphere pre-2.0 Ga. Taylor, S.R., and McLennan, S.C., 1995. The geochemical evolution of the continental crust: Reviews of Geophysics, v. 33. p. 241-265.

  12. Phase 3 geophysical studies in the Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, V.J.; Sadek, Hamdy; Smith, C.W.

    1982-01-01

    Detailed geophysical measurements have been made in the Rabathan area, Wadi Bidah district, Kingdom of Saudi Arabia, at the site of diamond drill holes RAB-1, -2, and -3; these measurements suggest that the causative source for the anomalous EM (electromagnetic) and SP (self-potential) responses is probably highly conductive zones of Precambrian siliceous-carbonaceous rocks. Although many of the zones are no more than a few meters wide, they commonly contain 50 to 80 percent carbonaceous material and locally abundant pyrite. In places, several thin layers of highly concentrated carbonaceous material interlayered with chert form a multiple conductive zone that is seen in the geophysical data as complex anomaly patterns. In the geologic environment of Wadi Bidah, massive sulfide-bearing zones cannot be distinguished from siliceous-carbonaceous zones on the basis of the EM-SP responses. In North America in similar environments, complex resistivity methods used in experimental research have successfully discriminated between sulfide and carbonaceous conductors. Tests of such methods in the Wadi Bidah district are recommended. Geologic, geochemical, and geophysical data at the Jabal Mohr prospect suggest the possibility of mineralized rocks at depth over a possible strike length of 400 m.

  13. U-Pb isotopic systematics of zircons from prograde and retrograde transition zones in high-grade orthogneisses, Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baur, N.; Liew, T.C.; Todt, W.

    1991-07-01

    The authors present U-Pb zircon isotopic data from locally restricted prograde (arrested in situ charnockitization) and retrograde metamorphic transition zones, which are well exposed in Proterozoic orthogneisses tectonically interbanded with granulite facies supracrustal rocks of the Highland Group in Sri Lanka. These granitoid rocks yield apparent ages of 1942 {plus minus} 22 Ma, {approximately} 770 Ma, {approximately} 660 Ma, and {approximately} 560 Ma. All samples show severe Pb-loss some 550-560 Ma ago. The main phase of granulite-formation could not be dated unambiguously but is bracketed between {approximately} 660 Ma and {approximately} 550 Ma. The pervasive Pb-loss event around 550-560 Mamore » reflects the end of this period of high-grade metamorphism and was associated with widespread igneous activity and retrogression. This is constrained by the 550 {plus minus} 3 Ma intrusion age for a post-tectonic granite. They relate this late phase of thermal activity to crustal uplift of the Sri Lankan granulites. This data unambiguously prove the high-grade history of the Sri Lanka gneisses to be a late Precambrian event that may be related to the Pan-African evolution along the eastern part of Africa.« less

  14. Shallow Carbon Sequestration Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendergrass, Gary; Fraley, David; Alter, William

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests atmore » the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.« less

  15. Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82

    USGS Publications Warehouse

    Thompson, K.R.

    1985-01-01

    The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)

  16. Long-term landscape evolution of the Poços de Caldas Plateau revealed by thermokinematic numerical modeling using the software code Pecube, SE- Brazil

    NASA Astrophysics Data System (ADS)

    Doranti Tiritan, Carolina; Hackspacher, Peter C.; Glasmacher, Ulrich A.

    2014-05-01

    The Poços de Caldas Plateau in the southeastern Brazil, and it is characterized by a high relief topography supported by the pre-Cambrian crystalline rocks and by the Poços de Caldas Alkaline Massif (PCAM). Ulbrich et al (2002) determine that the ages for the predominant PCAM intermediate rocks were constrained ~83Ma. In addition, geologic observations indicates the phonolites, tinguaites and nepheline syenites were emplaced in a continuous and rapid sequence lasting between 1 to 2 Ma. The topography is characterized by dissected plateau with irregular topographic ridges and peaks with elevations between 900 and 1300m (a.s.l.) on the metamorphic basement and from 1300 to 1700m (a.s.l) on the PCAM region. Therefore, the aim of the work was quantify the main processes that were responsible for the evolution of the landscape by using methods as the low temperature thermochronology and the 3D thermokinematic modeling, for obtaining data of uplift and erosion rates and to correlate them with the thermal gradients of the region. The 3D thermokinematic modeling was obtained using the software code PECUBE (Braun 2003).

  17. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids

    NASA Astrophysics Data System (ADS)

    Jianyun, Feng; Wenjiao, Xiao

    2013-04-01

    The termination of orogenesis for the southern Altaids has been controversial. Systematical investigations of field geology, geochronology and geochemistry on mafic-ultramafic rocks from the northern Alxa of the southern Altaids were conducted to address the termination controversy. The newly discriminated mafic-ultramafic rocks belt is located at Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km in length. All of the three rock associations contact tectonically with the adjacent metamorphic and deformed Precambrian rocks as tectonic blocks or lenses, and are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have subjected to pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by a uniform trend of compositional distribution, e.g., with low SiO2-contents (42.51-52.21 wt.%) and alkalinity (Na2O+K2O) (0.01-5.45 wt.%, mostly less than 0.8 wt.%), and enriched in MgO (7.37-43.36 wt.%), with Mg# = 52.75-91.87. As the rocks have had strong alteration and have a wide range of loss-on-ignition (LOI: 0.44-14.07 wt.%), the rocks may be subjected to considerable alteration by either sea-water or metamorphic fluid. The REE and trace element patterns for the rocks show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc subsequently. The ultramafic rocks are relics derived from the magma after large degree of partial melting of the oceanic lithospheric mantle with overprinted by island-arc processes under the influence of mid-ocean-ridge magmatism. LA - ICP MS U - Pb zircon ages of gabbros from the three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of the mafic-ultramafic rocks. Therefore, considering the other data published previously, we suggest that the mafic-ultramafic rocks are products of a south-dipping subduction, most probably a ridge subduction for the Paleo-Asian Ocean beneath the Alxa block in the Late Carboniferous to Late Permian before the Paleo-Asian Ocean completely closed. This shed light on the controversial tectonic history of the southern Altaids and support that the termination of the orogenesis was in the end Permian to Triassic.

  18. Method and apparatus for measuring surface density of explosive and inert dust in stratified layers

    DOEpatents

    Sapko, Michael J.; Perlee, Henry E.

    1988-01-01

    A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.

  19. Stratigraphy and Age of Paleoproterozoic Birimian Volcaniclastic Sequence in the Cape Three Points area, Axim-Konongo (Ashanti) Belt, Southwest Ghana

    NASA Astrophysics Data System (ADS)

    Yoshimaru, S.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Horie, K.; Takehara, M.; Sano, T.; Nyame, F. K.; Tetteh, G. M.

    2016-12-01

    This study investigated the depositional environments and bioactivities of well preserved volcaniclastic sequences in the Cape Three Points area in the Paleoproterozoic Axim-Konongo (Ashanti) belt in the Birimian of Ghana. Our current research outlines the stratigraphy, structure, approximate age and depositional setting of the volcaniclastic sequence in the Cape Three Points area in Ghana, West Africa.Axim-Konongo (Ashanti) belt is composed of mainly andesitic basalts, volcaniclastic rocks and belt type granitoids, which are unconformably overlain by Tarkwaian conglomerates and metasedimentary rocks. The rocks show NE-SW strike with maximum depositional age of overlying metasedimentary rocks of 2154±2 Ma (U-Pb zircon; Oberthür et al., 1998). The oldest age of an intrusive into Birimian volcanic rock near Sekondi is 2174±2 Ma (U-Pb zircon; Oberthür et al., 1998). Thick volcaniclastic succession over 4000 m thickness was reconstructed for 1000 m thickness after detailed field investigations. The succession shows approximately N-S strike mainly 60-80° dip to the east and generally upward sequence. The rocks were affected by greenschist facies metamorphism. TiO2/Al2O3 ratios of chromites and whole- rock trace elements compositions with low Nb concentration and high LREE concentration support deposition on mid-deep sea floor in a volcanic arc. New age data were obtained from foliated porphyritic dyke which occurs in the Cape Three Points area. Zircon grains, measured by SHRIMP at National Institute of Polar Research (NIPR), yielded a weighted mean 204Pb-corrected 207Pb/206Pb age of 2265.6±4.6 Ma (95% confidence). Thus, the volcaniclastic sequence was deposited before 2265.6±4.6 Ma and was deformed after 2265 Ma. 2260 Ma is the oldest age at which early volcanic activity in the Birimian terrane occurred (Loh and Hirdes, 1999). References Oberthür T et al. (1998) Precambrian Research 89: 129-143 Loh G and Hirdes W (1999) Exlplanatory Notes for the Geological Map of southwest Ghana, 1:100000. Ghana Geological Survey Bulletin No, 49, 106-112

  20. Sedimentation and chemical quality of surface waters in the Wind River basin, Wyoming

    USGS Publications Warehouse

    Colby, B.R.; Hembree, C.H.; Rainwater, F.H.

    1956-01-01

    This report gives results of an investigation by the U. S. Geological Survey of chemical quality of surface waters and sedimentation in the Wind River Basin, Wyo. The sedimentation study was begun in 1946 to determine the quantity of sediment that is transported by the streams in the basin; the probable sources of the sediment; the effect of large irrigation projects on sediment yield, particularly along Fivemile Creek; and the probable specific weight of the sediment when initially deposited in a reservoir. The study of the chemical quality of the water was begun in 1945 to obtain information on the sources, nature, and amounts of dissolved material that is transported by streams and on the suitability of the waters for different uses. Phases of geology and hydrology pertinent to the sedimentation and chemical quality were studied. Results of the investigation through September 30, 1952, and some special studies that were made during the 1953 and 1954 water years are reported. The rocks in the Wind River Basin are granite, schist, and gneiss of Precambrian age and a thick series of sedimentary strata that range in age from Cambrian to Recent. Rocks of Precambrian and Paleozoic age are confined to the mountains, rocks of Mesozoic age crop out along the flank of the Wind River and Owl Creek Mountains and in denuded anticlines in the floor of the basin, and rocks of Tertiary age cover the greater part of the floor of the basin. Deposits of debris from glaciers are in the mountains, and remnants of gravel-capped terraces of Pleistocene age are on the floor of the basin. The lateral extent and depth of alluvial deposits of Recent age along all the streams are highly variable. The climate of the floor of the basin is arid. The foothills probably receive a greater amount of intense rainfall than the areas at lower altitudes. Most precipitation in the Wind River Mountains falls as snow. The foothill sections, in general, are transitional zones between the cold, humid climate of the high mountains and the warmer, drier climate of the basin floor. Average annual runoff in the basin is about 3.6 inches on the basis of adjusted streamflow records for the Bighorn River near Thermopolis. Runoff from the mountains is high and is mostly from melting of snow and from spring and early summer rains. It does not vary greatly from year to year because annual water losses are small in comparison to annual precipitation. In the areas on the floor of the basin, where runoff is low, the runoff is mostly the result of storms in late spring and early summer. The annual water losses nearly equal the annual precipitation; therefore, runoff is extremely variable, in terms of percentage changes, from year to year and from point to point during any 1 year.

  1. Cognitive Factors that Impact Learning in the Field: Observations from an REU Project on Precambrian Rocks of Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Henry, D.; Mogk, D. W.; Goodwin, C.

    2011-12-01

    Field work requires cognitive processing on many different levels, and constitutes a powerful and important learning environment. To be effective and meaningful, the context of field work must be fully understood in terms of key research questions, earlier published work, regional geology, geologic history, and geologic processes. Scale(s) of observation and sample selection methods and strategies must be defined. Logistical decisions must be made about equipment needed, points of access, and navigation in the field. Professional skills such as field note-taking, measuring structural data, and rock descriptions must be employed, including appropriate use of field tools. Interpretations of geologic features in the field must be interpreted through recall of concepts from the geologic knowledge base (e.g. crystallization history of igneous rocks interpreted through phase diagrams). Field workers need to be able to self-monitor and self-regulate their actions (metacognitively), and make adjustments to daily plans as needed. The results of field work must be accurately and effectively communicated to other geoscientists. Personal and professional ethics and values are brought to bear as decisions are made about whether or not the work has been satisfactorily completed at a field site. And, all of this must be done against a back drop of environmental factors that affect the ability to do this work (e.g. inclement weather, bears, impassable landscapes). The simultaneous relevance of all these factors creates a challenging, but rewarding environment for learning on many different scales. During our REU project to study the Precambrian rocks in the back country of Yellowstone National Park (YNP), we considered these cognitive factors in designing our project curriculum. To reduce the "novelty space" of the project a website was developed that described the project goals and expected outcomes, introduced primary literature, and alerted students about the physical demands of working in YNP.. Daily field activities were designed to scaffold accrued knowledge by placing specific new experiences in the path of students to sequentially build their own understanding of local geology. Students gained increasing responsibility and autonomy for developing daily research objectives and plans, and for decision-making while in the field. Instructors demonstrated specific field skills, and used "talk-through" approaches to explain what, why, and how we conduct our own investigations. We were particularly interested in helping students make the first inscriptions of their interpretations of nature in field notes, sketches, and maps, and in using embodiment (positioning oneself in space to correctly make observations and collect data) to foster learning. In the course of this study we videotaped students in the field to document the evolution of their field skills. Observations, interviews and surveys of students indicate that students' confidence in their abilities to conduct geologic research in the field increased by 20-40% (Likert scale) in this project. By explicitly addressing cognitive demands, students working in the field can achieve significant learning gains.

  2. Petrology and geochronology of crustal xenoliths from the Bering Strait region: Linking deep and shallow processes in extending continental crust

    USGS Publications Warehouse

    Akinin, V.V.; Miller, E.L.; Wooden, J.L.

    2009-01-01

    Petrologic, geochemical, and metamorphic data on gneissic xenoliths derived from the middle and lower crust in the Neogene Bering Sea basalt province, coupled with U-Pb geochronology of their zircons using sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG), yield a detailed comparison between the P-T-t and magmatic history of the lower crust and magmatic, metamorphic, and deformational history of the upper crust. Our results provide unique insights into the nature of lithospheric processes that accompany the extension of continental crust. The gneissic, mostly maficxenoliths (constituting less than two percent of the total xenolith population) from lavas in the Enmelen, RU, St. Lawrence, Nunivak, and Seward Peninsula fields most likely originated through magmatic fractionation processes with continued residence at granulite-facies conditions. Zircon single-grain ages (n ??? 125) are interpreted as both magmatic and metamorphic and are entirely Cretaceous to Paleocene in age (ca. 138-60 Ma). Their age distributions correspond to the main ages of magmatism in two belts of supracrustal volcanic and plutonic rocks in the Bering Sea region. Oscillatory-zoned igneous zircons, Late Cretaceous to Paleocene metamorphic zircons and overgrowths, and lack of any older inheritance in zircons from the xenoliths provide strong evidence for juvenile addition of material to the crust at this time. Surface exposures of Precambrian and Paleozoic rocks locally reached upper amphibolite-facies (sillimanite grade) to granulite-facies conditions within a series of extension-related metamorphic culminations or gneiss domes, which developed within the Cretaceous magmatic belt. Metamorphic gradients and inferred geotherms (??30-50 ??C/km) from both the gneiss domes and xenoliths aretoo high to be explained by crustal thickening alone. Magmatic heat input from the mantle is necessary to explain both the petrology of the magmas and elevated metamorphic temperatures. Deep-crustal seismic-reflection and refraction data reveal a 30-35-km-thick crust, a sharp Moho and refl ective lower and middle crust. Velocities do not support a largely mafic (underplated) lower crust, but together with xenolith data suggest that Late Cretaceous to early Paleocene maficintrusions are likely increasingly important with depth in the crust and that the elevated temperatures during granulite-facies metamorphism led to large-scale flow of crustal rocks to produce gneiss domes and the observed subhorizontal refl ectivity of the crust. This unique combined data set for the Bering Shelf region provides compelling evidence for the complete reconstitution/re-equilibration of continental crust from the bottom up during mantle-driven magmatic events associated with crustal extension. Thus, despite Precambrian and Paleozoic rocks at the surface and Alaska's accretionary tectonic history, it is likely that a significant portion of the Bering Sea region lower crust is much younger and related to post-accretionary tectonic and magmatic events. ?? 2009 The Geological Society of America.

  3. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.

    PubMed

    Ries, J B; Anderson, M A; Hill, R T

    2008-03-01

    A previously published hydrothermal brine-river water mixing model driven by ocean crust production suggests that the molar Mg/Ca ratio of seawater (mMg/Ca(sw)) has varied significantly (approximately 1.0-5.2) over Precambrian time, resulting in six intervals of aragonite-favouring seas (mMg/Ca(sw) > 2) and five intervals of calcite-favouring seas (mMg/Ca(sw) < 2) since the Late Archaean. To evaluate the viability of microbial carbonates as mineralogical proxy for Precambrian calcite-aragonite seas, calcifying microbial marine biofilms were cultured in experimental seawaters formulated over the range of Mg/Ca ratios believed to have characterized Precambrian seawater. Biofilms cultured in experimental aragonite seawater (mMg/Ca(sw) = 5.2) precipitated primarily aragonite with lesser amounts of high-Mg calcite (mMg/Ca(calcite) = 0.16), while biofilms cultured in experimental calcite seawater (mMg/Ca(sw) = 1.5) precipitated exclusively lower magnesian calcite (mMg/Ca(calcite) = 0.06). Furthermore, Mg/Ca(calcite )varied proportionally with Mg/Ca(sw). This nearly abiotic mineralogical response of the biofilm CaCO3 to altered Mg/Ca(sw) is consistent with the assertion that biofilm calcification proceeds more through the elevation of , via metabolic removal of CO2 and/or H+, than through the elevation of Ca2+, which would alter the Mg/Ca ratio of the biofilm's calcifying fluid causing its pattern of CaCO3 polymorph precipitation (aragonite vs. calcite; Mg-incorporation in calcite) to deviate from that of abiotic calcification. If previous assertions are correct that the physicochemical properties of Precambrian seawater were such that Mg/Ca(sw) was the primary variable influencing CaCO3 polymorph mineralogy, then the observed response of the biofilms' CaCO3 polymorph mineralogy to variations in Mg/Ca(sw), combined with the ubiquity of such microbial carbonates in Precambrian strata, suggests that the original polymorph mineralogy and Mg/Ca(calcite )of well-preserved microbial carbonates may be an archive of calcite-aragonite seas throughout Precambrian time. These results invite a systematic evaluation of microbial carbonate primary mineralogy to empirically constrain Precambrian seawater Mg/Ca.

  4. Aerial radiometric and magnetic reconnaissance survey of the Eagle--Dillingham area, Alaska, Mt. Hayes Quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    The results of a high-sensitivity aerial gamma-ray spectrometer and magnetometer survey of the Mt. Hayes Quadrangle, Alaska, are presented. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed two uranium anomalies worthy of field checking as possible prospects. One is located near Mesozoic granite, which is believed to have the best potential for future economic uranium deposits. Another uranium anomaly is associated with Paleozoic-Precambrian rocks and may be caused by augen gneiss or possibly granitic intrusives. Two weakly uraniferous provinces merit study: one in the northwest, which maymore » be related to the Tertiary-Cretaceous coal-bearing unit, and a second in the northeast, which may be related to Mesozoic granites.« less

  5. Structural interpretations based on ERTS-1 imagery, Bighorn Region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A.

    1973-01-01

    Structural analysis is being carried out on bands MSS 5 and 7 of scene 1085-17294. Geologic strucutre is primarily revealed in the topographic relief and drainage. Topographic linears are particularly well developed in the bighorn uplift. Many of these occur along known faults and shear zones in the Precambrian core; several have not been previously mapped. These linears, however, do not continue into the younger rocks of the flanks or do so in a much less marked manner than in the core. Linears are far less abundant in the basin or are manifested only in very subtle tonal contrasts and somewhat straight drainage segments. Some of the linears are aligned along trends previously postulated on the basis of surface mapping to be lineaments. The imagery reveals little or no evidence of strike-slip displacements along these lineaments.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.

    A total of 338 water and 1877 sediment samples were collected over a 20,700-km/sup 2/ area from 2125 locations at a nominal density of one sample per 10 km/sup 2/. Water samples were collected from wells, streams, springs, and artificial ponds. Sediment samples were collected from streams, springs, natural ponds, and artificial ponds. Arbitrary anomaly thresholds of two standard deviations above the mean were chosen for both water and sediment sample populations. The U concentrations in waters collected in the Tularosa quadrangle range from below the detection limit of 0.2 parts per billion (ppB) to 57.8 ppB. Most clusters ofmore » water samples containing anomalously high uranium concentrations were collected from locations in uplifts underlain either by volcanic rocks of the mid-Tertiary Datil group or by sedimentary rocks of late Paleozoic and Mesozoic age. Other groups of anomalous waters are from wells that tap Cenozoic aquifers in the intermontane basins. In those areas where the water-sample location coverage is adequate, the known U occurrences are generally associated with high or anomalous U concentrations in water samples. With the exception of one sample with a U concentration of 67.7 ppM, sediments collected in this study have U concentrations that range between 0.2 and 15.2 ppM. Most sediments with U concentrations above the arbitrary anomaly threshold value are from locations which occur in or parallel outcrops of Precambrian crystalline rock exposed in the San Andres and Oscura Mountains. Other anomalous sediments occur as more discreet groups in areas underlain by mid-Tertiary volcanic rocks of the Datil group. Several anomalous samples from the Mogollon-Datil volcanic field were collected along ring fracture systems that surround large volcanic cauldrons.« less

  7. The eastern arm of the Midcontinent Rift: Progress and problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinze, W.J.

    1994-04-01

    The extent and nature of the Midcontinent Rift System (MCR) was initially determined by potential-field mapping and extrapolation of geologic information from the Lake Superior region. Early interpretation suggested a rift origin which is well supported by deep crustal reflection seismic data and isotopic evidence from the related volcanic rocks that became available during the past decade. A rift origin of the eastern arm of the MCR was corroborated by sub-Phanerozoic drilling into the clastic sediment and volcanic rocks in the McClure-Sparks drill hole located on a massive anticlinal feature in the Precambrian rocks mapped by seismic reflection data. Subsequentmore » seismic profiling further detailed the character of the rift. However, these studies also indicate that the eastern arm is unlike the western, e.g., adjacent clastic rock basins are absent, late-stage compressional features are present, but definite evidence for high-angle reverse faulting is missing, and volcanic basins are not continuous. The termination of this arm of the rift also remains problematic. There is no direct evidence of the rift SE of the McClure-Sparks hole in central Michigan. Geophysical anomalies and deep drilling in the Howell anticline region suggest that the 1,100 Ma old rift is covered by Grenville-age thrusts. If the rift extends farther to the SE, its nature must have been altered by the Grenville orogeny. The hypothesized extension across Ohio east of the Grenville Front is unsupported by seismic reflection profiling and anomaly modeling. Grabens identified at the basement surface in Ohio and to the south are of unknown age, but appear to be more clearly related to late-stage Grenville activity and/or continuation of Eocambrian rifts of the Mississippi Embayment.« less

  8. Modeling of the Central Magnetic Anomaly at Haughton Impact Structure, Canada

    NASA Astrophysics Data System (ADS)

    Quesnel, Y.; Gattacceca, J.; Osinski, G. R.; Rochette, P.

    2011-12-01

    Located on Devon Island, Nunavut, Canada, the 23-km diameter Haughton impact structure is one of the best-preserved medium-size complex impact structures on Earth. The impact occurred ~39 Ma ago into a target formation composed of an ~2-km thick sequence of Lower Paleozoic sedimentary rocks of the Arctic Platform overlying Precambrian metamorphic basement of the Canadian Shield (Osinski et al., 2005). Clast-rich impact melt rocks line the crater and impact-induced hydrothermal activity took place, but since then no significant geological event has affected the area. In the 1980s, ground magnetic and gravity measurements were carried out within the central part of the crater (Pohl et al., 1988). A significant anomaly was discovered and coarsely modeled by a source body of simple geometry. More recently, an airborne magnetic survey delivered additional data that covered the whole crater but no modeling was done (Glass et al., 2002). Here, we present the results of a new ground magnetic survey accompanied by rock magnetic property measurements made on all samples of the crater. This has provided additional constraints to investigate the origin of this central magnetic anomaly. By conducting modeling, we have been able to reveal the geometry and volume of the source body as well as its magnetization properties. Our results suggest that the necessary magnetization intensity to account for this anomaly is too large to be associated with uplifted pre-impact target rocks. Therefore, we suggest that hydrothermal alteration could have enhanced the magnetization of the central part of this crater. References : Osinski, G. R. et al. 2005. MPS, 40:1759-1776 ; Pohl, J. et al. 1988. Meteoritics, 23:235-238 ; Glass, B. J. et al. 2002, Abstract #2008. 33th LPSC

  9. Time-domain electromagnetic tests in the Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, Vincent J.; Sadek, Hamdy; Smith, Bruce; Tippens, C.L.

    1983-01-01

    A time-domain electromagnetic (TDEM) method was tested in two areas of mineralization in Precambrian rocks in the Wadi Bidah district, Kingdom of Saudi Arabia. Transient-decay voltages in profile mode were measured across the Sha'ab at Tare and Rabathan prospects by use of three transmitterreceiver loop configurations. At the Sha'ab at Tare prospect all of the loop configurations indicated the mineralized zone. Analysis of the coincident loop data at Sha'ab at Tare reveals that gossanous and altered rock of i0 ohm-m resistivity extends to a depth of 35 m, where there is an unweathered, dry mineralized zone of about 1 ohm-m resistivity. The model further suggests that the rocks at a depth of 55 m and below the water table are even less resistive (0. 1 ohm-m). The TDEM method successfully discriminated conductors within from those below the weathered zone at the Rabathan prospect. Conductors below the weathered zone are identified by a lack of transient response in the early part of the transient decay curve, followed by an increasing response in the middle to late parts of the transient decay curve. Results of these limited tests suggest the potential value of integrating TDEM with other geophysical tools in the Kingdom. Recommendations are made to expand these tests into a more comprehensive program that will evaluate the TDEM potential in various geologic environments that are host to mineral deposits of diverse origin.

  10. A transient fault-valve mechanism operating in upper crustal level, Sierras Pampeanas, Argentina

    NASA Astrophysics Data System (ADS)

    Japas, María Silvia; Urbina, Nilda Esther; Sruoga, Patricia; Garro, José Matías; Ibañes, Oscar

    2016-11-01

    Located in the Sierras Pampeanas (the broken-foreland of the Pampean flat slab segment in the southern Central Andes), the Cerro Tiporco volcanic field shows Neogene hydrothermal activity linked to migration of arc-magmatism into the foreland. Late Neogene deposits comprise epithermal vein systems emplaced in Precambrian-Early Palaeozoic igneous-metamorphic basement, Late Miocene sedimentary rocks and Early Pliocene volcaniclastic rocks. Mineralization consists of calcareous onyx, aragonite and calcite veins as well as travertine deposits. Onyx and aragonite occur as fill of low-displacement nearly vertical reverse-sinistral faults striking NW, and nearly horizontal dilatant fractures. The latter consist of load-removal induced fractures affecting the igneous-metamorphic rocks, as well as bedding planes in the Late Miocene sediments. The presence of veins recording multiple fracture episodes and crack-and-seal growth of veins suggests relatively low differential stress and supralithostatic fluid pressure, as well as cyclic changes in pore pressure and high mineral-deposition/fracture-opening ratio. These conditions support a mechanism of fault-valve behaviour during onyx and aragonite vein emplacement. The fault-valve mechanism involves fractures associated with impermeable barriers between environments with different fluid pressure. Faulting generated an appreciable directional permeability triggering fluid migration from the highest to the lowest pressure region, with subsequent deposition and sealing that started a new pressurization-faulting-sealing cycle. Late aragonite and calcite veins suggest a change in kinematics indicating the onset of tectonic-load conditions.

  11. Active accommodation of plate convergence in Southern Iran: Earthquake locations, triggered aseismic slip, and regional strain rates

    NASA Astrophysics Data System (ADS)

    Barnhart, William D.; Lohman, Rowena B.; Mellors, Robert J.

    2013-10-01

    We present a catalog of interferometric synthetic aperture radar (InSAR) constraints on deformation that occurred during earthquake sequences in southern Iran between 1992 and 2011, and explore the implications on the accommodation of large-scale continental convergence between Saudi Arabia and Eurasia within the Zagros Mountains. The Zagros Mountains, a salt-laden fold-and-thrust belt involving ~10 km of sedimentary rocks overlying Precambrian basement rocks, have formed as a result of ongoing continental collision since 10-20 Ma that is currently occurring at a rate of ~3 cm/yr. We first demonstrate that there is a biased misfit in earthquake locations in global catalogs that likely results from neglect of 3-D velocity structure. Previous work involving two M ~ 6 earthquakes with well-recorded aftershocks has shown that the deformation observed with InSAR may represent triggered slip on faults much shallower than the primary earthquake, which likely occurred within the basement rocks (>10 km depth). We explore the hypothesis that most of the deformation observed with InSAR spanning earthquake sequences is also due to shallow, triggered slip above a deeper earthquake, effectively doubling the moment release for each event. We quantify the effects that this extra moment release would have on the discrepancy between seismically and geodetically constrained moment rates in the region, finding that even with the extra triggered fault slip, significant aseismic deformation during the interseismic period is necessary to fully explain the convergence between Eurasia and Saudi Arabia.

  12. Earth's earliest extensive glaciations: Tectonic setting and stratigraphic context of Paleoproterozoic glaciogenic deposits

    NASA Astrophysics Data System (ADS)

    Young, Grant M.

    Paleoproterozoic glaciogenic deposits have a more restricted distribution than those of the Neoproterozoic, which are thought by some to provide evidence that the surface of the entire Earth was frozen (snowball Earth hypothesis). In Laurentia, Paleoproterozoic glacial rocks appear to be associated with the breakup of a supercontinent, whereas in Vaalbara they may form part of the early fill of compressional (foreland?) basins representing ocean closure. The scattered Paleoproterozoic glacial deposits may be approximately contemporaneous but ages are poorly constrained at around 2.3 Ga. Many features ascribed to the existence of a snowball Earth in the Neoproterozoic are not developed in the Paleoproterozoic. For example most of the older glaciogenic successions lack cap carbonates. Major element geochemistry of the post-glacial sedimentary rocks of the Gowganda Formation suggests a weathering trend opposite to that predicted by the SEH. The close association between iron-formations and some glacial deposits in the Neoproterozoic, is virtually absent from the Paleoproterozoic. Thus the Paleoproterozoic glacial successions lack many of the criteria that are supposed to substantiate the snowball Earth hypothesis. These ancient glacial deposits are perhaps more appropriately compared with those of temperate glaciations. Apparent low paleolatitudes derived from some Paleoproterozoic glaciogenic deposits pose a problem for any interpretation of these rocks. Williams suggested that these odd relationships might be explained by a much higher obliquity of the Earth's ecliptic in the Precambrian but resolution of these problems must await additional geochronological and paleomagnetic work.

  13. Sudbury Breccia and suevite as glacial indicators transported 800 km to Kentland Astrobleme, Indiana

    NASA Technical Reports Server (NTRS)

    Mchone, John F.; Dietz, Robert S.; Peredery, Walter V.

    1992-01-01

    A glacial erratic whose place of origin is known by direct comparison with bedrock is known as an indicator. In 1971, while visiting the known astrobleme at Kentland, Indiana, Peredery recognized and sampled in the overlying glacial drift deposits a distinctive boulder of Sudbury suevite (black member, Onaping Formation) that normally occurs within the Sudbury Basin as an impact fall-back or wash-in deposit. The rock was sampled (but later mislaid) from a farmer's cairn next to a cleared field. Informal reports of this discovery prompted the other authors to recently reconnoiter the Kentland locality in an attempt to relocate the original boulder. Several breccia blocks were sampled but laboratory examination proved most of these probably to be diamictites from the Precambrian Gowganda Formation, which outcrops extensively in the southern Ontario. However, one sample was confirmed as typical Sudbury Breccia, which outcrops in the country rock surrounding the Sudbury Basin. Thus two glacial indicators were transported by Pleistocene continental glaciers about 820 km over a tightly proscribed path and, curiously, from one astrobleme to another. Brecciated boulders in the Illinois/Indiana till plain are usually ascribed to the Gowganda or Mississagi formations in Ontario. But impact-generated rocks need not be confused. The carbonaceous matrix of the suevite, for example, was sufficiently distinctive to assign it to the upper portion of the black Onaping. The unique and restricted source area of these indicators provide an accurate and reliable control for estimating Pleistocene ice movement.

  14. Flow of ultra-hot Precambrian orogens and the making of crustal layering in Phanerozoic orogenic plateaux

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Gapais, Denis; Cagnard, Florence; Jayananda, Mudlappa; Peucat, Jean-Jacques

    2010-05-01

    Reassessment of structural / metamorphic properties of ultra-hot Precambrian orogens and shortening of model weak lithospheres support a syn-convergence flow mode on an orogen scale, with a large component of horizontal finite elongation parallel to the orogen. This orogen-scale flow mode combines distributed shortening, gravity-driven flow, lateral escape, and three-dimensional mass redistribution of buried supracrustal rocks, magmas and migmatites in a thick fluid lower crust. This combination preserves a nearly flat surface and Moho. The upper crust maintains a nearly constant thickness by real-time erosion and near-field clastic sedimentation and by ablation at its base by burial of pop-downs into the lower crust. Steady state regime of these orogens is allowed by activation of an attachment layer that maintains kinematic compatibility between the thin and dominantly plastic upper crust and a thick "water bed" of lower crust. Because very thin lithospheres of orogenic plateaux and Precambrian hot orogens have similar thermomechanical structures, bulk orogenic flow comparable to that governing Precambrian hot orogens should actually operate through today's orogenic plateaux as well. Thus, syn-convergence flow fabrics documented on exposed crustal sections of ancient hot orogens that have not undergone collapse may be used to infer the nature of flow fabrics that are imaged by geophysical techniques beneath orogenic plateaux. We provide a detailed geological perspective on syn-convergence crustal flow in relation to magma emplacement and partial melting on a wide oblique crustal transition of the Neoarchean ultra-hot orogen of Southern India. We document sub-horizontal bulk longitudinal flow of the partially molten lower crust over a protracted period of 60 Ma. Bulk flow results from the interplay of (1) pervasive longitudinal transtensional flow of the partially molten crust, (2) longitudinal coaxial flow on flat fabrics in early plutons, (3) distributed, orogen-normal shortening, (4) emplacement of late prolate shape plutons in the direction of flow, and (5) late, conjugate strike-slip shearing. The macroscopic- to regional scale tectonoplutonic pattern produced by longitudinal flow forms a flat composite anisotropy throughout the lower crust. In the light of GPS data, these results suggest that bulk longitudinal flow accounts for observed deformation of the Tibetan plateau as well as for its seismic structure. This flow mode may be preferred to lateral, east-directed channel flow because it combines both lateral gravity-driven thinning and distributed, orogen-normal shortening of the crust. These results further suggest that lower crustal seismic reflectivity in orogenic belts may not necessarily images fabrics produced by extensional tectonics, as commonly thought, but crustal layering produced by syn-convergence lateral flow.

  15. Geophysical Evidence for the Tectonic Evolution of the Inverted Belt-Purcell Basin, Northwestern Montana

    NASA Astrophysics Data System (ADS)

    Rutherford, B. S.; Speece, M. A.; Constenius, K. N.

    2015-12-01

    The geometry of the Precambrian Belt-Purcell basin and subsequent allochthon, that dominates the geology of northwestern Montana, played a critical role in the development of compressional structures during orogenesis and their ensuing reactivation during the later phase of extensional collapse. Five reprocessed seismic reflection profiles provide images in the Swan Range and adjacent valleys that we have correlated to published seismic data north into Canada. Reflections from syndepositional sills encased within Lower Belt rocks offer clues to the configuration of the basin prior to its tectonic inversion. Thick basinal facies of the Lewis salient are contrasted by thin shelfal facies found in hanging wall rocks of frontal Belt carrying thrusts south of the salient. The along strike change in hanging wall rocks reflects the original configuration of the Belt basin margin. Rocks of the Lewis salient were deposited in an embayment on the northeastern margin of the Belt basin. Shelfal accumlations of the embayment comprise an autochthonous wedge that has remained in the footwall of the Lewis thrust system. South of the embayment and related salient, nearly the entire Belt basin was detached from pre-Belt crystalline rocks and inverted at the latitude of the Sawtooth Range. Deeply exhumed Phanerozoic rocks of the Sawtooth Range are a direct consequence of the thin wedge geometry of the detached basin south of the Lewis salient that required growth of a substantial orogenic wedge to obtain critical taper values. We offer an alternate interpretation of a >10 km high, west facing décollement ramp that coincides with the Belt-Purcell basin margin. Previous interpretations in Montana have inferred the location of the basin margin ramp to approximate the trace of the Purcell Anticlinorium. Seismic data and cross-section balancing suggest the Rocky Mountain Trench as a more accurate location. Based on our proposed position of the basin margin the Belt-Purcell allocthon requires insignificant rotation during thrust emplacement which is in agreement with published interpretations of paleomagnetic data. We suggest small (<5°) clockwise rotation is due to an increase in extensional slip from the international border south to the Flathead Valley as opposed to an increase in compressional shortening to the north.The geometry of the Precambrian Belt-Purcell basin and subsequent allochthon, that dominates the geology of northwestern Montana, played a critical role in the development of compressional structures during orogenesis and their ensuing reactivation during the later phase of extensional collapse. Five reprocessed seismic reflection profiles provide images in the Swan Range and adjacent valleys that we have correlated to published seismic data north into Canada. Reflections from syndepositional sills encased within Lower Belt rocks offer clues to the configuration of the basin prior to its tectonic inversion. Thick basinal facies of the Lewis salient are contrasted by thin shelfal facies found in hanging wall rocks of frontal Belt carrying thrusts south of the salient. The along strike change in hanging wall rocks reflects the original configuration of the Belt basin margin. Rocks of the Lewis salient were deposited in an embayment on the northeastern margin of the Belt basin. Shelfal accumlations of the embayment comprise an autochthonous wedge that has remained in the footwall of the Lewis thrust system. South of the embayment and related salient, nearly the entire Belt basin was detached from pre-Belt crystalline rocks and inverted at the latitude of the Sawtooth Range. Deeply exhumed Phanerozoic rocks of the Sawtooth Range are a direct consequence of the thin wedge geometry of the detached basin south of the Lewis salient that required growth of a substantial orogenic wedge to obtain critical taper values. We offer an alternate interpretation of a >10 km high, west facing décollement ramp that coincides with the Belt-Purcell basin margin. Previous interpretations in Montana have inferred the location of the basin margin ramp to approximate the trace of the Purcell Anticlinorium. Seismic data and cross-section balancing suggest the Rocky Mountain Trench as a more accurate location. Based on our proposed position of the basin margin the Belt-Purcell allocthon requires insignificant rotation during thrust emplacement which is in agreement with published interpretations of paleomagnetic data. We suggest small (<5°) clockwise rotation is due to an increase in extensional slip from the international border south to the Flathead Valley as opposed to an increase in compressional shortening to the north.

  16. Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden).

    PubMed

    Heim, C; Lausmaa, J; Sjövall, P; Toporski, J; Dieing, T; Simon, K; Hansen, B T; Kronz, A; Arp, G; Reitner, J; Thiel, V

    2012-07-01

    Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20-100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, C(x)H(y)⁺, C(x)H(y)N⁺, C(x)H(y)O⁺. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ¹³C, δ¹⁸O and ⁸⁷Sr/⁸⁶Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past. © 2012 Blackwell Publishing Ltd.

  17. Preliminary report on the geology and deposits of monazite, thorite and niobium-bearing rutile of the Mineral Hill district, Lemhi County, Idaho

    USGS Publications Warehouse

    Kaiser, Edward Peck

    1956-01-01

    Deposits of minerals containing niobium (columbium), thorium, and rare earths occur in the Mineral Hill district, 30 miles northwest of Salmon, Lemhi County, Idaho. Monazite, thorite, allanite, and niobium-bearing rutile form deposits in metamorphic limestone layers less than 8 feet thick. The known deposits are small, irregular, and typically located in or near small folds. Minor faults are common. Monazite generally is coarsely crystalline and contains less than one percent thorium. Rutile forms massive lumps up to 3 inches across; it contains between 5 and 10 percent niobium. Rutile occurs in the northwestern half of the district, thorite in the central and southeastern parts. Monazite occurs in all deposits. Allanite is locally abundant and contains several percent thorium. Magnetite and ilmenite are also locally abundant. A major thrust fault trending northwest across the map-area separates moderately folded quartzite and phyllitic rocks of Belt age, on the northeast, from more intensely metamorphosed and folded rocks on the southwest. The more metamorphosed rocks include amphibolite, porphyroblastic feldspar gneiss, quartzite, and limestone, all probably of sedimentary origin, and probably also of Belt (late Precambrian) age. The only rocks of definite igneous origin are rhyolite dikes of probable Tertiary age. The more metamorphosed rocks were formed by metasomatic metamorphism acting on clastic sediments, probably of Belt age, although they may be older than Belt. Metamorphism doubtless was part of the episode of emplacement of the Idaho batholith, but the history of that episode is not well understood. The rare-element deposits show no evidence of fracture-controlled hydrothermal introduction, such as special fracture systems, veining, and gangue material. They may, however, be of hydrothermal type. More likely they are metamorphic segregations or secretions, deposited in favorable stratigraphic and structural positions during regional metamorphism.

  18. A new insight on magma generation environment beneath Jeju (Cheju) volcanic island

    NASA Astrophysics Data System (ADS)

    Shin, Y.; CHOI, K.; Koh, J.; Yun, S.; Nakamura, E.; Na, S.

    2011-12-01

    We present a Moho undulation model from gravity inversion that gives a new insight on the magma generation environment beneath Jeju (Cheju) volcanic island, Korea. The island is an intra-plate volcanic island located behind Ryukyu Trench, the collisional boundary between Eurasian plate and Philippine plate. Jeju island is a symmetrical shield volcano of oval shape (74 km by 32 km) whose peak is Hallasan (Mt. Halla: 1950m). The landform, which is closely related to the volcanism, can be divided topographically into the lava plateau, the shield-shaped Halla volcanic edifice and the monogenetic cinder cones, which numbers over 365. The basement rock mainly consists of Precambrian gneiss, Mesozoic granite and volcanic rocks. Unconsolidated sedimentary rock is found between basement rock and lava. The lava plateau is composed of voluminous basaltic lava flows, which extend to the coast region with a gentle slope. Based on volcanic stratigraphy, paleontology and geochronology, the Jeju basalts range from the early Pleistocene to Holocene in age. The mean density of the island is estimated to be very low, 2390 kg/cubic cm from gravity data analysis, which reflects the abundant unconsolidated pyroclastic sediments below the surface lava. The mean Moho depth is estimated to be 29.5 km from power spectral density of gravity anomaly, which means it has continental crust. It is noticeable that the gravity inversion indicates the island is developed above and along a swelled-up belt (ridge), several hundred meters higher than the surrounding area. The structure is also shows positive correlation with high magnetic anomaly distribution that could indicate existence of volcanic rocks. We interpret the Moho structure has a key to the magma generation: 1) the high gravity anomaly belt is formed by folding/buckling process under compressional environment, 2) it causes decrease of pressure beneath the lithosphere along the belt, and 3) it accelerates melting of basaltic magma in addition to the hot thermal structure widely distributed behind the collisional boundary.

  19. Granitoids of the Ufalei block (South Urals): Sr-Nd isotope systematics, geodynamic position and genetic reconstructions

    NASA Astrophysics Data System (ADS)

    Ronkin, Yu. L.; Shardakova, G. Yu.; Maslov, A. V.; Shagalov, E. S.; Lepikhina, O. P.

    2009-04-01

    Petrogeochemical and isotopic-geochronological signatures in granitoids developed in structures with complex geological history represent an important feature for reconstructing paleogeodynamic settings. Granitoids are widespread in the western slope of the Urals, where the Uralian Orogen contacts via a collage of different-age blocks of the east European Platform. The Ufalei block located in the Central Urals megazone at the junction between the South and Middle Urals’ segments represents one such boundary structure with multistage geological evolution. The isotopic ages obtained by different methods for acid igneous rocks range from 1290 to 245 Ma. We determined close Rb-Sr and Sm-Nd ages (317 Ma) for granites of the Nizhnii Ufalei Massif. By their petrochemical parameters, granitoids and host granite-gneisses differ principally from each other: the former are close to subduction-related, while the latter, to continental-riftogenic varieties. The primary ratio (87Sr/86Sr)0 = 0.70428 and ɛNd ≈ +4 values indicate significant contribution of oceanic (island-arc?) material to the substrate, which served as a source for granites of the Nizhnii Ufalei Massif. Model Nd ages of granites vary from 641 to 550 Ma. Distinct oceanic rocks and varieties with such ages are missing from the surrounding structures. New isotopic dates obtained for ultramafic and mafic rocks from different zones of the Urals related to the Cadomian cycle imply development of unexposed Upper Riphean-Vendian “oceanic” rocks in the central part of the Ufalei block, which played a substantial role in the formation of the Nizhnii Ufalei granitoids. Such rocks could be represented, for example, by fragments of the Precambrian Timanide-type ophiolite association. The analysis of original materials combined with published data point to the heterogeneous composition and structure of the Ufalei block and a significant part of the western segment of the Central Uralian Uplift and extremely complex geological history of the region coupling the Uralian Orogen with the East European Platform in the present-day structure.

  20. Cover sequences at the northern margin of the Antongil Craton, NE Madagascar

    USGS Publications Warehouse

    Bauer, W.; Walsh, G.J.; De Waele, B.; Thomas, Ronald J.; Horstwood, M.S.A.; Bracciali, L.; Schofield, D.I.; Wollenberg, U.; Lidke, D.J.; Rasaona, I.T.; Rabarimanana, M.H.

    2011-01-01

    The island of Madagascar is a collage of Precambrian, generally high-grade metamorphic basement domains, that are locally overlain by unmetamorphosed sedimentary rocks and poorly understood low-grade metasediments. In the Antalaha area of NE Madagascar, two distinct cover sequences rest on high-grade metamorphic and igneous basement rocks of the Archaean Antongil craton and the Neoproterozoic Bemarivo belt. The older of these two cover sequences, the Andrarona Group, consists of low-grade metasedimentary rocks. The younger sequence, the newly defined Ampohafana Formation, consists of unmetamorphosed sedimentary rocks. The Andrarona Group rests on Neoarchaean granites and monzogranites of the Antongil craton and consists of a basal metagreywacke, thick quartzites and an upper sequence of sericite-chlorite meta-mudstones, meta-sandstones and a volcaniclastic meta-sandstone. The depositional age of the volcaniclastic meta-sandstone is constrained in age by U–Pb laser-ablation ICP-MS analyses of euhedral zircons to 1875 ± 8 Ma (2σ). Detrital zircons of Archaean and Palaeoproterozoic age represent an input from the Antongil craton and a newly defined Palaeoproterozoic igneous unit, the Masindray tonalite, which underlies the Andrarona Group, and yielded a U–Pb zircon age of 2355 ± 11 Ma (2σ), thus constraining the maximum age of deposition of the basal part of the Andrarona Group. The Andrarona Group shows a low-grade metamorphic overprint in the area near Antalaha; illite crystallinity values scatter around 0.17°Δ2Θ CuKα, which is within the epizone. The Ampohafana Formation consists of undeformed, polymict conglomerate, cross-bedded sandstone, and red mudstone. An illite crystallinity value of >0.25°Δ2Θ CuKα obtained from the rocks is typical of the diagenetic zone. Occurrences of rhyodacite pebbles in the Ampohafana Formation and the intrusion of a basaltic dyke suggest a deposition in a WSW-ENE-trending graben system during the opening of the Indian Ocean in the Upper Cretaceous, that was characterized by extensive rhyolitic to basaltic magmatism along Madagascar's eastern coast.

Top